福建省福州市福清市2018-2019学年七年级(上)期中数学试卷 含解析

合集下载

2018-2019学年七年级(上)期中数学试卷(含解析)

2018-2019学年七年级(上)期中数学试卷(含解析)

2018-2019学年七年级(上)期中数学试卷一、填空题(本大题共有12小题,每小题2分,共24分)1.(2分)﹣3的相反数是.2.(2分)跳绳比赛中以跳160个为标准,多跳或少跳的个数分别用正数与负数表示,如多跳了20个记作“+20”,那么“﹣8”表示.3.(2分)单项式﹣的次数是.4.(2分)某市某楼盘房屋销售均价为每平方米10500元,该数用科学记数法表示为.5.(2分)用代数式表示“比a的3倍大5的数”.6.(2分)如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上表示“0cm”、“8cm”的点分别对应数轴上的﹣2和x,那么x的值为.7.(2分)若﹣3x m y2与5x3y n是同类项,则n﹣m=.8.(2分)绝对值不大于3的所有负整数的和是.9.(2分)已知x2﹣2y+2=0,则代数式2x2﹣4y﹣1的值是.10.(2分)如果|a﹣1|+(b+2)2=0,则(a+b)2018的值是.11.(2分)有理数a,b在数轴上的位置如图所示,则|a+b|﹣2|a﹣b|的结果为.12.(2分)在我国的民俗中常将十二生肖用于记年,顺序排列为子鼠、丑牛、寅虎、卯兔、辰龙、已蛇、午马、未羊、申猴、酉鸡、戌狗、亥猪,今年(2018年)是“戌狗”年,2050年是“”年.二、选择题(本大题共有5小题,每小题3分,共15分,在每小题所给出的四个选项中,恰有一项符合题目要求)13.(3分)下列一组数:﹣8,2.7,,,﹣0.,0,2,0.080080008…(相邻两个8之间依次增加一个0)其中无理数有()个A.0 B.1 C.2 D.314.(3分)下列式子中,符合代数式的书写格式的是()A.(a﹣b)×7 B.3a÷5b C.1ab D.15.(3分)下列各式计算正确的是()A.6a﹣5a=1 B.a+a2=3a3C.﹣(a﹣b)=﹣a+b D.2(a+b)=2a+b16.(3分)多项式x2﹣3kxy+6xy﹣8化简后不含xy项,则k等于()A.2 B.﹣2 C.0 D.317.(3分)小学时候大家喜欢玩的幻方游戏,老师稍加创新改成了“幻圆”游戏,现在将﹣1、2、﹣3、4、﹣5、6、﹣7、8分别填入图中的圆圈内,使横、竖以及内外两圈上的4个数字之和都相等,老师已经帮助同学们完成了部分填空,则图中a+b的值为()A.﹣6或﹣3 B.﹣8或1 C.﹣1或﹣4 D.1或﹣1三、解答题(本大题共有10小题,共计81分.解答时应写出必要的文字说明、证明过程或演算步骤.)18.(24分)(1)计算:﹣3﹣(﹣4)+7;(2)计算:﹣81÷×÷(﹣16);(3)计算:(﹣﹣)×(﹣24);(4)计算:﹣14﹣(﹣2)2+6×(﹣);(5)化简:3x2+5x﹣5x2+3x;(6)化简:6(m2﹣n)﹣3(n+2m2).19.(6分)画出数轴(取0.5cm为一个单位长度),用数轴上的点表示下列各数,并用“<”将它们从小到大排列.﹣2,+3.5,﹣1,1,0按照从小到大的顺序排列为.20.(6分)现定义某种新运算:对于任意两个有理数a、b,有a*b=a2﹣2b+1,例如:2*3=22﹣2×3+1=﹣1.(1)计算:3*(﹣2)的值;(2)试化简:x*(x2+1).21.(6分)老师在黑板上写了一个正确的演算过程,随后用手捂住了多项式,形式如下:﹣(a2+4ab+4b2)=a2﹣4b2(1)求所捂住的多项式;(2)当a=﹣1,b=3时求所捂住的多项式的值.22.(6分)我们知道:点A、B在数轴上分别表示有理数a、b,如图A、B两点之间的距离表示为AB,记作AB=|a﹣b|.回答下列问题:(1)数轴上表示2和5两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;(2)已知|a﹣3|=7,则有理数a=;(3)若数轴上表示数b的点位于﹣4与3的两点之间,则|b﹣3|+|b+4|=.23.(6分)某班10名男同学参加100米达标测验,成绩小于或等于15秒的达标,这10名男同学成绩记录如下(其中超过15秒记为“+”,不足15秒记为“﹣”)(1)有名男同学成绩达标,跑得最快的同学序号是号;跑得最快的同学比跑得最慢的同学快了秒;(2)这10名男同学的平均成绩是多少?24.(7分)操作与思考:一张边长为a的正方形桌面,因为实际需要,需将正方形边长增加b,从而得到一个更大的正方形,木工师傅设计了如图所示的方案:(1)方案中大正方形的边长都是,所以面积为;(2)小明还发现:方案中大正方形的面积还可以用四块小四边形的面积和来表示;(3)你有什么发现,请用数学式子表达;(4)利用(3)的结论计算20.182+2×20.18×19.82+19.822的值.25.(6分)我们把形如(n是正整数,n≥2)的分数叫做单位分数,如、、…,任何一个单位分数都可以拆成两个不同的单位分数之和,如=+、=+、=+…观察上述式子的规律,回答下面的问题:(1)把写成两个单位分数之和:=;(2)把(n是正整数,n≥2)写成两个单位分数之和:=;(3)计算:+++…+.26.(7分)阅读理解:我们把分一条线段为两条相等线段的点称为线段的中点.如图1所示,则称点M为线段AB的中点.问题解决:(1)如图2所示,点A、B、C、D、E在数轴上的对应的数分别为﹣2、﹣1、0、1、2,则图2中,线段AC的中点是点,点C是线段和线段的中点,线段AB的中点对应的数是,线段BE的中点对应的数是;(2)如图3,点E、F对应的数分别是e、f,则线段EF的中点对应的数为(用含e、f的代数式表示).27.(7分)小明根据市自来水公司的居民用水收费标准,制定了水费计算数值转换机的示意图.(用水量单位:m3,水费单位:元)(1)根据转换机程序计算下列各户月应缴纳水费(2)当x>15时,用含x的代数式表示水费;(3)小丽家10月份水费是70元,小丽家10月份用水m3.2018-2019学年七年级(上)期中数学试卷参考答案与试题解析一、填空题(本大题共有12小题,每小题2分,共24分)1.【解答】解:﹣(﹣3)=3,故﹣3的相反数是3.故答案为:3.2.【解答】解:跳绳比赛中以跳160个为标准,多跳或少跳的个数分别用正数与负数表示,如多跳了20个记作“+20”,那么“﹣8”表示少跳了8个,故答案为:少跳了8个.3.【解答】解:该单项式的次数为:4,故答案为:4.4.【解答】解:10500元,该数用科学记数法表示为1.05×104.故答案为:1.05×104.5.【解答】解:比a的3倍大5的数”用代数式表示为:3a+5,故答案为:3a+5.6.【解答】解:由题意知,x的值为﹣2+(8﹣0)=6,故答案为:6.7.【解答】解:∵﹣3x m y2与5x3y n是同类项,∴m=3,n=2,则n﹣m=2﹣3=﹣1.故答案为:﹣1.8.【解答】解:绝对值不大于3的负整数有﹣1,﹣2,﹣3,则它们的和为﹣1+(﹣2)+(﹣3)=﹣6.故答案为﹣6.9.【解答】解:∵x2﹣2y+2=0,∴x2﹣2y=﹣2.∴2x2﹣4y=﹣4.∴原式=﹣4﹣1=﹣5.故答案为:﹣510.【解答】解:由题意得,a﹣1=0,b+2=0,解得,a=1,b=﹣2,则(a+b)2018=(﹣1)2018=1,故答案为:1.11.【解答】解:根据题意得:b<0<a,则a+b<0,a﹣b>0,则|a+b|﹣2|a﹣b|=﹣a﹣b﹣2a+2b=﹣3a+b.故答案为﹣3a+b.12.【解答】解:(2050﹣2018)÷12=2…8,∴2050年是“午马”年,故答案为:午马.二、选择题(本大题共有5小题,每小题3分,共15分,在每小题所给出的四个选项中,恰有一项符合题目要求)13.【解答】解:、0.080080008…(相邻两个8之间依次增加一个0)是无理数,故选:C.14.【解答】解:选项A正确的书写格式是7(a﹣b),选项B正确的书写格式是,选项C正确的书写格式是ab,选项D的书写格式是正确的.故选:D.15.【解答】解:A、6a﹣5a=a,故本选项错误;B、a与a2不是同类项,不能合并成一项,故本选项错误;C、﹣(a﹣b)=﹣a+b,故本选项正确;D、2(a+b)=2a+2b,故本选项错误;故选:C.16.【解答】解:∵多项式x2﹣3kxy+6xy﹣8化简后不含xy项,∴﹣3k+6=0,解得:k=2.故选:A.17.【解答】解:设小圈上的数为c,大圈上的数为d,﹣1+2﹣3+4﹣5+6﹣7+8=4,∵横、竖以及内外两圈上的4个数字之和都相等,∴两个圈的和是2,横、竖的和也是2,则﹣7+6+b+8=2,得b=﹣5,6+4+b+c=2,得c=﹣3,a+c+4+d=2,a+d=1,∵当a=﹣1时,d=2,则a+b=﹣1﹣5=﹣6,当a=2时,d=﹣1,则a+b=2﹣5=﹣3,故选:A.三、解答题(本大题共有10小题,共计81分.解答时应写出必要的文字说明、证明过程或演算步骤.)18.【解答】解:(1)﹣3﹣(﹣4)+7=﹣3+4+7=8;(2)﹣81÷×÷(﹣16)=﹣81×××(﹣)=1;(3)(﹣﹣)×(﹣24)=﹣9+4+18=13;(4)﹣14﹣(﹣2)2+6×(﹣)=﹣1﹣4﹣2=﹣7;(5)3x2+5x﹣5x2+3x=﹣2x2+8x;(6)6(m2﹣n)﹣3(n+2m2)=6m2﹣6n﹣3n﹣6m2=﹣9n.19.【解答】解:如图所示:按照从小到大的顺序排列为﹣2<﹣1<0<1<3.5.故答案为:﹣2<﹣1<0<1<3.5.20.【解答】解:(1)根据题中的新定义得:原式=9+4+1=14;(2)根据题意得:原式=x2﹣2(x2+1)+1=﹣x2﹣1.21.【解答】解:(1)原式=(a2﹣4b2)+(a2+4ab+4b2)=2a2+4ab(2)当a=﹣1,b=3时,原式=2﹣12=﹣1022.【解答】解:(1)数轴上表示2和5两点之间的距离是:|5﹣2|=3,数轴上表示1和﹣3的两点之间的距离是:|﹣3﹣2|=5.故答案是:3;5;(2)依题意得:a﹣3=7,或a﹣3=﹣7,解得a=10或a=﹣4,故答案是:10或﹣4;(3)若数轴上表示数b的点位于﹣4与3的两点之间,则|b﹣3|+|b+4|=3﹣b+b+4=7.故答案是:7.23.【解答】解:(1)有7名男同学成绩达标,跑得最快的同学序号是6号;跑得最快的同学比跑得最慢的同学快了(15+1.2)﹣(15﹣1.4)=2.6秒.故答案为7,6,2.6;(2)(+1.2﹣0.6﹣0.8+1+0﹣1.4﹣0.5﹣0.4﹣0.3+0.8)÷10=﹣0.1,15﹣0.1=14.9(秒).答:这10名男同学的平均成绩是14.9秒.24.【解答】解:(1)方案中大正方形的边长都是(a+b),所以面积为(a+b)2,故答案为:(a+b),(a+b)2;(2)方案中大正方形的面积还可以用四块小四边形的面积和来表示:a2+ab+ab+b2=a2+2ab+b2,故答案为:(a2+2ab+b2);(3)根据大正方形的面积不变可知(a+b)2=a2+2ab+b2,故答案为:(a+b)2=a2+2ab+b2.(4)20.182+2×20.18×19.82+19.822=(20.18+19.82)2=402=1600.25.【解答】解:(1)根据题意知,=+,故答案为:+.(2)根据题意知,=+,故答案为:+.(3)原式=﹣+﹣+﹣+…+﹣=﹣=.26.【解答】解:(1)线段AC的中点是点B,点C是线段BD和线段AE的中点,线段AB 的中点对应的数是﹣,线段BE的中点对应的数是;故答案为:B,BD,AE,﹣,;(2)∵点E、F对应的数分别是e、f,∴线段EF的中点对应的数为,故答案为:.27.【解答】解:(1)张大爷水费:6×3=18元;王阿姨水费:15×3=45元;小明家水费:(17﹣15)×5+15×3=55元.故答案为:18,4,55.(2)观察示意图得:当x>15时,月应缴纳水费(元)用x的代数式表示为15×3+5(x﹣15)=5x﹣30;故答案为:5x﹣30;(3)(70﹣15×3)÷5+15=25÷5+15=5+15=20(m3).答:小丽家该月用水20m3.故答案为:20;。

2018-2019学年福建省福州市七年级(上)期中数学试卷

2018-2019学年福建省福州市七年级(上)期中数学试卷

2018-2019学年福建省福州市七年级(上)期中数学试卷一、选择题(共10小题,每题2分,满分20分;每小题只有一个正确的选项)1.(2分)在数|﹣2|,﹣(﹣2),+(﹣2)中,负数的个数有()个.A.0B.1C.2D.32.(2分)下列计算正确的是()A.﹣1﹣1=0B.﹣1+1=0C.1﹣(﹣1)=0D.(﹣1)+(﹣1)=03.(2分)一个两位数,十位数是a,个位数是b,则这个两位数可以表示为()A.ab B.10a+b C.10b+a D.a+b4.(2分)连续4个﹣3相乘可表示为()A.4×(﹣3)B.﹣34C.(﹣3)4D.4﹣35.(2分)某种速冻水饺的储藏温度是﹣18±2℃,四个冷藏室的温度如下,则不适合储藏此种水饺的是()A.﹣17℃B.﹣18℃C.﹣19℃D.﹣22℃6.(2分)下列各组数中,数值相等的是()A.(﹣2)3与﹣23B.23与32C.(﹣3)2与﹣32D.﹣(﹣2)与﹣|﹣2|7.(2分)长方形的周长为10,它的长是a,那么它的宽是()A.10﹣a B.10﹣2a C.5﹣a D.5﹣2a8.(2分)已知a,b两数在数轴上对应的点如图所示,下列结论正确的是()A.a>b B.ab<0C.b﹣a>0D.a+b>09.(2分)一个多项式与x2﹣x+1的和是x4+1,则这个多项式的次数是()A.4B.3C.2D.110.(2分)电影院第一排有m个座位,后面每排比前一排多2个座位,则第n排的座位数为()A.m+2n B.mn+2C.m+2(n﹣1)D.m+n+2二、填空题(共6小题,每题3分,满分18分)11.(3分)单项式﹣3x2y的系数是.12.(3分)用四舍五入法取近似数:π(精确到百分位)≈.13.(3分)比x的3倍小2的数可表示为.14.(3分)若2a2m b3和a4b n﹣2是同类项,则m+n的值是.15.(3分)已知a﹣b=﹣4,c+d=3,则(3b+c)﹣(3a﹣d)的值是.16.(3分)已知a,b互为相反数,则a+2a+3a+…+100a+100b+…+3b+2b+b的值是.三.解答题(满分62分)17.(4分)在数轴上表示下列各数,并按从小到大的顺序用“<”把这些数连接起来:1.5,﹣2,3,﹣3.5,,018.(12分)计算:(1)4﹣8+6﹣10;(2)(﹣+)×(﹣24);(3)(﹣2)2×5﹣(﹣2.5)÷0.5;(4)﹣32+(﹣24)÷(﹣4)﹣(﹣3)3×(﹣).19.(7分)化简:(1)a﹣a+2a(2)(x﹣y)﹣2(2x﹣3y)20.(6分)化简求值:xy﹣2(xy﹣y2)+(﹣xy+y2),其中x=﹣3,y=.21.(6分)观察下列各式:定义一种新运算“⊙”:1⊙3=1×4+3=7,3⊙﹣1=3×4﹣1=11,5⊙4=5×4+4=244⊙(﹣3)=4×4﹣3=13,(﹣2)⊙(﹣5)=(﹣2)×4﹣5=﹣13,……(1)写出一般结论:a⊙b=;(2)如果a≠b,那么a⊙b b⊙a(填“=”或“≠”)(3)先化简,再求值:(a﹣b)⊙(2a+3b).其中a=﹣,b=2019.22.(7分)在今年的“十一”黄金周的7天长假中,某风景区每天旅游人数变化如下表(正号表示人数比前一天多,负号表示比前一天少)日期1日2日3日4日5日6日7日人数变化+1.8﹣0.6+0.2﹣0.7﹣1.3+0.5﹣2.4(单位:万人)(1)若9月30日的游客人数为4.2万人,则10月4日的游客人数是多少万人?(2)7天中游客人数最多的一天比最少的一天多几万人?(3)如果每万人带来的经济收入约为100万元,则该风景区黄金周七天的旅游总收入约为多少元?(结果用科学记数法来表示)23.(6分)小丽暑假期间参加社会实践活动,从某批发市场以批发价每个m元的价格购进200个手机充电宝,然后每个加价n元到市场出售.由于开学临近,小丽在成功售出150个充电宝后,决定将剩余充电宝按售价8折出售,并在开学前全部售完.解答下列问题(结果用含m,n的式子表示)(1)小丽实际销售总金额是多少元?(2)小丽销售完这批充电宝的利润是多少元?24.(7分)观察下列三行数,并完成后面的问题:①﹣2,4,﹣8,16,﹣32,…;②1,﹣2,4,﹣8,16,…;③0,﹣3,3,﹣9,15…;(1)根据排列规律,分别写出上面三行数的第6个数;(2)设x、y、z分别表示第①、②、③行数的第2019个数字,计算x+y+z的值.25.(7分)已知:b是最小的正整数,且a、b满足(c﹣5)2+|a+b|=0,请回答问题:(1)请直接写出a、b、c的值:a=,b=,c=.(2)a、b、c所对应的点分别为A、B、C,开始在数轴上运动,若点A以每秒2个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和6个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.2018-2019学年福建省福州市七年级(上)期中数学试卷参考答案一、选择题(共10小题,每题2分,满分20分;每小题只有一个正确的选项)1.B;2.B;3.B;4.C;5.D;6.A;7.C;8.A;9.A;10.C;二、填空题(共6小题,每题3分,满分18分)11.﹣3;12.3.14;13.3x﹣2;14.7;15.15;16.0;三.解答题(满分62分)17.;18.;19.;20.;21.4a+b;≠;22.;23.;24.;25.﹣1;1;5;。

2018-2019学年七年级(上)期中数学试卷参考答案与试题解析

2018-2019学年七年级(上)期中数学试卷参考答案与试题解析

2018-2019学年七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共计36分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的序号填在括号内)1.(3分)在数轴上,原点及原点右边的点表示的数是()A.正数B.负数C.非正数D.非负数分析:本题可根据数轴的定义,原点表示的数是0,原点右边的点表示的数是正数,都是非负数.解答:解:依题意得:原点及原点右边所表示的数大于或等于0.故选D.点评:解答此题只要知道数轴的定义即可.在数轴上原点左边表示的数为负数,原点右边表示的数为正数,原点表示数0.2.(3分)当x=1时,代数式2x+5的值为()A. 3 B. 5 C.7 D.﹣2考点:代数式求值.专题:计算题.分析:将x=1代入代数式2x+5即可求得它的值.解答:解:当x=1时,2x+5=2×1+5=7.故选:C.点评:本题考查代数式的求值问题,直接把值代入即可.3.(3分)计算:﹣32+(﹣2)3的值是()A.0 B.﹣17 C.1D.﹣1考点:有理数的乘方.专题:计算题.分析:根据有理数的乘方法则计算:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.解答:解:﹣32+(﹣2)3=﹣9﹣8=﹣17.故选B.点评:本题考查了有理数的乘方法则,解题的关键是牢记法则,此题比较简单,易于掌握.4.(3分)x增加2倍的值比x扩大5倍少3,列方程得()A.2x=5x+3 B.2x=5x﹣3 C.3x=5x+3 D.3x=5x﹣3考点:由实际问题抽象出一元一次方程.专题:和差倍关系问题.分析:首先理解题意,x增加2倍即是3x,x扩大5倍即为5x,从而列出方程即可.解答:解:因为x增加2倍的值应为x+2x=3x,x扩大5倍即为5x,所以由题意可得出方程:3x=5x﹣3.故选D.点评:此题的关键是理解增加和扩大的含义,否则很容易出错.5.(3分)方程2x+a﹣4=0的解是x=﹣2,则a等于()A.﹣8 B.0 C. 2 D.8考点:方程的解.分析:方程的解就是能够使方程左右两边相等的未知数的值,即利用方程的解代替未知数,所得到的式子左右两边相等.解答:解:把x=﹣2代入方程2x+a﹣4=0,得到:﹣4+a﹣4=0解得a=8.故选D.点评:本题主要考查了方程解的定义,已知x=﹣2是方程的解实际就是得到了一个关于a 的方程.6.(3分)如果a与b互为相反数,x与y互为倒数,则代数式|a+b|﹣2xy值为()A.0 B.﹣2 C.﹣1 D.无法确定考点:有理数的减法;相反数;倒数.专题:计算题.分析:根据相反数的定义:a与b互为相反数,必有a+b=0,即|a+b|=0;x与y互为倒数,则xy=1;据此代入即可求得代数式的值.解答:解:∵a与b互为相反数,∴必有a+b=0,即|a+b|=0;又∵x与y互为倒数,∴xy=1;∴|a+b|﹣2xy=0﹣2=﹣2.故选B.点评:主要考查相反数、倒数的定义.相反数的定义:只有符号相反的两个数互为相反数,0的相反数是0.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.本题所求代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式a+b和xy的值,然后利用“整体代入法”求代数式的值.7.(3分)减去2﹣x等于3x2﹣x+6的整式是()A.3x2﹣2x+8 B.3x2+8 C.3x2﹣2x﹣4 D.3x2+4考点:整式的加减.分析:设该整式为A,则A﹣(2﹣x)=3x2﹣x+6,求出A即可.解答:解:设该整式为A,∵A减去2﹣x等于3x2﹣x+6,∴A﹣(2﹣x)=3x2﹣x+6,∴A=3x2﹣x+6+2﹣x=3x2﹣2x+8.故选A.点评:本题考查的是整式的加减,熟知整式加减的法则是解答此题的关键.8.(3分)在①近似数39.0有三个有效数字;②近似数2.5万精确到十分位;③如果a<0,b>0,那么ab<0;④多项式a2﹣2a+1是二次三项式中,正确的个数有()A.1个B.2个C.3个D. 4个考点:不等式的性质;近似数和有效数字;多项式.分析:根据有效数字、精确度的定义,有理数的乘法符号法则及多项式的次数和项数的定义作答.解答:解:①正确;②近似数2.5万精确到千位,错误;③正确;④正确.故选C.点评:本题主要考查了有效数字、精确度、多项式的次数和项数的定义,以及有理数的乘法符号法则.有效数字:在四舍五入后的近似数中,从左边第一个不是0的数字起到右边最后一个精确的数位止,所有的数字都叫它的有效数字.精确度:一个近似数,四舍五入到哪一位,就叫精确到哪一位.有理数的乘法符号法则:两数相乘,同号得正,异号得负.多项式的次数:一个多项式中,次数最高项的次数叫做这个多项式的次数.多项式的项数:一个多项式含有几项,就叫几项式.9.(3分)一批电脑进价为a元,加上20%的利润后优惠8%出售,则售出价为()A.a(1+20%)B.a(1+20%)8% C.a(1+20%)(1﹣8%)D.8%a考点:列代数式.分析:此题要根据题意列出代数式.可先求加上20%的利润价格后,再求出又优惠8%的价格.解答:解:依题意可知加上20%的利润后价格为a(1+20%)又优惠8%的价格是a(1+20%)(1﹣8%)∴售出价为a(1+20%)(1﹣8%).故选C.点评:读懂题意,找到关键语列出代数式.需注意用字母表示数时,在代数式中出现的乘号,通常简写做“•”或者省略不写,数字与数字相乘一般仍用“×”号.10.(3分)已知有理数a,b在数轴上的位置如图所示,则下列结论中正确的是()A.a+b>0 B.a﹣b>0 C.a﹣1>0 D.b+1>0考点:数轴.分析:根据数轴上a|的位置可以判定a与b大小与符号;然后据此来求a、b与1的大小比较.解答:解:根据图示知:b<﹣1<0<a<1;∴a+b<0,a﹣b>0,a﹣1<0,b+1<0.故选B.点评:本题考查了数轴.解答本题时,需注意:b在﹣1的左边,a在1的左边.11.(3分)个位数字为a,十位数字为b,则这个两位数可用代数式表示为()A.ab B.ba C.10a+b D. 10b+a考点:列代数式.分析:两位数=10×十位数字+个位数字,把相关字母代入即可求解.解答:解:∵个位上的数字是a,十位上的数字是b,∴这个两位数可表示为10b+a.故选:D.点评:本题考查列代数式,找到所求式子的等量关系是解决问题的关键.用到的知识点为:两位数=10×十位数字+个位数字.12.(3分)小明在一张日历上圈出一个竖列且相邻的三个日期,算出它们的和是48,则这三天分别是()A.6,16,26 B.15,16,17 C.9,16,23 D.不确定考点:一元一次方程的应用.专题:数字问题.分析:竖列且相邻的三个日期,则上边的数总比下边的数小7,根据这个关系可以设中间的数是x,列出方程求解.解答:解:设中间的数是x,则上边的数是x﹣7,下边的数是x+7,根据题意列方程得:x+(x﹣7)+(x+7)=48解得:x=16,x﹣7=9,x+7=23这三天分别是9,16,23.故选C.点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.二、填空题(本大题共10小题,每题3分,共计30分.不需写出解答过程,请把答案直接填写在横线上)13.(4分)单项式的系数是,次数是3.考点:单项式.专题:应用题.分析:根据单项式系数、次数的定义来求解.单项式中的数字因数叫做这个单项式的系数,所有字母的指数和叫做这个单项式的次数.解答:解:单项式的数字因数是,所有字母的指数和为1+2=3,所以它的系数是,次数是3.故答案为,3.点评:确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.本题注意π不是字母,是一个数,应作为单项式的数字因数.14.(4分)比较大小:﹣3<2;﹣>﹣|﹣|.考点:有理数大小比较.专题:计算题.分析:根据正数大于一切负数进行比较即可;先比较两个数的绝对值的大小,再根据两个负数相比较,绝对值大的反而小比较即可.解答:解:﹣3<2;|﹣|=,﹣|﹣|=﹣,|﹣|=,=,=,<,∴﹣>﹣|﹣|.故答案为:<,>.点评:本题考查了有理数的大小比较,熟记正数大于一切负数,两个负数相比较,绝对值大的反而小是解题的关键.15.(4分)已知:2x+3y=4,则代数式(2x+3y)2+4x+6y﹣2的值是22.考点:代数式求值.专题:整体思想.分析:把2x+3y的值整体代入所求代数式求值即可.解答:解:当2x+3y=4时,原式=(2x+3y)2+2(2x+3y)﹣2=42+2×4﹣2=22.点评:代数式求值以及整体代入的思想.16.(4分)若单项式与﹣2x m y3是同类项,则m﹣n的值为﹣1.考点:同类项.专题:计算题.分析:此题的切入点是由同类项列等式.由已知与﹣2x m y3是同类项,根据其意义可得,x2=x m,y n=y3,所以能求出m,n的值.解答:解:∵单项式与﹣2x m y3是同类项,∴x2=x m,y n=y3,∴m=2,n=3,则m﹣n=2﹣3=﹣1,故答案为:﹣1点评:此题考查了学生对同类项的理解和掌握.关键是根据题意得出关系式x2=x m,y n=y3求得m,n的值.17.(4分)如果3x5a﹣2=﹣6是关于x的一元一次方程,那么a=,方程的解x=﹣2.考点:一元一次方程的定义.专题:计算题.分析:若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程.据此可得出关于m的方程,继而可求出m的值.解答:解:由一元一次方程的特点得5a﹣2=1,解得:a=,故原方程可化为3x=﹣6,解得:x=﹣2.点评:判断一元一次方程,第一步先看是否是整式方程,第二步化简后是否只含有一个未知数,且未知数的次数是1,此类题目可严格按照定义解题.18.(4分)2008年北京奥运会火炬接力传递距离约为137000千米,将137000用科学记数法表示为 1.37×105.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:137000=1.37×105,故答案为:1.37×105.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.19.(4分)某股票星期一收盘时每股18元,星期二收盘每股跌了1.8元,星期三收盘每股涨了1.1元,则星期三的收盘价为每股17.3元.考点:有理数的加减混合运算.专题:应用题.分析:根据股票的涨跌信息,转化为数学问题,这里根据具有相反意义的量规定一个为正,则另一个为负,再运用有理数的加减混合运算规则.就可以容易的得到答案.解答:解:星期三的收盘价为每股18+(﹣1.8)+1.1=17.3元.故答案为:17.3.点评:考查了有理数的加减混合运算.有理数加减混合运算的方法:有理数加减法统一成加法.方法指引:(1)在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.(2)转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.20.(4分)按下面程序计算:输入x=﹣3,则输出的答案是﹣12.考点:代数式求值.专题:图表型.分析:根据程序写出运算式,然后把x=﹣3代入进行计算即可得解.解答:解:根据程序可得,运算式为(x3﹣x)÷2,输入x=﹣3,则(x3﹣x)÷2=[(﹣3)3﹣(﹣3)]÷2=(﹣27+3)÷2=﹣12所以,输出的答案是﹣12.故答案为:﹣12.点评:本题考查了代数式求值,根据题目提供程序,准确写出运算式是解题的关键.21.(4分)若m、n满足|m﹣2|+(n+3)2=0,则n m=9.考点:非负数的性质:偶次方;非负数的性质:绝对值.分析:根据非负数的性质可求出m、n的值,再将它们代入n m中求解即可.解答:解:∵m、n满足|m﹣2|+(n+3)2=0,∴m﹣2=0,m=2;n+3=0,n=﹣3;则n m=(﹣3)2=9.点评:本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.22.(4分)有两桶水,甲桶水装有180升,乙桶装有150升,要使两桶水的重量相同,则甲桶应向乙桶倒水15升.考点:一元一次方程的应用.专题:应用题.分析:要求甲桶应向乙桶倒水多少,可先设甲桶应向乙桶倒水x升,然后根据甲桶﹣倒水=乙桶+倒水这个等量关系列出方程求解.解答:解:设甲桶应向乙桶倒水x升.则180﹣x=150+x解得:x=15故填15.点评:此题的关键是找出等量关系,即:甲桶﹣倒水=乙桶+倒水.三、解答题(本大题共5小题,23至28小题每题8分,共计84分,请在指定区域内作答,解答时应写出必要文字说明、证明过程或演算步骤.)23.(16分)(1)1+(﹣1)+4﹣4(2)﹣14+(1﹣0.5)××|2﹣(﹣3)2|(3)6a2+4ab﹣4(2a2+ab)(4)2(a2﹣2ab﹣b2)+(a2+3ab+3b2)(5)3x﹣(2x+7)=32(6)=1﹣.考点:有理数的混合运算;整式的加减;解一元一次方程.专题:计算题.分析:(1)原式结合后,相加即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(3)原式去括号合并即可得到结果;(4)原式去括号合并即可得到结果;(5)方程去括号,移项合并,将x系数化为1,即可求出解;(6)方程去分母,去括号,移项合并,将x系数化为1,即可求出解.解答:解:(1)原式=6﹣6=0;(2)原式=﹣1+××7=﹣1+=;(3)原式=6a2+4ab﹣8a2﹣2ab=﹣2a2+2ab;(4)原式=2a2﹣4ab﹣2b2+a2+3ab+3b2=3a2﹣ab+b2;(5)方程去括号得:3x﹣2x﹣7=32,移项合并得:x=41;(6)去分母得:10x+5=15﹣3x+3.移项合并得:13x=13,解得:x=1.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.24.(14分)有这样一道计算题:“计算2x3﹣3x2y﹣2xy2﹣x3+2xy2﹣y2﹣x3+3x2y﹣y2的值,其中x=,y=﹣1”,王聪同学把“x=”错看成“x=﹣”,但计算结果仍正确,许明同学把“y=﹣1”错看成“y=1”,计算结果也是正确的,你知道其中的道理吗?请加以说明.考点:整式的混合运算—化简求值.分析:先将2x3﹣3x2y﹣2xy2﹣x3+2xy2﹣y2﹣x3+3x2y﹣y2合并同类项,再进行分析.解答:解:将原式合并同类项得﹣2y2,此代数式与x的取值无关,所以王聪将“x=”错看成“x=﹣”,计算结果仍正确;又因为当y取互为相反数时,﹣2y2的值相同,所以许明同学把“y=﹣1”错看成“y=1”,计算结果也是正确的.点评:本题是一道生活问题,解答时要读出题中的隐含条件:把“x=”错看成“x=﹣”,但计算结果仍正确,即可考虑此代数式与x的取值无关,进而想到先合并同类项.25.(16分)某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一21 二三四五六日增减+5 ﹣2 ﹣4 +13 ﹣10 +16 ﹣9(1)根据记录的数据可知该厂星期四生产自行车多少辆;(2)根据记录的数据可知该厂本周实际生产自行车多少辆;(3)产量最多的一天比产量最少的一天多生产自行车多少辆;(4)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,那么该厂工人这一周的工资总额是多少?考点:有理数的加法.专题:应用题;图表型.分析:(1)该厂星期四生产自行车200+13=213辆;(2)该厂本周实际生产自行车(5﹣2﹣4+13﹣10+16﹣9)+200×7=1409辆;(3)产量最多的一天比产量最少的一天多生产自行车16﹣(﹣10)=26辆;(4)这一周的工资总额是200×7×60+(5﹣2﹣4+13﹣10+16﹣9)×(60+15)=84675辆.解答:解:(1)超产记为正、减产记为负,所以星期四生产自行车200+13辆,故该厂星期四生产自行车213辆;(2)根据题意5﹣2﹣4+13﹣10+16﹣9=9,200×7+9=1409辆,故该厂本周实际生产自行车1409辆;(3)根据图示产量最多的一天是216辆,产量最少的一天是190辆,216﹣190=26辆,故产量最多的一天比产量最少的一天多生产自行车26辆;(4)根据图示本周工人工资总额=7×200×60+9×75=84675元,故该厂工人这一周的工资总额是84675元.点评:此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.26.(12分)列方程解应用题.把一批图书分给某班学生阅读,如果每人分3本,则剩余20本,如果每人分4本,则还缺25本.这个班有多少名学生?考点:一元一次方程的应用.专题:应用题.分析:可设有x名学生,根据总本数相等和每人分3本,剩余20本,每人分4本,缺25本可列出方程,求解即可.解答:解:设有x名学生,根据书的总量相等可得:3x+20=4x﹣25,解得:x=45(名).答:这个班有45名学生.点评:本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目中书的总量相等的等量关系列出方程,再求解.27.(16分)先阅读下列解题过程,然后解答问题(1)、(2)解方程:|x+3|=2.解:当x+3≥0时,原方程可化为:x+3=2,解得x=﹣1;当x+3<0时,原方程可化为:x+3=﹣2,解得x=﹣5.所以原方程的解是x=﹣1,x=﹣5.(1)解方程:|3x﹣2|﹣4=0;(2)探究:当b为何值时,方程|x﹣2|=b+1 ①无解;②只有一个解;③有两个解.考点:同解方程.专题:应用题;分类讨论.分析:(1)首先要认真审题,解此题时要理解绝对值的意义,要会去绝对值,然后化为一元一次方程即可求得.(2)运用分类讨论进行解答.解答:答:(1)当3x﹣2≥0时,原方程可化为:3x﹣2=4,解得x=2;当3x﹣2<0时,原方程可化为:3x﹣2=﹣4,解得x=﹣.所以原方程的解是x=2或x=﹣;(2)∵|x﹣2|≥0,∴当b+1<0,即b<﹣1时,方程无解;当b+1=0,即b=﹣1时,方程只有一个解;当b+1>0,即b>﹣1时,方程有两个解.点评:此题比较难,提高了学生的分析能力,解题的关键是认真审题.。

福建省福清市2018-2019学年七年级(上)期中数学试卷含解析

福建省福清市2018-2019学年七年级(上)期中数学试卷含解析

2018-2019学年七年级(上)期中数学试卷一.选择题(共10小题)1.有理数﹣2018的相反数是()A.2018 B.﹣2018 C.D.﹣81022.单项式﹣4a3b2的系数是()A.5 B.3 C.4 D.﹣43.瑞士数学家欧拉是史上最伟大的四个数学家之一,目前在百度上搜索关键词“欧拉”,显示的搜索结果约为12 600 000条.将12 600 000用科学记数法表示应为()A.126×105B.1.26×107C.1.26×108D.0.126×108 4.在有理数0,,5,3.2,﹣20%中,分数有()A.1个B.2个C.3个D.4个5.下列运用等式的性质,变形不一定正确的是()A.若x=y,则x+6=y+6 B.若x=y,则C.若x=y,则ax=ay D.若x=y,则6﹣x=6﹣y6.如图,三角尺(阴影部分)的面积为()A.ab﹣2πr B.C.ab﹣πr2D.7.下列各组数中,不相等的是()A.+(﹣3)与﹣(+3)B.﹣|﹣3|与﹣3C.(﹣3)2与﹣32D.(﹣3)3与﹣338.把方程x﹣4x=4的解用数轴上的点表示出来,那么该点在图中的()A.点M,点N之间B.点N,点O之间C.点O,点P之间D.点P,点Q之间9.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度是60km/h,水流速度是akm/h,3h后两船相距()A.6a千米B.3a千米C.360千米D.180千米10.1小王在某月的日历上圈出了如图所示的四个数,则这四个数的和可能是()A.24 B.27 C.28 D.30二.填空题(共6小题)11.比较大小:﹣10 ﹣9.12.用四舍五入法取近似数:1.2356≈.(精确到百分位)13.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入1000元记作+1000元,那么﹣700元表示.14.已知a﹣2b=5,则式子3a﹣6b+2的值为.15.若M,N是两个多项式,且M+N=6x2,则符合条件的多项式M,N可以是:M=,N=.(写出一组即可)16.已知m=,n2=n,则m+n的最小值为.三.解答题(共9小题)17.计算:(1)16+(﹣18)÷2(2)(﹣+)×2418.化简:(1)m﹣3n+2m+4n(2)(5a2+2a﹣1)﹣4(3﹣8a+2a2)19.(1)解方程:2x+14=2﹣x;(2)计算:﹣+(﹣)3÷(﹣12+).20.先化简,后求值:x2﹣[x2﹣2xy+3(xy﹣)],其中x=3,y=﹣4.21.刚刚升入初三,学习成绩优异但体育一般的王晴同学未雨绸缪,已经为明年的体育中考做起了准备.上周末她在家练习1分钟跳绳,以每分钟150下为基准,超过或不足的部分分别用正负数来表示,8次成绩(单位:下)分别是﹣10,﹣8,﹣5,﹣2,+2,+8,+3,﹣4.(1)成绩最好的一次比最差的一次多跳多少下?(2)求王晴这8次跳绳的平均成绩.22.现定义一种新运算“⊕”:对于任意有理数x,y,都有x⊕y=3x+2y,例如5⊕1=3×5+2×1=17.(1)求(﹣4)⊕(﹣3)的值;(2)化简:a⊕(3﹣2a).23.某校运动会结束后,学校采购员去文具超市买水笔和笔记本两种运动会奖品,其中笔记本看中了A,B两家超市的一种特色品牌,两家超市这种笔记本品质一样,原价均为5元/本.现在两家超市这种笔记本都在做促销活动,A超市每本按原价的90%优惠,B超市规定:不超过10本的部分,每本5元;超过10本的部分每本4元.(1)要购买这种笔记本x本(x>10),在A家买需要元,在B家买需要元;(2)学校决定购买50本这种笔记本,采购员应选择在哪家购买更优惠?请说明理由.24.观察下表三组数中每组数的规律后,回答下列问题:(1)请完成上表中四处空格的数据;(2)可以预见,随着n值的逐渐变大,三个整式中,值最先超过10000的是,C组中的某个数(填“可能”或“不可能”)在A组中出现;(3)下面再给出D组数,观察它与C组的关系,写出D组的第n个数:.D组﹣1,5,7,29,79,245,727……【提示:将D组每个数分别减去C组中对应位置的数,看看发现什么?】25.已知A,B,C三点在数轴上的位置如图所示,它们表示的数分别是a,b,c.(1)填空:abc0,a+b0,ab﹣ac0;(填“>”,“=”或“<”)(2)若|a|=2且点B到点A,C的距离相等,①当b2=16时,求c的值;②P是数轴上B,C两点之间的一个动点,设点P表示的数为x,当P点在运动过程中,bx+cx+|x﹣c|﹣10|x+a|的值保持不变,求b的值.参考答案与试题解析一.选择题(共10小题)1.有理数﹣2018的相反数是()A.2018 B.﹣2018 C.D.﹣8102【分析】只有符号不同的两个数叫做互为相反数.【解答】解:有理数﹣2018的相反数是2018.故选:A.2.单项式﹣4a3b2的系数是()A.5 B.3 C.4 D.﹣4【分析】直接根据单项式系数的定义进行解答即可.【解答】解:∵单项式﹣4a3b2的数字因数是﹣4,∴此单项式的系数是﹣4,故选:D.3.瑞士数学家欧拉是史上最伟大的四个数学家之一,目前在百度上搜索关键词“欧拉”,显示的搜索结果约为12 600 000条.将12 600 000用科学记数法表示应为()A.126×105B.1.26×107C.1.26×108D.0.126×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将12 600 000用科学记数法表示为:1.26×107.故选:B.4.在有理数0,,5,3.2,﹣20%中,分数有()A.1个B.2个C.3个D.4个【分析】根据有理数的分类解答即可.【解答】解:在有理数0,,5,3.2,﹣20%中,分数有,3.2,﹣20%共3个,故选:C.5.下列运用等式的性质,变形不一定正确的是()A.若x=y,则x+6=y+6 B.若x=y,则C.若x=y,则ax=ay D.若x=y,则6﹣x=6﹣y【分析】根据等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.【解答】解:A、若x=y,则x+6=y+6是正确的,不符合题意;B、若x=y,则ax=ay是正确的,不符合题意;C、若x=y≠0,当a≠b≠0时,则≠,原来的计算是错误,符合题意;D、若x=y,则6﹣x=6﹣y是正确的,不符合题意.故选:B.6.如图,三角尺(阴影部分)的面积为()A.ab﹣2πr B.C.ab﹣πr2D.【分析】阴影部分面积等于三角形的面积减去圆的面积.【解答】解:阴影部分的面积为:S△﹣S圆=ab﹣πr2,故选:D.7.下列各组数中,不相等的是()A.+(﹣3)与﹣(+3)B.﹣|﹣3|与﹣3C.(﹣3)2与﹣32D.(﹣3)3与﹣33【分析】分别计算各选项中两式的结果,比较即可.【解答】解:A.+(﹣3)=﹣(+3)=﹣3,此选项不符合题意;B.﹣|﹣3|=﹣3,此选项不符合题意;C.(﹣3)2=9,﹣32=﹣9,此选项符合题意;D.(﹣3)3=﹣33=﹣27,此选项不符合题意;故选:C.8.把方程x﹣4x=4的解用数轴上的点表示出来,那么该点在图中的()A.点M,点N之间B.点N,点O之间C.点O,点P之间D.点P,点Q之间【分析】通过解一元一次方程求得x=﹣,将其在数轴上找出来即可.【解答】解:解方程x﹣4x=4得到:x=﹣,∵﹣2<﹣<﹣1,∴该点在图中的位置是点M与点N之间,故选:A.9.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度是60km/h,水流速度是akm/h,3h后两船相距()A.6a千米B.3a千米C.360千米D.180千米【分析】根据:3h后甲、乙间的距离=甲船行驶的路程+乙船行驶的路程即可得【解答】解:由题意知甲顺水航行的速度为(60+a)km/h,乙逆水航行的速度为(60﹣a)km/h,则3h后两船相距3(60+a)+3(60﹣a)=360(km),故选:C.10.1小王在某月的日历上圈出了如图所示的四个数,则这四个数的和可能是()A.24 B.27 C.28 D.30【分析】根据题意表示出各数,进而分析得出答案.【解答】解:设左上角为x,则其它数为:x+1,x+8,x+9,由题意可得:x+x+1+x+8+x+9=4x+18,当x=1时,四个数的和为:22;当x=2时,四个数的和为:26;当x=3时,四个数的和为:30;故选:D.二.填空题(共6小题)11.比较大小:﹣10 <﹣9.【分析】根据有理数的大小比较法则比较即可.【解答】解:﹣10<﹣9,故答案为:<.12.用四舍五入法取近似数:1.2356≈ 1.24 .(精确到百分位)【分析】把千分位上的数字5进行四舍五入即可.【解答】解:1.2356≈1.24(精确到百分位).故答案为:1.24.13.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入1000元记作+1000元,那么﹣700元表示支出700元.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:由题意得:﹣700元表示支出700元.故答案为:支出700元.14.已知a﹣2b=5,则式子3a﹣6b+2的值为17 .【分析】将所求代数式用含a﹣2b的式子表示,然后再代入求值即可.【解答】解:3a﹣6b+2=3(a﹣2b)+2.当a﹣2b=5时,原式=3×5+2=17.故答案为:17.15.若M,N是两个多项式,且M+N=6x2,则符合条件的多项式M,N可以是:M=2x2+1 ,N=4x2﹣1(答案不唯一).(写出一组即可)【分析】根据整式的加减混合运算法则计算,得到答案.【解答】解:当M=2x2+1,N=4x2﹣1时,M+N=(2x2+1)+(4x2﹣1)=2x2+1+4x2﹣1=6x2,故答案为:2x2+1;4x2﹣1.16.已知m=,n2=n,则m+n的最小值为﹣1 .【分析】根据倒数的定义和有理数的乘方解答即可.【解答】解:因为m=,n2=n,所以m=±1,n=0或1,当m=1,n=0时,m+n=1;当m=1,n=1时,m+n=2;当m=﹣1,n=0时,m+n=﹣1;当m=﹣1,n=1时,m+n=0;所以m+n的最小值为﹣1.故答案为:﹣1.三.解答题(共9小题)17.计算:(1)16+(﹣18)÷2(2)(﹣+)×24【分析】(1)根据有理数的除法法则,加法法则计算;(2)利用乘法分配律计算.【解答】解:(1)原式=116﹣9=7;(2)原式=×24﹣×24+×24=6﹣20+9=﹣5.18.化简:(1)m﹣3n+2m+4n(2)(5a2+2a﹣1)﹣4(3﹣8a+2a2)【分析】(1)合并同类项即可;(2)先去括号,再合并同类项.【解答】(1)解:(1)原式=(1+2)m+(﹣3+4)n=3m+n;(2)原式=5a2+2a﹣1﹣12+32a﹣8a2=﹣3a2+34a﹣13.19.(1)解方程:2x+14=2﹣x;(2)计算:﹣+(﹣)3÷(﹣12+).【分析】(1)移项、合并同类项、系数化为1即可求解;(2)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【解答】解:(1)2x+14=2﹣x,2x+x=2﹣14,3x=﹣12,x=﹣4;(2)﹣+(﹣)3÷(﹣12+)=﹣+(﹣)÷(﹣1+)=﹣+(﹣)÷(﹣)=﹣+=.20.先化简,后求值:x2﹣[x2﹣2xy+3(xy﹣)],其中x=3,y=﹣4.【分析】直接去括号进而合并同类项,再把已知代入求出答案.【解答】解:原式=x2﹣x2+2xy﹣3xy+y2=﹣xy+y2,把x=3,y=﹣4代入得:原式=12+16=28.21.刚刚升入初三,学习成绩优异但体育一般的王晴同学未雨绸缪,已经为明年的体育中考做起了准备.上周末她在家练习1分钟跳绳,以每分钟150下为基准,超过或不足的部分分别用正负数来表示,8次成绩(单位:下)分别是﹣10,﹣8,﹣5,﹣2,+2,+8,+3,﹣4.(1)成绩最好的一次比最差的一次多跳多少下?(2)求王晴这8次跳绳的平均成绩.【分析】(1)先比较超过或不足部分的数据,计算最大值与最小值的差即可;(2)先计算超过或不足部分的数据的平均成绩,再计算王晴的平均成绩【解答】解:(1)∵﹣10<﹣8<﹣5<﹣4<﹣2<+2<+3<+88﹣(﹣10)=18所以成绩最好的一次比最差的一次多跳18下.(2)﹣10+(﹣8)+(﹣5)+(﹣2)+2+8+3+(﹣4)=﹣16.平均成绩为:150+(﹣16)÷8=150﹣2=148(下)答:(1)成绩最好的一次比最差的一次多跳18下;(2)8次平均成绩为148下.22.现定义一种新运算“⊕”:对于任意有理数x,y,都有x⊕y=3x+2y,例如5⊕1=3×5+2×1=17.(1)求(﹣4)⊕(﹣3)的值;(2)化简:a⊕(3﹣2a).【分析】(1)根据题意写出算式,根据有理数的混合运算法则计算;(2)根据题意写出算式,根据整式的混合运算法则计算.【解答】解:(1)(﹣4)⊕(﹣3)=3×(﹣4)+2×(﹣3)=﹣12﹣6=﹣18;(2)=3×a+2×(3﹣2a)=3a+6﹣4a=﹣a+6.23.某校运动会结束后,学校采购员去文具超市买水笔和笔记本两种运动会奖品,其中笔记本看中了A,B两家超市的一种特色品牌,两家超市这种笔记本品质一样,原价均为5元/本.现在两家超市这种笔记本都在做促销活动,A超市每本按原价的90%优惠,B超市规定:不超过10本的部分,每本5元;超过10本的部分每本4元.(1)要购买这种笔记本x本(x>10),在A家买需要 4.5x元,在B家买需要(4x+10)元;(2)学校决定购买50本这种笔记本,采购员应选择在哪家购买更优惠?请说明理由.【分析】(1)根据购买费用=单价×数量即可得到结论;(2)把x=50代入代数式计算求出需要的费用,再进行比较就可以求出结论.【解答】解:(1)5x×90%=4.5x,5×10+(x﹣10)×4=(4x+10),故答案为:4.5x,(4x+10);(2)选择在B超市购买更优惠.理由如下:当x=50时,A超市费用=4.5x=225(元),B超市费用=4×50+10=210(元),因为210<225所以采购员应选择在B超市购买更优惠.24.观察下表三组数中每组数的规律后,回答下列问题:(1)请完成上表中四处空格的数据;(2)可以预见,随着n值的逐渐变大,三个整式中,值最先超过10000的是C组,C组中的某个数不可能(填“可能”或“不可能”)在A组中出现;(3)下面再给出D组数,观察它与C组的关系,写出D组的第n个数:3n﹣1+2×(﹣1)n.D组﹣1,5,7,29,79,245,727……【提示:将D组每个数分别减去C组中对应位置的数,看看发现什么?】【分析】(1)根据表中数据的变化规律即可得到结论;(2)根据表中的数据即可得到结论;(3)将C组每个数分别减去D组中对应位置的数,得到规律,即可得到结论.【解答】解:(1)A组:37,6n+1;B组:55,C组:3n﹣1;(2)随着n值的逐渐变大,三个整式中,值最先超过10000的是C组,C组中的某个数不可能在A组中出现;(3)3n﹣1+2×(﹣1)n.故答案为:C组,不可能,25.已知A,B,C三点在数轴上的位置如图所示,它们表示的数分别是a,b,c.(1)填空:abc<0,a+b>0,ab﹣ac>0;(填“>”,“=”或“<”)(2)若|a|=2且点B到点A,C的距离相等,①当b2=16时,求c的值;②P是数轴上B,C两点之间的一个动点,设点P表示的数为x,当P点在运动过程中,bx+cx+|x﹣c|﹣10|x+a|的值保持不变,求b的值.【分析】(1)根据点在数轴上的位置达到a<0<b<c,于是得到结论;(2)①根据已知条件达到a=﹣2,b=4,根据点B到点A,C的距离相等,列方程即可得到结论;②依题意得原式=(b+c﹣11)x+10a+c当P点在运动过程中,原式的值保持不变,即原式的值与x无关,列方程组即可得到结论.【解答】解:(1)∵a<0<b<c,∴abc<0,a+b>0,ab﹣ac>0,故答案为:<,>,>;(2)①∵|a|=2 且a<0,∴a=﹣2,∵b2=16 且b>0,∴b=4,∵点B到点A,C的距离相等,∴|4﹣(﹣2)|=|c﹣4|,∴c=10;②依题意,得bx+cx+|x﹣c|﹣10|x+a|=bx+cx+c﹣x﹣10x﹣10a=(b+c﹣11)x﹣10a+c,∴原式=(b+c﹣11)x﹣10a+c∵当P点在运动过程中,原式的值保持不变,即原式的值与x无关,∴b+c﹣11=0,∵b+2=c﹣b,∴b=3.。

2018-2019学年七年级(上)期中数学试卷含答案

2018-2019学年七年级(上)期中数学试卷含答案

2018-2019学年七年级(上)期中数学试卷(四)一、选择题:(本题共12小题,每小题3分,共36分.注意:在每小题给出的四个选项中,只有一个是符合题目要求的.)1.下面形状的四张纸板,按图中线经过折叠可以围成一个直三棱柱的是()A.B.C.D.2.若(k﹣1)x|k|+20=0是一元一次方程,则k的值是()A.1 B.﹣1 C.0 D.±13.解方程﹣=1,去分母正确的是()A.2(2x+1)﹣3(5x﹣3)=1 B.2x+1﹣5x﹣3=6C.2(2x+1)﹣3(5x﹣3)=6 D.2x+1﹣3(5x﹣3)=6 4.已知a﹣7b=﹣2,则4﹣2a+14b的值是()A.0 B.2 C.4 D.85.下列说法中正确的是()A.最小的整数是0 B.有理数分为正数和负数C.如果两个数的绝对值相等,那么这两个数相等D.互为相反数的两个数的绝对值相等6.如图是由若干个小正方体所搭成的几何体及从上面看这个几何体所看到的图形,那么从左边看这个几何体时,所看到的几何图形是()A .B .C .D .7.若关于x 的方程2m+x=1和方程3x ﹣1=2x+1的解互为相反数,则m 的值为( )A .﹣B .C .0D .﹣28.甲、乙两超市为了促销一种定价相同的商品,甲超市连续两次降价10%,乙超市一次性降价20%,在哪家超市购买此种商品更合算( )A .甲B .乙C .同样D .与商品的价格有关 9.李华骑赛车从家里去乐山新村广场练习,去时每小时行24千米,回来时每小时16千米,则往返一次的平均速度为( )千米/时.A .20B .19.8C .19.6D .19.2 10.单项式﹣3πxy 2z 3的系数和次数分别是( )A .﹣π,5B .﹣1,6C .﹣3π,6D .﹣3,711.长城总长约为6 700 000米,用科学记数法表示正确的是( )A .6.7×108米B .6.7×107米C .6.7×106米D .6.7×105米 12.如图所示,图①中的多边形(边数为12)是由等边三角形“扩展”而来的,图②中的多边形是由正方形“扩展”而来的,…,依此类推,则由正n边形“扩展”而来的多边形的边数为()A.n(n﹣1)B.n(n+1)C.(n+1)(n﹣1)D.n2+2 二、填空题(每小题3分,共18分)13.一个n边形,从一个顶点出发的对角线有条,这些对角线将n边形分成了个三角形.14.已知(a﹣3)2+|b+6|=0,则方程ax+b=0的解为.15.若a3=a,则a= .16.|3﹣π|= .17.小明与小刚规定了一种新运算*:若a、b是有理数,则a*b=3a ﹣2b.小明计算出2*5=﹣4,请你帮小刚计算2*(﹣5)= .18.一个边长为1的正方形,第一次截去正方形的一半,第二次截去剩下的一半,如此截下去,第六次后剩下的面积为米..三、解答题(本大题共66分.注意:解答应写出必要的文字说明,解答过程或解答步骤.)19.计算:(1)[1﹣(1﹣0.5)]×[2﹣(﹣3)2];(2)﹣14﹣(1﹣0.5)×[10﹣(﹣2)2]﹣(﹣1)3.20.化简:(1)3x2﹣3(x2﹣2x+1)+4;(2)3(m﹣5n+4mn)﹣2(2m﹣4n+6mn)21.解方程:(1)3(x﹣1)﹣2(x+1)=﹣6(3)=1+(4)﹣=3.22.化简、求值:已知A=4x2﹣4xy﹣y2,B=﹣x2+xy+7y2,①求﹣A﹣3B,②若A=﹣1,B=时,求6x2﹣6xy﹣15y2的值.23.城区某中学为形成体育特色,落实学生每天1小时的锻炼时间,通过调查研究,决定在七、八、九年级分别开展跳绳、羽毛球、毽球的健身运动.国家规定初中每班的标准人数为a人,七年级共有八个班,各班人数情况如下表,八年级学生人数是七年级学生人数的2倍少400人,九年级学生人数的2倍刚好是七、八年级学生人数的总和.(注:701班表示七年级一班)(1)用含a的代数式表示该中学七年级学生总数;(2)学校决定按每人一根跳绳、一个毽球,两人一副羽毛球拍的标准,购买相应的体育器材以满足学生锻炼需要,其中跳绳每根5元,毽球每个3元,羽毛球拍每副18元.请你计算当a=50时,学校为落实1小时体育锻炼时间需购买器材的费用是多少?24.数a、b、c在数轴上对应的位置如图所示,化简|a+c|﹣|c+b|+|a ﹣b|.25.小张和父亲预定搭家门口的公共汽车赶往火车站,去家乡看望爷爷.在行驶了一半路程时,小张向司机询问到达火车站的时间,司机估计继续乘公共汽车到火车站时火车将正好开出.根据司机的建议,小张和父亲随即下车改乘出租车,车速提高了一倍,结果赶在火车开出前15分钟到达火车站.已知公共汽车的平均速度是30千米/小时,问小张家到火车站有多远?26.某城市按以下规定收取每月煤气费,用煤气不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费.如甲用户某月份用煤气80每立方米,那么这个月甲用户应交煤气费用为60×0.8+(80﹣60)×1.2=72元.(1)设甲用户某月用煤气x立方米,用含x的代数式表示甲用户该月的煤气费.若x≤60,则费用表示为;若x>60,则费用表示为.(2)若甲用户10月份的煤气费是84元,求甲用户10月份用去煤气多少立方米?参考答案与试题解析一、1.【考点】展开图折叠成几何体.【分析】根据三棱柱的特点作答.【解答】解:A、围成三棱柱时,两个三角形重合为同一底面,而另一底面没有,故不能围成三棱柱;B、D的两底面不是三角形,故也不能围成三棱柱;只有C经过折叠可以围成一个直三棱柱.故选C.2.【考点】一元一次方程的定义.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:根据题意得:,解得:k=﹣1.故选B.3.【考点】解一元一次方程.【分析】方程两边乘以6,去分母得到结果,即可作出判断.【解答】解:去分母得:2(2x+1)﹣3(5x﹣3)=6,故选C.4.【考点】代数式求值.【分析】原式后两项提取﹣2变形后,把a﹣7b=﹣2代入计算即可求出值.【解答】解:∵a﹣7b=﹣2,∴原式=4﹣2(a﹣7b)=4+4=8,故选D.5.【考点】正数和负数;相反数;绝对值.【分析】根据有理数及正数、负数、相反数、绝对值等知识对每个选项分析判断.【解答】解:A、因为整数包括正整数和负整数,0大于负数,所以最小的整数是0错误;B、因为0既不是正数也不是负数,但是有理数,所以有理数分为正数和负数错误;C、因为:如+1和﹣1的绝对值相等,但+1不等于﹣1,所以如果两个数的绝对值相等,那么这两个数相等错误;D、由相反数的意义和数轴,互为相反数的两个数的绝对值相等,如|+1|=|﹣1|=1,所以正确;故选:D.6.【考点】简单组合体的三视图.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在三视图中.【解答】解:从左面看会看到左侧有3个正方形,右面有1个正方形.故选B.7.【考点】一元一次方程的解.【分析】首先求得方程3x﹣1=2x+1的解,然后根据两个方程的解互为相反数求得2m+x=1的解,然后根据方程的解的定义代入求解即可.【解答】解:解方程3x﹣1=2x+1得:x=2,∵关于x的方程2m+x=1和方程3x﹣1=2x+1的解互为相反数,∴关于x的方程2m+x=1的解为x=﹣2,∴2m﹣2=1,解得:m=,故选B.8.【考点】有理数的混合运算.【分析】此题可设原价为x元,分别计算出两超市降价后的价钱,再比较即可.【解答】解:设原价为x元,则甲超市价格为x×(1﹣10%)×(1﹣10%)=0.81x乙超市为x×(1﹣20%)=0.8x,0.81x>0.8x,所以在乙超市购买合算.故选B.9.【考点】一元一次方程的应用.【分析】把从家里去乐山新村广场的总路程看作单位“1”,先求出李华从家里去乐山新村广场所用的时间,再求出李华从乐山新村广场到家里所用的时间,最后用往返的总路程除以往返的总时间就是平均速度.【解答】解:(1+1)÷(1÷24+1÷16),=2÷(+),=2÷,=2×,=19.2(千米),答:往返一次的平均速度是每小时19.2千米.故选:D.10.【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式系数、次数的定义,单项式﹣3πxy2z3的系数和次数分别是﹣3π,6.故选C.11.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将6 700 000用科学记数法表示为:6.7×106.故选:C.12.【考点】规律型:图形的变化类.【分析】由题意可知:等边三角形“扩展”而来的多边形的边数为12=3×(3+1),正方形“扩展”而来的多边形的边数为20=4×(4+1),正五边形“扩展”而来的多边形的边数为30=5×(5+1),正六边形“扩展”而来的多边形的边数为42=6×(6+1),…所以正n边形“扩展”而来的多边形的边数为n(n+1),据此解答即可.【解答】解:∵等边三角形“扩展”而来的多边形的边数为:12=3×(3+1),正方形“扩展”而来的多边形的边数为:20=4×(4+1),正五边形“扩展”而来的多边形的边数为:30=5×(5+1),正六边形“扩展”而来的多边形的边数为:42=6×(6+1),…∴正n边形“扩展”而来的多边形的边数为:n(n+1).故选:B.二、13.【考点】多边形的对角线.【分析】多边形上任何不相邻的两个顶点之间的连线就是对角线,n边形有n个顶点,和它不相邻的顶点有n﹣3个,因而从n边形(n>3)的一个顶点出发的对角线有n﹣3条,把n边形分成n﹣2个三角形.【解答】解:从n边形(n>3)的一个顶点出发的对角线有n﹣3条,可以把n边形划分为n﹣2个三角形,故答案为:n﹣3,n﹣2.14.【考点】解一元一次方程;非负数的性质:绝对值;非负数的性质:偶次方.【分析】利用非负数的性质求出a与b的值,代入方程计算即可求出解.【解答】解:∵(a﹣3)2+|b+6|=0,∴a﹣3=0,b+6=0,解得:a=3,b=﹣6,代入方程得:3x﹣6=0,解得:x=2,故答案为:x=215.考点】有理数的乘方.【分析】根据有理数乘方的法则进行计算即可.【解答】解:∵a3=a,∴a=0或±1.故答案为:0或±1.16.【考点】实数的性质.【分析】由于一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0,由此即可求解.【解答】解:∵π>3,∴3﹣π<0,∴|3﹣π|=π﹣3.17.【考点】有理数的混合运算.【分析】根据题中的新定义a*b=3a﹣2b,将a=2,b=﹣5代入计算,即可求出2*(﹣5)的值.【解答】解:根据题中的新定义得:2*(﹣5)=3×2﹣2×(﹣5)=6+10=16.故答案为:16.18.【考点】有理数的乘方.【分析】根据题意知,易求出前几次裁剪后剩下的纸片的面积,第一次剩下的面积为,第二次剩下的面积为,第三次剩下的面积为,根据规律,总结出一般式,由此可以求出.【解答】解:∵第一次剩下的面积为,第二次剩下的面积为,第三次剩下的面积为,∴第n次剩下的面积为,∴,故答案为:.三、19.计算:【考点】有理数的混合运算.【分析】(1)根据有理数的乘法和减法可以解答本题;(2)根据幂的乘方、有理数的乘法和减法可以解答本题.【解答】解:(1)[1﹣(1﹣0.5)]×[2﹣(﹣3)2]=[1﹣0.5]×[2﹣9]=0.5×(﹣7)=﹣3.5;(2)﹣14﹣(1﹣0.5)×[10﹣(﹣2)2]﹣(﹣1)3=﹣1﹣0.5×[10﹣4]﹣(﹣1)=﹣1﹣0.5×6+1=﹣1﹣3+1=﹣3.20.【考点】整式的加减.【分析】(1)先去括号再合并同类项即可;(2)先去括号再合并同类项即可.【解答】解:(1)原式=3x2﹣3x2+6x﹣3+4=6x+1;(2)原式=3m﹣15n+12mn﹣4m+8n﹣12mn=﹣m﹣7n.21.【考点】解一元一次方程.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(3)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:3x﹣3﹣2x﹣2=﹣6,移项合并得:x=﹣1;(2)去分母得:3x﹣3=12+4x+4,移项合并得:﹣x=19,解得:x=﹣19;(3)方程整理得:5x﹣10﹣2x﹣2=3,移项合并得:3x=15,解得:x=5.22.【考点】整式的加减—化简求值.【分析】①将A与B的表达式代入﹣A﹣3B后,化简即可求出答案.②将6x2﹣6xy﹣15y2表示为A与B即可求出答案.【解答】解:①﹣A﹣3B=﹣(4x2﹣4xy﹣y2)﹣3(﹣x2+xy+7y2)=﹣4x2+4xy+y2+3x2﹣3xy﹣21y2=﹣x2+xy+y2﹣20y2②当A=﹣1,B=时,6x2﹣6xy﹣15y2=(4x2﹣4xy﹣y2)﹣2(﹣x2+xy+7y2)=A﹣2B=﹣1﹣1=﹣223.【考点】列代数式;代数式求值.【分析】(1)a为每班的标准人数,根据表用a表示出每个班的人数,再相加即可得出答案;(2)根据已知条件得出八年级以及九年级的总人数,再计算出购买体育器材的费用.【解答】解:(1)七年级总人数=a+3+a+2+a﹣3+a+4+a+a﹣2+a﹣5+a﹣1=8a﹣2;(2)七年级总人数=8×50﹣2=398(人),买跳绳的费用=398×5=1990(元),八年级总人数=398×2﹣400=396(人),买羽毛球拍的费用=396÷2×18=3564(元),九年级总人数=÷2=397(人),买毽球的费用=397×3=1191(元),购买体育器材的费用=1990+3564+1191=6745(元).24【考点】整式的加减;数轴;绝对值.【分析】根据数轴先取绝对值再合并同类项即可.【解答】解:由数轴得,c<b<0<a,且|c|>|a|>|b|,|a+c|﹣|c+b|+|a﹣b|=﹣a﹣c+c+b+a﹣b=0.25.【考点】一元一次方程的应用.【分析】由题目可知:公共汽车速度为:30千米/时,出租车的速度应为60千米/时.可设小张家距火车站距离为x,公共汽车行驶后x的路程用时间应为=x小时,15分钟为小时,剩下的x的路程,出租车需要时间为:=x,则由题意,可根据时间差来列方程求解.【解答】解:由题目分析,根据时间差可列一元一次方程: x﹣x=,即: x=,解得:x=30千米.答:小张家到火车站有30km.26.【考点】一元一次方程的应用.【分析】(1)若x≤60,则费用按每立方米0.8元收费;若x>60,则费用=60立方米的费用(按每立方米0.8元收费)+超过60立方米的费用(按每立方米1.2元收费).(2)设甲用户10月份用去煤气x立方米,根据60立方米的费用(按每立方米0.8元收费)+超过60立方米的费用(按每立方米1.2元收费)=84,列方程求解.【解答】解:(1)若x≤60,则费用表示为:0.8x;若x>60,则费用表示为:60×0.8+(x﹣60)×1.2=1.2x﹣24.(2)设甲用户10月份用去煤气x立方米,由60×0.8=48<84,得到x>60,根据题意得:60×0.8+(x﹣60)×1.2=84,解得:x=90.答:甲用户10月份用去煤气90立方米.。

福州市2018-2019学年第一学期人教版七年级数学期中质检

福州市2018-2019学年第一学期人教版七年级数学期中质检

福州市2018-2019学年第一学期期中质检七年级数学试卷(满分100分;考试时间120分钟)一、选择题(共10小题,每题2分,满分20分;每小题只有一个正确的选项)1.在数|-2|,-(-2),+(-2)中,负数的个数有()个A.0 B.1 C.2 D.32.下列计算正确的是()A.-1-1=0 B.-1+1=0 C.1-(-1)=0 D.(-1)+(-1)=0 3.一个两位数,十位数上的数是a,个位上的数是b,这个两位数可表示为()A.ab B.10ab C.10a+b D.10(a+b) 4.连续4个-3相乘可表示为()A.4×(-3) B.-34C.(-3)4D.4-35.某种速冻水饺的储藏温度是-18±2°C,四个冷藏室的温度如下,则不适合储藏此种水饺的是()A.-17°C B.-18°C C.-19°C D.-22°C6.下列各组数中,数值相等的是()A.-23和-32B.(-2)3与(-3)2C.-32与(-3)2D.(-2)3与-23 7.长方形的周长为10,它的长为a,那么它的宽是()A.5-a B.5-2a C.10-a D.10-2a8.已知a,b两数在数轴上对应的点如图所示,下列结论正确的是()A.a<b B.ab<0 C.a-b>0 D.a+b>09.一个多项式与x 2-x +1的和是 x 4 +1,则这个多项式的次数是( )A .4B .3C .2D .110.礼堂第一排有m 个座位,后面每排都比前一排多2个座位,则第n 排的座位个数是( )A .m +2B .m +2nC .m +2(n -1)D .m +2(n +1)二、填空题(共6小题,每题3分,满分18分)11.单项式-3x 2y 的系数..是____________. 12.用四舍五入法取近似数:π(精确到百分位)≈__________.13.比x 的3倍小2的数可表示为________________.14.若2a 2m b 3和13a 4b n -2是同类项,则m +n 的值是 ____________. 15.已知a -b =-4,c +d =3,则(3b +c )-(3a -d )的值是________________.16.已知a ,b 互为相反数,则a +2a +3a +Ʌ+100a +100b +Ʌ+…+3b +2b +b 的值是____________.三.解答题(满分62分)17.(4分)在数轴上表示下列各数,并按从小到大的顺序用“<”把这些数连接起来:1.5, -2, 3, -3.5, 92, 018.(每小题3分,共12分)计算:(1) 4-8+6-10 ; (2)(12-34+56)×(-24);(3)(-2)2×5-(-2.5)÷0.5;(4) -32 +(-24)÷(-4)- (-3)3 ×(-23).19.(第一小题3分,第2小题4分,共7分)化简:(1)13 a -23a +2a (2)(x -y )-2(2x -3y )20.(6分)化简求值:12xy -2(xy -16 y 2)+(-52xy + 23y 2),其中x =-3,y =34.21.(6分)观察下列各式:定义一种新运算“⊙”:1⊙3=1×4+3=7, 3⊙-1=3×4-1=11, 5⊙4=5×4+4=244⊙(-3)=4×4-3=13, (-2)⊙(-5)=(-2)×4-5=-13,……(1)写出一般结论: a ⊙b =________________;(2)如果a ≠b ,那么a ⊙b _________b ⊙a (填“=”或“≠”)(3)先化简,再求值:(a -b )⊙(2a +3b ).其中a =-12,b =2019.22.(7分)在今年的“十一”黄金周的7天长假中,某风景区每天旅游人数变化如下表(正号表示人数比前一天多,负号表示比前一天少)(1)若9月30日的游客人数为4.2万人,则10月4日的游客人数是多少万人?(2)7天中游客人数最多的一天比最少的一天多几万人?(3)如果每万人带来的经济收入约为100万元,则该风景区黄金周七天的旅游总收入约为多少元?(结果用科学计数法来表示)23.(6分)小丽暑假期间参加社会实践活动,从某批发市场以批发价每个m 元的价格购进200个手机充电宝,然后每个加价n元到市场出售.由于开学临近,小丽在成功售出150个充电宝后,决定将剩余充电宝按售价8折出售,并在开学前全部售完.解答下列问题(结果用含m,n的式子表示)(1)小丽实际销售总金额是多少元?(2)小丽销售完这批充电宝的利润是多少元?24.(7分)观察下列三行数,并完成后面的问题:①-2,4,-8,16,-32,…;②1,-2,4,-8,16,…;③0,-3,3,-9,15 …;(1)根据排列规律,分别写出上面三行数的第6个数;(2)设x、y、z分别表示第①、②、③行数的第2019个数字,计算x+y+z的值.25.(7分)已知:b是最小的正整数,且a、b满足(c-5)2+|a+b|=0,请回答问题: (1)请直接写出a、b、c的值:a=_________,b=_________,c=___________.(2)a、b、c所对应的点分别为A、B、C,若点A以每秒2个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和6个单位长度的速度向右运动,假设t秒钟过后,若点B和点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC-AB的值是否随时间t的变化而变化?若变化,请说明理由;若不变,请求其值.。

(名校测试卷)2018—2019学年人教版七年级上学期期中质量调研数学试题(附详细答案)

(名校测试卷)2018—2019学年人教版七年级上学期期中质量调研数学试题(附详细答案)

七年级上学期期中考试数 学 试 题一、选择题(每题3分,共30分)1、在+4,37,-3.14,0,-0.5中,表示正数的有A.2个B. 3个C. 4个D.5个其中气温最低的城市是 A .北京 B .武汉 C .广州 D .哈尔滨3、有理数-2的相反数是() A. 2 B. -2 C.21-D.21 4.在数轴上表示数α的点与原点的距离为3个单位长度,则数α为 A. 3 B.3或-3 C.-3 D .0或-3 5.42-的值是A. -8B.8C.-16D.166. 下列运算正确的是A. 2a+3b=5abB. 5a-3a=2C. 2a 2 -3a=-aD.2a 2b-3a 2b=-ab 27. 某品牌电脑原价为m 元,先降价n 元,又降价20%后售价为 A.0.8(m+n )元 B. 0.8(m-n)元 C. 0.2(m+n )元 D. 0.2(m-n)元8. 窗户的形状如图1所示,其上都是半圆形,下都是边长相同的四个小正方形,已知下部小正方形的边长为a(单位:cm),则窗户的面积是 A.22a 24cm )(π+ B.22a 2-4cm )(πC. 22a-4cm )(π D.22a 4cm )(π+9. 下列结论:①若a 为有理数,则a 2>0;②若a 2+b 2=0,则a+b=0;③若a+b=0,则1ba-=;④若ab >0,则cc b b a a ++=-3,则其中正确的结论的个数是A.3个B.2个C.1个D.0个10. 滴滴快车是一种便捷的出行工具,计价规则如下表:小王和小张各自乘滴滴快车,行车里程分别为6公里和8.5公里,如果所付车费相同,那么这两辆滴滴快车行车时间相差A.10分钟B.13分钟C.15分钟D.19分钟二、填空题(每题3分,共18分) 11、计算10-2×3的结果为 .12、如果80m 表示向东走80m ,那么-60m 表示 . 13、将数380000用科学记数法表示为 .14、若a 、b 互为相反数,c 、d 互为相反数,x 的绝对值为2,则代数式xba cd x ++-3的值为 . 15、下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…则第⑥个图形中五角星的个数是 .16、如图,10个不同正整数按下图排列,箭头上方的每个数都等于其下方两个数的和,,表示321a a a +=,则1a 的最小值为 .三、解答题(共8小题,共72分) 17. (本题12分)计算:(1)(+7)-(+2)-(-2)-(-3); (2))()(12-3261-43⨯+ (3)[]28-3-3-1-234⨯+)()( (4)32321-23-4122-)()(÷+⨯ 18. (本题6分)化简:(1)1-(2a-1)-3(a+1); (2)5(3a 2b-ab 2)-2(ab 2+3a 2b )19. (本题6分)飞机无缝航速为a 千米/时,风速为30千米/时,飞机现实顺风飞行了3小时,然后有逆风飞行了4小时.(1)飞机在顺风飞行的时候航速为 千米/小时 (2)飞机在逆风飞行的时候航速为 千米/小时 (3)飞机一共飞行了多少千米?20. (本题8分)(1)先化简,再求值:)3123(4)31(2222y x y x x +-+--,其中32,3=-=y x (2)如图,边长为x 米的正方形花坛,中间有横、竖两条长方形小路(图中阴影部分),宽度分别为2米和3米.①直接写出阴影部分的周长; ②求出图中空白部分的面积?21.(本题8分)某检修小组乘坐一辆检修汽车从A 地触犯,在东西方向的马路上检修线路,如果 向东行驶记为正,向西行驶记为负,一天六次检修中行驶记录如下:(单位:千米)(1)求收工是检修汽车在A 地的东边还是西边?距A 地多远? (2)在第 次检修时距A 地最远;(3)若汽车行驶每千米耗油0.3升,问从A 地出发到收工,再回到A 地,共耗油多少升?22. (本题10分)把正整数1,2,3…,2016排成如图所示的7列,规定从上到下依次为第1行,第2行,第3行,…从左到右依次为第1至第7列.(1)数72在第 行第 列,数2016在第 行第 列;(2)按如图所示的方法用正方形框框住相邻的四个数,设被框的四个数中,最小的一个数为x. ①被框的四个数的和等于 (用含x 的代数式表示)②被框的四个数的和是否可以等于816或2016?若能,请求出x 的值;若不能,请说明理由.23. (本题10分)已知数轴上有A 、B 两个点对应的数分别是a 、b ,且满足()093a 2=-++b ;(1)求a 、b 的值;(2)点M 是数轴上A 、B 之间的一个点,使得MA =2MB ,求出点M 所对应的数;(3)点P ,点Q 为数轴上的两个动点,点P 从A 点以3个单位长度每秒的速度向右运动,点Q 同时从 B 点以2个单位长度每秒的速度向左运动,设运动时间为t 秒,若AP+BQ=2PQ ,求时间t 的值.24. (本题12分)(1)一个两位数,其中a 表示十位上的数字,b 表示个位上的数字(a ≠b,ab ≠0),把十位、个位上的数字互换位置的得到一个新两位数,则这个两位数的和一定能被数 整除,这两个两位数的差一定能被数 整除.(2)对任意一个三位数n ,如果n 满足每个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F (n ).例如n=123,对调百位与个位上的数字得到213,对调百位与个位上的数字得到321,对调十位和个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F (123)=6.①计算:F (243)、F (617)②若s 、t 都是“相异数”,其中s=100x+32,t=150+y(1≤x ≤9,1≤y ≤9,x 、y 都是正整数),求x 与y 之间满足的等式;若规定:)()(k t F s F =,当F (s )+F (t )=18时,求k 的最大值.七年级数学答案卷I二.填空题:11、4 12、23.1 13、> 14、2 15、26+x=3x 16、两 三、解答题:17、(1)解:原式=7-5+4-10 3分=-4 5分 (2)原式=3388()()22-⨯-⨯- 1分=8-18 3分 =-10 5分18、解(1)原式=22265423m n m n mn mn mn -++-+ 2分=224m n mn mn -++ 5分(2)原式=4669a b b a --+ 3分 =1312a b - 5分 19、(1)解:13624x x -= 2分164x -= 4分24x =- 5分(2)解:3559y y -=- 2分24y -=- 4分 2y = 5分20、解(1)5. 2分(2)3×(-2)+4×(-1.5)+2×(-1)+2×0+2×2+6×2.5+1×3 4分=8 (kg) 5分答:和标准质量比,这20箱苹果总计超过8kg 。

2018-2019学年七年级(上)期中数学试卷(及答案)

2018-2019学年七年级(上)期中数学试卷(及答案)

2018-2019学年七年级(上)期中数学试卷(及答案)一、选择题((本部分10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.一种面粉的质量标识为“25±0.25千克”,则下列面粉中合格的有()A.24.70千克B.25.32千克C.25.51千克D.24.86千克2.在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为()A.1.94×1010B.0.194×1010C.19.4×109D.1.94×109 3.如图,四个几何体分别为长方体、圆柱体、球体和三棱柱,这四个几何体中有三个的某一种视图都是同一种几何图形,则另一个几何体是()A.长方体B.圆柱体C.球体 D.三棱柱4.﹣23的意义是()A.3个﹣2相乘B.3个﹣2相加C.﹣2乘以3 D.3个2相乘的积的相反数5.下列说法中正确的有()①最小的整数是0;②有理数中没有最大的数;③如果两个数的绝对值相等,那么这两个数相等;④互为相反数的两个数的绝对值相等.A .0个B .1个C .2个D .3个6.将如图Rt △ABC 绕直角边AC 旋转一周,所得几何体的左视图是( )A .B .C .D .7.下列计算:(1)78﹣23÷70=70÷70=1;(2)12﹣7×(﹣4)+8÷(﹣2)=12+28﹣4=36;(3)12÷(2×3)=12÷2×3=6×3=18;(4)32×3.14+3×(﹣9.42)=3×9.42+3×(﹣9.42)=0. 其中错误的有( )A .1个B .2个C .3个D .4个8.图表示从上面看一个由相同小立方块搭成的几何体得到的平面图形,小正方形中的数字表示该位置上小立方块的个数,则该从正面看该几何体得到的平面图形为( )A .B .C .D .9.有若干个数,第一个数记为a 1,第二个数记为a 2,…,第n 个数记为a n .若a 1=,从第二个数起,每个数都等于“1与它前面那个数的差的倒数”.通过探究可以发现这些数有一定的排列规律,等于()利用这个规律可得a2016A.﹣B. C.2 D.310.如图,已知一个正方体的六个面上分别写着6个连续整数,且相对面上两个数的和相等.图中所能看到的数是1,3和4,则这6个整数的和是()A.15 B.9或15 C.15或21 D.9,15或21二、填空题(本部分7个小题,每小题3分,共21分.把最后答案直接填在题中的横线上)11.计算(﹣3)﹣(﹣7)= .12.如图所示的三个几何体的截面分别是:(1);(2);(3).13.把边长为lcm的正方体表面展开要剪开条棱,展开成的平面图形周长为cm.14.如图所示的是一个正方体的表面展开图,则与“奋”字所代表的面相对的面上的汉字是.15.设a<0,b>0,且|a|<|b|,用“<”把a,﹣a,b,﹣b连接起来:.16.在图中剪去一个正方形,使剩余的部分恰好能折成一个正方体,问应剪去几号小正方形?所有可能的情况是.17.《庄子.天下篇》中写道:“一尺之棰,日取其半,万世不竭”意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图.由图易得: = .三、解答题(本部分8个大题,共69分.解答时应写出必要的文字说明、证明过程或演算步骤)18.(6分)写出符合下列条件的数:(1)最小的正整数:;(2)绝对值最小的有理数:;(3)绝对值大于3且小于6的所有负整数:;(4)在数轴上,与表示﹣1的点距离为5的所有数:;(5)倒数等于本身的数:;(6)绝对值等于它的相反数的数:.19.(7分)画一条数轴,在数轴上表示出3.5和它的相反数,﹣2和它的倒数,最小的自然数.然后用“>”把这些数连接起来.20.(16分)计算:(1)(﹣)+(﹣);(2)15×﹣(﹣15)×+15×;(3)﹣+÷(﹣2)×(﹣);(4)﹣14﹣×[2﹣(﹣3)2].21.(6分)根据实验测定,高度每增加100米,气温大约下降0.6℃.小张是一名登山运动员,他在攀登山峰的途中发回信息,说他所在位置是﹣16℃,如果当时地面温度是8℃,那么小张所在位置离地面的高度是多少米?22.(8分)已知如图为一几何体的三种形状图:(1)这个几何体的名称为;(2)任意画出它的一种表面展开图;(3)若从正面看到的是长方形,其长为10cm;从上面看到的是等边三角形,其边长为4cm,求这个几何体的侧面积.23.(4分)已知|x|=3,y2=25,且x>y,求出x,y的值.24.(4分)已知|2m﹣6|+(﹣1)2=0,求m﹣2n的值.25.(8分)在抗洪抢险中,人民解放军的冲锋舟沿东西方向的河流抢救物资,中午从A地出发,晚上到达B地.规定向东为正,当天的航行记录如下(单位:km):﹣16,﹣7,12,﹣9,6,10,﹣11,9.(1)B在A地的哪侧?相距多远?(2)若冲锋舟每千米耗油0.46L,则这一天共耗油多少升?26.(10分)将一个正方体的表面全涂上颜色.(1)如果把正方体的棱2等分,然后沿等分线把正方体切开,能够得到8个小正方体,设其中3面被涂上颜色的有a个,则a= ;(2)如果把正方体的棱三等分,然后沿等分线把正方体切开,能够得到27个小正方体.设这些小正方体中有3个面涂有颜色的有a个,各个面都没有涂色的有b个,则a+b= ;(3)如果把正方体的棱4等分,然后沿等分线把正方体切开,能够得到64个小正方体.设这些小正方体中有2个面涂有颜色的有c个,各个面都没有涂色的有b个,则c+b= ;(4)如果把正方体的棱n等分,然后沿等分线把正方体切开,能够得到个小正方体.设这些小正方体中有2个面涂有颜色的有c个,各个面都没有涂色的有b个,则c+b= .参考答案与试题解析一、1.【考点】正数和负数.【分析】根据有理数的加法法则可求25+0.25;根据有理数的加法法则可求25﹣0.25,进而可得合格面粉的质量范围,进而可得答案.【解答】解:∵25+0.25=25.25;25﹣0.25=24.75,∴合格的面粉质量在24.75和2.25之间,故选:D.【点评】本题考查正数和负数,解题的关键是明确正负数在题目中的实际意义.2.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:194亿=19400000000,用科学记数法表示为:1.94×1010.故选:A.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【考点】简单几何体的三视图.【分析】几何体可分为柱体,锥体,球体三类,按分类比较即可.【解答】解:长方体、圆柱体、三棱体为柱体,它们的主视图都是矩形;球的三种视图都是圆形.故选:C.【点评】本题考查几何体的分类和三视图的概念.4.【考点】有理数的乘方.【分析】根据有理数的乘方,即可解答.【解答】解:﹣23的意义是3个2相乘的积的相反数,故选:D.【点评】本题考查了有理数的乘方,解决本题的关键是熟记有理数的乘方.5.【考点】有理数.【分析】根据整数的定义,有理数的定义,绝对值的性质,相反数的性质,可得答案.【解答】解:①没有最小的整数,故①错误;②有理数中没有最大的数,故②正确;③如果两个数的绝对值相等,那么这两个数相等或互为相反数,故③错误;④互为相反数的两个数的绝对值相等,故④正确;故选:C.【点评】本题考查了有理数,没有最大的有理数,没有最小的有理数.6.【考点】点、线、面、体;简单几何体的三视图.【分析】应先得到旋转后得到的几何体,找到从左面看所得到的图形即可.【解答】解:Rt△ABC绕直角边AC旋转一周,所得几何体是圆锥,圆锥的左视图是等腰三角形,故选D.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.7.【考点】有理数的混合运算.【分析】原式各项计算得到结果,即可作出判断.【解答】解:(1)原式=78﹣=77,错误;(2)原式=12+28﹣4=36,正确;(3)原式=12÷6=2,错误;(4)原式=3×9.42+3×(﹣9.42)=0,正确,则错误的有2个,故选B【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.8.【考点】由三视图判断几何体;简单组合体的三视图.【分析】找到从正面看所得到的图形即可.【解答】解:俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有3列,从左到右的列数分别是4,3,2.故选C.【点评】本题灵活考查了三种视图之间的关系以及视图和实物之间的关系,同时还考查了对图形的想象力,难度适中.9.【考点】规律型:数字的变化类.【分析】根据每个数都等于“1与它前面那个数的差的倒数”可知这列数的周期为3,由2016÷3=672可知a2016=a3.【解答】解:当a1=时,==3,a3===﹣,a4===,∴这列数的周期为3,∵2016÷3=672,∴a2016=a3=﹣,故选:A.【点评】本题主要考查数字的变化规律,根据每个数都等于“1与它前面那个数的差的倒数”可知这列数的周期为3是解题的关键.10.【考点】认识立体图形;有理数的加法.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:根据题意分析可得:六个面上分别写着六个连续的整数,故六个整数可能为1、2、3、4、5、6或0、1、2、3、4、5;且每个相对面上的两个数之和相等,故只可能为0、1、2、3、4、5其和为15.故选A.【点评】此题考查了空间图形,主要培养学生的观察能力和空间想象能力.二、11.计算(﹣3)﹣(﹣7)= 4 .【考点】有理数的减法.【分析】根据有理数减法法则计算,减去一个数等于加上这个数的相反数.【解答】解:(﹣3)﹣(﹣7)=(﹣3)+7=7﹣3=4.【点评】本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数.这是需要熟记的内容.12.如图所示的三个几何体的截面分别是:(1)圆;(2)长方形;(3)三角形.【考点】截一个几何体.【分析】当截面的角度和方向不同时,圆柱体的截面不相同.【解答】解:当截面平行于圆柱底面截取圆柱时得到截面图形是圆,截面截取经过四个顶点的截面时可以截得长方形,当截面垂直圆锥的底面时,截面图形是三角形.故答案为:圆,长方形,三角形.【点评】此题主要考查了截一个几何体,截面的形状既与被截的几何体有关,还与截面的角度和方向有关.13.把边长为lcm的正方体表面展开要剪开7 条棱,展开成的平面图形周长为14 cm.【考点】几何体的展开图.【分析】根据正方体的棱的条数以及展开后平面之间应有棱连着,可得出正方体表面展开要剪开的棱的条数;剪开1条棱,增加两个正方形的边长,依此即可求解.【解答】解:∵正方体有6个表面,12条棱,要展成一个平面图形必须5条棱连接,∴要剪12﹣5=7条棱,1×(7×2)=1×14=14(cm).答:把边长为lcm的正方体表面展开要剪开7条棱,展开成的平面图形周长为14cm.故答案为:7,14.【点评】此题主要考查了正方体的展开图的性质,根据展开图的性质得出一个平面图形必须5条棱连接是解题关键.14.如图所示的是一个正方体的表面展开图,则与“奋”字所代表的面相对的面上的汉字是活.【考点】专题:正方体相对两个面上的文字.【分析】利用正方体及其表面展开图的特点求解即可.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“生”与面“是”相对,面“活”与面“奋”相对,面“就”与面“斗”相对.故答案为:活.【点评】本题考查了正方体相对两个面上的文字,解答本题的关键在于注意正方体的空间图形,从相对面入手,分析及解答问题.15.设a<0,b>0,且|a|<|b|,用“<”把a,﹣a,b,﹣b连接起来:﹣b<a<﹣a<b .【考点】有理数大小比较.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:∵a<0,b>0,∴﹣a>0,﹣b<0,∵|a|<|b|,∴﹣a<b,∴﹣b<a<﹣a<b.故答案为:﹣b<a<﹣a<b.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.16.在图中剪去一个正方形,使剩余的部分恰好能折成一个正方体,问应剪去几号小正方形?所有可能的情况是剪去1号、2号或3号小正方形.【考点】展开图折叠成几何体.【分析】根据正方体展开图中没有田字形解答.【解答】解:∵剩余的部分恰好能折成一个正方体,∴展开图中没有田字形,∴应剪去1号、2号或3号小正方形.故答案为:剪去1号、2号或3号小正方形.【点评】本题考查了展开图折叠成几何体,熟记正方体展开图的11中形式是解题的关键,只要有“田”字格的展开图都不是正方体的表面展开图.17.《庄子.天下篇》中写道:“一尺之棰,日取其半,万世不竭”意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图.由图易得: = 1﹣.【考点】规律型:图形的变化类.【分析】由图可知第一次剩下,截取1﹣;第二次剩下,共截取1﹣;…由此得出第n次剩下,共截取1﹣,得出答案即可.【解答】解:=1﹣故答案为:1﹣.【点评】此题考查图形的变化规律,找出与数据之间的联系,得出规律解决问题.三、18.写出符合下列条件的数:(1)最小的正整数: 1 ;(2)绝对值最小的有理数:0 ;(3)绝对值大于3且小于6的所有负整数:﹣4,﹣5 ;(4)在数轴上,与表示﹣1的点距离为5的所有数:4,﹣6 ;(5)倒数等于本身的数:±1 ;(6)绝对值等于它的相反数的数:0或负数.【考点】倒数;数轴;相反数;绝对值.【分析】根据正整数、绝对值、负整数、倒数、相反数的定义结合数轴进行解答.【解答】解:如图.(1)最小的正整数:1;(2)绝对值最小的有理数:0;(3)绝对值大于3且小于6的所有负整数:﹣4,﹣5;(4)在数轴上,与表示﹣1的点距离为5的所有数:4,﹣6;(5)倒数等于本身的数:±1;(6)绝对值等于它的相反数的数:0或负数.故答案为:1;0;﹣4,﹣5;4,﹣6;±1;0或负数.【点评】本题考查了正整数、绝对值、负整数、倒数、相反数的定义,利用数形结合是解题的关键.19.【考点】有理数大小比较;数轴;相反数;倒数.【分析】首先根据在数轴上表示数的方法,在数轴上表示出3.5和它的相反数,﹣2和它的倒数,最小的自然数;然后根据当数轴方向朝右时,右边的数总比左边的数大,把这些数由大到小用“>”号连接起来即可.【解答】解:,3.5>0>﹣0.5>﹣2>﹣3.5.【点评】(1)此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.(2)此题还考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.20.【考点】有理数的混合运算.【分析】(1)应用加法交换律和加法结合律,求出算式的值是多少即可.(2)应用乘法分配律,求出算式的值是多少即可.(3)(4)根据有理数的混合运算的运算方法,求出每个算式的值各是多少即可.【解答】解:(1)(﹣)+(﹣)=(+)﹣(+)=1﹣=﹣(2)15×﹣(﹣15)×+15×=15×(++)=15×=22(3)﹣+÷(﹣2)×(﹣)=﹣+(﹣)×(﹣)=﹣+1=﹣1(4)﹣14﹣×[2﹣(﹣3)2]=﹣1﹣×[2﹣9]=﹣1﹣×[﹣7]=﹣1+=【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.21.【考点】有理数的混合运算.【分析】根据题意列出算式,计算即可得到结果.【解答】解:根据题意得:[8﹣(﹣16)]÷0.6=24÷0.6=40(米),则小张所在位置离地面的高度是40米.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.【考点】由三视图判断几何体;几何体的展开图;等边三角形的性质.【分析】(1)由三视图可知,该几何体为三棱柱;(2)画出三棱柱的展开图即可;(3)根据三棱柱侧面积计算公式计算可得.【解答】解:(1)由三视图可知,该几何体为三棱柱,故答案为:三棱柱;(2)展开图如下:(3)这个几何体的侧面积为3×10×4=120cm2.【点评】本题主要考查由三视图确定几何体和求几何体的面积等相关知识,考查学生的空间想象能力.注意:棱柱的侧面都是长方形,上下底面是几边形就是几棱柱.23.【考点】有理数的乘方;绝对值.【分析】根据绝对值的定义、有理数的乘方先求出x、y,再根据条件确定x、y.【解答】解:∵|x|=3,∴x=±3∵y2=25,∴y=±5,∵x>y,∴x=3,y=﹣5或x=﹣3,y=﹣5.【点评】本题考查有理数的乘方、绝对值的化简等知识,关键是掌握有理数的乘方法则、绝对值的性质,属于基础题,中考常考题型.24.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质求出m、n的值,计算即可.【解答】解:由题意得,2m﹣6=0,﹣1=0,解得,m=3,n=2,则m﹣2n=﹣1.【点评】本题考查的是非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.25.【考点】正数和负数.【分析】(1)把所有航行记录相加,再根据正数和负数的意义进行判断即可;(2)用所有航行记录的绝对值的和乘0.46,即可得这一天共耗油的量.【解答】解(1)﹣16+(﹣7)+12+(﹣9)+6+10+(﹣11)+9=﹣16﹣7+12﹣9+6+10﹣11+9=﹣6(km),∴|﹣6|=6km,答:B地在A地的西边,相距6km;(2)0.46×(|﹣16|+|﹣7|+12+|﹣9|+6+10+|﹣11|+9)=0.46×(16+7+12+9+6+10+11+9)=0.46×80=36.8(升).答:这天共消耗了36.8升油.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.26.【考点】认识立体图形.【分析】根据正方体的性质可发现顶点处的小方块三面涂色,除顶点外位于棱上的小方块两面涂色,涂色位于表面中心的一面涂色,处于正中心的没涂色.依此可得到(1)棱二等分时的所得小正方体表面涂色情况;(2)棱三等分时的所得小正方体表面涂色情况;(3)棱四等分时的所得小正方体表面涂色情况.(4)根据已知图形中没有涂色的小正方形个数得出变化规律进而得出答案.【解答】解:(1)三面被涂色的有8个,故a=8;(2)三面被涂色的有8个,各面都没有涂色的1个,a+b=8+1=9;(3)两面被涂成红色有24个,各面都没有涂色的8个,b+c=24+8=32;(4)由以上可发现规律:能够得到n3个小正方体,两面涂色c=12(n﹣2)个,各面均不涂色(n﹣2)3个,b+c=12(n﹣2)+(n﹣2)3.故答案为:8,9,32,n3,12(n﹣2)+(n﹣2)3.【点评】本题主要考查了正方体的组合与分割.要熟悉正方体的性质,在分割时有必要可动手操作.。

福建省福州市 七年级(上)期中数学试卷(含答案)

福建省福州市 七年级(上)期中数学试卷(含答案)

七年级(上)期中数学试卷题号一 二 三 四 总分 得分一、选择题(本大题共12小题,共24.0分)1. 检验4个工件,其中超过标准质量的克数记作正数,不足标准质量的克数记作负数.从轻重的角度看,最接近标准的工件是( ) A. −2 B. −3 C. 3 D. 52. 中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为( )A. 44×108B. 4.4×109C. 4.4×108D. 4.4×1010 3. 下面各对数中互为相反数的是( ) A. 2 与−(−2) B. −2 与−|2| C. |−2|与|2| D. 2 与−|−2|4. 下列有理数的大小关系判断正确的是()A. −(−19)>−|−110| B. 0>|−10| C. |−3|<|+3|D. −1>−0.015. 若-x 3y a 与x b y 是同类项,则a +b 的值为( )A. 2B. 3C. 4D. 56. 在代数式-23ab ,2x 2y 7,x+y 2,-a 2bc ,1,x 2-1,2a ,1x +1中,单项式的个数为( )A. 3B. 4C. 5D. 6 7. 已知(m -4)x |m |-3=18是关于x 的一元一次方程,则( ) A. m =4B. m =−4C. m =±4D. m =18. 已知x =2是关于x 的方程3x +a =0的一个解,则a 的值是( ) A. −6 B. −3 C. −4 D. −5 9. 若|a +3|=-(b -2)2,则a b 的值为( )A. −6B. −9C. 9D. 6 10. 已知a 2+2a =1,则代数式2a 2+4a -1的值为( )A. 0B. 1C. −1D. −2 11. 已知a ,b 是有理数,若a 在数轴上的对应点的位置如图所示,a +b <0,有以下结论:①b <0;②b -a >0;③|-a |>-b ;④ba <−1. 则所有正确的结论是( )A. ①,④B. ①,③C. ②,③D. ②,④12. 如图所示是一个运算程序的示意图,若开始输入的x 值为81,则第2016次输出的结果为( )A. 3B. 27C. 9D. 1二、填空题(本大题共8小题,共24.0分)13.单项式-5x2y的系数是______ .614.如图,图中数轴的单位长度为1,如果点B、C所表示的数的绝对值相等,那么点A表示的数是______.15.一个关于x的二次三项式,二次项的系数是-1,一次项的系数和常数项都是2,则这个多项式是______ .16.矩形窗户上的装饰物如图所示,它是由半径均为b的两个四分之一圆组成,则能射进阳光部分的面积是______ .17.已知a,b互为相反数,m,n互为倒数,且m不等于1、-1,x的绝对值为2,计−x2=________算:−2mn+a+bm−n18.我们定义一种新运算“※”如下:a※b=a2-b,则(1※2)※3= ______ .19.用“●”“■”“▲”分别表示三种不同的物体,如图所示,前两架天平保持平衡,若要使第三架天平也平衡,那么“?”处应放“■”______个.20.王老师为了帮助班级里家庭困难的x个孩子(x<10),购买了一批课外书,如果给每个家庭困难的孩子发5本,那么剩下4本;如果给每个家庭困难的孩子发6本,那么最后一个孩子只能得到________本.三、计算题(本大题共1小题,共5.0分)21.股民李星星在上周星期五以每股11.2元买了一批股票,下表为本周星期一到星期五该股票的涨跌情况求:(1)本周星期三收盘时,每股的钱数.(2)李星星本周内哪一天把股票抛出比较合算,为什么?星期一二三四五每股涨跌/元+0.4+0.45-0.2+0.25-0.4四、解答题(本大题共6小题,共47.0分)22.把下列各数在数轴上表示出来,并用“<”把它们连接起来.-21,0,|-4|,0.5,-(-3).223. 计算:(1)-32+22+(-24)-(-6)(2)(13-14-12)÷(-124)(3)-14-(1-0.5)×13×[2-(-3)2].24. 解方程:(1)9x -3(x -1)=6(2)34{43[12(x -14)-8]}=32x .25. 先化简,再求值:-2(mn -3m 2)-[m 2-5(mn -m 2)+2mn ],其中m =1,n =-2.26. 北京与上海两家工厂同时生产某种专用计算机,北京厂可调往外地10台,上海厂可调往外地4台,现决定从北京和上海两地共运往重庆8台,武汉6台.已知从北京运往武汉、重庆的运费分别是4元/台、8元/台,从上海运往武汉、重庆的运费分别是3元/台、5元/台.(1)设上海厂运往武汉2台,请求出这样调运的总费用; (2)设上海厂运往武汉x 台,用x 表示调运总运费W ;(3)从上海运出的总费用和从北京运出的总费用可以相同吗?若可以,请直接写出调运方案,若不能,请说明理由.27.(1)阅读下面材料:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a-b|,当A、B两点都不在原点时,①如图2,点A、B都在原点的右边,|AB|=|OB|-|OA|=|b|-|a|=b-a=|a-b|;②如图3,点A、B都在原点的左边,|AB|=|OB|-|OA|=|b|-|a|=(-b)-(-a)=a-b=|a-b|;③如图4,点A、B在原点的两边,|AB|=|OB|+|OA|=|b|+|a|=(-b)+a=a-b=|a-b|;综上,数轴上A、B两点之间的距离|AB|=|a-b|.(2)回答下列问题:①数轴上表示1005和-1011的两点之间的距离是______ ;②数轴上分别表示x、-5的两点A、B之间的距离是______ ,如果|AB|=2,那么x为______ ;③若|x+3|>|x-5|,则相应x的取值范围是______ ;④代数式|x+2|+|x-3|+|x-1|的最小值为______ .答案和解析1.【答案】A【解析】【分析】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.根据正负数的意义,绝对值最小的即为最接近标准的.【解答】解:|-2|=2,|-3|=3,|3|=3,|5|=5,∵2<3<5,∴从轻重的角度来看,最接近标准的是记录为-2.故选A.2.【答案】B【解析】解:4 400 000000=4.4×109,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】D【解析】解:∵-(-2)=2,-|2|=-2,|-2|=2,-|-2|=-2,∴A、不互为相反数,故本选项错误;B、不互为相反数,故本选项错误;C、不互为相反数,故本选项错误;D、2和-|-2|互为相反数,故本选项正确;故选D.求出-(-2)=2,-|2|=-2,|-2|=2,-|-2|=-2,再根据相反数定义判断即可.本题考查了相反数和绝对值的应用,注意:只有符号不同的两个数互为相反数.4.【答案】A【解析】解:A、-(-)=,-|-|=-,所以-(-)>-|-|;B、0<|-10|=10;C、|-3|=3=|+3|=3;D、-1<-0.01.所以选A.根据有理数比较大小的方法:化简后比较即可.比较两个有理数的大小时,需先化简,再比较.有理数大小比较的法则:(1)正数都大于0;(2)负数都小0;(3)正数大于一切负数;(4)两个负数,绝对值大的其值反而小.5.【答案】C【解析】解:∵-x3y a与x b y是同类项,∴a=1,b=3,则a+b=1+3=4.故选C.根据同类项中相同字母的指数相同的概念求解.本题考查了同类项的知识,解答本题的关键是掌握同类项中相同字母指数相同的概念.6.【答案】B【解析】解:单项式有:-ab,,-a2bc,1,故选(B)根据单项式的概念即可判断.本题考查单项式的概念,属于基础题型.7.【答案】B【解析】解:∵(m-4)x|m|-3=18是关于x的一元一次方程,∴,解得m=-4.故选B.根据一元一次方程的定义列出关于m的不等式组,求出m的值即可.本题考查的是一元一次方程的定义,即只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程.8.【答案】A【解析】解:把x=2代入方程得:6+a=0,解得:a=-6.故选:A.方程的解就是能够使方程两边左右相等的未知数的值,即利用方程的解代替未知数,所得到的式子左右两边相等.本题主要考查了方程解的定义,已知x=2是方程的解实际就是得到了一个关于a的方程.9.【答案】C【解析】解:移项得,|a+3|+(b-2)2=0,所以,a+3=0,b-2=0,解得a=-3,b=2,所以,a b=(-3)2=9.故选C.先移项,再根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.10.【答案】B【解析】解:∵a2+2a=1,∴原式=2(a2+2a)-1=2-1=1,故选B原式前两项提取变形后,将已知等式代入计算即可求出值.此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.11.【答案】A【解析】解:①∵a>0,a+b<0,∴b<0,故①正确;②∵a>0,b<0,∴b-a<0,故②错误;③∵a+b<0,a>0,b<0,∴|-a|<-b,故③错误;④<-1,故④正确.综上可得①④正确.故选:A.根据a+b<0,a在坐标轴的位置,结合各项结论进行判断即可.本题考查了有理数的大小比较,数轴及绝对值的知识,关键是结合数轴得出a、b的大小关系.12.【答案】D【解析】解:第1次,×81=27,第2次,×27=9,第3次,×9=3,第4次,×3=1,第5次,1+2=3,第6次,×3=1,…,依此类推,从4次运算以后,偶数次运算输出的结果是1,奇数次运算输出的结果是3,∵2016是偶数,∴第2016次输出的结果为1.故选:D.根据运算程序进行计算,然后得到规律从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3,然后解答即可.本题考查了代数式求值,根据运算程序计算出从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3是解题的关键.13.【答案】-56【解析】解:单项式-的系数是-.故答案为:-.单项式中的数字因数叫做单项式的系数,由此可得出答案.本题考查了单项式的知识,属于基础题,关键是掌握单项式系数的定义.14.【答案】-5【解析】解:如图,BC的中点即数轴的原点O.根据数轴可以得到点A表示的数是-5.故答案为:-5.如果点B、C表示的数的绝对值相等,那么BC的中点即为坐标原点,依此可求点A表示的数.此题考查了数轴有关内容,用几何方法借助数轴来求解,非常直观,体现了数形结合的优点.确定数轴的原点是解决本题的关键.15.【答案】-x2+2x+2【解析】解:这个多项式是-x2+2x+2.故答案是:-x2+2x+2.根据二次多项式的定义即可直接写出.本题考查了多项式的项和次数的定义,多项式的组成元素的单项式,即多项式的每一项都是一个单项式,单项式的个数就是多项式的项数,如果一个多项式含有a个单项式,次数是b,那么这个多项式就叫b次a项式.πb216.【答案】2ab−12【解析】解:能射进阳光部分的面积=2ab-πb2.能射进阳光部分的面积=长方形的面积-直径为2b的半圆的面积.解决问题的关键是读懂题意,找到所求的量的等量关系.阴影部分的面积一般应整理为一个规则图形的面积.17.【答案】-6【解析】解:由a、b互为相反数,m、n互为倒数,且m不等于1,-1,x的绝对值为2,得a+b=0,mn=1,|x|=2.-2mn+-x2=-2-4=-6,故答案为:-6.根据乘积为1的两个数互为倒数,互为相反数的和为零,可得答案.本题考查了倒数,利用乘积为1的两个数互为倒数,互为相反数的和为零得出a+b=0,mn=1,|x|=2是解题关键.18.【答案】-2【解析】解:∵1※2=12-2=1-2=-1,∴(1※2)※3=(-1)※3=(-1)2-3=1-3=-2.故答案为:-2.根据规定的运算方法转化为有理数的混合运算计算即可.此题考查有理数的混合运算,理解规定的运算顺序与方法是解决问题的关键.19.【答案】5【解析】解:设“●”“■”“▲”分别为x、y、z,由图可知,2x=y+z①,x+y=z②,②两边都加上y得,x+2y=y+z③,由①③得,2x=x+2y,∴x=2y,代入②得,z=3y,∵x+z=2y+3y=5y,∴“?”处应放“■”5个.故答案为:5.设“●”“■”“▲”分别为x、y、z,根据前两个天平列出等式,然后用y表示出x、z,相加即可.本题考查了等式的性质,根据天平平衡列出等式是解题的关键.20.【答案】(10-x)【解析】解:5x+4-6(x-1)=10-x(本).答:最后一个孩子只能得到(10-x)本.故答案为:(10-x).首先表示出书的总数为5x+4,给每个家庭困难的孩子发6本,发出去的本数为6(x-1),由此相减得出答案即可.此题考查列代数式,找出题目蕴含的数量关系是解决问题的关键.21.【答案】解:(1)根据题意得:11.2+0.4+0.45+(-0.2)=11.85(元),则本周星期三收盘时,该只股票每股为11.85元;(2)根据题意得:11.2+0.4+0.45+(-0.2)+0.25=12.1(元),则本周该只股票最高价12.1元出现在周四,李星星本周四把股票抛出比较好.【解析】(1)根据上周五买入时的价钱,结合表格求出周三的股价即可;(2)根据表格求出周四的股价,即可做出判断.此题考查了有理数加法的应用,弄清题意是解本题的关键.22.【答案】解:-212<0<0.5<-(-3)<|-4|. 【解析】先在数轴上表示各个数,再比较即可.本题考查了数轴和有理数的大小比较,能熟记有理数的大小比较法则是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.23.【答案】解:(1)-32+22+(-24)-(-6)=-32+22+(-24)+6=-28;(2)(13-14-12)÷(-124)=(13−14−12)×(−24)=13×(−24)−14×(−24)−12×(−24)=(-8)+6+12=10;(3)-14-(1-0.5)×13×[2-(-3)2] =-1-12×13×[2−9] =-1-16×(−7)=-1+76=16.【解析】(1)根据有理数的加减法可以解答本题;(2)先把除法转化为乘法,然后根据乘法分配律可以解答本题;(3)根据幂的乘方、有理数的乘法和减法可以解答本题.本题考查有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.24.【答案】解:(1)去括号得9x -3x +3=6,移项,得:9x -3x =6-3,合并同类项得:6x =3,系数化为1得:x =0.5;(2)12(x -14)-8=32x ,12x -18-8=32x , 12x -32x =8+18, -x =818, x =-818. 【解析】(1)根据解一元一次方程的基本步骤依次进行即可得;(2)先去括号化简原方程,再移项、合并同类项、系数化为1可得.本题主要考查解一元一次方程的能力,熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,是解题的关键.25.【答案】解:原式=-2mn +6m 2-m 2+5(mn -m 2)-2mn ,=-2mn +6m 2-m 2+5mn -5m 2-2mn ,=mn ,当m =1,n =-2时,原式=1×(-2)=-2.【解析】首先根据整式的加减运算法则,将整式化简,然后把给定的值代入求值.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.本题主要考查了整式的乘法、去括号、合并同类项的知识点.注意运算顺序以及符号的处理.26.【答案】解:(1)设上海运往武汉x 台,总费用为W 元,则上海运往重庆(4-x )台,北京运往武汉(6-x )台,北京运往重庆(4+x )台;根据题意得:W =3x +5(4-x )+4(6-x )+8(4+x )=2x +76(0≤x ≤4的整数);当x =2时,W =2×2+76=80(元); (2)由(1)得:W =2x +76(0≤x ≤4的整数);(3)不可以;理由如下:由(1)得:3x +5(4-x )=4(6-x )+8(4+x ),解得:x=-6,不合题意,即从上海运出的总费用和从北京运出的总费用不可以相同.【解析】(1)根据题意可列出W与x之间的关系式,把x=2代入计算即可;(2)由(1)即可得出结果;(3)根据题意列出方程,解方程即可.本题考查列代数式、一元一次方程的解法,解题的关键是明确题意,列出代数式.27.【答案】2016;|x+5|;-3或-7;x>1;5【解析】解:①数轴上表示1005和-1011的两点之间的距离是|1005-(-1011)|=2016,故答案为:2016;②数轴上分别表示x、-5的两点A、B之间的距离是|x+5|,∵|AB|=2,∴|x+5|=2,解得:x=-3或-7,故答案为:|x+5|,-3或-7;③|x+3|>|x-5|,则相应x的取值范围是:当x≤-3时,无解.当-3<x<5时,1<x<5,当x≥5时,不等式恒成立,综上所述,x的取值范围为x>1.故答案为x>1.④代数式|x+2|+|x-3|+|x-1|的最小值为,求代数式|x+2|+|x-3|+|x-1|的最小值就是在数轴上找一点P到表示-2,1,3的点的距离之和最小,当P与表示1的点重合时,点P到表示-2,1,3的点的距离之和最小,最小值为5.故答案为5.①根据两点间距离公式计算即可.②根据两点间距离公式计算,把问题转化为方程解决.③当x≤-3时,无解.当-3<x<5时,1<x<5,当x≥5时,不等式恒成立,由此即可解决问题.④求代数式|x+2|+|x-3|+|x-1|的最小值就是在数轴上找一点P到表示-2,1,3的点的距离之和最小,当P与表示1的点重合时,点P到表示-2,1,3的点的距离之和最小.本题考查实数与数轴、绝对值.两点间距离公式等知识,解题的关键是理解题意,把问题转化为方程解决,学会用绝对值的几何意义解决实际问题,属于中考常考题型.。

2018-2019学年七年级(上)期中数学试卷(含解析)

2018-2019学年七年级(上)期中数学试卷(含解析)

2018-2019学年七年级(上)期中数学试卷一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入括号内.1.3的相反数是()A.﹣3B.﹣C.3D.2.下列各数中,比﹣2大的数是()A.﹣3B.0C.﹣2D.﹣2.13.下列说法正确的是()A.﹣a一定是负数B.|a|一定是正数C.|a|一定不是负数D.﹣|a|一定是负数4.计算(﹣2)3所得结果是()A.﹣6B.6C.﹣8D.85.单项式﹣的系数与次数分别是()A.﹣2,2B.﹣2,3C.,3D.﹣,36.下列各式正确的是()A.﹣(﹣3)=﹣|﹣3|B.﹣(2)3=﹣2×3C.|﹣|>﹣100D.﹣24=(﹣2)4 7.计算(2﹣3)+(﹣1)的结果是()A.﹣2B.0C.1D.28.我国计划在2020年左右发射火星探测卫星,据科学研究,火星距离地球的最近距离约为5500万千米,这个数据用科学记数法可表示为()A.5.5×106千米B.5.5×107千米C.55×106千米D.0.55×108千米9.苹果的单价为a元/千克,香蕉的单价为b元/千克,买2千克苹果和3千克香蕉共需()A.(a+b)元B.(3a+2b)元C.(2a+3b)元D.5(a+b)元10.有理数a,b,c在数轴上对应的点如图所示,则下列式子①a>b;②|b+c|=b+c;③|a﹣c|=c ﹣a;④﹣b<c<﹣a.其中正确的是()A.①②③④B.①②④C.①③④D.②③④二、填空题(每小题3分,共15分)11.计算2×3+(﹣4)的结果为.12.“m与n的平方差”用式子表示为.13.把2x3﹣x+3x2﹣1按x的升幂排列为.14.比较大小:.15.若|x﹣2|+(y+3)2=0,则(x+y)2018=.三、解答题(8+9+9+9+9+10+10+11=75分)16.(8分)计算:直接写出结果10﹣(﹣8)=;(﹣32)﹣(+5)=;﹣7﹣5=;(+12)﹣(+21)=;=;=;﹣12﹣(﹣3)2=;=.17.(9分)画一条数轴,并把﹣4,﹣(﹣3.5),,0,…各数在数轴上表示出来,再用“<”把它们连接起来.18.(9分)计算:﹣23÷8﹣×(﹣2)2.19.(9分)计算:(﹣+﹣)×(﹣48)20.(9分)计算:﹣34÷(﹣27)﹣[(﹣2)×(﹣)+(﹣2)3].21.(10分)某淘宝商家计划平均每天销售某品牌儿童滑板车100辆,但由于种种原因,实际每天的销售量与计划量相比有出入.下表是某周的销售情况(超额记为正、不足记为负):(1)根据记录的数据可知该店前三天共销售该品牌儿童滑板车辆;(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售辆;(3)本周实际销售总量达到了计划数量没有?(4)该店实行每日计件工资制,每销售一辆车可得40元,若超额完成任务,则超过部分每辆另奖15元;少销售一辆扣20元,那么该店铺的销售人员这一周的工资总额是多少元?22.(10分)甲、乙两家商场以同样的价格出售同样的电器,但各自推出的优惠方案不同.甲商场规定:凡超过1000元的电器,超出的金额按90%收取;乙商场规定:凡超过500元的电器,超出的金额按95%收取.某顾客购买的电器价格是x元.(1)当x=850时,该顾客应选择在商场购买比较合算;(2)当x>1000时,分别用代数式表示在两家商场购买电器所需付的费用;(3)当x=1700时,该顾客应选择哪一家商场购买比较合算?说明理由.23.(11分)阅读下列内容,并完成相关问题:小明说:“我定义了一种新的运算,叫*(加乘)运算.”然后他写出了一些按照*(加乘)运算的运算法则进行运算的算式:(+4)*(+2)=6;(﹣4)*(﹣3)=+7;…(﹣5)*(+3)=﹣8;(+6)*(﹣7)=﹣13;…(+8)*0=8;0*(﹣9)=9.…小亮看了这些算式后说:“我知道你定义的*(加乘)运算的运算法则了.”请你帮助小亮完成下列问题:(1)归纳*(加乘)运算的运算法则:两数进行*(加乘)运算,..特别地,0和任何数进行*(加乘)运算,或任何数和0进行*(加乘)运算,都得这个数的绝对值.(2)若有理数的运算顺序适合*(加乘)运算,请直接写出结果:①(﹣3)*(﹣5)=;②(+3)*(﹣5)=;③(﹣9)*(+3)*(﹣6)=;(3)试计算:[(﹣2)*(+3)]*[(﹣12)*0](括号的作用与它在有理数运算中的作用一致);参考答案与试题解析一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入括号内.1.【分析】根据相反数的性质,互为相反数的两个数和为0,采用逐一检验法求解即可.【解答】解:根据概念,3的相反数在3的前面加﹣,则3的相反数是﹣3.故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣3<﹣2.1<﹣2<0,所以各数中,比﹣2大的数是0.故选:B.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.3.【分析】只需分a>0、a=0、a<0三种情况讨论,就可解决问题.【解答】解:①当a>0时,﹣a<0,|a|>0,﹣|a|<0;②当a=0时,﹣a=0,|a|=0,﹣|a|=0;③当a<0时,﹣a>0,|a|>0,﹣|a|<0.综上所述:﹣a可以是正数、0、负数;|a|可以是正数、0;﹣|a|可以是负数、0.故选:C.【点评】本题考查的是数的分类、绝对值的概念、相反数等知识,其中数可分为正数、0、负数,运用分类讨论的思想是解决本题的关键.4.【分析】本题考查有理数的乘方运算,(﹣2)3表示3个(﹣2)的乘积.【解答】解:(﹣2)3=(﹣2)×(﹣2)×(﹣2)=﹣8.故选:C.【点评】本题考查了乘方运算,负数的偶数次幂是正数,负数的奇数次幂仍为负数.5.【分析】根据单项式的概念即可求出答案.【解答】解:单项式的系数为﹣,次数为3;故选:D.【点评】本题考查单项式的概念,属于基础题型.6.【分析】先求出每个式子左、右两边的值,再判断即可.【解答】解:A、﹣(﹣3)=3,﹣|﹣3|=﹣3,故本选项错误;B、﹣(2)3=﹣8,﹣2×3=﹣6,故本选项错误;C、|﹣|=>﹣100,故本选项正确;D、﹣24=﹣16,(﹣2)4=16,故本选项错误;故选:C.【点评】本题考查了有理数的乘方,绝对值,相反数的应用,能正确求出各个式子的值是解此题的关键.7.【分析】根据有理数的加减混合运算的法则进行计算即可得解.【解答】解:(2﹣3)+(﹣1)=﹣1+(﹣1)=﹣2故选:A.【点评】本题主要考查了有理数的加减混合运算,是基础题比较简单.8.【分析】科学记数法的表示形式为a×10n的形式.其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:5500万=5.5×107.故选:B.【点评】此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.9.【分析】根据题意列出代数式即可.【解答】解:根据题意得:买2千克苹果和3千克香蕉共需(2a+3b)元,故选:C.【点评】此题考查了列代数式,弄清题意是解本题的关键.10.【分析】根据数轴可判断a<b<0<c,且|a|>|c|>|b|,于是可判断①是错误的,于是可排除答案A、B、C即可解决.【解答】解:由数轴可知a<b<0<c,∴①错误∴利用排除法即可排除答案A、B、C,∴只能选择答案D.实质上,∵b+c>0,∴|b+c|=b+c,故②正确;∵a﹣c<0,∴|a﹣c|=c﹣a,故③正确;∵根据数轴上互为相反数的对称关系,可判断﹣b<c<﹣a正确故选:D.【点评】本题考查的利用数轴进行数的大小比较,把握数轴上点的特征以及是解决本题的关键.二、填空题(每小题3分,共15分)11.【分析】原式先计算乘法运算,再计算加减运算即可得到结果.【解答】解:原式=6﹣4=2,故答案为:2【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.12.【分析】根据题意利用两数平方后再相减得出即可.【解答】解:由题意可得:m2﹣n2.故答案为:m2﹣n2.【点评】此题主要考查了列代数式,正确把握关键术语是解题关键.13.【分析】根据多项式的次数的意义、x的指数的大小顺序排列即可.【解答】解:把2x3﹣x+3x2﹣1按x的升幂排列为﹣1﹣x+3x2+2x3,故答案为:﹣1﹣x+3x2+2x3【点评】本题主要考查对多项式的次数和排列顺序的理解,理解多项式的次数含义是解此题的关键.14.【分析】根据两个负数,绝对值大的其值反而小,进行比较即可.【解答】解:∵|﹣|>|﹣|,∴﹣<﹣.故答案为:<.【点评】本题考查了有理数的大小比较,属于基础题,掌握有理数的大小比较法则是关键.15.【分析】直接利用绝对值的性质以及偶次方的性质分析得出x,y的值进而得出答案.【解答】解:∵|x﹣2|+(y+3)2=0,∴x=2,y=﹣3,∴(x+y)2018=(﹣1)2018=1.故答案为:1.【点评】此题主要考查了非负数的性质,正确得出x,y的值是解题关键.三、解答题(8+9+9+9+9+10+10+11=75分)16.【分析】根据有理数的混合运算顺序和运算法则逐一计算可得.【解答】解:10﹣(﹣8)=10+8=18;(﹣32)﹣(+5)=(﹣32)+(﹣5)=﹣37;﹣7﹣5=﹣7+(﹣5)=﹣12;(+12)﹣(+21)=(+12)+(﹣21)=﹣9;=;=﹣×=﹣;﹣12﹣(﹣3)2=﹣1﹣9=﹣10;=2﹣2×3×3=2﹣18=﹣16.【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.17.【分析】先画出数轴,将﹣4,﹣(﹣3.5),,0在数轴上表示出来,再利用数轴从左到右的顺序用“<”把它们连接起来即可.【解答】解:在数轴上表示以上各数为:用“<”把它们连接为:﹣4<﹣2<0<﹣(﹣3.5)【点评】本题考查的是数轴与有理数的对应及有理数的大小比较,准确找到每个数对应数轴上的每一个点是解决本题的关键.18.【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:原式=﹣8÷8﹣×4=﹣1﹣1=﹣2.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.19.【分析】先利用乘法分配律展开,再依次计算乘法和加减可得.【解答】解:原式=﹣×(﹣48)+×(﹣48)﹣×(﹣48)=8﹣20+2=10﹣20=﹣10.【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则及其运算律.20.【分析】首先计算乘方以及括号内的式子,然后进行加法计算即可.【解答】解:原式=﹣81÷(﹣27)﹣[﹣8],=3+,=.【点评】本题主要考查了有理数的混合运算,正确理解运算顺序是解决本题的关键.21.【分析】(1)根据前三天销售量相加计算即可;(2)将销售量最多的一天与销售量最少的一天相减计算即可;(3)将总数量乘以价格解答即可.【解答】解:(1)4﹣3﹣5+300=296.(2)21+8=29.(3)+4﹣3﹣5+14﹣8+21﹣6=17>0,∴本周实际销量达到了计划数量.(4)(17+100×7)×40+(4+14+21)×15+(﹣3﹣5﹣8﹣6)×20=28825(元).答:该店铺的销售人员这一周的工资总额是28825元.故答案为:296;29【点评】此题考查正数和负数的问题,此题的关键是读懂题意,列式计算.22.【分析】(1)当x=850时,在甲商场没有优惠,在乙商场有优惠,故在乙商场买合算;(2)当x>1000时:在甲商场的费用是:1000+超过1000元的部分×90%;在乙商场的费用是:500+超过500元的部分×95%=0.95x+25;(3)把x=1700代入(2)中的代数式计算出结果进行比较即可.【解答】解:(1)根据题意可得:当x=850时,在甲商场没有优惠,在乙商场有优惠,费用是:500+(850﹣500)×95%=8332.5(元),故在乙商场买合算;(2)当x>1000时:在甲商场的费用是:1000+(x﹣1000)×90%=0.9x+100;在乙商场的费用是:500+(x﹣500)×95%=0.95x+25;(3)把x=1700代入(2)中的两个代数式:0.9x+100=0.9×1700+100=1630,0.95x+25=0.95×1700+25=1640,∵1640>1630,∴选择甲商场合算.【点评】此题主要考查了根据实际问题列代数式,关键是正确理解题意,分清两个商场的收费方式.23.【分析】(1)根据已知算式得出法则:两数进行*(加乘)运算,同号得正、异号得负,并把绝对值相加;(2)依据所得法则计算可得;(3)先计算中括号内的加乘运算,再进一步计算可得.【解答】解(1)根据题意知,两数进行*(加乘)运算,同号得正、异号得负,并把绝对值相加,故答案为:同号得正、异号得负,并把绝对值相加.(2)①(﹣3)*(﹣5)=+(3+5)=8;②(+3)*(﹣5)=﹣(3+5)=﹣8;③(﹣9)*(+3)*(﹣6)=(﹣12)*(﹣6)=18;(3)原式=(﹣5)*(﹣12)=17.【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则及对新定义的理解与运用.。

校18—19学年上学期七年级期中考试数学试题(附答案)

校18—19学年上学期七年级期中考试数学试题(附答案)

2018年下学期期中考试试题七年级数学(问卷) 考试时量 120 分钟,满分120 分 命题教师:张艳一、选择题(每小题3分,共计24分)1、在数轴上表示-2的点与表示3的点之间的距离是( )A.5B.-5C.1 D 、-12、下列各式: -(-2); -|-2 |;22-;④22--)(,计算结果为负数的个数有( )A.1个B.2个C.3个D.4个3.下列各组中,不是同类项的是( )A. 130与31 B.y x 213与242yx C.b a 24.0与23.0ab D.n n y x 23+-与22+n n x y . 4.下列计算正确的是( )A. 2232x x -=B. 2a a a +=C.a a a =-23D.ab ab ab 23=-5.有理数a 、b 在数轴上的对应的位置如图所示,则( )6.下列说法正确的有( ):①0不是单项式; ②不是整式;a - ③;的系数是8-8-ππab ④是五次二项式;多项式xy y x -22 ⑤.92432的次数是b a A.1个 B.2个 C.3个 D.4个7.某学校食堂有煤m 吨,计划每天用煤n 吨,实际每天节约a 吨,节约后可多用的天数为( ) A.m m n a n -+ B. m m n a n -- C.m m n m a -+ D.m m n n a-- 8.设“”分别表示三种不同的物体,如图所示,前两架天平保持平衡,如果要使第三架天平也平衡,那么“?”处应放“”的个数为( )A .2B .3C .4D .5_______5,22=-+-+a y x x ax y x 不含二次项,则的多项式已知关于二、填空题(每题3分,共24分)9.比较大小(填“>、<或=”):﹣32________﹣53. 10.__________3121-32=b b a a y x y x 可以合并成一项,则与若. 11.地球上陆地面积约为149 000 000km 2,用科学记数法可以表示为______km 2. 12._________06)21==+--a x xa a 的一元一次方程,则是关于已知方程( 13.若有理数a 满足0100022=--a a ,则a a 42182-+的值为 .14. 15、;__________,4,52=+==y x y x y x 则>,且已知16.如图为手的示意图,在各个手指间标记字母A 、B 、C 、D.请你按图中箭头所指方向(即A →B →C →D →C →B →A →B →C …的方式)从A 方向开始数连续的正整数,1,2,3,4,…,当数到32时,对应的字母是 ______ ;当字母C 第2018次出现时,恰好数到的数是 ______ ;当字母C 第2n+1次出现时(n 为正整数),恰好数到的数是 __________(用含n 的代数式表示)三、解答题(每小题5分,共计10分) 17.计算:)20()17()3()8+----+-( 18.计算:)36()1259743-⨯--(四、解答题(每小题6分,共计12分)19. 计算:222)211(922)5.0(51493-⨯+⨯--÷-)1(2--=c d c y 20.解方程:7512-=+x x五、解答题(每小题7分,共计14分)21.先化简,再求值:()[]xy x y x xy y x y x 3422352222-----,其中3-=x ,2-=y ..22、若a 与b 互为相反数,c 与d 互为倒数,)3()2(4b a a x ---=,,求x-y 的值。

人教版初中数学七年级上册期中测试题(2018-2019学年福建省福州

人教版初中数学七年级上册期中测试题(2018-2019学年福建省福州

2018-2019学年福建省福州十九中七年级(上)期中数学试卷一、选择题(共10小题,每题2分,满分20分)1.(2分)﹣2的绝对值是()A.B.﹣C.2D.﹣22.(2分)光年是天文学中的距离单位,1光年大约是9500 000 000 000km,这个数据用科学记数法表示是()A.0.95×1013km B.950×1010kmC.95×1011km D.9.5×1012km3.(2分)在有理数﹣12、﹣(﹣1)、﹣|﹣1|、(﹣1)5中负数有()A.4B.3C.2D.14.(2分)下列说法正确的是()A.所有的整数都是正数B.不是正数的数一定是负数C.0不是最小的有理数D.正有理数包括整数和分数5.(2分)解是x=的方程是()A.2﹣4x=1B.3x+2=5C.D.4x﹣2=6x﹣3 6.(2分)下列结论正确的是()A.3x2﹣x+1的一次项系数是1B.xyz的系数是0C.a2b3c是五次单项式D.x5+3x2y4﹣2x3y是六次三项式7.(2分)以下各式中,能与3ab2合并同类项的是()A.9a2b2B.(3ab)2C.﹣D.3a2b8.(2分)如果x+,那么3x+=()A.6B.﹣9C.3D.﹣19.(2分)已知|a|>a,则下列各数中,值最大的是()A.a B.a2C.a3D.10.(2分)花园内有一块边长为a的正方形土地,园艺师设计了四种不同的图案,如下图的A、B、C、D所示,其中的阴影部分用于种植花草.种植花草部分面积最大的图案是()(说明:A、B、C中圆弧的半径均为,D中圆弧的半径为a)A.B.C.D.二、填空题(共6小题,每题3分,满分18分)11.(3分)﹣3(a﹣b)=﹣3a+3b,在这个去括号的过程中使用了.(填运算律)12.(3分)写出一个以字母y为未知数且解为﹣2的方程:.13.(3分)1.998精确到个位的近似数是.14.(3分)2016年9月,福州航空开通了福州直飞纽约的班机,机票价格为a元,国庆节时许多福州的土豪选择出行,于是机票价格相应上调了b%,则国庆节机票价格为元.15.(3分)已知a,b互为相反数,则a+2a+3a+…+99a+100a+100b+99b+…+3b+2b+b =.16.(3分)已知:2+=22×,3+=32×,4+=42×,5+=52×,…,若10+=102×符合前面式子的规律,则a+b=.三、解答题(满分0分,)17.(1)﹣13+28+62﹣77(2)4﹣4+(﹣3)×(﹣)(3)﹣12006+[1﹣(2﹣22)×3]+(4)(﹣6)×(﹣﹣+)×(﹣8)18.(1)3(3a2﹣2)﹣2(3a2﹣2)(2)(6xy+)﹣(x2﹣y2+72xy﹣12)19.已知a3+a2b=3,a2b+b3=﹣2,求a3﹣b3的值.20.先化简后求值:2(xy2+xy)﹣3(xy2﹣yx)﹣4yx2,其中|x+1|+(y﹣1)2=0.21.两家体育品经销商在国庆期间各推出了自己的优惠活动,A经销商的优惠活动是购买一件球衣送一双球袜,B经销商的优惠活动是球衣与球袜均降价10%出售,而两家经销商的球衣定价均为300元,球袜定价均为40元,若当地的体育学校需要购买球衣20套,球袜x双(x>20);(1)请分别用含x的代数式表示在两家经销商购买球衣和球袜的总费用;(填化简之后的结果)A经销商总费用:;B经销商总费用:;(2)当x=30时,请通过计算说明在哪家经销商处花费更少.22.有理数a,b,c在数轴上的位置如图所示,试化简下式:|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|.23.用字母代替数字是数学发展史上的一大飞跃,请阅读材料并完成下列问题:在计算(1++)×(++)﹣(1+++)×(+)这个算式的过程中,可以设A=1++,B=+,原式化简为A(B+)﹣(A+)B再由乘法分配律A(B+)﹣(A+)B=AB+A﹣AB﹣B=A﹣B =(A﹣B)=请根据这种方法计算:(1++……+)×(+……+)﹣(1++……+)×(+……+)24.已知数轴上有ABC三点,分别表示有理数﹣12,﹣5,5,动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒,其中P A表示点P到A的距离,PB表示点P与点B的距离,PC表示P到点C的距离.(1)当t<7时,用含t的代数式分别表示P A,PB,PC;(2)当P运动到点B与点C之间时,①P A+PB是定值,②PC+PB是定值这两个说法中有一个说法是正确的,请指出哪个说法是正确的,并说明理由.2018-2019学年福建省福州十九中七年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每题2分,满分20分)1.(2分)﹣2的绝对值是()A.B.﹣C.2D.﹣2【分析】根据负数的绝对值等于它的相反数解答.【解答】解:﹣2的绝对值是2,即|﹣2|=2.故选:C.【点评】本题考查了绝对值的性质,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(2分)光年是天文学中的距离单位,1光年大约是9500 000 000 000km,这个数据用科学记数法表示是()A.0.95×1013km B.950×1010kmC.95×1011km D.9.5×1012km【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:9500 000 000 000=9.5×1012,故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(2分)在有理数﹣12、﹣(﹣1)、﹣|﹣1|、(﹣1)5中负数有()A.4B.3C.2D.1【分析】先化简题目中的数字即可解答本题.【解答】解:∵﹣12=﹣1,﹣(﹣1)=1,﹣|﹣1|=﹣1,(﹣1)5=﹣1,∴有理数﹣12、﹣(﹣1)、﹣|﹣1|、(﹣1)5中负数有3个,故选:B.【点评】本题考查有理数的乘方、正负数、相反数、绝对值,解答本题的关键是明确有理数化简的方法.4.(2分)下列说法正确的是()A.所有的整数都是正数B.不是正数的数一定是负数C.0不是最小的有理数D.正有理数包括整数和分数【分析】根据分类:,,采用排除法求解.【解答】解:负整数不是正数,A错误;0既不是正数也不是负数,B错误;没有最小的有理数,C正确;正有理数包括正整数和正分数,D错误;故选:C.【点评】本题主要考查有理数的概念,熟练掌握概念和性质是解决数学问题的关键.5.(2分)解是x=的方程是()A.2﹣4x=1B.3x+2=5C.D.4x﹣2=6x﹣3【分析】分别解各个选项的一元一次方程,选出解是x=的选项即可.【解答】解:A.解方程2﹣4x=1得:x=,即A项错误,B.解方程3x+2=5得:x=1,即B项错误,C.解方程x=2得:x=4,即C项错误,D.解方程4x﹣2=6x﹣3得:x=,即D项正确,故选:D.【点评】本题考查了一元一次方程的解,正确掌握解一元一次方程的方法是解题的关键.6.(2分)下列结论正确的是()A.3x2﹣x+1的一次项系数是1B.xyz的系数是0C.a2b3c是五次单项式D.x5+3x2y4﹣2x3y是六次三项式【分析】根据几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数进行分析即可.【解答】解:A、3x2﹣x+1的一次项系数是﹣1,故错误;B、xyz的系数是1,故错误;C、a2b3c是六次单项式,故错误;D、正确.故选:D.【点评】本题考查了多项式,解决本题的关键是熟记多项式的有关概念.7.(2分)以下各式中,能与3ab2合并同类项的是()A.9a2b2B.(3ab)2C.﹣D.3a2b【分析】根据同类项、合并同类项法则计算.【解答】解:同类项才能合并,所含字母相同且相同字母的指数也相同的项是同类项,同类项与字母的顺序无关,所以C能与3ab2合并同类项.故选:C.【点评】注意同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关.8.(2分)如果x+,那么3x+=()A.6B.﹣9C.3D.﹣1【分析】根据等式的性质,把x+的两边同时乘3,求出3x+的值是多少即可.【解答】解:∵x+,∴3x+=﹣3×3=﹣9.故选:B.【点评】此题主要考查了等式的性质,要熟练掌握,解答此题的关键是要明确:(1)等式两边加同一个数(或式子)结果仍得等式;(2)等式两边乘同一个数或除以一个不为零的数,结果仍得等式.9.(2分)已知|a|>a,则下列各数中,值最大的是()A.a B.a2C.a3D.【分析】绝对值的性质:正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值是0.如果一个数的绝对值大于它本身,则该数一定是负数.【解答】解:因为|a|>a,所以a是负数.所以a2>0,而a3<0,<0,根据正数大于负数.故选B.【点评】考查了绝对值的性质和数的大小比较.10.(2分)花园内有一块边长为a的正方形土地,园艺师设计了四种不同的图案,如下图的A、B、C、D所示,其中的阴影部分用于种植花草.种植花草部分面积最大的图案是()(说明:A、B、C中圆弧的半径均为,D中圆弧的半径为a)A.B.C.D.【分析】将第2个图形中的半圆的面积相加为以半径为的圆;第3个图形中4个扇形的面积相加为以半径为的圆;故第1,2,3个图形阴影的面积为正方形的面积减去以为半径的圆的面积;第4个图形的面积为两个扇形的面积减去正方形的面积,计算后比较即可.【解答】解:第1,2,3个图形的面积为:a2﹣π()2=(1﹣)a2;第4个图形的面积为:×2﹣a2=(﹣1)a2;∵(1﹣)a2<(﹣1)a2,∴第4个阴影部分的面积最大.故选:D.【点评】解决本题的关键是将每个图形阴影部分面积求出.二、填空题(共6小题,每题3分,满分18分)11.(3分)﹣3(a﹣b)=﹣3a+3b,在这个去括号的过程中使用了乘法分配律.(填运算律)【分析】根据去括号与添括号法则即可求出答案.【解答】解:去括号过程是使用了乘法分配律,故答案为:乘法分配律.【点评】本题考查整式的运算,解题的关键是正确理解去括号与添括号法则,本题属于基础题型.12.(3分)写出一个以字母y为未知数且解为﹣2的方程:y+2=0(答案不唯一).【分析】根据方程的解的概念求解可得(答案不唯一).【解答】解:满足题意的方程为y+2=0,故答案为:y+2=0(答案不唯一).【点评】本题主要考查方程的解,解题的关键是掌握方程的解得概念.13.(3分)1.998精确到个位的近似数是2.【分析】把十分位上的数字9进行四舍五入即可.【解答】解:1.998精确到个位的近似数是2.故答案为2.【点评】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.14.(3分)2016年9月,福州航空开通了福州直飞纽约的班机,机票价格为a元,国庆节时许多福州的土豪选择出行,于是机票价格相应上调了b%,则国庆节机票价格为a (1+b%)元.【分析】直接利用机票价格相应上调了b%,得出国庆节机票价格.【解答】解:由题意可得,国庆节机票价格为:a(1+b%).故答案为:a(1+b%).【点评】此题主要考查了列代数式,正确表示出上调后价格是解题关键.15.(3分)已知a,b互为相反数,则a+2a+3a+…+99a+100a+100b+99b+…+3b+2b+b=0.【分析】已知a,b互为相反数,那么,a+b=0,则a+2a+3a+…+99a+100a+100b+99b+…+3b+2b+b=a+b=0.【解答】解:a+2a+3a+…+99a+100a+100b+99b+…+3b+2b+b=0.【点评】代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式a+b的值,然后利用“整体代入法”求代数式的值.16.(3分)已知:2+=22×,3+=32×,4+=42×,5+=52×,…,若10+=102×符合前面式子的规律,则a+b=109.【分析】要求a+b的值,首先应该认真仔细地观察题目给出的4个等式,找到它们的规律,即中,b=n+1,a=(n+1)2﹣1.【解答】解:根据题中材料可知=,∵10+=102×,∴b=10,a=99,a+b=109.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出式子的规律.三、解答题(满分0分,)17.(1)﹣13+28+62﹣77(2)4﹣4+(﹣3)×(﹣)(3)﹣12006+[1﹣(2﹣22)×3]+(4)(﹣6)×(﹣﹣+)×(﹣8)【分析】(1)按有理数加减法法则计算,可利用加法交换律和结合律先把符号相同的数先相加减,达到简便运算.(2)按有理数混合运算法则计算,注意乘法时积的符号.(3)按有理数混合运算法则计算,注意第一项为1的2006次方的相反数,结果为﹣1;中括号内的计算按先乘除后加减;最后一项是偶数个﹣1的积,结果为1.(4)先把﹣6与﹣8相乘,再利用乘法分配律计算,注意分配律使用时每项的符号.【解答】解:(1)﹣13+28+62﹣77=(﹣13﹣77)+(28+62)=﹣90+90=0(2)4﹣4+(﹣3)×(﹣)=4﹣4+1=1(3)﹣12006+[1﹣(2﹣22)×3]+=﹣1+[1﹣(2﹣4)×3]+1=﹣1+[1﹣(﹣2)×3]+1=﹣1+[1+6]+1=7(4)(﹣6)×(﹣﹣+)×(﹣8)=48×(﹣﹣+)=48×()+48×()+48×=﹣4﹣14+18=0【点评】本题考查了有理数混合运算法则,为常考题型.必须正确理解法则并按先乘方、再乘除、最后加减的顺序运算进行计算.18.(1)3(3a2﹣2)﹣2(3a2﹣2)(2)(6xy+)﹣(x2﹣y2+72xy﹣12)【分析】(1)根据整式的运算法则即可求出答案;(2)根据整式的运算法则即可求出答案.【解答】解:(1)原式=9a2﹣6﹣6a2+4=3a2﹣2;(2)原式=6xy+﹣﹣6xy+1=1;【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算,本题属于基础题型.19.已知a3+a2b=3,a2b+b3=﹣2,求a3﹣b3的值.【分析】根据a3﹣b3=(a3+a2b)﹣(a2b+b3),应用代入法,求出算式的值是多少即可.【解答】解:当a3+a2b=3,a2b+b3=﹣2时,a3﹣b3=(a3+a2b)﹣(a2b+b3)=3﹣(﹣2)=5故答案为:5.【点评】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.20.先化简后求值:2(xy2+xy)﹣3(xy2﹣yx)﹣4yx2,其中|x+1|+(y﹣1)2=0.【分析】根据整式的运算法则即可求出答案.【解答】解:由题意可知:x=﹣1,y=1,原式=2xy2+2xy﹣3xy2+3yx﹣4yx2=﹣xy2+5xy﹣4x2y,=﹣(﹣1)×1+5×(﹣1)×1﹣4×1×1=1﹣5﹣4=﹣8.【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.21.两家体育品经销商在国庆期间各推出了自己的优惠活动,A经销商的优惠活动是购买一件球衣送一双球袜,B经销商的优惠活动是球衣与球袜均降价10%出售,而两家经销商的球衣定价均为300元,球袜定价均为40元,若当地的体育学校需要购买球衣20套,球袜x双(x>20);(1)请分别用含x的代数式表示在两家经销商购买球衣和球袜的总费用;(填化简之后的结果)A经销商总费用:(40x+5200)元;B经销商总费用:(4x+600)元;(2)当x=30时,请通过计算说明在哪家经销商处花费更少.【分析】(1)根据题意表示出A与B经销商总费用即可;(2)把x=30分别代入计算,比较即可.【解答】解:(1)A经销商总费用为:300×20+40(x﹣20)=(40x+5200)元;B经销商总费用为:(1﹣10%)×(300×20+40x)=(36x+5400)元;故答案为:(40x+5200)元;(36x+5400)元;(2)把x=30代入A经销商总费用得:40×30+5200=1200+5200=6400元;把x=30代入B经销商总费用得:36×30+5400=1080+5400=6480元,由6400<6480,得到A经销商总费用更少.【点评】此题考查了代数式求值,以及列代数式,熟练掌握运算法则是解本题的关键.22.有理数a,b,c在数轴上的位置如图所示,试化简下式:|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|.【分析】先根据数轴确定出a、b、c的正负情况以及绝对值的大小,然后去掉绝对值号,再进行计算即可求解.【解答】解:由图可知:c<a<0<b,则有a﹣c>0,a﹣b<0,b﹣c>0,2a<0,|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|,=(a﹣c)﹣(b﹣a)﹣(b﹣c)+(﹣2a),=a﹣c﹣b+a﹣b+c﹣2a,=﹣2b.故答案为:﹣2b.【点评】本题考查了绝对值的性质以及合并同类项法则,根据数轴确定出a、b、c的正负情况是解题的关键.23.用字母代替数字是数学发展史上的一大飞跃,请阅读材料并完成下列问题:在计算(1++)×(++)﹣(1+++)×(+)这个算式的过程中,可以设A=1++,B=+,原式化简为A(B+)﹣(A+)B再由乘法分配律A(B+)﹣(A+)B=AB+A﹣AB﹣B=A﹣B =(A﹣B)=请根据这种方法计算:(1++……+)×(+……+)﹣(1++……+)×(+……+)【分析】根据题目中的例子可以求得所求式子的值,本题得以解决.【解答】解:设A=1++……+,B=+……+,则(1++……+)×(+……+)﹣(1++……+)×(+……+)=A(B+)﹣(A+)B=AB+A﹣AB﹣B=(A﹣B)=×1=.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.24.已知数轴上有ABC三点,分别表示有理数﹣12,﹣5,5,动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒,其中P A表示点P到A的距离,PB表示点P与点B的距离,PC表示P到点C的距离.(1)当t<7时,用含t的代数式分别表示P A,PB,PC;(2)当P运动到点B与点C之间时,①P A+PB是定值,②PC+PB是定值这两个说法中有一个说法是正确的,请指出哪个说法是正确的,并说明理由.【分析】(1)t<7时,点P在点A与B之间,P A、PB、PC很容易表达;(2)当点P在B、C之间时,P A+PB=2t﹣7是随t变化的.【解答】解:(1)当t<7时,P A=t,PB=7﹣t,PC=17﹣t;(2)②PC+PB是定值正确;∵当P运动到点B与点C之间时,PB=t﹣7,PC=17﹣t,∴PB+PC=(t﹣7)+(17﹣t)=10,故PB+PC是定值.【点评】这是一个在数轴上两点之间距离计算问题,关键要弄清楚点P运动的位置,能准确地用含t的代数式表达P与A、B、C的距离.。

福清市2018-2019学年上学期七年级期中数学模拟题

福清市2018-2019学年上学期七年级期中数学模拟题

福清市2018-2019学年上学期七年级期中数学模拟题班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.(2013•东港市模拟)如图:在等腰梯形ABCD中,AD∥BC,过D作DF⊥BC于F,若AD=2,BC=4,DF=2,则DC的长为()A.1B.C.2D.2.某机械厂现加工一批零件,直径尺寸要求是40±0.03(单位mm),则直径是下列各数值的产品中合格的是( )A.39.90B.39.94C.40.01D.40.043.若x=1是方程ax+3x=2的解,则a的值是() A.﹣1 B.5 C.1 D.﹣54.体育课上全班女生进行了百米测验,达标成绩为18秒,下面是第一小组8名女生的成绩记录,其中“+”表示成绩大于18秒,“-”表示成绩小于18秒,“0”表示刚好达标,这个小组的达标率是( )A.25%B.37.5%C.50%D.75%5.在5-2,(-5)2,-(-5)2,-|-5|,(-5)-2,-5-2中,负数的个数为( )A.1个B.2个C.3个D.4个6.(2011•扬州)已知下列命题:①对角线互相平分的四边形是平行四边形;②等腰梯形的对角线相等;③对角线互相垂直的四边形是菱形;④内错角相等.其中假命题有()A.1个B.2个C.3个D.4个7.某次数学考试成绩以80分为标准,高于80分记“+”,低于80分记“-”,将某小组五名同学的成绩简记为+10,-4,-7,+11,0,这五名同学的平均成绩应为( )A.81分B.82分C.90分D.92分8.(2014秋•台州校级期中)在-(-2),|-1|,-|0|,-22,(-3)2,-(-4)3中,正数有( )A.1个B.2个C.3个D.4个9.(2012•芗城区校级模拟)如图,宽为50cm的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为()A.400 cm2B.500 cm2C.600 cm2D.4000 cm210.如果把向北走5米,记作+5米,那么-6米表示( )A.向西走6米B.向东走6米C.向南走6米D.向北走6米11.质检员抽查某种零件的质量,超过规定长度的记为正数,短于规定长度的记为负数,检查结果如下:第一个为0.13豪米,第二个为-0.12毫米,第三个为-0.15毫米,第四个为0.11毫米,则质量最差的零件是( )A.第一个B.第二个C.第三个D.第四个12.规定用符号[n]表示一个实数的小数部分,例如:[3.5]=0.5,[]=﹣1.按照此规定,[+1]的值为() A.﹣1 B.﹣3 C.﹣4 D.+113.下列语句:①不带“-”号的数都是正数;②带“-”号的数一定是负数;③不存在既不是正数也不是负数的数;④0℃表示没有温度.其中正确的有( )A.0个B.1个C.2个D.3个14.在5,1,-2,0这四个数中,负数是( )A.-2B.1C.5D.15.A地海拔高度是-53m,B地比A地高17m,B地的海拔高度是( )A.60mB.-70mC.70mD.-36m二、填空题16.﹣3的绝对值是 ,的相反数是 ,的倒数是 .17.单项式﹣的系数是 ,次数是 .18.(2014•雁塔区校级模拟)某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉40只黄羊,发现其中两只有标志.从而估计该地区有黄羊 .19.如图,在射线AB上取三点B、C、D,则图中共有射线 条.三、解答题20.(2011•潼南县)端午节吃粽子是中华民族的传统习俗,一超市为了吸引消费者,增加销售量,特此设计了一个游戏,其规则是:分别转动如图所示的两个可以自由转动的转盘各一次,每次指针落在每一字母区域的机会均等(若指针恰好落在分界线上则重转),当两个转盘的指针所指字母都相同时,消费者就可以获得一次八折优惠价购买粽子的机会.(1)用树状图或列表的方法(只选其中一种)表示出游戏可能出现的所有结果;(2)若一名消费者只能参加一次游戏,则他能获得八折优惠价购买粽子的概率是多少?21.(2013秋•龙岗区期末)解下列一元二次方程.(1)x2﹣5x+1=0;(2)3(x﹣2)2=x(x﹣2).22.(2015春•萧山区月考)已知两实数a与b,M=a2+b2,N=2ab(1)请判断M与N的大小,并说明理由.(2)请根据(1)的结论,求的最小值(其中x,y均为正数)(3)请判断a2+b2+c2﹣ab﹣ac﹣bc的正负性(a,b,c为互不相等的实数)23.(2015春•萧山区月考)阅读下列内容,设a,b,c是一个三角形的三条边的长,且a是最长边,我们可以利用a,b,c三边长间的关系来判断这个三角形的形状:①若a2=b2+c2,则该三角形是直角三角形;②若a2>b2+c2,则该三角形是钝角三角形;③a2<b2+c2,则该三角形是锐角三角形例如一个三角形的三边长分别是4,5,6,则最长边是6,由于62=36<42+52,故由上面③可知该三角形是锐角三角形,请解答以下问题(1)若一个三角形的三条边长分别是2,3,4,则该三角形是 三角形(2)若一个三角形的三条边长分别是3,4,x且这个三角形是直角三角形,则x的值为 (3)若一个三角形的三条边长分别是,mn,,请判断这个三角形的形状,并写出你的判断过程.24.(2009春•洛江区期末)为了预防疾病,某单位对办公室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成为正比例,药物燃烧后,y与x成反比例(如图),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量6毫克,请根据题中所提供的信息,解答下列问题:(1)药物燃烧时,y关于x的函数关系式为 ,自变量x的取值范为 ;药物燃烧后,y关于x的函数关系式为 .(2)研究表明,当空气中每立方米的含药量低于1.6毫克时员工方可进办公室,那么从消毒开始,至少需要经过 分钟后,员工才能回到办公室;(3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?25.(2013秋•揭西县校级月考)如图,一墙墩(用线段AB表示)的影子是BC,小明(用线段DE表示)的影子是EF,在M处有一颗大树,它的影子是MN.(1)试判断是路灯还是太阳光产生的影子,如果是路灯产生的影子确定路灯的位置(用点P表示).如果是太阳光请画出光线.(2)在图中画出表示大树高的线段.26.(2015春•萧山区月考)①化简:(xy﹣y2)②化简并求值,然后从2,﹣2,3中任选一个你喜欢的a的值代入求值.27.(2013秋•揭西县校级月考)如图,在四边形ABCD中,BC>BA,AD=DC,BD平分∠ABC.求证:∠BAD+∠C=180°.福清市2018-2019学年上学期七年级期中数学模拟题(参考答案)一、选择题1.【答案】B【解析】解:∵四边形ABCD是等腰梯形,∴CF=(BC﹣AD)=1,在Rt△DFC中,CD==,故选B.2.【答案】C【解析】【解析】:解:40-0.03=39.97mm,40+0.03=40.03mm,所以这批零件的直径范围是39.97mm到40.03mm.故选:C.【考点】:正数、负数、有理数【难度】:中等难度3.【答案】A【解析】解:把x=1代入原方程得:a+3=2解得:a=﹣1故选A点评:已知条件中涉及到方程的解,把方程的解代入原方程,转化为关于字母的方程进行求解.4.【答案】D【解析】【解析】:解:-1<0,0=0,-1.2<0,-0.1<0,0=0,-0.6<0,达标人数为6人,达标率为6÷8=75%,故选:D.【考点】:正数、负数、有理数【难度】:容易5.【答案】C【解析】【解析】:解:;(-5)2=25;-(-5)2=-25;-|-5|=-5;;.其中是负数有3个.故选:C.【考点】:正数、负数、有理数【难度】:中等难度6.【答案】B【解析】解:①对角线互相平分的四边形是平行四边形,故①是真命题.②等腰梯形的对角线相等.故②是真命题.③对角线互相垂直平分的四边形是菱形.故③是假命题.④两直线平行,内错角相等.故④是假命题.故选B.7.【答案】B【解析】【解析】:解:80+(10-4-7+11+0)÷5=80+2=82.故选:B.【考点】:正数、负数、有理数【难度】:较难8.【答案】D【解析】【解析】:解:-(-2)=2;|-1|=1;-|0|=0;-22=-4,(-3)2=9;-(-4)3=64.正数有4个.故选:D.【考点】:正数、负数、有理数【难度】:中等难度9.【答案】A【解析】解:设一个小长方形的长为xcm,宽为ycm,由图形可知,,解得:.所以一个小长方形的面积为400cm2.故选A.10.【答案】C【解析】【解析】:解:把向北走5米,记作+5米,-6向南走6米,故选:C.【考点】:正数、负数、有理数【难度】:中等难度11.【答案】C【解析】【解析】:解:由于|0.11|<|-0.12|<|0.13|<|-0.15|,所以-0.15毫米与规定长度偏差最大.故选:C.【考点】:正数、负数、有理数【难度】:中等难度12.【答案】B【解析】解:由3<<4,得4<+1<5.[+1]=+1﹣4=﹣3,故选:B点评:本题考查了估算无理数的大小,利用了无理数减去整数部分就是小数部分. 13.【答案】A【解析】【解析】:解:①0不带“-”号,但是它不是正数.②-0带负号,但是它不是负数.③0既不是正数也不是负数.③0℃表示有温度,温度为0度,温度可以为负数(零下)也可以为正数(零上).综上所述,①②③③全部错误,本题的答案选择:A【考点】:正数、负数、有理数【难度】:较容易14.【答案】A【解析】【解析】:解:在5,1,-2,0这四个数中,负数是-2.故选:A.【考点】:正数、负数、有理数【难度】:中等难度15.【答案】D【解析】【解析】:解:由A地海拔高度是-53m,B地比A地高17m,得B地的海拔高度是-53+17=-36米,故选:D.【考点】:正数、负数、有理数【难度】:中等难度二、填空题16.【答案】3,,﹣4.【解析】解:﹣3的绝对值是3,的相反数是,的倒数是﹣4,故答案为3,,﹣4.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.17.【答案】﹣,3.【解析】解:单项式﹣的系数是﹣,次数是3.故答案为:﹣,3.点评:本题考查了单项式的知识,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.18.【答案】 400只 .【解析】解:20÷=400(只).故答案为400只.19.【答案】4.【解析】解:分别以A、B、C、D为端点共有不同的射线4条.故答案为:4.点评:本题考查了直线、射线、线段,熟记射线的定义是解题的关键,从端点考虑求解更容易理解.三、解答题20.【答案】【解析】解:(1)解法一:解法二:转盘2转盘1C D A(A ,C )(A ,D )B(B ,C )(B ,D )C (C ,C )(C ,D)(2)∵一共有6种等可能的结果,当两个转盘的指针所指字母都相同时的结果有一个,∴P=.21.【答案】【解析】解:(1)这里a=1,b=﹣5,c=1,∵△=25﹣4=21,∴x=;(2)方程变形得:3(x ﹣2)2﹣x (x ﹣2)=0,分解因式得:(x ﹣2)(3x ﹣6﹣x )=0,解得:x 1=2,x 2=3.22.【答案】【解析】解:(1)M ≥N ;理由如下:∵M ﹣N=a 2+b 2﹣2ab=(a ﹣b )2≥0,∴M ≥N ;(2)∵∴最小值为5;(3)a 2+b 2+c 2﹣ab ﹣ac ﹣bc >0,理由如下:∵a 2+b 2+c 2﹣ab ﹣ac ﹣bc=(2a 2+2b 2+2c 2﹣2ab ﹣2ac ﹣2bc )=[(a ﹣b )2+(a ﹣c )2+(b ﹣c )2],∵a ,b ,c 为互不相等的实数,∴a 2+b 2+c 2﹣ab ﹣ac ﹣bc >0.23.【答案】【解析】解:(1)若一个三角形的三条边长分别是2,3,4,则该三角形是钝角三角形;理由如下:∵22+32<42,∴该三角形是钝角三角形;故答案为:钝角;(2)若一个三角形的三条边长分别是3,4,x且这个三角形是直角三角形,则x的值为5或;理由如下:分两种情况:①当x为斜边时,x==5;②当x为直角边时,斜边为4,x==;综上所述:x的值为5或;故答案为:5或;(3)若一个三角形的三条边长分别是,mn,,这个三角形是直角三角形;理由如下:∵>,>mn,=,∴这个三角形是直角三角形.24.【答案】【解析】解:(1)设药物燃烧时y关于x的函数关系式为y=k1x(k1>0)代入(8,6)为6=8k1∴k1=设药物燃烧后y关于x的函数关系式为y=k2>0)代入(8,6)为6=∴k2=48∴药物燃烧时y关于x的函数关系式为y=x(0≤x≤8)药物燃烧后y关于x的函数关系式为y=(x>8)(2)结合实际,令y=中y≤1.6得x≥30即从消毒开始,至少需要30分钟后学生才能进入教室.(3)把y=3代入y=x,得:x=4把y=3代入y=,得:x=16∵16﹣4=12所以这次消毒是有效的.25.【答案】【解析】解:(1)如图所示:P点即为路灯的位置;(2)如图所示:GM即为所求.26.【答案】【解析】解:①原式=y(x﹣y)•=xy2;②原式=﹣==,当a=3时,原式=1.27.【答案】【解析】证明:在BC上截取BE=BA,连接DE,∵BD平分∠ABC,∴∠ABD=∠EBD,在△ABD和△EBD中∴△ABD≌△EBD,∴∠A=∠BED,AD=DE,∵AD=DC,∴DE=DC,∴∠C=∠DEC,∵∠BED+∠DEC=∠A+∠DEC=∠A+C=180°,即∠BAD+∠C=180°.。

福建省福州市时代中学2018-2019学年七年级(上)期中数学试卷 含解析

福建省福州市时代中学2018-2019学年七年级(上)期中数学试卷  含解析

2018-2019学年七年级(上)期中数学试卷一、选择题(每小题2分,共20分)1.下列有理数中,是负数的是()A.(﹣1)2B.﹣(﹣1)C.﹣|﹣1| D.﹣(﹣1)32.大量事实证明,环境污染治理刻不容缓.据统计,全球每秒钟约有14.2万吨污水排入江河湖海.把14.2万用科学记数法表示为()A.1.42×105B.1.42×104C.142×103D.0.142×106 3.下列运算正确的是()A.3a+2b=5ab B.3a2b﹣3ba2=0C.3x2+2x3=5x5D.5y2﹣4y2=14.若有理数a的值在﹣1与0之间,则a的值可以是()A.﹣2 B.1 C.D.5.下列各组单项式中,是同类项的有()①﹣3与﹣;②62与b2;③9ab与9abc;④πx与﹣2x;⑤3x2y与﹣3yx2A.2组B.3组C.4组D.5组6.下列变形中,正确的是()A.若,那么a=b B.若ac=bc,那么a=bC.若a=b,那么D.若a2=b2,那么a=b7.用字母a表示任意一个有理数,下列四个式子中,值不可能为0的是()A.1﹣|a﹣1| B.|a﹣1| C.10a3+10 D.a2+18.某商场9月份的营业额为a万元,10月份的营业额为1.2a万元,若按照相同的月增长率计算,该商场11月份的营业额为()A.1.2a万元B.1.4a万元C.1.44a万元D.2.4a万元9.若m÷n=n÷m,则m、n的关系是()A.一定相等B.一定互为相反数C.互为倒数D.相等或互为相反数10.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是()A.n B.n+2 C.n2D.n(n+2)二、填空题(每小题2分,共20分)11.﹣3的绝对值是.12.列式表示:比m的3倍小5的数是.13.用四舍五入法得到的近似数0.618,精确到位.14.已知方程(m﹣2)x|m|﹣1+16=0是关于x的一元一次方程,则m的值为.15.在等式的括号内填上恰当的项,1﹣x+y=1﹣().16.多项式a+b+c的次数是.17.计算,用到的运算律是.18.有理数a,b,c满足a+b+c>0,且abc<0,=.19.若当x=1时,多项式ax3﹣3bx+4的值是7,则当x=﹣1时,这个多项式的值为.20.一列数,按一定规律排列成﹣1,3,﹣9,27,﹣81,…,从中取出三个相邻的数,若这三个数的和为a,则这三个数中最大的数与最小的数的差为(用含a的代数式表示).三、解答题(共8小题,满分60分)21.计算:(1);(2)(﹣2)3÷4+×27;(3);(4)﹣14﹣(1﹣0.5)×.22.化简:(1)2(3x2﹣2xy)﹣4(2x2﹣xy﹣1);(2)2x1﹣{﹣3x+[4x2﹣(3x2﹣x)]}.23.解方程:(1)16x﹣2.5x﹣7.5x=5;(2)9﹣3y=5y+5.24.先化简,再求值:设多项式P=;(1)当x=,y=1时,求P的值;(2)当y﹣3x=﹣3时,求P的值.25.某一出租车一天下午以鼓楼为出发地在东西方向营运,向东走为正,向西走为负,行车里程(单位:千米)依先后次序记录如下:+9,﹣3,﹣5,+4,﹣10,+6,﹣3,﹣6,﹣4,+10(1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼的什么方向?(2)若出租车每千米的耗油量为0.08升,这天下午出租车共耗油量多少升?26.探索规律:将连续的偶数2,4,6,8,…,排成如表:(1)十字框中的五个数的和与中间的数16有什么关系?(2)移动十字框,设中间的数为x,用代数式表示十字框中的五个数的和;(3)若将十字框上下左右移动,可框住另外的五个数,其它五个数的和能等于2560吗?若能,写出这五个数,若不能,说明理由.27.定义:若a+b=2,则称a与b是关于1的平衡数.(1)3与是关于1的平衡数,5﹣x与是关于1的平衡数.(用含x的代数式表示)(2)若a=2x2﹣3(x2+x)+4,b=2x﹣[3x﹣(4x+x2)﹣2],判断a与b是否是关于1 的平衡数,并说明理由.28.已知点A,B在数轴上分别表示m,n,其中m<n.(1)填写下表;(2)若A,B两点的距离为d,则d与m,n的数量关系为;(3)若S=|x﹣3|+|x﹣4|+|x﹣5|+…+|x﹣2018|,求S的最小值,并写出当S取最小值时x的取值范围.参考答案与试题解析一.选择题(共10小题)1.下列有理数中,是负数的是()A.(﹣1)2B.﹣(﹣1)C.﹣|﹣1| D.﹣(﹣1)3【分析】根据绝对值性质和相反数的定义及有理数的乘方化简各式,再由正数和负数的概念求解可得.【解答】解:A.(﹣1)2=1,是正数,故不符合题意;B.﹣(﹣1)=1,是正数,故不符合题意;C.﹣|﹣1|=﹣1,是负数,故符合题意;D.﹣(﹣1)3=1,是正数,故不符合题意;故选:C.2.大量事实证明,环境污染治理刻不容缓.据统计,全球每秒钟约有14.2万吨污水排入江河湖海.把14.2万用科学记数法表示为()A.1.42×105B.1.42×104C.142×103D.0.142×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:14.2万=142000=1.42×105.故选:A.3.下列运算正确的是()A.3a+2b=5ab B.3a2b﹣3ba2=0C.3x2+2x3=5x5D.5y2﹣4y2=1【分析】根据合并同类项的法则把系数相加即可.【解答】解:A、不是同类项不能合并,故A错误;B、系数相加字母及指数不变,故B正确;C、不是同类项不能合并,故C错误;D、系数相加字母及指数不变,故D错误;故选:B.4.若有理数a的值在﹣1与0之间,则a的值可以是()A.﹣2 B.1 C.D.【分析】将﹣1、0及选项中的有理数在数轴上表示出来,然后根据数轴来解答问题.【解答】解:由上图所示:介于﹣1和0之间的有理数只有.故选:D.5.下列各组单项式中,是同类项的有()①﹣3与﹣;②62与b2;③9ab与9abc;④πx与﹣2x;⑤3x2y与﹣3yx2A.2组B.3组C.4组D.5组【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项,由此进行判断即可.【解答】解:①﹣3与﹣是同类项;②62与b2不是同类项;③9ab与9abc不是同类项;④πx与﹣2x是同类项;⑤3x2y与﹣3yx2是同类项,综上所述,是同类项有①④⑤共3组.故选:B.6.下列变形中,正确的是()A.若,那么a=b B.若ac=bc,那么a=bC.若a=b,那么D.若a2=b2,那么a=b【分析】根据等式的性质解题.【解答】解:A、等式的两边同时乘以c,等式仍成立,即a=b,故本选项正确;B、当c=0时,等式a=b不一定成立,故本选项错误;C、当a=b=0时,等式不一定成立,故本选项错误;D、当a=1,b=﹣1时,等式a=b不一定成立,故本选项错误;故选:A.7.用字母a表示任意一个有理数,下列四个式子中,值不可能为0的是()A.1﹣|a﹣1| B.|a﹣1| C.10a3+10 D.a2+1【分析】对于选项A,B,C分别取a=0,1,﹣1代入验证,可知其值为0;对于选项D,可利用偶次方的非负性解答.【解答】解:选项A:当a=0时,1﹣|0﹣1|=1﹣1=0,故A不符合题意;选项B:当a=1时,|1﹣1|=0,故B不符合题意;选项C当a=﹣1时,10(﹣1)3+10=﹣10+10=0,故C不符合题意;选项D:∵a2≥0∴a2+1≥1故其值不可能为0故选:D.8.某商场9月份的营业额为a万元,10月份的营业额为1.2a万元,若按照相同的月增长率计算,该商场11月份的营业额为()A.1.2a万元B.1.4a万元C.1.44a万元D.2.4a万元【分析】10月份的营业额1.2a万元除以9月份的营业额a万元,即可得月增长率,用10月份的营业额1.2a万元乘以月增长率即可.【解答】解:按照相同的月增长率计算,该商场11月份的营业额为:1.2a×=1.44a(万元)故选:C.9.若m÷n=n÷m,则m、n的关系是()A.一定相等B.一定互为相反数C.互为倒数D.相等或互为相反数【分析】根据m÷n=n÷m,可得m2=n2,再根据平方的定义即可求解.【解答】解:∵m÷n=n÷m,∴m2=n2,∴m=±n,即m、n的关系是相等或互为相反数.故选:D.10.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是()A.n B.n+2 C.n2D.n(n+2)【分析】第1个图形是3×1﹣3=1×3,第2个图形是4×3﹣4=2×4,第3个图形是4×5﹣5=3×5,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是:边数×每条边的点数﹣边数=(n+2)(n+1)﹣(n+2)=n(n+2).【解答】解:第一个是1×3,第二个是2×4,第三个是3×5,…第n个是n(n+2),故选:D.二.填空题(共10小题)11.﹣3的绝对值是 3 .【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:﹣3的绝对值是3.12.列式表示:比m的3倍小5的数是3m﹣5 .【分析】分别用乘法和减法计算即可.【解答】解:比m的3倍小5的数是:3m﹣5.故答案为:3m﹣5.13.用四舍五入法得到的近似数0.618,精确到千分位.【分析】利用有效数字的精确度求解.【解答】解:近似数0.618,精确到千分位.故答案为千分.14.已知方程(m﹣2)x|m|﹣1+16=0是关于x的一元一次方程,则m的值为﹣2 .【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:∵方程(m﹣2)x|m|﹣1+16=0是关于x的一元一次方程,∴|m|﹣1=1且m﹣2≠0,解得m=﹣2.故答案是:﹣2.15.在等式的括号内填上恰当的项,1﹣x+y=1﹣(x﹣y).【分析】根据添括号的法则解答.【解答】解:1﹣x+y=1﹣(x﹣y).故答案是:x﹣y.16.多项式a+b+c的次数是 1 .【分析】根据多项式项数的定义,即可得到结论.【解答】解:多项式a+b+c的次数是1,故答案为:1.17.计算,用到的运算律是加法结合律.【分析】根据加法结合律即可求解.【解答】解:计算,用到的运算律是加法结合律.故答案为:加法结合律.18.有理数a,b,c满足a+b+c>0,且abc<0,=0 .【分析】根据已知得出其中一个为负数,其余两个为正数,分为三种情况:①当a<0时,b>0,c>0,②当b<0时,a>0,c>0,③当c<0时,a>0,b>0,分别计算即可.【解答】解:∵abc<0,∴负因数用1个或3个;∵a+b+c>0,∴至少有1个正数,∴符合条件的只有一种情况:其中一个为负数,其余两个为正数,分为以下三种情况:①当a<0时,b>0,c>0,=﹣1+1+1﹣1=0;②当b<0时,a>0,c>0,=1﹣1+1﹣1=0;③当c<0时,a>0,b>0,=1+1﹣1﹣1=0.故答案为0.19.若当x=1时,多项式ax3﹣3bx+4的值是7,则当x=﹣1时,这个多项式的值为 1 .【分析】把x=1代入代数式求出a、b的关系式,再把x=﹣1代入进行计算即可得解.【解答】解:x=1时,ax3﹣3bx+4=a﹣3b+4=7,解得a﹣3b=3,当x=﹣1时,ax3﹣3bx+4=﹣a+3b+4=﹣3+4=1.故答案为:1.20.一列数,按一定规律排列成﹣1,3,﹣9,27,﹣81,…,从中取出三个相邻的数,若这三个数的和为a,则这三个数中最大的数与最小的数的差为|a| (用含a的代数式表示).【分析】通过观察可知,第n个数表示为﹣(﹣3)n﹣1,设这三个数是﹣(﹣3)n﹣1,﹣(﹣3)n,﹣(﹣3)n+1,由三个数的和为a,可求(﹣3)n=a,当n为奇数时,﹣(﹣3)n+(﹣3)n+1=﹣a;当n为偶数时,﹣(﹣3)n+1+(﹣3)n=a.【解答】解:通过观察可知,第n个数表示为﹣(﹣3)n﹣1,取出三个相邻的数,设这三个数是﹣(﹣3)n﹣1,﹣(﹣3)n,﹣(﹣3)n+1,则﹣(﹣3)n﹣1﹣(﹣3)n﹣(﹣3)n+1=﹣(﹣3)n﹣1[1+(﹣3)+(﹣3)2]=﹣7(﹣3)n﹣1=a,∴(﹣3)n=a,当n为奇数时,﹣(﹣3)n最大,﹣(﹣3)n+1最小,∴﹣(﹣3)n+(﹣3)n+1=﹣4×(﹣3)n=﹣a,当n为偶数时,﹣(﹣3)n+1最大,﹣(﹣3)n最小,∴﹣(﹣3)n+1+(﹣3)n=4×(﹣3)n=a,∴这三个数中最大的数与最小的数的差为|a|,故答案为|a|.三.解答题(共8小题)21.计算:(1);(2)(﹣2)3÷4+×27;(3);(4)﹣14﹣(1﹣0.5)×.【分析】(1)先算同分母分数,再相加即可求解;(2)先算乘方,再算乘除,最后算加法;(3)根据乘法分配律简便计算;(4)先算乘方,再算乘法,最后算减法;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【解答】解:(1)=(+)﹣(2.7+5.3)=1﹣8=﹣7;(2)(﹣2)3÷4+×27=﹣8÷4+9=﹣2+9=7;(3)=﹣24﹣×(﹣24)+×(﹣24)=﹣24+4﹣18=﹣38;(4)﹣14﹣(1﹣0.5)×=﹣1﹣××(2﹣9)=﹣1﹣××(﹣7)=﹣1+=.22.化简:(1)2(3x2﹣2xy)﹣4(2x2﹣xy﹣1);(2)2x1﹣{﹣3x+[4x2﹣(3x2﹣x)]}.【分析】(1)原式去括号合并即可得到结果;(2)原式去括号合并即可得到结果.【解答】解:(1)原式=6x2﹣4xy﹣8x2+4xy+4=﹣2x2+4;(2)原式=2x+3x﹣4x2+3x2﹣x=﹣x2+4x.23.解方程:(1)16x﹣2.5x﹣7.5x=5;(2)9﹣3y=5y+5.【分析】解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,据此求出每个方程的解各是多少即可.【解答】解:(1)16x﹣2.5x﹣7.5x=5合并同类项,可得:6x=5,解得:x=.(2)9﹣3y=5y+5移项,可得:5y+3y=9﹣5,合并同类项,可得:8y=4,解得:y=0.5.24.先化简,再求值:设多项式P=;(1)当x=,y=1时,求P的值;(2)当y﹣3x=﹣3时,求P的值.【分析】(1)直接去括号进而合并同类项,再把已知数据代入求出答案;(2)直接把原式变形进而代入已知求出答案.【解答】解:(1)P==﹣x﹣4x+y﹣x+y=﹣6x+2y,当x=,y=1时,原式=﹣6×(﹣)+2=4;(2)当y﹣3x=﹣3时,原式=2(﹣3x+y)=6.25.某一出租车一天下午以鼓楼为出发地在东西方向营运,向东走为正,向西走为负,行车里程(单位:千米)依先后次序记录如下:+9,﹣3,﹣5,+4,﹣10,+6,﹣3,﹣6,﹣4,+10(1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼的什么方向?(2)若出租车每千米的耗油量为0.08升,这天下午出租车共耗油量多少升?【分析】(1)求出各数据之和,判断即可;(2)求出各数据绝对值之和,乘以0.08即可得到结果.【解答】解:(1)根据题意得:+9﹣3﹣5+4﹣10+6﹣3﹣6﹣4+10=﹣2千米,出租车离鼓楼出发点2千米,在鼓楼的西方;(2)根据题意得:|+9|+|﹣3|+|﹣5|+|+4|+|﹣10|+|+6|+|﹣3|+|﹣6|+|﹣4|+|+10|=60(千米),60×0.08=4.8(升),这天下午出租车共耗油量4.8升.26.探索规律:将连续的偶数2,4,6,8,…,排成如表:(1)十字框中的五个数的和与中间的数16有什么关系?(2)移动十字框,设中间的数为x,用代数式表示十字框中的五个数的和;(3)若将十字框上下左右移动,可框住另外的五个数,其它五个数的和能等于2560吗?若能,写出这五个数,若不能,说明理由.【分析】(1)将图中框里的五个数相加即可;(2)由(1)的规律直接可得和为5x;(3)设中间的一个数为a,则5a=2560,解得a=512,分别写出五个数即可.【解答】解:(1)由图可知五个数的和为6+14+16+18+26=80,∴五个数的和是16的5倍;(2)由题意可知,五个数的和为5x;(3)设中间的一个数为a,∴5a=2560,∴a=512,∴五个数是502,510,512,514,522.27.定义:若a+b=2,则称a与b是关于1的平衡数.(1)3与﹣1 是关于1的平衡数,5﹣x与x﹣3 是关于1的平衡数.(用含x的代数式表示)(2)若a=2x2﹣3(x2+x)+4,b=2x﹣[3x﹣(4x+x2)﹣2],判断a与b是否是关于1 的平衡数,并说明理由.【分析】(1)由平衡数的定义可求得答案;(2)计算a+b是否等于1即可.【解答】解:(1)设3的关于1的平衡数为a,则3+a=2,解得a=﹣1,∴3与﹣1是关于1的平衡数,设5﹣x的关于1的平衡数为b,则5﹣x+b=2,解得b=2﹣(5﹣x)=x﹣3,∴5﹣x与x﹣3是关于1的平衡数,故答案为:﹣1;x﹣3;(2)a与b不是关于1的平衡数,理由如下:∵a=2x2﹣3(x2+x)+4,b=2x﹣[3x﹣(4x+x2)﹣2],∴a+b=2x2﹣3(x2+x)+4+2x﹣[3x﹣(4x+x2)﹣2]=2x2﹣3x2﹣3x+4+2x﹣3x+4x+x2+2=6≠2,∴a与b不是关于1的平衡数.28.已知点A,B在数轴上分别表示m,n,其中m<n.(1)填写下表;(2)若A,B两点的距离为d,则d与m,n的数量关系为d=n﹣m;(3)若S=|x﹣3|+|x﹣4|+|x﹣5|+…+|x﹣2018|,求S的最小值,并写出当S取最小值时x的取值范围.【分析】(1)结合点在数轴上的位置进行计算;(2)根据(1)即可发现规律:数轴上两点间的距离等于表示两个点的数的差的绝对值,或直接让较大的数减去较小的数;(3)利用S=|x﹣3|+|x﹣4|+|x﹣5|+...+|x﹣2018|是数轴上点x与 3、4、5、 (2018)的距离和,进而得出当1010≤x≤1011 时,S最小求出即可.【解答】解:(1)填写下表;故答案为:2,10,1;(2)d=n﹣m,故答案为:d=n﹣m;(3)根据绝对值的几何意义,|x﹣a|的意义是数轴上表示数x的点到表示数a的点之间的距离.s=|x﹣3|当x=3时,s有最小值s=0s=|x﹣3|+|x﹣4|当3≤x≤4 时,s有最小值s=4﹣3=1s=|x﹣3|+|x﹣4|+|x﹣5|当x=4时,S有最小值S=2s=|x﹣3|+|x﹣4|+|x﹣5|+|x﹣6|当4≤x≤5 时,S有最小值S=(6﹣3)+(5﹣4)=3+1=4s=|x﹣3|+|x﹣4+|x﹣5|+|x﹣6|+|x﹣7|当x=5时,S有最小值S=(7﹣3)+(6﹣4)+0=4+2=6,…根据观察所得规律|x﹣3|+|x﹣4|+|x﹣5|+…+|x﹣2018|共有(2018﹣3)+1=2016项(2018+3)÷2=1010.5,∴1010≤x≤1011,当1010≤x≤1011时,S有最小值,S=(2018﹣3)+(2017﹣4)+(2016﹣5)+…(1011﹣1010)=2015+2013+2011+…+1=(2015+1)×1008=1088064.。

福清市18--19学年第一学期七年级期中考数学答案

福清市18--19学年第一学期七年级期中考数学答案

= xy y2
……………………………………………………3 分
当 x 3,y 4 时,原式= 3 (4) (-4)2 ……………………………………4 分
=12 16 28
……………………………………5 分
1
21.解:(1)8-(-10)=18
……………………………………………………2 分
…………………………………………9 分
【注:不会推理没关系,只要关键得分点提到,即可得分】
= 3a2 34a 13
……………………………………………4 分
19.(1)解: 2x x 2 14 ………………………………………………………………2 分
3x 12 …………………………………………………………………3 分
x 4 …………………………………………………………………4 分
……………………………………………………3 分
=5
……………………………………………………4 分
18
20.解:原式= x2 x2 2xy 3xy y2
…………………………………………………1 分
= x2 x2 2xy 3xy y2
…………………………………………………2 分
…………………………………………6 分
∴ xc cx, xa xa
∴原式= bx cx c x 10(x a)
…………………………………………7 分
= bx cx c x 10x 10a
= (b c 11)x c 10a
∵ c b b a , a 2
∴ c 2b 2 ∴原式= (b 2b 2 11)x c 10 (2)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年七年级(上)期中数学试卷
一.选择题(共10小题)
1.有理数﹣2018的相反数是()
A.2018 B.﹣2018 C.D.﹣8102
2.单项式﹣4a3b2的系数是()
A.5 B.3 C.4 D.﹣4
3.瑞士数学家欧拉是史上最伟大的四个数学家之一,目前在百度上搜索关键词“欧拉”,显示的搜索结果约为12 600 000条.将12 600 000用科学记数法表示应为()A.126×105B.1.26×107C.1.26×108D.0.126×108
4.在有理数0,,5,3.2,﹣20%中,分数有()
A.1个B.2个C.3个D.4个
5.下列运用等式的性质,变形不一定正确的是()
A.若x=y,则x+6=y+6 B.若x=y,则
C.若x=y,则ax=ay D.若x=y,则6﹣x=6﹣y
6.如图,三角尺(阴影部分)的面积为()
A.ab﹣2πr B.C.ab﹣πr2D.
7.下列各组数中,不相等的是()
A.+(﹣3)与﹣(+3)B.﹣|﹣3|与﹣3
C.(﹣3)2与﹣32D.(﹣3)3与﹣33
8.把方程x﹣4x=4的解用数轴上的点表示出来,那么该点在图中的()
A.点M,点N之间B.点N,点O之间
C.点O,点P之间D.点P,点Q之间
9.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度是60km/h,
水流速度是akm/h,3h后两船相距()
A.6a千米B.3a千米C.360千米D.180千米
10.1小王在某月的日历上圈出了如图所示的四个数,则这四个数的和可能是()
A.24 B.27 C.28 D.30
二.填空题(共6小题)
11.比较大小:﹣10 ﹣9.
12.用四舍五入法取近似数:1.2356≈.(精确到百分位)
13.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入1000元记作+1000元,那么﹣700元表示.14.已知a﹣2b=5,则式子3a﹣6b+2的值为.
15.若M,N是两个多项式,且M+N=6x2,则符合条件的多项式M,N可以是:M=,N=.(写出一组即可)
16.已知m=,n2=n,则m+n的最小值为.
三.解答题(共9小题)
17.计算:
(1)16+(﹣18)÷2
(2)(﹣+)×24
18.化简:
(1)m﹣3n+2m+4n
(2)(5a2+2a﹣1)﹣4(3﹣8a+2a2)
19.(1)解方程:2x+14=2﹣x;
(2)计算:﹣+(﹣)3÷(﹣12+).
20.先化简,后求值:x2﹣[x2﹣2xy+3(xy﹣)],其中x=3,y=﹣4.
21.刚刚升入初三,学习成绩优异但体育一般的王晴同学未雨绸缪,已经为明年的体育中考做起了准备.上周末她在家练习1分钟跳绳,以每分钟150下为基准,超过或不足的部分分别用正负数来表示,8次成绩(单位:下)分别是﹣10,﹣8,﹣5,﹣2,+2,+8,。

相关文档
最新文档