高中数学选修4-5知识点(最全版)

合集下载

高中数学·选修4-5(人教版)第一讲几何平均不等式及绝对值三角不等式PPT课件

高中数学·选修4-5(人教版)第一讲几何平均不等式及绝对值三角不等式PPT课件

9
3 .
归纳升华
1.利用三个正数的算术—几何平均不等式常处理下
面两个类型的最值: (1)求函数 y=ax2+bx的最小值,其中 ax2>0,bx>0.

y

ax2

b x

ax2

b 2x

b 2x

3
3
ax2·2bx·2bx

3 2
3 2ab2.当且仅当 ax2=2bx,即 x= 3 2ba时,等号成立.
(1)如果 a,b,c∈R,那么a+3b+c≥3 abc.(
)
(2)如果 a,b,c∈R+,那么a+3b+c≥3 abc,当且仅
当 a=b 或 b=c 时,等号成立.( )
(3)如果 a,b,c∈R+,那么 abc≤a+3b+c3,当且 仅当 a=b=c 时,等号成立.( )
(4)如果 a1,a2,a3,…,an 都是实数.那么 a1+a2
n
+…+an≥n· a1a2…an.( )
解析:(1)根据定理 3,只有在 a,b,c 都是正数才成
立.其他情况不一定成立,如 a=1,b=-1,c=-3,
a+b+c
3
3
3 =-1, abc= 3,故(1)不正确.
(2)由定理 3,知等号成立的条件是 a=b=c.故(2)不正
确.
(3)由定理 3 知(3)正确. (4)必须 a1,a2,…,an 都是正数,命题才成立. 答案:(1)× (2)× (3)√ (4)×
第一讲 不等式和绝对值不等式
1.1 不等式 1.1.3 三个正数的算术—
几何平均不等式
[知识提炼·梳理] 1.三个正数的算术—几何平均不等式 (1)如果 a1,a2,a3∈R+,则a1+a32+a3叫做这 3 个正 数的算术平均数,3 a1a2a3叫做这三个正数的几何平均数.

人教版高中数学选修4-5《3.2 一般形式的柯西不等式》

人教版高中数学选修4-5《3.2 一般形式的柯西不等式》

五. 当堂检测:
[练1](1)已知2 x 3 y 4z 10, 求x 2 y 2 z 2最小值;
(2)若9 x 2 12 y 2 5z 2 9, 求x 6 y 5z的最大值.
[练2]设x1 , x2 ,..., xn是正数, 求证 : 1 1 1 2 ( x1 x2 ... xn )( ... )n x1 x2 xn
三、归纳推理,形成新知:
3、三维形式的柯西不等式:
(a1b1 a2b2 a3b3 ) (a a a )(b b b )
2 2 1 2 2 2 3 2 1 2 2 2 3
当且仅当 与共线时, 等号成立.
【探究】根据二维、三维形式的柯西不等式, 若 ( a1 , a 2 , a 3 ,...,a n ), (b1 , b2 , b3 ,...,bn )
3.2一般形式的柯西不等式
选修4-5
一、温故知新:
1、柯西不等式的向量形式: 【定理2】设 , 是两个向量, 则| | | | | |
将平面向量的坐标 (a1 , a2 ), (b1 , b2 )代入, 则上述 不等式可化简为:
2、二维形式的柯西不等式: 2 2 2 2 2 (a1b1 a2b2 ) (a1 a2 )(b1 b2 ) 适用范围: 对任意实数都成立.
六.课堂小结: 基础 三维形式 知识:
一般形式
证明不等式
柯西不等式
求最值
基本思想方法: 1.探究方法:从特殊到一般. 2.思维方法:观察→归纳→证明. 七.课后作业: 1.巩固性作业:P41 习题3.2 第1,2, 4,6. 2.探究作业: 小组合作证明一般形式的柯西不等式.

人教版-高中数学选修4-5-柯西不等式

人教版-高中数学选修4-5-柯西不等式
定理(一般形式的柯西不等式) 设a1 , a2 , a3 ,, an , b1 , b2 , b3 ,, bn是实数,则
2 2 2 2 2 (a1 a2 an )( b12 b2 bn ) (a1b1 a2b2 anbb )2
当且仅当bi 0(i 1, 2,, n)或存在一个数 k , 使得ai kbi (i 1, 2,, n)时, 等号成立
证明 : (a c d )(b c d a ) (ab bc cd da )2 a b c d a , b, c , d是不全相等的正数, 不成立 b c d a (a 2 b 2 c 2 d 2 )2 (ab bc cd da )2 即 a 2 b 2 c 2 d 2 ab bc cd da
已知 a2+2b2=6,则 a+b 的取值范围是____________. 1 2 1 2 【解析】 ∵(a +2b )[1 +( ) ]≥(1· a+ 2b· ) =(a+b)2 2 2
2 2 2
3 ∴(a+b) ≤6× =9,∴-3≤a+b≤3, 2
2
故 a+b 的取值范围是[-3,3] 【名师点睛】 解此题关键在于构造因式,使其符合柯西不等
证 明: ( x 2 y 2 z 2 )(12 2 2 3 2 ) ( x 2 y 3 z ) 2 1 1 2 2 2 x y z 14 x y z 1 1 3 当 且 仅 当 即x , y , z 时 1 2 3值 14
2 2 2 2
二维形式的三角不等式
2 2 x1 y1 2 2 x2 y2 ( x1 x 2 ) 2 ( y1 y2 ) 2
2 2 2 2 2 2 三维形式的三角不等式 x1 y1 z1 x2 y2 z2

最新人教版高中数学选修4-5《绝对值不等式》教材梳理

最新人教版高中数学选修4-5《绝对值不等式》教材梳理

庖丁巧解牛知识·巧学一、绝对值三角不等式1.定理1 如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.定理1的等号成立的情况具体来说,当a=0或b=0时,或a>0、b>0时,或a<0,b<0时,等号都是成立的,即有|a+b|=|a|+|b|.除此之外,就是|a+b|<|a|+|b|了.如果把定理1中的实数a,b分别替换为向量a,b,则定理1的形式仍旧成立.即有|a+b|≤|a|+|b|成立,当且仅当向量a,b不共线时,有|a+b|<|a|+|b|成立.联想发散根据定理1,我们可以得到许多正确的结论.其中比较常用的结论有:(1)如果a,b是实数,那么|a|-|b|≤|a±b|≤|a|+|b|.(2)|a1+a2+a3+…+a n|≤|a1|+|a2|+|a3|+…+|a n|(n∈N*).2.绝对值三角不等式所谓绝对值三角不等式就是指把定理1中的实数a,b分别替换为向量a,b,且向量a,b不共线时,所成立的不等式|a+b|<|a|+|b|.绝对值三角不等式即向量不等式|a+b|<|a|+|b|的几何意义就是三角形的两边之和大于第三边(如下图所示).记忆要诀由于绝对值三角不等式其形式与定理1是完全类似的,所以只要记住定理1,那么这个绝对值三角不等式也就记住了.3.定理2 如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.对于定理2,同学们不但要记住它的形式,还应注意它的特点,尤其要注意它的不等号左边没有字母b,只有右边才有.学法一得要注意|a-c|可以变形为|(a-b)+(b-c)|,熟悉这种变形,那么在具体解题时就可以通过变形来巧妙地利用定理2了.二、绝对值不等式的解法要熟记简单绝对值不等式的解法,它是解较复杂的绝对值不等式的基础,即要记住:一般地,如果a>0,则有:|x|<a⇔-a<x<a,因此,不等式|x|<a的解集是(-a,a);|x|>a⇔x<-a或x>a,因此,不等式|x|>a的解集是(-∞,-a)∪(a,+∞).1.|ax+b|≤c和|ax+b|≥c型不等式的解法.求解这类绝对值不等式,只要将ax+b看成一个整体,然后套用|x|<a或|x|>a的不等式的解法即可.2.|x-a|+|x-b|≤c和|x-a|+|x-b|≥c型不等式的解法.求解这类绝对值不等式,主要的方法有如下三种:(1)利用绝对值的几何意义;(2)分区间讨论法;(3)构造函数利用函数的图象求解.求解这类绝对值不等式时,可根据题目的不同而适时选用不同的方法求解.误区警示解绝对值不等式切勿盲目地套用某一类解法,一定要注意不等式的形式,要针对不同的形式对号入座采取相应的方法来求解.典题·热题知识点一: 与定理1、2相关的绝对值不等式的判断与证明例1 若|x-a|<m,|y-a|<n ,则下列不等式一定成立的是( )A.|x-y|<2mB.|x-y|<2nC.|x-y|<n-mD.|x-y|<n+m思路分析:注意观察比较|x-y|与|x-a|,|y-a|之间的关系,不难发现通过适当变形就可运用定理1及已知条件来巧妙求解此题了,具体解题过程为:|x-y|=|x-a-(y-a)|≤|x -a|+|y-a|<m+n,故选D.答案:D巧解提示对某些式子进行适当的变形,以便创造条件利用某些定理、公式来解题,这是一种常用的技巧,如此题求解过程中的|x-y|=|x-a-(y-a)|就是变形,而变形的基础是必须要熟悉公式. 例2 已知a 、b 、c 、d 都是实数,且a 2+b 2=m 2,c 2+d 2=n 2(m>0,n>0),求证:|ac+bd|≤222n m +. 思路分析:证明此题时,可将ac 、bd 分别看成整体,那么就可以套用定理1来证明了. 证明:∵a 、b 、c 、d ∈R ,∴|a c+bd|≤|ac|+|bd|≤222222d b c a +++ =222222222r R d c b a +=+++, ∴|ac+bd|≤222R r +. 误区警示如果利用ab≤222b a +来证明此题,就容易出现似是而非的证法,而利用较严格的公式|ab|≤222b a +来证明就不易出错了.因此同学们要注意公式的适时选用. 知识点二: 绝对值不等式的解法例3 解关于x 的不等式|2x-1|<2m-1(m ∈R ).思路分析:要注意对2m-1的正负情况进行讨论.解:若2m-1≤0,即m≤21,则|2x-1|<2m-1恒不成立,此时,原不等式无解;若2m-1>0,即m>21,则-(2m-1)<2x-1<2m-1,所以1-m<x<m. 由上可得:当m≤21时,原不等式的解集为∅, 当m>21时,原不等式的解集为:{x|1-m<x<m}. 方法归纳对于不等号右侧是含有参数的式子的这类绝对值不等式,在求解时一定要通过对参数式子的正、负、零三种情况的讨论来求解.例4 解不等式3≤|x -2|<4.思路分析:此题的不等式属于绝对值的连不等式,求解时可将其化为绝对值的不等式组再求解.解:原不等式等价于⎩⎨⎧<-≥-)2.(4|2|)1(,3|2|x x 由(1)得x-2≤-3或x-2≥3,∴x≤-1,或x≥5.由(2)得-4<x-2<4,∴-2<x<6.如上图所示,原不等式的解集为{x|-2<x≤-1或5≤x<6}.误区警示有些同学求解这类问题时,为了图省事,往往不爱通过画图来寻找解集,总爱耍点小聪明,这是造成求解出错的主要原因.例5 解不等式|x+7|-|x-2|≤3.思路分析:解含有绝对值的不等式,总的思路是同解变形为不含绝对值的不等式,但要根据求解不等式的结构,选用恰当的方法.此题中有两个绝对值符号,故可用绝对值的几何意义来求解,或用分区间讨论法求解,还可构造函数利用函数图象求解.图1解:[方法一] |x+7|-|x-2|可以看成数轴上的动点(坐标为x)到-7对应的点的距离与到2对应的点的距离的差,先找到这个差等于3的点,即x=-1(如图1所示).从图易知不等式|x+7|-|x-2|≤3的解为x≤-1,即x ∈(-∞,-1].[方法二] 令x+7=0,x-2=0得x=-7,x=2.①当x<-7时,不等式变为-x-7+x-2≤3,∴-9≤3成立,∴x<-7.图2②当-7≤x≤2时,不等式变为x+7+x-2≤3,即2x≤-2,∴x≤-1,③当x>2时,不等式变为x+7-x+2≤3,即9≤3不成立,∴x ∈∅.∴原不等式的解集为(-∞,-1].[方法三] 将原不等式转化为|x+7|-|x-2|-3≤0,构造函数y=|x+7|-|x-2|-3,即y=⎪⎩⎪⎨⎧>≤≤-+-<-.2,6;27,22;7,12x x x x .作出函数的图象(如图2),从图可知,当x≤-1时,有y≤0,即|x+7|-|x-2|-3≤0,所以,原不等式的解集为(-∞,-1].巧妙变式针对此题,我们可以进行各种不同的题目变式.如:可以将两个绝对值里面的运算符号改变、可以将两个绝对值之间的运算符号改变、可以将“≤”改变为“≥”,还可以将不等号右边的数改成字母等等.变式后题目的求解还是用上述的几种解法.问题·探究误区陷阱探究问题1 对此题“写出不等式|2x-1|<3的解集并化简”,某同学的错解如下:不等式|2x-1|<3的解集是{x||2x-1|<3}={x|2x-1<3}∪{x|2x-1>-3}={x|x<2}∪{x|x>-1}={x|-1<x<2}.探究过程:这位同学解得的结果是正确的,但解法不对.解法中有两处错误,但却歪打正着得出了正确的结果.首先是把绝对值不等式的解法搞错了.这位同学写的求解过程中的两个集合{x|2x-1<3}与{x|2x-1>-3}的中间不应当用并的符号“∪”,而应改为“∩”.这两个集合是应该取交集的.另外,按照这位同学错写的两集合“并”来运算时又解错了.{x|x<2}∪{x|x>-1}的结果应为{x|-∞<x<+∞},而不是{x|-1<x<2}.探究结论:如果按照这位同学的思路求解,可以修改为:不等式|2x-1|<3的解集是: {x||2x-1|<3}={x|2x-1<3}∩{x|2x -1>-3}={x|x<2}∩{x|x>-1}={x|-1<x<2}.不过,更简单的解法应是:不等式|2x-1|<3的解集是:{x||2x-1|<3}={x|-3<2x-1<3}={x|-1<x<2}.思维发散探究问题2 已知a 、b 、c 是实数,函数f(x)=ax 2+bx+c ,g(x)=ax+b ,当-1≤x≤1时,|f(x)|≤1,试探究当x ∈[-1,1]时,|g(x)|≤2.探究过程:这是一个通过关联二次函数、一次函数考查不等式的变换能力的问题,因此在证明中要注意合理应用绝对值不等式的性质定理,由于g(x)是一次函数,可将|g(x)|≤2转化为g(-1)与g(1)与2的关系加以证明,也可挖掘g(x)与f(x)的隐含关系,构造函数模型,寻求整体突破.探究结论:[方法一] 当a>0时g(x)=ax+b 在[-1,1]上是增函数,∴g(-1)≤g(x)≤g(1),∵|f(x)|≤1(-1≤x≤1),∴|c|=|f(0)|≤1,∴g(1)=a+b=f(1)-c≤|f(1)|+|c|≤2,g(-1)=-a+b=-f(-1)+c≥-(|f(-1)|+|c|)≥-2,当a<0时,g(x)=ax+b 在[-1,1]上是减函数, ∴g(1)≤g(x)≤g(-1),∵|f(x)|≤1(-1≤x≤1),∴|c|=|f(0)|≤1,∴g(-1)=-a+b=-f(-1)+c≤|f(-1)|+|c|≤2,g(1)=a+b=f(1)-c≥-(|f(-1)|+|c|)≥-2,∴|g(x)|≤2.当a=0时,g(x)=b ,f(x)=bx+c ,∵-1≤x≤1,∴|g(x)|=|f(1)-c|≤|f(1)|+|c|≤2.综上所述,当x ∈[-1,1]时,|g(x)|≤2.[方法二] ∵x=4)1()1(22--+x x , ∴g(x)=ax+b=a [(21+x )2-(21-x )2]+b(21+x -21-x ) =a [(21+x )2+b(21+x )+c ]-[a(21-x )2+b(21-x )+c ] =f(21+x )-f(21-x ). 当-1≤x≤1时,有0≤21+x ≤1,-1≤21-x ≤0, ∴|g(x)|=|f(21+x )-f(21-x )|≤|f(21+x )|+|f(21-x )|≤2,∴|g(x)|≤2.。

高中数学理科选修知识点(2-2,2-3,4-1,4-4,4-5)

高中数学理科选修知识点(2-2,2-3,4-1,4-4,4-5)

数学选修2-2知识点总结 第一章 导数及其应用 一、导数概念的引入1.导数的物理意义:瞬时速率。

一般的,函数()y f x =在0x x =处的瞬时变化率是000()()limx f x x f x x ∆→+∆-∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =',即0()f x '=000()()limx f x x f x x ∆→+∆-∆2.导数的几何意义:曲线的切线.通过图像,我们可以看出当点n P 趋近于P 时,直线PT 与曲线相切。

容易知道,割线n PP 的斜率是00()()n n n f x f x k x x -=-,当点n P 趋近于P 时,函数()y f x =在0x x =处的导数就是切线PT 的斜率k ,即000()()lim()n x n f x f x k f x x x ∆→-'==-导函数:当x 变化时,()f x '便是x 的一个函数,我们称它为()f x 的导函数. ()y f x =的导函数有时也记作y ',即0()()()limx f x x f x f x x ∆→+∆-'=∆二.导数的计算1.函数()y f x c ==的导数2.函数()y f x x ==的导数3.函数2()y f x x ==的导数4.函数1()y f x x ==的导数基本初等函数的导数公式:1若()f x c =(c 为常数),则()0f x '=;2 若()f x x α=,则1()f x x αα-'=;3 若()sin f x x =,则()cos f x x '=4 若()cos f x x =,则()sin f x x '=-;5 若()x f x a =,则()ln xf x a a '= 6 若()x f x e =,则()x f x e '=7 若()logxa f x =,则1()ln f x x a '=8 若()ln f x x =,则1()f x x '=导数的运算法则1. [()()]()()f x g x f x g x '''±=±2. [()()]()()()()f x g x f x g x f x g x '''∙=∙+∙3. 2()()()()()[]()[()]f x f x g x f x g x g x g x ''∙-∙'=复合函数求导()y f u =和()u g x =,称则y 可以表示成为x 的函数,即(())y f g x =为一个复合函数 (())()y f g x g x '''=∙三.导数在研究函数中的应用 1.函数的单调性与导数:一般的,函数的单调性与其导数的正负有如下关系:在某个区间(,)a b 内,如果()0f x '>,那么函数()y f x =在这个区间单调递增; 如果()0f x '<,那么函数()y f x =在这个区间单调递减.2.函数的极值与导数极值反映的是函数在某一点附近的大小情况. 求函数()y f x =的极值的方法是: 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么0()f x 是极大值; 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么0()f x 是极小值;4.函数的最大(小)值与导数函数极大值与最大值之间的关系.求函数()y f x =在[,]a b 上的最大值与最小值的步骤 求函数()y f x =在(,)a b 内的极值;将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的是一个最大值,最小的是最小值. 四.生活中的优化问题利用导数的知识,,求函数的最大(小)值,从而解决实际问题第二章 推理与证明考点一 合情推理与类比推理根据一类事物的部分对象具有某种性质,退出这类事物的所有对象都具有这种性质的推理,叫做归纳推理,归纳是从特殊到一般的过程,它属于合情推理根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另外一类事物类似的性质的推理,叫做类比推理. 类比推理的一般步骤:找出两类事物的相似性或一致性;用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);考点二 演绎推理(俗称三段论)由一般性的命题推出特殊命题的过程,这种推理称为演绎推理.考点三 数学归纳法它是一个递推的数学论证方法. 步骤:A.命题在n=1(或0n )时成立,这是递推的基础;B.假设在n=k 时命题成立C.证明n=k+1时命题也成立,完成这两步,就可以断定对任何自然数(或n>=0n ,且n N ∈)结论都成立。

人教版高中数学选修4-5知识点汇总

人教版高中数学选修4-5知识点汇总

人教版高中数学必修4-5知识点第一讲不等式和绝对值不等式一.不等式(一)不等式的基本性质1.实数大小的比较(1)数轴上的点与实数之间具有一一对应关系。

(2)设a、b是两个实数,它们在数轴上所对应的点分别是A、B.当点A在点B的左边时,a<b;当点A在点B的右边时,a>b.(3)两个实数的大小与这两个实数差的符号的关系(不等式的意义)>b⇔a-b>0=b⇔a-b=0<b⇔a-b<0(4)两个实数比较大小的步骤①作差;②变形;③判断差的符号;④结论.2.不等关系与不等式(1)不等号有≠,>,<,≥,≤共5个.(2)相等关系和不等关系任意给定两个实数,它们之间要么相等,要么不相等。

现实生活中的两个量从严格意义上说相等是特殊的、相对的,不等是普遍的、绝对的,因此绝大多数的量都是以不等关系存在的。

(3)不等式的定义:用不等号连接起来的式子叫做不等式。

(4)不等关系的表示:用不等式或不等式组表示不等关系。

3.不等式的基本性质(1)对称性:a>b⇔b<a;(2)传递性:a>b,b>c⇒a>c;(3)可加性:a>b,c∈R⇔a+c>b+c;(4)加法法则:a>b,c>d⇒a+c>b+d;(5)可乘性:a>b,c>0⇒ac>bc;a>b,c<0⇒ac<bc;(6)乘法法则:a>b>0,c>d>0⇒ac>bd;(7)乘方法则:a>b>0,n∈N且n≥2⇒a n>b n;(8)开方法则:a>b>0,n∈N且n≥2⇒na>nb.(9)倒数法则,即a>b>0⇒1a <1b .(二)基本不等式1.重要不等式定理1:如果a,b∈R,那么a2+b2≥2ab,当且仅当a=b时,等号成立。

2.基本不等式(1)定理2:如果a,b>0,那么a b+≥(a+b2≥ab),当且仅当a=b时,等号成立。

人教版高中数学选修4-5《3.1 柯西不等式》

人教版高中数学选修4-5《3.1 柯西不等式》
2 1 2 2 2 n 2 1 2 2 2 n
2
k,使 得a i kbi ( i 1,2, , n)时, 等 号 成 立 。 2n 问题: 1、柯西不等式里一共涉及多少个实数? 个 2、柯西不等式的结构有何特征?
平方和的乘积不小于乘积和的平方
1、柯西是什么人?
• 法一:问柯西本人;
2、他是怎么发现该不等式的?
4 4 2 2 3 3 2
(2)复杂问题:变形后运用柯西不等式。
例3 求函数 y 5 x 1 10 2 x的最大值
思考:该题目用了哪些变形技巧? 凑配系数,平方。
2.已知x y 1, 那么2 x 2 3 y 2的最小值是( 5 A. 6 6 B. 5 25 C. 36 36 D. 25 )
( 2) a b c d ac bd2 ຫໍສະໝຸດ 2 2222
2
自主探究: 1、这两个变式 怎么来的呢? 2、这三个不等 式取“=” 的条 件分别是什么?
进一步—理解—柯西不等式
• 1、代数理解。
2 2 2 2
• 2、几何理解。
(1) a b c d ac bd
小组讨论:根据变式一,你能给出柯西不 等式的几何解释吗?
柯西不等式
选修4-5 不等式选讲
定 理(一 般 形 式 的 柯 西 不 等 ) 式 设a1 , a 2 , a 3 , , a n , b1 , b2 , b3 , , bn是 实 数 ,则
(a a a )( b b b ) (a1b1 a2b2 anbb ) 当且仅当 bi 0( i 1,2, , n)或 存 在 一 个 数
教学目标:
• 1、发现、推导
柯西不等式

高中数学人教A版选修4-5创新应用第一讲 第1节 第3课时 三个正数的算术-几何平均不等式 课件

高中数学人教A版选修4-5创新应用第一讲 第1节 第3课时 三个正数的算术-几何平均不等式 课件
高为 h,表面积为 S. 则 V=πr2h, ∴h=πVr2. ∴S=2πr2+2πrh=2πr2+2rV =2πr2+Vr +Vr ≥3 3 2πV2.
即当 2πr2=Vr ,
3 r=
2Vπ时表面积最小.此时 h=2r.
3 即饮料盒的底面半径为 r=
2Vπ,
高为 2 3 2Vπ时,用料最省.
本课时经常考查算术-几何平均不等式在求最值中的应
n 当且仅当 a1=a2=…=an 时,等号成立.
[问题思考]
1.满足不等式a+3b+c≥3 abc成立的 a,b,c 的范 围是什么?
提示:a,b,c 的范围为 a≥0,b≥0,c≥0.
2.应用三个正数的算术-几何平均不等式,求最 值应注意什么?
提示:三个正数的和为定值,积有最大值;积为 定值,和有最小值.当且仅当三个正数相等时取得.
三个正数的算术-几何平均不等式定理,是根据不等式 的意义、性质和比较法证出的,因此,凡是可以利用该定 理证明的不等式,一般都可以直接应用比较法证明,只是 在具备条件时,直接应用该定理会更简便.若不直接具备 “一正二定三相等”的条件,要注意经过适当的恒等变形 后再使用定理证明.
连续多次使用平均不等式定理时要注意前后等号成立 的条件是否保持一致.
已知 x∈R+,求函数 y=x(1-x2)的最大值.
[精讲详析] 本题考查三个正数的算术-几何平 均不等式在求最值中的应用.解答本题要根据需要拼 凑出利用其算术-几何平均不等式的条件,然后再求 解.
∵y=x(1-x2), ∴y2=x2(1-x2)2 =2x2(1-x2)(1-x2)·12.
∵2x2+(1-x2)+(1-x2)=2, ∴y2≤122x2+1-3x2+1-x23=247. 当且仅当 2x2=1-x2=1-x2,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏教版高中数学选修4-5知识点1.不等式的基本性质1.实数大小的比较(1)数轴上的点与实数之间具有一一对应关系.(2)设a 、b 是两个实数,它们在数轴上所对应的点分别是A 、B .当点A 在点B 的左边时,a <b ;当点A 在点B 的右边时,a >b .(3)两个实数的大小与这两个实数差的符号的关系(不等式的意义)⎩⎪⎨⎪⎧a >b ⇔a -b >0a =b ⇔a -b =0a <b ⇔a -b <0(4)两个实数比较大小的步骤①作差;②变形;③判断差的符号;④结论. 2.不等关系与不等式(1)不等号有≠,>,<,≥,≤共5个. (2)相等关系和不等关系任意给定两个实数,它们之间要么相等,要么不相等.现实生活中的两个量从严格意义上说相等是特殊的、相对的,不等是普遍的、绝对的,因此绝大多数的量都是以不等关系存在的.(3)不等式的定义:用不等号连接起来的式子叫做不等式. (4)不等关系的表示:用不等式或不等式组表示不等关系. 3.不等式的基本性质 (1)对称性:a >b ⇔b <a ;(2)传递性:a >b ,b >c ⇒a >c ;(3)可加性:a >b ,c ∈R ⇔a +c >b +c ; (4)加法法则:a >b ,c >d ⇒a +c >b +d ;(5)可乘性:a >b ,c >0⇒ac >bc ;a >b ,c <0⇒ac <bc ; (6)乘法法则:a >b >0,c >d >0⇒ac >bd ;(7)乘方法则:a >b >0,n ∈N 且n ≥2⇒a n >b n ;(8)开方法则:a >b >0,n ∈N 且n ≥2⇒n a >nb . (9)倒数法则,即a >b >0⇒1a <1b.2.基本不等式1.重要不等式定理1:如果a ,b ∈R ,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 2.基本不等式(1)定理2:如果a ,b >0,那么a b +≥ a +b2≥ab),当且仅当a =b 时,等号成立. (2)定理2的应用:对两个正实数x ,y ,①如果它们的和S 是定值,则当且仅当x =y 时,它们的积P 取得最大值,最大值为S 24.②如果它们的积P 是定值,则当且仅当x =y 时,它们的和S 取得最小值,最小值为2P . 3.基本不等式ab ≤a +b2的几何解释如图,AB 是⊙O 的直径,C 是AB 上任意一点,DE 是过C 点垂直AB 的弦.若AC =a ,BC =b ,则AB =a +b ,⊙O 的半径R =a +b 2,Rt △ACD ∽Rt △DCB ,CD 2=AC ·BC =ab ,CD =ab ,CD ≤R ⇒ab ≤a +b2,当且仅当C 点与O 点重合时,CD =R =AB2,即ab =a +b 2. 4.几个常用的重要不等式(1)如果a ∈R ,那么a 2≥0,当且仅当a =0时取等号;(2)如果a ,b >0,那么ab ≤(a +b )24,当且仅当a =b 时等号成立.(3)如果a >0,那么a +1a ≥2,当且仅当a =1时等号成立.(4)如果ab >0,那么a b +ba≥2,当且仅当a =b 时等号成立.3.三个正数的算术-几何平均不等式1.如果a 、b 、c ∈R +,那么a 3+b 3+c 3≥3abc ,当且仅当a =b =c 时,等号成立.2.(定理3)如果a 、b 、c ∈R +,那么3++≥a b c (a +b +c 3≥3abc),当且仅当a =b =c 时,等号成立.即三个正数的算术平均不小于它们的几何平均.3.如果a 1,a 2,…,a n ∈R +,那么a 1+a 2+…+a n n≥na 1a 2…a n ,当且仅当a 1=a 2=…=a n 时,等号成立.即对于n 个正数a 1,a 2,…,a n ,它们的算术平均不小于它们的几何平均.二 绝对值不等式 1.绝对值三角不等式1.绝对值及其几何意义(1)绝对值定义:|a |=⎩⎨⎧a (a ≥0)-a (a <0)(2)绝对值几何意义:实数a 的绝对值|a |表示数轴上坐标为a 的点A 到原点O 的距离|OA |.(3)数轴上两点间的距离公式:设数轴上任意两点A ,B 分别对应实数x 1,x 2,则|AB |=|x 1-x 2|. 2.绝对值三角不等式(1)定理1:如果a ,b 是实数,则|a +b |≤|a |+|b |,当且仅当ab ≥0时,等号成立. 推论1:如果a ,b 是实数,那么|a |-|b |≤|a -b |≤|a |+|b |. 推论2:如果a ,b 是实数,那么|a |-|b |≤|a +b |≤|a |+|b |.(2)定理2:如果a ,b ,c 是实数,那么|a -c |≤|a -b |+|b -c |,当且仅当(a -b )(b -c )≥0时,等号成立.2.绝对值不等式的解法1.|x |<a 与|x |>a 型不等式的解法 设a >0,则(1)|x |<a ⇔-a <x <a ; (2)|x |≤a ⇔-a ≤x ≤a ; (3)|x |>a ⇔x <-a 或x >a ;(4)|x |≥a ⇔x ≤-a 或x ≥a .2.|ax +b |≤c (c >0)与|ax +b |≥c (c >0)型不等式的解法 (1)|ax +b |≤c ⇔-c ≤ax +b ≤c ;(2)|ax +b |≥c ⇔ax +b ≤-c 或ax +b ≥c .3.|x -a |+|x -b |≤c 与|x -a |+|x -b |≥c 型不等式的解法(1)利用绝对值不等式的几何意义求解,体现数形结合思想,理解绝对值的几何意义,给绝对值不等式以准确的几何解释.(2)以绝对值的零点为分界点,将数轴分为几个区间,利用“零点分段法”求解,体现分类讨论的思想.确定各个绝对值号内多项式的正、负号,进而去掉绝对值号.(3)通过构造函数,利用函数的图象求解,体现了函数与方程的思想.正确求出函数的零点并画出函数图象(有时需要考察函数的增减性)是关键.注:绝对值的几何意义(1)|x |的几何意义是数轴上点x 与原点O 的距离;(2)|x -a |+|x -b |的几何意义是数轴上点x 到点a 和点b 的距离之和; (3)|x -a |-|x -b |的几何意义是数轴上点x 到点a 和点b 的距离之差. 2.绝对值不等式的几何意义(1)|x |≤a (a >0)的几何意义是以点a 和-a 为端点的线段,|x |≤a 的解集是[-a ,a ].(2)|x |>a (a >0)的几何意义是数轴除去以点a 和-a 为端点的线段后剩下的两条射线,|x |>a 的解集是(-∞,-a )∪(a ,+∞).3.解含绝对值不等式的关键是去掉绝对值变形为不含绝对值的不等式(组)求解. 例题:例如:分类讨论法:即通过合理分类去绝对值后再求解。

例1: 解不等式125x x -++<。

分析:由01=-x ,02=+x ,得1=x 和2=x 。

2-和1把实数集合分成三个区间,即2-<x ,12≤≤-x ,1>x ,按这三个区间可去绝对值,故可按这三个区间讨论。

解:当x <-2时,得2(1)(2)5x x x <-⎧⎨---+<⎩,解得:23-<<-x当-2≤x ≤1时,得21,(1)(2)5x x x -≤≤⎧⎨--++<⎩, 解得:12≤≤-x当1>x 时,得1,(1)(2) 5.x x x >⎧⎨-++<⎩, 解得:21<<x综上,原不等式的解集为{}23<<-x x 。

例2:解不等式|2x -4|-|3x +9|<1. 解:①当x >2时,原不等式可化为⎩⎪⎨⎪⎧x >2,(2x -4)-(3x +9)<1,解得x >2.②当-3≤x ≤2时,原不等式可化为⎩⎪⎨⎪⎧-3≤x ≤2,-(2x -4)-(3x +9)<1,解得-65<x ≤2.③当x <-3时,原不等式可化为⎩⎪⎨⎪⎧x <-3,-(2x -4)+(3x +9)<1,解得x <-12.综上所述,原不等式的解集为 {x |x <-12或x >-65}.第二讲 证明不等式的基本方法一 比较法比较法主要有1.作差比较法 2.作商比较法 1.作差比较法(简称比差法)(1)作差比较法的证明依据是:a >b ⇔a -b >0;a =b ⇔a -b =0;a <b ⇔a -b <0. (2)基本步骤是:①作差;②变形;③判号;④结论. 2.作商比较法(简称比商法)(1)作商比较法的证明依据是:当b >0时,a b >1⇔a >b ;a b =1⇔a =b ;ab<1⇔a <b .(2)基本步骤是:①作商;②变形;③比较与1的大小;④结论.注意:对作差比较法的理解(1)在证明不等式的各种方法中,作差比较法是最基本、最重要的方法.作差比较法是通过确定不等式两边的差的符号来证明不等式的,因而其应用非常广泛.(2)不等式差的符号是正是负,一般必须利用不等式的性质经过变形才能判断,其中变形的目的在于判断差的符号,而不必考虑差的值是多少.变形的方法主要有配方法、通分法、因式分解法等.(3)作差比较法,主要适用于不等式两边是整式或分式型的有理不等式的证明. (4)在判定不等式两边的式子同号的条件下,如果直接作差不易变形,可以借助不等式性质作平方差或立方差,进行证明.2.对作商比较法的理解(1)使用作商法证明不等式a >b 时,一定要注意b >0这个前提条件.若b <0,a b <1⇔a >b ,a b =1⇔a =b ,ab >1⇔a <b .(2)当欲证明的不等式的两边是乘积形式、指数幂形式,不同底的对数式形式时,常用作商法证明.二 综合法与分析法1.综合法一般地,从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫做综合法.综合法又叫顺推证法或由因导果法.2.分析法证明命题时,从要证的结论出发,逐步寻求使它成立的充分条件,直到所需条件为已知条件或一个明显成立的事实(定义、公理或已证明的定理、性质等),从而得出要证的命题成立,这种证明方法叫做分析法.这是一种执果索因的思考和证明方法.注意:1.用综合法证明不等式的逻辑关系 A ⇒B 1⇒B 2⇒…⇒B n ⇒B由已知逐步推演不等式成立的必要条件,从而得结论.2.用分析法证明不等式的逻辑关系A⇐B1⇐B2⇐…⇐B n⇐B由结论步步寻求不等式成立的充分条件,从而到已知.3.综合法和分析法的比较(1)相同点:都是直接证明.(2)不同点:综合法:由因导果,形式简洁,易于表达;分析法:执果索因,利于思考,易于探索.4.证明不等式的通常做法常用分析法找证题切入点,用综合法写证题过程.三反证法与放缩法1.反证法证明不等式时,首先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立.我们把它称之为反证法.2.放缩法证明不等式时,通过把不等式中的某些部分的值放大或缩小,简化不等式,从而达到证明的目的,我们把这种方法称为放缩法.3.换元法将所证的不等式的字母作适当的代换,以达到简化证题过程的目的,这种方法称为换元法.注意:1.关于反证法(1)反证法的原理是否定之否定等于肯定.即第一次否定—在假设中,否定了结论↓第二次否定—通过推理论证,又否定了假设(2)反证法的使用范围一般以下几种情况适宜使用反证法:①结论本身是以否定形式出现的一类命题;②有关结论是以“至多…”或“至少…”的形式出现的一类命题;③关于唯一性、存在性的命题;④结论的反面是比原结论更具体、更容易研究的命题.(3)使用反证法的主要步骤(4)准确地作出反设是反证法证题的前提,下面是常用词语的反设(5)①反设时一定不能把“假设”写成“设”.②当结论的反面有多种可能时,必须全部列出,否则证明是不完整的.③必须从结论的否定出发进行推理,就是一定把结论的否定作为推理的条件,只要推理中没有用到“假设”就不是反证法.④最后导出的矛盾是多样的,可能与已知矛盾、与假设矛盾、与定义、定理、公式矛盾、与已知的事实矛盾等,但矛盾必须是明显的.⑤反证法是一种间接证明的方法. 2.关于放缩法(1)放缩法证明不等式的理论依据有:①不等式的传递性;②等量加不等量为不等量.其中减去一个正数值变小(缩),加上一个正数值变大(放);③同分子(分母)异分母(分子)的两个分式大小的比较;④基本不等式与绝对值三角不等式;⑤三角函数的有界性等.(2)运用放缩法证题的关键是:放大或缩小要适当,千万不能放(缩)过头,否则问题无法获证. (3)使用放缩法的常用变形放缩法是不等式证明中最重要的变形方法之一,放缩必须有目标,而且要恰到好处,目标往往从要证明的结论考虑.常用的放缩法有增项、减项、利用分式的性质、利用不等式的性质、利用已知不等式、利用函数的性质等进行放缩.比如:⎝⎛⎭⎫a +122+34>⎝⎛⎭⎫a +122;1n 2<1n (n -1)(n ∈N 且n ≥2);1n 2>1n (n +1)(n ∈N *);1n <2n +n -1(n ∈N 且n ≥2),1n >2n +n +1;当a >b >0,m >0时,b a <b +m a +m ,a b >a +m b +m 等.第三讲 柯西不等式与排序不等式 1.二维形式的柯西不等式若a ,b ,c ,d 都是实数,则(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时,等号成立. 2.柯西不等式的向量形式 设α,β是两个向量,则|α·β|≤|α||β|,当且仅当β是零向量,或存在实数k ,使α=kβ时,等号成立. 3.二维形式的三角不等式设x 1,y 1,x 2,y 2∈R ,那么x 21+y 21+x 22+y 22≥ (x 1-x 2)2+(y 1-y 2)2. 注意:1.二维柯西不等式的三种形式及其关系定理1是柯西不等式的代数形式,定理2是柯西不等式的向量形式,定理3是柯西不等式的三角形式.根据向量的意义及其坐标表示不难发现二维形式的柯西不等式及二维形式的三角不等式均可看作是柯西不等式的向量形式的坐标表示.2.理解并记忆三种形式取“=”的条件 (1)代数形式中当且仅当ad =bc 时取等号.(2)向量形式中当存在实数k ,α=kβ或β=0时取等号.(3)三角形式中当P 1,P 2,O 三点共线且P 1,P 2在原点O 两旁时取等号. 3.掌握二维柯西不等式的常用变式(1) a 2+b 2·c 2+d 2≥|ac +bd |. (2) a 2+b 2· c 2+d 2≥|ac |+|bd |. (3) a 2+b 2·c 2+d 2≥ac +bd . (4)(a +b )(c +d )≥(ac +bd )2.4.基本不等式与二维柯西不等式的对比(1)基本不等式是两个正数之间形成的不等关系.二维柯西不等式是四个实数之间形成的不等关系,从这个意义上讲,二维柯西不等式是比基本不等式高一级的不等式.(2)基本不等式具有放缩功能,利用它可以比较大小,证明不等式,当和(或积)为定值时,可求积(或和)的最值,同样二维形式的柯西不等式也有这些功能,利用二维形式的柯西不等式求某些特殊函数的最值非常有效.二一般形式的柯西不等式1.三维形式的柯西不等式设a1,a2,a3,b1,b2,b3是实数,则(a21+a22+a23)(b21+b22+b23)≥(a1b1+a2b2+a3b3)2,当且仅当b i=0(i=1,2,3)或存在一个数k,使得a i=kb i(i=1,2,3)时,等号成立.2.一般形式的柯西不等式设a1,a2,a3,…,a n,b1,b2,b3,…,b n是实数,则(a21+a22+…+a2n)(b21+b22+…+b2n)≥(a1b1+a2b2+…+a n b n)2,当且仅当b i=0(i=1,2,…,n)或存在一个数k,使得a i=kb i(i=1,2,…,n)时,等号成立.注意:1.对柯西不等式一般形式的说明:一般形式的柯西不等式是二维形式、三维形式、四维形式的柯西不等式的归纳与推广,其特点可类比二维形式的柯西不等式来总结,左边是平方和的积,右边是积的和的平方.运用时的关键是构造出符合柯西不等式的结构形式.2.关于柯西不等式的证明:对于函数f(x)=(a1x-b1)2+(a2x-b2)2+…+(a n x-b n)2,显然f(x)≥0时x∈R恒成立,即f(x)=(a21+a22+…+a2n)x2-2(a1b1+a2b2+…+a n b n)x+(b21+b22+…+b2n)≥0对x∈R恒成立,∴Δ=4(a1b1+a2b2+…+a n b n)2-4(a21+a22+…+a2n)(b21+b22+…+b2n)≤0,除以4得(a21+a22+…+a2n)·(b21+b22+…+b2n)≥ (a1b1+a2b2+…+a n b n)2.3.一般形式柯西不等式成立的条件:由柯西不等式的证明过程可知Δ=0⇔f(x)min=0⇔a1x-b1=a2x-b2=…=a n x-b n=0⇔b1=b2=…=b n=0,或a1 b1=a2b2=…=a nb n.4.柯西不等式的几种常见变形:(1)设a21+a22+…+a2n=b21+b22+…+b2n=1,则-1≤a1b1+a2b2+…+a n b n≤1;(2)设a i∈R(i=1,2,3,…,n),则a1+a2+…+a nn≤a21+a22+…+a2nn;(3)设a i∈R,b i>0(i=1,2,3,…,n),则a21b1+a22b2+…+a2nb n≥(a1+a2+…+a n)2b1+b2+…+b n;(4)设a i b i>0(i=1,2,3,…,n),则a1b1+a2b2+…+a nb n≥(a1+a2+…+a n)2a1b1+a2b2+…+a n b n.三排序不等式1.乱序和、反序和、顺序和设a1≤a2≤…≤a n,b1≤b2≤…≤b n为两组实数,c1,c2,…,c n为b1,b2,…,b n的任一排列,称a1c1+a2c2+a3c3+…+a n c n为乱序和,a1b n+a2b n-1+a3b n-2+…+a n b1为反序和,a1b1+a2b2+a3b3+…+a n b n为顺序和.2.排序不等式(又称排序原理)设a1≤a2≤…≤a n,b1≤b2≤…≤b n为两组实数,c1,c2,…,c n是b1,b2,…,b n的任一排列,那么a1b n+a2b n -1+…+a n b1≤a1c1+a2c2+…+a n c n≤a1b1+a2b2+…+a n b n,当且仅当a1=a2=…=a n或b1=b2=…=b n时,反序和等于顺序和.3.排序原理的简记反序和≤乱序和≤顺序和.第四讲用数学归纳法证明不等式一数学归纳法1.数学归纳法的定义一般地,当要证明一个命题对于不小于某正整数n0的所有正整数n都成立时,可以用以下两个步骤:(1)证明当n=n0时命题成立.(2)假设当n=k(k∈N+且k≥n0)时命题成立,证明当n=k+1时命题也成立.在完成了这两个步骤后,就可以断定命题对于不小于n0的所有正整数都成立,这种证明方法称为数学归纳法.2.数学归纳法的适用范围适用于证明一个与无限多个正整数有关的命题. 3.数学归纳法的步骤(1)(归纳奠基)验证当n =n 0(n 0为命题成立的起始自然数)时命题成立;(2)(归纳递推)假设当n =k (k ∈N +,且k ≥n 0)时命题成立,推导n =k +1时命题也成立. (3)结论:由(1)(2)可知,命题对一切n ≥n 0的自然数都成立. 注意:用数学归纳法证明,关键在于两个步骤要做到“递推基础不可少,归纳假设要用到,结论写明莫忘掉”,因此必须注意以下三点:(1)验证是基础.数学归纳法的原理表明:第一个步骤是要找一个数n 0,这个n 0就是我们要证明的命题对象的最小自然数,这个自然数并不一定就是“1”,因此“找准起点,奠基要稳”是正确运用数学归纳法要注意的第一个问题.(2)递推是关键.数学归纳法的实质在于递推,所以从“k ”到“k +1”的过程,必须把归纳假设“n =k ”时命题成立作为条件来导出“n =k +1”时命题成立,在推导过程中,要把归纳假设用上一次或几次,没有用上归纳假设的证明不是数学归纳法.(3)正确寻求递推关系.数学归纳法的第二步递推是至关重要的,那么如何寻找递推关系呢?①在第一步验证时,不妨多计算几项,并正确写出来,这样对发现递推关系是有帮助的;②探求数列的通项公式时,要善于观察式子或命题的变化规律,观察n 处在哪个位置;③在书写f (k +1)时,一定要把包含f (k )的式子写出来,尤其是f (k )中的最后一项.除此之外,多了哪些项,少了哪些项都要分析清楚.二 用数学归纳法证明不等式举例1.数学归纳法证明不等式(1)用数学归纳法证明一个与正整数有关的不等式的步骤. ①证明:当n 取第一个值n 0时结论成立;②假设当n =k (k ∈N +,且k ≥n 0)时结论成立,证明当n =k +1时结论也成立. 由①②可知命题对从n 0开始的所有正整数n 都成立. (2)用数学归纳法证明不等式的重点.用数学归纳法证明不等式的重点在第二步(同时也是难点所在),即假设f (k )>g (k )成立,证明f (k +1)>g (k +1)成立.2.贝努利不等式(1)定义:如果x 是实数,且x >-1,x ≠0,n 为大于1的自然数,那么有(1+x )n >1+nx .(2)作用:在数学研究中经常用贝努利不等式把二项式的乘方(1+x )n 缩小为简单的1+nx 的形式,这在数值估计和放缩法证明不等式中有重要应用.例如:当x 是实数,且x >-1,x ≠0时,由贝努利不等式不难得到不等式⎝⎛⎭⎫1-x 1+x n>1-nx 1+x对一切不小于2的正整数n 成立. (3)贝努利不等式的一般形式.(1)当α是实数,并且满足α>1或α<0时,有(1+x )α≥1+αx (x >-1);(2)当α是实数,并且满足0<α<1时,有(1+x )α≤1+αx (x >-1). 3.归纳—猜想—证明的思想方法数学归纳法作为一种重要的证明方法,常常体现在“归纳—猜想—证明”这一基本思想方法中.一方面可用数学归纳法证明已有的与自然数有关的结论;更重要的是,要用不完全归纳法去发现某些结论、规律并用数学归纳法证明其正确性,形成“观察—归纳—猜想—证明”的思想方法.1.关于用数学归纳法证明不等式的四点注意(1)在从n =k 到n =k +1的过程中,应分析清楚不等式两端(一般是左端)项数的变化,也就是要认清不等式的结构特征.(2)瞄准当n =k +1时的递推目标,从中分离出n =k 时的相应式子,借助不等式性质用上归纳假设.(3)明确用上归纳假设后要证明的不等式应是怎样的,然后通过运用放缩法、分析法、比较法、综合法等方法进行证明.(4)有些不等式先用分析法转化为另一个较为简单的不等式然后再用数学归纳法证明. 2.关于贝努利不等式(1)(1+x)n>1+nx成立的两个条件:①n∈N+且n≥2;②x的取值范围是x>-1且x≠0.于是有命题:当n∈N+且n≥2时不等式(1+x)n>1+nx对一切x∈(-1,0)∪(0,+∞)恒成立.(2)常用特例:①当x>-1且x≠0时,(1+x)2>1+2x;②当x>-1且x≠0时,(1+x)3>1+3x.3.重要结论(1)当n≥5时,n2<2n.(2)当n∈N+时,|sin nθ|≤n|sin θ|.。

相关文档
最新文档