2020年人教版数学一轮课后限时集训35 合情推理与演绎推理
2020高考文科数学(人教版)一轮复习讲义:第45讲 合情推理与演绎推理 含答案
第45讲 合情推理与演绎推理1.了解合情推理的含义,能进行简单的归纳推理与类比推理.2.了解演绎推理的重要性,掌握演绎推理的“三段论”,能运用“三段论”进行简单的演绎推理.3.了解合情推理与演绎推理之间的联系与差异.知识梳理1.合情推理 (1)归纳推理:由某类事物的 部分 对象具有某些特征,推出该类事物的 全部 对象都具有这些特征的推理,或者由个别事物概括出 一般结论 的推理.归纳推理是由部分到整体、由 个别 到 一般 的推理.(2)类比推理:由两类对象具有 某些类似特征 和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理.类比推理是由 特殊 到 特殊 的推理.(3)合情推理:归纳推理和类比推理都是根据已有的事实,经过 观察 , 分析 , 比较 , 联想 ,再进行 归纳 , 类比 ,然后提出猜想的推理,我们把它们统称为合情推理.2.演绎推理(1)从 一般性 的原理出发,推出某个 特殊情况 下的结论,我们把这种推理称为演绎推理,演绎推理是由 一般 到 特殊 的推理.(2)三段论是演绎推理的一般模式,包括: ①大前提—— 已知的一般原理 ; ②小前提—— 所研究的特殊情况 ;③结论—— 根据一般原理,对特殊情况做出的判断 .热身练习1.(2015·陕西卷)观察下列等式: 1-12=12, 1-12+13-14=13+14, 1-12+13-14+15-16=14+15+16, ……据此规律,第n 个等式为 1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n .等式左边是一个和式,先观察其通项: 等式的左边的通项为12n -1-12n,前n 项和为1-12+13-14+…+12n -1-12n;右边的每个式子的第一项为1n +1, 共有n 项,故为1n +1+1n +2+…+1n +n.所以第n 个等式为1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n .2等差数列{a n }中 等比数列{b n }中a 3=a 2+db 3=b 2·q a 3+a 4=a 2+a 5 b 3·b 4=b 2·b 5 a 1+a 2+a 3+a 4+a 5=5a 3b 1·b 2·b 3·b 4·b 5=b 53类比得:b 1·b 2·b 3·b 4·b 5=b 3.3.如图(1)有面积关系:S △P A ′B ′S △P AB =P A ′·PB ′P A ·PB ,则由图(2)有体积关系:V P -A ′B ′C ′V P -ABC=P A ′·PB ′·PC ′P A ·PB ·PC.平面上的面积可类比到空间上的体积. V P -A ′B ′C ′V P -ABC=13·S △P A ′B ′·h ′13·S △P AB·h =P A ′·PB ′·PC ′P A ·PB ·PC .4.(2018·襄城区校级模拟)“所有9的倍数都是3的倍数,5不是9的倍数,故5不是3的倍数.”上述推理是(B)A .不是三段论推理,且结论不正确B .不是三段论推理,但结论正确C .是三段论推理,但小前提错误D .是三段论推理,但大前提错误5.命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是(C)A .使用了归纳推理B .使用了类比推理C .使用了“三段论”,但推理形式错误D .使用了“三段论”,但小前提错误 由条件知使用了三段论,但推理形式是错误的.归纳推理 (2018·陕西咸阳模拟)观察下列等式:1×2<2, 1×2+2×3<92,1×2+2×3+3×4<8,1×2+2×3+3×4+4×5<252,……根据以上规律,第n (n ∈N *)个不等式是 .观察不等式,可得:1×2<2=42=222=(1+1)22,1×2+2×3<92=322=(2+1)22,1×2+2×3+3×4<8=162=422=(3+1)22,1×2+2×3+3×4+4×5<252=522=(4+1)22,由此可得第n 个不等式是:1×2+2×3+…+n (n +1)<(n +1)22.1×2+2×3+…+n (n +1)<(n +1)22(1)归纳推理是由个别到一般的推理,需要仔细观察特例的结构特征,从中发现一般规律.为了发现规律,有时对特殊情况要进行适当变形.(2)归纳推理的一般步骤是:①对相关资料进行观察、分析、归纳整理;②推出带有规律性的结论(猜想);③检验猜想.1.(2016·山东卷)观察下列等式: (sin π3)-2+(sin 2π3)-2=43×1×2; (sin π5)-2+(sin 2π5)-2+(sin 3π5)-2+(sin 4π5)-2 =43×2×3; (sin π7)-2+(sin 2π7)-2+(sin 3π7)-2+…+(sin 6π7)-2=43×3×4; (sin π9)-2+(sin 2π9)-2+(sin 3π9)-2+…+(sin 8π9)-2=43×4×5; ……照此规律,(sin π2n +1)-2+(sin 2π2n +1)-2+(sin 3π2n +1)-2+…+(sin 2n π2n +1)-2= 43n (n +1) .通过观察已给出等式的特点,可知等式右边的43是个固定数,43后面第一个数是等式左边最后一个数括号内角度值分子中π的系数的一半,43后面第二个数是第一个数的下一个自然数,所以所求结果为43×n ×(n +1),即43n (n +1).类比推理(2018·陕西西安月考)已知△ABC 的三边长为a ,b ,c ,内切圆半径为r ,则S △ABC =12r (a +b+c ).类比这一结论有:若三棱锥A -BCD 四个面的面积分别为S 1,S 2,S 3,S 4,内切球半径为R ,则三棱锥体积V A -BCD =_______________________.类比面积公式S △ABC =12r (a +b +c )的推导方法,以四面体内切球球心向四个顶点引直线将四面体分成四个三棱锥,它们分别以四个面为底面,内切球半径R 为高,所以V A -BCD =13R (S 1+S 2+S 3+S 4).13R (S 1+S 2+S 3+S 4)(1)类比推理不仅要注意形式的类比,还要注意方法的类比. (2)类比推理的一般步骤是:①找出两类对象之间可以确切表述的相似特征;②用一类对象的已知特征去推测另一类对象的特征(猜想);③检验猜想.2.在△ABC 中,若AC ⊥BC ,AC =b ,BC =a ,则△ABC 的外接圆半径r =a 2+b 22.将此结论拓展到空间,可得出的正确结论是:在四面体S -ABC 中,若SA ,SB ,SC 两两垂直,SA =a ,SB =b ,SC =c ,则四面体S -ABC 的外接球半径R =a 2+b 2+c 22.类比△ABC 中,若AC ⊥BC ,AC =b ,BC =a ,则△ABC 的外接圆半径r =a 2+b 22的推导方法——构造长方形.由此可将四面体S -ABC 构造出长方体,由对角截面性质可知,球的直径等于长方体的体对角线长,即2R =a 2+b 2+c 2,故R =a 2+b 2+c 22.合情推理与演绎推理(2018·河北诊断)观察下列等式: 1=1,2+3+4=9,3+4+5+6+7=25,4+5+6+7+8+9+10=49, ……请归纳出一个一般结论,并加以证明.观察这些等式,第一个式子左边从1开始,1个数,右边是12;第二个式子左边从2开始,3个数相加,右边是32; 第三个式子左边从3开始,5个数相加,右边是52; 由此归纳出:第n 个式子左边从n 开始,2n -1个数相加,右边是(2n -1)2;第n 个式子左边是首项为n ,公差为1,项数为2n -1的等差数列的和, 第2n -1个数为n +(2n -1-1)×1=3n -2.故第n 个等式为n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2.下面进行证明:证明:等式左边是(2n -1)个数的和,且这(2n -1)个构成等差数列,其首项为n ,公差为1,根据等差数列求和公式得n +(n +1)+(n +2)+…+(3n -2)=(n +3n -2)(2n -1)2=(2n -1)2.(1)合情推理是从已知的结论推测未知的结论,发现与猜测的结论都要经过进一步的严格证明.(2)演绎推理是由一般到特殊的推理,它常用来证明和推理数学问题,注意推理过程的严密性,书写格式的规范性.3.(1)求证:tan(x +π4)=1+tan x1-tan x.(2)设x ∈R 且f (x +1)=1+f (x )1-f (x ),试问:f (x )是周期函数吗?证明你的结论.(1)证明:tan(x +π4)=tan x +tanπ41-tan x tanπ4=1+tan x 1-tan x.(2)f (x )是以4为其一个周期的周期函数. 因为f (x +2)=f [(x +1)+1] =1+f (x +1)1-f (x +1)=1+1+f (x )1-f (x )1-1+f (x )1-f (x )=-1f (x ), 所以f (x +4)=f [(x +2)+2]=-1f (x +2)=f (x ).所以f (x )是周期函数,且其中一个周期为4.1.归纳猜想是一种重要的思维方法,但结果的正确性还需进一步证明,一般地,考查的个体越多,归纳的结论可靠性越大.2.类比的关键是能把两类对象之间的某种一致性(相似性)确切地表述出来,在学习中要注意通过类比去发现探索新问题.3.归纳推理和类比推理是常用的合情推理,从推理形式上看,归纳是由部分到整体、个别到一般的推理;类比是由特殊到特殊的推理;而演绎推理是由一般到特殊的推理.从推理所得的结论来看,合情推理的结论不一定正确,有待进一步证明;演绎推理在大前提、小前提和推理形式都正确的前提下,得到的结论是正确的.。
高考数学一轮复习 6.5 合情推理与演绎推理限时集训 理
限时集训(三十六) 合情推理与演绎推理(限时:50分钟 满分:106分)一、选择题(本大题共8个小题,每小题5分,共40分)1.(2013·合肥模拟)正弦函数是奇函数,f (x )=sin(x 2+1)是正弦函数,因此f (x )=sin(x 2+1)是奇函数,以上推理( )A .结论正确B .大前提不正确C .小前提不正确D .全不正确2.(2013·银川模拟)当x ∈(0,+∞)时可得到不等式x +1x ≥2,x +4x 2=x 2+x 2+⎝ ⎛⎭⎪⎫2x 2≥3,由此可以推广为x +pxn ≥n +1,取值p 等于( )A .n nB .n 2C .nD .n +13.(2013·杭州模拟)观察(x 2)′=2x ,(x 4)′=4x 3,(cos x )′=- sin x ,由归纳推理可得:若定义在R 上的函数f (x )满足f (-x )=f (x ),记g (x )为f (x )的导函数,则g (-x )=( )A .f (x )B .-f (x )C .g (x )D .-g (x )4.由代数式的乘法法则类比推导向量的数量积的运算法则: ①“mn =nm ”类比得到“a·b =b·a ”;②“(m +n )t =mt +nt ”类比得到“(a +b )·c =a·c +b·c ”; ③“(m ·n )t =m (n ·t )”类比得到“(a·b )·c =a·(b·c )”; ④“t ≠0,mt =xt ⇒m =x ”类比得到“p ≠0,a·p =x·p ⇒a =x ”; ⑤“|m ·n |=|m |·|n |”类比得到“|a·b|=|a|·|b|”; ⑥“ac bc =ab ”类比得到“a·c b·c =ab”. 以上的式子中,类比得到的结论正确的个数是( )A .1B .2C .3D .45.已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f ′1(x ),f 3(x )=f ′2(x ),…,f n +1(x )=f ′n (x ),n ∈N *,则f 2 013(x )=( )A .sin x +cos xB .sin x -cos xC .-sin x +cos xD .-sin x -cos x6.(2012·江西高考)观察下列事实:|x |+|y |=1的不同整数解(x ,y )的个数为4,|x |+|y |=2的不同整数解(x ,y )的个数为8,|x |+|y |=3的不同整数解(x ,y )的个数为12,…,则|x |+|y |=20的不同整数解(x ,y )的个数为( )A .76B .80C .86D .927.设△ABC 的三边长分别为a 、b 、c ,△ABC 的面积为S ,内切圆半径为r ,则r =2Sa +b +c;类比这个结论可知:四面体S -ABC 的四个面的面积分别为S 1、S 2、S 3、S 4,内切球的半径为R ,四面体S -ABC 的体积为V ,则R =( )A.VS 1+S 2+S 3+S 4B.2VS 1+S 2+S 3+S 4C.3VS 1+S 2+S 3+S 4D.4VS 1+S 2+S 3+S 48.已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个数对是( )A .(7,5)B .(5,7)C .(2,10)D .(10,1)二、填空题(本大题共6个小题,每小题4分,共24分) 9.(2012·陕西高考)观察下列不等式 1+122<32, 1+122+132<53, 1+122+132+142<74, …照此规律,第五个不等式为________.10.对于命题:若O 是线段AB 上一点,则有|OB uuu r |·OA u u u r +|OA u u u r |·OB uuu r=0.将它类比到平面的情形是:若O 是△ABC 内一点,则有S △OBC ·OA u u u r +S △OCA ·OB uuu r+S △OBA ·OC u u u r=0.将它类比到空间的情形应该是:若O 是四面体ABCD 内一点,则有________.11.考察下列一组等式:21+2=4;21×2=4;32+3=92;32×3=92;43+4=163;43×4=163;…,根据这些等式反映的结果,可以得出一个关于自然数n 的等式,这个等式可以表示为________.12.观察下列等式: (1+x +x 2)1=1+x +x 2,(1+x +x 2)2=1+2x +3x 2+2x 3+x 4,(1+x +x 2)3=1+3x +6x 2+7x 3+6x 4+3x 5+x 6,(1+x +x 2)4=1+4x +10x 2+16x 3+19x 4+16x 5+10x 6+4x 7+x 8, …由以上等式推测:对于n ∈N *,若(1+x +x 2)n=a 0+a 1x +a 2x 2+…+a 2n x 2n,则a 2=________.13.(2012·湖北高考)回文数是指从左到右读与从右到左读都一样的正整数,如22,121,3443,94249等.显然2位回文数有9个:11,22,33,…,99.3位回文数有90个:101,111,121,…,191,202,…,999.则(1)4位回文数有________个;(2)2n +1(n ∈N *)位回文数有________个.14.如图,矩形ABCD 和矩形A ′B ′C ′D ′夹在两条平行线l 1、l 2之间,且A ′B ′=mAB ,则容易得到矩形ABCD 的面积S 1与矩形A ′B ′C ′D ′的面积S 2满足:S 2=mS 1.由此类比,如图,夹在两条平行线l 1、l 2之间的两个平行封闭图形T 1、T 2,如果任意作一条与l 1平行的直线l ,l 分别与两个图形T 1、T 2的边界交于M 、N 、M ′、N ′,且M ′N ′=mMN ,则T 1、T 2的面积S 1、S 2满足________.椭圆y 2a 2+x 2b2=1(a >b >0)与圆x 2+y 2=a 2是夹在直线y =a 和y =-a之间的封闭图形,类比上面的结论,由圆的面积可得椭圆的面积为________.三、解答题(本大题共3个小题,每小题14分,共42分) 15.给出下面的数表序列:表1 表2 表3 1 1 3 1 3 5 …4 4 8 12其中表n (n =1,2,3,…)有n 行,第1行的n 个数是1,3,5,…,2n -1,从第2行起,每行中的每个数都等于它肩上的两数之和.写出表4,验证表4各行中的数的平均数按从上到下的顺序构成等比数列,并将结论推广到表n (n ≥3)(不要求证明).16.(2013·包头模拟)已知椭圆具有性质:若M ,N 是椭圆C 上关于原点对称的两个点,点P 是椭圆上任意一点,当直线PM ,PN 的斜率都存在,并记为k PM ,k PN 时,k PM 与k PN 之积是与点P 的位置无关的定值.试对双曲线x 2a 2-y 2b2=1写出具有类似特征的性质,并加以证明.17.观察:①sin 210°+cos 240°+sin 10°cos 40°=34;②sin 26°+cos 236°+sin 6°cos 36°=34.由上面两题的结构规律,你能否提出一个猜想?并证明你的猜想.答 案 [限时集训(三十六)]1.C 2.A 3.D 4.B 5.A 6.B 7.C 8.B 9.1+122+132+142+152+162<11610.V O -BCD ·OA u u u r +V O -ACD ·OB uuu r +V O -ABD ·OC u u u r +V O -ABC ·OD u u u r =0 11.n +1n+(n +1)=n +1n×(n +1)(n ∈N *) 12.n n +1213.解析:从左右对称入手考虑.(1)4位回文数第1、4位取1,2,3,4,5,6,7,8,9之一有C 19=9种选法.第2、3位可取0,有10种选法,故有9×10=90个,即4位回文数有90个.(2)首位和末位不能取0,故有9种选法,其余位关于中间数对称,每两数都有10种选法,中间数也有10种选法,故2n +1(n ∈N *)位回文数有9×10n个.答案:90 9×10n14.解析:如图,任取一条与x 轴平行的直线,设该直线与x 轴相距h ,则这条直线被椭圆截得的弦长l 1=2b a 2-h 2a,被圆截得的弦长l 2=2a 2-h 2, 则l 1l 2=b a ,即S 椭圆S 圆=b a. 故S 椭圆=b a·πa 2=πab . 答案:S 2=mS 1 πab 15.解:表4为1 3 5 7 4 8 12 12 20 32它的第1,2,3,4行中的数的平均数分别是4,8,16,32,它们构成首项为4,公比为2的等比数列.将这一结论推广到表n (n ≥3),即表n (n ≥3)各行中的数的平均数按从上到下的顺序构成首项为n ,公比为2的等比数列.16.解:类似的性质为:若M ,N 是双曲线x 2a 2-y 2b2=1上关于原点对称的两个点,点P 是双曲线上任意一点,当直线PM ,PN 的斜率都存在,并记为k PM ,k PN 时,k PM 与k PN 之积是与点P 的位置无关的定值.证明:设点M ,P 的坐标分别为(m ,n ),(x ,y ), 则N (-m ,-n ).因为点M (m ,n )在已知的双曲线上,所以n 2=b 2a2m 2-b 2.同理:y 2=b 2a2x 2-b 2.则k PM ·k PN =y -n x -m ·y +nx +m=y 2-n 2x 2-m 2=b 2a 2·x 2-m 2x 2-m 2=b 2a 2(定值). 17.解:猜想sin 2α+cos 2(α+30°)+sin α·cos(α+30°)=34.证明:左边=sin 2α+cos(α+30°)[cos(α+30°)+sin α]= sin 2α+⎝⎛⎭⎪⎫32cos α-12sin α⎝ ⎛⎭⎪⎫32cos α+12sin α=sin 2α+34cos 2α-14sin 2α=34=右边.所以,猜想是正确的.。
2020版高考数学一轮复习课后限时集训53排列与组合含解析理201906273107
课后限时集训(五十三)(建议用时:60分钟)A组基础达标一、选择题1.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b组成复数a+b i,其中虚数的个数是( )A.30 B.42C.36 D.35C[因为a+b i为虚数,所以b≠0,即b有6种取法,a有6种取法,由分步乘法计数原理知可以组成6×6=36个虚数.]2.高三年级的三个班去甲、乙、丙、丁四个工厂参加社会实践,但去何工厂可自由选择,甲工厂必须有班级要去,则不同的分配方案有( )A.16种B.18种C.37种D.48种C[三个班去四个工厂不同的分配方案共43种,甲工厂没有班级去的分配方案共33种,因此满足条件的不同的分配方案共有43-33=37种.故选C.]3.已知两条异面直线a,b上分别有5个点和8个点,则这13个点可以确定不同的平面个数为( )A.40 B.16C.13 D.10C[分两类情况:第1类,直线a分别与直线b上的8个点可以确定8个不同的平面;第2类,直线b分别与直线a上的5个点可以确定5个不同的平面.根据分类加法计数原理知,共可以确定8+5=13个不同的平面.]4.一个旅游景区的游览线路如图所示,某人从P点处进,Q点处出,沿图中线路游览A,B,C三个景点及沿途风景,则不重复(除交汇点O外)的游览线路有( )A.6种B.8种C.12种D.48种D[从点P处进入后,参观第一个景点时,有6个路口可以选择,从中任选一个,有C16种选法,参观完第一个景点,参观第二个景点时,有4个路口可以选择,从中任选一个,有C14种选法,参观完第二个景点,参观第三个景点时,有2个路口可以选择,从中任选一个,有C12种选法,则共有C16C14C12=48(种)线路.故选D.]5.某地实行高考改革,考生除参加语文、数学、英语统一考试外,还需从物理、化学、生物、政治、历史、地理六科中选考三科.学生甲要想报考某高校的法学专业,就必须要从物理、政治、历史三科中至少选考一科,则学生甲的选考方法种数为( ) A.6 B.12C.18 D.19D[在物理、政治、历史中选一科的选法有C13C23=9(种);在物理、政治、历史中选两科的选法有C23C13=9(种);物理、政治、历史三科都选的选法有1种.所以学生甲的选考方法共有9+9+1=19(种),故选D.]6.(2018·南昌一模)某校毕业典礼上有6个节目,考虑整体效果,对节目演出顺序有如下要求:节目甲必须排在前三位,且节目丙、丁必须排在一起.则该校毕业典礼节目演出顺序的编排方案共有( )A.120种B.156种C.188种D.240种A[法一:记演出顺序为1~6号,对丙、丁的排序进行分类,丙、丁占1和2号,2和3号,3和4号,4和5号,5和6号,其排法种数分别为A22A33,A22A33,C12A22A33,C13A22A33,C13A22A33,故总编排方案有A22A33+A22A33+C12A22A33+C13A22A33+C13A22A33=120(种).法二:记演出顺序为1~6号,按甲的编排进行分类,①当甲在1号位置时,丙、丁相邻的情况有4种,则有C14A22A33=48(种);②当甲在2号位置时,丙、丁相邻的情况有3种,共有C13A22A33=36(种);③当甲在3号位置时,丙、丁相邻的情况有3种,共有C13A22A33=36(种).所以编排方案共有48+36+36=120(种).]7.(2019·长沙模拟)三对夫妻站成一排照相,则仅有一对夫妻相邻的站法总数是( ) A.72 B.144C.240 D.288D[第一类:选一对夫妻相邻捆绑,插入第二对夫妻中间,最后一对夫妻排在首尾,则有C13A22C12A22A22=48.第二类:选一对夫妻相邻捆绑,插入形如BCbc(其中Aa,Bb,Cc为三对夫妻)中,共有C13A12C12A22A22C15=240种.故共有48+240=288种排列方式.]二、填空题8.由数字2,0,1,9组成没有重复数字的四位偶数的个数为________.10[根据所组成的没有重复数字的四位偶数的个位是否为0进行分类计数:第一类,个位是0时,满足题意的四位偶数的个数为A33=6;第二类,个位是2时,满足题意的四位偶数的个数为C12A22=4.由分类加法计数原理得,满足题意的四位偶数的个数为6+4=10.]9.国家教育部为了发展贫困地区的教育,在全国重点师范大学免费培养教育专业师范生,毕业后要将他们分配到相应的地区去任教.现要将6名免费培养的教育专业师范毕业生平均分配到3所学校去任教,有________种不同的分配方法.90 [先把这6名毕业生平均分成3组,有C 26C 24C 22A 33种方法,再将这3组毕业生分配到3所学校,有A 33种方法,故将这6名毕业生平均分配到3所学校去任教,共有C 26C 24C 22A 33·A 33=90(种)分配方法.]10.12个相同的小球放入编号为1,2,3,4的盒子中,要求每个盒子中的小球个数不少于其编号数,则不同的方法有________种.10 [先把每个盒子装上与其编号数相同的小球,还剩2个小球,2个小球装在4个盒子里需3个隔板,3个隔板看成3个元素,共5个元素,最后从5个元素里选出3个隔板就行了,共有C 35=10种.]B 组 能力提升1.(2019·日照模拟)甲、乙、丙3人站到共有7级的台阶上,若每一级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法总数为( )A .336B .84C .343D .210 A [若3人站在不同的台阶上共有A 37种不同的站法;若3人中恰有2人同时在一个台阶上,则共有C 13A 27种不同的站法.故共有A 37+C 13A 27=336种不同的站法,选A.]2.把3男2女5名新生分配到甲、乙两个班,每个班分到的新生不少于2名,且甲班至少分配1名女生,则不同的分配方案种数为( )A .16B .20C .26D .40A [把5名新生分配到甲、乙两个班,每个班分到的新生不少于2名,有C 25A 22种分配方案,其中甲班都是男生的分配方案有(C 23+1)种,则不同的分配方案种数为C 25A 22-(C 23+1)=16.故选A.]3.(2019·衡水模拟)已知一个公园的形状如图所示,现有3种不同的植物要种在此公园的A ,B ,C ,D ,E 这五个区域内,要求有公共边界的两块相邻区域种不同的植物,则不同的种法共有________种.18 [根据题意,分两步进行分析.第一步,对于A ,B ,C 区域,三个区域两两相邻,种的植物都不能相同,将3种不同的植物全排列,安排在A,B,C区域,有A33=6(种)种法;第二步,对于D,E区域,若A,E区域种的植物相同,则D区域有1种种法,若A,E区域种的植物不同,则E区域有1种种法,D区域有2种种法,则D,E区域共有1+2=3(种)不同的种法.故不同的种法共有6×3=18(种).]4.如图,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两顶点异色,如果只有5种颜色可供使用,则不同的染色方法种数是________.420[法一:由题设,四棱锥SABCD的顶点S,A,B所染的颜色互不相同,不同的染色方法共有5×4×3=60(种).当S,A,B染好时,不妨设其颜色分别为1,2,3,其余两种颜色为4,5,若C染2,则D 可染3或4或5,有3种不同的染色方法;若C染4,则D可染3或5,有2种不同的染色方法;若C染5,则D可染3或4,有2种不同的染色方法.所以当S,A,B染好时,C,D还有7种不同的染色方法,故不同染色方法有60×7=420(种).法二:以S,A,B,C,D的顺序分步染色.第一步,S点染色,有5种不同的方法.第二步,A点染色,与S在同一条棱上,有4种不同的方法.第三步,B点染色,与S,A分别在同一条棱上,有3种不同的方法.第四步,C点染色,也有3种不同的方法,但考虑到D点与S,A,C分别在同一条棱上,需要对A与C是否同色进行分类,当A与C同色时,D点有3种不同的染色方法;当A与C不同色时,因为C与S,B也不同色,所以C点有2种不同的染色方法,D点也有2种不同的染色方法.由分步乘法、分类加法计数原理,得不同的染色方法共有5×4×3×(1×3+2×2)=420(种).法三:按所用颜色种数分类.第一类,5种颜色全用,共有A55种不同的染色方法;第二类,只用4种颜色,则必有某两个顶点同色(A与C或B与D),共有2×A45种不同的染色方法;第三类,只用3种颜色,则A与C,B与D必定同色,共有A35种不同的染色方法.由分类加法计数原理,得不同的染色方法种数为A55+2×A45+A35=420.]。
2020版高考数学人教版理科一轮复习课时作业:39 合情推理与演绎推理
课时作业39 合情推理与演绎推理一、选择题1.(1)已知a 是三角形一边的长,h 是该边上的高,则三角形的面积是12ah ,如果把扇形的弧长l ,半径r 分别看成三角形的底边长和高,可得到扇形的面积为12lr ;(2)由1=12,1+3=22,1+3+5=32,可得到1+3+5+…+2n -1=n 2,则(1)(2)两个推理过程分别属于( A )A .类比推理、归纳推理B .类比推理、演绎推理C .归纳推理、类比推理D .归纳推理、演绎推理解析:(1)由三角形的性质得到扇形的性质有相似之处,此种推理为类比推理;(2)由特殊到一般,此种推理为归纳推理,故选A.2.已知数列{a n }的前n 项和为S n ,则a 1=1,S n =n 2a n ,试归纳猜想出S n 的表达式为( A )A .S n =2n n +1B .S n =2n -1n +1C .S n =2n +1n +1D .S n =2n n +2解析:S n =n 2a n =n 2(S n -S n -1),∴S n =n 2n 2-1S n -1,S 1=a 1=1,则S 2=43,S 3=32=64,S 4=85.∴猜想得S n =2n n +1.故选A. 3.下面图形由小正方形组成,请观察图①至图④的规律,并依此规律,写出第n 个图形中小正方形的个数是( C )A .n (n +1)B .n (n -1)2C .n (n +1)2D .n (n -1)解析:由题图知第1个图形的小正方形个数为1,第2个图形的小正方形个数为1+2,第3个图形的小正方形个数为1+2+3,第4个图形的小正方形个数为1+2+3+4,…,则第n 个图形的小正方形个数为1+2+3+…+n =n (n +1)2.4.观察下列各式:55=3 125,56=15 625,57=78 125,58=390 625,59=1 953 125,…,则52 018的末四位数字为( B )A .3 125B .5 625C .0 625D .8 125解析:55=3 125,56=15 625,57=78 125,58=390 625,59=1 953 125,…,可得59与55的后四位数字相同,由此可归纳出5m +4k 与5m (k ∈N *,m =5,6,7,8)的后四位数字相同,又2 018=4×503+6,所以52 018与56的后四位数字相同,为5 625,故选B.5.(2019·山西孝义调研)我们知道:在平面内,点(x 0,y 0)到直线Ax +By +C =0的距离公式d =|Ax 0+By 0+C |A 2+B2,通过类比的方法,可求得:在空间中,点(2,4,1)到直线x +2y +2z +3=0的距离为( B )A .3B .5 C.5217 D .3 5解析:类比平面内点到直线的距离公式,可得空间中点(x 0,y 0,z 0)到直线Ax +By +Cz +D =0的距离公式为d =|Ax 0+By 0+Cz 0+D |A 2+B 2+C 2, 则所求距离d =|2+2×4+2×1+3|12+22+22=5, 故选B.6.给出以下数对序列:(1,1)(1,2)(2,1)(1,3)(2,2)(3,1)(1,4)(2,3)(3,2)(4,1)……记第i 行的第j 个数对为a ij ,如a 43=(3,2),则a nm =( A )A .(m ,n -m +1)B .(m -1,n -m )C .(m -1,n -m +1)D .(m ,n -m )解析:由前4行的特点,归纳可得:若a nm =(a ,b ),则a =m ,b =n -m +1,∴a nm=(m ,n -m +1).7.(2019·惠州市调研考试)《周易》历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“”当作数字“1”,把阴爻“”当作数字“0”,则八卦所代表的数表示如下:依次类推,则六十四卦中的“屯”卦,符号为“”,其表示的十进制数是( B )A .33B .34C .36D .35解析:由题意类推,可知六十四卦中的“屯”卦的符号“”表示的二进制数为100010,转化为十进制数为0×20+1×21+0×22+0×23+0×24+1×25=34.故选B.二、填空题8.已知f (n )=1+12+13+…+1n (n ∈N *),经计算得f (2)=32,f (4)>2,f (8)>52,f (16)>3,f (32)>72,…,观察上述结果,可归纳出的一般结论为f (2n)≥n +22(n ∈N *). 解析:本题考查归纳推理.由归纳推理可得f (2n)≥n +22(n ∈N *). 9.如图,将一张等边三角形纸片沿中位线剪成4个小三角形,称为第一次操作;然后,将其中的一个三角形按同样方式再剪成4个小三角形,共得到7个小三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得到10个小三角形,称为第三次操作……根据以上操作,若要得到100个小三角形,则需要操作的次数是33.解析:由题意可知,第一次操作后,三角形共有4个;第二次操作后,三角形共有4+3=7个;第三次操作后,三角形共有4+3+3=10个……由此可得第n 次操作后,三角形共有4+3(n -1)=3n +1个.当3n +1=100时,解得n =33.10.在正项等差数列{a n }中有a 41+a 42+…+a 6020=a 1+a 2+…+a 100100成立,则在正项等比数列{b n }中,类似的结论为20b 41b 42b 43…b 60=100b 1b 2b 3…b 100.解析:结合等差数列和等比数列的性质,类比题中的结论可得,在正项等比数列{b n }中,类似的结论为20b 41b 42b 43…b 60=100b 1b 2b 3…b 100.11.(2019·安徽界首模拟)埃及数学中有一个独特现象:除23用一个单独的符号表示以外,其他分数都要写成若干个单分数和的形式.例如25=13+115可以这样理解:假定有两个面包,要平均分给5个人,如果每人12,不够,每人13,余13,再将这13分成5份,每人得115,这样每人分得13+115.形如2n (n =5,7,9,11,…)的分数的分解:25=13+115,27=14+128,29=15+145……按此规律,211=16+166;2n =1n +12+1n (n +1)2(n=5,7,9,11,…).解析:27=14+128表示两个面包分给7个人,每人13,不够,每人14,余14,再将这14分成7份,每人得128,其中4=7+12,28=7×7+12;29=15+145表示两个面包分给9个人,每人14,不够,每人15,余15,再将这15分成9份,每人得145,其中5=9+12,45=9×9+12,按此规律,211表示两个面包分给11个人,每人15,不够,每人16,余16,再将这16分成11份,每人得166,所以211=16+166,其中6=11+12,66=11×11+12.由以上规律可知,2n =1n +12+1n (n +1)2.12.(2019·潍坊市统一考试)“干支纪年法”是中国历法上自古以来就一直使用的纪年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”.“天干”以“甲”字开始,“地支”以“子”字开始,两者按干支顺序相配,组成了干支纪年法,其相配顺序为甲子、乙丑、丙寅、……、癸酉,甲戌、乙亥、丙子、……、癸未,甲申、乙酉、丙戌、…、癸巳,……、癸亥,60个为一周,周而复始,循环记录.2014年是“干支纪年法”中的甲午年,那么2020年是“干支纪年法”中的( C )A .己亥年B .戊戌年C .庚子年D .辛丑年解析:由题意知2014年是甲午年,则2015到2020年分别为乙未年、丙申年、丁酉年、戊戌年、己亥年、庚子年.13.(2019·福建宁德一模)我国古代数学名著《孙子算经》中有如下问题:“今有三女,长女五日一归,中女四日一归,少女三日一归.问:三女何日相会?”意思是:“一家出嫁的三个女儿中,大女儿每五天回一次娘家,二女儿每四天回一次娘家,小女儿每三天回一次娘家.三个女儿从娘家同一天走后,至少再隔多少天三人再次相会?”假如回娘家当天均回夫家,若当地风俗正月初二都要回娘家,则从正月初三算起的一百天内,有女儿回娘家的天数有( C )A .58B .59C .60D .61解析:小女儿、二女儿和大女儿回娘家的天数分别是33,25,20,小女儿和二女儿、小女儿和大女儿、二女儿和大女儿回娘家的天数分别是8,6,5,三个女儿同时回娘家的天数是1,所以有女儿在娘家的天数是:33+25+20-(8+6+5)+1=60.故选C.14.(2019·安徽质量检测)某参观团根据下列约束条件从A,B,C,D,E五个镇选择参观地点:①若去A镇,也必须去B镇;②D,E 两镇至少去一镇;③B,C两镇只去一镇;④C,D两镇都去或者都不去;⑤若去E镇,则A,D两镇也必须去.则该参观团至多去了(C)A.B,D两镇B.A,B两镇C.C,D两镇D.A,C两镇解析:若去A镇,根据①可知一定去B镇,根据③可知不去C 镇,根据④可知不去D镇,根据②可知去E镇,与⑤矛盾,故不能去A镇;若不去A镇,根据⑤可知也不去E镇,再根据②知去D镇,再根据④知去C镇,再根据③可知不去B镇,再检验每个条件都成立,所以该参观团至多去了C,D两镇.故选C.尖子生小题库——供重点班学生使用,普通班学生慎用15.(2019·益阳、湘潭调研考试)《数书九章》中给出了“已知三角形三边长求三角形面积的求法”,填补了我国传统数学的一个空白,与著名的海伦公式完全等价,由此可以看出我国古代人具有很高的数学水平,其求法是“以小斜幂并大斜幂减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂,减上,余四约之,为实;一为从隅,开平方得积”.若把这段文字写成公式,即S=14[c2a2-(c2+a2-b22)2],现有周长为22+5的△ABC满足sin A sin B sin C=(2-1)5 (2+1),用上面给出的公式求得△ABC的面积为(B)A.32 B.34C.52 D.54解析:由正弦定理得sin A sin B sin C=a b c=(2-1)5(2+1),可设三角形的三边分别为a =(2-1)x ,b =5x ,c =(2+1)x ,由题意得(2-1)x +5x +(2+1)x =(22+5)x =22+5,则x =1,故由三角形的面积公式可得△ABC 的面积S = 14[(2+1)2(2-1)2-(3+22+3-22-52)2]=34,故选B. 16.(2019·重庆市质量调研)某学生的素质拓展课课表由数学、物理和体育三门学科组成,且各科课时数满足以下三个条件:①数学课时数多于物理课时数;②物理课时数多于体育课时数;③体育课时数的两倍多于数学课时数.则该学生的素质拓展课课表中课时数的最小值为12.解析:解法1:设该学生的素质拓展课课表中的数学、物理、体育的课时数分别为x ,y ,z ,则由题意,得⎩⎪⎨⎪⎧ x -y ≥1,y -z ≥1,2z -x ≥1,x ,y ,z ∈N *,则该学生的素质拓展课课表中的课时数为x +y +z .设x +y +z =p (x -y )+q (y -z )+r (2z -x )=(p -r )x +(-p +q )y +(-q +2r )z ,比较等式两边的系数,得⎩⎪⎨⎪⎧ p -r =1,-p +q =1,-q +2r =1,解得p =4,q =5,r =3,则x +y +z =4(x-y )+5(y -z )+3(2z -x )≥4+5+3=12,所以该学生的素质拓展课课表中的课时数的最小值为12.解法2:设该学生的素质拓展课课表中的数学、物理、体育的课时数分别为x,y,z,则2z>x>y>z.由题意,知z的最小值为3,由此易知y的最小值为4,x的最小值为5,故该学生的素质拓展课课表中的课时数x+y+z的最小值为12.。
2020版高考理科数学(人教版)一轮复习课时跟踪检测(四十)+合情推理和演绎推理+Word版含解析
课时跟踪检测(四十)合情推理与演绎推理一、题点全面练1.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=()A.121B.123C.231 D.211解析:选B令a n=a n+b n,则a1=1,a2=3,a3=4,a4=7,…,得a n+2=a n+a n+1,从而a6=18,a7=29,a8=47,a9=76,a10=123.2.(2019·柳州模拟)给出以下数对序列:(1,1)(1,2)(2,1)(1,3)(2,2)(3,1)(1,4)(2,3)(3,2)(4,1)……记第i行的第j个数对为a ij,如a43=(3,2),则a nm=()A.(m,n-m) B.(m-1,n-m)C.(m-1,n-m+1) D.(m,n-m+1)解析:选D由前4行的特点,归纳可得,若a nm=(a,b),则a=m,b=n-m+1,∴a nm =(m,n-m+1).故选D.3.(2018·莆田质检)“干支纪年法”是中国历法上自古以来就一直使用的纪年方法,干支是天干和地支的总称.把干支顺序相配正好六十为一周,周而复始,循环记录,这就是俗称的“干支表”.甲、乙、丙、丁、戊、己、庚、辛、壬、癸这十个符号叫天干;子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥这十二符号叫地支.如公元1984年农历为甲子年,公元1985年农历为乙丑年,公元1986年农历为丙寅年,则公元2047年农历为() A.乙丑年B.丙寅年C.丁卯年D.戊辰年解析:选C记公元1984年为第一年,则公元2047年为第64年,即天干循环了六次,第四个为“丁”.地支循环了五次,第四个为“卯”,所以公元2047年农历为丁卯年,故选C.4.若a,b,c∈R,下列使用类比推理得到的结论正确的是()A.“若a·2=b·2,则a=b”类比推出“若a·c=b·c,则a=b”B.“若(a+b)c=ac+bc”类比推出“(a·b)c=ac·bc”C .“若(a +b )c =ac +bc ”类比推出“a +b c =a c +b c(c ≠0)” D .“(ab )n =a n b n ”类比推出“(a +b )n =a n +b n (n ∈N *)”解析:选C 对于A ,“若a ·2=b ·2,则a =b ”类比推出“若a ·c =b ·c ,则a =b ”,不正确,比如c =0,则a ,b 不一定相等,故A 错;对于B ,“若(a +b )c =ac +bc ”类比推出“(a ·b )c =ac ·bc ”,而(a ·b )c =ac ·b =a ·bc ,故B 错;对于C ,“若(a +b )c =ac +bc ”类比推出“a +b c =a c +b c(c ≠0)”,故C 正确; 对于D ,由“(ab )n =a n b n ”类比推出“(a +b )n =a n +b n (n ∈N *)”,当n =2时,(a +b )2=a 2+2ab +b 2,故D 错.5.(2018·南充二模)某市为了缓解交通压力,实行机动车辆限行政策,每辆机动车每周一到周五都要限行一天,周末(周六和周日)不限行.某公司有A ,B ,C ,D ,E 五辆车,保证每天至少有四辆车可以上路行驶.已知E 车周四限行,B 车昨天限行,从今天算起,A ,C 两车连续四天都能上路行驶,E 车明天可以上路,由此可知下列推测一定正确的是( )A .今天是周六B .今天是周四C .A 车周三限行D .C 车周五限行解析:选B 因为每天至少有四辆车可以上路行驶,E 车明天可以上路,E 车周四限行,所以今天不是周三;因为B 车昨天限行,所以今天不是周一,不是周五,也不是周日;因为A ,C 两车连续四天都能上路行驶,所以今天不是周二,也不是周六,所以今天是周四,故选B.6.用火柴棒摆“金鱼”,如图所示,按照图中的规律,第n 个“金鱼”需要火柴棒的根数为________.解析:由题意知,第1个图中有8根火柴棒,第2个图中有8+6根火柴棒,第3个图中有8+2×6根火柴棒,……,依此类推,第n 个“金鱼”需要火柴棒的根数为8+6(n -1)=6n +2.答案:6n +27.如果函数f (x )在区间D 上是凸函数,那么对于区间D 内的任意x 1,x 2,…,x n ,都有f (x 1)+f (x 2)+…+f (x n )n ≤f ⎝⎛⎭⎫x 1+x 2+…+x n n .若y =sin x 在区间(0,π)上是凸函数,那么在△ABC中,sin A +sin B +sin C 的最大值是________.解析:由题意知,凸函数满足f (x 1)+f (x 2)+…+f (x n )n ≤f ⎝ ⎛⎭⎪⎫x 1+x 2+…+x n n , 又y =sin x 在区间(0,π)上是凸函数,则sin A +sin B +sin C ≤3sin A +B +C 3=3sin π3=332. 答案:3328.(2019·襄阳优质高中联考)将三项式(x 2+x +1)n 展开,当n =0,1,2,3,…时,得到以下等式:(x 2+x +1)0=1,(x 2+x +1)1=x 2+x +1,(x 2+x +1)2=x 4+2x 3+3x 2+2x +1,(x 2+x +1)3=x 6+3x 5+6x 4+7x 3+6x 2+3x +1,……观察多项式系数之间的关系,可以仿照杨辉三角构造如图所示的广义杨辉三角,其构造方法为:第0行为1,以下各行每个数是它正头顶上与左右两肩上3个数(不足3个数的,缺少的数记为0)的和,第k 行共有2k +1个数,若(x 2+x +1)5(1+ax )的展开式中,x 7项的系数为75,则实数a 的值为________.广义杨辉三角第0行 1第1行 1 1 1第2行 1 2 3 2 1第3行 1 3 6 7 6 3 1第4行 1 4 10 16 19 1610 4 1……解析:根据题意可得广义杨辉三角第5行为:1,5,15,30,45,51,45,30,15,5,1,故(1+ax )(x 2+x +1)5的展开式中,x 7项的系数为30+45a =75,解得a =1.答案:19.设f (x )=13x +3,先分别求f (0)+f (1),f (-1)+f (2),f (-2)+f (3),然后归纳猜想一般性结论,并给出证明.解:f (0)+f (1)=130+3+131+3 =11+3+13+3=3-12+3-36=33, 同理可得:f (-1)+f (2)=33,f (-2)+f (3)=33, 并注意到在这三个特殊式子中,自变量之和均等于1.归纳猜想得:当x 1+x 2=1时,均有f (x 1)+f (x 2)=33. 证明:设x 1+x 2=1,f (x 1)+f (x 2)=13x 1+3+13x 2+3 =(3x 1+3)+(3x 2+3)(3x 1+3)(3x 2+3)=3x 1+3x 2+233x 1+x 2+3(3x 1+3x 2)+3=3x 1+3x 2+233(3x 1+3x 2)+2×3=3x 1+3x 2+233(3x 1+3x 2+23)=33. 10.已知O 是△ABC 内任意一点,连接AO ,BO ,CO 并延长,分别交对边于A ′,B ′,C ′,则OA ′AA ′+OB ′BB ′+OC ′CC ′=1,这是一道平面几何题,其证明常采用“面积法”: OA ′AA ′+OB ′BB ′+OC ′CC ′=S △OBC S △ABC +S △OCA S △ABC +S △OAB S △ABC =S △ABC S △ABC=1. 请运用类比思想,对于空间中的四面体A -BCD ,存在什么类似的结论,并用“体积法”证明. 解:在四面体A -BCD 中,任取一点O ,连接AO ,DO ,BO ,CO 并延长,分别交四个面于E ,F ,G ,H 点.则OE AE +OF DF +OG BG +OH CH =1.证明:在四面体O -BCD 与A -BCD 中,OE AE =h 1h =13S △BCD ·h 113S △BCD·h =V O -BCD V A -BCD . 同理有OF DF =V O -ABC V D -ABC ;OG BG =V O -ACD V B -ACD ;OH CH =V O -ABD V C -ABD.故OE AE +OF DF +OG BG +OH CH =V O -BCD +V O -ABC+VO -ACD +V O -ABD V A -BCD =V A -BCD V A -BCD=1. 二、专项培优练(一)易错专练——不丢怨枉分1.(2019·安徽“江淮十校”联考)我国古代数学名著《九章算术》中割圆术有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”其体现的是一种无限与有限的转化过程,比如在2+2+2+…中“…”即代表无限次重复,但原式却是个定值x ,这可以通过方程2+x =x 确定x =2,则1+11+11+…等于( ) A.-5-12B.5-12C.1+52D.1-52 解析:选C 设1+11+11+…=x ,则1+1x =x ,即x 2-x -1=0,解得x 1=1+52,x 2=1-52(舍去).故1+11+11+…=1+52,故选C. 2.中国有个名句“运筹帷幄之中,决胜千里之外.”其中的“筹”原意是指《孙子算经》中记载的算筹,古代是用算筹来进行计算,算筹是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式,如图,表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相同,个位,百位,万位数用纵式表示,十位,千位,十万位用横式表示,以此类推.例如6 613用算筹表示就是,则9 117用算筹可表示为( )解析:选A由定义知:千位“9”为横式;百位“1”为纵式;十位“1”为横式;个位“7”为纵式.故选A.3.袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则()A.乙盒中黑球不多于丙盒中黑球B.乙盒中红球与丙盒中黑球一样多C.乙盒中红球不多于丙盒中红球D.乙盒中黑球与丙盒中红球一样多解析:选B分析可知每次取出的两个球有4种情况,“红红”“红黑”“黑红”“黑黑”,由于红球个数等于黑球个数,所以取“红红”的次数等于取“黑黑”的次数,取“红红”时乙盒放入一个红球,取“黑黑”时丙盒放入一个黑球,取“红黑”或“黑红”时乙盒中红球与丙盒中黑球数量不变,所以乙盒中红球与丙盒中黑球一样多.4.(2019·沈阳模拟)“杨辉三角”又称“贾宪三角”,是因为贾宪约在公元1050年首先使用“贾宪三角”进行高次开方运算,而杨辉在公元1261年所著的《详解九章算法》一书中,辑录了贾宪三角形数表,并称之为“开方作法本源”图.下列数表的构造思路就源于“杨辉三角”.该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数是________.2 019 2 018 2 017 2 016 (654321)4 037 4 035 4 033………… 11 97538 0728 068…………………2016 12 816 140………………………36 28 20………………………………解析:从给出的数表可以看出,该数表每行都是等差数列,其中第一行从右到左是公差为1的等差数列,第二行从右到左的公差为2,第三行从右到左的公差为4,…,即第n行从右到左的公差为2n-1,而从右向左看,每行的第一个数分别为1=2×2-1,3=3×20,8=4×21,20=5×22,48=6×23,…,所以从右到左第n行的第一个数为(n+1)×2n-2.显然第2 019行只有一个数,其值为(2 019+1)×22 019-2=2 020×22 017.答案:2 020×22 017(二)素养专练——学会更学通5.[直观想象]我国的刺绣有着悠久的历史,如图,(1)(2)(3)(4)为刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形个数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含f (n )个小正方形,则f (n )的表达式为( )A .f (n )=2n -1B .f (n )=2n 2C .f (n )=2n 2-2nD .f (n )=2n 2-2n +1解析:选D 因为f (2)-f (1)=4,f (3)-f (2)=8,f (4)-f (3)=12,…,结合图形不难得到f (n )-f (n -1)=4(n -1),累加得f (n )-f (1)=2n (n -1)=2n 2-2n ,故f (n )=2n 2-2n +1.6.[逻辑推理]对于三次函数f (x )=ax 3+bx 2+cx +d (a ≠0),给出定义:设f ′(x )是函数y =f (x )的导数,f ″(x )是f ′(x )的导数,若方程f ″(x )=0有实数解x 0,则称点(x 0,f (x 0))为函数y =f (x )的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.若f (x )=13x 3-12x 2+3x -512,请你根据这一发现,(1)求函数f (x )的对称中心;(2)计算f ⎝⎛⎭⎫12 019+f ⎝⎛⎭⎫22 019+f ⎝⎛⎭⎫32 019+f ⎝⎛⎭⎫42 019+…+f ⎝⎛⎭⎫2 0182 019. 解:(1)f ′(x )=x 2-x +3,f ″(x )=2x -1,由f ″(x )=0,即2x -1=0,解得x =12. f ⎝⎛⎭⎫12=13×⎝⎛⎭⎫123-12×⎝⎛⎭⎫122+3×12-512=1. 由题中给出的结论,可知函数f (x )=13x 3-12x 2+3x -512的对称中心为⎝⎛⎭⎫12,1. (2)由(1)知函数f (x )=13x 3-12x 2+3x -512的对称中心为⎝⎛⎭⎫12,1, 所以f ⎝⎛⎭⎫12+x +f ⎝⎛⎭⎫12-x =2,即f (x )+f (1-x )=2.故f ⎝⎛⎭⎫12 019+f ⎝⎛⎭⎫2 0182 019=2, f ⎝⎛⎭⎫22 019+f ⎝⎛⎭⎫2 0172 019=2,f ⎝⎛⎭⎫32 019+f ⎝⎛⎭⎫2 0162 019=2,…,f ⎝⎛⎭⎫2 0182 019+f ⎝⎛⎭⎫12 019=2.所以f ⎝⎛⎭⎫12 019+f ⎝⎛⎭⎫22 019+f ⎝⎛⎭⎫32 019+f ⎝⎛⎭⎫42 019+…+f ⎝⎛⎭⎫2 0182 019=12×2×2 018=2 018.。
2020版高考数学(文)新创新一轮复习通用版讲义:第十二章第一节合情推理与演绎推理含答案
第十二章⎪⎪⎪推理与证明、算法、复数第一节 合情推理与演绎推理[考纲要求]1.了解合情推理的含义,能进行简单的归纳推理和类比推理,体会合情推理在数学发现中的作用. 2.了解演绎推理的含义,了解合情推理和演绎推理的联系和差异.3.掌握演绎推理的“三段论”,能运用“三段论”进行一些简单的演绎推理.突破点一 合情推理[基本知识]类比推理由特殊到特殊一、判断题(对的打“√”,错的打“×”)(1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.( ) (2)由平面三角形的性质推测空间四面体的性质,这是一种合情推理.( ) (3)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.( ) 答案:(1)× (2)√ (3)× 二、填空题1.已知数列{a n }中,a 1=1,n ≥2时,a n =a n -1+2n -1,依次计算a 2,a 3,a 4后,猜想a n 的表达式是a n =________. 解析:a 1=1,a 2=4,a 3=9,a 4=16,猜想a n =n 2. 答案:n 22.在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4,类似地,在空间中,若两个正四面体的棱长的比为1∶2,则它们的体积比为________.答案:1∶83.(2018·咸阳二模)观察下列式子:1×2<2,1×2+2×3<92,1×2+2×3+3×4<8,1×2+2×3+3×4+4×5<252,…,根据以上规律,第n (n ∈N *)个不等式是________________________________________________________________________.解析:根据所给不等式可得第n 个不等式是1×2+2×3+…+n ×(n +1)<(n +1)22(n ∈N *).答案:1×2+2×3+…+n×(n+1)<(n+1)22[全析考法]考法一归纳推理[例1](1)(2019·郑州模拟)平面内凸四边形有2条对角线,凸五边形有5条对角线,依次类推,凸十三边形的对角线条数为()A.42B.65C.143 D.169(2)(2019·兰州实战性考试)观察下列式子:1,1+2+1,1+2+3+2+1,1+2+3+4+3+2+1,…,由以上可推测出一个一般性结论:对于n∈N*,则1+2+…+n+…+2+1=________.[解析](1)根据题设条件可以通过列表归纳分析得到:所以凸n边形有2+3+4+…+(n-2)=n(n-3)2条对角线,所以凸十三边形的对角线条数为13×(13-3)2=65,故选B.(2)由1=12,1+2+1=4=22,1+2+3+2+1=9=32,1+2+3+4+3+2+1=16=42,…,归纳猜想可得1+2+…+n+…+2+1=n2.[答案](1)B(2)n2[方法技巧]归纳推理问题的常见类型及解题策略考法二类比推理1.类比推理的应用一般分为类比定义、类比性质和类比方法,常用技巧如下:2.[例2] 1外接圆面积为S 2,则S 1S 2=14,推广到空间中可以得到类似结论:已知正四面体P -ABC 的内切球体积为V 1,外接球体积为V 2,则V 1V 2=( ) A.164 B.127 C.19D.18(2)(2019·沙市中学月考)“求方程⎝⎛⎭⎫35x +⎝⎛⎭⎫45x =1的解”有如下解题思路:设f (x )=⎝⎛⎭⎫35x +⎝⎛⎭⎫45x ,则f (x )在R 上单调递减,且f (2)=1,所以原方程有唯一解x =2.类比上述解题思路,不等式x 6-(x +2)>(x +2)3-x 2的解集是________________.[解析] (1)从平面图形类比到空间图形,从二维类比到三维,可得到如下结论:正四面体的内切球与外接球半径之比为13,所以正四面体的内切球的体积V 1与外接球的体积V 2之比V 1V 2=⎝⎛⎭⎫133=127,故选B.(2)不等式x 6-(x +2)>(x +2)3-x 2变形为x 6+x 2>(x +2)3+(x +2), 令u =x 2,v =x +2,则x 6+x 2>(x +2)3+(x +2)转化为u 3+u >v 3+v . 设f (x )=x 3+x ,知f (x )在R 上为增函数, ∴由f (u )>f (v ),得u >v .不等式x 6+x 2>(x +2)3+(x +2)可化为x 2>x +2, 解得x <-1或x >2.∴所求解集为(-∞,-1)∪(2,+∞). [答案] (1)B (2)(-∞,-1)∪(2,+∞) [方法技巧]类比推理的步骤和关键(1)类比推理是由特殊到特殊的推理,其一般步骤为: ①找出两类事物之间的相似性或一致性;②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).(2)类比推理的关键是找到合适的类比对象.平面几何中的一些定理、公式、结论等,可以类比到立体几何中,得到类似的结论.[集训冲关]1.[考法一]如图,一个树形图依据下列规律不断生长,1个空心圆点到下一行仅生长出1个实心圆点,1个实心圆点到下一行生长出1个实心圆点和1个空心圆点,则第11行的实心圆点的个数是()A.21 B.34C.55 D.89解析:选C根据1个空心圆点到下一行仅生长出1个实心圆点,1个实心圆点到下一行生长出1个实心圆点和1个空心圆点知,第1行的实心圆点的个数是0;第2行的实心圆点的个数是1;第3行的实心圆点的个数是1=0+1;第4行的实心圆点的个数是2=1+1;第5行的实心圆点的个数是3=1+2;第6行的实心圆点的个数是5=2+3;第7行的实心圆点的个数是8=3+5;第8行的实心圆点的个数是13=5+8;第9行的实心圆点的个数是21=8+13;第10行的实心圆点的个数是34=13+21;第11行的实心圆点的个数是55=21+34.故选C.2.[考法二]我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”它体现了一种无限与有限的转化过程.比如在表达式1+11+11+…中“…”即代表无数次重复,但原式却是个定值,它可以通过方程1+1x=x求得x=5+12.类比上述过程,则3+23+2…=()A.3 B.13+1 2C.6 D.2 2解析:选A令3+23+2…=m(m>0),则两边平方得,则3+23+23+2…=m2,即3+2m=m2,解得m=3或m=-1(舍去).3.[考法一]某地区发生7.0级地震,为抗震救灾,地震后需搭建简易帐篷,搭建如图①的单顶帐篷需要17根钢管,这样的帐篷按图②、图③的方式串起来搭建,则串7顶这样的帐篷需要________根钢管.解析:由题意可知,图①的单顶帐篷要(17+0×11)根钢管,图②的帐篷要(17+1×11)根钢管,图③的帐篷要(17+2×11)根钢管,……所以串7顶这样的帐篷需要17+6×11=83(根)钢管.答案:834.[考法二]“MN是经过椭圆x2a2+y2b2=1(a>b>0)的焦点的任一弦,若过椭圆中心O的半弦OP⊥MN,则2a|MN|+1|OP |2=1a 2+1b 2.”类比椭圆的性质,可得“MN 是经过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的焦点的任一弦(交于同支),若过双曲线中心O 的半弦OP ⊥MN ,则____________________.”解析:因为在椭圆中,2a |MN |+1|OP |2=1a 2+1b 2,在双曲线中,和变为差,所以类比结果应是2a |MN |-1|OP |2=1a 2-1b 2. 答案:2a |MN |-1|OP |2=1a 2-1b2 突破点二 演绎推理[基本知识]1.定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理. 2.模式:“三段论”是演绎推理的一般模式,包括: (1)大前提——已知的一般原理; (2)小前提——所研究的特殊情况;(3)结论——根据一般原理,对特殊情况做出的判断. 3.特点:演绎推理是由一般到特殊的推理.[基本能力]一、判断题(对的打“√”,错的打“×”)(1)“所有3的倍数都是9的倍数,某数m 是3的倍数,则m 一定是9的倍数”,这是三段论推理,但其结论是错误的.( )(2)在演绎推理中,只要符合演绎推理的形式,结论就一定正确.( ) 答案:(1)√ (2)× 二、填空题1.推理“①矩形是平行四边形;②三角形不是矩形;③所以三角形不是平行四边形”中的小前提是________(填序号).答案:②2.甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市; 丙说:我们三个去过同一城市. 由此判断乙去过的城市为________. 答案:A[典例] 数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2n S n (n ∈N *).证明:(1)数列⎩⎨⎧⎭⎬⎫S n n 是等比数列;(2)S n +1=4a n .[证明] (1)∵a n +1=S n +1-S n ,a n +1=n +2n S n , ∴(n +2)S n =n (S n +1-S n ), 即nS n +1=2(n +1)S n . 故S n +1n +1=2·S nn ,(小前提)故⎩⎨⎧⎭⎬⎫S n n 是以1为首项,2为公比的等比数列.(结论)(大前提是等比数列的定义) (2)由(1)可知S n +1n +1=4·S n -1n -1(n ≥2),∴S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1=4a n (n ≥2).(小前提)又∵a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1,(小前提) ∴对于任意正整数n ,都有S n +1=4a n .(结论) [方法技巧]演绎推理的推理过程中的2个注意点(1)演绎推理是从一般到特殊的推理,其一般形式是三段论,应用三段论解决问题时,应当首先明确什么是大前提和小前提,如果前提是显然的,则可以省略,本题中,等比数列的定义在解题中是大前提,由于它是显然的,因此省略不写.(2)在推理论证过程中,一些稍复杂一点的证明题常常要由几个三段论才能完成. [针对训练]1.“因为指数函数y =a x (a >0且a ≠1)是增函数(大前提),又y =⎝⎛⎭⎫13x 是指数函数(小前提),所以函数y =⎝⎛⎭⎫13x是增函数(结论)”,上面推理的错误在于( )A .大前提错误导致结论错B .小前提错误导致结论错C .推理形式错误导致结论错D .大前提和小前提错误导致结论错解析:选A 当a >1时,y =a x 为增函数;当0<a <1时,y =a x 为减函数,故大前提错误.2.已知函数y =f (x )满足:对任意a ,b ∈R ,a ≠b ,都有af (a )+bf (b )>af (b )+bf (a ),试证明:f (x )为R 上的单调增函数.证明:设x 1,x 2∈R ,取x 1<x 2,则由题意得x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),∴x1[f(x1)-f(x2)]+x2[f(x2)-f(x1)]>0,即[f(x2)-f(x1)](x2-x1)>0,∵x1<x2,∴f(x2)-f(x1)>0,f(x2)>f(x1).∴y=f(x)为R上的单调增函数.[课时跟踪检测]1.(2019·广东珠海一中、惠州一中联考)因为四边形ABCD为矩形,所以四边形ABCD的对角线相等,补充以上推理的大前提为()A.正方形都是对角线相等的四边形B.矩形都是对角线相等的四边形C.等腰梯形都是对角线相等的四边形D.矩形都是对边平行且相等的四边形解析:选B用三段论的形式推导一个结论成立,大前提应该是结论成立的依据,因为由四边形ABCD为矩形,得到四边形ABCD的对角线相等的结论,所以大前提一定是矩形的对角线相等.故选B.2.(2019·武汉调研)一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下,甲说:“罪犯在乙、丙、丁三人之中”;乙说:“我没有作案,是丙偷的”;丙说:“甲、乙两人中有一人是小偷”;丁说:“乙说的是事实”.经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中只有一人是罪犯,由此可判断罪犯是()A.甲B.乙C.丙D.丁解析:选B由题可知,乙、丁两人的观点一致,即同真同假,假设乙、丁说的是真话,那么甲、丙两人说的是假话,由乙说的是真话,推出丙是罪犯,由甲说假话,推出乙、丙、丁三人不是罪犯,显然两个结论相互矛盾,所以乙、丁两人说的是假话,而甲、丙两人说的是真话,由甲、丙供述可得,乙是罪犯.3.(2019·南昌调研)已知13+23=32,13+23+33=62,13+23+33+43=102,…,若13+23+33+43+…+n3=3 025,则n=()A.8 B.9C.10 D.11解析:选C∵13+23=32=(1+2)2,13+23+33=62=(1+2+3)2,13+23+33+43=102=(1+2+3+4)2,……∴13+23+33+…+n3=(1+2+3+…+n)2=n2(n+1)24.∵13+23+33+43+…+n3=3 025,∴n2(n+1)24=3 025,∴n2(n+1)2=(2×55)2,∴n (n +1)=110,解得n =10.4.(2019·武汉外国语学校月考)有6名选手参加演讲比赛,观众甲猜测:4号或5号选手得第一名;观众乙猜测:3号选手不可能得第一名;观众丙猜测:1,2,6号选手中的一位获得第一名;观众丁猜测:4,5,6号选手都不可能获得第一名,比赛后发现没有并列名次,且甲、乙、丙、丁中只有1人猜对比赛结果,此人是( )A .甲B .乙C .丙D .丁解析:选D 如果1号或2号选手得第一名,则乙、丙、丁对,如果3号选手得第一名,则只有丁对,如果4号或5号选手得第一名,则甲、乙都对,如果6号选手得第一名,则乙、丙都对.因此只有丁猜对,故选D.5.(2019·辽宁实验中学等五校期末)如图所示,面积为S 的平面凸四边形的第i 条边的边长记若a 11=a 22=a 33=a 44=k ,则为a i (i =1,2,3,4),此四边形内任一点P 到第i 条边的距离记为h i (i =1,2,3,4),h 1+2h 2+3h 3+4h 4=2Sk .类比以上性质,体积为V 的三棱锥的第i 个面的面积记为S i (i =1,2,3,4),此三棱锥内任一点Q 到第i 个面的距离记为H i (i =1,2,3,4),若S 11=S 22=S 33=S 44=K ,则H 1+2H 2+3H 3+4H 4等于( )A.2V KB.V 2KC.3V KD.V 3K解析:选C 类比,得H 1+2H 2+3H 3+4H 4=3VK ,证明如下:连接Q 与三棱锥的四个顶点,将原三棱锥分成四个小三棱锥,其体积和为V ,即V 1+V 2+V 3+V 4=V ,即13(S 1H 1+S 2H 2+S 3H 3+S 4H 4)=V .又由S 11=S 22=S 33=S 44=K ,得S 1=K ,S 2=2K ,S 3=3K ,S 4=4K ,则K 3(H 1+2H 2+3H 3+4H 4)=V ,即H 1+2H 2+3H 3+4H 4=3VK ,故选C.6.(2019·大连模拟)“一支医疗救援队里的医生和护士,包括我在内,总共是13名.下面讲到的人员情况,无论是否把我计算在内,都不会有任何变化.在这些医务人员中:①护士不少于医生;②男医生多于女护士;③女护士多于男护士;④至少有一位女医生.”由此推测这位说话人的性别和职务是( )A .男护士B .女护士C .男医生D .女医生解析:选A 设女护士人数为a ,男护士人数为b ,女医生人数为c ,男医生人数为d ,则⎩⎪⎨⎪⎧a +b ≥c +d ,d >a ,a >b ,c ≥1,所以d >a >b >c ≥1.a +b +c +d =13,经检验得仅有a =4,b =3,c =1,d =5符合条件.因为无论是否把这位说话人计算在内,都满足条件,所以这位说话人是男护士.7.(2019·成都七中期中)如图,第n 个图形是由正(n +2)边形“扩展”而来的,n ∈N *,则在第n 个图形中共有____________个顶点.(用n 表示)解析:第n个图形是在第(n+2)边形的基础上每条边加上n+2个顶点,因此顶点个数为(n+2)+(n+2)(n+2)=(n+2)(n+3).答案:(n+2)(n+3)8.对于实数x,[x]表示不超过x的最大整数,观察下列等式:[ 1 ]+[ 2 ]+[ 3 ]=3,[ 4 ]+[ 5 ]+[ 6 ]+[7 ]+[8 ]=10,[9 ]+[10 ]+[11 ]+[12 ]+[13 ]+[14 ]+[15 ]=21,……按照此规律第n个等式的等号右边的结果为________.解析:因为[ 1 ]+[ 2 ]+[ 3 ]=1×3,[ 4 ]+[ 5 ]+[ 6 ]+[7 ]+[8 ]=2×5,[9 ]+[10 ]+[11 ]+[12 ]+[13 ]+[14 ]+[15 ]=3×7,……,以此类推,第n个等式的等号右边的结果为n(2n+1),即2n2+n.答案:2n2+n9.(2019·石家庄模拟)观察下列式子:1+122<32,1+122+132<53,1+122+132+142<74,…,根据上述规律,第n个不等式可能为________________________________________________________________________.解析:1+122<32,1+122+132<53,1+122+132+142<74,…,根据上述规律,第n个不等式的左端是n+1项的和1+122+132+…+1(n+1)2,右端分母依次是2,3,4,…,n+1,分子依次是3,5,7,…,2n+1,故第n个不等式为1+122+132+…+1(n+1)2<2n+1n+1.答案:1+122+132+…+1(n+1)2<2n+1n+110.(2019·长春质检)有甲、乙二人去看望高中数学张老师,期间他们做了一个游戏,张老师的生日是m月n日,张老师把m告诉了甲,把n告诉了乙,然后张老师列出来如下10个日期供选择:2月5日,2月7日,2月9日,5月5日,5月8日,8月4日,8月7日,9月4日,9月6日,9月9日.看完日期后,甲说:“我不知道,但你一定也不知道.”乙听了甲的话后,说:“本来我不知道,但现在我知道了.”甲接着说:“哦,现在我也知道了.”请问,张老师的生日是________.解析:根据甲说的“我不知道,但你一定也不知道”,可排除5月5日,5月8日,9月4日,9月6日,9月9日;根据乙听了甲的话后说的“本来我不知道,但现在我知道了”,可排除2月7日,8月7日;根据甲接着说的“哦,现在我也知道了”,可以得知张老师生日为8月4日.答案:8月4日11.(2019·台州中学期中)如图,正方形ABCD 的边长为1,分别作边AB ,BC ,CD ,DA 上的三等分点A 1,B 1,C 1,D 1,得正方形A 1B 1C 1D 1,再分别取边A 1B 1,B 1C 1,C 1D 1,D 1A 1上的三等分点A 2,B 2,C 2,D 2,得正方形A 2B 2C 2D 2,如此继续下去,得正方形A 3B 3C 3D 3,…,则正方形A n B n C n D n 的面积为________.解析:设正方形A 1B 1C 1D 1的面积为S 1,∵AB =1,∴A 1B =23,BB 1=13,∴A 1B 1=53,S 1S =⎝⎛⎭⎫532=59,∴相邻的两正方形的面积比为59,所有正方形面积构成等比数列,公比为59,首项为1,∴正方形A n B n C n D n 的面积为⎝⎛⎭⎫59n . 答案:⎝⎛⎭⎫59n12.观察下列等式: 1+2+3+…+n =12n (n +1);1+3+6+…+12n (n +1)=16n (n +1)(n +2);1+4+10+…+16n (n +1)(n +2)=124n (n +1)(n +2)·(n +3);……可以推测,1+5+15+…+124n (n +1)(n +2)(n +3)=________________________________. 解析:根据式子中的规律可知,等式右侧为15×4×3×2×1·n (n +1)(n +2)(n +3)(n +4)=1120n (n +1)(n +2)(n +3)·(n +4).答案:1120n (n +1)(n +2)(n +3)(n +4) 13.给出下面的数表序列:表1 表2 表31 1 3 1 3 5 ….4 4 812其中表n (n =1,2,3,…)有n 行,第1行的n 个数是1,3,5,…,2n -1,从第2行起,每行中的每个数都等于它肩上的两数之和.写出表4,验证表4各行中的数的平均数按从上到下的顺序构成等比数列,并将结论推广到表n (n ≥3)(不要求证明).解:表4为1 3 5 74 8 12 12 2032它的第1,2,3,4行中的数的平均数分别是4,8,16,32,它们构成首项为4,公比为2的等比数列.将这一结论推广到表n (n ≥3),即表n (n ≥3)各行中的数的平均数按从上到下的顺序构成首项为n ,公比为2的等比数列.14.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数: ①sin 213°+cos 217°-sin 13°cos 17°;②sin 215°+cos 215°-sin 15°cos 15°;③sin 218°+cos 212°-sin 18°cos 12°;④sin 2(-18°)+cos 248°-sin(-18°)cos 48°;⑤sin2(-25°)+cos255°-sin(-25°)cos 55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.解:(1)选择②式,计算如下:sin215°+cos2 15°-sin15°cos 15°=1-12sin 30°=1-14=34.(2)三角恒等式为sin2α+cos2(30°-α)-sin αcos(30°-α)=3 4.证明如下:法一:sin2α+cos2(30°-α)-sin αcos(30°-α)=sin2α+(cos 30°cos α+sin 30°sin α)2-sin α(cos 30°cos α+sin 30°sin α)=sin2α+34cos2α+32sin αcos α+14sin2α-32sin αcos α-12sin2α=34sin2α+34cos2α=34.法二:sin2α+cos2(30°-α)-sin αcos(30°-α)=1-cos 2α2+1+cos(60°-2α)2-sin α(cos 30°cos α+sin 30°sin α)=12-12cos 2α+12+12(cos 60°cos 2α+sin60°sin 2α)-32sin αcos α-12sin2α=12-12cos 2α+12+14cos 2α+34sin 2α-34sin 2α-14(1-cos 2α)=1-14cos 2α-14+14cos 2α=3 4.。
2020版高考数学一轮复习课后限时集训全集 理含解析新人教
课后限时集训(一) 集 合(建议用时:40分钟) A 组 基础达标一、选择题1.(2018·全国卷Ⅲ)已知集合A ={x |x -1≥0},B ={0,1,2},则A ∩B =( ) A .{0} B .{1} C .{1,2}D .{0,1,2}C [由题意知,A ={x |x ≥1},则A ∩B ={1,2}.]2.(2019·惠州一调)已知集合U ={-1,0,1},A ={x |x =m 2,m ∈U },则∁U A =( ) A .{0,1} B .{-1,0,1} C .∅D .{-1}D [∵A ={x |x =m 2,m ∈U }={0,1},∴∁U A ={-1},故选D.] 3.设集合A ={x ||x |<1},B ={x |x (x -3)<0},则A ∪B =( ) A .(-1,0) B .(0,1) C .(-1,3) D .(1,3)C [由题意得,A ={x |-1<x <1},B ={x |0<x <3},则A ∪B ={x |-1<x <3}=(-1,3).故选C.]4.已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =2x +1},则A ∩B 中元素的个数为( ) A .3 B .2 C .1D .0B [由⎩⎪⎨⎪⎧x 2+y 2=1,y =2x +1,得5x 2+4x =0,解得⎩⎪⎨⎪⎧x =0,y =1,或⎩⎪⎨⎪⎧x =-45,y =-35,故集合A ∩B 中有2个元素,故选B.]5.已知集合A ={x |x 2-2x >0},B ={x |-5<x <5},则( ) A .A ∩B =∅ B .A ∪B =R C .B ⊆AD .A ⊆BB [集合A ={x |x >2或x <0},所以A ∪B ={x |x >2或x <0}∪{x |-5<x <5}=R ,故选B.]6.已知集合A ={-1,0,1},B ={x |x 2-3x +m =0},若A ∩B ={0},则B 的子集有( ) A .2个 B .4个 C .8个D .16个B [∵A ∩B ={0}, ∴0∈B ,∴m =0,∴B ={x |x 2-3x =0}={0,3}. ∴B 的子集有22=4个.故选B.]7.已知集合A ={x |log 2 x <1},B ={x |0<x <c },若A ∪B =B ,则c 的取值范围是( ) A .(0,1] B .[1,+∞) C .(0,2]D .[2,+∞)D [∵A ∪B =B ,∴A ⊆B .又A ={x |log 2 x <1}={x |0<x <2},B ={x |0<x <c },∴c ≥2,即c 的取值范围是[2,+∞).] 二、填空题8.已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值是________. -32 [∵3∈A ,∴m +2=3或2m 2+m =3, 即m =1或m =-32,又当m =1时,m +2=2m 2+m ,不合题意,故m =-32.]9.设函数y =4-x 2的定义域为A ,函数y =ln(1-x )的定义域为B ,全集U =R ,则∁U (A ∩B )=________.(-∞,-2)∪[1,+∞) [∵4-x 2≥0, ∴-2≤x ≤2,∴A =[-2,2]. ∵1-x >0,∴x <1,∴B =(-∞,1), 因此A ∩B =[-2,1),于是∁U (A ∩B )=(-∞,-2)∪[1,+∞).]10.(2019·合肥质检)已知集合A =[1,+∞),B =⎩⎨⎧⎭⎬⎫x ∈R 12a ≤x ≤2a -1,若A ∩B ≠∅,则实数a 的取值范围是________.[1,+∞) [要使A ∩B ≠∅,只需⎩⎪⎨⎪⎧12a ≤2a -1,2a -1≥1,解得a ≥1.]B 组 能力提升1.(2019·日照调研)集合U =R ,A ={x |x 2-x -2<0},B ={x |y =ln(1-x )},则图中阴影部分所表示的集合是( ) A .{x |x ≥1}B .{x |1≤x <2}C .{x |0<x ≤1}D .{x |x ≤1}B [易知A =(-1,2),B =(-∞,1), ∴∁U B =[1,+∞),A ∩(∁U B )=[1,2).因此阴影部分表示的集合为A ∩(∁U B )={x |1≤x <2}.]2.(2018·广州一模)设集合A =⎩⎨⎧⎭⎬⎫x x +3x -1<0,B ={x |x ≤-3},则集合{x |x ≥1}=( ) A .A ∩B B .A ∪B C .(∁R A )∪(∁R B )D .(∁R A )∩(∁R B )D [集合A =⎩⎨⎧⎭⎬⎫x x +3x -1<0={x |(x +3)(x -1)<0}={x |-3<x <1},B ={x |x ≤-3},A ∪B ={x |x <1},则集合{x |x ≥1}=(∁R A )∩(∁R B ),选D.]3.集合A ={x |x <0},B ={x |y =lg[x (x +1)]}.若A -B ={x |x ∈A ,且x ∉B },则A -B =________.[-1,0) [由x (x +1)>0,得x <-1或x >0, ∴B =(-∞,-1)∪(0,+∞), ∴A -B =[-1,0).]4.设A 是整数集的一个非空子集,对于k ∈A ,如果k -1∉A 且k +1∉A ,那么k 是A 的一个“单一元”,给定S ={1,2,3,4,5,6,7,8},由S 的3个元素构成的所有集合中,不含“单一元”的集合共有________个.6 [符合题意的集合为{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},{6,7,8},共6个.]课后限时集训(二) 命题及其关系、充分条件与必要条件(建议用时:40分钟) A 组 基础达标一、选择题1.已知a ,b ∈R,命题“若ab =2,则a 2+b 2≥4”的否命题是( ) A .若ab ≠2,则a 2+b 2≤4 B .若ab =2,则a 2+b 2≤4 C .若ab ≠2,则a 2+b 2<4 D .若ab =2,则a 2+b 2<4C [因为将原命题的条件和结论同时否定之后,可得到原命题的否命题,所以命题“若ab =2,则a 2+b 2≥4”的否命题是“若ab ≠2,则a 2+b 2<4”,故选C.]2.给出命题:若函数y =f (x )是幂函数,则函数y =f (x )的图象不过第四象限.在它的逆命题、否命题、逆否命题3个命题中,真命题的个数是( ) A .3 B .2 C .1D .0C [原命题是真命题,故它的逆否命题是真命题;它的逆命题为“若函数y =f (x )的图象不过第四象限,则函数y =f (x )是幂函数,”显然逆命题为假命题,故原命题的否命题也为假命题.因此在它的逆命题、否命题、逆否命题3个命题中真命题只有1个.] 3.命题“若x ,y 都是偶数,则x +y 也是偶数”的逆否命题是( ) A .若x +y 是偶数,则x 与y 不都是偶数 B .若x +y 是偶数,则x 与y 都不是偶数C .若x +y 不是偶数,则x 与y 不都是偶数D .若x +y 不是偶数,则x 与y 都不是偶数 C [“都是”的否定是“不都是”,故选C.]4.(2019·佛山模拟)已知a ,b 都是实数,那么“a >b ”是“ln a >ln b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件B [由ln a >ln b ⇒a >b >0⇒a >b ,故必要性成立.当a =1,b =0时,满足a >b ,但ln b 无意义,所以ln a >ln b 不成立,故充分性不成立.]5.下面四个条件中,使a >b 成立的充分而不必要的条件是( ) A .a >b +1 B .a >b -1 C .a 2>b 2D .a 3>b 3A [a >b +1⇒a >b ,但反之未必成立,故选A.]6.(2019·山师大附中模拟)设a ,b 是非零向量,则a =2b 是a |a |=b|b |成立的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件B [由a =2b 可知:a ,b 方向相同,a |a |,b |b |表示a ,b 方向上的单位向量,所以a |a |=b|b |成立;反之不成立.故选B.]7.若x >2m 2-3是-1<x <4的必要不充分条件,则实数m 的取值范围是( ) A .[-3,3]B .(-∞,-3]∪[3,+∞)C .(-∞,-1]∪[1,+∞)D .[-1,1]D [∵x >2m 2-3是-1<x <4的必要不充分条件,∴(-1,4)⊆(2m 2-3,+∞),∴2m 2-3≤-1,解得-1≤m ≤1,故选D.] 二、填空题8.直线x -y -k =0与圆(x -1)2+y 2=2有两个不同交点的充要条件是_______.k ∈(-1,3) [直线x -y -k =0与圆(x -1)2+y 2=2有两个不同交点等价于|1-0-k |2<2,解之得-1<k <3.] 9.有下列几个命题:①“若a >b ,则a 2>b 2”的否命题;②“若x +y =0,则x ,y 互为相反数”的逆命题; ③“若x 2<4,则-2<x <2”的逆否命题.其中真命题的序号是________.②③ [①原命题的否命题为“若a ≤b ,则a 2≤b 2”,错误. ②原命题的逆命题为“若x ,y 互为相反数,则x +y =0”,正确. ③原命题的逆否命题为“若x ≥2或x ≤-2,则x 2≥4”,正确.] 10.设p :实数x 满足x 2-4ax +3a 2<0,其中a ≠0,q :实数x 满足⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0.若p是q 的必要不充分条件,则实数a 的取值范围是________. (1,2] [因为p 是q 的必要不充分条件,即q ⇒p 但pq ,设A ={x |p (x )},B ={x |q (x )},则B A ,又B =(2,3],当a >0时,A =(a,3a );当a <0时,A =(3a ,a ), 所以当a >0时,有⎩⎪⎨⎪⎧a ≤2,3<3a ,解得1<a ≤2;当a <0时,显然A ∩B =∅,不合题意. 综上所述,实数a 的取值范围是(1,2].]B 组 能力提升1.王昌龄《从军行》中两句诗为“黄沙百战穿金甲,不破楼兰终不还”,“攻破楼兰”是“返回家乡”的( ) A .充分条件 B .必要条件C .充要条件D .既不充分也不必要条件B [“不破楼兰终不还”的逆否命题为:“若返回家乡,则攻破楼兰”,所以“攻破楼兰”是“返回家乡”的必要条件.]2.(2019·广东七校联考)下列说法正确的是( )A .命题“若x 2=1,则x =1”的否命题为“若x 2=1,则x ≠1” B .“x =-1”是“x 2-5x -6=0”的必要不充分条件C .命题“∃x ∈R,使得x 2+x +1<0”的否定是“∀x ∈R,均有x 2+x +1<0” D .命题“若x =y ,则sin x =sin y ”的逆否命题为真命题D [A 中,命题“若x 2=1,则x =1”的否命题为“若x 2≠1,则x ≠1”,故A 不正确;B 中,由x 2-5x -6=0,解得x =-1或x =6,所以“x =-1”是“x 2-5x -6=0”的充分不必要条件,故B 不正确;C 中,“∃x ∈R ,使得x 2+x +1<0”的否定是“∀x ∈R ,均有x 2+x +1≥0”,故C 不正确;D 中,命题“若x =y ,则sin x =sin y ”为真命题,因此其逆否命题为真命题,故D 正确,故选D.]3.已知数列{a n }的前n 项和S n =Aq n+B (q ≠0),则“A =-B ”是“数列{a n }是等比数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件B [若A =-B =0,则S n =0,数列{a n }不是等比数列;若数列{a n }是等比数列,则由a 1=Aq+B ,a 2=Aq 2-Aq ,a 3=Aq 3-Aq 2及a 3a 2=a 2a 1得A =-B ,故选B.]4.(2019·山西五校联考)已知p :(x -m )2>3(x -m )是q :x 2+3x -4<0的必要不充分条件,则实数m 的取值范围为________.(-∞,-7]∪[1,+∞) [p 对应的集合A ={x |x <m 或x >m +3},q 对应的集合B ={x |-4<x <1},由p 是q 的必要不充分条件可知B A ,所以m ≥1或m +3≤-4,即m ≥1或m ≤-7.]课后限时集训(三) 简单的逻辑联结词、全称量词与存在量词(建议用时:60分钟) A 组 基础达标一、选择题1.已知p :∃x 0∈R,3x 0<x 30,那么綈p 为( ) A .∀x ∈R,3x <x 3B .∃x 0∈R,3x 0>x 30 C .∀x ∈R,3x ≥x 3D .∃x 0∈R,3x 0≥x 30C [因为特称命题的否定为全称命题,所以綈p :∀x ∈R,3x ≥x 3,故选C.]2.(2019·广西模拟)在一次跳高比赛前,甲、乙两名运动员各试跳了一次.设命题p 表示“甲的试跳成绩超过2米”,命题q 表示“乙的试跳成绩超过2米”,则命题p ∨q 表示( ) A .甲、乙两人中恰有一人的试跳成绩没有超过2米 B .甲、乙两人中至少有一人的试跳成绩没有超过2米 C .甲、乙两人中两人的试跳成绩都没有超过2米 D .甲、乙两人中至少有一人的试跳成绩超过2米D [∵命题p 表示“甲的试跳成绩超过2米”,命题q 表示“乙的试跳成绩超过2米”,∴命题p ∨q 表示“甲、乙两人中至少有一人的试跳成绩超过2米”,故选D.] 3.(2019·武汉模拟)已知命题p :实数的平方是非负数,则下列结论正确的是( ) A .命题綈p 是真命题 B .命题p 是特称命题 C .命题p 是全称命题D .命题p 既不是全称命题也不是特称命题 C [该命题是全称命题且是真命题.故选C.]4.命题p :∀x ∈R,ax 2+ax +1≥0,若綈p 是真命题,则实数a 的取值范围是( ) A .(0,4]B .[0,4]C .(-∞,0]∪[4,+∞)D .(-∞,0)∪(4,+∞)D [因为命题p :∀x ∈R,ax 2+ax +1≥0,所以命题綈p :∃x 0∈R,ax 20+ax 0+1<0,则a <0或⎩⎪⎨⎪⎧a >0,Δ=a 2-4a >0,解得a <0或a >4.]5.(2019·太原模拟)已知命题p :∃x 0∈R,x 20-x 0+1≥0;命题q :若a <b ,则1a >1b,则下列为真命题的是( ) A .p ∧q B .p ∧綈q C .綈p ∧qD .綈p ∧綈qB [对于命题p ,当x 0=0时,1≥0成立,所以命题p 为真命题,命题綈p 为假命题;对于命题q ,当a =-1,b =1时,1a <1b,所以命题q 为假命题,命题綈q 为真命题,所以p ∧綈q为真命题,故选B.] 6.给出下列四个命题: ①∃x 0∈R,ln(x 20+1)<0; ②∀x >2,x 2>2x;③∀α,β∈R,sin(α-β)=sin α-sin β;④若q 是綈p 成立的必要不充分条件,则綈q 是p 成立的充分不必要条件. 其中真命题的个数为( ) A .1 B .2 C .3D .4A [由于∀x ∈R ,y =ln(x 2+1)≥ln 1=0,故①错;令x =4,则x 2=2x=16,故②错;③应为∀α,β∈R ,sin(α-β)=sin αcos β-cos αsin β,故③错;④若q 是綈p 成立的必要不充分条件,则p 是綈q 成立的必要不充分条件,则綈q 是p 成立的充分不必要条件,故④正确.其中真命题的个数为1.故选A.]7.已知p :∃x 0∈R,mx 20+1≤0;q :∀x ∈R,x 2+mx +1>0.若“p ∨q ”为假命题,则实数m 的取值范围是( ) A .[2,+∞) B .(-∞,-2]C .(-∞,-2]∪[2,+∞)D .[-2,2]A [依题意知,p ,q 均为假命题.当p 是假命题时,mx 2+1>0恒成立,则有m ≥0; 当q 是假命题时,则有Δ=m 2-4≥0,m ≤-2或m ≥2.因此由p ,q 均为假命题,得 ⎩⎪⎨⎪⎧m ≥0,m ≤-2或m ≥2,即m ≥2.]二、填空题8.若“∀x ∈⎣⎢⎡⎦⎥⎤0,π4,tan x ≤m ”是真命题,则实数m 的最小值为________.1 [∵函数y =tan x 在⎣⎢⎡⎦⎥⎤0,π4上是增函数,∴y max =tan π4=1.依题意,m ≥y max ,即m ≥1. ∴m 的最小值为1.]9.已知命题“∀x ∈R,x 2-5x +152a >0”的否定为假命题,则实数a 的取值范围是________.⎝ ⎛⎭⎪⎫56,+∞ [由“∀x ∈R,x 2-5x +152a >0”的否定为假命题,可知原命题必为真命题,即不等式x 2-5x +152a >0对任意实数x 恒成立.设f (x )=x 2-5x +152a ,则其图象恒在x 轴的上方,故Δ=25-4×152a <0,解得a >56,即实数a 的取值范围为⎝ ⎛⎭⎪⎫56,+∞.] 10.已知命题p :x 2+2x -3>0;命题q :13-x >1,若“(綈q )∧p ”为真,则x 的取值范围是________.(-∞,-3)∪(1,2]∪[3,+∞) [因为“(綈q )∧p ”为真,即q 假p 真,而q 为真命题时,x -2x -3<0,即2<x <3,所以q 为假命题时,有x ≥3或x ≤2;p 为真命题时,由x 2+2x -3>0,解得x >1或x <-3,由⎩⎪⎨⎪⎧x >1或x <-3,x ≥3或x ≤2,得x ≥3或1<x ≤2或x <-3, 所以x 的取值范围是(-∞,-3)∪(1,2]∪[3,+∞).]B 组 能力提升1.设命题p :若定义域为R 的函数f (x )不是偶函数,则∀x ∈R,f (-x )≠f (x ).命题q :f (x )=x |x |在(-∞,0)上是减函数,在(0,+∞)上是增函数.则下列判断错误的是( ) A .p 为假命题 B .綈q 为真命题 C .p ∨q 为真命题D .p ∧q 为假命题C [函数f (x )不是偶函数,仍然可∃x ∈R,使得f (-x )=f (x ),p 为假命题;f (x )=x |x |=⎩⎪⎨⎪⎧x 2x,-x 2x <在R 上是增函数,q 为假命题.所以p ∨q 为假命题,故选C.]2.不等式组⎩⎪⎨⎪⎧x +y ≥1,x -2y ≤4的解集记为D ,有下面四个命题:p 1:∀(x ,y )∈D ,x +2y ≥-2; p 2:∃(x ,y )∈D ,x +2y ≥2; p 3:∀(x ,y )∈D ,x +2y ≤3; p 4:∃(x ,y )∈D ,x +2y ≤-1.其中的真命题是( ) A .p 2,p 3 B .p 1,p 4 C .p 1,p 2D .p 1,p 3C [作出不等式组表示的可行域,如图(阴影部分).由⎩⎪⎨⎪⎧x +y =1,x -2y =4,得交点A (2,-1).目标函数的斜率k =-12>-1,观察直线x +y =1与直线x +2y =0的倾斜程度,可知u =x +2y 过点A 时取得最小值0y =-x2+u 2,u2表示纵截距.结合题意知p 1,p 2正确.] 3.(2019·黄冈模拟)下列四个命题: ①若x >0,则x >sin x 恒成立;②命题“若x -sin x =0,则x =0”的逆否命题为“若x ≠0,则x -sin x ≠0”; ③“命题p ∧q 为真”是“命题p ∨q 为真”的充分不必要条件; ④命题“∀x ∈R,x -ln x >0”的否定是“∃x 0∈R,x 0-ln x 0<0”. 其中正确命题的个数是( ) A .1 B .2 C .3D .4C [对于①,令y =x -sin x ,则y ′=1-cos x ≥0,则函数y =x -sin x 在R 上递增,即当x >0时,x -sin x >0-0=0,则当x >0时,x >sin x 恒成立,故①正确;对于②,命题“若x -sin x =0,则x =0”的逆否命题为“若x ≠0,则x -sin x ≠0”,故②正确;对于③,命题p ∨q 为真即p ,q 中至少有一个为真,p ∧q 为真即p ,q 都为真,可知“p ∧q 为真”是“p ∨q 为真”的充分不必要条件,故③正确;对于④,命题“∀x ∈R,x -ln x >0”的否定是“∃x 0∈R,x 0-ln x 0≤0”,故④错误. 综上,正确命题的个数为3,故选C.]4.已知函数f (x )=x 2-x +1x -1(x ≥2),g (x )=a x(a >1,x ≥2).(1)若∃x 0∈[2,+∞),使f (x 0)=m 成立,则实数m 的取值范围为________.(2)若∀x 1∈[2,+∞),∃x 2∈[2,+∞),使得f (x 1)=g (x 2),则实数a 的取值范围为________.(1)[3,+∞) (2)(1,3] [(1)∵f (x )=x -2+x -+1x -1=(x -1)+1x -1+1,∵x ≥2,∴x -1≥1, ∴f (x )≥2x -1x -1+1=3. 当且仅当x -1=1x -1,即x -1=1,x =2时等号成立. ∴m ∈[3,+∞).(2)∵g (x )=a x(a >1,x ≥2), ∴g (x )min =g (2)=a 2.∵∀x 1∈[2,+∞),∃x 2∈[2,+∞)使得f (x 1)=g (x 2), ∴g (x )min ≤f (x )min , ∴a 2≤3,即a ∈(1,3].]课后限时集训(四) 函数及其表示(建议用时:40分钟) A 组 基础达标一、选择题1.下面各组函数中为相同函数的是( ) A .f (x )=x -2,g (x )=x -1B .f (x )=x -1,g (t )=t -1C .f (x )=x 2-1,g (x )=x +1·x -1D .f (x )=x ,g (x )=x 2xB [∵x -2=|x -1|,∴A 中f (x )≠g (x );B 正确;C 、D 选项中两函数的定义域不同,故选B.] 2.函数f (x )=3x -1log 2x +1的定义域为( )A.⎝ ⎛⎦⎥⎤18,14B.⎝ ⎛⎦⎥⎤0.14C.⎣⎢⎡⎭⎪⎫14,+∞ D.⎝ ⎛⎭⎪⎫14,+∞ D [由题意得log 2(2x )+1>0,解得x >14.所以函数f (x )的定义域为⎝ ⎛⎭⎪⎫14,+∞.故选D.] 3.已知函数f (x )=⎩⎪⎨⎪⎧log 12x ,x >1,2+36x ,x ≤1,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=( )A .3B .4C .-3D .38C [由题意知f ⎝ ⎛⎭⎪⎫12=2+3612=8,f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=f (8)=log 128=-3.故选C.]4.若f (x )对于任意实数x 恒有2f (x )-f (-x )=3x +1,则f (1)=( ) A .2 B .0 C .1D .-1A [令x =1,得2f (1)-f (-1)=4,① 令x =-1,得2f (-1)-f (1)=-2,② 联立①②得f (1)=2.]5.已知函数f (x )=⎩⎪⎨⎪⎧-2a x +3a ,x <1,ln x ,x ≥1的值域为R ,那么a 的取值范围是( )A .(-∞,-1] B.⎝⎛⎭⎪⎫-1,12C.⎣⎢⎡⎭⎪⎫-1,12D.⎝ ⎛⎭⎪⎫0,12 C [要使函数f (x )的值域为R ,需使⎩⎪⎨⎪⎧1-2a >0,ln 1≤1-2a +3a ,所以⎩⎪⎨⎪⎧a <12,a ≥-1,所以-1≤a <12.故选C.]6.(2018·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)D [当x ≤0时,函数f (x )=2-x是减函数,则f (x )≥f (0)=1.作出f (x )的大致图象如图所示,结合图象可知,要使f (x +1)<f (2x ),则需⎩⎪⎨⎪⎧x +1<0,2x <0,2x <x +1或⎩⎪⎨⎪⎧x +1≥0,2x <0,所以x <0,故选D.]7.(2019·济南模拟)已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1,若f (1-a )=f (1+a ),则a 的值为()A .-32B .-34C .-32或-34D.32或-34B [当a >0时,1-a <1,1+a >1.由f (1-a )=f (1+a )得2-2a +a =-1-a -2a ,解得a =-32,不合题意;当a <0时,1-a >1,1+a <1,由f (1-a )=f (1+a )得-1+a -2a =2+2a +a ,解得a =-34,所以a 的值为-34,故选B.]二、填空题8.已知f (2x)=x +3.若f (a )=5,则a =________. 4 [令t =2x ,则t >0,且x =log 2 t , ∴f (t )=3+log 2 t , 即f (x )=3+log 2 x ,x >0. 则有log 2 a +3=5,解之得a =4.]9.若函数f (x )在闭区间[-1,2]上的图象如图所示,则此函数的解析式为________.f (x )=⎩⎪⎨⎪⎧x +1,-1≤x <0-12x ,0≤x ≤2 [由题图可知,当-1≤x <0时,f (x )=x +1;当0≤x ≤2时,f (x )=-12x ,所以f (x )=⎩⎪⎨⎪⎧x +1,-1≤x <0,-12x ,0≤x ≤2.]10.已知函数f (x )=⎩⎪⎨⎪⎧2-x ,x ≥0,log 2x 2+,x <0,若f (a )=3,则实数a =________.-5 [由题意知⎩⎪⎨⎪⎧a ≥0,2-a =3或⎩⎪⎨⎪⎧a <0,log 2a 2+=3,解得a =- 5.]B 组 能力提升1.已知函数y =f (2x -1)的定义域是[0,1],则函数fx +log 2x +的定义域是( )A .[1,2]B .(-1,1] C.⎣⎢⎡⎦⎥⎤-12,0 D .(-1,0)D [因为函数y =f (2x -1)的定义域是[0,1],所以-1≤2x -1≤1,要使函数f x +log 2x +有意义,则需⎩⎪⎨⎪⎧-1≤2x +1≤1,x +1>0,x +1≠1,解得-1<x <0,故选D.]2.(2018·厦门二模)设函数f (x )=⎩⎪⎨⎪⎧x -a 2-1,x ≤1,ln x ,x >1,若f (x )≥f (1)恒成立,则实数a 的取值范围是( )A .[1,2]B .[0,2]C .[1,+∞)D .[2,+∞)A [由题意可知,函数f (x )的最小值为f (1),所以⎩⎪⎨⎪⎧a ≥1-a 2-1≤ln 1,解得1≤a ≤2,选A.]3.定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=________. -x x +2[当-1≤x ≤0时,有0≤x +1≤1,所以f (1+x )=(1+x )[1-(1+x )]=-x (1+x ),又f (x +1)=2f (x ),所以f (x )=12f (1+x )=-xx +2.]4.具有性质:f ⎝ ⎛⎭⎪⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数:①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x,x >1.其中满足“倒负”变换的函数是________(填序号).①③ [对于①,f (x )=x -1x,f ⎝ ⎛⎭⎪⎫1x =1x -x =-f (x ),满足题意;对于②,f ⎝ ⎛⎭⎪⎫1x =1x+x =f (x ),不满足题意;对于③,f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,x >1,0,x =1,-x ,0<x <1,故f ⎝ ⎛⎭⎪⎫1x=-f (x ),满足题意.综上可知,满足“倒负”变换的函数是①③.]课后限时集训(五) 函数的单调性与最值(建议用时:60分钟) A 组 基础达标一、选择题1.下列函数中,在(0,+∞)上单调递减的是( ) A .f (x )=1xB .f (x )=(x -1)2C .f (x )=e xD .f (x )=ln(x +1)A [f (x )=1x在(0,+∞)上是单调递减函数,故选A.]2.(2019·三门峡模拟)设函数f (x )=⎩⎪⎨⎪⎧2x,x <2,x 2,x ≥2,若f (a +1)≥f (2a -1),则实数a 的取值范围是( )A .(-∞,1]B .(-∞,2]C .[2,6]D .[2,+∞)B [易知f (x )=⎩⎪⎨⎪⎧2x,x <2,x 2,x ≥2是定义域R 上的增函数.∵f (a +1)≥f (2a -1),∴a +1≥2a -1,解得a ≤2. 故实数a 的取值范围是(-∞,2],故选B.]3.若函数f (x )=4x 2-kx -8在[5,8]上是单调函数,则k 的取值范围是( ) A .(-∞,40]B .(40,64)C .(-∞,40]∪[64,+∞)D .[64,+∞)C [由题意可知k 8≤5或k8≥8,即k ≤40或k ≥64,故选C.] 4.定义在R 上的函数f (x )的图象关于直线x =2对称且f (x )在(-∞,2)上是增函数,则( ) A .f (-1)<f (3) B .f (0)>f (3) C .f (-1)=f (3)D .f (0)=f (3)A [∵f (x )关于直线x =2对称且f (x )在(-∞,2)上是增函数,∴f (x )在(2,+∞)上是减函数, 又f (-1)=f (5),且f (3)>f (5), ∴f (3)>f (-1),选A.]5.定义在[-2,2]上的函数f (x )满足(x 1-x 2)[f (x 1)-f (x 2)]>0,x 1≠x 2,且f (a 2-a )>f (2a -2),则实数a 的取值范围为( ) A .[-1,2) B .[0,2) C .[0,1)D .[-1,1)C [由函数f (x )满足(x 1-x 2)[f (x 1)-f (x 2)]>0,x 1≠x 2,得函数f (x )在[-2,2]上单调递增. 由f (a 2-a )>f (2a -2)得⎩⎪⎨⎪⎧ a 2-a >2a -2,-2≤a 2-a ≤2,-2≤2a -2≤2,解得⎩⎪⎨⎪⎧-1≤a ≤2,0≤a ≤2,a <1或a >2.∴0≤a <1,故选C.] 二、填空题6.函数f (x )=log 2(x 2-1)的单调递减区间为________.(-∞,-1) [由x 2-1>0得x >1或x <-1,即函数f (x )的定义域为(-∞,-1)∪(1,+∞).令t =x 2-1,因为y =log 2t 在t ∈(0,+∞)上为增函数,t =x 2-1在x ∈(-∞,-1)上是减函数,所以函数f (x )=log 2(x 2-1)的单调递减区间为(-∞,-1).]7.(2019·甘肃调研)已知函数f (x )=ln x +2x ,若f (x 2-4)<2,则实数x 的取值范围是________.(-5,-2)∪(2,5) [因为函数f (x )=ln x +2x在定义域上单调递增,且f (1)=ln 1+2=2,所以由f (x 2-4)<2得,f (x 2-4)<f (1),所以0<x 2-4<1,解得-5<x <-2或2<x < 5.]8.(2019·广州模拟)设函数f (x )=⎩⎪⎨⎪⎧-x 2+4x ,x ≤4,log 2x ,x >4.若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a 的取值范围是________.(-∞,1]∪[4,+∞)[作出函数f (x )的图象如图所示,由图象可知f (x )在(a ,a +1)上单调递增,需满足a ≥4或a +1≤2,即a ≤1或a ≥4.]三、解答题9.已知函数f (x )=ax +1a(1-x )(a >0),且f (x )在[0,1]上的最小值为g (a ),求g (a )的最大值. [解] f (x )=ax +1a(1-x )=⎝ ⎛⎭⎪⎫a -1a x +1a,当a -1a<0,即0<a <1时,g (a )=f (1)=a ;当a -1a≥0,即a ≥1时,g (a )=f (0)=1a .故g (a )=⎩⎪⎨⎪⎧a ,0<a <1,1a,a ≥1.所以g (a )的最大值为1. 10.已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)内单调递增;(2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围. [解] (1)证明:当a =-2时,f (x )=xx +2.任取x 1,x 2∈(-∞,-2),且x 1<x 2, 则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=x 1-x 2x 1+x 2+.因为(x 1+2)(x 2+2)>0,x 1-x 2<0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以f (x )在(-∞,-2)内单调递增. (2)任取x 1,x 2∈(1,+∞),且x 1<x 2, 则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a=a x 2-x 1x 1-a x 2-a.因为a >0,x 2-x 1>0,又由题意知f (x 1)-f (x 2)>0, 所以(x 1-a )(x 2-a )>0恒成立,所以a ≤1. 所以0<a ≤1.所以a 的取值范围为(0,1].B 组 能力提升1.已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,x +,x >0,若f (2-x 2)>f (x ),则实数x 的取值范围是( )A .(-∞,-1)∪(2,+∞)B .(-∞,-2)∪(1,+∞)C .(-1,2)D .(-2,1)D [∵当x =0时,两个表达式对应的函数值都为0,∴函数的图象是一条连续的曲线.又∵当x ≤0时,函数f (x )=x 3为增函数,当x >0时,f (x )=ln(x +1)也是增函数,∴函数f (x )是定义在R 上的增函数.因此,不等式f (2-x 2)>f (x )等价于2-x 2>x ,即x 2+x -2<0,解得-2<x <1.]2.定义新运算:当a ≥b 时,a b =a ;当a <b 时,a b =b 2,则函数f (x )=x )x -x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12C [由题意可知f (x )=⎩⎪⎨⎪⎧x -2,-2≤x ≤1,x 3-2,1<x ≤2.∵f (x )=x -2在[-2,1]上单调递增, ∴f (x )max =f (1)=-1;又f (x )=x 3-2在(1,2]上单调递增, ∴f (x )max =f (2)=23-2=6. ∴当x ∈[-2,2]时,f (x )max =6.]3.函数y =2x +k x -2与y =log 3(x -2)在(3,+∞)上具有相同的单调性,则实数k 的取值范围是________.(-∞,-4) [由于y =log 3(x -2)在(3,+∞)上为增函数,故函数y =2x +kx -2=x -+4+k x -2=2+4+kx -2在(3,+∞)上也是增函数,则有4+k <0,得k <-4.]4.已知定义在区间(0,+∞)上的函数f (x )满足f ⎝ ⎛⎭⎪⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )<0.(1)求f (1)的值;(2)证明:f (x )为单调递减函数;(3)若f (3)=-1,求f (x )在[2,9]上的最小值. [解] (1)令x 1=x 2>0,代入得f (1)=f (x 1)-f (x 1)=0,故f (1)=0.(2)证明:任取x 1,x 2∈(0,+∞),且x 1>x 2,则x 1x 2>1, 当x >1时,f (x )<0,∴f ⎝ ⎛⎭⎪⎫x 1x 2<0,即f (x 1)-f (x 2)<0,因此f (x 1)<f (x 2),∴函数f (x )在区间(0,+∞)上是单调递减函数. (3)∵f (x )在(0,+∞)上是单调递减函数, ∴f (x )在[2,9]上的最小值为f (9).由f ⎝ ⎛⎭⎪⎫x 1x 2=f (x 1)-f (x 2),得f ⎝ ⎛⎭⎪⎫93=f (9)-f (3), 而f (3)=-1,∴f (9)=-2.∴f (x )在[2,9]上的最小值为-2.课后限时集训(六) 函数的奇偶性与周期性(建议用时:40分钟) A 组 基础达标一、选择题1.下列函数中,既是偶函数又在(0,+∞)上单调递增的是( ) A .y =e xB .y =sin xC .y =cos xD .y =ln x 2D [y =e x 不是偶函数,所以A 不正确;y =sin x 是奇函数,所以B 不正确;y =cos x 是偶函数,在(0,+∞)上不是单调递增函数,所以C 不正确;y =ln x 2是偶函数,在(0,+∞)上是单调递增函数,所以D 正确.故选D.]2.已知f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x+m ,则f (-2)=( ) A .-3 B .-54C.54D .3A [因为f (x )为R 上的奇函数,所以f (0)=0,即f (0)=20+m =0,解得m =-1,则f (-2)=-f (2)=-(22-1)=-3.]3.已知f (x )是奇函数,g (x )是偶函数,且f (-1)+g (1)=2,f (1)+g (-1)=4,则g (1)等于( ) A .4 B .3 C .2D .1B [由已知得f (-1)=-f (1),g (-1)=g (1),则有⎩⎪⎨⎪⎧-f +g =2,f+g=4,解得g (1)=3.]4.(2019·江西六校联考)设函数f (x )是定义在R 上的奇函数,且f (x )=⎩⎪⎨⎪⎧log 3x +,x ≥0,g x,x <0,则g [f (-8)]=( )A .-1B .-2C .1D .2A [∵函数f (x )是定义在R 上的奇函数,且f (x )=⎩⎪⎨⎪⎧log 3x +,x ≥0,g x,x <0,∴f (-8)=-f (8)=-log 3 9=-2,∴g [f (-8)]=g (-2)=f (-2)=-f (2)=-log 3 3=-1.故选A.]5.定义在R 上的奇函数f (x )满足f (2+x )=f (2-x ),且f (1)=1,则f (2 019)=( ) A .0 B .1 C .-1D .-2B [由题意得f (x +4)=f (2-(x +2))=f (-x )=-f (x ),∴f (x +8)=-f (x +4)=f (x ),∴函数f (x )以8为周期,∴f (2 019)=f (3)=f (1)=1,故选B.]6.(2019·皖南八校联考)偶函数f (x )在(-∞,0]上是增函数,且f (1)=-1,则满足f (2x-3)>-1的实数x 的取值范围是( ) A .(1,2) B .(-1,0) C .(0,1)D .(-1,1)A [因为偶函数f (x )在(-∞,0]上是增函数, 所以函数f (x )在(0,+∞)上是减函数. 由f (1)=-1且满足f (2x-3)>-1=f (1), 等价于f (|2x-3|)>f (1),|2x-3|<1,可得-1<2x-3<1,2<2x<4,1<x <2, 所以实数x 的取值范围是(1,2),故选A.]7.(2019·广州模拟)定义在R 上的函数f (x )满足f (-x )=-f (x ),f (x )=f (x +4),且当x ∈(-1,0)时,f (x )=2x +15,则f (log 220)=( )A .1 B.45 C .-1D .-45C [由于x ∈R,且f (-x )=-f (x ),所以函数为奇函数,由于f (x )=f (x +4),所以函数的周期为4,log 216<log 220<log 232,即4<log 220<5,0<log 220-4<1, ∴0<log 254<1,∴f (log 220)=f (log 220-4)=f ⎝ ⎛⎭⎪⎫log 254 =-f ⎝ ⎛⎭⎪⎫-log 254=-f ⎝ ⎛⎭⎪⎫log 245=-⎝⎛⎭⎪⎫2log 245+15=-⎝ ⎛⎭⎪⎫45+15=-1,故选C.]二、填空题8.(2019·山西八校联考)已知f (x )是定义在R 上的函数,且满足f (x +2)=-1f x,当2≤x ≤3时,f (x )=x ,则f ⎝ ⎛⎭⎪⎫-112=________. 52 [∵f (x +2)=-1f x,∴f (x +4)=f (x ),∴f ⎝ ⎛⎭⎪⎫-112=f ⎝ ⎛⎭⎪⎫52,又2≤x ≤3时,f (x )=x , ∴f ⎝ ⎛⎭⎪⎫52=52,∴f ⎝ ⎛⎭⎪⎫-112=52.] 9.已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a -1|)>f (-2),则a 的取值范围是________.⎝ ⎛⎭⎪⎫12,32 [∵f (2|a -1|)>f (-2)=f (2), 又由已知可得f (x )在(0,+∞)上单调递减,∴2|a -1|<2=212, ∴|a -1|<12,∴12<a <32.]10.定义在实数集R 上的函数f (x )满足f (x )+f (x +2)=0,且f (4-x )=f (x ).现有以下三个命题:①8是函数f (x )的一个周期;②f (x )的图象关于直线x =2对称;③f (x )是偶函数. 其中正确命题的序号是________.①②③ [∵f (x )+f (x +2)=0,∴f (x +2)=-f (x ),∴f (x )的周期为4,故①正确;又f (4-x )=f (x ),所以f (2+x )=f (2-x ),即f (x )的图象关于直线x =2对称,故②正确;由f (x )=f (4-x )得f (-x )=f (4+x )=f (x ),故③正确.]B 组 能力提升1.已知f (x )=a sin x +b 3x +4,若f (lg 3)=3,则f ⎝ ⎛⎭⎪⎫lg 13=( )A.13 B .-13C .5D .8C [因为f (x )+f (-x )=8,f ⎝ ⎛⎭⎪⎫lg 13=f (-lg 3),所以f ⎝ ⎛⎭⎪⎫lg 13=8-f (lg 3)=5,故选C.] 2.(2019·衡水调研)已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x ≥0,x 2-2x ,x <0.若f (-a )+f (a )≤2f (1),则a 的取值范围是( ) A .[-1,0) B .[0,1] C .[-1,1]D .[-2,2]C [由函数图象可知f (x )是偶函数,故f (-a )=f (a ),原不等式等价于f (a )≤f (1),即f (|a |)≤f (1),而函数在[0,+∞)上单调递增,故|a |≤1,解得-1≤a ≤1.]3.(2018·洛阳一模)若函数f (x )同时满足下列两个条件,则称该函数为“优美函数”: (1)∀x ∈R,都有f (-x )+f (x )=0; (2)∀x 1,x 2∈R,且x 1≠x 2,都有f x 1-f x 2x 1-x 2<0.①f (x )=sin x ;②f (x )=-2x 3;③f (x )=1-x ;④f (x )=ln(x 2+1+x ). 以上四个函数中,“优美函数”的个数是( ) A .0 B .1 C .2D .3B [由条件(1),得f (x )是奇函数,由条件(2),得f (x )是R 上的单调减函数.对于①,f (x )=sin x 在R 上不单调,故不是“优美函数”;对于②,f (x )=-2x 3既是奇函数,又在R 上单调递减,故是“优美函数”;对于③,f (x )=1-x 不是奇函数,故不是“优美函数”;对于④,易知f (x )在R 上单调递增,故不是“优美函数”.故选B.]4.(2019·沧州模拟)已知函数y =f (x )是R 上的偶函数,对于任意x ∈R,都有f (x +6)=f (x )+f (3)成立,当x 1,x 2∈[0,3],且x 1≠x 2时,都有f x 1-f x 2x 1-x 2>0.给出下列命题:①f (3)=0;②直线x =-6是函数y =f (x )的图象的一条对称轴; ③函数y =f (x )在[-9,-6]上为增函数; ④函数y =f (x )在[-9,9]上有四个零点. 其中所有正确命题的序号为________. ①②④ [∵f (x +6)=f (x )+f (3),令x =-3得,f (-3)=0,又f (x )为偶函数,∴f (3)=0,即①正确;由f (3)=0得f (x +6)=f (x ),又f (-x )=f (x ),所以f (6-x )=f (6+x ),故f (x )关于直线x =6对称,又f (x )的周期为6,故②正确;当x 1,x 2∈[0,3],且x 1≠x 2时,都有f x 1-f x 2x 1-x 2>0,所以函数y =f (x )在[0,3]上为增函数.因为f (x )是R 上的偶函数,所以函数y =f (x )在[-3,0]上为减函数,而f (x )的周期为6,所以函数y =f (x )在[-9,-6]上为减函数.故③错误;f (3)=0,f (x )的周期为6,所以f (-9)=f (-3)=f (3)=f (9)=0,所以函数y =f (x )在[-9,9]上有四个零点.故④正确.]课后限时集训(七) 二次函数与幂函数(建议用时:60分钟) A 组 基础达标一、选择题1.(2019·西安质检)函数y =3x 2的图象大致是( )A BC DC [∵y =x 23,∴该函数是偶函数,且在第一象限内是上凸的,故选C.]2.设α∈⎩⎨⎧⎭⎬⎫-1,-12,13,12,1,2,3,则使幂函数y =x α为奇函数且在(0,+∞)上单调递增的α值的个数为( ) A .3 B .4 C .5D .6A [因为幂函数y =x α在(0,+∞)上单调递增,所以α>0.又幂函数y =x α为奇函数,可知α≠2.当α=12时,其定义域关于原点不对称,应排除.当α=13,1,3时,其定义域关于原点对称,且满足f (-x )=-f (x ).故α=13,1,3时,满足条件.故满足条件的α的值的个数为3.故选A.]3.已知幂函数f (x )=x α的图象过点⎝ ⎛⎭⎪⎫3,13,则函数g (x )=(2x -1)f (x )在区间⎣⎢⎡⎦⎥⎤12,2上的最小值是( ) A .-1 B .0 C .-2D.32B [由已知得3α=13,解得α=-1,∴f (x )=x -1,∴g (x )=2x -1x =2-1x 在区间⎣⎢⎡⎦⎥⎤12,2上单调递增,则g (x )min =g ⎝ ⎛⎭⎪⎫12=0.]4.已知二次函数f (x )满足f (2+x )=f (2-x ),且f (x )在[0,2]上是增函数,若f (a )≥f (0),则实数a 的取值范围是( ) A .[0,+∞) B .(-∞,0]C .[0,4]D .(-∞,0]∪[4,+∞)C [由f (2+x )=f (2-x )可知,函数f (x )图象的对称轴为x =2+x +2-x2=2,又函数f (x )在[0,2]上单调递增,则抛物线开口向下,且f (x )在[2,4]上是减函数, 所以由f (a )≥f (0)可得0≤a ≤4.]5.若f (x )=ax 2+ax -1在R 上满足f (x )<0恒成立,则a 的取值范围是( ) A .a ≤0 B .a <-4 C .-4<a <0D .-4<a ≤0D [①当a =0时,得到-1<0,显然不等式的解集为R ;②当a <0时,二次函数y =ax 2+ax -1开口向下,由不等式的解集为R ,得二次函数的图象与x 轴没有交点,即Δ=a 2+4a <0,即a (a +4)<0,解得-4<a <0;③当a >0时,二次函数y =ax 2+ax -1开口向上,函数值y 不恒小于0,故解集为R 不可能.] 二、填空题6.已知点⎝ ⎛⎭⎪⎫12,2在幂函数y =f (x )的图象上,点⎝ ⎛⎭⎪⎫-2,14在幂函数y =g (x )的图象上,则f (2)+g (-1)=________.32 [设f (x )=x m ,g (x )=x n ,则由2=⎝ ⎛⎭⎪⎫12m得m =-1,由14=(-2)n,得n =-2, 所以f (2)+g (-1)=2-1+(-1)-2=32.]7.已知二次函数y =x 2+2kx +3-2k ,则其图象的顶点位置最高时对应的解析式为________.y =x 2-2x +5 [y =x 2+2kx +3-2k =(x +k )2-k 2-2k +3,所以图象的顶点坐标为(-k ,-k 2-2k +3).因为-k 2-2k +3=-(k +1)2+4,所以当k =-1时,顶点位置最高.此时抛物线的解析式为y =x 2-2x +5.]8.已知函数y =f (x )是偶函数,当x >0时,f (x )=(x -1)2,若当x ∈⎣⎢⎡⎦⎥⎤-2,-12时,n ≤f (x )≤m恒成立,则m -n 的最小值为________.1 [当x <0时,-x >0,f (x )=f (-x )=(x +1)2. ∵x ∈⎣⎢⎡⎦⎥⎤-2,-12,∴f (x )min =f (-1)=0,f (x )max =f (-2)=1, ∴m ≥1,n ≤0,m -n ≥1,∴m -n 的最小值是1.] 三、解答题9.若函数y =x 2-2x +3在区间[0,m ]上有最大值3,最小值2,求实数m 的取值范围.[解] 作出函数y =x 2-2x +3的图象如图.由图象可知,要使函数在[0,m ]上取得最小值2,则1∈[0,m ],从而m ≥1, 当x =0时,y =3;当x =2时,y =3, 所以要使函数取得最大值3,则m ≤2, 故所求m 的取值范围为[1,2].10.已知二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1. (1)求f (x )的解析式;(2)当x ∈[-1,1]时,函数y =f (x )的图象恒在函数y =2x +m 的图象的上方,求实数m 的取值范围.[解] (1)设f (x )=ax 2+bx +1(a ≠0), 由f (x +1)-f (x )=2x ,得2ax +a +b =2x . 所以,2a =2且a +b =0,解得a =1,b =-1,因此f (x )的解析式为f (x )=x 2-x +1.(2)因为当x ∈[-1,1]时,y =f (x )的图象恒在y =2x +m 的图象上方, 所以在[-1,1]上,x 2-x +1>2x +m 恒成立, 即x 2-3x +1>m 在区间[-1,1]上恒成立.所以令g (x )=x 2-3x +1=⎝ ⎛⎭⎪⎫x -322-54,因为g (x )在[-1,1]上的最小值为g (1)=-1, 所以m <-1.故实数m 的取值范围为(-∞,-1).B 组 能力提升1.设abc >0,二次函数f (x )=ax 2+bx +c 的图象可能是()ABC DD [由A ,C ,D 知,f (0)=c <0.∵abc >0,∴ab <0,∴对称轴x =-b2a >0,知A ,C 错误,D 符合要求.由B 知f (0)=c >0,∴ab >0,∴x =-b2a<0,B 错误.故选D.] 2.(2017·浙江高考)若函数f (x )=x 2+ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M -m ( )A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关B [法一:设x 1,x 2分别是函数f (x )在[0,1]上的最小值点与最大值点,则m =x 21+ax 1+b ,M =x 22+ax 2+b .∴M -m =x 22-x 21+a (x 2-x 1),显然此值与a 有关,与b 无关. 故选B.法二:由题意可知,函数f (x )的二次项系数为固定值,则二次函数图象的形状一定.随着b 的变动,相当于图象上下移动,若b 增大k 个单位,则最大值与最小值分别变为M +k ,m +k ,而(M +k )-(m +k )=M -m ,故与b 无关.随着a 的变动,相当于图象左右移动,则M -m 的值在变化,故与a 有关. 故选B.]3.已知对于任意的x ∈(-∞,1)∪(5,+∞),都有x 2-2(a -2)x +a >0,则实数a 的取值范围是________.(1,5] [Δ=4(a -2)2-4a =4a 2-20a +16=4(a -1)(a -4).(1)若Δ<0,即1<a <4时,x 2-2(a -2)x +a >0在R 上恒成立,符合题意; (2)若Δ=0,即a =1或a =4时,方程x 2-2(a -2)x +a >0的解为x ≠a -2, 显然当a =1时,不符合题意,当a =4时,符合题意;(3)当Δ>0,即a <1或a >4时,因为x 2-2(a -2)x +a >0在(-∞,1)∪(5,+∞)上恒成立,所以⎩⎪⎨⎪⎧1-a -+a ≥0,25-a -+a ≥0,1<a -2<5,解得3<a ≤5,又a <1或a >4,所以4<a ≤5. 综上,a 的取值范围是(1,5].]4.已知函数f (x )是定义在R 上的偶函数,且当x ≤0时,f (x )=x 2+2x .现已画出函数f (x )在y 轴左侧的图象,如图所示.(1)请补全函数f (x )的图象并根据图象写出函数f (x )(x ∈R)的增区间; (2)写出函数f (x )(x ∈R)的解析式;(3)若函数g (x )=f (x )-2ax +2(x ∈[1,2]),求函数g (x )的最小值. [解] (1)f (x )在区间(-1,0),(1,+∞)上单调递增.(2)设x >0,则-x <0,函数f (x )是定义在R 上的偶函数,且当x ≤0时,f (x )=x 2+2x , 所以f (x )=f (-x )=(-x )2+2×(-x )=x 2-2x (x >0),所以f (x )=⎩⎪⎨⎪⎧x 2-2xx >,x 2+2x x(3)g (x )=x 2-2x -2ax +2,对称轴方程为x =a +1, 当a +1≤1,即a ≤0时,g (1)=1-2a 为最小值;当1<a +1≤2,即0<a ≤1时,g (a +1)=-a 2-2a +1为最小值; 当a +1>2,即a >1时,g (2)=2-4a 为最小值.综上,g (x )min =⎩⎪⎨⎪⎧1-2a a ,-a 2-2a +<a,2-4a a >课后限时集训(八) 指数与指数函数(建议用时:60分钟) A 组 基础达标一、选择题 1.设a >0,将a 2a ·3a 2表示成分数指数幂的形式,其结果是( )A .a 12 B .a 56 C .a 76 D .a 32C [a2a ·3a 2=a2a ·a23=a 2a53=a2a56=a 2-56=a 76.故选C.] 2.已知a =20.2,b =0.40.2,c =0.40.6,则( ) A .a >b >c B .a >c >b C .c >a >bD .b >c >aA [由0.2<0.6,0.4<1,并结合指数函数的图象可知0.40.2>0.40.6,即b >c .因为a =20.2>1,b =0.40.2<1,所以a >b .综上,a >b >c .]3.函数y =xa x|x |(0<a <1)的图象的大致形状是( )A B。
高考数学第一轮复习强化训练 20.1《合情推理与演绎推理》新人教版选修12
【考纲要求】1、了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用.2、了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理.3、了解合情推理和演绎推理之间的联系和差异.【基础知识】1.推理一般包括合情推理和演绎推理.2..合情推理:根据已有的事实和正确的结论(包括定义、公理、定理等)、实验和实践的结果,以及个人的经验和直觉等推测某些结果的推理过程.归纳、类比是合情推理常用的思维方法.3..归纳推理:根据一类事物的部分对象具有某种性质,推出这类事物的所有对象都具有这种性质的推理.4..归纳推理的一般步骤:⑴通过观察个别情况发现某些相同性质;⑵从已知的相同性质中推出一个明确表达的一般性命题(猜想).5.类比推理:根据两类不同事物之间具有某些类似性,推出其中一类事物具有另一类事物类似的性质的推理.6.类比推理的一般步骤:⑴找出两类事物之间的相似性或一致性;⑵从一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).7.演绎推理:根据一般性的真命题导出特殊性命题为真的推理.【例题精讲】例已知等差数列{a n}的公差d=2,首项a1=5.(1)求数列{a n}的前n项和S n;(2)设T n=n(2a n-5),求S1,S2,S3,S4,S5;T1,T2,T3,T4,T5,并归纳出S n与T n的大小规律.解:(1)S n=5n+n(n-1)2×2=n(n+4).(2) T n=n(2a n-5)=n[2(2n+3)-5],∴T n=4n2+n.∴T1=5,T2=4×22+2=18,T3=4×32+3=39,T4=4×42+4=68,T5=4×52+5=105S1=5,S2=2×(2+4)=12,S3=3×(3+4)=21,S4=4×(4+4)=32,S5=5×(5+4)=45.由此可知S1=T1,当n≥2时,S n<T n.归纳猜想:当n≥2,n∈N时,S n<T n.20.1合情推理与演绎推理强化训练【基础精练】1.下列表述正确的是 ( )①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理.A .①②③B .②③④C .②④⑤D .①③⑤2.下面使用类比推理恰当的是 ( )A .“若a ·3=b ·3,则a =b ”类推出“若a ·0=b ·0,则a =b ”B .“(a +b )c =ac +bc ”类推出“a +b c =a c +b c ”C .“(a +b )c =ac +bc ”类推出“a +bc =a c +b c (c ≠0)” D .“(ab )n =a n b n ”类推出“(a +b )n =a n +b n ”3.由710>58,911>810,1325>921,…若a >b >0且m >0,则b +m a +m 与b a之间大小关系为( ) A .相等 B .前者大 C .后者大 D .不确定4.如图,圆周上按顺时针方向标有1,2,3,4,5五个点.一只青蛙按顺时针方向绕圆从一个点跳到另一点.若它停在奇数点上,则下一次只能跳一个点;若停在偶数点上,则下一次跳两个点.该青蛙从5这点跳起,经2008次跳后它将停在的点是 ( )A .1B .2C .3D .45.下列推理是归纳推理的是 ( )A .A ,B 为定点,动点P 满足|PA |+|PB |=2a >|AB |,得P 的轨迹为椭圆B .由a 1=1,a n =3n -1,求出S 1,S 2,S 3,猜想出数列的前n 项和S n 的表达式C .由圆x 2+y 2=r 2的面积πr 2,猜想出椭圆x 2a 2+y 2b 2=1的面积S =πab D .科学家利用鱼的沉浮原理制造潜艇6.定义集合A ,B 的运算:A ⊗B ={x |x ∈A 或x ∈B 且x ∉A ∩B },则A ⊗B ⊗A =____________.7.在平面内有n(n∈N*,n≥3)条直线,其中任何两条不平行,任何三条不过同一点,若这n条直线把平面分成f(n)个平面区域,则f(5)的值是________.f(n)的表达式是________.8.有如下真命题:“若数列{a n}是一个公差为d的等差数列,则数列{a n+a n+1+a n+2}是公差为3d的等差数列.”把上述命题类比到等比数列中,可得真命题是“________________.”(注:填上你认为可以成为真命题的一种情形即可)9.方程f(x)=x的根称为f(x)的不动点,若函数f(x)=x a(x+2)有唯一不动点,且x1=1000,x n+1=1f⎝⎛⎭⎪⎫1x n(n∈N*),则x2011=________.10.已知:sin230°+sin290°+sin2150°=32,sin25°+sin265°+sin2125°=32.通过观察上述两等式的规律,请你写出一般性的命题,并给出证明.【拓展提高】已知函数f(x)=-aa x+a(a>0且a≠1),(1)证明:函数y=f(x)的图象关于点(12,-12)对称;(2)求f(-2)+f(-1)+f(0)+f(1)+f(2)+f(3)的值【基础精练参考答案】4.A解析:a n表示青蛙第n次跳后所在的点数,则a1=1,a2=2,a3=4,a4=1,a5=2,a6=4,…,显然{a n}是一个周期为3的数列,故a2008=a1=1.5.B解析:从S1,S2,S3猜想出数列的前n项和S n,是从特殊到一般的推理,所以B是归纳推理.6.B 解析:如图,A ⊗B 表示的是阴影部分,设A ⊗B =C ,运用类比的方法可知,C ⊗A =B ,所以A ⊗B ⊗A =B .7. 16 n 2+n +22解析:本题是一道推理问题.通过动手作图,可知f (3)=7,f (4)=11,f (5)=16,从中可归纳推理,得出f (n )=f (n -1)+n ,则f (n )-f (n -1)=n , f (n -1)-f (n -2)=n -1,f (n -2)-f (n -3)=n -2,f (5)-f (4)=5,f (4)-f (3)=4,将以上各式累加得:f (n )-f (3)=n +(n -1)+(n -2)+…+5+4=(4+n )(n -3)2, 则有f (n )=(4+n )(n -3)2+f (3)=(4+n )(n -3)2+7 =n 2+n +228.答案:若数列{b n }是公比为q 的等比数列,则数列{b n ·b n +1·b n +2}是公比为q 3的等比数列;或填为:若数列{b n }是公比为q 的等比数列,则数列{b n +b n +1+b n +2}是公比为q 的等比数列.9. 2005解析:由x a (x +2)=x 得ax 2+(2a -1)x =0. 因为f (x )有唯一不动点,所以2a -1=0,即a =12. 所以f (x )=2x x +2.所以x n +1=1f ⎝ ⎛⎭⎪⎫1x n =2x n +12=x n +12. 所以x 2011=x 1+12×2010=1000+20102=2005. 10.解:一般性的命题为sin 2(α-60°)+sin 2α+sin 2(α+60°)=32. 证明如下:左边=1-cos(2α-120°)2+1-cos2α2+1-cos(2α+120°)2=32-12[cos(2α-120°)+cos2α+cos(2α+120°)] =32=右边. ∴结论正确.【拓展提高参考答案】解:(1)证明:函数f (x )的定义域为全体实数,任取一点(x ,y ),它关于点(12,-12)对称的点的坐标为(1-x ,-1-y ).由已知得y =-aa x +a,则 -1-y =-1+aa x +a =-a x a x +a , f (1-x )=-a a 1-x +a =-a a ax +a =-a ·a xa +a ·a x =-a xa x +a ,∴- 1-y =f (1-x ),即对称点(1-x ,-1-y )也满足函数y =f (x ).∴函数y =f (x )的图象关于点(12,-12)对称.。
2020年新高考一轮理数:课时达标检测(五十八) 合情推理与演绎推理
课时达标检测(五十八) 合情推理与演绎推理[小题对点练——点点落实]对点练(一) 合情推理1.(1)已知a 是三角形一边的长,h 是该边上的高,则三角形的面积是12ah ,如果把扇形的弧长l ,半径r 分别看成三角形的底边长和高,可得到扇形的面积为12lr ;(2)由1=12,1+3=22,1+3+5=32,可得到1+3+5+…+2n -1=n 2,则(1)(2)两个推理过程分别属于( )A .类比推理、归纳推理B .类比推理、演绎推理C .归纳推理、类比推理D .归纳推理、演绎推理解析:选A (1)由三角形的性质得到扇形的性质有相似之处,此种推理为类比推理;(2)由特殊到一般,此种推理为归纳推理,故选A.2.观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( )A .121B .123C .231D .211解析:选B 令a n =a n +b n ,则a 1=1,a 2=3,a 3=4,a 4=7,…,得a n +2=a n +a n +1,从而a 6=18,a 7=29,a 8=47,a 9=76,a 10=123.3.下面图形由小正方形组成,请观察图①至图④的规律,并依此规律,写出第n 个图形中小正方形的个数是( )A .n (n +1)B.n (n -1)2C.n (n +1)2 D .n (n -1)解析:选C 由题图知第1个图形的小正方形个数为1,第2个图形的小正方形个数为1+2,第3个图形的小正方形个数为1+2+3,第4个图形的小正方形个数为1+2+3+4,…,则第n 个图形的小正方形个数为1+2+3+…+n =n (n +1)2. 4.观察下列各式:55=3 125,56=15 625,57=78 125,58=390 625,59=1 953 125,…,则52 018的末四位数字为( )A .3 125B .5 625C .0 625D .8 125解析:选B 55=3 125 ,56=15 625,57=78 125,58=390 625,59=1 953 125,…,可得59与55的后四位数字相同,由此可归纳出5m +4k 与5m (k ∈N *,m =5,6,7,8)的后四位数字相同,又2 018=4×503+6,所以52 018与56的后四位数字相同,为5 625,故选B.5.(2018·山西孝义期末)我们知道:在平面内,点(x 0,y 0)到直线Ax +By +C =0的距离公式d =|Ax 0+By 0+C |A 2+B 2,通过类比的方法,可求得:在空间中,点(2,4,1)到直线x +2y +2z +3=0的距离为( )A .3B .5 C.5217 D .3 5解析:选B 类比平面内点到直线的距离公式,可得空间中点(x 0,y 0,z 0)到直线Ax +By +Cz +D =0的距离公式为d =|Ax 0+By 0+Cz 0+D |A 2+B 2+C 2,则所求距离d =|2+2×4+2×1+3|12+22+22=5,故选B.6.如图,将一张等边三角形纸片沿中位线剪成4个小三角形,称为第一次操作;然后,将其中的一个三角形按同样方式再剪成4个小三角形,共得到7个小三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得到10个小三角形,称为第三次操作……根据以上操作,若要得到100个小三角形,则需要操作的次数是________.解析:由题意可知,第一次操作后,三角形共有4个;第二次操作后,三角形共有4+3=7个;第三次操作后,三角形共有4+3+3=10个……由此可得第n 次操作后,三角形共有4+3(n -1)=3n +1个.当3n +1=100时,解得n =33.答案:337.以下数表的构造思路源于我国南宋数学家杨辉所著的《详解九章算术》一书中的“杨辉三角形”.1 2 3 4 5 …3 5 7 9 …8 12 16 …20 28 …2 013 2 014 2 015 2 016 4 027 4 029 4 0318 056 8 060 16 116……该表由若干数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数为____________.解析:观察数列,可以发现规律:每一行都是一个等差数列,且第一行的公差为1,第二行的公差为2,第三行的公差为4,第四行的公差为8,…,第2 015行的公差为22 014,故第一行的第一个数为2×2-1,第二行的第一个数为3×20,第三行的第一个数为4×21,第四行的第一个数为5×22,…,第n行的第一个数为(n+1)·2n-2,故第2 016行(最后一行)仅有一个数为(1+2 016)×22 014=2 017×22 014.答案:2 017×22 0148.如图,将平面直角坐标系中的格点(横、纵坐标均为整数的点)按如下规则标上数字标签:原点处标0,点(1,0)处标1,点(1,-1)处标2,点(0,-1)处标3,点(-1,-1)处标4,点(-1,0)处标5,点(-1,1)处标6,点(0,1)处标7,依此类推,则标签为2 0172的格点的坐标为____________.解析:因为点(1,0)处标1=12,点(2,1)处标9=32,点(3,2)处标25=52,点(4,3)处标49=72,依此类推得点(1 009,1 008)处标2 0172.答案:(1 009,1 008)对点练(二)演绎推理1.下面四个推导过程符合演绎推理三段论形式且推理正确的是()A.大前提:无限不循环小数是无理数;小前提:π是无理数;结论:π是无限不循环小数B.大前提:无限不循环小数是无理数;小前提:π是无限不循环小数;结论:π是无理数C.大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论:π是无理数D.大前提:π是无限不循环小数;小前提:π是无理数;结论:无限不循环小数是无理数解析:选B对于A,小前提与结论互换,错误;对于B,符合演绎推理过程且结论正确;对于C和D,大前提均错误.故选B.2.某人进行了如下的“三段论”:如果f′(x0)=0,则x=x0是函数f(x)的极值点,因为函数f(x)=x3在x=0处的导数值f′(0)=0,所以x=0是函数f(x)=x3的极值点.你认为以上推理的()A.大前提错误B.小前提错误C.推理形式错误D.结论正确解析:选A若f′(x0)=0,则x=x0不一定是函数f(x)的极值点,如f(x)=x3,f′(0)=0,但x=0不是极值点,故大前提错误.3.正弦函数是奇函数,f(x)=sin(x2+1)是正弦函数,因此f(x)=sin(x2+1)是奇函数,以上推理()A.结论正确B.大前提不正确C.小前提不正确D.全不正确解析:选C因为f(x)=sin(x2+1)不是正弦函数,所以小前提不正确.4.(2018·湖北八校联考)有6名选手参加演讲比赛,观众甲猜测:4号或5号选手得第一名;观众乙猜测:3号选手不可能得第一名;观众丙猜测:1,2,6号选手中的一位获得第一名;观众丁猜测:4,5,6号选手都不可能获得第一名.比赛后发现没有并列名次,且甲、乙、丙、丁中只有1人猜对比赛结果,此人是()A.甲B.乙C.丙D.丁解析:选D若甲猜测正确,则4号或5号得第一名,那么乙猜测也正确,与题意不符,故甲猜测错误,即4号和5号均不是第一名;若乙猜测正确,则3号不可能得第一名,即1,2,4,5,6号选手中有一位获得第一名,那么甲和丙中有一人也猜对比赛结果,与题意不符,故乙猜测错误;若丙猜测正确,那么乙猜测也正确,与题意不符,故仅有丁猜测正确,所以选D.5.在一次调查中,甲、乙、丙、丁四名同学的阅读量有如下关系:甲、丙阅读量之和与乙、丁阅读量之和相同,甲、乙阅读量之和大于丙、丁阅读量之和,丁的阅读量大于乙、丙阅读量之和.那么这四名同学按阅读量从大到小排序依次为____________.解析:因为甲、丙阅读量之和等于乙、丁阅读量之和,甲、乙阅读量之和大于丙、丁阅读量之和,所以乙的阅读量大于丙的阅读量,甲的阅读量大于丁的阅读量,因为丁的阅读量大于乙、丙阅读量之和,所以这四名同学按阅读量从大到小排序依次为甲、丁、乙、丙.答案:甲、丁、乙、丙[大题综合练——迁移贯通]1.给出下面的数表序列:其中表n (n =1,2,3,…)有n 行,第1行的n 个数是1,3,5,…,2n -1,从第2行起,每行中的每个数都等于它肩上的两数之和.写出表4,验证表4各行中的数的平均数按从上到下的顺序构成等比数列,并将结论推广到表n (n ≥3)(不要求证明).解:表4为1 3 5 7 4 8 1212 2032它的第1,2,3,4行中的数的平均数分别是4,8,16,32,它们构成首项为4,公比为2的等比数列.将这一结论推广到表n (n ≥3),即表n (n ≥3)各行中的数的平均数按从上到下的顺序构成首项为n ,公比为2的等比数列.2.在Rt △ABC 中,AB ⊥AC ,AD ⊥BC 于点D ,求证:1AD 2=1AB 2+1AC2.在四面体ABCD 中,类比上述结论,你能得到怎样的猜想?并说明理由.解:如图所示,由射影定理AD 2=BD ·DC ,AB 2=BD ·BC ,AC 2=BC ·DC ,∴1AD 2=1BD ·DC=BC 2BD ·BC ·DC ·BC =BC 2AB 2·AC 2. 又BC 2=AB 2+AC 2,∴1AD 2=AB 2+AC 2AB 2·AC 2=1AB 2+1AC2. 猜想,在四面体ABCD 中,AB 、AC 、AD 两两垂直,AE ⊥平面BCD ,则1AE 2=1AB 2+1AC2+1AD 2. 证明:如图,连接BE 并延长交CD 于点F ,连接AF .∵AB ⊥AC ,AB ⊥AD ,AC ∩AD =A ,∴AB ⊥平面ACD .∵AF ⊂平面ACD ,∴AB ⊥AF .在Rt △ABF 中,AE ⊥BF ,∴1AE 2=1AB 2+1AF 2. ∵AB ⊥平面ACD ,∴AB ⊥CD .∵AE ⊥平面BCD ,∴AE ⊥CD .又AB ∩AE =A ,∴CD ⊥平面ABF ,∴CD ⊥AF .∴在Rt △ACD 中1AF 2=1AC 2+1AD 2, ∴1AE 2=1AB 2+1AC 2+1AD 2. 3.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数: ①sin 213°+cos 217°-sin 13°cos 17°;②sin 215°+cos 215°-sin 15°cos 15°;③sin 218°+cos 212°-sin 18°cos 12°;④sin 2(-18°)+cos 248°-sin(-18°)cos 48°;⑤sin 2(-25°)+cos 255°-sin(-25°)cos 55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. 解:(1)选择②式,计算如下:sin 215°+cos 215°-sin 15°cos 15°=1-12sin 30° =1-14=34. (2)三角恒等式为sin 2α+cos 2(30°-α)-sin α·cos(30°-α)=34. 证明如下:sin 2α+cos 2(30°-α)-sin α·cos(30°-α)=sin 2α+(cos 30°cos α+sin 30°sin α)2-sin α·(cos 30°cos α+sin 30°sin α)=sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin αcos α-12sin 2α34sin 2α+34cos2α=34.=。
2020届高三数学(文)一轮总复习课时跟踪检测 合情推理与演绎推理Word版含答案
课时跟踪检测合情推理与演绎推理一抓基础,多练小题做到眼疾手快1.正弦函数是奇函数,f(x)=sin(x2+1)是正弦函数,因此f(x)=sin(x2+1)是奇函数,以上推理() A.结论正确B.大前提不正确C.小前提不正确D.全不正确解析:选C因为f(x)=sin(x2+1)不是正弦函数,所以小前提不正确.2.由代数式的乘法法则类比推导向量的数量积的运算法则:①“mn=nm”类比得到“a·b=b·a”;②“(m+n)t=mt+nt”类比得到“(a+b)·c=a·c+b·c”;③“(m·n)t=m(n·t)”类比得到“(a·b)·c=a·(b·c)”;④“t≠0,mt=xt⇒m=x”类比得到“p≠0,a·p=x·p⇒a=x”;⑤“|m·n|=|m|·|n|”类比得到“|a·b|=|a|·|b|”;⑥“acbc=ab”类比得到“a·cb·c=ab”.以上的式子中,类比得到的结论正确的个数是()A.1 B.2C.3 D.4解析:选B①②正确,③④⑤⑥错误.3.(2019·重庆一诊)某种树的分枝生长规律如图所示,第1年到第5年的分枝数分别为1,1,2,3,5,则预计第10年树的分枝数为()A.21 B.34C.52 D.55解析:选D因为2=1+1,3=2+1,5=3+2,即从第三项起每一项都等于前两项的和,所以第10年树的分枝数为21+34=55.4.观察下列等式12=112-22=-312-22+32=612-22+32-42=-10 ……照此规律,第n 个等式可为________.解析:观察规律可知,第n 个式子为12-22+32-42+…+(-1)n +1n 2=(-1)n+1n (n +1)2. 答案:12-22+32-42+…+(-1)n +1n 2=(-1)n+1n (n +1)25.(2019·黑龙江哈三中期末)设等差数列{a n }的前n 项和为S n ,则S 4,S 8-S 4,S 12-S 8,S 16-S 12成等差数列.类比以上结论我们可以得到的一个真命题为:设等比数列{b n }的前n 项积为T n ,则________成等比数列.解析:利用类比推理把等差数列中的差换成商即可. 答案:T 4,T 8T 4,T 12T 8,T 16T 12二保高考,全练题型做到高考达标1.(2019·洛阳统考)下面四个推导过程符合演绎推理三段论形式且推理正确的是( ) A .大前提:无限不循环小数是无理数;小前提:π是无理数;结论:π是无限不循环小数 B .大前提:无限不循环小数是无理数;小前提:π是无限不循环小数;结论:π是无理数 C .大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论:π是无理数 D .大前提:π是无限不循环小数;小前提:π是无理数;结论:无限不循环小数是无理数解析:选B A 中小前提不正确,C 、D 都不是由一般性结论到特殊性结论的推理,所以A 、C 、D 都不正确,只有B 的推导过程符合演绎推理三段论形式且推理正确. 2.下列推理中属于归纳推理且结论正确的是( )A .设数列{a n }的前n 项和为S n .由a n =2n -1,求出S 1=12,S 2=22,S 3=32,…,推断:S n =n 2B .由f (x )=x cos x 满足f (-x )=-f (x )对∀x ∈R 都成立,推断:f (x )=x cos x 为奇函数C .由圆x 2+y 2=r 2的面积S =πr 2,推断:椭圆x 2a 2+y 2b2=1(a >b >0)的面积S =πabD .由(1+1)2>21,(2+1)2>22,(3+1)2>23,…,推断:对一切n ∈N *,(n +1)2>2n解析:选A 选项A 由一些特殊事例得出一般性结论,且注意到数列{a n }是等差数列,其前n 项和等于S n =n (1+2n -1)2=n 2,选项D 中的推理属于归纳推理,但结论不正确.3.在平面几何中有如下结论:正三角形ABC 的内切圆面积为S 1,外接圆面积为S 2,则S 1S 2=14,推广到空间可以得到类似结论:已知正四面体P -ABC 的内切球体积为V 1,外接球体积为V 2,则V 1V 2=( )A .18B .19C .164D .127解析:选D 正四面体的内切球与外接球的半径之比为1∶3,故V 1V 2=127.4.给出以下数对序列:(1,1) (1,2)(2,1) (1,3)(2,2)(3,1) (1,4)(2,3)(3,2)(4,1) ……记第i 行的第j 个数对为a ij ,如a 43=(3,2),则a n m =( ) A .(m ,n -m +1) B .(m -1,n -m ) C .(m -1,n -m +1)D .(m ,n -m )解析:选A 由前4行的特点,归纳可得:若a n m =(a ,b ),则a =m ,b =n -m +1,∴a n m =(m ,n -m +1).5.古希腊人常用小石子在沙滩上摆成各种形状来研究数.比如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16,…,这样的数为正方形数.下列数中既是三角形数又是正方形数的是( )A .289B .1 024C .1 225D .1 378解析:选C 观察三角形数:1,3,6,10,…,记该数列为{a n },则a 1=1, a 2=a 1+2, a 3=a 2+3, …a n =a n -1+n .∴a 1+a 2+…+a n =(a 1+a 2+…+a n -1)+(1+2+3+…+n ),∴a n =1+2+3+…+n =n (n +1)2,观察正方形数:1,4,9,16,…,记该数列为{b n },则b n =n 2.把四个选项的数字,分别代入上述两个通项公式,可知使得n 都为正整数的只有 1 225.6.(2019·日照二模)设n 为正整数,f (n )=1+12+13+…+1n ,计算得f (2)=32,f (4)>2,f (8)>52,f (16)>3,观察上述结果,可推测一般的结论为________.解析:∵f (21)=32,f (22)>2=42,f (23)>52,f (24)>62,∴归纳得f (2n )≥n +22(n ∈N *).答案:f (2n )≥n +22(n ∈N *) 7.将全体正整数排成一个三角形数阵:1 2 3 4 5 6 7 8 9 10……根据以上排列规律,数阵中第n (n ≥3)行从左至右的第3个数是________.解析:前n -1行共有正整数1+2+…+(n -1)=n (n -1)2个,即n 2-n2个,因此第n 行从左至右的第3个数是全体正整数中第n 2-n 2+3个,即为n 2-n +62.答案:n 2-n +628.如果函数f (x )在区间D 上是凸函数,那么对于区间D 内的任意x 1,x 2,…,x n ,都有f (x 1)+f (x 2)+…+f (x n )n≤f ⎝⎛⎭⎫x 1+x 2+…+x n n .若y =sin x 在区间(0,π)上是凸函数,那么在△ABC 中,sin A +sin B +sin C 的最大值是________.解析:由题意知,凸函数满足f (x 1)+f (x 2)+…+f (x n )n ≤f⎝⎛⎭⎫x 1+x 2+…+x n n ,又y =sin x 在区间(0,π)上是凸函数,则sin A +sin B +sin C ≤3sin A +B +C 3=3sin π3=332.答案:3329.在锐角三角形ABC 中,求证:sin A +sin B +sin C >cos A +cos B +cos C .证明:∵△ABC 为锐角三角形, ∴A +B >π2,∴A >π2-B ,∵y =sin x 在⎝⎛⎭⎫0,π2上是增函数, ∴sin A >sin ⎝⎛⎭⎫π2-B =cos B , 同理可得sin B >cos C ,sin C >cos A , ∴sin A +sin B +sin C >cos A +cos B +cos C .10.(2019·上海闸北二模)已知O 是△ABC 内任意一点,连接AO ,BO ,CO 并延长,分别交对边于A ′,B ′,C ′,则OA ′AA ′+OB ′BB ′+OC ′CC ′=1,这是一道平面几何题,其证明常采用“面积法”: OA ′AA ′+OB ′BB ′+OC ′CC ′=S △OBC S △ABC +S △OCA S △ABC +S △OAB S △ABC =S △ABCS △ABC=1. 请运用类比思想,对于空间中的四面体V BCD ,存在什么类似的结论,并用“体积法”证明. 解:在四面体V BCD 中,任取一点O ,连接VO ,DO ,BO ,CO 并延长,分别交四个面于E ,F ,G ,H 点.则OE VE +OF DF +OG BG +OH CH =1.证明:在四面体O BCD 与V BCD 中, OE VE =h 1h =13S △BCD ·h113S △BCD ·h =V OBCD V VBCD.同理有OF DF =V OVBC V D VBC;OG BG =V OVCD V BVCD;OH CH =V OVBD V CVBD,∴OE VE +OF DF +OG BG +OH CH =V OBCD +V OVBC +V OVCD +V OVBDV VBCD=V V BCD V VBCD= 1.三上台阶,自主选做志在冲刺名校1.已知cos π3=12,cos π5cos 2π5=14, cos π7cos 2π7cos 3π7=18, ……(1)根据以上等式,可猜想出的一般结论是________; (2)若数列{a n }中,a 1=cos π3,a 2=cos π5cos 2π5,a 3=cos π7cos 2π7cos 3π7,…,前n 项和S n =1 0231 024,则n =________. 解析:(1)从题中所给的几个等式可知,第n 个等式的左边应有n 个余弦相乘,且分母均为2n +1,分子分别为π,2π,…,n π,右边应为12n ,故可以猜想出结论为cos π2n +1·cos 2π2n +1·…·cos n π2n +1=12n (n ∈N *). (2)由(1)可知a n =12n ,故S n =12⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12=1-12n =2n -12n =1 0231 024,解得n =10.答案:(1)cos π2n +1cos 2π2n +1·…·cos n π2n +1=12n (n ∈N *) (2)102.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:①sin 213°+cos 217°-sin 13°cos 17°; ②sin 215°+cos 215°-sin 15°cos 15°; ③sin 218°+cos 212°-sin 18°cos 12°; ④sin 2(-18°)+cos 248°-sin(-18°)cos 48°; ⑤sin 2(-25°)+cos 255°-sin(-25°)cos 55°. (1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. 解:(1)选择②式,计算如下:sin 215°+cos 215°-sin 15°cos 15°=1-12sin 30°=1-14=34.(2)法一:三角恒等式为sin 2α+cos 2(30°-α)-sin α·cos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin α·cos(30°-α)=sin 2α+(cos 30°cos α+sin 30°sin α)2-sin α·(cos 30°cos α+sin 30°sin α) =sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin αcos α-12sin 2α=34sin 2α+34cos 2α=34.法二:三角恒等式为sin 2α+cos 2(30°-α)-sin α·cos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α) =1-cos 2α2+1+cos (60°-2α)2-sin α·(cos 30°cos α+sin 30°sin α) =12-12cos 2α+12+12(cos 60°cos 2α+sin 60°sin 2α)-32sin αcos α-12sin 2α =12-12cos 2α+12+14cos 2α+34sin 2α-34sin 2α-14(1-cos 2α) =1-14cos 2α-14+14cos 2α=34.。
2020版高考数学一轮复习课后限时集训35合情推理与演绎推理理(含解析)新人教A版(最新整理)
课后限时集训(三十五) 合情推理与演绎推理(建议用时:60分钟)A组基础达标一、选择题1.用三段论推理:“任何实数的绝对值大于0,因为a是实数,所以a的绝对值大于0”,你认为这个推理()A.大前提错误B.小前提错误C.推理形式错误D.是正确的A[0的绝对值等于0,不大于0,大前提错误.故选A。
]2.如图,根据图中的数构成的规律,得a表示的数是()A.12B.48C.60D.144D[由题图中的数可知,每行除首末两数外,其他数都等于它肩上两数的乘积,所以a=12×12=144.]3.(2019·郑州调研)平面内凸四边形有2条对角线,凸五边形有5条对角线,凸六边形有9条对角线,以此类推,凸13边形对角线的条数为()A.42 B.65 C.143 D.169B[由题意得凸n边形的对角线C错误!-n,当n=13时,C错误!-13=65。
所以选B.]4.某次数学考试成绩公布后,甲、乙、丙、丁四人谈论成绩情况.甲说:“我们四个人的分数都不一样,但我和乙的成绩之和等于丙、丁两人的成绩之和."乙说:“丙、丁两人中一人分数比我高,一人分数比我低.”丙说:“我的分数不是最高的."丁说:“我的分数不是最低的.”则四人中成绩最高的是( )A.甲 B.乙 C.丙D.丁D[∵乙说:“丙、丁两人中一人分数比我高,一人分数比我低”,丙说:“我的分数不是最高的”,∴成绩最高的只能是甲或丁中的一个人.∵甲和乙两人的成绩之和等于丙、丁两人的成绩之和,丙、丁两人中一人分数比乙高,一人分数比乙低,∴丁的成绩比甲的成绩高,∴四人中成绩最高的是丁.故选D.]5.(2019·潍坊模拟)“干支纪年法”是中国历法上自古以来就一直使用的纪年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干",子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”.“天干”以“甲”字开始,“地支”以“子"字开始,两者按干支顺序相配,组成了干支纪年法,其相配顺序为甲子、乙丑、丙寅、…、癸酉,甲戌、乙亥、丙子、…、癸未,甲申、乙酉、丙戌、…、癸巳,…、癸亥,60个为一周,周而复始,循环记录.2014年是“干支纪年法”中的甲午年,那么2020年是“干支纪年法"中的()A.己亥年B.戊戌年C.庚子年D.辛丑年C[由题意知2014年是甲午年,则2015年到2020年分别为乙未年、丙申年、丁酉年、戊戌年、己亥年、庚子年.]二、填空题6.若P0(x0,y0)在椭圆错误!+错误!=1(a>b>0)外,过P0作椭圆的两条切线的切点为P1,P,则切点弦P1P2所在的直线方程是错误!+错误!=1,那么对于双曲线则有如下命题:若P(x0,2y)在双曲线错误!-错误!=1(a>0,b>0)外,过P0作双曲线的两条切线,切点为P1,P2,则切点0弦P1P2所在直线的方程是________.错误!-错误!=1 [类比椭圆的切点弦方程可得双曲线错误!-错误!=1的切点弦方程为错误!-错误!=1。
2020高考数学 6.5 合情推理与演绎推理课后限时作业 理(通用版).doc
高考立体设计理数通用版 6.5 合情推理与演绎推理课后限时作业一、选择题(本大题共6小题,每小题7分,共42分)1.下面几种推理过程是演绎推理的是 ( )A.两条直线平行,同旁内角互补,如果∠A与∠B是两条直线的同旁内角,则∠A+∠B=180°B.某校高三(1)班有55人,(2)班有54人,(3)班有52人,由此得高三所有班人数均超过50人C.由平面三角形的性质,推测空间四面体的性质D.在数列{a n}中,a1=1,a n=12(a n-1+11na-)(n≥2),由此归纳出{a n}的通项公式D.“(ab)n=a n b n”类推出“(a+b)n=a n+b n”解析:由类比推理的特点可知.答案:C4. 由7598139,,,10811102521>>>…,可以推知,若a>b>0且m>0,则b ma m++与ba之间大小关系为 ( ) A.相等 B.前者大C.后者大D.不确定解析:观察题设规律,由归纳推理易得b ma m++>ba.6.观察图中各正方形图案,每条边上有n(n≥2)个圆点,第n个图案中圆点的个数是a n,按此规律推断出所有圆点总和S n与n的关系式为 ( )A.S n=2n2-2nB.S n=2n2C.S n=4n2-3nD.S n=2n2+2n解析:事实上合情推理的本质:由特殊到一般,当n=2时有S2=4,分别代入即可淘汰B,C,D三选项,从而选A.也可以观察各个正方形图案可知圆点个数可视为首项为4,公差为4的等差数列,因此所有圆点总和即为等差数列前n-1项和,即S n=(n-1)×4+()()122n n--×4=2n2-2n.答案:A二、填空题(本大题共4小题,每小题6分,共24分)7.半径为r的圆的面积S(r)=πr2,周长C(r)=2πr,若r看作是(0,+∞)上的变量,则(πr2)′=2πr,该结论可用语言叙述为:圆的面积函数的导数等于圆的周长函数.那么对于半径为R 的球,若R看作是(0,+∞)上的变量,请写出类似于上面且正确的结论的式子:,该式可用语言叙述为 .解析:考查类比推理的知识.9.在平面上,我们如果用一条直线去截正方形的一个角,那么截下的一个直角三角形,按图所标边长,由勾股定理有:c 2=a 2+b 2.设想正方形换成正方体,把截线换成如图的截面,这时从正方体上截下三条侧棱两两垂直的三棱锥O-LMN ,如果用S 1,S 2,S 3表示三个侧面面积,S 4表示截面面积,那么你类比得到的结论是 .解析:考查类比推理,找准类比对象是关键.答案:22221234S S S S ++=10.函数f(x)由下表定义:若a 0=5,a n+1=f(a n ),n=0,1,2,…,则a 2 007= .解析:a 0=5,a 1=2,a 2=1,a 3=4,a 4=5,…,所以a n+4=a n ,a 2 007=a 3=4.答案:4三、解答题(本大题共2小题,每小题12分,共24分)11.蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,如图为一组蜂巢的截面图.其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以f(n)表示第n 个图的蜂巢总数,求f (4)及f(n).分析:找出f(n)与f(n-1)的关系式.解:f(1)=1,f(2)=1+6,f(3)=1+6+12,所以f(4)=1+6+12+18=37,所以f(n)=1+6+12+18+…+6(n-1)=3n2-3n+1.12.已知sin230°+sin290°+sin2150°=32,sin25°+sin265°+sin2125°=32,通过观察上述两等式的规律,请你写出一般性的命题,并给出证明.解:一般形式:sin2α+sin2(α+60°)+sin2(α+120°)= 32.证明如下:=32=右边.(将一般形式写成sin2(α-60°)+sin2α+sin2(α+60°)= 32,sin2(α-240°)+sin2(α-120°)+sin2α=32等均正确)B组一、选择题(本大题共2小题,每小题8分,共16分)1.(2011届·厦门质检)如图是今年元宵花灯展中一款五角灯连续旋转闪烁所成的三个图形,照此规律闪烁,下一个呈现出来的图形是 ( )解析:由图形观察的白色等腰三角形的顶角顶点每次旋转3格(108度).答案:A2.设f 0(x)=cos x,f 1(x)=f 0′(x),f 2(x)=f 1′(x),…,f n+1(x)=f n ′(x),n ∈N*,则f 2 008(x)= ( )A.-sin xB.-cos xC.sin xD.cos x解析:f 0(x)=cosx, f 1(x)=-sinx, f 2(x)=-cosx, f 3(x)=sinx, f 4(x)=cosx, f n+4(x)=f n (x), f 2 008(x)=f 0(x)=cos x.答案:D二、填空题(本大题共2小题,每小题8分,共16分)3.(2009·浙江) 设等差数列{a n }的前n 项和为S n ,则S 4,S 8-S 4,S 12-S 8,S 16-S 12成等差数列.类比以上结论有:设等比数列{b n }的前n 项积为T n ,则T 4, , ,1612T T 成等比数列. 解析:由于等差数列与等比数列具有类比性,且等差数列与和差有关,等比数列与积商有关,因此当等差数列依次每4项之和仍成等差数列时,类比到等比数列为依次每4项的积的商成等比数列,下面证明该结论的正确性:设等比数列{bn}的公比为q,首项为b1,答案:84T T 128T T 4.观察:715211; 5.516.5211;33193211;+<+<-++<….对于任意正实数a,b,试写出使211;a b +<成立的一个条件可以是.解析:前面所列式子的共同特征是被开方数之和为22,故a+b=22.答案:a+b=22三、解答题(本大题共2小题,每小题14分,共28分)5.如图第n 个图形是由正n+2边形“扩展”而来(n ∈N*).(1)计算第1、2、3个图形的顶点数;(2)试归纳猜想第n-2个图形中共有几个顶点.解:(1)设第n 个图中有an 个顶点,则a 1=12=3+3×3,a 2=20=4+4×4,a 3=30=5+5×5.(2)归纳猜想a n-2=(n-2)2+n-2=n 2-3n+2.6.已知椭圆具有性质:若M、N是椭圆C上关于原点对称的两个点,点P是椭圆上任意一点,当直线PM、PN的斜率都存在,并记为k PM、k PN时,那么k PM与k PN之积是与点P的位置无关的定值.试对双曲线2222x ya b-=1写出具有类似的性质,并加以证明.解:类似的性质为:若M、N是双曲线2222x ya b-=1上关于原点对称的两个点,点P是双曲线上任意一点,当直线PM、PN的斜率都存在,并记为k PM,k PN时,那么k PM与k PN之积是与点P 的位置无关的定值.证明如下:设点M、P的坐标分别为(m,n)、(x,y),则N(-m,-n).因为点M(m,n)在已知双曲线上,。
2020版高考数学理科人教B版一轮温习课时标准练34合情推理与演绎推理
课时标准练34合情推理与演绎推理基础巩固组1.(2018河北衡水枣强中学期中,7)以下三句话按“三段论”模式排列顺序正确的选项是()①y=cos x(x∈R)是三角函数;②三角函数是周期函数;③y=cos x(x∈R)是周期函数.A.①②③B.②①③C.②③①D.③②①2.(2018安徽合肥一中冲刺,文7)观看以下图:123 43456745678910……那么第()行的各数之和等于2 0172.010 018 005 0093.(2018河北辛集中学月考,10)古希腊人经常使用小石子在沙滩上摆成各类形状来研究数,例如:他们研究过图中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数,由以上规律,那么这些三角形数从小到大形成一个数列{a n},那么a10的值为()4.(2018吉林梅河口五中期中,9)在一次体育爱好小组的聚会中,要安排6人的座位,使他们在如下图的6个椅子中就座,且相邻座位(如1与2,2与3)上的人要有一起的体育爱好爱好,现已知这6人的体育爱好爱好如下表所示,且A.小方B.小张C.小周D.小马5.(2018黑龙江哈尔滨二模,9)对大于或等于2的自然数的正整数幂运算有如下分解方式:22=1+3,32=1+3+5,42=1+3+5+7,23=3+5,33=7+9+11,43=13+15+17+19.依照上述分解规律,若m2=1+3+5+…+11,n3的分解中最小的正整数是21,则m+n=()6.(2018河南信阳一中模拟,9)若“*”表示一种运算,知足如下关系:(1)1*1=1;(2)(n+1)*1=3(n*1)(n ∈N *),则n*1=( ) +17.(2018河北衡水中学五模,8)下面推理进程中利用了类比推理方式,其中推理正确的个数是( )①“数轴上两点间距离公式为|AB|=√(x 2-x 1)2,平面上两点间距离公式为|AB|=√(x 2-x 1)2+(y 2-y 1)2”,类比推出“空间内两点间的距离公式为|AB|=√(x 2-x 1)2+(y 2-y 1)2+(z 2-z 1)2”;②“代数运算中的完全平方公式(a+b )2=a 2+2a ·b+b 2”类比推出“向量中的运算(a +b )2=a 2+2a ·b +b 2仍成立”;③“平面内两条不重合的直线不平行就相交”类比到空间“空间内两条不重合的直线不平行就相交”也成立;④“圆x 2+y 2=1上点P (x 0,y 0)处的切线方程为x 0x+y 0y=1”,类比推出“椭圆x 2a2+y 2b2=1(a>b>0)上点P (x 0,y 0)处的切线方程为x 0x a 2+y 0yb2=1”.8.(2018福建三明一中期末,11)观看图形:…那么第30个图形比第27个图形中的“☆”多( ) 颗 颗 颗 颗9.(2018河北衡水一模,14)已知自主招生考试中,甲、乙、丙三人都恰好报考了清华大学、北京大学中的某一所大学,三人别离给出了以下说法:甲说:“我报考了清华大学,乙也报考了清华大学,丙报考了北京大学.” 乙说:“我报考了清华大学,甲说得不完全对.” 丙说:“我报考了北京大学,乙说得对.”已知甲、乙、丙三人中恰好有1人说得不对,那么报考了北京大学的是 .10.设△ABC 的三边长别离为a ,b ,c ,△ABC 的面积为S ,内切圆半径为r ,则r=2Sa+b+c ;类比那个结论可知,四面体ABCD 的四个面的面积别离为S 1,S 2,S 3,S 4,四面体ABCD 的体积为V ,内切球半径为R ,则R= . 11.观看以劣等式: sin π3-2+sin 2π3-2=43×1×2; sin π5-2+sin 2π5-2+sin 3π5-2+sin 4π5-2=43×2×3;sin π7-2+sin 2π7-2+sin 3π7-2+…+sin 6π7-2=43×3×4; sin π9-2+sin 2π9-2+sin 3π9-2+…+sin 8π9-2=43×4×5; … 照此规律,sin π2n+1-2+sin 2π2n+1-2+sin 3π2n+1-2+…+sin 2nπ2n+1-2= .12.(2018河北保定模拟,17)数列{a n }的前n 项和记为S n ,已知a 1=1,a n+1=n+2nS n (n ∈N *).证明:(1)数列{S n n }是等比数列;(2)S n+1=4a n .综合提升组13.(2018河南中原名校五联,10)教师在四个不同的盒子里面放了4张不同的扑克牌,别离是红桃A,梅花A,方片A和黑桃A,让小明、小红、小张、小李四个人进行猜想:小明说:第1个盒子里面放的是梅花A,第3个盒子里面放的是方片A;小红说:第2个盒子里面放的是梅花A,第3个盒子里放的是黑桃A;小张说:第4个盒子里面放的是黑桃A,第2个盒子里面放的是方片A;小李说:第4个盒子里面放的是红桃A,第3个盒子里面放的是方片A;教师说:“小明、小红、小张、小李,你们都只说对了一半.”那么能够推测,第4个盒子里装的是() A.红桃A或黑桃A B.红桃A或梅花AC.黑桃A或方片AD.黑桃A或梅花A14.(2018湖南岳阳一模,9)将棱长相等的正方体按以下图所示的形状摆放,从上往下依次为第1层,第2层,第3层,…,那么第2 018层正方体的个数共有()018 028037 171 009 01015.如图,咱们明白,圆环也能够看做线段AB绕圆心O旋转一周所形成的平面图形,又圆环的面积S=π(R2-r2)=(R-r)×2π×R+r.因此,圆环的面积等于以线段AB=R-r为宽,以AB中点绕圆心O旋转一周2所形成的圆的周长2π×R+r为长的矩形面积.请你将上述方式拓展到空间,并解决以下问题:假设将平面区域M={(x,y)|(x-d)2+y2≤r2}(其中0<r<d)绕y轴旋转一周,那么所形成的旋转体的体积是.创新应用组16.(2018河北衡水模拟,14)将给定的一个数列{a n}:a1,a2,a3,…依照必然的规那么依顺序用括号将它分组,那么能够取得以组为单位的序列.如在上述数列中,咱们将a1作为第一组,将a2,a3作为第二组,将a4,a5,a6作为第三组,…,依次类推,第n组有n个元素(n∈N*),即可取得以组为单位的序列:(a1),(a2,a3),(a4,a5,a6),…,咱们通常称此数列为分群数列.其中第1个括号称为第1群,第2个括号称为第2群,第3个数列称为第3群,…,第n个括号称为第n群,从而数列{a n}称为那个分群数列的原数列.若是某一个元素在分群数列的第m个群中,且从第m个括号的左端起是第k个,那么称那个元素为第m群中的第k个元素.已知数列1,1,3,1,3,9,1,3,9,27,…,将数列分群,其中,第1群为(1),第2群为(1,3),第3群为(1,3,32),…,以此类推.设该数列前n项和N=a1+a2+…+a n,假设使得N>14 900成立的最小a n位于第m群,则m=()17.(2018黑龙江仿真模拟四,14)已知命题:在平面直角坐标系xOy中,椭圆x 2a2+y2b2=1(a>b>0),△ABC的极点B在椭圆上,极点A,C别离为椭圆的左、右核心,椭圆的离心率为e,则sinA+sinC=1,现将该命题类比到双曲线中,△ABC的极点B在双曲线上,极点A、C别离为双曲线的左、右核心,设双曲线的方程为x 2a2−y2b2=1(a>0,b>0),双曲线的离心率为e,那么有.课时标准练34 合情推理与演绎推理依照“三段论”:“大前提”→“小前提”⇒“结论”可知:①y=cos x (x ∈R )是三角函数是“小前提”;②三角函数是周期函数是“大前提”;③y=cos x (x ∈R )是周期函数是“结论”.故“三段论”模式排列顺序为②①③.应选B .由图形知,第一行各数和为1;第二行各数和为9=32;第三行各数和为25=52;第四行各数和为49=72,…,∴第n 行个数之和为(2n-1)2,令(2n-1)2=2 0172⇒2n-1=2 017,解得n=1 009,应选D . a 1=1,a 2=1+2,a 3=1+2+3,a 4=1+2+3+4,故a 10=1+2+3+4+…+10=55,应选B .依据题意可得从1~6号依次为小林、小马、小李、小方、小周、小张,则4号位置上坐的是小方,应选A .∵m 2=1+3+5+…+11=1+112×6=36,∴m=6,∵23=3+5,33=7+9+11,43=13+15+17+19,∴53=21+23+25+27+29,∵n 3的分解中最小的数是21,∴n 3=53,n=5.∴m+n=6+5=11,应选B .由题设:①1*1=1,②(n+1)*1=3(n*1),则n*1=3((n-1)*1)=3×3((n-2)*1)=…=3n-1(1*1)=3n-1.应选D . 关于①,依照空间内两点间距离公式可知,类比正确;关于②,(a +b )2=(a +b )·(a +b )=a 2+a ·b +b ·a +b 2=a 2+2a ·b +b 2,类比正确;关于③,在空间内不平行的两条直线,有相交和异面两种情形,类比错误;关于④,椭圆x 2a 2+y 2b2=1(a>b>0)上点P (x 0,y 0)处的切线方程为x 0xa 2+y 0y b 2=1,为真命题,综合上述,可知正确个数为3个,应选C .设第n 个图形“☆”的个数为a n ,则a 1=1,a 2=1+2=3,a 3=1+2+3=6,a n =1+2+…+n=n (n+1)2,∴第30个图形比第27个图形中的“☆”多的个数为:30×312−27×282=87.应选C .9.甲、丙 假设甲说得不对,那么乙、丙说得对,即乙必然报考了清华大学,丙必然报考了北京大学,甲只可能报考了北京大学.假设乙、丙说得不对,那么得出与“甲、乙、丙三人中恰好有1人说得不对”矛盾,因此报考了北京大学的是甲、丙.因此填甲、丙. 10.3VS1+S 2+S 3+S 4三角形的面积类比四面体的体积,三角形的边长类比四面体四个面的面积,内切圆半径类比内切球的半径,二维图形中的“2”类比三维图形中的“3”,得R=3VS1+S 2+S 3+S 4.11.43×n×(n+1) 观看等式右边的规律:第1个数都是43,第2个数对应行数n ,第3个数为n+1. 12.证明 (1)∵a n+1=S n+1-S n ,a n+1=n+2nS n , ∴(n+2)S n =n (S n+1-S n ),即nS n+1=2(n+1)S n .∴S n+1n+1=2·S nn, 又S 11=1≠0,(小前提)故{Sn n }是以1为首项,2为公比的等比数列.(结论)(2)由(1)可知S n+1n+1=4·Sn -1n -1(n ≥2), ∴S n+1=4(n+1)·S n -1n -1=4·n -1+2n -1·S n-1=4a n (n ≥2),(小前提)又a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1,(小前提)∴关于任意正整数n ,都有S n+1=4a n .(结论) 因为四个人都只猜对了一半,故有以下两种可能:(1)当小明猜对第1个盒子里面放的是梅花A 时,第3个盒子里面放的不是方片A ,那么小李猜对第4个盒子里面放的是红桃A ,小张猜对第2个盒子里面放的是方片A ,小红猜对第3个盒子里面放的是黑桃A ;(2)假设小明猜对的是第3个盒子里面放的是方片A ,那么第1个盒子里面放的不是梅花A ,小红猜对第2个盒子里面放的是梅花A ,小张猜对第4个盒子里面放的是黑桃A ,小李猜对第3个盒子里面放的是方片A ,那么第1个盒子只能是红桃A ,应选A .设第n 层正方体的个数为a n ,则a 1=1,a n -a n-1=n ,因此a n -a 1=2+3+…+n ,即a n =1+2+3+…+n=n (n+1)2,n ≥2,故a 2 018=1 009×2 019=2 037 171,应选C .π2r 2d 平面区域M 的面积为πr 2,由类比知识可知:平面区域M 绕y 轴旋转一周取得的旋转体为实心的车轮内胎,旋转体的体积等于以圆(面积为πr 2)为底,以O 为圆心、d 为半径、圆的周长2πd 为高的圆柱的体积,因此旋转体的体积V=πr 2×2πd=2π2r 2d.由题意取得该数列的前r 组共有1+2+3+4…+r=r (1+r )2个元素,其和为Sr (r+1)2=1+(1+3)+(1+3+32)+…+(1+3+32+…+3r-1)=3r+1-2r -34,则r=9时,S (45)=310-2×9-34=14 757,r=10,S (55)=44 281>14 900,故使得N>14 900成立的最小值a 位于第10群. 故答案为B .点睛 那个题目考查的是新概念题型,属于数列中的归纳推理求和问题;关于这种题目,能够先找一些特殊情形,总结一下规律,再进行推行,取得递推关系,或直接从变量较小的情形开始归纳取得递推关系. 17.|sinA -sinC |sinB=1e 将该命题类比到双曲线中,因为△ABC 的极点B 在双曲线x 2a 2−y 2b 2=1(a>0,b>0)上,极点A 、C 别离是双曲线的左、右核心,因此有|BA|-|BC|=2a ,因此1e =2a 2c=|BA -BC |AC , 由正弦定理可得BC sinA =ACsinB=AB sinC ,因此|sinA -sinC |sinB=1e,故答案为|sinA -sinC |sinB =1e .。
2020版高考一轮数学:6.4-合情推理与演绎推理ppt课件(含答案)
B.(m-1,n-m)
C.(m-1,n-m+1) D.(m,n-m)
(2)观察下列式子:1,1+2+1,1+2+3+2+1,1+2+3+4+3+2
+1,…,由以上可推测出一个一般性结论:对于n∈N*,则1+2
+…+n+…+2+1=________.
(1)A (2)n2 [(1)由已知可得,第 i 行第 j 列个数对 aij=(j,i-j +1),因此 anm=(m,n-m+1),故选 A.
2.由“半径为R的圆内接矩形中,正方形的面积最大”,推出
“半径为R的球的内接长方体中,正方体的体积最大”是( )
A.归纳推理
B.类比推理
C.演绎推理
D.以上都不是
B [类比推理的一般步骤是:(1)找出两类事物之间的相似性或
一致性.(2)用一类事物的性质去推测另一类事物的性质,得出一个
明确的命题(猜想).所以,由“半径为R的圆内接矩形中,正方形的
4. (2)观察所给不等式可知,第n个不等式的右边为2nn++11.]
类比推理
【例4】 (1)(2019·上饶模拟)二维空间中,圆的一维测度(周长)l =2πr,二维测度(面积)S=πr2;三维空间中,球的二维测度(表面 积)S=4πr2,三维测度(体积)V=43πr3.应用合情推理,若四维空间中, “超球”的三维测度V=12πr3,则其四维测度W=________.
n C.dn=
cn1+cn2+…+cnn n
D.dn=n c1·c2·…·cn
(2)在平面几何中,△ABC的∠C的平分线CE分AB所成线段的比 为ABCC=ABEE.把这个结论类比到空间:在三棱锥A-BCD中(如图所示), 平面DEC平分二面角A-CD-B且与AB相交于E,则得到类比的结论是 ________________.
2020高考数学(文)一轮复习课时作业 36合情推理与演绎推理 含解析
.右图所示的三角形数组是我国古代数学家杨辉发现的,称为杨辉三角形,根据图中的数构成的规律,a所表示的数是12×9+3=111123×9+4=1 1111 234×9+5=11 11112 345×9+6=111 111A.11 111 110 B.11 111 111C.11 111 112 D.11 111 113解析:根据数塔的规律,后面加几结果就是几个1,∴1 234 567×9+8=11 111 111.人预测正确.若丙预测正确,丁预测错误,两者互相矛盾,排除;若丙预测错误,丁预测正确,则获奖作品只能是“A,D”,经验证符合题意,故选D.答案:D8.[2019·山东淄博模拟]有一段“三段论”推理是这样的:对于可导函数f(x),若f′(x0)=0,则x=x0是函数f(x)的极值点,因为f(x)=x3在x =0处的导数值为0,所以x=0是f(x)=x3的极值点,以上推理() A.大前提错误B.小前提错误C.推理形式错误D.结论正确解析:大前提是“对于可导函数f(x),若f′(x0)=0,则x=x0是函数f(x)的极值点”,不是真命题,因为对于可导函数f(x),如果f′(x0)=0,且满足在x0附近左右两侧导函数值异号,那么x=x0才是函数f(x)的极值点,所以大前提错误.故选A.答案:A9.[2019·山东省潍坊市第一次模拟]“干支纪年法”是中国历法上自古以来就一直使用的纪年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被为“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”.“天干”以“甲”字开始,“地支”以“子”字开始,两者按干支顺序相配,组成了干支纪年法,其相配顺序为甲子、乙丑、丙寅、…、癸酉,甲戌、乙亥、丙子、…、癸未,甲申、乙酉、丙戌、…、癸巳,……、癸亥,60个为一周周而复始,循环记录.2014年是“干支纪年法”中的甲午年,那么2020年是“干支纪年法”中的() A.己亥年B.戊戌年C.庚子年D.辛丑年解析:由题意知2014年是甲午年,则2015到2020年分别为乙未年、丙申年、丁酉年、戊戌年、己亥年、庚子年.答案:C10.[2019·东北三省四市联考]中国有个名句“运筹帷幄之中,决胜千里之外”,其中的“筹”原意是指《孙子算经》中记载的算筹.古代用算筹(一根根同样长短和粗细的小棍子)来进行运算.算筹的摆放有纵、横两种形式(如图所示).表示一个多位数时,个位、百位、万位数用纵式表示,十位、千位、十万位数用横式表示,以此类推,遇零则置空.例如,3 266用算筹表示就是,则8 771用算筹应表示为()因为任何一个大小1的“正方形数”都可以看成两个相邻之和,所以其规律是4=1+3,9=3+6,16=628,64=28+36,81=36+45,…因此给出的四个等式中,O 为四面体A -BCD 内任意一点,连接,并延长分别交平面BCD ,ACD ,ABD ,ABC 于点OD 1DD 1=1.用等体积法证明如下:OA 1AA 1+O -ABD C -ABD +V O -ABC V D -ABC=1. +…+a n ,则S 2 018=________.x ,y ),则a n =x +y .第一圈从点a 2+…+a 8=0;第二圈从点10+…+a 24=0,……以此类推,可得第项的和也为0.设a 2 018在第k 圈,则圈共有2 024个数,故S ,a 2 024所在点的坐标为湖北省重点中学质量检测]定义两种运算“”与“⊙”,对任意满足下列运算性质:(1)2 2 018⊙1=2 018=2[(2 2 018](n+2 019)·(2 020 2 018)的值为.21 009.22 2 22 018]2 2 018所以4 2 018=1(2 2 018)6 2 018(4 2 018)8 2 018(6 2 018)2 020 2 018 2 018=2(2 018=1,(2 020 2 018)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课后限时集训(三十五)(建议用时:60分钟)A组基础达标一、选择题1.下面四个推导过程符合演绎推理三段论形式且推理正确的是()A.大前提:无限不循环小数是无理数;小前提:π是无理数;结论:π是无限不循环小数B.大前提:无限不循环小数是无理数;小前提:π是无限不循环小数;结论:π是无理数C.大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论:π是无理数D.大前提:π是无限不循环小数;小前提:π是无理数;结论:无限不循环小数是无理数B[A中小前提不正确,C,D都不是由一般性结论到特殊性结论的推理,所以A,C,D都不正确,只有B的推导过程符合演绎推理三段论形式且推理正确.]2.观察下列事实:|x|+|y|=1的不同整数解(x,y)的个数为4,|x|+|y|=2的不同整数解(x,y)的个数为8,|x|+|y|=3的不同整数解(x,y)的个数为12,…,则|x|+|y|=20的不同整数解(x,y)的个数为()A.76B.80C.86D.92B[观察已知事实可知,|x|+|y|=20的不同整数解(x,y)的个数为20×4=80,故选B.]3.(2019·湖南师大附中模拟)已知a n=log n+1(n+2)(n∈N*),观察下列算式:a1·a2=log23·log34=lg 3lg 2·lg 4lg 3=2;a1a2a3a4a5a6=log23·log34…log78=lg 3lg 2·lg 4lg 3…lg 8lg 7=3;若a1a2…a m=2 016(m∈N*),则m的值为()A.22 016+2 B.22 016 C.22 016-2 D.22 016-4C[因为a1a2…a m=log23log34…log m+1(m+2)=lg 3lg 2·lg 4lg 3…lg(m+2)lg(m+1)=lg(m+2)lg 2=2 016,所以有log2(m+2)=2 016,m=22 016-2,选C.] 4.(2019·新余模拟)我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周盒体而无所失矣.”它体现了一种无限与有限的转化过程.比如在表达式1+11+11+…中“…”即代表无限次重复,但原式却是个定值,它可以通过方程1+1x=x求得x=5+12.类似上述过程,则3+23+2…=()A.3 B.13+1 2C.6 D.2 2A[由题意结合所给的例子类比推理可得,3+2x=x(x≥0),整理得(x+1)(x-3)=0,则x=3,即3+23+2…=3.故选A.]5.老师带甲、乙、丙、丁四名学生去参加自主招生考试,考试结束后老师向四名学生了解考试情况,四名学生回答如下:甲说:“我们四人都没考好”;乙说:“我们四人中有人考的好”;丙说:“乙和丁至少有一人没考好”;丁说:“我没考好”.结果,四名学生中有两人说对了,则四名学生中说对的两人是()A.甲、丙B.乙、丁C.丙、丁D.乙、丙D [甲、乙两人说话矛盾,必有一对一错,如果丁正确,则丙也是对的,所以丁错误,可得丙正确,此时乙正确,故选D.]二、填空题6.已知点A (x 1,x 21),B (x 2,x 22)是函数y =x 2的图象上任意不同的两点,依据图象可知,线段AB 总是位于A ,B 两点之间函数图象的上方,因此有结论x 21+x 222>⎝ ⎛⎭⎪⎫x 1+x 222成立.运用类比思想方法可知,若点A (x 1,sin x 1),B (x 2,sin x 2)是函数y =sin x (x ∈(0,π))的图象上任意不同的两点,则类似地有结论________成立.sin x 1+sin x 22<sin x 1+x 22 [函数y =sin x (x ∈(0,π))的图象上任意不同的两点A ,B ,线段AB 总是位于A ,B 两点之间函数图象的下方,类比可知应有sin x 1+sin x 22<sin x 1+x 22.] 7.(2017·北京高考)某学习小组由学生和教师组成,人员构成同时满足以下三个条件:①男学生人数多于女学生人数;②女学生人数多于教师人数;③教师人数的两倍多于男学生人数.(1)若教师人数为4,则女学生人数的最大值为________;(2)该小组人数的最小值为________.6 12 [(1)若教师人数为4,则男学生人数小于8,最大值为7,女学生人数最大时应比男学生人数少1人,所以女学生人数的最大值为7-1=6.(2)设男学生人数为x (x ∈N *),要求该小组人数的最小值,则女学生人数为x -1,教师人数为x -2.又2(x -2)>x ,解得x >4,即x =5,该小组人数的最小值为5+4+3=12.]8.某种平面分形图如图所示,一级分形图是由一点出发的三条线段,长度相等,两两夹角为120°;二级分形图是在一级分形图的每条线段末端出发再生成两条长度为原来13的线段,且这两条线段与原线段两两夹角为120°,…,依此规律得到n 级分形图.则n 级分形图中共有________条线段.3×2n -3 [由题图知,一级分形图有3=3×2-3条线段,二级分形图有9=3×22-3条线段,三级分形图有21=3×23-3条线段,…按此规律,n 级分形图中的线段条数a n =3×2n -3(n ∈N *).]三、解答题9.设f (x )=13x +3,先分别求f (0)+f (1),f (-1)+f (2),f (-2)+f (3),然后归纳猜想一般性结论,并给出证明.[证明] f (0)+f (1)=130+3+131+3 =11+3+13+3=3-12+3-36=33, 同理可得:f (-1)+f (2)=33, f (-2)+f (3)=33,并注意到在这三个特殊式子中,自变量之和均等于1.归纳猜想得:当x 1+x 2=1时,均有f (x 1)+f (x 2)=33.证明:设x1+x2=1,f(x1)+f(x2)=13x1+3+13x2+3=(3x1+3)+(3x2+3)(3x1+3)(3x2+3)=3x1+3x2+233x1+x2+3(3x1+3x2)+3=3x1+3x2+233(3x1+3x2)+2×3=3x1+3x2+233(3x1+3x2+23)=33.10.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:①sin213°+cos217°-sin13°cos 17°;②sin215°+cos215°-sin 15°cos 15°;③sin218°+cos212°-sin 18°cos 12°;④sin2(-18°)+cos248°-sin(-18°)cos 48°;⑤sin2(-25°)+cos255°-sin(-25°)cos 55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.[解](1)选择②式,计算如下:sin215°+cos215°-sin 15°cos 15°=1-12sin 30°=1-14=3 4.(2)法一:三角恒等式为sin2α+cos2(30°-α)-sin αcos(30°-α)=3 4.证明如下:sin2α+cos2(30°-α)-sin αcos(30°-α)=sin2α+(cos 30°cos α+sin 30°sin α)2-sin α(cos 30°cos α+sin 30°sin α)=sin2α+34cos 2α+32sin αcos α+14sin2α-32sin αcos α-12sin2α=3 4sin 2α+34cos2α=34.法二:三角恒等式为sin2α+cos2(30°-α)-sin αcos(30°-α)=3 4.证明如下:sin2α+cos2(30°-α)-sin αcos(30°-α)=1-cos 2α2+1+cos(60°-2α)2-sin α(cos 30° cos α+sin 30°sin α)=1 2-12cos 2α+12+12(cos 60°cos 2α+sin 60°sin 2α)-32sin αcos α-12sin2α=1 2-12cos 2α+12+14cos 2α+34sin 2α-34sin 2α-14(1-cos 2α)=1-14cos 2α-14+14cos 2α=34.B组能力提升1.平面内凸四边形有2条对角线,凸五边形有5条对角线,以此类推,凸13边形对角线的条数为()A.42B.65C.143D.169B[可以通过列表归纳分析得到.∴凸13边形有2+3+4+ (11)2=65条对角线.故选B.] 2.(2019·南昌模拟)平面内直角三角形两直角边长分别为a,b,则斜边长为a2+b2,直角顶点到斜边的距离为aba2+b2,空间中三棱锥的三条侧棱两两垂直,三个侧面的面积分别为S1,S2,S3,类比推理可得底面积为S21+S22+S23,则三棱锥顶点到底面的距离为()A.3S 1S 2S 3S 21+S 22+S 23 B.S 1S 2S 3S 21+S 22+S 23 C.2S 1S 2S 3S 21+S 22+S 23 D.3S 1S 2S 3S 21+S 22+S 23C [设三棱锥两两垂直的三条侧棱长度为a ,b ,c ,三棱锥顶点到底面的距离为d ,由题意可得: 13×⎝ ⎛⎭⎪⎫12ab ×c =13×S 21+S 22+S 23×d ,据此可得:d =abc 2S 21+S 22+S 23,且ab =2S 1,ac =2S 2,bc =2S 3,故:a 2b 2c 2=8S 1S 2S 3,abc =22S 1S 2S 3,则d =22S 1S 2S 32S 21+S 22+S 23=2S 1S 2S 3S 21+S 22+S 23,故选C.] 3.甲、乙、丙三人各从图书馆借来一本书,他们约定读完后互相交换.三人都读完了这三本书之后,甲说:“我最后读的书与丙读的第二本书相同.”乙说:“我读的第二本书与甲读的第一本书相同.”根据以上说法,推断乙读的最后一本书是________读的第一本书.丙 [因为共有三本书,而乙读的第一本书与第二本书已经明确,只有丙读的第一本书乙还没有读,所以乙读的最后一本书是丙读的第一本书.]4.对于三次函数f (x )=ax 3+bx 2+cx +d (a ≠0),给出定义:设f ′(x )是函数y =f (x )的导数,f ″(x )是f ′(x )的导数,若方程f ″(x )=0有实数解x 0,则称点(x 0,f (x 0))为函数y =f (x )的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.若f (x )=13x 3-12x 2+3x -512,请你根据这一发现,(1)求函数f (x )的对称中心;(2)计算f ⎝ ⎛⎭⎪⎫12 019+f ⎝ ⎛⎭⎪⎫22 019+f ⎝ ⎛⎭⎪⎫32 019+f ⎝ ⎛⎭⎪⎫42 019+…+f ⎝ ⎛⎭⎪⎫2 0182 019. [解] (1)f ′(x )=x 2-x +3,f ″(x )=2x -1,由f ″(x )=0,即2x -1=0,解得x =12.f ⎝ ⎛⎭⎪⎫12=13×⎝ ⎛⎭⎪⎫123-12×⎝ ⎛⎭⎪⎫122+3×12-512=1.由题中给出的结论,可知函数f (x )=13x 3-12x 2+3x -512的对称中心为⎝ ⎛⎭⎪⎫12,1. (2)由(1)知函数f (x )=13x 3-12x 2+3x -512的对称中心为⎝ ⎛⎭⎪⎫12,1, 所以f ⎝ ⎛⎭⎪⎫12+x +f ⎝ ⎛⎭⎪⎫12-x =2, 即f (x )+f (1-x )=2.故f ⎝ ⎛⎭⎪⎫12 019+f ⎝ ⎛⎭⎪⎫2 0182 019=2, f ⎝ ⎛⎭⎪⎫22 019+f ⎝ ⎛⎭⎪⎫2 0172 019=2, f ⎝ ⎛⎭⎪⎫32 019+f ⎝ ⎛⎭⎪⎫2 0162 019=2, …f ⎝ ⎛⎭⎪⎫2 0182 019+f ⎝ ⎛⎭⎪⎫12 019=2. 所以f ⎝ ⎛⎭⎪⎫12 019+f ⎝ ⎛⎭⎪⎫22 019+f ⎝ ⎛⎭⎪⎫32 019+f ⎝ ⎛⎭⎪⎫42 019+…+f ⎝ ⎛⎭⎪⎫2 0182 019=12×2×2 018 =2 018.。