高中数学选修2-1第二章知识点
人教版【高中数学】选修2-1第二章曲线与方程的概念讲义
案例(二)——精析精练课堂合作探究重点难点突破知识点一曲线方程概念的理解1.在建立了平面直角坐标系之后,平面内的点和有序实数对之间就建立了一一对应关系,现在要求我们进一步研究平面内的曲线与含有两个变量的方程之间的关系.平面内的曲线可以理解为平面内符合某种条件的点的集合(或轨迹)也就是说:(1)曲线上的每一个点都要符合某种条件;(2)每个符合条件的点都要在曲线上既然平面内的点与作为它的坐标的有序实数对之间建立了对应关系,那么对应于符合某种条件的一切点,它的坐标是应该有制约的,也就是说它的横坐标与纵坐标之间受到某种条件的约束,所以探求符合某种条件的点的轨迹问题,就变为探求这些点的横坐标与纵坐标应满足怎样的约束条件的问题,含两个变量x、y的方程F(x,y)=0就标志着横坐标x与纵坐标y之间所受的约束.2.在曲线的方程的定义中,曲线上的点与方程的解之间的关系(1)和(2)缺一不可,而且两者是对曲线上的任意一点以及方程的任意一个实数解而言的从集合的角度来看,设A是曲线C上的所有点组成的点集,B是所有以方程F(x,y)=0的实数解为坐标的点组成的点集,则由关系(1)可知A⊆B,由关系(2)可知BCA;同时具有这两个关系,就有A=B.3.从充要条件的角度理解,即“某点在曲线上”与“点的坐标满足曲线的方程”之间是互为充要条件的.知识点二圆系方程1.曲线系:同时具有某一特征的一组曲线叫做一个曲线系;它们的共同方程叫做这个曲线系的曲线系方程2.圆系方程:(1)过两已知圆交点的圆系方程:两相交圆C:x2+y2+D1x+E1y+F1=0,C2:x2+y2+D2x+E2y+F2=0.则过其交点的圆系方程为:x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0(λ≠-1).(2)过直线与圆交点的圆系方程:直线Ax+By+C=0与圆x 2+y 2+Dx+Ey+F=0相交,则过其交点的圆系方程为:x 2+y 2+Dx+Ey+F+λ(Ax+By+C)=0. 典型例题分析题型1曲线的方程与方程的曲线 【例1】判断下列命题是否正确:①设点A(2,0)、B(0,2),则线段AB 的方程是x+y-2=0; ②到原点的距离等于5的动点的轨迹是y=x -25; ③到两坐标轴距离相等的点的轨迹方程是x 2-y 2=0. 解析 根据曲线与方程的定义,逐条检验“两性”答案 命题①中方程x+y-2=0表示一条直线,坐标满足该方程的点如(-1,3)等不在线段AB 上,故命题①错误;命题②中到原点距离等于5的动点的轨迹方程为x 2+y 2=52,方程y=x -25表示的曲线是圆x 2+y 2=25除去x 轴下半部分的曲线,故命题②错误命题③中到两坐标轴距离相等的点的轨迹方程为y=±x,满足x 2-y 2=0,反过来坐标满足方程x 2-y=0的点到两坐标轴的距离相等,故命题③正确规律总结 判断方程是否是曲线的方程,要从两个方面着手,一是检验点的坐标是否适合方程,二是检验以方程的解为坐标的点是否在曲线上【变式训练1】下列命题是否正确?若不正确,说明原因 (1)过点A(2,0)平行于y 轴的直线l 的方程是|x|=2; (2)到两坐标轴距离相等的点的轨迹方程是y=x答案(1)错误,因为以方程|x|=2的解为坐标的点,不都在直线l 上,直线l 只是方程|x|=2所表示的图形的一部分(2) 错误,因为到两坐标轴距离相等的点的轨迹有两条直线y=x 和y=-x,故y=x 不是所求的轨迹方程题型2曲线的交点【例2】求通过直线2x+y+4=0及圆x 2+y 2+2x-4y+1=0的交点,并且面积最小的圆的方程 解析 利用圆系公式可求出变圆的半径,参变量取适当值时可使变圆半径最小答案 设圆的方程是(x 2+y 2+2x-4y+1)+λ(2x+y+4)=0,即[x+(1+λ)2+(y+24-λ)=4161652+-λλ.设该圆半径为R,由圆面积公式S=πR 2,得R 2=4161652+-λλ取最小值的面积为最小.而R 2=45(λ-58)2+54,所以当λ=58时,圆面积最小.此时圆的方程是5x 2+5y 2+26x-12y+37=0.规律总结 最值问题要先列出目标函数,再利用合适的方法求最值【变式训练2】已知直线x+y+b=0与曲线x 2-1+y=0有公共点,则b 的取值范围是 .答案 联立两曲线方程,消去y 得x 2-x-(1+b)=0.由题意得△≥0,即1+4(1+b)≥0,解得b ≥-45规律 方法 总结1.判断方程是否是曲线方程,要从两方面着手,一是检验点的坐标是否适合方程,二是检验以方程的解为坐标的点是否在曲线上2.判断方程表示什么曲线,要对方程适当变形,变形过程一定要注意与原方程的等价 性,否则变形的方程表示的曲线就不是原方程的曲线,另外,变形的方法还有配方法、因式分 解法等3.在求轨迹方程时经常遇到已知一动点的轨迹方程,求另一动点的轨迹方程的问题, 而解决这类问题的解法称为代入法(或相关点法),而此法的关键是如何来表示出相关的点定时 巩固 检测基础训练1.如果命题“坐标满足方程f(x,y)=0的点都在曲线C 上”是不正确的,那么下列命题中正确的是 ( ) A.坐标满足f(x,y)=0的点都不在曲线C 上 B.曲线C 上的点的坐标不都满足方程f(x,y)=0C.坐标满足方程f(x,y)=0的点有些在曲线C 上,有些不在曲线C 上D.至少有一个不在曲线C 上的点,其坐标满足f(x,y)=0 【答案】D(点拨:由简易逻辑推理可得)2.已知圆C 的方程f(x,y)=0,点A(x 0,y 0)在圆外,点B(x ´,y ´)在圆上,则f(x,y)-f(x 0,y 0)+f(x ´,y ´)=0表示的曲线是 ( ) A.就是圆C B.过A 点且与圆C 相交的圆 C.可能不是圆 D.过A 点与圆C 同心的圆 【答案】D(点拨:由点B(x ´,y ´)在圆上, ∴f(x ´,y ´)=0,即方程为f(x,y)-f(x 0,y 0)=0, ∴方程过点A(x 0,y 0) 又f(x 0,y 0)为常数,∴f(x,y)-f(x 0,y 0)=0仍为圆的方程.)3.已知A(1,0),B(-1,0),动点M 满足|MA|-|MB|=2,则点M 的轨迹方程是 ( ) A.y=0(-1≤y ≤1) B.y=0(x ≥1) C.y=0(x ≤-1) D.y=0(|x|≥1) 【答案】C(点拨:由|MA|-|MB|=2可设M(x,y),则()()222211y x y x ++-+-=2整理得:y=0,又|MA|-|MB|>0,∴x ≤-1.)4.点P(2,-3)在曲线x 2-ay 2=1上,则a= . 【答案】31(点拔:将点代入方程中即可.) 5.已知两定点A(-1,0),B(2,0),动点P 满足21=PB PA,则P 点的轨迹方程是 . 【答案】x 2+4x+y 2=0(点披:将|PA|与|PB|用距离公式表示出整理即可,)6.过点P(2,4)作两条互相垂直的直线1l 、2l ,1l ,交x 轴于A 点,2l 交y 轴于B 点,求线段AB 的中点M 的轨迹方程.【答案】如下图,设M 点的坐标为(x ,y),则A(2x,0),B(0,2y)∵1l ⊥2l ,2l P(2,4),∴PA ⊥PB,k PA ·k PB =-1,而k PA =x x -=-12224(x ≠1),k PB =2042--y =2-y, ∴x-12·(2-y)=-1,整理得x+2y-5=0(x ≠1). ∵当x=1时,A(2.0),B(0,4∴AB 的中点M(1,2)也满足方程x+2y-5=0,综上所述,点M 的轨迹方程为x+2y-5=07.线段AB 的长度为10.它的两个端点分别在x 轴,y 轴上滑动,则AB 的中点P 的轨迹是什么? 【答案】解法一:由题意可知AB 的中点P 恒满足到原点(0,0)的题离为5,所以点P 的轨迹为以原点为圆心,以5为半径的圆.解法二:设P 点的坐标为(x,y),由中点坐标公式知A(2x ,0),B(0,2y),因为|AB|=10,所以2244y x +=10,即x 2+y 2=25,所以点P 的轨为以原点为圆心,以5为半径的圆能力提升8.如图所示的曲线方程是 ( )A.|x|-y=0B.x-|y|=0C.y x =0D.yx -1=0【答案】B(点拔:A 中y ≥0与图形不符,C 、D 中都不满足y= 0,而图形过原点,所以排除C 、D,只有B 符合题意.) 9.(1)方程(x+y-1)1-x =0表示什么曲线?(2)方程2x 2+y 2-4x+2y+3=0表示什么曲线? 【答案】(1)由方程(x+y-1)1-x =0可得⎩⎨⎧=-+≥-010,1y x x 或⎩⎨⎧=-≥-.01,01x x 即x+y-1=0(x ≥1)或x=1,表示直线x=1和射线x+y-1=0(x ≥1).(2)方程左边配方得2(x-1)2+(y+1)2=0,∵2(x-1)2≥0,(y+1)2≥0,∴⎪⎩⎪⎨⎧=+=-,0)1(,0)1(222y x 得⎩⎨⎧-==,1,1y x∴方程表示的图形是点A(1,-1).10.求经过两圆C 1:x 2+y 2+6x-16=0,C 2:x 2+y 2-4x-5=0的交点,且过点(2,1)的圆的方程. 【答案】 设圆的方为x 2+y 2+6x-16+λ(x 2+y 2-4x-5)=0又因为圆过点(2,1),代入方程得λ=81,所以所求圆的方程为x 2+y 2+6x-16+81(x 2+y 2-4x-5)=0.即9x 2+9y 2+44x-133=0.(点拨:过相交的两个圆C 1:x 2+y 2+D 1x+E 1y+F 1=0,C 2:x 2+y 2+D 2x+E 2y+F 2=0的交点的圆系方程为x 2+y 2+D 1x+E 1y+F 1+λ(x 2+y 2+D 2x+E 2y+F 2)=0(λ≠-1).11.设A(-c,0),B(c,0)(c>0)为两定点,动点P 到点A 的距离与到点B 的距离的比为定值a(a>0),试求点P 的轨迹方程,并探求点P 的轨迹 【答案】设动点P 的坐标是(x ,y),由PBPA =a(a>0)得2222)()(yc x y c x +-++=a,简得(1-a 2)x 2+2c(1+a 2)x+c 2(1-a 2)+(1-a 2)y 2=0.当a ≠1时,得x 2+221)1(2aa c -+x+c 2+y 2=0,整理得22211⎪⎪⎭⎫ ⎝⎛-+-c a a x +y 2=2212⎪⎭⎫ ⎝⎛-a ac ;当a=1时,化简得x=0,所以当a ≠1时,P 点的轨迹是以⎪⎪⎭⎫ ⎝⎛-+0,1122c a a 为圆心,122-a ac为半径的圆:当a=1时,P 点的轨迹是y 轴.。
人教版A版高中数学高二选修2-1 第二章复习如何求圆锥曲线离心率
如何求圆锥曲线离心率在高考中圆锥曲线的分值占总分的15%左右.高考试题和各地的模拟试题中,大凡考查解析几何的,绝大多数以圆锥曲线为背景,而圆锥曲线的离心率,是描述曲线形状的重要参数,求离心率又是一种重要的题型,本文通过列举实例,介绍一些常用的求离心率范围的方法.1.利用离心率定义e=a c直接计算.例1.设双曲线12222=-b y a x (0<a<b)的半焦距为,直线过(a ,0)、 (0,b)两点,且原点到直线的距离为c 43,求双曲线的离心率.解:由过点(a ,0)、 (0,b)得的方程:bx+ay-ab=0.由点到的距离为c 43,得22ba ab +=c 43.将b=22a c -代入,平方后整理,得16(22c a )2-1622ca+3=0,解得332=e 或e=2.因为0<a<b ,故e=a c=221a b +>2,所以应舍去332=e .故所求离心率.点评:如果很容易由题设条件确定、,可直接用离心率定义求解.此题由两点式得直线的方程,再由双曲线中、、的关系及原点到直线的距离建立等式,从而解出a c的值.注意同学们解此题时一不小心易得到错误答案:e=2或332=e .究其原因是未注意到题设条件(0<a<b),从而离心率e>2,而332<2,故应舍去.2.利用曲线定义求离心率.第一种定义和第二种定义的灵活转换常常是打开解析几何思路的钥匙,在题目中挖掘这隐含信息有助于解题.例2. F 1、F 2是椭圆的两个焦点,过F 2作一条直线交椭圆于P 、Q 两点,使PF 1⊥PQ ,且|PF 1|=|PQ |,求椭圆的离心率e.解:设|PF 1|=t ,则|PQ |=t ,|F 1Q |=2t , 由椭圆定义有:| PF 1|+|PF 2|=|QF 1|+|QF 2|=2a ,∴|PF 1|+|PQ |+|F 1Q |=4a , 即(2+2)t=4a,t=(4-22)a ,∴|PF 2|=2a-t=(22-2)a ,在Rt △PF 1F 2中,|F 1F 1|2=(2c)2,∴[(4-22)a ]2+[(22-2)a ]2=(2c)2∴(a c )2=9-62, ∴e=a c =26-.点评:一般的,涉及焦点、准线方程、离心率、圆锥曲线上的点中的三个,就要联想到圆锥曲线定义,有时甚至只要知道其中的两个,也可以联想到圆锥曲线定义.灵活巧妙地运用圆锥曲线的定义,将会带给我们意想不到的方便和简单.教学中应着重培养学生灵活运用知识的能力.3.利用数形结合求离心率.由图形的的特定形状,找出有关量的性质、特征,并把几何图形和数有机结合起来,从而求出离心率的范围.例3. 直线l 过双曲线12222=-b y a x的右焦点,斜率k=2.若l 与双曲线的两个交点分别在左、右两支上,求双曲线离心率的取值范围.解:如图1,若k=a b ,则直线l 与双曲线的渐近线平行,从而l 与双曲线只有一个交点;若k>a b ,则l 与双曲线的两交点均在右支上, 故点评:此题若是直接求解,计算量比较大,而利用渐近线与双曲线的特性,从图中直接观察直线与渐近线,较易得出所要得出的东西.涉及直线与圆锥曲线交点问题,有时用此法也会取到意想不到的结果.4.运用均值不等式求解.例4. F 1、F 2为椭圆12222=+b y a x 的两焦点,若椭圆上存在一点P ,使∠F 1PF 2=90°,求椭圆的离心率的取值范围.解:由椭圆定义知:|PF 1|+|PF 2|=2a ,两边平方得:4a 2=|PF 1|2+|PF 2|2+2|PF 1||PF 2|≤2(|PF 1|2+|PF 2|2),∵∠F 1PF 2=90°,∴|PF 1|2+|PF 2|2=|F 1F 2|2,∴4a 2≤2(2c)2,得22≤e <1.点评:涉及到角度时,利用勾股定理或余弦定理,再利用不等式放缩,往往简单明了,注意放缩时等号条件是否成立.5.利用三角函数的有界性求离心率. 例5. 题目同上.解:设点P 坐标为(acos θ,bsin θ),由定义、焦半径公式及题设有:(2c)2=(a -ccosθ)2+(a +ccosθ)2 , 化简得cos 2θ=2222122e c ac -=-. 或由∠F 1PF 2=90°得:1cos sin cos sin -=•-+c a b c a b θθθθ,整理得b 2sin 2θ+ a 2cos 2θ-c 2=0,即(a 2-b 2)cos 2θ= c 2-b 2,cos 2θ=2222122e c a c -=-. ∵ 0≤cos 2θ≤1,∴0≤212e -≤1,结合0<e <1得22≤e <1为所求.点评:设圆锥曲线的参数形式,列式子比较简洁,但要注意各参数所限制的范围.6.列方程组求离心率. 例6. 题目同上.解:原题等价于以F 1F 2为直径的圆与椭圆有公共点,则⎪⎩⎪⎨⎧=+=+11222222y x b y a x 有实数解,消元得b 2x 2+a 2(c 2﹣x 2)=a 2b 2,即(b 2﹣a 2)x 2+a 2c 2﹣a 2b 2=0有实数根,所以Δ≥0,即c 2﹣b 2≥0,c 2﹣(a 2 ﹣c 2)≥0,可得122<≤e .点评:若两曲线相交,联立两个方程解出交点,再利用范围,列出不等式并 求其解或由根判别式根据条件建立与a、b、c相关的一元二次方程,再用根的判别式列出不等式,可得简解.7.运用比例性质求解离心率.在椭圆或双曲线中,若已知焦点三角形中的两个角,则可由定义、正弦定理、合分比定理推出其离心率.例7.椭圆)0(12222>>=+b a by a x 中,如果α=∠21F PF ,β=∠12F PF ,求椭圆离心率.解:由椭圆定义知:|PF 1|+|PF 2|=2a ,|F 1F 2|=2c ,∵||||22221PF PF ca c a c e +===由正弦定理,得|PF 1|=2Rsin β,|PF 2|=2Rsin α,|F 1F 2|=2Rsin(α+β)∴2cos2cos2cos 2sin 22cos2sin 2 sin sin )sin()sin (sin 2)sin(2||||221βαβαβαβαβαβαβαβαβαβα-+=-⋅++⋅+=++=++=+=R R PF PF c e说明:曲线上的点与焦点连线构成的三角形称焦点三角形,与焦点三角形有关的问题常常借助正(余)弦定理,借助比例性质进行处理.8.利用圆锥曲线中变量的变化范围求离心率.例8.已知椭圆,如果椭圆、的长轴两端点为B A b a by a x )0(12222>>=+上存在一点Q ,使0120=∠AQB ,求椭圆离心率的取值范围.解:根据椭圆的对称性,不妨设Q (x 0,y 0)在x 轴的上方,则b y ≤<00,a x y k a x y k QA QB+=-=0000, 321tan 202200-=+-=⋅+-=∠∴y a x ay k k k k AQB QB QA QA QB ①,又代入)1(22020b y a x -=①得)(322220b a ab y -=,则b b a ab ≤-<)(320222⇒ 22232c c a a ≤-,13631222<≤⇒≤-∴e e e . 点评:此题解法实质上是分离变量.通过将离心率用曲线上一点坐标出来,借助于曲线上点的坐标范围求解离心率.涉及圆锥曲线中的不等问题要注意利用曲线上点的范围,探求离心率的范围.9.利用焦半径公式.例9.如图所示,已知梯形中,|AB|=2|CD|,点满足,双曲线过C 、D 、E 三点,且以A 、B 为焦点,当4332<<λ时,求双曲线离心率的取值范围.解:∵,∴x 0=)1(2)2(+-λλc ①∴λλ+=1||||CA EA ,由焦半径公式,得:λλ+•+--=12ce a ex a ②, 将①代入②,得:2)1(2)2(cce a e a •+•--+-λλλλ+=1.∵e=a c ,∴2321+-=e λ.又∵4332≤≤λ,∴43233221≤-≤+e ,∴107≤≤λ.∴双曲线离心率取值范围为[7,10].点评:此题的特点是:已知一个变量的范围求另一个变量的范围,先利用题设条件建立含范围变量的关系式,将变量λ和另一个变量分离e ,得到函数关系,再利用已知变量λ的范围求出变量e 的范围,解法实质是分离变量.同时,该解法巧妙地运用了焦半径公式,使得求解过程变得简洁快捷,而且给人以一种轻松自在的感觉,这表明善于记忆一些结果对我们的学习帮助很大.。
(人教版)高中数学选修2-1课件:第2章 圆锥曲线与方程2.3.1
合作探究 课堂互动
高效测评 知能提升
(2)设双曲线的方程为 mx2+ny2=1(mn<0), ∵双曲线经过点(3,0),(-6,-3),
∴93m6m++0= 9n1=,1, 解得nm==-19,13, ∴所求双曲线的标准方程为x92-y32=1.
数学 选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
定义法求方程
已知圆C1:(x+3)2+y2=1和圆C2:(x-3)2+y2= 9,动圆M同时与圆C1及圆C2相外切,求动圆的圆心M的轨迹方 程.
思路点拨: 根据两圆外切的定义从中找出相关的几何关 系,与所学椭圆、双曲线的定义进行对比可解.
数学 选修2-1
第二章 圆锥曲线与方程
合作探究 课堂互动
高效测评 知能提升
(2)焦点F1,F2的位置是双曲线定位的条件,它决定了双曲 线标准方程的类型“焦点跟着正项走”,若x2项的系数为正, 则焦点在x轴上;若y2项的系数为正,那么焦点在y轴上.
(3)当且仅当双曲线的中心在原点,其焦点在坐标轴上时, 双曲线的方程才具有标准形式.
(4)双曲线的标准形式的特征是数xⅠ2 +数yⅡ2 =1,数Ⅰ与
合作探究 课堂互动
高效测评 知能提升
3.与双曲线x82-1y02 =1 具有相同焦点的双曲线方程是 ________(只写出一个即可).
解析: 与x82-1y02 =1 具有相同焦点的双曲线方程为8+x2 k -10y-2 k=1(-8<k<10).
答案: x62-1y22 =1
数学 选修2-1
第二章 圆锥曲线与方程
数学 选修2-1
第二章 圆锥曲线与方程
(人教版)高中数学选修2-1课件:第2章 圆锥曲线与方程2.3.2 第1课时
a=13,b=m1 ,
9 m2
取顶点0,13,一条渐近线为 mx-3y=0, 所以15=|-m32×+139|,则 m2+9=25,
∵m>0,∴m=4.
答案: D
数学 选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
3.已知点(2,3)在双曲线 C:ax22-by22=1(a>0,b>0)上, C 的焦距为 4,则它的离心率为________.
合作探究 课堂互动
高效测评 知能提升
1.双曲线 2x2-y2=8 的实轴长是( )
A.2
B.2 2
C.4
D.4 2
解析: 双曲线方程可化为x42-y82=1,∴a2=4,a=2,
则 2a=4,故选 C. 答案: C
数学 选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
c e=__a__
__y_=__±_ba_x_
_y_=__±_ab_x__
数学 选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
等轴双曲线
___实__轴__和___虚__轴___等长的双曲线叫做等轴双曲线.
数学 选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破
由①②联立,无解.
数学 选修2-1
第二章 圆锥曲线与方程
数学 选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
令 y=0,解得 x=±3,因此顶点坐标为 A1(-3,0),A2(3,0), 焦点坐标为 F1(- 13,0),F2( 13,0). 实轴长是 2a=6,虚轴长是 2b=4, 离心率 e=ac= 313, 渐近线方程 y=±bax=±23x. 作出草图(如图所示).
高中数学人教A版选修2-1第二章2课件
A1(0,-a),A2(0,a)
e c (e 1) a
ya x b
当堂检测
复习引入 确定焦 点 位置:椭圆看分母大小,双曲线看系数正负
定义 | |MF1|-|MF2| | =2a(0 < 2a<|F1F2|)
双曲线 图象
y
M
F1 o F2 x
y
M F2
x
F1
双曲线的图象 特点与几何性质到 现在仍是一个谜?
x2 y2
方程
a2 b2 1
(a 0,b 0)
焦点
F ( ±c, 0)
(3)焦点坐标: F1(5,0), F2 (5,0)
(4)离心率: e c 5 a4
(5)渐近线方程:y 3 x
4
y F1• • A1 O A2• •F2 x
二、焦点在Y轴上的双曲线的几何性质
焦点在Y轴上的双曲线的几何性质
双曲线标准方程:
y2 a2
x2 b2
1a 0, b 0
双曲线性质:
对称性 关于x轴、y轴、原点对称
顶点 离心率 渐进线
A1(- a,0),A2(a,0)
e c (e 1) a
ybx a
..
y
A2 F2
B2 A1 O
B1
F1
F2(0,c) x F1(0,-c)
y2 x2 a2 b2 1 (a 0,b 0 )
y≥a 或 y ≤a,x R
关于x轴、y轴、原点对称
ybx
a
A2
x a
ybx a
焦点在x轴上的双曲线草图画法
Y
x2 y2
1
a2 b2
B2
F1
A1
A2
最新人教版高中数学选修2-1第二章《抛物线及其标准方程》教材梳理
疱丁巧解牛知识·巧学一、抛物线1.抛物线的定义:平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫抛物线.点F 叫抛物线的焦点,直线l 叫做抛物线的准线.(1)定义的“双向运用”,即:一方面,符合定义的条件的动点轨迹为抛物线;另一方面,抛物线上点有定义中条件的性质.(2)两个定义的综合运用是解决有些抛物线问题的捷径.(3)求抛物线方程时,若由已知条件可知曲线是抛物线,一般用待定系数法;若由已知条件可知曲线的动点的规律,一般用轨迹法.2.抛物线的方程(1)抛物线的标准方程(a >b >0)①y 2=2px(p >0);②y 2=-2px(p >0);③x 2=2py(p >0);④x 2=-2py(p >0).抛物线方程中,字母p 的几何意义是抛物线的焦点F 到准线的距离,2p 等于焦点到抛物线顶点的距离.二次函数y=ax 2(a≠0)方程满足抛物线的定义,所以它的图象是抛物线,它的焦点坐标为(2a ,0),准线方程x=2p . (2)中心在(x 0,y 0)的抛物线方程(a >b >0)利用平面向量的平移可得到上述标准方程中对应的形式,如顶点在(x 0,y 0)有对称轴为y=y 0,开口向右的抛物线方程为(y-y 0)2=2p(x-x 0)(p >0).要点提示 在求抛物线的方程的时候一定要考虑焦点在哪个轴上,开口方向两个方面.此外,因为抛物线有四个标准方程,确定了焦点在哪个轴上和开口方向,这个抛物线的方程大致形状也就确定了.问题·探究问题1 抛物线在现实生活中有哪些应用?探究:抛物线在现实生活中的应用很广泛,我们熟悉的汽车前灯,太阳灶,有的大桥也设计成抛物线形状,抛物线最重要的应用还是在物理学上,根据抛物线的运行轨迹,人们把它运用到了军事上的大炮、导弹.问题2 学习抛物线方程,要注意些什么?探究:抛物线的标准方程有四个,在学习它们的时候一定要注意区分,焦点在x 轴上两个,焦点在y 轴上两个,焦点坐标与准线方程都于一次项的系数有关,抛物线的方程在确定了焦点位置和一次项的系数,抛物线的形状也就确定了下来.典题·热题例1 已知点M (3,2),F 为抛物线y 2=2x 的焦点,点p 在该抛物线上移动,当|PM|+|PF|取最小值时,点P 的坐标为______________________.思路分析:本题若建立目标函数来求|PM|+|PF|的最小值是困难的,若巧妙地利用抛物线定义,结合图形则问题不难解决.解:如右图所示,由定义知|PF|=|PE|,故|PM|+|PF|=|PF|+|PM|≥|ME|≥|MN|=213.取等号时,M,P,E 三点共线,∴P 点纵坐标为2,代入方程,求出其横坐标为2,所以P 点坐标为(2,2).方法归纳 由抛物线的定义可知,抛物线上的点到焦点的距离等于它到准线的距离.要重视定义在解题中的应用,灵活地进行抛物线上的点到焦点距离与到准线距离的相互转换. 例2 求过点(-3,2)的抛物线的标准方程,并求对应抛物线的准线方程.思路分析:从方程形式看,求抛物线的标准方程仅需确定一个待定系数p ;从实际分析,一般需确定p 和确定开口方向两个条件,否则,应展开相应的讨论.解:(1)设所求的抛物线方程为y 2=-2px 或x 2=2py (p >0),∵过点(-3,2),∴4=-2p (-3)或9=2p·2.∴p=32或p=49. ∴所求的抛物线方程为y 2=x 34-或x 2=y 29.前者的准线方程是x=31,后者的准线方程是y=89-. 误区警示 这里易犯的错误就是缺少对开口方向的讨论,先入为主,设定一种形式的标准方程后求解,以致失去一解.例3 求证:以抛物线的焦点弦为直径的圆心与抛物线的准线相切.思路分析:可设抛物线方程为y 2=2px(p >0).如右图所示,只须证明2||AB =|MM 1|,则以AB 为直径的圆,必与抛物线准线相切.证明:作AA 1⊥l 于A 1,BB 1⊥l 于B 1.M 为AB 中点,作MM 1⊥l 于M 1,则由抛物线的定义,可知|AA 1|=|AF|,|BB 1|=|BF|.在直角梯形BB 1A 1A 中:|MM 1|=21(|AA 1|+|BB 1|)=21(|AF|+|BF|)=21|AB|. ∴|MM 1|=21|AB|.故以AB 为直径的圆,必与抛物线的准线相切. 方法归纳 类似有:以椭圆焦点弦为直径的圆与相对应的准线相离,以双曲线焦点弦为直径的圆与相应的准线相交.例4 如右图所示,直线l 1和l 2相交于点1M ,l 1⊥l 2,点N ∈l 1,以A 、B 为端点的曲线段C上任一点到l 2的距离与到点N 的距离相等.若△AMN 为锐角三角形,|AM|=17,|AN|=3,且|NB|=6,建立适当的坐标系,求曲线段C 的方程.思路分析:由题意所求曲线段是抛物线的一部分,求曲线方程需建立适当的直角坐标系,设出抛物线方程,由条件求出待定系数即可,求出曲线方程后要标注x 、y 的取值范围. 解:如图以直线l 1为x 轴,线段MN 的垂直平分线为y 轴,建立直角坐标系,由条件可知,曲线段C 是以点N 为焦点,以l 2为准线的抛物线的一段.其中A 、B 分别为曲线段C 的端点. 设曲线段C 的方程为y 2=2px (p>0)(x A ≤x≤x B ,y>0),其中x A 、x B 为A 、B 的横坐标,p=|MN|,所以M (2p -,0)、N (2p ,0). 由|AM|=17,|AN|=3,得(x A +2p )2+2px A =17, ① (x A -2p )2+2px A =9. ② ①②联立解得x A =p4,代入①式,并由p>0, 解得⎩⎨⎧==1,4A x p 或⎩⎨⎧==.2,2Ax p 因为△AMN 为锐角三角形,所以A x p >2. 故舍去⎩⎨⎧==.2,2A x p 所以⎩⎨⎧==.1,4Ax p 由点B 在曲线段C 上,得x B =|BN|-2p =4. 综上,曲线段C 的方程为y 2=8x (1≤x≤4,y>0).。
高中数学人教A版选修2-1第二章椭圆及其标准方程精讲讲义
当 PF1 PF 2 2a F1F 2 时, P 的轨迹为 以 F1、F2 为端点的线段
2.椭圆的方程与几何性质:
标准方程
x2 y 2 1(a b 0) a2 b2
参数关系
性
焦点
(c,0), (c,0)
质
焦距
范围
| x | a,| y | b
a2 b2 c2 2c
y2 a2
x2 b2
举一反三:【变式 1】两焦点的坐标分别为 0,4,0,- 4,且椭圆经过点(5,0)。
【变式 2】已知一椭圆的对称轴为坐标轴且与椭圆 x 2 y 2 1有相同的焦点,并且经过点(3, 94
-2),求此椭圆的方程。
2
类型三:求椭圆的离心率或离心率的取值范围 例 3.椭圆 x 2 y 2 1(a>b>0)的半焦距为 c,若直线 y=2x 与椭圆的一个交点的横坐标为 c,求 a2 b2
(Ⅰ)求以 A、B 为焦点,且过 C、D 两点的椭圆的标准方程;
5:直线与椭圆问题(韦达定理的运用)
弦长公式:若直线 l : y kx b 与圆锥曲线相交与 A 、 B 两点, A(x1, y1), B(x2 , y2 ) 则
弦长 AB (x1 x2 )2 ( y1 y2 )2 (x1 x2 )2 (kx1 kx2 )2 1 k 2 x1 x2
5
举一反三【变式 1】已知直线 l:y=2x+m 与椭圆 C: x2 y2 1 交于 A、B 两点 54
(1) 求 m 的取值范围
(2) 若|AB|= 5 15 ,求 m 的值 6
例 9、已知椭圆 C: x2 y2 1 ,直线 l:y=kx+1,与 C 交于 AB 两点,k 为何值时,OA⊥OB. 4
最新人教版高中数学选修2-1第二章《抛物线及其标准方程》知识导学
2.4 抛物线2.4.1 抛物线及其标准方程第一课时课标解读1.了解抛物线的实际背景,感受抛物线在刻画现实世界和解决实际问题中的作用.2.经历从具体情境中抽象出抛物线模型的过程,掌握其定义、标准方程及几何图形. 学会思考1.把一根直尺固定在图板上直线l 的位置,把一块三角尺的一条直角边紧靠着直尺的边缘,再把一条细绳的一端固定在三角尺的另一条直角边的一点A ,取绳长等于点A 到直角顶点C 的长(即点A 到直线l 的距离),并且把绳子的另一端固定在图板上的一点F .用铅笔尖扣着绳子,使点A 到笔尖的一段绳子紧靠着三角尺,然后将三角尺沿着直尺上下滑动,笔尖就在图板上描出了一条曲线.请问此曲线上任意一点到定点F 的距离与到l 的距离有何关系?此曲线为何曲线?2.抛物线的标准方程y 2=2px (p >0)中,p 具有一定的几何意义,它表示__________________. 答案:1.相等,抛物线.2.抛物线的焦点到准线的距离自学导引1.平面内与一个定点F 和一条定直线l 的距离_________的点的轨迹叫做抛物线点F 叫做抛物线的_________,直线l 叫做抛物线的_________.2.方程y 2=±2px ,x 2=±2py (p >0)叫做抛物线的_________方程.3.抛物线y 2=2px (p >0)的焦点坐标是_________,它的准线方程是_________,它的开口方向_________.4.抛物线y 2=-2px (p >0)的焦点坐标是_________,它的准线方程是________,它的开口方向 ________.5.抛物线x 2=2py (p >0)的焦点坐标是_________,它的准线方程是_________,它的开口方向_________.6.抛物线x 2=-2py (p >0)的焦点坐标是_________,它的准线方程是_________,它的开口方向_________.答案:1.相等 焦点 准线2.标准3.(2p ,0) 2p x -= 向右 4.(2p -,0) 2p x = 向左 5.(0,2p ) 2p y -= 向上 6.(0,2p -) 2p y = 向下典例启示知识点1求抛物线的标准方程【例1】 分别求满足下列条件的抛物线的标准方程.(1)过点(3,-4);(2)焦点在直线x +3y +15=0上.解:(1)∵点(3,-4)在第四象限,∴抛物线的标准方程为y 2=2px (p >0)或x 2=-2p 1y (p 1>0).把点(3,-4)的坐标分别代入y 2=2px 和x 2=-2p 1y ,得(-4)2=2p ·3,32=-2p 1·(-4), 即3162=p ,4219=p . ∴所求抛物线的方程为x y 3162=或y x 492-=. (2)令x=0,得y=-5;令y=0,得x=-15.∴抛物线的焦点为(0,-5)或(-15,0).∴所求抛物线的标准方程为y 2=-60x 或x 2=-20y .启示:求抛物线的标准方程需要:(1)求p ;(2)判断焦点所在坐标轴的位置.【例2】 分别求适合下列条件的抛物线方程.(1)顶点在原点,以坐标轴为对称轴,且过点A (2,3);(2)顶点在原点,以坐标轴为对称轴,焦点到准线的距离为25. 解:(1)由题意,方程可设为y 2=mx 或x 2=ny ,将点A (2,3)的坐标代入,得32=m •2或22=n •3,∴29=m 或34=n . ∴所求的抛物线方程为x y 292=或y x 342=. (2)由焦点到准线的距离为25,可知25=p , ∴所求抛物线方程为y 2=5x 或y 2=-5x 或x 2=5y 或x 2=-5y .启示:(1)抛物线的标准方程有四种形式,主要看其焦点位置或开口方向.(2)抛物线的标准方程只有一个参数p ,即焦点到准线的距离,常称为焦参数.知识点2抛物线定义及标准方程的应用【例3】 已知抛物线的焦点为(3,3),准线为x 轴,求抛物线的方程解:设M (x ,y )为抛物线上的任意一点, 则由抛物线的定义,得||)3()3(22y y x =-+-. 平方整理,得3612+-=x x y 为所求抛物线的方程. 启示:当抛物线不在标准位置时,只有利用其定义来求方程.【例4】 平面上动点P 到定点F (1,0)的距离比P 到y 轴的距离大1,求动点P 的轨迹方程.解法一:设P 点的坐标为(x ,y ),则有1||)1(22+=+-x y x ,两边平方并化简得y 2=2x +2|x |.∴⎩⎨⎧<≥=,0,0,0,42x x x y 即点P 的轨迹方程为y 2=4x (x ≥0)或y=0(x <0).解法二:由题意,动点P 到定点F (1,0)的距离比到y 轴的距离大1,由于点F (1,0)到y 轴的距离为1,故当x <0时,直线y=0上的点适合条件;当x ≥0时,原命题等价于点P 到点F (1,0)与到直线x=-1的距离相等,故点P 在以F 为焦点,x=-1为准线的抛物线上,其轨迹方程为y 2=4x .故所求动点P 的轨迹方程为y 2=4x (x ≥0)或y=0(x <0).启示:求动点的轨迹方程时,可用定义法列等量关系,化简求解;也可判断后,用类似于公式法的待定系数法求解,但要判断准确,注意挖掘题目中的隐含条件,防止重、漏解.随堂训练1.已知抛物线过点(-11,13),则抛物线的标准方程是( ) A.x y 221692= B.x y 111692-= C.x y 111692-=或y x 131212= D.y x 131212-= 解析:∵点(-11,13)在第二象限,∴抛物线的张口向左或向上.当抛物线的张口向左时,设抛物线的方程为y 2=-2px ,把点 (-11,13)的坐标代入方程得 132=-2p ·(-11),∴111692=p . ∴抛物线的标准方程为x y 111692-=. 当抛物线的张口向上时,设抛物线的方程为x 2=2p 1y ,把点(-11,13)的坐标代入得(-11)2=2p ·13, ∴131212=p . ∴抛物线的方程为y x 131212=. 答案:C2.已知抛物线的准线方程是x=-7,则抛物线的标准方程是( )A.x 2=-28yB.y 2=28xC.y 2=-28xD.x 2=28y解析:∵72=p , ∴p =14.∵抛物线的焦点在x 轴上,∴抛物线的方程是y 2=28x .答案:B3.已知抛物线的焦点在直线3x -y +36=0上,则抛物线的标准方程是( )A.x 2=72yB.x 2=144yC.y 2=-48xD.x 2=144y 或y 2=-48x解析:令x =0得y =36,令y =0得x =-12,∴抛物线的焦点为(0,36)或(-12,0).答案:D4.抛物线y 2=-4px (p >0)的焦点为F ,准线为l ,则p 表示( )A.F 到l 的距离B.F 到y 轴的距离C.F 点的横坐标D.F 到l 的距离的41 解析:在抛物线的标准方程y 2=-2px (p >0)中,p 是焦点到准线的距离,2p 是焦点到y 轴的距离或y 轴与准线间的距离,所以在抛物线方程y 2=-4px (p >0)中,p 为焦点到y 轴或y 轴与准线间的距离.答案:B5.已知点(-2,3)与抛物线y 2=2px (p >0)的焦点的距离是5,则p 的值为( )A.4B.3C.2D.1解析:抛物线的焦点为(2p ,0), 由5)03()22(22=-+--p ,得p =4. 答案:A6.若点P 到定点F (4,0)的距离比它到直线x +5=0的距离小1,则点P 的轨迹方程是( )A.y 2=-16xB.y 2=-32xC.y 2=16xD.y 2=16x 或y=0(x <0)解析:∵点F (4,0)在直线x +5=0的右侧,且P 点到点F (4,0)的距离比它到直线x +5=0的距离小1,∴点P 到F (4,0)的距离与到直线x +4=0的距离相等,故点P 的轨迹为抛物线,且顶点在原点,开口向右,p =8,故P 点的轨迹方程为y 2=16x .答案:C。
苏教版高中数学选修2-1第2章圆锥曲线与方程2.1含答案
§2.1圆锥曲线学习目标 1.了解当一个平面截一个圆锥面时,所截得的图形的各种情况.2.初步掌握椭圆、双曲线、抛物线的定义及其几何特征.3.通过平面截圆锥面的实验和对有关天体运动轨道的了解,知道圆锥曲线在我们身边广泛存在.知识点一椭圆的定义观察图形,思考下列问题:思考1如图,把细绳两端拉开一段距离,分别固定在图板上的两点F1,F2处,套上铅笔,拉紧绳子,移动笔尖,画出的轨迹是什么图形?答案椭圆思考2图中移动的笔尖始终满足怎样的几何条件?答案PF1+PF2是常数(大于F1F2).梳理平面内到两个定点F1,F2的距离的和等于常数(大于F1F2)的点的轨迹叫做椭圆,两个定点F1,F2叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.知识点二双曲线的定义观察图示,若固定拉链上一点F1或F2,拉开或闭拢拉链,拉链头M经过的点可画出一条曲线,思考下列问题:思考1图中动点M的几何性质是什么?答案|MF1-MF2|为一个正常数.思考2若MF1-MF2=F1F2,则动点M的轨迹是什么?答案以F2为端点,向F2右边延伸的射线.梳理平面内到两个定点F1,F2的距离的差的绝对值等于常数(小于F1F2的正数)的点的轨迹叫做双曲线,两个定点F1,F2叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.知识点三抛物线的定义观察图形,思考下列问题:思考如图,定点C和定直线EF,用三角板画出到定点的距离等于到定直线的距离的动点D的轨迹.则动点D的轨迹是什么?其满足什么条件?答案抛物线,动点D到定点C和定直线EF距离相等,且C不在EF上.梳理平面内到一个定点F和一条定直线l(F不在l上)的距离相等的点的轨迹叫做抛物线,定点F叫做抛物线的焦点,定直线l叫做抛物线的准线.椭圆、双曲线、抛物线统称为圆锥曲线.1.平面内到两定点的距离之和为常数的点的轨迹是椭圆.(×)2.平面内到两定点的距离之差的绝对值为常数的点的轨迹是双曲线.(×)3.抛物线上的点到焦点的距离与到准线的距离相等.(√)类型一 圆锥曲线定义的理解例 1 平面内动点 M 到两点 F 1(-3,0),F 2(3,0)的距离之和为 3m ,问 m 取何值时 M 的轨迹 是椭圆?解 ∵MF 1+MF 2=3m ,∴M 到两定点的距离之和为常数,当 3m 大于 F 1F 2 时,由椭圆定义知,M 的轨迹为椭圆, ∴3m >F 1F 2=3-(-3)=6,∴m >2,∴当 m >2 时,M 的轨迹是椭圆.反思与感悟 在深刻理解圆锥曲线的定义的过程中,一定要注意定义中的约束条件(1)在椭圆中,和为定值且大于 F 1F 2.(2)在双曲线中,差的绝对值为定值且小于 F 1F 2. (3)在抛物线中,点 F 不在定直线上.跟踪训练 1 (1)命题甲:动点 P 到两定点 A ,B 的距离之和 P A +PB =2a (a >0,a 为常数);命题乙:P 点轨迹是椭圆,则命题甲是命题乙的________条件.(2)动点 P 到两个定点 A (-2,0),B(2,0)构成的三角形的周长是 10,则点 P 的轨迹是________. 答案 (1)必要不充分 (2)椭圆解析 (1)若 P 点轨迹是椭圆,则 PA +PB =2a (a >0,且为常数),∴甲是乙的必要条件.反之,若 P A +PB =2a (a >0,且是常数),不能推出 P 点轨迹是椭圆.因为仅当 2a >AB 时,P 点轨迹才是椭圆;而当 2a =AB 时,P 点轨迹是线段 AB ;当 2a <AB时,P 点无轨迹,∴甲不是乙的充分条件.综上,甲是乙的必要不充分条件.(2)由题意知 P A +PB +AB =10,又 AB =4,∴PA +PB =6>4.∴点 P 的轨迹是椭圆.类型二 圆锥曲线轨迹的探究例 2 如图,已知动圆 C 与圆 F 1,F 2 均外切(圆 F 1 与圆 F 2 相离),试问:动点 C 的轨迹是什 么曲线?解 设动圆 C 的半径为 R ,圆 F 1,F 2 的半径分别为 r 1,r 2,则 CF 1=R +r 1,CF 2=R +r 2. 所以 CF 1-CF 2=r 1-r 2.跟踪训练 3 在△ABC 中,BC 固定,顶点 A 移动.设 BC =m ,且|sin C -sin B |= sin A ,则解 因为|sin C -sin B |= sin A ,由正弦定理可得|AB -AC |= BC = m ,且 m <BC ,又 CF 1-CF 2=r 1-r 2<F 1F 2,故动圆圆心 C 的轨迹是以 F 1,F 2 为焦点的双曲线靠近 F 2 的一支. 引申探究若把原题中“外切”换成“内切”再求解,结论如何?解 动点 C 的轨迹是以 F 1,F 2 为焦点的双曲线靠近 F 1 的一支.反思与感悟 紧扣圆锥曲线的定义,写出动点满足的条件,然后得到相应的轨迹.跟踪训练 2 已知动点 P 到点 A (-3,0)的距离比它到直线 x =1 的距离大 2,试判断动点 P 的轨迹.解 因点 P 到 A 的距离比它到直线 x =1 的距离大 2,所以点 P 到点 A 的距离等于它到直线 x =3 的距离.因为点 A 不在直线 x =3 上,所以点 P 的轨迹是抛物线.类型三 圆锥曲线定义的应用例 3 在△ABC 中,B (-6,0),C (0,8),且 sin B ,sin A ,sin C 成等差数列.(1)顶点 A 的轨迹是什么? (2)指出轨迹的焦点和焦距.解 (1)由 sin B ,sin A ,sin C 成等差数列,得 sin B +sin C =2sin A .由正弦定理可得 AB +AC=2BC .又 BC =10,所以 AB +AC =20,且 20>BC ,所以点 A 的轨迹是椭圆(除去直线 BC 与椭圆的交点).(2)椭圆的焦点为 B ,C ,焦距为 10.反思与感悟 利用圆锥曲线的定义可以判定动点的轨迹,在判定时要注意定义本身的限制条件,如得到 MF 1+MF 2=2a (a 为大于零的常数)时,还需要看 2a 与 F 1F 2 的大小,只有 2a >F 1F 2 时,所求轨迹才是椭圆.若得到MF 1-MF 2=2a (0<2a <F 1F 2),轨迹仅为双曲线的一支.除了 圆锥曲线定义本身的限制条件外,还要注意题目中的隐含条件.12顶点 A 的轨迹是什么?121 1 12 2 2所以点 A 的轨迹是双曲线(除去双曲线与 BC 的两交点).F FF1.设F1,2是两个定点,1F2=6,动点M满足MF1+MF2=10,则动点M的轨迹是________.答案椭圆解析因MF1+MF2=10>F1F2=6,由椭圆的定义得动点的轨迹是椭圆.2.若F1,2是两个定点且动点P1满足PF1-PF2=1,又F1F2=3,则动点P的轨迹是________.答案双曲线靠近点F2的一支解析因PF1-PF2=1<F1F2=3,故由双曲线定义判断,动点P的轨迹是双曲线靠近点F2的一支.3.到定点(1,0)和定直线x=-1距离相等的点的轨迹是________.答案抛物线解析依据抛物线定义可得.4.到两定点F1(-3,0),F2(3,0)的距离之差的绝对值等于6的点M的轨迹是________.答案两条射线解析据题|MF1-MF2|=F1F2,得动点M的轨迹是两条射线.5.如图,在正方体ABCD-A1B1C1D1中,P是侧面BB1C1C内一动点,若点P到直线BC与直线C1D1的距离相等,则动点P的轨迹是________.答案抛物线解析由正方体的性质可知,点P到C1D1的距离为PC1,故动点P到定点C1和到定直线BC的距离相等,且点C1不在直线BC上,符合抛物线的定义,所以动点P的轨迹是抛物线.1.若MF1+MF2=2a(2a>F1F2),则动点M的轨迹是椭圆.若点M在椭圆上,则MF1+MF2=2a.2.若|MF1-MF2|=2a(0<2a<F1F2),则动点M的轨迹为双曲线.若动点M在双曲线上,则|MF1-MF2|=2a.3.抛物线定义中包含三个定值,分别为一个定点,一条定直线及一个确定的比值.2”一、填空题1.平面内到两定点F1(-3,0),F2(3,0)的距离的和等于6的点P的轨迹是________.答案线段F1F2解析依题意得PF1+PF2=6=F1F2,故动点P的轨迹是线段F1F2.2.到定点(0,7)和到定直线y=7的距离相等的点的轨迹是________.答案直线解析因定点(0,7)在定直线y=7上,故符合条件的点的轨迹是直线.3.已知定点F1(-2,0),F2(2,0),在满足下列条件的平面内,动点P的轨迹为双曲线的是________.(填序号)①|PF1-PF2|=3;②|PF1-PF2|=4;③|PF1-PF2|=5;④PF1-PF2=±4.答案①解析根据双曲线定义知P到F1,F2的距离之差的绝对值要小于F1F2.4.到定点A(2,0)和B(4,0)的距离之差为2的点的轨迹是________.答案一条射线解析要注意两点:一是“差”而不是“差的绝对值;二是“常数”等于两定点间的距离.5.已知△ABC的顶点A(-5,0),B(5,0),△ABC的内切圆圆心在直线x=3上,则顶点C的轨迹是____________.答案以A,B为焦点的双曲线的右支(除去点(3,0))解析如图,AD=AE=8.BF=BE=2,CD=CF,所以CA-CB=8-2=6<AB=10.根据双曲线定义,所求轨迹是以A,B为焦点的双曲线的右支(除去点(3,0)).6.已知点M(x,y)的坐标满足(x-1)2+(y-1)2-(x+3)2+(y+3)2=±4,则动点M的轨迹是________.答案双曲线解析点(x,y)到(1,1)点及到(-3,-3)点的距离之差的绝对值为4,而(1,1)与(-3,-3)距3 10.已知点 A (-1,0),B (1,0).曲线 C 上任意一点 P 满足P A 2-PB 2=4(|P A |-|PB |)≠0.则曲线解析 由P A 2-PB 2=4(|P A |-|PB |)≠0,得|P A |+|PB |=4,且 4>AB .| 离为 4 2,由定义知动点 M 的轨迹是双曲线.7.下列说法中正确的有________.(填序号)①已知 F 1(-6,0),F 2(6,0),到 F 1,F 2 两点的距离之和等于 12 的点的轨迹是椭圆; ②已知 F 1(-6,0),F 2(6,0),到 F 1,F 2 两点的距离之和等于 8 的点的轨迹是椭圆;③到点 F 1(-6,0),F 2(6,0)两点的距离之和等于点 M (10,0)到 F 1,F 2 的距离之和的点的轨迹 是椭圆;④到点 F 1(-6,0),F 2(6,0)距离相等的点的轨迹是椭圆. 答案 ③解析 椭圆是到两个定点 F 1,F 2 的距离之和等于常数(大于 F 1F 2)的点的轨迹,应特别注意 椭圆的定义的应用.①中 F 1F 2=12,故到 F 1,F 2 两点的距离之和为常数 12 的点的轨迹是线段 F 1F 2. ②中点到 F 1,F 2 两点的距离之和 8 小于 F 1F 2,故这样的点不存在.③中点 M (10,0)到 F 1,F 2 两点的距离之和为 (10+6)2+02+ (10-6)2+02=20>F 1F 2=12, 故③中点的轨迹是椭圆.④中点的轨迹是线段 F 1F 2 的垂直平分线. 故正确的是③.8.若动点 P 到定点 F (1,1)和到直线 l :x +y -4=0 的距离相等,则动点 P 的轨迹是________. 答案 直线解析设动点 P 的坐标为(x ,y ),则 (x -1)2+(y -1)2=|3x +y -4|.整理,得 x -3y +2=0,10所以动点 P 的轨迹为直线.9.平面内有两个定点 F 1,F 2 及动点 P ,设命题甲:PF 1-PF 2|是非零常数,命题乙:动点P 的轨迹是以 F 1,F 2 为焦点的双曲线,则甲是乙的________条件.(“充分不必要”“必要不 充分”“充要”“既不充分又不必要”)答案 必要不充分解析 由双曲线的定义可知,若动点 P 的轨迹是以 F 1,F 2 为焦点的双曲线,则|PF 1-PF 2| 是非零常数,反之则不成立.→ → → →C 的轨迹是______.答案 椭圆→ → → →→ →故曲线 C 的轨迹是椭圆.(解析把轨迹方程5x2+y2=|3x+4y-12|写成x2+y2=,∴动点M到原点的=BD,MC=CE,于是MB+MC=BD+CE=(BD+CE)=×39=26>24=BC. 11.已知动圆M过定点A(-3,0),并且在定圆B:(x-3)2+y2=64的内部与其相内切,则动圆圆心M的轨迹为________.答案椭圆解析设动圆M的半径为r.因为动圆M与定圆B内切,所以MB=8-r.又动圆M过定点A,MA=r,所以MA+MB=8>AB=6,故动圆圆心M的轨迹是椭圆.二、解答题12.点M到点F(0,-2)的距离比它到直线l:y-3=0的距离小1,试确定点M的轨迹.解由题意得点M与点F的距离等于它到直线y-2=0的距离,且点F不在直线l上,所以点M的轨迹是抛物线.13.如图所示,已知点P为圆R:x+c)2+y2=4a2上一动点,Q(c,0)为定点(c>a>0,为常数),O为坐标原点,求线段PQ的垂直平分线与直线RP的交点M的轨迹.解由题意,得MP=MQ,RP=2a.MR-MQ=MR-MP=RP=2a<RQ=2c.∴点M的轨迹是以R,Q为两焦点,2a为实轴长的双曲线的右支.三、探究与拓展14.已知动点M的坐标满足方程5x2+y2=|3x+4y-12|,则动点M的轨迹是__________.答案抛物线|3x+4y-12|5距离与到直线3x+4y-12=0的距离相等.∵原点不在直线3x+4y-12=0上,∴点M的轨迹是以原点为焦点,直线3x+4y-12=0为准线的抛物线.△15.在ABC中,BC=24,AC,AB边上的中线长之和等于△39,求ABC的重心的轨迹.解如图所示,以BC的中点O为坐标原点,线段BC所在直线为x轴,线段BC的中垂线为y轴建立平面直角坐标系xOy.设M为△ABC的重心,BD是AC边上的中线,CE是AB边上的中线,由重心的性质知M B 222222333333根据椭圆的定义知,点M的轨迹是以B,C为两焦点,26为实轴长的椭圆去掉点(-13,0),(13,0).。
高中数学选修2-1第二章圆锥曲线
2
2
y x + 2 =1 (a > b > 0) 2 a b
2
2
x2 y2 − 2 =1 (a > 0,b > 0) 2 a b
抛物线的标准方程: 抛物线的标准方程:
y2 x2 − 2 =1 (a > 0,b > 0) 2 a b
y2 = ±2px ( p > 0)
动 M 一 定 F的 离 它 一 定 线的 离 比 点 与 个 点 距 和 到 条 直 l 距 的 是 数e, 常 l d .M
l
d
.M .
F
l
d.M
.
.
e >1
F
F
0 <e <1
e =1
定点是焦点,定直线叫做准线,常数e是离心率 .
椭圆的标准方程: 椭圆的标准方程:
x y + 2 =1 (a > b > 0) 2 a b
3.双曲线的几何性质:以 .双曲线的几何性质: x2/a2-y2/b2=1(a、b>0)表示的双曲线为例,其几 表示的双曲线为例, > 表示的双曲线为例 何性质如下: 何性质如下: (1)范围:x≤-a,或x≥a 范围: 范围 , (2)关于 轴、y轴、原点对称, 关于x轴 轴 原点对称, 关于 (3)两顶点是 ±a,0)(4)离心率 两顶点是(± 两顶点是 离心率 e=c/a∈(1,+∞).c=√a2+b2(5)渐近线方程为 ∈ 渐近线方程为 y=±bx/a,准线方程是 ±a2/c ± ,准线方程是x=±
椭圆 圆 锥 曲 线
定义 标准方程
双曲线
几何性质
抛物线
直线与圆锥曲线 的位置关系
高中数学必修二 选修2-1 知识点归纳
必修二 知识点归纳: 第一章 空间几何体1. 棱柱 直棱柱:侧棱垂直于底面的棱柱。
(正棱柱: 底面为正多边形的直棱柱。
)斜棱柱:侧棱不垂直于底面的棱柱。
(平行六面体:底面为平行四边形的斜棱柱。
) 棱锥 正棱锥:底面为正多边形,顶点在底面的投影为底面的中心的棱锥。
斜棱锥:以上条件之一不满足的棱锥。
棱台 正棱台:由平行于底面的平面截正棱锥得到的棱台。
斜棱台:由平行于底面的平面截斜棱锥得到的棱台。
四面体:三棱锥正四面体:六条棱均相等的三棱锥。
空间四边形ABCD :三棱锥,其中有四条边:AB 、BC 、CD 、DA ;两条对角线:AC 、BD 。
2. 三视图(会识别,会画图)3. 斜二测画法画直观图:见《名师面对面》P10:3题;P12:6、7题4. S 圆柱侧=2πrl S 圆柱表=2πrl+2πr 2S 圆锥侧=πrl S 圆锥表=πrl+πr 2S 圆台侧=π(r +r ′)l S 圆台表=π(r +r ′)l +πr 2+πr′2 其中r 为底面半径,l 为母线长 5. V 柱体=Sh V 锥体=13Sh V 台体=13(S+√SS′+S’)h 其中S ,S’为底面积,h 为高 6. S 球表=4πR 2 V 球=43πR 37. 球内接正方体棱长a 与球半径R 关系:2R=√3a 注意:将《名师面对面》P12-21重做一遍。
第二章:点、直线、平面之间的位置关系1.平面的概念,画法,与点的属于关系,与直线的包含关系。
2.三个公理:(1)如果一条直线上的两点在同一个平面内,那么这条直线在此平面内。
(2)不共线三点确定一个平面。
推论:①一条直线与直线外一点确定一个平面。
②两条平行直线确定一个平面。
③两条相交直线确定一个平面。
(3)如果两个不重合平面有一个公共点,那么它们有且仅有一条过该点的公共直线。
注意:将《名师面对面》P22-24重做一遍。
3.空间两直线的位置关系:_____、_____、_____。
最新人教版高中数学选修2-1第二章《双曲线的简单几何性质》知识导引(第2课时)
第二课时问题探究双曲线离心率对其渐近线有何影响?对双曲线有何影响?思路分析:双曲线22a x -22by =1的离心率越大,则由a b =e 2-1知,渐近线y=±a b x 的斜率绝对值越大,进而双曲线的开口越开阔.自学导引1.双曲线的第二定义:动点M 与定点F(c,0)的距离和它到定直线l: x=ca 2的距离的比为常数ac (c >a >0),则动点M 的轨迹是 ______.定直线l 叫做 __________ . 2.双曲线的焦半径公式为|PF|=______________ (或________________).答案:1.双曲线 双曲线的准线2.|a±ex 0| |ex 0±a|疑难剖析1.双曲线第二定义的应用利用第二定义计算焦半径或过焦点的弦长应注意向“到准线距离”转化.【例1】 已知双曲线22a x -22by =1(a >0,b >0)的焦点坐标是F 1(-c,0)和F 2(c,0),P (x 0,y 0)是双曲线上的任一点,求证:|PF 1|=|a+ex 0|,|PF 2|=|a-ex 0|,其中e 是双曲线的离心率.证明:双曲线22a x -22by =1的两焦点为F 1(-c,0)、F 2(c,0),相应的准线方程分别是x=-c a 2和x=ca 2. ∵双曲线上任一点到焦点的距离与它到相应准线的距离的比等于这个双曲线的离心率, ∴||||201c a x PF +=e ,||||202ca x PF -=e. 化简得|PF 1|=|a+ex 0|,|PF 2|=|a-ex 0|.温馨提示:|PF 1|、|PF 2|都是双曲线上的点到其焦点的距离,通常称作焦半径.|PF 1|=|a+ex 0|,|PF 2|=|a-ex 0|称作焦半径公式.【例2】 在双曲线162x -92y =1上求一点P ,使它到左焦点的距离是它到右焦点距离的两倍. 解析:设P 点的坐标为(x,y),F 1、F 2分别为双曲线的左、右焦点.∵双曲线的准线方程为x=±165,∴|516|||1+x PF =|516|||2-x PF . ∵|PF 1|=2|PF 2|,∴P 在双曲线的右支上. ∴516||22+x PF =516||2-x PF .∴x=548. 把x=548代入方程162x -92y =1得 y=±53119. 所以,P 点的坐标为(548,±53119). 温馨提示:此题也可设P(x 0,y 0),列方程进行解答.【类题演练1】(1)双曲线92x -72y =1的焦点到准线的距离是( ) A.47 B.425 C. 47或425 D. 423或49 (2)如果双曲线642x -362y =1上一点P 到它的右焦点的距离为8,求P 到它的右准线的距离.2.双曲线几何性质的综合应用【例3】 求证:双曲线22a x -22by =1(a>0,b>0)上任何一点到两条渐近线的距离之积为定值. 证法一:设P(x 0,y 0)是双曲线上任意一点,由双曲线的两条渐近线方程为bx+ay=0和bx-ay=0,可得P 到bx+ay=0的距离d 1=2200||b a ay bx ++;P 到bx-ay=0的距离d 2=2200||b a ay bx +-.∴d 1d 2=2200||b a ay bx ++·2200||ba ay bx +-=22202202||b a y a x b +-. 又P 在双曲线上,∴220a x +220by =1,即b 2x 02-a 2y 02=a 2b 2. ∴d 1·d 2=2222b a b a +,即P 到两条渐近线的距离之积为定值. 证法二:设双曲线上任一点P(asec θ,btanθ),∵双曲线的两条渐近线方程为bx+ay=0和bx-ay=0,∴点P 到直线bx+ay=0的距离d 1=22|tan sec |b a ab ab ++θθ =22|tan sec |b a ab ++θθ,点P 到直线bx-ay=0的距离d 2= 22|tan sec |b a ab ab +-θθ=22|tan sec |b a ab +-θθ.∴d 1·d 2=22|tan sec |b a ab ++θθ·22|tan sec |b a ab +-θθ =222222|tan sec |b a b a +-θθ=2222ba b a +. ∴双曲线上任一点到两条渐近线的距离之积为 定值 .温馨提示:(1)所谓定值,是与P 点在曲线上的位置无关,为了达到目标明确,可先通过特殊的情况,求出一个常数,猜想其定值.(2)双曲线22a x -22b y =1(a>0,b>0)的参数方程为⎩⎨⎧==θθtan sec b y a x (θ为参数),不作过高要求.在解题中灵活应用即可,类似于换元法解题,将可达到一元化的目的.【例4】 过双曲线22a x -22by =1(a>0,b>0)的一个焦点F 作x 轴的垂线,交双曲线的一支于P 、Q 两点,又过F 作一直线平行于双曲线的一条渐近线,交双曲线于R,求证:|PQ|=4|FR|.证明:设F 点的坐标为(c,0),将x=c 代入双曲线方程22a x -22by =1, 得y 2=24a b , ∴|PQ|=ab 22. 过点F(c,0)且与双曲线的渐近线bx+ay=0平行的直线为y=-ab (x-c), 代入双曲线方程,得22a x -22)]([bc x ab -- =1. 解之得x=cc a 222+,代入y=-a b (x-c), 得y=-a b (c c a 222+-c),即y=-acc a b 2)(22-. ∴|FR|2=(x-c)2+y 2=(c c a 222+-c)2+22224)(c a c a b - =22224)(c c a - +22224)(c a c a b -=22224)(c c a -·(1+22ab ) =244c b ·22a c =244a b . 故|FR|=ab 22,∴|PQ|=4|FR|. 温馨提示:证|PQ|等于4|FR|,需用双曲线的基本量a 、b 表示它们.【类题演练2】(1)双曲线2mx 2-my 2=2的一条准线是y=1,求m 的值.(2)双曲线的焦距是两准线间距离的4倍,求此双曲线的离心率.1.(1)解析:∵a 2=9,b 2=7,∴c=4.∴双曲线的焦点坐标是(±4,0),准线方程是x=±49. ∴双曲线的焦点到准线的距离为4-49=47 和4+49=425 答案: C (2)解析:双曲线的离心率e=a c =810=45,设所求距离为d,则d 8=45,∴d=532. 2.(1)解析:可知双曲线的焦点在y 轴上,∴m <0. 双曲线方程可化为m y 22--mx 12- =1,因此 a 2=-m 2, b 2=-m 1, c 2=-m3. ∵准线是y=1,∴a 2=c,即-m 2=m3-. 解得m=-34. (2)解析:∵2c=4×ca 22,∴c 2=4a 2. ∴e 2=22a c =4,e=2. 拓展迁移【拓展点】 已知双曲线22a x -22by =1的离心率e>1+2,左、右焦点分别为F 1、F 2,左准线为l,能否在双曲线的左支上找到一点P,使得|PF 1|是P 到l 的距离d 与|PF 2|的等比中项? 解析:设在左支上存在P 点,使|PF 1|2=|PF 2|·d.由双曲线的第二定义,知d PF ||1=||||12PF PF =e,即|PF 2|=e|PF 1|.① 再由双曲线的第一定义,得|PF 2|-|PF 1|=2a.②由①②解得|PF 1|=12-e a ,|PF 2|=12-e ac . 在△PF 1F 2中,有|PF 1|+|PF 2|≥2c,即12-e a +12-e ac ≥2c.③ 利用e=a c ,由③式得e 2-2e-1≤0. 解得1-2≤e≤1+2.又由e>1,得1<e≤1+2.与已知e>1+2矛盾. 因此符合条件的点P 不存在.。
人教版高中数学选修21知识点小结
选修2-1知识点选修2-1第一章 常用逻辑用语1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句. 假命题:判断为假的语句.2、“若p ,则q ”:p 称为命题的条件,q 称为命题的结论.3、若原命题为“若p ,则q ”,则它的逆命题为“若q ,则p ”.4、若原命题为“若p ,则q ”,则它的否命题为“若p ⌝,则q ⌝”.5、若原命题为“若p ,则q ”,则它的逆否命题为“若q ⌝,则p ⌝”.四种命题的真假性之间的关系: ()1两个命题互为逆否命题,它们有相同的真假性;()2两个命题为互逆命题或互否命题,它们的真假性没有关系. 7、p 是q 的充要条件:p q ⇔p 是q 的充分不必要条件:q p ⇒,p q ≠> p 是q 的必要不充分条件:p q q p ⇒≠>,p 是q 的既不充分不必要条件:,q p ≠>p q ≠>8、逻辑联结词:(1)用联结词“且”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∧.全真则真,有假则假。
(2)用联结词“或”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∨.全假则假,有真则真。
(2)对一个命题p 全盘否定,得到一个新命题,记作p ⌝.真假性相反 9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“∀”表示. 含有全称量词的命题称为全称命题.全称命题“对M 中任意一个x ,有()p x 成立”,记作“x ∀∈M ,()p x ”. 短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“∃”表示. 含有存在量词的命题称为特称命题.特称命题“存在M 中的一个x ,使()p x 成立”,记作“x ∃∈M ,()p x ”. 10、全称命题p :x ∀∈M ,()p x ,它的否定p ⌝:x ∃∈M ,()p x ⌝.全称命题的否定是特称命题.第二章 圆锥曲线与方程1、椭圆定义:平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆.这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距.2、椭圆的几何性质:焦点的位置 焦点在x 轴上 焦点在y 轴上图形标准方程 ()222210x y a b a b+=>> ()222210y x a b a b+=>> 范围 a x a -≤≤且b y b -≤≤b x b -≤≤且a y a -≤≤顶点 ()1,0a A -、()2,0a A ()10,b B -、()20,b B ()10,a A -、()20,a A ()1,0b B -、()2,0b B 轴长 短轴的长2b = 长轴的长2a =焦点 ()1,0F c -、()2,0F c()10,F c -、()20,F c焦距 ()222122F F c c a b ==- 对称性 关于x 轴、y 轴、原点对称离心率()22101c b e e a a==-<<3、平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线.这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距.4、双曲线的几何性质:焦点的位置 焦点在x 轴上焦点在y 轴上 图形标准方程 ()222210,0x y a b a b -=>> ()222210,0y x a b a b -=>> 范围 x a ≤-或x a ≥,y R ∈y a ≤-或y a ≥,x R ∈顶点 ()1,0a A -、()2,0a A ()10,a A -、()20,a A 轴长 虚轴的长2b = 实轴的长2a =焦点 ()1,0F c -、()2,0F c()10,F c -、()20,F c焦距 ()222122F F c c a b ==+对称性 关于x 轴、y 轴对称,关于原点中心对称离心率()2211c b e e a a==+>渐近线方程 b y x a =±a y x b=± 5、实轴和虚轴等长的双曲线称为等轴双曲线.6、平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线.定点F 称为抛物线的焦点,定直线l 称为抛物线的准线.7、过抛物线的焦点作垂直于对称轴且交抛物线于A 、B 两点的线段AB ,称为抛物线的“通径”,即2p AB =. 8、焦半径公式:若点()00,x y P 在抛物线()220y px p =>上,焦点为F ,则02pF x P =+; 若点()00,x y P 在抛物线()220y px p =->上,焦点为F ,则02pF x P =-+;若点()00,x y P 在抛物线()220x py p =>上,焦点为F ,则02pF y P =+;若点()00,x y P 在抛物线()220x py p =->上,焦点为F ,则02pF y P =-+.9、抛物线的几何性质:标准方程22y px = ()0p > 22y px =- ()0p > 22x py = ()0p > 22x py =-()0p >图形顶点()0,0对称轴 x 轴y 轴焦点,02p F ⎛⎫⎪⎝⎭ ,02p F ⎛⎫- ⎪⎝⎭0,2p F ⎛⎫ ⎪⎝⎭0,2p F ⎛⎫- ⎪⎝⎭准线方程 2px =-2p x =2p y =-2p y =离心率 1e =范围0x ≥ 0x ≤0y ≥ 0y ≤解题注意点:1、“回归定义” 是一种重要的解题策略。
人教版高中数学选修2-1、2-2知识点总结
选修2-1、2-2知识点选修2-1第一部分 简单逻辑用语1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句.假命题:判断为假的语句.2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3、原命题:“若p ,则q ”逆命题:“若q ,则p ”否命题:“若p ⌝,则q ⌝”逆否命题:“若q ⌝,则p ⌝” 4、四种命题的真假性之间的关系:(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系. 5、若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件. 若p q ⇔,则p 是q 的充要条件(充分必要条件).利用集合间的包含关系:例如:若B A ⊆,则A 是B 的充分条件或B 是A 的必要条件;若A=B ,则A 是B 的充要条件;6、逻辑联结词:⑴且(and ):命题形式p q ∧;⑵或(or ):命题形式p q ∨; ⑶非(not ):命题形式p ⌝.7、⑴全称量词——“所有的”、“任意一个”等,用“∀”表示; 全称命题p :)(,x p M x ∈∀;全称命题p 的否定⌝p :)(,x p M x ⌝∈∃。
⑵存在量词——“存在一个”、“至少有一个”等,用“∃”表示; 特称命题p :)(,x p M x ∈∃;特称命题p 的否定⌝p :)(,x p M x ⌝∈∀; 第二章 圆锥曲线与方程1. 1、平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆.2. 即:|)|2(,2||||2121F F a a MF MF >=+。
3. 这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距.5.3、平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线.即:|)|2(,2||||||2121F F a a MF MF <=-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
椭圆的几何性质
焦点的位置焦点在x轴上
焦点在y轴上图形
标准方程()
22
22
10
x y
a b
a b
+=>>()
22
22
10
y x
a b
a b
+=>>范围a x a
-≤≤且b y b
-≤≤b x b
-≤≤且a y a
-≤≤顶点
()
1
,0
a
A-、()
2
,0
a
A
()
1
0,b
B-、()
2
0,b
B
()
1
0,a
A-、()
2
0,a
A
()
1
,0
b
B-、()
2
,0
b
B 轴长短轴的长2b
=长轴的长2a
=
焦点()
1
,0
F c-、()
2
,0
F c()
1
0,
F c-、()
2
0,
F c
焦距()
222
12
2
F F c c a b
==-
对称性关于x轴、y轴、原点对称
离心率()
2
2
101
c b
e e
a a
==-<<
准线方程
2
a
x
c
=±
2
a
y
c
=±
13、设M是椭圆上任一点,点M到
1
F对应准线的距离为
1
d,点M到
2
F对应准线
的距离为
2
d,则12
12
F F
e
d d
M M
==.
双曲线方程
平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线.这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距.
15、双曲线的几何性质:
焦点的位置 焦点在x 轴上
焦点在y 轴上 图形
标准方程 ()22
2210,0x y a b a b
-=>> ()22
2
210,0y x a b a b
-=>> 范围 x a ≤-或x a ≥,y R ∈
y a ≤-或y a ≥,x R ∈
顶点 ()1,0a A -、()2,0a A ()10,a A -、()20,a A 轴长 虚轴的长2b = 实轴的长2a =
焦点 ()1,0F c -、()2,0F c
()10,F c -、()20,F c
焦距 ()222122F F c c a b ==+
对称性 关于x 轴、y 轴对称,关于原点中心对称
离心率
()2
211c b e e a a
==+>
准线方程 2a x c =± 2
a y c =±
渐近线方程
b y x a =± a y x b
=± 16、实轴和虚轴等长的双曲线称为等轴双曲线.
17、设M 是双曲线上任一点,点M 到1F 对应准线的距离为1d ,点M 到2F 对应准
线的距离为2d ,则121
2
F F e d d M M =
=.
抛物线方程
平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线.定点F 称为抛物线的焦点,定直线l 称为抛物线的准线.
19、过抛物线的焦点作垂直于对称轴且交抛物线于A 、B 两点的线段AB ,称为抛物线的“通径”,即2p AB =. 20、焦半径公式:
若点()00,x y P 在抛物线()220y px p =>上,焦点为F ,则02p
F x P =+
; 若点()00,x y P 在抛物线()220y px p =->上,焦点为F ,则02p
F x P =-+;
若点()00,x y P 在抛物线()220x py p =>上,焦点为F ,则02p
F y P =+;
若点()00,x y P 在抛物线()220x py p =->上,焦点为F ,则02
p
F y P =-+.
21、抛物线的几何性质:
标准方程
22y px = ()0p > 22y px =- ()0p > 22x py = ()0p > 22x py =-
()0p >
图形
顶点
()0,0
对称轴
x 轴
y 轴
焦点
,02p F ⎛⎫ ⎪⎝⎭ ,02p F ⎛⎫- ⎪⎝⎭ 0,2p F ⎛
⎫ ⎪⎝⎭
0,2p F ⎛
⎫- ⎪⎝⎭
准线方程
2
p
x =-
2
p
x =
2
p y =-
2
p y =
离心率 1e =
范围 0x ≥ 0x ≤
0y ≥ 0y ≤。