七年级期中数学试卷(人教版)
七年级期中数学人教版试卷
一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √-1B. √3C. √16D. √02. 下列各数中,无理数是()A. √-1B. √3C. √16D. √03. 已知a、b是相反数,那么a+b的值为()A. 0B. aC. -aD. ab4. 下列各式中,正确的是()A. a²+b²=(a+b)²B. a²+b²=(a-b)²C. (a+b)²=a²+b²+2abD. (a-b)²=a²+b²-2ab5. 下列各式中,正确的是()A. (a+b)³=a³+b³B. (a+b)³=a³+3a²b+3ab²+b³C. (a-b)³=a³-3a²b+3ab²-b³D. (a-b)³=a³+3a²b-3ab²-b³6. 下列各式中,正确的是()A. (a+b)(a-b)=a²-b²B. (a+b)(a-b)=a²+b²C. (a+b)(a-b)=abD. (a+b)(a-b)=a²+2ab+b²7. 已知a=3,b=-2,那么a²+b²的值为()A. 7B. 5C. 1D. 98. 下列各式中,正确的是()A. |a|+|b|=|a+b|B. |a|+|b|=|a-b|C. |a|+|b|=|a-b|+2D. |a|+|b|=|a+b|+29. 下列各式中,正确的是()A. a²+b²≥2abB. a²+b²≤2abC. a²+b²>2abD. a²+b²<2ab10. 已知a=2,b=-3,那么|a-b|的值为()A. 5B. 1C. 2D. 0二、填空题(每题3分,共30分)11. 已知a=-2,那么-a的值为______。
人教版七年级下册数学期中考试试题(含答案)
人教版七年级下册数学期中考试试卷一、单选题1.下列各式中正确的是A2=±B 3=-C2=D =2.下列说法正确的是A .3是分数B .227是无理数C .π-3.14是有理数D .3是有理数3.如图,象棋盘上,若“将”位于点(3,﹣2),“车”位于点(﹣1,﹣2),则“马”位于A .(1,3)B .(5,3)C .(6,1)D .(8,2)4.如图,直线12l l //,直角三角板的直角顶点C 在直线1l 上,一锐角顶点B 在直线2l 上,若0135∠=,则2∠的度数是A .65B .55C .45D .355.如图,△ABC 沿BC 方向平移得到△DEF ,已知BC=7,EC=4,那么平移的距离为A .2B .3C .5D .76.下列说法正确的个数有()①同位角相等;②过一点有且只有一条直线与已知直线垂直;③过一点有且只有一条直线与已知直线平行;④不重合的三条直线a、b、c,若//a b,//b c,则//a c.A.1个B.2个C.3个D.4个7.点P为直线l外一点,点A,B在直线l上,若5cmPA=,7cmPB=,则点P到直线l的距离()A.等于5cm B.小于5cm C.不大于5cm D.等于6cm 8.如图,下列条件中,不能判定//AB CD的是()A.180∠+∠=︒B.BAC ACDD BAD∠=∠C.CAD ACB∠=∠∠=∠D.B DCE9.如图,这是小明学校周边环境的示意图,以学校为参照点,儿童公园,图书市场分别距离学校500m、700m,若以(南偏西30°,500)来表示儿童公园的位置,则图书市场的位置应表示为()A.(700,南偏东45︒)B.(南偏东45︒,700)C.(700,北偏东45︒)D.(北偏东45︒,700)10.在平面直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点1A,第二次移动到点2A……,第n次移动到点n A,A的坐标是()则点2021A .()1010,0B .()1010,1C .()1011,0D .()1011,1二、填空题11325-3-.(填“>”“<”或“=”)12.根据如表回答下列问题:x 23.123.223.323.423.523.623.723.823.92x 533.61538.24542.89547.56552.25556.96561.69566.44571.21满足23.623.7n <<的整数n 有________个.13.在平面直角坐标系的第四象限内有一点M ,到x 轴的距离为4,到y 轴的距离为5,则点M 的坐标为_____.14.如图,四边形ABCD 各个顶点的坐标分别为()2,8-、()11,6-、()14,0-、()0,0,则四边形ABCD 的面积是_______.15.如图所示,//AB CD ,EC CD ⊥.若28BEC ∠=︒,则ABE ∠的度数为_______.三、解答题16.(12-(2)求下列式子中x 的值:()229x -=17.根据要求,画图并回答问题:(1)如图,点P 在AOC ∠的边OA 上.①过点P 画OA 的垂线交OC 于B ;②过点P 作直线//PM OC ;(2)表示点О到直线PB 的距离的线段是__________;(3)直接写出所作图中与O ∠互余的角(可以表示出来的角).18.在平面直角坐标系xOy 中,点A 的坐标为()0,4,线段MN 的位置如图所示,其中点M 的坐标为()3,1--,点N 的坐标为()3,2-.(1)将线段MN 平移得到线段AB ,其中点M 的对应点为A ,点N 的对应点为B .点M 平移到点A 的过程可以是:先向__________平移______个单位长度,再向__________平移__________个单位长度;②点B 的坐标为___________.(2)在(1)的条件下,若点C 的坐标为()4,1,连接AC ,BC ,求ABC ∆的面积.19.如图,已知∠1=∠2,∠3=∠4,∠5=∠A ,试说明:BE ∥CF .完善下面的解答过程,并填写理由或数学式:解:∵∠3=∠4(已知)∴AE ∥()∴∠EDC=∠5()∵∠5=∠A (已知)∴∠EDC=()∴DC ∥AB ()∴∠5+∠ABC=180°()即∠5+∠2+∠3=180°∵∠1=∠2(已知)∴∠5+∠1+∠3=180°()即∠BCF+∠3=180°∴BE ∥CF ().20.如图,直线AB 、CD 相交于O 点,∠AOC 与∠AOD 的度数比为4:5,OE ⊥AB ,OF 平分∠DOB ,求∠EOF 的度数.21.(1)计算下列各式的值:=____________________;;通过计算上面各式的值,你发现:对于任意有理数a=__________.(2)利用所得结论解决问题:若有理数a、b在数轴上对应的点的位置如图所示,化简:a b-.22.如图1,AB∥CD,E是射线FD上的一点,∠ABC=140°,∠CDF=40°(1)试说明BC∥EF;(2)若∠BAE=110°,连接BD,如图2.若BD∥AE,则BD是否平分∠ABC,请说明理由.23.将一副三角板中的两个直角顶点C叠放在一起(如图1),其中30∠=︒,A∠=︒,4560B∠=∠=︒.D E(1)若112∠的度数;BCD∠=︒,求ACE(2)试猜想BCD∠的数量关系,请说明理由;∠与ACE(3)若三角板ABC保持不动,绕顶点C转动三角板DCE,在转动过程中,试探究BCD∠等于多少度时,//CD AB?请你直接写出答案.参考答案1.D 2.D 3.C 4.B 5.B 6.A 7.C 8.C 9.D 10.B 11.>【详解】解:因为-25>-27,3-,故答案为:>.12.5【详解】解:∵23.62=556.96,23.72=561.69,∴556.96561.69n <<∴满足23.623.7<<的整数n 有5个,故答案为:5.13.()5,4-【详解】解:∵点M 在第四象限,∴点M 的横坐标为正,纵坐标为负,∵点M 到x 轴的距离为4,到y 轴的距离为5,∴点M 的坐标为()5,4-,故答案为:()5,4-.14.80【详解】解:(1)如图所示:过点A 作AE ⊥x 轴于点E ,过点B 作BF ⊥x 轴于点F ,则四边形ABCD 的面积=12×(14-11)×6+12×(6+8)×(11-2)+12×2×8,=9+63+8,=80;故答案为:80.15.118︒【详解】解:过点E 作EG ∥AB ,则EG ∥CD ,由平行线的性质可得∠GEC =90°,所以∠GEB =90°-28°=62°,因为EG ∥AB ,所以∠ABE =180°-62°=118°.故答案为:118°.16.(1)63(2)1x =-或5【详解】解:(1()238127232---93232=--+63=-;(2)∵()229x -=,∴23x -=±,∴1x =-或5.【详解】解:(1)如图所示,(2)∵OP ⊥PB∴线段OP 的长为点O 到直线PB 的距离故答案为:OP .(3)∵OP ⊥PB ∴∠OPB =90゜∴∠O +∠PBO =90゜即与O ∠互余的角为PBO ∠∵PM ∥OC ∴∠BPM =∠PBO∴∠O +∠BPM =90゜即与O ∠互余的角为BPM∠∴与O ∠互余的角为PBO ∠,BPM ∠.18.(1)①右,3,上,5(或上,5,右,3均可以);②()6,3;(2)7【分析】(1)①由点M 及其对应点的A 的坐标可得平移的方向和距离,即可;②根据①可得点N 的对应点B 的坐标;(2)割补法求解可得.【详解】解:(1)①∵点A 的坐标为()0,4,点M 的坐标为()3,1--,∴点M 移到点A 的过程可以是:先向右平移3个单位长度,再向上平移5个单位长度;也可以是:先向上平移5个单位长度,再向右平移3个单位长度;②由①得:将N (3,-2)先向右平移3个单位长度,再向上平移5个单位长度所得的坐标是(6,3),∴点B 的坐标为(6,3);(2)如图,过点C 作CF y ⊥于点F ,过点B 作BE CF ⊥交FC 延长线于点E ,过点A 作AD y ⊥轴交EB 的延长线于点D ,则四边形AFED 是矩形,∴3AF =,4CF =,2CE =,2BE =,1BD =,6AD =,∴矩形AFED ABC Rt AFC Rt BCE Rt ABDS S S S S =--- 111634322617222=⨯-⨯⨯-⨯⨯-⨯⨯=.19.答案见解析.【详解】试题分析:根据平行线的判定与性质,灵活判断同位角、内错角、同旁内角,逐步可求解.试题解析:解:∵3=4∠∠(已知)∴AE ∥BC (内错角相等,两直线平行)∴5EDC ∠=∠(两直线平行,内错角相等)∵5=A ∠∠(已知)∴EDC ∠=A ∠(等量代换)∴DC ∥AB (同位角相等,两直线平行)∴05180ABC ∠+∠=(两直线平行,同旁内角互补)即0523180∠+∠+∠=∵1=2∠∠(已知)∴0513180∠+∠+∠=(等量代换)即03180BCF ∠+∠=∴BE ∥CF (同旁内角互补,两直线平行).20.50°.【详解】解:设∠AOC =4x ,则∠AOD =5x ,∵∠AOC +∠AOD =180°,∴4x +5x =180°,解得x =20°,∴∠AOC =4x =80°,∴∠BOD =∠AOC =80°,∵OE ⊥AB ,∴∠BOE =90°,∴∠DOE =∠BOE ﹣∠BOD =10°,又∵OF 平分∠DOB ,∴∠DOF =12∠BOD =40°,∴∠EOF =∠EOD +∠DOF =10°+40°=50°.21.(1)4;13;0;3;5;1;a 或()()00a a a a ⎧≥⎪⎨-<⎪⎩;(2)a b-+【详解】(1)4;13;0;3;5;1;a 或()()00a a a a ⎧≥⎪⎨-<⎪⎩(2)解:由数轴知:21a -<<-,01b <<,∴0a b +<,0a b -<,a b -()()a b a b a b =-++--a b =-+.22.(1)见解析;(2)见解析.【详解】(1)证明:∵AB ∥CD ,∴∠ABC+∠BCD =180°,∵∠ABC =140°,∴∠BCD =40°,∵∠CDF =40°,∴∠BCD =∠CDF ,∴BC ∥EF .(2)解:结论:BD 平分∠ABC .理由:∵AE ∥BD ,∴∠BAE+∠ABD =180°,∵∠BAE =110°,∴∠ABD =70°,∵∠ABC =140°,∴∠ABD =∠DBC =70°,∴BD 平分∠ABC .23.(1)68°;(2)180BCD ACE ∠+∠=︒,理由见解析;(3)当120BCD ∠=︒或60︒时,//CD AB .【详解】解:(1)∵90BCA ECD ∠=∠=︒,112BCD ∠=︒∴1129022DCA BCD BCA ∠=∠-∠=︒-︒=︒.∴902268ACE ECD DCA ∠=∠-∠=-︒=︒.(2)180BCD ACE ∠+∠=︒,理由如下:∵90BCD ACB ACD ACD ∠=∠+∠=︒+∠,90ACE DCE ACD ACD ∠=∠-∠=︒-∠,∴180BCD ACE ∠+∠=︒.(3)当120BCD ∠=︒或60︒时,//CD AB .如图2,根据同旁内角互补,两直线平行,当180B BCD ∠+∠=︒时,//CD AB ,此时180BCD ∠=︒-18060120B ∠=︒-︒=︒;如图3,根据内错角相等,两直线平行,当60B BCD ∠=∠=︒时,//CD AB .。
人教版七年级下册数学期中考试试题及答案
人教版七年级下册数学期中考试试卷一、单选题1.下列数据能确定物体具体位置的是()A .朝阳大道右侧B .好运花园2号楼C .东经103︒,北纬30°D .南偏西55︒2.在0.21)A .0.2BC .﹣1D3.下列各式计算正确的是()A 2=±B 1=-C 2=±D .3=4.下列命题中是假命题的是()A .两直线平行,同位角互补B .对顶角相等C .直角三角形两锐角互余D .平行于同一直线的两条直线平行5.在平面直角坐标系内,将M (5,2)先向下平移2个单位,再向左平移3个单位,则移动后的点的坐标是()A .(2,0)B .(3,5)C .(8,4)D .(2,3)6.如图,直线AB 和CD 相交于点O ,45AOC ∠=︒,射线OE 是BOD ∠的角平分线,则∠BOE 的度数为()A .22.5︒B .23.5︒C .45︒D .40︒7.如图,在下列条件中,能判断AB ∥CD 的是()A .∠1=∠2B .∠BAD =∠BCDC .∠BAD +∠ADC =180°D .∠3=∠48.小明在学习平行线的性质后,把含有60°角的直角三角板摆放在自己的文具上,如图,AD ∥BC ,若∠2=70°,则∠1=()A .22°B .20°C .25°D .30°9.如图,数轴上有M ,N ,P ,Q 四点,则这四点中所表示的数最接近)A .点MB .点NC .点PD .点Q10.如图,已知直线AB ,CD 被直线AC 所截,//AB CD ,E 是平面内任意一点(点E 不在直线AB ,CD ,AC 上),设∠BAE =α,∠DCE =β.下列各式:①α+β,②α﹣β,③180°﹣α﹣β,④360°﹣α﹣β,∠AEC 的度数可能是()A .①②③B .①②④C .①③④D .①②③④二、填空题11.已知点(1,3)M m m ++在x 轴上,则m 等于______.12.如果一个正数a 的两个不同平方根分别是22x -和63x -,则a =______.13.在平面直角坐标系中,第二象限内有一点M ,点M 到x 轴的距离为5,到y 轴的距离为4,则点M 的坐标是______.14.如图://AB CD ,AE CE ⊥,13EAF EAB ∠=∠,13ECF ECD ∠=∠,则AFC ∠=__.15a ,小数部分是b ,计算a ﹣2b 的值是__.16<x x 的整数有4个;③﹣3⑥对于任意实数a a .其中正确的序号是_____.三、解答题17218.求下列各式中的x :(1)24810x -=;(2)35(1)48x -+=.19.如图,已知AD BC ⊥于点D ,点E 在AB 上,EF BC ⊥于点F ,12∠=∠,试说明//DE AC .20.按要求画图及填空:在由边长为1个单位长度的小正方形组成的网格中建立如图所示平面直角坐标系,原点O 及△ABC 的顶点都在格点上.(1)点A 的坐标为;(2)将△ABC 先向下平移2个单位长度,再向右平移5个单位长度得到△A 1B 1C 1,画出△A 1B 1C 1.(3)△A 1B 1C 1的面积为.21.(1)由8个同样大小的立方体组成的魔方,体积为64,则出这个魔方的棱长是_____.(2)图1正方形EFGH 的边长等于魔方的棱长,求出阴影部分的面积及其边长.(3)把正方形ABCD 放到数轴上,如图2,使得A 与1-重合,那么D 在数轴上表示的数为______.22.在平面直角坐标系中,有A(﹣2,a +1),B(a ﹣1,4),C(b ﹣2,b )三点.(1)当点C 在y 轴上时,求点C 的坐标;(2)当AB ∥x 轴时,求A ,B 两点间的距离;(3)当CD ⊥x 轴于点D ,且CD =1时,求点C 的坐标.23.先阅读下列一段文字,再回答后面的问题:已知在平面直角坐标系内两点P 1(x 1,y 1),P 2(x 2,y 2),其两点间的距离P 1P 2轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x 2﹣x 1|或|y 2﹣y 1|.(1)已知A (1,3),B (﹣3,﹣5),试求A ,B 两点间的距离;(2)已知线段MN ∥y 轴,MN =4,若点M 的坐标为(2,﹣1),试求点N 的坐标;(3)已知一个三角形各顶点坐标为D (0,6),E (﹣3,2),F (3,2),你能判定此三角形的形状吗?说明理由.24.已知//AM CN ,点B 为平面内一点,AB BC ⊥于B .(1)如图1,直接写出A ∠和C ∠之间的数量关系________;(2)如图2,过点B 作BD AM ⊥于点D ,请说明ABD C ∠=∠的理由;(3)如图3,在(2)问的条件下,点E 、F 在DM 上,连接BE ,BP 、CF ,BF 平分DBC ∠,BE 平分ABD ∠,若180FCB NCF ∠+∠=︒,3BFC DBE ∠=∠,求EBC ∠的度数.参考答案1.C【分析】在平面中,要用两个数据才能表示一个点的位置.【详解】解:朝阳大道右侧、好运花园2号楼、南偏西55︒都不能确定物体的具体位置,东经103︒,北纬30°能确定物体的具体位置,故选:C.【点睛】此题主要考查了坐标确定位置,要明确,一个有序数对才能确定一个点的位置.2.D【分析】按照无理数的定义逐个来判定即可.【详解】解:A、0.2属于有理数,故A不符合题意;3,为有理数,故B不符合题意;BC、﹣1为有理数,故C不符合题意;D符合题意.D故选:D.【点睛】此题主要考查无理数的识别,解题的关键是熟知无理数的定义.3.B【分析】根据算术平方根、平方根和立方根的定义分别判断即可.【详解】解:A2=,故选项错误;B1=-,故选项正确;C2=,故选项错误;D、3=±,故选项错误;故选B.【点睛】此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.4.A【分析】根据平行线、相交线、三角形内角和等性质,对选项逐个判断即可.【详解】解:A:两直线平行,同位角相等,同旁内角互补,选项错误,符合题意;B:对顶角相等,为真命题,故选项不符合题意;C:直角三角形两锐角相加为90︒,即互余,为真命题,故选项不符合题意;D:平行于同一直线的两条直线平行,为真命题,故选项不符合题意;故选A.【点睛】此题主要考查了真假命题,涉及到平行线、相交线、三角形内角和、平行公理等内容,熟练掌握相关几何性质是解题的关键.5.A【分析】根据平移变换与坐标变化规律:横坐标,右移加,左移减;纵坐标,上移加,下移减,可得答案.【详解】因为M点坐标为(5,2),根据平移变换的坐标变化规律可知,向下平移2个单位,再向左平移3个单位后得到的点的坐标是(5−3,2-2),即(2,0).故选:A.【点睛】此题主要考查了坐标与图形的变化,关键是掌握点的坐标的变化规律.6.A【分析】根据对顶角相等可得∠BOD=∠AOC,再根据射线OE是∠BOD的角平分线即可得解.【详解】解:由对顶角相等得,∠BOD=∠AOC=45°,∵射线OE是∠BOD的角平分线,∴∠BOE=12∠BOD=12×45°=22.5°.故选:A.【点睛】本题考查了对顶角的性质和角平分线的定义,熟记概念并求出∠BOD的度数是解题的关键.7.C【分析】利用平行线的判定方法逐一判断即可.【详解】解:A.由∠1=∠2可判断AD∥BC,不符合题意;B.∠BAD=∠BCD不能判定图中直线平行,不符合题意;C.由∠BAD+∠ADC=180°可判定AB∥DC,符合题意;D.由∠3=∠4可判定AD∥BC,不符合题意;故选择:C.【点睛】本题主要考查平行线的判定,掌握平行线的判定方法是解题的关键.8.B【分析】过F作FG∥AD,则FG∥BC,即可得到∠2=∠EFG=70°,再根据∠AFE=90°,即可得出∠AFG=90°-70°=20°,进而得到∠1=∠AFG=20°.【详解】解:如图,过F作FG∥AD,则FG∥BC,∴∠2=∠EFG=70°,又∵∠AFE=90°,∴∠AFG=90°-70°=20°,∴∠1=∠AFG=20°,故选:B.【点睛】本题考查了平行线的性质,三角板的知识,比较简单,熟记平行线的性质是解题的关键.9.B【分析】先估算.【详解】∵∴43-<-∴最接近N故答案选择B.【点睛】本题考查的是无理数,正确估算.10.D【分析】根据点E有6种可能位置,分情况进行讨论,依据平行线的性质以及三角形外角性质进行计算求解即可.【详解】解:(1)如图1,由AB//CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图2,过E2作AB平行线,则由AB//CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.当AE2平分∠BAC,CE2平分∠ACD时,∠BAE2+∠DCE2=12(∠BAC+∠ACD)=12×180°=90°,即α+β=90°,又∵∠AE2C=∠BAE2+∠DCE2,∴∠AE2C=180°﹣(α+β)=180°﹣α﹣β;(3)如图3,由AB//CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图4,由AB//CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.(5)(6)当点E 在CD 的下方时,同理可得,∠AEC =α﹣β或β﹣α.综上所述,∠AEC 的度数可能为β﹣α,α+β,α﹣β,180°﹣α﹣β,360°﹣α﹣β.故选:D .【点睛】本题主要考查了平行线的性质的运用与外角定理,解题时注意:两直线平行,同位角相等;两直线平行,内错角相等.11.3-【分析】当点M 的纵坐标为0时,即可列式求值.【详解】解:由题意得:m+3=0,解得m=-3,故答案为:3-.【点睛】此题主要考查点的坐标;用到的知识点为:x 轴上点的纵坐标为0.12.36【分析】根据平方根的定义,两不同平方根互为相反数,列式求解即可【详解】解:由题意可得()3262x x -=--,即2263x x -=-+,解得4x =,222426x ∴-=⨯-=,36a ∴=故答案为:36【点睛】本题主要考查了平方根的定义,利用正数的平方根有两个且互为相反数列出正确的关系式是解决本题的关键.【分析】根据点到x 轴的距离为点的纵坐标的绝对值,到y 轴的距离为点的横坐标的绝对值,得到点M 的横纵坐标可能的值,进而根据所在象限可得点M 的具体坐标.【详解】解:设点M 的坐标是(x ,y ).∵点M 到x 轴的距离为5,到y 轴的距离为4,∴|y|=5,|x|=4.又∵点M 在第二象限内,∴x =−4,y =5,∴点M 的坐标为(−4,5),故答案是:(−4,5).【点睛】本题考查了点的坐标,用到的知识点为:点到x 轴的距离为点的纵坐标的绝对值,到y 轴的距离为点的横坐标的绝对值;第二象限(−,+).14.60︒【分析】利用两直线平行,同旁内角互补,垂直的定义,方程的思想求解即可.【详解】解:连接AC ,设EAF x ∠=,ECF y ∠=,3EAB x ∠=,3ECD y ∠=,//AB CD ,180BAC ACD ∴∠+∠=︒,33180CAE x ACE y ∴∠++∠+=︒,180(33)CAE ACE x y ∴∠+∠=︒-+,180(22)FAC FCA x y ∠+∠=︒-+180()AEC CAE ACE ∴∠=︒-∠+∠180[180(33)]x y =︒-︒-+33x y=+3()x y =+,180()AFC FAC FCA ∠=︒-∠+∠180[180(22)]x y =︒-︒-+2()x y =+,AE CE ⊥ ,90AEC ∴∠=︒,22906033AFC AEC ∴∠=∠=⨯︒=︒.故答案为:60︒.【点睛】本题考查了平行线的性质,垂直的定义,方程的思想,熟练应用平行线的性质,科学引入未知数是解题的关键.15.3﹣【分析】a 、b 的值,代入求出即可.【详解】解:∵12,∴a =1,b 1,∴a ﹣2b =1﹣21)=3﹣故答案为:3﹣【点睛】此题主要考查无理数的估算,解题的关键是根据无理数的大小先表示出a 、b ,代入求解.16.②③【分析】根据有理数、无理数、实数的意义逐项进行判断即可.【详解】解:①开方开不尽的数是无理数,但是有的数不开方也是无理数,如:π,3π等,因此①不正确,不符合题意;x x 的整数有﹣1,0,1,2共4个,因此②正确,符合题意;③﹣3是99,因此③正确,符合题意;④π就是无理数,不带根号的数也不一定是有理数,因此④不正确,不符合题意;⑤无限循环小数,是有理数,因此⑤不正确,不符合题意;⑥若a <0|a|=﹣a ,因此⑥不正确,不符合题意;因此正确的结论只有②③,故答案为:②③.【点睛】本题考查无理数、有理数、实数的意义,理解和掌握实数的意义是正确判断的前提.172++.【分析】先化简绝对值、化简二次根式、立方根、二次根式的乘法,再计算二次根式的加减法即可得.【详解】原式35=+,2+.【点睛】本题考查了化简绝对值、立方根、二次根式的乘法与加减法,熟记各运算法则是解题关键.18.(1)92x =±;(2)12x =-【分析】(1)移项后根据平方根的定义求解;(2)移项后根据立方根的定义求解;【详解】解:(1)∵24810x -=,∴2481x =,∴2814x =,∴92x =±;(2)∵35(1)48x -+=,∴327(1)8x -=-,∴312x -=-,∴12x =-.【点睛】本题考查了利用平方根和立方根的定义解方程,熟练掌握平方根和立方根的定义是解答本题的关键.19.见解析【分析】先由垂直于同一条直线的两条直线平行,得出∠1=∠3,再用∠1=∠2代换,最后用内错角相等得出结论.【详解】解:如图,∵AD BC ⊥于点D ,EF BC ⊥于点F ,∴//AD EF ,∴13∠=∠,∵12∠=∠,∴23∠∠=,∴//DE AC .【点睛】此题是平行线的判定,主要考查了平行线的性质和判定,用判断垂直于同一条直线的两直线平行,解本题的关键是判断出AD ∥EF .20.(1)(-4,2);(2)见解析;(3)5.5.【分析】(1)根据点A 的的位置和平面直角坐标系求解即可;(2)根据平移规律即可画出△A 1B 1C 1;(3)利用割补法求△A 1B 1C 1的面积,把△A 1B 1C 1补全成一个矩形,然后用矩形的面积减去其他三个三角形的面积,即可求出△A 1B 1C 1的面积.【详解】(1)A (-4,2);(2)如图,△A 1B 1C 1即为所求.(3)11111134231413 5.5222A B C S =⨯-⨯⨯-⨯⨯-⨯⨯= .∴△A 1B 1C 1的面积是5.5.【点睛】此题考查了平移变换以及利用割补法求三角形面积,解题的关键是熟练掌握平移变换以及利用割补法求三角形面积.21.(1)4;(2)阴影部分的面积是8,边长是(3)-1-【分析】(1)根据正方体的体积公式可求这个魔方的棱长.(2)根据魔方的棱长为4,所以小立方体的棱长为2,阴影部分由4个直角三角形组成,算出一个直角三角形的面积乘以4即可得到阴影部分的面积,开平方即可求出边长.(3)根据两点间的距离公式可得D 在数轴上表示的数.【详解】解:(1=4,答:这个魔方的棱长为4.(2)∵魔方的棱长为4,∴小立方体的棱长为2,∴阴影部分面积为:12×2×2×4=8,答:阴影部分的面积是8,边长是(3)D 在数轴上表示的数为-1-故答案为:-1-【点睛】本题考查的是立方根在实际生活中的运用,解答此题的关键是根据立方根求出魔方的棱长.22.(1)(0,2);(2)4;(3)(﹣1,1)或(﹣3,﹣1)【分析】(1)利用y 轴上点的坐标特征得到b ﹣2=0,求出b 得到C 点坐标;(2)利用与x 轴平行的直线上点的坐标特征得到a +1=4,求出a 得到A 、B 点的坐标,然后计算两点之间的距离;(3)利用垂直于x 轴的直线上点的坐标特征得到|b |=1,然后求出b 得到C 点坐标.【详解】解:(1)∵点C 在y 轴上,∴20b -=,解得2b =,∴C 点坐标为(0,2);(2)∵AB ∥x 轴,∴A 、B 点的纵坐标相同,∴a +1=4,解得a =3,∴A(﹣2,4),B(2,4),∴A ,B 两点间的距离=2﹣(﹣2)=4;(3)∵CD ⊥x 轴,CD =1,∴|b |=1,解得b =±1,∴C 点坐标为(﹣1,1)或(﹣3,﹣1).【点评】本题考查平面直角坐标系中点坐标的求解,解题的关键是掌握坐标轴上点的坐标特征.23.(1)(2)(2,3)或(2,﹣5);(3)等腰三角形,见解析【分析】(1)直接利用两点间的距离公式计算;(2)利用MN∥y轴得到M、N的横坐标相同,设N(2,t),利用两点间的距离为4得到|t+1|=4,然后求出t即可;(3)利用两点间的距离公式计算出DE、DF、EF,然后根据三角形的分类进行判断.【详解】解:(1)A,B(2)∵线段MN∥y轴,∴M、N的横坐标相同,设N(2,t),∴|t+1|=4,解得t=3或﹣5,∴N点坐标为(2,3)或(2,﹣5);(3)△DEF为等腰三角形.理由如下:∵D(0,6),E(﹣3,2),F(3,2),∴DE5,DF5,EF6,∴DE=DF,∴△DEF为等腰三角形.【点睛】本题考查了两点间的距离公式.解答该题时,先弄清两点在平面直角坐标系中的位置,然后选取合适的公式来求两点间的距离.24.(1)∠A+∠C=90°;(2)证明见解析(3)105°【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)过点B作BG∥DM,证∠DBG=90°,得出∠ABD=∠CBG,再根据平行线的性质,得出∠C=∠CBG,即可得到∠ABD=∠C;(3)过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.【详解】解:(1)如图1,AM与BC的交点记作点O,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠A+∠AOB=90°,∴∠A+∠C=90°,故答案为:∠A+∠C=90°;(2)如图2,过点B作BG∥DM,∴∠D+∠DBG=180°,∵BD⊥AM,∴∠D=90°,∴∠DBG=90°,∴∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,BG∥AM,∴CN∥BG,∴∠C=∠CBG,∴∠ABD=∠C;(3)如图3,过点B作BG∥DM,∵BF平分∠DBC,∴∠DBF=∠CBF,由(2)可得∠ABD=∠CBG,∴∠ABF=∠GBF,∵BE平分∠ABD,∴∠DBE=∠ABE,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠ABF=β,∵BG∥DM,∴∠AFB=∠GBF=β,∵∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵BG∥DM,∴∠AFC+∠NCF=180°,∵∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②联立方程组,解得α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【点睛】本题主要考查了平行线的性质和三角形内角和,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.余角和补角计算的应用,常常与等式的性质、等量代换相关联.解题时注意方程思想的运用.。
2024年全新七年级数学上册期中试卷及答案(人教版)
专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 29C. 35D. 392. 下列哪个数是偶数?A. 23B. 27C. 33D. 363. 一个等差数列的首项是3,公差是2,那么第10项是多少?A. 19B. 20C. 21D. 224. 下列哪个图形是平行四边形?A. 正方形B. 长方形C. 梯形D. 圆形5. 下列哪个是无理数?A. √9B. √16C. √25D. √26二、判断题(每题1分,共5分)1. 两个质数相乘一定是合数。
()2. 0是偶数。
()3. 1是等差数列的首项。
()4. 平行四边形的对边相等。
()5. 所有的无理数都是开方开不尽的数。
()三、填空题(每题1分,共5分)1. 100的平方根是______。
2. 一个等差数列的公差是3,第5项是17,那么首项是______。
3. 下列图形中,______是轴对称图形。
4. 下列数中,______是立方数。
5. 如果a+b=12,ab=4,那么a和b的值分别是______和______。
四、简答题(每题2分,共10分)1. 请简述等差数列的定义。
2. 请简述平行四边形的性质。
3. 请简述无理数的概念。
4. 请简述勾股定理的内容。
5. 请简述一次函数的图像特点。
五、应用题(每题2分,共10分)1. 一个等差数列的前5项和是35,求这个数列的第10项。
2. 一个长方形的长是10厘米,宽是6厘米,求这个长方形的面积。
3. 如果一个数的平方是64,那么这个数的立方是多少?4. 如果a=5,b=3,求a²+b²的值。
5. 请画出一个一次函数y=2x+1的图像。
六、分析题(每题5分,共10分)七、实践操作题(每题5分,共10分)1. 请用直尺和圆规画出一个边长为5厘米的正方形。
2. 请用直尺和圆规画出一个半径为3厘米的圆。
八、专业设计题(每题2分,共10分)1. 设计一个等差数列,其首项为3,公差为2,求前10项的和。
人教版七年级数学期中测试卷【含答案】
人教版七年级数学期中测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少厘米?A. 3厘米B. 23厘米C. 17厘米D. 27厘米3. 下列哪个数是偶数?A. 101B. 102C. 103D. 1044. 下列哪个数是奇数?A. 151B. 152C. 153D. 1545. 如果一个正方形的边长是6厘米,那么它的面积是多少平方厘米?A. 36平方厘米B. 40平方厘米C. 44平方厘米D. 48平方厘米二、判断题(每题1分,共5分)1. 0是最小的自然数。
()2. 1是最大的质数。
()3. 任何一个偶数都能被2整除。
()4. 任何一个奇数都不能被2整除。
()5. 1千克的物品比1公斤的物品重。
()三、填空题(每题1分,共5分)1. 1千克等于______克。
2. 1米等于______分米。
3. 1平方米等于______平方分米。
4. 1千米等于______米。
5. 1吨等于______千克。
四、简答题(每题2分,共10分)1. 请简述偶数和奇数的定义。
2. 请简述质数和合数的定义。
3. 请简述正方形的特点。
4. 请简述长方形的特点。
5. 请简述三角形的特点。
五、应用题(每题2分,共10分)1. 小明有10个苹果,他吃掉了3个,还剩下多少个?2. 小红有15个橙子,她给了小明5个,还剩下多少个?3. 一个长方形的长是8厘米,宽是4厘米,求它的面积。
4. 一个正方形的边长是6厘米,求它的面积。
5. 一个三角形的底是10厘米,高是5厘米,求它的面积。
六、分析题(每题5分,共10分)1. 分析下列数的特点:2、3、5、7、11、13、17、19。
2. 分析下列图形的特点:正方形、长方形、三角形。
七、实践操作题(每题5分,共10分)1. 请用纸和剪刀剪出一个正方形,边长为10厘米,并求出它的面积。
人教版七年级数学期中考试试卷以及答案
期中综合检测试卷(第一章~第二章 满分:120分)一、选择题(每小题3分,共30分) 1.-8的绝对值是( A ) A .8 B .18C .-8D .-182.下列运算结果为正数的是( A ) A .(-3)2 B .-3÷2 C .0×(-2020)D .2-3 3.已知下列各式:abc,2πR ,x +3y,0,x -y2m ,其中单项式有( B )A .2个B .3个C .4个D .5个4.下列计算正确的是( D ) A .3a +2a =5a 2 B .3a -a =3 C .2a 3+3a 2=5a 5D .-a 2b +2a 2b =a 2b 5.我们的祖国地域辽阔,其中领水面积约为370 000 km 2.把370 000这个数用科学记数法表示为( B )A .37×104B .3.7×105C .0.37×106D .3.7×1066.有理数a ,b 在数轴上的对应点如图所示,则下列结论正确的是( A )A .|b |>-aB .|a |>-bC .b >aD .|a |>|b |7.下列说法中,正确的有( B )①任何数的倒数都小于1;②a 的倒数是1a ;③同号的两个数,原数大的倒数反而小;④互为倒数的两数符号相同.A .1个B .2个C .3个D .4个 8.下列各式不正确的是( A ) A .-x 2=(-x )2B .(-a )2=a 2C .(a -b )2=(b -a )2D .(a -b )3=-(b -a )39.计算6m 2-5m +3与5m 2+2m -1的差,结果正确的是( D ) A .m 2-3m +4 B .m 2-3m +2 C .m 2-7m +2D .m 2-7m +410.甲、乙、丙三家超市为了促销一种定价均为m 元的商品,甲超市连续两次降价20%,乙超市一次性降价40%,丙超市第一次降价30%,第二次降价10%,此时顾客要购买这种商品,应到的超市是( B )A .甲B .乙C .丙D .乙或丙二、填空题(每小题3分,共18分)11.如果向东走6 m 记作+6 m ,那么向西走2 m 记作__-2 m__. 12.若3a n +1b 2与12a 3b m +3的和仍是单项式,则m +n =__1__.13.单项式-35x 2yz 3的系数是__-35__,次数是__6__.14.一种零件的直径尺寸在图纸上是30+0.03-0.02(单位:mm),它表示这种零件的标准尺寸是30 mm ,合格产品的尺寸范围是__29.98~30.03__mm.15.若||a -11+(b +12)2=0,则(a +b )2020=__1__.16.如图是一个运算程序的示意图,若开始输入x 的值为625,则第2020次输出的结果为__1__.三、解答题(共72分) 17.(12分)计算下列各题: (1)-14-(-6)+2-3×⎝⎛⎭⎫-13; 解:原式=-1+6+2+1=8. (2)⎝⎛⎭⎫29-14+118÷⎝⎛⎭⎫-136;解:原式=⎝⎛⎭⎫29-14+118×(-36)=29×(-36)-14×(-36)+118×(-36)=-1. (3)3(x 2-5xy )-4(x 2+2xy -y 2)-5(y 2-3xy );解:原式=3x 2-15xy -4x 2-8xy +4y 2-5y 2+15xy =-x 2-8xy -y 2. (4)(x -x 2+1)-2(x 2-1+3x ).解:原式=x -x 2+1-2x 2+2-6x =-3x 2-5x +3.18.(6分)下面的运算是否正确,如果正确,说明每一步的依据;如果不正确,说明从哪一步开始出现了错误,错误的原因,并写出正确的解答过程.计算:-18+23+56-14.解:原式=⎝⎛⎭⎫-18+14+⎝⎛⎭⎫56-23(第①步) =18+16(第②步) =724.(第③步) 解:从第①步开始出现了错误:加数交换位置时应和前面的符号一起交换.正确的解答如下:原式=⎝⎛⎭⎫-18-14+⎝⎛⎭⎫23+56=-38+96=98. 19.(6分)先化简,再求值:3x 3-(4x 2+5x )-3(x 3-2x 2-2x ),其中x =-2.解:原式=3x 3-4x 2-5x -3x 3+6x 2+6x =2x 2+x .当x =-2时,原式=2×(-2)2-2=6. 20.(6分)随着人们生活水平的提高,家用轿车越来越多地进入家庭.小明家买了一辆小轿车,国庆节期间,他连续记录了7天中每天行驶的路程(如下表),以50 km 为标准,多于50 km 的记为“+”,不足50 km 的记为“-”,刚好50 km 的记为“0”.(2)若每行驶100 km 需用汽油6升,汽油价5.2元/升,请估计小明家一个月(按30天计)的汽油费用是多少元?解:(1)这七天中平均每天行驶50+(-8-11-14+0-16+41+8)÷7=50(千米). (2)平均每天所需汽油费用为50×6÷100×5.2=15.6(元),即估计小明家一个月的汽油费用是15.6×30=468(元).21.(6分)现定义一种新运算“⊕”:对于任意有理数x ,y ,都有x ⊕y =3x +2y ,例如:5⊕1=3×5+2×1=17.(1)求(-4)⊕(-3)的值; (2)化简:a ⊕(3-2a ).解:(1)(-4)⊕(-3)=3×(-4)+2×(-3)=-12-6=-18.(2)a ⊕(3-2a )=3×a +2×(3-2a )=3a +6-4a =-a +6.22.(6分)已知A =5x 2-mx +n ,B =3y 2-2x -1(A ,B 为关于x ,y 的多项式).如果A -B 的结果中不含一次项和常数项,求:(1)m ,n 的值; (2)m 2+n 2-2mn 的值.解:(1)因为A =5x 2-mx +n ,B =3y 2-2x -1,所以A -B =5x 2-mx +n -3y 2+2x +1=5x 2-3y 2+(2-m )x +n +1.由结果中不含一次项和常数项,得2-m =0,n +1=0,解得m =2,n =-1. (2)当m =2,n =-1时,原式=22+(-1)2-2×2×(-1)=4+1+4=9.23.(8分)有3个有理数x ,y ,z ,若x =2(-1)n -1,且x 与y 互为相反数,y 是z 的倒数.(1)当n 为奇数时,你能求出x ,y ,z 这三个数吗?当n 为偶数时,你能求出x ,y ,z 这三个数吗?若能,请计算并写出结果;若不能,请说明理由;(2)根据(1)的结果计算xy -y n -(y -z )2020的值.解:(1)当n 为奇数时,x =-1.因为x 与y 互为相反数,所以y =-x =1.因为y 是z 的倒数,所以z =1.所以x =-1,y =1,z =1;当n 为偶数时,因为分母不能为零,所以不能求出x ,y ,z 的值.(2)当x =-1,y =1,z =1时,原式=(-1)×1-1n -02020=-2.24.(10分)如图,一个用铝合金材料加工的长方形窗框,它的宽和高分别为a 厘米、b 厘米,解答下列问题(结果可用含a ,b 的代数式表示).(1)长方形窗框的面积是__ab __平分厘米;(2)铝合金窗分为上、下两栏,四周框架和中间隔栏的材料均为宽度为6厘米的铝合金材料,上栏和下栏的框内高度(不含铝合金部分)的比为1∶2(接口用料忽略不计).①求制作一个该种窗框所需铝合金材料的总长度; ②求该种(2)窗框的透光部分的面积.解:(2)①由题意,得上栏内高度为b -183厘米,下栏内高度为2(b -18)3厘米,所以所需铝合金材料的总长度为3a +b -183×2+2(b -18)3×3=⎝⎛⎭⎫3a +83b -48厘米. ②透光部分的面积为ab -6⎝⎛⎭⎫3a +83b -48=(ab -18a -16b +288)平方厘米. 25.(12分)一张桌子可坐4人,按照如图所示的方式将桌子拼在一起.(1)2张桌子拼在一起可坐几人?3张桌子拼在一起可坐几人?n 张桌子拼在一起可坐几人?(2)一家酒楼有60张这样的正方形桌子,按上图的方式每4张桌子拼成一张大桌子,则60张桌子可拼成15张大桌子,共可坐多少人?(3)若这家酒楼的60张这样的正方形桌子,每4张拼成一张大的正方形桌子,则共可坐多少人?(4)(2)、(3)中,哪种拼桌子的方式坐的人更多?解:(1)2张桌子拼在一起可坐4+2=6(人);3张桌子拼在一起可坐4+2+2=8(人);n 张桌子拼在一起可坐4+2(n -1)=(2n +2)人. (2)按图中方式拼一张大桌子可坐4+2×(4-1)=10(人),则15张大桌子共可坐15×10=150(人). (3)若每4张桌子拼成一张大正方形桌子,则一张大的正方形桌子可坐8人,15张大正方形桌子共可坐15×8=120(人). (4)由(2)、(3)可知,按(2)中拼桌子的方式坐的人更多.。
2023-2024人教版七年级数学期中试卷
人教版七年级数学期中押题卷01考试时间:120分钟试卷满分:120分测试范围:第1-2章一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确)1.(2022秋•长沙期中)手机移动支付给生活带来便捷.如图是张老师某日微信账单的收支明细(正数表示收入,负数表示支出,单位:元),张老师当天微信收支的最终结果是()A.收入15元B.支出2元C.支出17元D.支出9元2.(2022秋•长沙期中)根据湖南省文化和旅游厅发布2022年国庆假日旅游数据:10月1日至10月7日,全省共纳入假日统计监测单位939家,累计接待游客9175600人次,收入9.51亿元.其中,数据9175600用科学记数法表示为()A.91.756×105B.9.1756×106C.0.91756×107D.9.1756×1073.(2022秋•东莞市校级期中)如关于x,y的多项式4x2y+7mxy﹣5y3+6xy化简后不含二次项,则m=()A.B.C.D.04.(2022秋•黄陂区期中)在数﹣2,3,0,﹣5四个数中,最大的数是()A.﹣2B.3C.0D.﹣55.(2022秋•黄陂区期中)下列说法正确的是()A.的系数是7B.32x3y的次数为6C.数字0也是单项式D.x4+x2是六次多项式6.(2022秋•长沙县期中)若实数a,b,c满足|a﹣b|=1,|a﹣c|=5,则|b﹣c|的值为()A.4B.5C.4或6D.4或57.(2022秋•东莞市校级期中)计算(﹣2)100+(﹣2)101所得的结果是()A.2100B.﹣1C.﹣2D.﹣21008.(2022秋•长沙县期中)下列各式中去括号正确的是()A.﹣(﹣a﹣b)=a﹣bB.a2+2(a﹣2b)=a2+2a﹣2bC.5x﹣(x﹣1)=5x﹣x+1D.3x2﹣(x2﹣y2)=3x2﹣x2﹣y29.(2022秋•长沙期中)按如图所示的运算程序,能使输出y值为1的是()A.m=1,n=1B.m=1,n=0C.m=1,n=2D.m=2,n=110.(2022秋•长沙期中)如图,矩形ABCD长为a,宽为b,若S1=S2=(S3+S4),则S4等于()A.ab B.ab C.ab D.ab二、填空题(本题共8小题,每小题3分,共24分)11.(2022秋•东莞市校级期中)比较大小:填“>”、“=”或“<”).12.(2022秋•天河区校级期中)单项式的系数为.13.(2022秋•长沙期中)在数轴上,与表示﹣3的点相距6个单位长度的点所表示的数是.14.(2022秋•东莞市校级期中)把多项式2ab2﹣5a2b﹣7+a3b3按字母b的降幂排列,排在第三项的是.15.(2022秋•武汉期中)已知当x=1时,多项式mx3﹣nx的值为﹣2022,则当x=﹣1时,多项式mx3﹣nx 的值为.16.(2022秋•东莞市校级期中)已知x,y互为相反数,m,n互为倒数,a的绝对值等于2,则x+y+a2﹣amn =.17.(2022秋•长沙期中)定义新运算“⊗”,规定:a⊗b=a+a b,则﹣3⊗2=.18.(2022秋•长沙县期中)观察图形,则第n个图形中三角形的个数是.三、解答题(共66分)19.(2022秋•东莞市校级期中)在数轴上表示下列各数:4,﹣1.5,﹣3,0,2.5,﹣|﹣5|,并将它们按从小到大的顺序排列.20.(2022秋•白云区校级期中)计算:(1)(+12)﹣(﹣18)+(﹣7)﹣(+15).(2).(3).(4).21.(2022秋•白云区校级期中)先化简,再求值:(1)2(5a2﹣2a+1)﹣4(3﹣a+2a2),其中a=﹣3.(2)2a2b+2ab﹣[3a2b﹣2(﹣3ab2+2ab)]+5ab2,其中ab=1,a+b=6.22.(2022秋•黄陂区期中)(1)已知(a﹣3)2+|b﹣2|=0,c和d互为倒数,m和n互为相反数,且mn<0,y为最小的正整数,求:|a﹣b|+﹣|﹣y|+2cd的值;(2)有理数a,b,c在数轴上的位置如图所示,化简:|a+c|﹣|a﹣b|+|b﹣c|.23.(2022秋•思明区校级期中)如图小亮家的菜园呈图1中长方形的阴影部分,(单位:米).小亮家住房户型呈图2中长方形,(单位:米).(1)用两种不同的代数式直接列出小亮家的菜园面积;(用含x的代数式表示)(2)小亮家准备铺设地面,三间卧室铺设木地板,其它区域铺设地砖.求铺设地面需要木地板和地砖各多少平方米(用含x的代数式表示)24.(2022秋•东莞市校级期中)阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2=;(2)已知x2﹣2y=4,求3x2﹣6y﹣21的值;拓广探索:(3)已知a﹣5b=3,5b﹣3c=﹣5,3c﹣d=10,求(a﹣3c)+(5b﹣d)﹣(5b﹣3c)的值.25.(2022秋•黄陂区期中)已知式子M=(a+4)x3+6x2﹣2x+5是关于x的二次多项式,且二次项系数为b,数轴上A,B两点所对应的数分别是a和b.(1)则a=,b=;A,B两点之间的距离为;(2)有一动点P从点A出发第一次向左运动1个单位长度,然后在新的位置第二次向右运动2个单位长度,再在此位置第三次向左运动3个单位长度….按照如此规律不断地左右运动,当运动到第2022次时,求点P所对应的有理数.(3)若点A以每秒2个单位长度的速度向左运动,同时点B以每秒3个单位长度的速度向右运动,动点D从原点开始以每秒m(m>0)个单位长度在A,B之间运动(到达A或B即停止运动),运动时间为t秒,在运动过程中,BD﹣2AD的值始终保持不变,求D点运动的方向及m的值.26.(2022秋•武汉期中)在七年级数学学习中,常用到分类讨论的数学方法,以化简|x|为例.当x>0时,|x|=x;当x=0时,|x|=0;当x<0时,|x|=﹣x.求解下列问题:(1)当x=3时,值为,当x=﹣3时,的值为,当x为不等于0的有理数时,的值为;(2)已知x+y+z=0,xyz>0,求的值;(3)已知:x1,x2,…,x2021,x2022,这2022个数都是不等于0的有理数,若这2022个数中有n个正数,,则m的值为(请用含n的式子表示).。
数学人教版七年级期中试卷
一、选择题(每题3分,共30分)1. 下列数中,不是有理数的是()A. 0.5B. √4C. -3D. √-12. 下列各数中,能被3整除的是()A. 18B. 20C. 21D. 223. 在下列各数中,是负数的是()A. -2.5B. 0C. 2.5D. -5.24. 下列各数中,是正整数的是()A. 0B. 1C. -1D. 0.15. 若一个数的绝对值是5,那么这个数是()A. ±5B. 5C. -5D. ±106. 下列各数中,是偶数的是()A. 3B. 4C. 5D. 67. 下列各数中,是奇数的是()A. 2B. 3C. 4D. 58. 下列各数中,是整数的是()A. 3.5B. 4C. -5D. 0.19. 若一个数的倒数是0.5,那么这个数是()A. 2B. -2C. 1/2D. -1/210. 下列各数中,是正有理数的是()A. 0B. 1C. -1D. -2二、填空题(每题3分,共30分)11. 2的平方根是______,3的立方根是______。
12. 下列数中,是正数的是______,是负数的是______。
13. 下列数中,是整数的是______,是有理数的是______。
14. 下列数中,是正有理数的是______,是负有理数的是______。
15. 下列数中,是正数的是______,是负数的是______。
16. 下列数中,是正整数的是______,是负整数的是______。
17. 下列数中,是正数的是______,是负数的是______。
18. 下列数中,是正数的是______,是负数的是______。
三、解答题(每题10分,共30分)19. (1)求下列各数的倒数:5,-2,1/3。
(2)比较下列数的大小:-3,-2,-1,0,1,2,3。
20. (1)计算下列各式的值:2^2 + 3^2 - 4^2。
(2)计算下列各式的值:-5 × 2 + 3 ÷ 4 - 1。
2023-2024学年全国初中七年级上数学人教版期中试卷(含答案解析)
20232024学年全国初中七年级上数学人教版期中试卷一、选择题(每题2分,共20分)1.下列数中,哪个是整数?A. 3.14B. 5C. 2/3D. 0.252.一个等边三角形的每个内角是多少度?A. 60°B. 90°C. 120°D. 180°3.下列哪个是方程?A. 3x + 5 = 7B. x + y = 5C. 2x 3yD. 4x + 2y = 64.下列哪个数是负数?A. 0B. 3C. 5D. 25.一个长方形的长是8厘米,宽是4厘米,它的面积是多少平方厘米?A. 12B. 16C. 24D. 326.下列哪个数是质数?A. 4B. 6C. 7D. 97.下列哪个数是分数?A. 0B. 3C. 5/7D. 88.一个等腰三角形的底边长是10厘米,腰长是12厘米,它的周长是多少厘米?A. 24B. 30C. 32D. 349.下列哪个数是偶数?A. 3B. 5C. 8D. 910.一个正方形的边长是5厘米,它的面积是多少平方厘米?A. 10B. 15C. 20D. 25二、填空题(每题2分,共20分)1.一个等差数列的前三项分别是2,5,8,那么它的第四项是多少?2.一个长方形的长是12厘米,宽是6厘米,它的面积是多少平方厘米?3.一个等腰三角形的底边长是10厘米,腰长是12厘米,它的周长是多少厘米?4.一个正方形的边长是8厘米,它的面积是多少平方厘米?5.一个等差数列的前三项分别是3,7,11,那么它的第四项是多少?6.一个长方形的长是15厘米,宽是5厘米,它的面积是多少平方厘米?7.一个等腰三角形的底边长是8厘米,腰长是10厘米,它的周长是多少厘米?8.一个正方形的边长是7厘米,它的面积是多少平方厘米?9.一个等差数列的前三项分别是1,5,9,那么它的第四项是多少?10.一个长方形的长是10厘米,宽是4厘米,它的面积是多少平方厘米?三、解答题(每题10分,共50分)1.解方程:2x 3 = 72.一个长方形的长是12厘米,宽是5厘米,求它的面积。
2024—2025学年人教版七年级上册期中模拟考试数学试卷
2024—2025学年人教版七年级上册期中模拟考试数学试卷一、单选题1.2024-的相反数是()A .2024B .2024-C .12024D .12024-2.中国空间站位于距离地面约400km 的太空环境中.由于没有大气层保护,在太阳光线直射下,空间站表面温度可高于零上150℃,其背阳面温度可低于零下100℃.若零上150℃记作+150℃,则零下100℃记作()A .100+℃B .100-℃C .50+℃D .50-℃3.在0,2,﹣2,23这四个数中,最大的数是()A .2B .0C .﹣2D .234.(湖州中考)某花店的玫瑰每枝4元,兰花每枝8元,小丽买了a 枝玫瑰,b 枝兰花,一共花了()A .12a 元B .12b 元C .(4a +8b)元D .12(a +b)元5.冬天的脚步近了,白天和夜晚的温差很大,白天的最高气温能达到10℃左右,夜晚的最低气温为1-℃左右,则白天最高气温与夜晚最低气温的温差是()A .9-℃B .11-℃C .9℃D .11℃6.质检员抽查某种零件的质量,超过规定长度记为正数,短于规定长度记为负数,检查结果如下:第一个为0.13毫米,第二个为0.12-毫米,第三个为0.15-毫米,第四个为0.16毫米,则质量最差的零件是()A .第一个B .第二个C .第三个D .第四个7.已知数a ,b 在数轴上表示的点的位置如图所示,则下列结论正确的是()A .0a b +>B .0a b ⋅>C .a b >D .b a b+>8.下列说法正确..的是()A .单项式227xy 的系数是2B .单项式227xy 的次数是2C .232x y x y -是四次多项式D .232x y x y -有两项,分别是232x y x y和9.如图,做一个试管架,在cm a 长的木条上钻4个圆孔,每个孔直径为4cm ,则x =()A .8cm 5a +B .16cm 5a -C .4cm 5a -D .8cm 5a -10.当1x =时,代数式551ax bx +-的值等于1000,那么当1x =-时,代数式551ax bx +-的值().A .1002B .1002-C .1001D .1001-二、填空题11.比较大小:-45-911.12.近似数42.37010⨯,精确到位.13.若关于a ,b 的代数式23x a b -与9y a b 是同类项,则y x 的值是.14.若x 为有理数,则式子22023x -+的最小值为.15.若有理数m ,n 满足220190m n -+-=,则m n +=.16.用黑白两种正六边形地面瓷砖按如图所示规律拼成若干图案,则第n 个图案中有白色地面瓷砖块.三、解答题17.计算(1)()528522514⎛⎫-+÷-⨯- ⎪⎝⎭;(2)()()221113232⎫⎛⎡⎤---+⨯-- ⎪⎣⎦⎝⎭.18.已知234A x x =-,222B x x y =+-(1)当2x =-时,试求出A 的值;(2)当12x =,13y =时,请求出3A B -的值.19.粮库3天内发生粮食进出库的吨数如下(“+”表示进库,“-”表示出库):26+32-15-34+38-20-(1)经过这三天,粮库里的粮食是增多了还是减少了?增多或减少了多少吨?(2)经过这3天,粮库管理员结算时发现粮库里还存480吨粮食,那么3天前粮库里的存粮有多少吨?(3)如果进库出库的装卸费都是每吨10元,那么这3天要付出多少装卸费?20.已知:2A ab a =-,2B ab a b =-++.(1)计算:52A B -;(2)若52A B -的值与字母b 的取值无关,求a 的值.21.如图,用三种大小不等的正方形①②③和一个缺角的正方形拼成一个长方形ABCD (不重叠且没有缝隙),若BF a =,GH a =,1GK a =+.(1)求正方形②和正方形③的边长(用含a 的代数式表示);(2)求长方形ABCD 的周长(用含a 的代数式表示),并求出当3a =时,长方形ABCD 的周长.22.有理数a 、b 、c 在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b c -0,a b +0,c a -0.(2)化简:b c a b c a -++--.23.已知,有7个完全相同的边长为m 、n 的小长方形(如图1)和两个阴影部分的长方形拼成1个宽为10的大长方形(如图2),小明把这7个小长方形按如图所示放置在大长方形中.(1)当52m n ==,时,大长方形的面积为__________;(2)请用含m ,n 的代数式表示下面的问题:大长方形的长:__________;阴影A 的面积:__________;阴影B 的周长__________;(3)请说明阴影A 与阴影B 的周长的和与m 的取值无关.24.我们把按一定规律排列的一列数,称为数列,若对于一个数列中依次排列的相邻的三个数m 、n 、p ,总满足2p m n =-,则称这个数列为理想数列.(1)若数列2,1-,a ,4-,b ,…,是理想数列,则a =,b =;(2)若数列x ,3x ,4,…,是理想数列,求代数式22233x x -+的值.(3)若数列…,m ,n ,p ,q …,是理想数列,且122p q -=,求代数式()()2223492022n n m m n -++-+的值.25.如图,数轴上有A 、B 、C 、D 四个点,分别对应a ,b ,c ,d 四个数,其中10a =-,8b =-,()214c -与20d -互为相反数,(1)求c ,d 的值;(2)若线段AB 以每秒3个单位的速度,向右匀速运动,当t =时,点A 与点C 重合,当t =时,点B 与点D 重合;(3)若线段AB 以每秒3个单位的速度向右匀速运动的同时,线段CD 以每秒2个单位的速度向左匀速运动,则线段AB 从开始运动到完全通过CD 所需时间多少秒?(4)在(3)的条件下,当点B 运动到点D 的右侧时,是否存在时间t ,使点B 与点C 的距离是点A 与点D 的距离的4倍?若存在,请求出t 值,若不存在,请说明理由.。
人教版七年级下册数学期中考试试题及答案
人教版七年级下册数学期中考试试卷一、单选题1.下列图形中,1∠与2∠互为邻补角的是()A .B .C .D .2.下列各数中22,,0.27π,有理数有()A .2个B .3个C .4个D .5个3.如图所示,因为AB ⊥l ,BC ⊥l ,B 为垂足,所以AB 和BC 重合,其理由是()A .两点确定一条直线B .在同一平面内,过一点有且只有一条直线与已知直线垂直C .过一点能作一条垂线D .垂线段最短4.在平面坐标系中,线段CF 是由线段AB 平移得到的;点(1,4)A -的对应点为(4,1)C ,则点(,)B a b 的对应点F 的坐标为()A .()3,3a b +-B .()5,3a b +-C .()5,3a b --D .()3,5a b ++5.已知点P 的坐标为()2,32a a ++,且点P 在y 轴上,则点P 坐标为()A .(0,4)P -B .(0,4)P C .(0,2)P -D .(0,6)P -6.已知下列命题:①相等的角是对顶角;②在同一平面内,若//a b ,//b c ,则//a c ;③同旁内角互补;④互为邻补角的两个角的角平分线互相垂直.其中,是真命题的有()A .0个B .1个C .2个D .3个7.若平面直角坐标系内的点M 在第二象限,且M 到x 轴的距离为1,到y 轴的距离为2,则点M 的坐标为()A .()2,1B .()2,1-C .()2,1-D .()1,2-8)A .3±B .3C .3-D .9.把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则∠1的度数是()A .45°B .60°C .75°D .82.5°10.如图,AB ⊥BC ,AE 平分∠BAD 交BC 于点E ,AE ⊥DE ,∠1+∠2=90°,M 、N 分别是BA 、CD 延长线上的点,∠EAM 和∠EDN 的平分线交于点F ,∠F 的度数为()A .120°B .135°C .150°D .不能确定11.实数,a b||a b +)A .2a -B .2b -C .2a b +D .2a b-12.如图,动点P 在平面直角坐标系中按图中箭头所示的方向运动,第1次从原点运动到点()1,1;第二次接着运动到点()2,0;第三次接着运动到点()3,2,按这样的运动规律,经过2019次运动后,动点P 的坐标为()A .()2019,0B .()2019,1C .()2019,2D .()2020,0二、填空题13.将命题“两直线平行,同位角相等”写成“如果…,那么…”的形式是________14.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是()()--,那么“帅”的坐标是__________3,1,3,115.若一个数的立方根就是它本身,则这个数是________.16.若a ba b的值为____________<,且,a b17.如图,把一张平行四边形纸片ABCD沿BD对折,使点C落在点E处,BE与AD相交于点O,若∠DBC=15°,则∠BOD=______________.==,现对72进行如下操18.任何实数a,可用[]a表示不超过a的最大整数,如[4]4,[3]3作:72第一次8]=;第二次[8]2=;第三次[2]1=;这样对72只需进行3次操作后变为1,在进行这样3次操作后变为1的所有正整数中,最大的是___19.如图,直线a和b被直线c所截,∠1=110°,当∠2=_____时,直线a b成立三、解答题20.(1-2|x-=-(2)解方程:()3112521.(1)如图这是某市部分简图,为了确定各建筑物的位置:①请你以火车站为原点建立平面直角坐标系②写出体育场、宾馆的坐标;③图书馆的坐标为()-4,-3,请在图中标出图书馆的位置;(2)已知M=是3m +的算术平方根,N=n-2的立方根,试求M-N 的值;22.如图在平面直角坐标系中,已知(1,1)P ,过点P 分别向,x y 轴作垂线,垂足分别是,A B ;(1)点Q 在直线AP 上且与点P 的距离为2,则点Q 的坐标为__________(2)平移三角形ABP ,若顶点P 平移后的对应点(4,3)P ',画出平移后的三角形'''A B P .23.如图,//,AB CD EFG ∆的顶点,F G 分别落在直线,AB CD 上,CE 交AB 于点,H GE 平分FGD ∠,若90,20EFG EFH ︒︒∠=∠=,求EHB ∠的度数.24.如图,在平面直角坐标系中,,A B 坐标分别是(0,),(,)A a B b a ,且,a b 满足()23|5|0a b -+-=,现同时将点,A B 分别向下平移3个单位,再向左平移1个单位,分别得到点,A B 的对应点,C D ,连接,,AC BD AB .(1)求点,C D 的坐标及四边形ACDB 的面积ACDB S ;(2)在y 轴上是否存在一点M ,连接,MC MD ,使13MCD ACDB S S ∆=?若存在这样的点,求出点M 的坐标,若不存在,试说明理由.25.学着说理由:如图∠B =∠C ,AB ∥EF ,试说明:∠BGF =∠C证明:∵∠B =∠C ()∴AB ∥CD ()又∵AB ∥EF ()∴EF ∥CD ()∴∠BGF =∠C ()26.如图,EF ⊥BC 于点F ,∠1=∠2,DG ∥BA ,若∠2=40°,则∠BDG 是多少度?参考答案1.D2.C3.B4.B5.A6.C7.B8.D9.C10.B11.A【详解】解:0,,a b a b <<>0,a b ∴+<||a b a a b b+=+++()a a b b=--++a a b b=---+2.a =-故选A .12.C【详解】解:从图象可以发现,点P 的运动每4次位置循环一次.每循环一次向右移动四个单位.∴2019=4×504+3,当第504循环结束时,点P 位置在(2016,0),在此基础之上运动三次到(2019,2),故选:C .13.如果两条直线是平行线,那么同位角相等.【解析】一个命题都能写成“如果…那么…”的形式,如果后面是题设,那么后面是结论.【详解】“两直线平行,同位角相等”的条件是:“两直线平行”,结论为:“同位角相等”,∴写成“如果…,那么…”的形式为:“如果两条直线是平行线,那么同位角相等”,故答案为如果两条直线是平行线,那么同位角相等.14.()1,3--【解析】首先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“帅”的坐标.【详解】解:建立平面直角坐标系,如图,“帅”的坐标为(-1,-3),故答案为:(-1,-3).15.±1,0【详解】∵13=1,(-1)3=-1,03=0,∴1的立方根是1,-1的立方根是-1,0的立方根是0,∴一个数的立方根就是它本身,则这个数是±1,0.故答案为±1,0.16.-1【详解】解:364049,<<67,∴6,7,a b ∴==1,a b ∴-=-故答案为: 1.-17.150︒【详解】如图,∵在平行四边形ABCD 中,AD ∥BC ,∴∠ODB=∠DBC=15°.又由折叠的性质知,∠EBD=∠CBD=15°,即∠OBD=15°,∴在△OBD 中,∠BOD=180°−∠OBD−∠ODB=150°,18.255【详解】解:9,3,1,⎡===⎣13,3,1,⎡===⎣15,3,1,===16,4,2,1,⎡⎡====⎣⎣需要进行4次操作后变为1,即只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为255.19.70°【分析】根据平行的判定,要使直线a b 成立,则∠2=∠3,再根据∠1=110°,即可把∠2的度数求解出来.【详解】解:要使直线a b 成立,则∠2=∠3(同位角相等,两直线平行),∵∠1=110°,∴∠3=180°-∠1=180°-110°=70°,∴∠2=∠3=70°,故答案为:70°.20.(1)10(2)4x =-【详解】(1)原式=9(3)22+-++-10=(2)解:15x -=-4x =-21.(1)①见解析;②体育馆()4,3-;宾馆()2,2;③见解析;(2)2【详解】(1)①平面直角坐标系如图;②体育馆()4,3-;宾馆()2,2,③图书馆的位置见上图.(2)422433m m n -=⎧⎨-+=⎩ 63m n =⎧∴⎨=⎩3,1M N ∴==2M N ∴-=22.(1)12(1,1),(1,3)Q Q -;(2)见解析【详解】解:(1)∵点Q 在直线AP 上且与点P 的距离为2,AP ⊥x 轴,P (1,1),∴点Q 的坐标为(1,-1)或(1,3),故答案为:(1,-1)或(1,3);(2)如图所示,'(1,1),(4,3).P P ∴平移方式为先向右平移3个单位长度,再向上平移2个单位长度,按相同方式把,A B 作同样的平移得到''.A B ,顺次连接''',,A B P 得到三角形A′B′P′即为所求.【点睛】本题主要考查了利用平移变换作图,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.23.55︒【详解】解:90,20EFG EFH ︒︒∠=∠= 70BFG ︒∴∠=//AB CD ,70FGC BFG ︒∴∠=∠=,110FGD ︒∴∠=因为GE 平分FGD ∠,55FGH ︒∴∠=,180705555FHG ︒︒︒∴∠=--=︒55EHB FHG ︒∴∠=∠=24.(1)(1,0),(4,0),C D -15.ACDB S =(2)在y 轴上存在点(0,2)M ,或(0,2)M -使13MCD ABDC S S ∆=【详解】解:(1)依题意得:3050a b -=⎧⎨-=⎩解得:35a b =⎧⎨=⎩(0,3),(5,3)A B ∴,将点,A B 分别向下平移3个单位,再向左平移1个单位,(1,0),(4,0),C D ∴-5315.ACDB S CD OA =∙=⨯=(2)假设在y 轴上存在点(0,)M y ,使13MCD ABDCS S ∆=11553MCD S ∆∴==,1552y ∴⨯⨯=,2y ∴=±,(0,2)M ∴或(0,2)-所以在y 轴上存在点(0,)M y ,使13MCD ABDC S S ∆=.25.【详解】证明:∵∠B =∠C (已知),∴AB ∥CD (内错角相等,两直线平行),又∵AB ∥EF (已知),∴EF ∥CD (平行于同一直线的两直线平行),∴∠BGF =∠C (两直线平行,同位角相等).26.130°【详解】解:∵∠1=∠2,∴EF∥AD,∵EF⊥BC,∴AD⊥BC,即∠ADB=90°,又∵DG∥BA,∠2=40°,∴∠ADG=∠2=40°,∴∠BDG=∠ADG+∠ADB=130°.。
人教版七年级上册数学期中考试试卷含答案
人教版七年级上册数学期中考试试题一、单选题1.2-的相反数是()A .2-B .2C .12D .12-2.下列运算中结果正确的是()A .-1+1=0B .133444-⨯=C .369777-+=-D .(-10)÷(-5)=-53.有理数a ,b 在数轴上的位置如图所示,则a+b 是()A .正数B .负数C .零D .都有可能4.下列说法不正确的是()A .相反数等于本身的数是0B .绝对值最小的数是0C .平方最小的数是0D .最小的整数是0.5.请将88300000用科学记数法表示为()A .0.883×109B .8.83×108C .8.83×107D .88.3×1066.下列各式与a b c --的值不等的是()A .()()a b c -++-B .()()a b c -+--C .()()a b c +-+-D .()()a b c -+-+7.若ab >0,则必有()A .a >0,b >0B .a <0,0b <C .0a >,0b <D .a 、b 同号8.下列各组数中是同类项的是()A .3x 与3yB .2xy 2与﹣x 2yC .﹣3x 2y 与4yx 2D .﹣x 2与99.下列关于单项式-235x y的说法中,正确的是()A .系数、次数都是3B .系数是35,次数是3C .系数是35-,次数是2D .系数是35-,次数是310.若a 2+2a -1=0,则2a 2+4a +2021的值是()A .2019B .2020C .2021D .2023二、填空题11.比较大小-12______-13;-(-3.2)______- 3.2-.12.已知4,5x y ==,且x y >,则x—y =______.13.用四舍五入法求5.4349精确到0.01的近数是______.14.绝对值小于3的所有整数的和是______.15.若单项式x 2ym +2与﹣3xny 的和仍然是一个单项式,则m +n 的值为______.16.如图是某年10月份的月历,用正方形圈出9个数.如果用相同的方法,在月历中用正方形圈出9个数,设最中间一个是x ,则用x 表示这9个数的和是________.17.一个多项式A 减去多项式2x2+5x ﹣3,马虎同学将2x2+5x ﹣3抄成了2x2+5x+3,计算结果是﹣x2+3x ﹣7,那么这个多项式A 是_____.18.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯…,计算:111111223344520202021+++++⨯⨯⨯⨯⨯ 的结果为___________.三、解答题19.把下列各数分类,并填在表示相应集合的大括号内:35-, 3.2-,0,12,-6.4;4%-,2001(1)-.(1)整数集合:(2)分数集合:(3)正数集合:(4)负数集合20.把下列各数表示的点画在数轴上,并用“<”把这些数连接起来.-5, 1.5-,0,-132,-(-4).21.计算(1)1(2)8(3)(8)--++--+(2)131(1)(6448-+÷-(3)﹣(3﹣5)+(﹣3)2×(1﹣3)(4)5(2x -7y )-3(4x -10y )(5)()421110.52(3)3⎡⎤---⨯⨯--⎣⎦22.若│a│=4,b 是绝对值最小的数,c 是最大的负整数,求a +b -c 的值.23.先化简、再求值22222523(42)xy x y xy xy x y ⎡⎤-+--⎣⎦,其中x =2、y =-124.为了有效控制酒后驾驶,金昌市某交警的汽车在一条东西方向的大街上巡逻,规定向东为正,向西为负,已知从出发点开始所行使的路程(单位:千米)为:+4,﹣3,+2,+1,﹣2,﹣1,+2(1)若此时遇到紧急情况要求这辆汽车回到出发点,请问司机应该怎么走?要走多远?(2)该辆汽车的时速为每小时6千米,问该车回到出发点共用了多少时间?25.对于任何有理数,规定符号a b c d 的意义是a b ad bc c d=-.例如:1214—23234=⨯⨯=-.(1)计算23-11的值.(2)当21(2)0x y ++-=时,求22231x yx y ----值.26.已知1520a b c ++-++=,且a ,b ,c 分别是点A ,B ,C 在数轴上对应的数.(1)求a ,b ,c 的值,并在数轴上标出点A ,B ,C .(2)若动点P ,Q 同时从A ,B 出发沿数轴负方向运动,点P 的速度是每秒1个单位长度,点Q 的速度是每秒2个单位长度,求运动几秒后,Q 可以追上点P ?(3)在数轴上找一点M ,使点M 到A ,B 两点的距离之和等于10,请求出所有点M 对应的数,并说明理由.参考答案1.B【解析】【分析】根据相反数的定义可得结果.【详解】因为-2+2=0,所以-2的相反数是2,故选:B .【点睛】本题考查求相反数,熟记相反数的概念是解题的关键.2.A【解析】【分析】根据有理数的运算法则,逐条分析计算即可判断.【详解】解:A 、-1+1=0,正确;B 、1334416-⨯=-,错误;C 、363777-+=,错误;D 、(-10)÷(-5)=2,错误.故选:A .【点睛】本题考查的了绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数,即:a÷b=a•1b(b≠0).两数相除,同号得正,异号得负,并把绝对值相除.3.B【解析】【分析】根据数轴得到0,0a b <>,且a b >,再有理数的加法进行分析即可得到答案.【详解】根据数轴得到0,0a b <>,且a b >,则a+b<0,故选择B.【点睛】本题考查用数轴表示有理数、绝对值和有理数的加法,解题的关键是掌握用数轴表示有理数和有理数的加法.4.D【解析】【分析】A 、根据有理数的相反数定义可得;B 、由有理数的绝对值规律可得;C 、计算正数、0与负数的平方进行比较;D 、根据整数的定义得出.【详解】解:选项A 、B 、C 的说法都正确,只有D ,因为没有最小的整数,所以D 错误.故选:D .【点睛】本题考查了相反数、绝对值、平方的有关知识,应注意既没有最大的整数,也没有最小的整数.5.C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.【详解】解:将88300000用科学记数法表示为:8.83×107.故选:C .【点睛】本题考查用科学记数法表示绝对值大于1的数,能正确确定a 和n 是解题关键.6.B【解析】【分析】直接根据去括号法则将选项进行整理化简即可得出答案.【详解】解:A 、()()a b c a b c -++-=--,不符合题意;B 、a b c a b c -+≠--,符合题意;C 、()()a b c +-+-=a b c --,不符合题意;D 、()()a b c -+-+=a b c --,不符合题意;故选:B .【点睛】本题考查了整式的加减,熟练掌握去括号法则是解本题的关键.7.D【解析】【分析】根据有理数的乘法法则求解即可.【详解】解:∵ab>0,∴a 与b 同号,故选:D .【点睛】本题考查了有理数的乘法,比较简单,掌握ab >0,a 和b 同号,ab <0,a 和b 异号是关键.8.C【解析】【分析】根据同类项的定义进行判断即可得到答案.【详解】解:A.所含字母不同,不是同类项,故本选项不合题意;B.所含字母的指数不同,不是同类项,故本选项不合题意;C.所含字母相同,相同字母的指数相同,是同类项,故本选项符合题意;D.﹣x 2与9不是同类项,故本选项不符合题意;故选:C【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项:所含字母相同,且相同字母的指数相同.9.D【解析】【分析】根据单项式系数、次数的定义:单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数先求出单项式-23 5x y 的系数和次数,然后确定正确选项.【详解】解:根据单项式系数、次数的定义可知:单项式-23 5x y 的系数是﹣35,次数是2+1=3,只有D 正确,故选:D .x 2【点睛】本题考察了单项式的系数和次数的求法,熟记它们的概念是解题的关键10.D【解析】【分析】先把a 2+2a -1=0变形为a 2+2a =1,再代入原式化简后的式子22(2)2021a a ++得出结果.【详解】解:∵a 2+2a -1=0,∴a 2+2a =1,∴2a 2+4a +2021=22(2)2021a a ++=2×1+2021=2023,故选:D .【点睛】本题考查了代数式求值,考查了整体思想,把a 2+2a =1整体代入求值是解题的关键.11.<>【解析】【分析】根据两个负数比较,绝对值大的反而小,正数大于负数,即可判断.【详解】解:∵12-=1326=;13-=12=36,∴36>26,∴-12<-13;∵-(-3.2)=3.2, 3.2--=-3.2,∴-(-3.2)>- 3.2-,故答案为:<,>.【点睛】本题考查了有理数的大小比较,掌握“两个负数比较,绝对值大的反而小”是解题的关键.12.1或9##9或1【解析】【分析】由题意依据|x|=4,|y|=5,所以x=±4,y=±5,因为x>y,所以x=4,y=-5或x=-4,y=-5.然后分两种情况分别计算x-y的值.【详解】解:因为|x|=4,|y|=5,所以x=±4,y=±5,因为x>y,所以x=4,y=-5或x=-4,y=-5.4-(-5)=9,-4-(-5)=1,所以x-y=1或9.故答案为:1或9.【点睛】本题主要考查绝对值的定义以及有理数的减法法则,注意结合分类讨论的数学思想分析,解题时注意分类要不重不漏.13.5.43【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:5.4349精确到0.01的近数是5.43.故答案为5.43.【点睛】本题考查了近似数,经过四舍五入得到的数为近似数,近似数与精确数的接近程度,可以用精确度表示.近似数的最后一个数字实际在什么位上,即精确到了什么位,要求精确到某一位,应当对下一位的数字进行四舍五入.14.0【解析】【分析】绝对值的意义:一个数的绝对值表示数轴上对应的点到原点的距离.互为相反数的两个数的和为0.依此即可求解.【详解】解:根据绝对值的意义得绝对值小于3的所有整数为0,±1,2±.所以011220+-+-=.故答案为:0.【点睛】本题考查了绝对值的意义,解题的关键是理解绝对值的意义并运用到实际当中.15.1【解析】【分析】根据同类项的定义,单项式22m x y +与3n x y -的和仍然是一个单项式,意思是22m x y +与3n x y -是同类项,根据同类项中相同字母的指数相同得出m 、n 的值,然后代入计算即可得出答案.【详解】解: 单项式22m x y +与3n x y -的和仍然是一个单项式,∴单项式22m x y +与3n x y -是同类项,2n ∴=,21+=m ,2n ∴=,1m =-,121m n ∴+=-+=;故答案是:1.【点睛】本题主要考查了同类项定义,解题的关键是掌握同类项定义中的三个“相同”:所含字母相同,相同字母的指数相同,是易混点,因此成了中考的常考点.16.9x【解析】【分析】由题意根据最中间的为x ,进而由日历中数字的规律表示出其他8个数,求出之和即可.【详解】解:设最中间的一个是x ,这9个数的和可表示为:x-8+x-7+x-6+x-1+x+x+1+x+6+x+7+x+8=9x .故答案为:9x .【点睛】本题考查列代数式和整式的加减,注意月历中日期和日期的关系,设出一个日期后将其他日期表示出来然后求解.17.x2+8x ﹣4【解析】【分析】根据题意列出算式A=(-x 2+3x-7)+(2x 2+5x+3),再去括号,合并同类项即可得.【详解】根据题意知,A=(-x 2+3x-7)+(2x 2+5x+3)=-x 2+3x-7+2x 2+5x+3=x 2+8x-4,故答案为x 2+8x-4.【点睛】本题考查的是整式的加减,熟知整式的加减实质上是去括号,合并同类项是解答此题的关键.18.20202021【分析】根据题干的例子,可以对所求代数式化简,再依次抵消即可.【详解】解:111111223344520202021+++++⨯⨯⨯⨯⨯ =1111111111...223344*********-+-+-+-=112021-=20202021.故答案为:20202021.【点睛】本题考查探索与表达规律.解答本题的关键是明确题意,发现题目中式子的变化特点,求出所求式子的值.19.(1)0,12,2001(1)-;(2)35-, 3.2-,-6.4;4%-;(3) 3.2-,12;(4)35-,-6.4;4%-,2001(1)-.【解析】【分析】根据有理数的分类解答即可.【详解】(1)整数集合:0,12,2001(1)-;(2)分数集合:35-, 3.2-,-6.4;4%-;(3)正数集合: 3.2-,12;(4)负数集合:35-,-6.4;4%-,2001(1)-.【点睛】本题考查有理数的分类,掌握有理数的两种分类方法是解决问题的关键.20.作图见解析,-5<-132<0< 1.5-<-(-4)【解析】根据绝对值、相反数和有理数大小比较的性质排序,结合数轴的性质作图,即可得到答案.【详解】1.5 1.5-=,()44--=数轴如下图:∴-5<-132<0<1.5-<-(-4).【点睛】本题考查了有理数的知识;解题的关键是熟练掌握绝对值、相反数、有理数大小比较、数轴的性质,从而完成求解.21.(1)0;(2)-76;(3)-16;(4)-2x-5y;(5)1 6【解析】【分析】(1)原式利用减法法则变形,计算即可求出值;(2)先把除法转化成乘法,再用括号中的每一项与(-48)进行相乘即可求出答案;(3)原式先算乘方,再算乘除法、最后算加减法;(4)先去括号,然后合并同类项即可解答本题;(5)原式先算括号里边的乘方、乘法及减法,再算括号外边的乘方、乘除即可得到结果.【详解】(1)1(2)8(3)(8)--++--+=1+2+8-3-8=0;(2)(1-16+34)÷(-148)=(1-16+34)×(-48)=1×(-48)-16×(-48)+34×(-48)=-76;(3)﹣(3﹣5)+(﹣3)2×(1﹣3)=﹣(﹣2)+9×(﹣2)=2+(﹣18)=﹣16;(4)解:5(2x -7y )-3(4x -10y )=10x -35y -12x+30y=-2x -5y ;(5)解:原式=[]1112923--⨯⨯-=[]111723--⨯⨯-=716-+=16【点睛】本题考查了有理数的混合运算,以及整式的加减,熟练掌握运算法则是解题的关键.22.-3或5【解析】【分析】根据|a|=4、b 是绝对值最小的数、c 是最大的负整数,即可求出a 、b 、c 的值,将其代入a+b-c 中即可求出结论.【详解】解:∵│a│=4,∴a=4或a=-4,∵b 是绝对值最小的数,∴b=0,又∵c 是最大的负整数,∴c=-1∴a+b-c=4+0-(-1)=4+1=5,或a+b-c=-4+0-(-1)=-4+1=-3,∴a+b -c=-3或5.【点睛】本题考查了代数式求值、绝对值以及正、负数,根据给定条件求出a 、b 、c 的值是解题的关键.23.24xy ,8.【解析】【分析】去括号后,再合并同类项,最后把x 、y 的值代入计算即可.【详解】原式2222252342xy x y xy xy x y =-+-+,24xy =,当2x =,1y =-时,原式242(1)8=⨯⨯-=.【点睛】本题主要考查了整式的加减运算,关键是掌握去括号法则:整式中如果有多重括号应按照先去小括号,再去中括号,最后去大括号的顺序进行.24.(1)向西走3千米;(2)2.5小时【解析】【分析】(1)把+4,﹣3,+2,+1,﹣2,﹣1,+2加起来,即可求解;(2)先求出该汽车行驶的总路程,再用总路程除以速度,即可求解.【详解】解:(1)4+(﹣3)+2+1+(﹣2)+(﹣1)+2=3,答:司机应该向西走3千米;(2)|4|+|﹣3|+|+2|+|+1|+|﹣2|+|﹣1|+|+2|=4+3+2+1+2+1+2=15(千米);15÷6=2.5(小时).答:该车回到出发点共用了2.5小时.【点睛】本题主要考查了有理数的应用,明确题意,理解正负数实际意义是解题的关键.25.(1)5;(2)-3【解析】【分析】(1)原式利用题中的新定义计算即可求出值;(2)原式利用题中的新定义化简,再利用非负数的性质求出x 与y 的值,代入计算即可求出值.【详解】解:(1)根据题中的新定义得:原式=213(1)235⨯-⨯-=+=;(2)原式=22222(2)(1)+3()2+332x y x y x y x y x y -⋅--=-+-=-,由于()2120x y ++-=,∴10,20x y +=-=,∴1,2x y =-=,∴原式=2(1)22143--⨯=-=-.26.(1)1a =-,b=5,c=-2,数轴作图见解析;(2)6秒;(3)-3或7,理由见解析【分析】(1)结合题意,根据绝对值的性质计算,即可得到a ,b ,c 的值;结合数轴的性质作图,即可得到答案;(2)结合题意,设时间为t 秒,通过列方程并求解,即可得到答案;(3)结合题意列方程,再根据绝对值、一元一次方程的性质求解,即可得到答案.【详解】(1)根据题意得:105020a b c ⎧+=⎪-=⎨⎪+=⎩∴105020a b c +=⎧⎪-=⎨⎪+=⎩∴1a =-,b=5,c=-2数轴如图所示:(2)设时间为t 秒()516AB =--=∵动点P 、Q 同时从A 、B 出发沿数轴负方向运动,点P 的速度是每秒1个单位长度,点Q 的速度是每秒2个单位长度∴26t t =-∴t=6秒∴运动6秒后,点Q 可以追上点P ;(3)点M 到A ,B 两点的距离之和等于10,设点M 在数轴上对应的点为x ∴1510x x --+-=当M 在A 点左侧,即1x <-,则1050x x -->⎧⎨->⎩()()1510x x --+-=∴3x =-,即M 对应的数是-3当M 在A 点和B 点之间,即15x -≤≤,则1050x x --≤⎧⎨-≥⎩∴()()1510x x ---+-=,此时等式不成立,故舍去当M 在B 点右侧,即5x >,则1050x x --<⎧⎨-<⎩∴()()1510x x ---+--=⎡⎤⎣⎦∴1510x x ++-=∴7x =,即M 对应的数是7∴所有点M 对应的数是-3或7.。
2024-2025学年初中七年级上学期数学期中考及答案(人教版)
2024-2025学年人教版七年级数学上册期中考试检测试卷一、选择题(每题3分,共计36分)1.有关正负数的概念和运算法则的系统论述,记载于我国古代数学名著《九章算术》一书中,书中明确提出“正负数”,这是世界上至今发现的最早详细的记载.如果水位上升5米记作5+米,那么水位下降8米记作( )A.8− B.3C.13D.3−2.在2−、1−、0、1这四个数中,最小的数是( )A.1B.0C.-1D.-23.某市某天的最高气温为8C °,最低气温为9C −°,则最高气温与最低气温的差为( )A.17C° B.1C° C.17C−° D.1C−°4.水结成冰体积增大111,现有体积为a 水结成冰后体积为( )A 111a B.1211a C.1011a D.1112a 5.截至目前中国森林面积达到175000000公顷,森林覆盖率为18.21%,人工林面积居世界首位,其中数字175000000用科学记数法表示为( ) A.717.510× B.81.7510× C.91.7510× D.90.17510×6.李伯家有山羊m 2倍多18只,绵羊的数量为( )A.18m + B.18m − C.218m − D.218m +7.“△”表示一种运算符号,其意义是:2a b a b =− ,那么13 等于( )A.1B.1− C.5D.5−8.已知表示有理数a ,b 的点在数轴上的位置如图所示,则a ba b+的值是()A.2−B.1−C.0D.29.如果13x +=,5y =,0yx−>,那么y x −的值是()A.2或0B.2−或0C.1−或3D.7−或910.用8m 长的铝合金做成一个如图所示的长方形窗框,设长方形窗框的横条长度为m x ,则长方形窗框的面积为()的.A.()24m x x − B.()283m x x −C.234m 2x x −D.228m 3x x −11.如果()32a =−−,()33b =−,223c =−,那么a bc +的值为( )A.4− B.4C.20D.20−12.小强根据学习“数与式”积累的经验,111111111111122232334344545=−=−=−=−×××× ,,,,,则111111223344520202021+++++××××× 的值为( ).A.2020B. 20212022C.2021D.20202021二、填空题(每题4分,共计24分)13.计算:23−=____________. 14.对于有理数a b 、,若规定a b a ab ∗=−,则(2)5−∗的值为_______.15.若()22430||a b ++−-=,则b =___________;a =___________.16.若220230x y −−=,则代数式202424x y −+的值是__________.17.如图,一个瓶身为圆柱体的玻璃瓶内装有高a 厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h 厘米,则瓶内的墨水的体积约占玻璃瓶容积的_____.18.计算:111123344520132014++++=×××× ()三、解答题(19、20、21每题10分,22-26题每题12分,共计90分,写出必要的解答过程和步骤才给分)19.计算:(1)112712623 −−++−;(2)273132515858 ++−−−−+.20.把下列各数分别填入相应的集合里.1,0.20−,135,325,789−,0,23.13−,0.618,2004−非正数集合:{ …}; 非负数集合:{ …}; 非正整数集合:{ …}; 非负整数集合:{ …}.21.如图,在一条数轴上,点O 为原点,点A 、B 、C 表示数分别是1m +,2m −,94m −.(1)求AC 的长;(用含m 的代数式表示)(2)若5AB =,求BC 中点D 表示的数.22.已知:()21102a b −++=,c 是最小的自然数,d 是最大负整数. (1)求a ,b ,c ,d 值:(2)试求代数式()()328b ac d −+−的值.23.已知,如图,某长方形广场的四角都有一块边长为x 米的正方形草地,若长方形的长为a 米,宽为b 米.(1)请用代数式表示阴影部分的面积;(2)若长方形广场的长为20米,宽为10米,正方形的边长为1米,求阴影部分的面积.24.先阅读下列解题过程,再解答问题:解方程:32x +=. 解:当30x +≥时,原方程可化为32x +=,解得1x =−;当30x +<时,原方程可化为32x +=−,解得 5.x =−所以原方程的解是1x =−或5x =−.(1)解方程:3150x −−=;的的的(2)若1x a x −++的最小值为4,求a 的值.25.随着手机的普及,微信的兴起,许多人做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售,这不刚大学毕业的小明把自家的冬枣产品也放到了网上实行包邮销售,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤);星期一二三四五六日与计划量的差值4+3−5−14+8−21+6−(1)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售斤;(2)本周实际销售总量达到了计划数量没有?(3)若冬季每斤按8元出售,每斤冬枣的运费平均3元,那么小明本周一共收入多少元?26.阅读材料:求2342020122222++++++ 的值.解:设234201920201222222S =+++++++ ,将等式两边同时乘2,得 ,23452020202122222222S =+++++++将下式减上式,得2021221S S −=−,即 202121S =−, 即 2342020202112222221++++++=− . 请你仿照此法计算:(1)23410122222++++++ ;(2)234133333n ++++++ (其中n 为正整数).2024-2025学年人教版七年级数学上册期中考试检测试卷一、选择题(每题3分,共计36分)1.有关正负数的概念和运算法则的系统论述,记载于我国古代数学名著《九章算术》一书中,书中明确提出“正负数”,这是世界上至今发现的最早详细的记载.如果水位上升5米记作5+米,那么水位下降8米记作( )A.8− B.3C.13D.3−【答案】A 【解析】【分析】本题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.【详解】解:“正”和“负”相对,所以,如果水位上升5米记作5+米,那么水位下降8米记作8−米. 故选:A .2.在2−、1−、0、1这四个数中,最小的数是( )A 1 B.0C.-1D.-2【答案】D 【解析】【分析】本题考查有理数大小比较法则,熟练掌握此法则是解答此题的关键.由有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,即可判断.【详解】解:由有理数的大小比较法则,可得:2101−<−<<,∴在2−,1−,0,1这四个数中,最小的数是2−.故选:D .3.某市某天的最高气温为8C °,最低气温为9C −°,则最高气温与最低气温的差为( )A.17C ° B.1C° C.17C−° D.1C−°【答案】A 【解析】【分析】本题主要考查的是有理数的减法.用最高气温减去最低气温进行计算即可.【详解】解:()()8917C −−=°..故选:A .4.水结成冰体积增大111,现有体积为a 的水结成冰后体积为( )A.111a B.1211a C.1011a D.1112a 【答案】B 【解析】【分析】本题是基础题型,弄清冰的体积=(1+增长率)×水的体积是解题的关键.体积为a 的水结成冰后体积,冰的体积为1111a +.【详解】解:依题意有水结成冰后体积为11211111a a += .故选:B .5.截至目前中国森林面积达到175000000公顷,森林覆盖率为18.21%,人工林面积居世界首位,其中数字175000000用科学记数法表示为( ) A.717.510× B.81.7510× C.91.7510× D.90.17510×【答案】B 【解析】【分析】本题考查用科学记数法表示较大的数,一般形式为10n a ×,其中110a ≤<,n 可以用整数位数减去1来确定.用科学记数法表示数,一定要注意a 的形式,以及指数n 的确定方法.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.【详解】解:175000000用科学记数法表示为81.7510×. 故选:B .6.李伯家有山羊m 只,绵羊的数量比山羊的2倍多18只,绵羊的数量为( )A.18m + B.18m − C.218m − D.218m +【答案】D 【解析】【分析】本题考查列代数式,根据题意可知:绵羊的只数=山羊只数的2倍+18,根据此解答即可.【详解】∵李伯家有山羊m 只,∴绵羊的数量比山羊的2倍多18只,绵羊的数量为()218m +只,故选:D .7.“△”表示一种运算符号,其意义是:2a b a b =− ,那么13 等于( )A.1 B.1− C.5D.5−【答案】B 【解析】【分析】此题考查了有理数的混合运算,新定义运算的含义,熟练掌握运算法则是解本题的关键.根据新定义运算的运算法则先列式,再计算即可.【详解】解:∵2a b a b =− , ∴13213231=×−=−=− , 故选:B .8.已知表示有理数a ,b 点在数轴上的位置如图所示,则a ba b+的值是()A.2−B.1−C.0D.2【答案】C 【解析】【分析】本题考查了数轴和去绝对值,根据数轴分别判断0a <,0b >,然后去掉绝对值即可,解题的关键是结合数轴判断绝对值符号里面代数式的正负.【详解】由数轴可得,0a <,0b >,∴a b a b+a b a b=+−,110=−+=,故选:C .9. 如果13x +=,5y =,0yx−>,那么y x −的值是()A.2或0B.2−或0C.1−或3D.7−或9【答案】D 【解析】的【分析】本题考查了绝对值的意义,有理数的除法,有理数的减法.先根据绝对值的意义得出2x =或4x =−,5y =±,再根据有理数的除法法则得出x 和y 异号,最后进行分类讨论即可.【详解】解:∵13x +=, ∴13x +=±,解得:2x =或4x =−, ∵5y =, ∴5y =±, ∵0yx−>,∴0yx<,即x 和y 异号, ∴当2x =时5y =−,当4x =−时,5y =, ①当2x =,5y =−时,527y x −=−−=−,②当4x =−,5y =时,()549y x −=−−=,∴y x −的值是7−或9,故选:D .10.用8m 长的铝合金做成一个如图所示的长方形窗框,设长方形窗框的横条长度为m x ,则长方形窗框的面积为()A.()24m x x − B.()283m x x −C.234m 2x x −D.228m 3x x −【答案】C 【解析】【分析】本题考查了列代数式,要注意长方形窗框的横条有3条,观察图形求出长方形窗框的竖条长度是解答本题的关键.根据长方形窗框的横条长度求出长方形窗框的竖条长度,再根据长方形的面积公式计算即可求解.【详解】解:∵长方形窗框的横条长度为m x , ∴长方形窗框的竖条长度为8334m 22x x −=−,∴长方形窗框的面积为:234m 2x x −,故选∶C .11.如果()32a =−−,()33b =−,223c =−,那么a bc +的值为( )A.4− B.4 C.20 D.20−【答案】A 【解析】【分析】本题考查有理数的乘方,有理数的混合运算,求代数式的值,分别求出a 、b 、c 并代入a bc +计算即可.掌握相应的运算法则是解题的关键.【详解】解:∵()328a =−−=,()3327b =−=−, ∴()827481249a bc ×=−+=+=−, ∴a bc +的值为4−. 故选:A .12.小强根据学习“数与式”积累的经验,111111111111122232334344545=−=−=−=−×××× ,,,,,则111111223344520202021+++++××××× 的值为( ).A.2020B. 20212022C. 2021D.20202021【答案】D 【解析】【分析】本题考查了有理数的混合运算,利用拆项法解答即可求解,掌握拆项法是解题的关键.【详解】解:∵111111111111122232334344545=−=−=−=−×××× ,,,,, ∴111111223344520202021+++++×××××1111111111223344520202021=−+−+−+−++− ,112021=−,20202021=,故选:D .二、填空题(每题4分,共计24分)13.计算:23−=____________. 【答案】23【解析】【分析】本题考查求一个数的绝对值,根据负数的绝对值等于它的相反数,即可得出结果.【详解】解:23−=23;故答案为:23.14.对于有理数a b 、,若规定a b a ab ∗=−,则(2)5−∗的值为_______.【答案】12 【解析】根据新定义得到()(2)5225−∗=−−−×,再计算即可.【详解】解:由题意得,()(2)522512−∗=−−−×=,故答案为:12.15.若()22430||a b ++−-=,则b =___________;a =___________.【答案】①.3 ②. 2【解析】【分析】根据有理数的非负性解答即可.本题考查了有理数的非负性,熟练掌握性质是解题的关键.【详解】解:∵()22430||a b ++−-=, ∴20,30a b +=−=-,解得:3,2b a ==.故答案为:3,2.16.若220230x y −−=,则代数式202424x y −+的值是__________.【答案】2022−【解析】【分析】本题考查了代数式求值,整体代入是解题的关键.将202424x y −+变形为()202422x y −−,然后将22023x y −=代入求解即可. 【详解】解:∵220230x y −−=, ∴22023x y −=, 则()2024242024222024202322022x y x y −+=−−=−×=−,故答案为:2022−.17.如图,一个瓶身为圆柱体的玻璃瓶内装有高a 厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h 厘米,则瓶内的墨水的体积约占玻璃瓶容积的_____. 【答案】a ab +##a b a+【解析】【分析】本题考查了列代数式,第一个图形中下底面积为未知数,利用第一个图可得墨水的体积,利用第二个图可得空余部分的体积,进而可得玻璃瓶的容积,让求得的墨水的体积除以玻璃瓶容积即可,掌握知识点的应用是解题的关键.【详解】解:设第一个图形中下底面积为S .倒立放置时,空余部分的体积为bS ,正立放置时,有墨水部分的体积是aS ,因此墨水体积约占玻璃瓶容积的as a as bs a b=++,故答案为:a a b+.的18.计算:111123344520132014++++=×××× ()【答案】5031007【解析】【分析】本题主要考查了有理数的混合运算,解答此题关键是找出解题的规律.根据裂项相消的方法把原式化为1111111123344520132014−+−+−++− ,再计算即可.【详解】解:111123344520132014++++×××× 1111111123344520132014=−+−+−++− 1122014=−1007120142014−10062014=5031007=;故答案为5031007.三、解答题(19、20、21每题10分,22-26题每题12分,共计90分,写出必要的解答过程和步骤才给分)19.计算:(1)112712623 −−++−;(2)273132515858 ++−−−−+ .【答案】(1)10 (2)5【解析】【分析】本题主要考查有理数的加减混合运算;(1)先去括号,再把分数通分成分母相同的分数,最后根据有理数的加减混合运算法则即可求解;(2)先去括号,再运用加法结合律把分母相同的分数结合,最后根据有理数的加减混合运算法则即可求解.【小问1详解】 解:112712623−−++−112712623=++−71547666=++−71547666 =++−73=+10=;【小问2详解】 解:273132515858++−−−−+273132515858=−+−237135215588 =+−+94=−5=.20.把下列各数分别填入相应的集合里.1,0.20−,135,325,789−,0,23.13−,0.618,2004− 非正数集合:{ …};非负数集合:{ …};非正整数集合:{ …};非负整数集合:{ …}.【答案】0.20−,789−,0,23.13−,2004−;1,135,325,0,0.618;789−,0,2004−;1,325,0【解析】【分析】本题考查有理数的分类(正数和分数统称为有理数;有理数的分类:按整数、分数的关系分类;按正数、负数与零的关系分类),根据非正数(负数和零)、非负数(正数和零)、非正整数(负整数和零)和非负整数(正整数和零)的意义进行选取即可.准确理解相关概念的意义是解题的关键.【详解】解:非正数集合:{0.20−,789−,0,23.13−,2004−,…};非负数集合:{1,135,325,0,0.618,…};非正整数集合:{789−,0,2004−,…};非负整数集合:{1,325,0,…}.故答案为:0.20−,789−,0,23.13−,2004−;1,135,325,0,0.618;789−,0,2004−;1,325,0.21.如图,在一条数轴上,点O 为原点,点A 、B 、C 表示的数分别是1m +,2m −,94m −.(1)求AC 的长;(用含m 的代数式表示)(2)若5AB =,求BC 的中点D 表示的数.【答案】(1)58m −(2)2−【解析】【分析】本题考查了数轴的知识,代数式,正确认识数轴并理解数轴,能够表示数轴上两点的距离是解题的关键.(1)根据数轴上的两点间的距离公式求解即可;(2)首先由5AB =建立方程求解m ,再求解、B 、C 对应的数即可得到答案.【小问1详解】解: 点A 、C 表示数分别是1m +,94m −,∴()19458AC m m m =+−−=−;【小问2详解】()125AB m m =+−−=,∴()125m m +−−=,解得:3m =,∴2231m −=−=−,949123m −=−=−,∴当5AB =时,B 点表示的数是1−,C 点表示的数是3−,∴BC 的中点D 表示的数是()1322−+−=−. 22.已知:()21102a b −++=,c 是最小的自然数,d 是最大负整数. (1)求a ,b ,c,d 的值:的(2)试求代数式()()328b a c d −+−的值.【答案】(1)11,2a b ==−,0,1c d ==− (2)8−【解析】【分析】本题考查了非负数的性质和求代数式的值,解题关键是根据题意求出字母的值.(1)根据非负数的性质及有理数相关概念求出a 、b 、c 、d 的值即可;(2)将求出的a 、b 、c 、d 的值代入代数式求值即可.【小问1详解】解:()21102a b -++= , 110,02a b ∴-=+=, 11,2a b ∴==-, c 是最小的自然数,d 是最大负整数,0,1c d ∴==-;【小问2详解】 解:11,2a b ==- ,0,1c d ==− ()()328b a c d ∴-+-()32181012⎛⎫⎡⎤ ⎪=⎦⎡⎤⎢⎥⎢⎥⨯--+-- ⎪⎣⎝⎭⎣⎦18118⎛⎫ ⎪=⎪⎡⎤⎢⨯--+ ⎢⎝⎥⎥⎣⎦⎭ 9818⎛⎫ ⎪=⨯-+ ⎪⎝⎭()91=-+8=−.23.已知,如图,某长方形广场的四角都有一块边长为x 米的正方形草地,若长方形的长为a 米,宽为b 米.(1)请用代数式表示阴影部分的面积;(2)若长方形广场的长为20米,宽为10米,正方形的边长为1米,求阴影部分的面积.【答案】(1)()24ab x −平方米 (2)196平方米【解析】【分析】(1)根据图形中的数据,可以用含a 、b 、x 的代数式表示出阴影部分的面积; (2)将20a =,10b =,1x =代入(1)中的代数式,即可求得阴影部分的面积.本题考查列代数式、代数式求值,解答本题的关键是明确题意,列出相应的代数式,求出相应的代数式的值.小问1详解】解:∵某长方形广场的四角都有一块边长为x 米的正方形草地,若长方形的长为a 米,宽为b 米. ∴由图可得,阴影部分的面积是2(4)ab x −平方米;【小问2详解】解:当20a =,10b =,1x =时,24ab x −2201041×−×2004−196=(平方米), 即阴影部分的面积是196平方米.24. 先阅读下列解题过程,再解答问题:解方程:32x +=. 解:当30x +≥时,原方程可化为32x +=,解得1x =−;当30x +<时,原方程可化为32x +=−,解得 5.x =−所以原方程的解是1x =−或5x =−.(1)解方程:3150x −−=; (2)若1x a x −++的最小值为4,求a 的值.【答案】(1)2x =或43x =−; (2)3a =或5a =−.【【解析】【分析】本题考查了绝对值方程的解法,数轴上两点间的距离,熟练掌握绝对值的定义是解答本题的关键,对值等于一个正数的数有2个,它们是互为相反数的关系.(1)根据题中所给解法求解即可;(2)根据1x a x −++的最小值为4,得出表示a 的点与表示1−的点的距离为4,求解即可.【小问1详解】 解:3150x −−=, 移项,得315x −=, 当310x −≥,即13x ≥时,原方程可化为:315x −=,解得:2x =, 当310x −<,即13x <时,原方程可化为:315x −=−,解得43x =−. ∴原方程的解是:2x =或43x =−. 【小问2详解】 解:1x a x −++ 的最小值为4,∴表示a 的点与表示1−的点的距离为4,143−+= ,145−−=−,3a ∴=或5a =−.25.随着手机的普及,微信的兴起,许多人做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售,这不刚大学毕业的小明把自家的冬枣产品也放到了网上实行包邮销售,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤);星期一二三四五六日与计划量的差值4+3−5−14+8−21+6−(1)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售斤;(2)本周实际销售总量达到了计划数量没有?(3)若冬季每斤按8元出售,每斤冬枣的运费平均3元,那么小明本周一共收入多少元?【答案】(1)29 (2)达到了(3)3585元【解析】【分析】此题考查了正数与负数,有理数混合运算的应用,熟练掌握运算法则是解本题的关键.(1)根据最大正数和最小负数的差值得出结论即可;(2)根据所有差值的和的正负来判断即可;(3)根据售价﹣运费得出收入即可.【小问1详解】()21829−−=(斤),故答案为:29;【小问2详解】43514821617+−−+−+−=(斤),∴本周实际销售总量达到了计划数量;【小问3详解】()()100717833585×+×−=(元),答:小明本周一共收入3585元.26.阅读材料:求2342020122222++++++ 的值.解:设234201920201222222S =+++++++ ,将等式两边同时乘2,得 ,23452020202122222222S =+++++++将下式减上式,得2021221S S −=−,即 202121S =−, 即 2342020202112222221++++++=− .请你仿照此法计算:(1)23410122222++++++ ;(2)234133333n ++++++ (其中n 为正整数).【答案】(1)123410112222221++++++=− ;(2)()23411133333312n n +++++++=− . 【解析】【分析】本题考查的是探索运算规律题,根据已知材料中的方法,探索出运算规律是解决此题的关键.(1)设23410122222S =++++++ ,两边乘以2后得到关系式,与已知等式相减,变形即可求出所求式子的值;(2)设234133333n S =++++++ ,两边乘以3后得到关系式,与已知等式相减,变形即可求出所求式子的值.【小问1详解】设23410122222S =++++++ ,将等式两边同时乘2,得23410112222222S =++++++ ,将下式减上式,得 11221S S −−,即 1121S =−则123410112222221++++++=−【小问2详解】设 234133333,n S =++++++将等式两边同时乘3,得 23413333333,n n S +=++++++下式减上式,得1331n S S +−=−,即 ()11312n S +−,即 )234113333331n n +++++++=− .。
人教版七年级数学期中试卷(含答案)
人教版七年级数学期中试卷(含答案)人教版七年级数学期中试卷(含答案)第一部分:选择题1. 下列数字中,最小的是()A. 0.8B. -1C. 0D. -0.52. 已知正方形的边长为3cm,那么该正方形的周长是()A. 3cmB. 6cmC. 9cmD. 12cm3. 三个数依次是a、b、c,其中a与b的平均数是b,b与c的平均数是b,那么a、b、c的值依次是()A. 1、1、2B. 2、3、4C. 3、2、1D. 1、2、34. 若A:B=4:5,B:C=2:3,那么A:B:C的比值是()A. 4:5:3B. 8:10:15C. 10:8:15D. 4:5:65. 若图中的正方形边长为x,则阴影部分的面积是()(图略)A. x^2B. 2x^2C. 4x^2D. 5x^2第二部分:填空题1. 已知AB=BC,且角A和角C的度数和为100°,则角B的度数为__________°。
2. 设A、B、C三个数的和为25,已知A:B=2:5,C:B=3:1,则A的值为__________。
3. 某商品原价为80元,现在打8折出售,则现价为__________元。
第三部分:解答题1. 一个正数的十分之一是20,这个数是多少?2. 某书店有英语书、数学书、文学书三种,其中英语书比数学书多10本,文学书比英语书少15本,数学书比文学书多5本,问三种书加起来一共有多少本?3. 甲、乙两地相距85公里,两车同时出发,甲车速度是每小时60公里,乙车速度是每小时65公里。
求两车相遇需要多长时间?答案解析:选择题答案:1. B 2. C 3. A 4. A 5. C填空题答案:1. 40 2. 10 3. 64解答题答案:1. 设这个数为x,则有x/10 = 20,解得x=200。
2. 设数学书的数量为x,则英语书的数量为x+10,文学书的数量为x-15。
根据题意得到x+(x+10)+(x-15)=3x-5=25,解得x=10。
2024—2025学年最新人教版七年级下学期数学期中考试试卷(含参考答案)
最新人教版七年级下学期数学期中考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、9的算术平方根是()A.±3B.3C.﹣3D.2、下列数是无理数的有()A.B.﹣1C.0D.3、点M在第二象限,距离x轴5个单位长度,距离y轴3个单位长度,则M点的坐标为()A.(5,﹣3)B.(﹣5,3)C.(3,﹣5)D.(﹣3,5)4、下列是真命题的是()A.有理数与数轴上的点一一对应B.内错角相等C.同一平面内,垂直于同一条直线的两条直线互相平行D.负数没有立方根5、如图,下列各组条件中,能得到AB∥CD的是()A.∥1=∥3B.∥2=∥4C.∥B=∥D D.∥B+∥2=180°6、中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五、羊二,直金十两,牛二、羊五,直金八两.问牛、羊各直金几何?“译文:今有牛5头,羊2头,共值金10两;牛2头,羊5头,共值金8两.问牛、羊每头各值金多少?设牛、羊每头各值金x两、y两,依题意,可列出方程组为()A.B.C.D.7、若正数a的两个平方根是3m﹣2与3﹣2m,则m为()A.0B.1C.﹣1D.1或﹣18、如图,将∥ABC沿BC方向平移3cm得到∥DEF,若∥ABC的周长为24cm,则四边形ABFD的周长为()A.30cm B.24cm C.27cm D.33cm9、如图,直线m∥n,∥1=70°,∥2=30°,则∥A等于()A.30°B.35°C.40°D.50°10、已知关于x、y的方程组的解满足x+y=6,则a的值为()A.1B.2C.﹣2D.11第8题第9题第15题二、填空题(每小题3分,满分18分)11、设n为正整数,且,则n的值为.12、若y=+2,则y=.13、若是二元一次方程ax+by=﹣1的一个解,则3a﹣2b+2024的值为.14、已知=1.038,=2.237,=4.820,则=.15、如图,a∥b,M,N分别在a,b上,P为两平行线间一点,那么∥1+∥2+∥3=°.16、如果,其中m,n为有理数,那么m+n=.最新人教版七年级下学期数学期中考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:(﹣1)2023+|1﹣|+﹣.18、已知2a﹣1的算术平方根是3,b是﹣1的立方根,c是的整数部分,求a+b+c的值.19、已知方程组的解和方程组的解相同,求(2a+b)2024.20、∥ABC与∥A'B'C'在平面直角坐标系中的位置如图所示.(1)分别写出下列各点的坐标:A(,),B(,),C(,);(2)若∥A'B'C'是由∥ABC平移得到的,点P(x,y)是∥ABC内部一点,则∥A'B'C'内与点P相对应点P'的坐标为(,);(3)求∥A'B'C'的面积.21、已知:如图,DE∥BC,BD平分∥ABC,EF平分∥AED.(1)求证:EF∥BD;(2)若BD∥AC,∥C=2∥2,求∥A的度数.22、在平面直角坐标系xOy中,已知点P(a﹣1,4a),分别根据下列条件进行求解.(1)若点P在y轴上,求此时点P坐标;(2)若点P在过点A(2,8)且与x轴平行的直线上,求此时a值;(3)若点P的横纵坐标相等,Q为x轴上的一个动点,求此时PQ的最小值.23、水果店2月份购进甲种水果50千克、乙种水果80千克,共花费1600元,其中甲种水果以20元/千克,乙种水果以15元/千克全部售出;3月份又以同样的价格购进甲种水果30千克、乙种水果40千克,共花费880元,由于市场不景气,3月份两种水果均以2月份售价的9折全部售出.(1)求甲、乙两种水果的进价每千克分别是多少元?(2)请计算该水果店2月和3月甲、乙两种水果总赢利多少元?24、规定:若P(x,y)是以x,y为未知数的二元一次方程ax+by=c的正整数解,则称此时点P为二元一次方程ax+by=c的“理想点”.请回答以下关于x,y的二元一次方程的相关问题.(1)方程x+2y=3的“理想点”P的坐标为.(2)已知m,n为非负整数,且,若是方程2x+ y=13的“理想点”,求的值;(3)“郡园点”P(x,y)满足关系式:,其中m为整数,求“理想点”P的坐标.25、如图,在平面直角坐标系中,A,B坐标分别为A(0,a)、B(b,a),且a,b满足:,现同时将点A,B分别向下平移3个单位,再向左平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,AB.(1)求C,D两点的坐标及四边形ABDC的面积;(2)点P是线段BD上的一个动点,连接P A,PO,当点P在BD上移动时(不与B,D重合),的值是否发生变化,并说明理由;(3)已知点M在y轴上,连接MB、MD,若∥MBD的面积与四边形ABDC 的面积相等,求点M的坐标.最新人教版七年级下学期数学期中考试试卷(参考答案)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、7 12、2 13、2023 14、22.37 15、360 16、5三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、﹣218、119、720、解:(1)A(1,3),B(2,0),C(3,1)(2)答案为:x﹣4,y﹣2 (3)2.21、(1)略(2)60°22、(1)P(0,4)(2)a=2 (3)P(﹣,﹣),最小值为.23、(1)甲种水果的进价为每千克16元,乙种水果的进价为每千克10元.(2)该水果店2月和3月甲、乙两种水果共赢利800元.24、(1)P的坐标为(1,1)(2)m=25,n=3(3)P(1,1)25、(1)四边形ABDC的面积是15(2)值为1,值不发生变化(3)M的坐标为(0,18)或(0,﹣42)。
人教版2024-2025学年上学期七年级上册期中考试数学试卷解析版
人教版2024-2025学年上学期七年级上册期中考试数学试卷解析版一、选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本题共10个小题,每小题3分,共30分)1. 2023的倒数是 ( )A. - 2023B. 2023C.12023D.−12023【答案】C2. 《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则-3℃表示气温为( )A. 零上3℃B. 零下3℃C. 零上7℃D. 零下7℃【答案】B3. 下列各式中,与3x²y³是同类项的是( )A. 6x⁵B.3x³y²C.−12x2y3D.−14x5【答案】C4.2023年10月26日神舟十七号载人飞船发射取得圆满成功,我国载人航天工程发射任务实现30战30捷,航天员在中国空间站俯瞰地球的高度约为400000米,将400000用科学记数法表示应为( )A.4×10⁵B.4×10⁶C.40×10⁴D.0.4×10⁶【答案】A5. 下列是根据等式的性质进行变形,正确的是 ( )A. 若x=y, 则x+5=y-5B. 若a-x=b+x, 则a=bC. 若 ax= ay, 则x=yD. 若x2=y2,则x=y【答案】D6. 下列各式正确的是 ( )A. - |-5|=5B. - (-5)=-5C. |-5|=-5D. - (-5)=5【答案】D7. 下列说法错误的是( )A.2x²−3xy−1是二次三项式B. - x+1的项是-x、 1C.−x²y的系数是-1D.−2ab²是二次单项式【答案】D8. 已知有理数a,b在数轴上对应的点的位置如图所示,则下列结论正确的是( )A. b>a>0B. b>0>aC. a+b>0D. a-b>0【答案】B9. 解方程x+14=x−5x−112时,去分母正确的是( )A.3 (x+1)=x - (5x-1)B.3 (x+1)=12x-5x-1C.3 (x+1)=12x - (5x-1)D.3x+1=12x-5x+1【答案】C10. 已知整数a₁, a₂, a₃, a₄, 满足下列条件:a₁=0,a₂=−|a₁+1|,a₃=−|a₂+2|,a₄=−|a₃+3|,依此类推, 则a₁₀₀₁的值为( )A. - 500B. - 501C. - 1000D. - 1001【答案】A二、填空题(本题共6小题,每小题3分,共18分)11. 点A在数轴上的位置如图所示,则点A 表示的数的相反数是 .【答案】-212. 比较大小:−65¯−34(填“>” 、“<” 或“=” ).【答案】<13. 已知关于x的方程 mx+2=x的解是x=6, 则m的值为 .【答案】2 314. 已知a,b互为相反数,m,n互为倒数,x是最小正整数,则(mn)2−a+b2024+x=¯.【答案】215. 若2m--n=2, 则代数式6+4m-2n 值为 .【答案】1016. 如图所示为一个数值运算程序,当输入大于1的正整数x时,输出的结果为8,则输入的x值为【答案】2或3##3或2三、解答题(本题共9个小题, 第17、18、19题每题6分, 第20、21题每题8分, 第22、23每题9分, 第24、25每题10分, 共72分)17. 计算: −1²⁰²³+(−2)³×5−(−28)÷4+|−2|.【详解】原式=-1-40+7+2,=-32.18. 解方程:(1) 3(x-3)=x+1(2)x+24−2x−36=2【详解】(1) 解: 3x-9=x+1,3x-x=9+1,2x=10,x=5;(2) 解:3(x+2)−2(2x−3)=24,3x+6−4x+6=24,−x=12,x=−12.19. 先化简, 再求值:3y²−x²+2(2x²−3xy)−3(x²+y²)的值,其中.x=2,y=−3.【详解】解:3y²−x²+2(2x²−3xy)−3(x²+y²)=3y²−x²+4x²−6xy−3x²−3y²=−6xy:当x=2,y=−3时,原式:=−6×2×(−3)=36.20. 已知关于x的多项式2mx³−2x²+3x−(2x³+nx)不含三次项和一次项,求((m−n)³的值.【详解】解:2mx³−2x²+3x−(2x³+nx)=2mx³−2x²+3x−2x³−nx=(2m−2)x³−2x²+(3−n)x,由题意,得:2m−2=0,3−n=0所以m=1, n=3.则(m−n)³=(−2)³=−8.21. 外卖送餐为我们生活带来了许多便利,某学习小组调查了一名外卖小哥一周的送餐情况,规定每天送餐量超过(1) 该外卖小哥这一周送餐量最多的一天比最少的一天多多少单?(2) 求该外卖小哥这一周总共送餐多少单?【小问1详解】14−(−8)=14+8=22 (单),即该外卖小哥这一周送餐量最多的一天比最少的一天多22单;【小问2详解】50×7+(−3+4−5+14−8+7+10)=350+19=369369 (单),即该外卖小哥这一周一共送餐369单.22. 如图所示:已知a,b,c在数轴上的位置(1) 化简:|a+b|−|c−b|+|b−a|(2) 若a的绝对值的相反数是-2,-b的倒数是它本身,c²=4,求−a+2b+c−(a+b−c)的值.【小问1详解】解: 由数轴可得: c<b<0<a,∴a+b>0,c-b<0,b-a<0,∴原式=a+b+c-b-b+a=2a-b+c.【小问2详解】∵a的绝对值的相反数是-2,-b的倒数是它本身,c²=4,c<0,∴a=2,b=-1,c=-2,∴-a+2b+c-(a+b-c)=-a+2b+c-a-b+c=-2a+b+2c=-4-1-4=-9.23. 已知A=2a²−a−ab,B=a²−b+ab.(1) 化简A-2B;(2) 若A-2B的值与a的取值无关, 求A-2B的值.【小问1详解】解: A-2B=(2a²−a−ab)−2(a²−b+ab)=2a²−a−ab−2a²+2b−2ab=-a+2b-3ab;【小问2详解】解: 由(1) 得:A−2B=−a+2b−3ab=(−1−3b)a+2b,∵A-2B的值与a的取值无关,∴--1-3b=0,,解得:b=−13∴A−2B=2b=−2324. 如图,在数轴上点A表示数a,点B表示数b,且(a+5)²+|b−16|=0.(1) 填空:a=;(2) 若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,已知点C为数轴上一动点,且满足AC+BC=29,求出点C表示的数;(3) 若点A以每秒3个单位长度的速度向左运动,同时点B以每秒2个单位长度的速度向右运动,动点D从原点开始以每秒m个单位长度运动,运动时间为t秒,运动过程中,点D始终在A,B两点之间上,且BD -5AD的值始终是一个定值,求此时m的值.【小问1详解】解:∵(a+5)²+|b−16|=0,∴a+5=0,b−16=0,∴a=−5,b=16,故答案为: - 5, 16:【小问2详解】解:设点C在数轴上表示的数为x,①点C在点A的左侧时,∵AC=−5−x,BC=16−x,AC+BC=29。
24-25学年七年级数学期中模拟卷01(全解全析)【测试范围:七年级上册第1章-第4章】(人教版)
2024-2025学年七年级数学上学期期中模拟卷01(人教版2024)(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:人教版2024七年级上册第一章~第四章。
5.难度系数:0.85。
一、选择题(本题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.规定:(→2)表示向右移动2,记作+2,则(←5)表示向左移动5,记作()A.+5B.-5C.15D.-152.2023年9月23日-10月8日,第19届亚运会在杭州举办,据浙江省统计局基于GDP模型预测,亚运会为杭州带来的GDP拉动量约为4141亿元人民币.请将4141亿用科学记数法表示为()A.4.141×1012B.4.141×1011C.0.4141×1012D.41.41×1010【答案】B【详解】解:4141亿=4141×108=4.141×1011,故选B3.如图,检测5个排球,其中超过标准的克数记为正数,不足的克数记为负数.从轻重的角度看,A、B、C、D哪个球最接近标准( )A .-3.5B .+0.7C .-2.5D .-0.6【答案】D【详解】通过求五个排球的绝对值得:|-0.6|=0.6,|+0.7|=0.7,|-2.5|=2.5,|-3.5|=3.5,|5|=5,-0.6的绝对值最小.所以最后一个球是接近标准的球.故选D .4.在式子5mn 2,x ―1,―3,ab +a 2,―p ,2x 2―x +3中,是单项式的有( )A .1个B .2个C .3个D .4个5.下列能够表示比x 的12倍多5的式子为( )A .12x +5B .12(x +5)C .12x ―5D .12(x ―5)6.单项式﹣2x 2yz 3的系数、次数分别是( )A .2,5B .﹣2,5C .2,6D .﹣2,6【答案】D【详解】单项式﹣2x 2yz 3的系数是﹣2,次数是2+1+3=6.故选:D .7.在一个多项式中,与2ab2为同类项的是( )A.ab B.ab2C.a2b D.a2b2【答案】B【详解】解:与2ab2为同类项的是ab2,故选:B.8.已知|x―5|+(y+4)2=0,则xy的值为( )A.9B.―9C.20D.―20【答案】D【详解】解:∵|x―5|+(y+4)2=0,∴x=5,y=―4∴xy=―20,故选:D.9.飞机无风时的速度是a km/h,风速为15km/h,飞机顺风飞行4小时比无风飞行3小时多飞的航程为( )A.(a+60)km B.60km C.(4a+15)km D.(a+15)km10.下列各式去括号正确的是()A.―(2x+y)=―2x+y B.3x―(2y+z)=3x―2y―zC.x―(―y)=x―y D.2(x―y)=2x―y【答案】B【详解】A、括号前为“-”号,去括号时括号里的第二项没有变号,故错误;B、正确;C、括号前为“-”号,去括号时括号里的项没有变号,故错误;D、括号里的第二项没有乘2,出现了漏乘的现象,故错误.故选:B.11.如图,则下列判断正确()A.a+b>0B.a<-1C.a-b>0D.ab>0【答案】A【详解】解:选项A:a为大于-1小于0的负数,b为大于1的正数,故a+b>0,选项A正确;选项B:a为大于-1小于0的负数,故选项B错误;选项C:a小于b,故a-b<0,选项C错误;选项D:a为负数,b为正数,故ab<0,故选项D错误;故选:A.12.计算机是将信息转化成二进制进行处理的,二进制即“逢二进一”.将二进制数转化成十进制数,例如:(1)2=1×20=1;(10)2=1×21+0×20=2;(101)2=1×22+0×21+1×20=5.则将二进制数(1101)2转化成十进制数的结果为()A.8B.13C.15D.16二、填空题(本题共6小题,每小题2分,共12分.)13.﹣7的相反数是.【答案】7【详解】﹣7的相反数是-(-7)=7.故答案是:7.14.比较大小:―13―23(用“>”“<”或“=”填空).故答案是:>.15.近似数12.336精确到百分位的结果是.【答案】12.34【详解】解:12.336≈12.34(精确到百分位),故答案为:12.34.16.规定符号“⊙”的意义是a⊙b=a2―b,例如2⊙1=22―1=3,则4⊙2=.【答案】14【详解】解:由题意得:4⊙2=42―2=16―2=14,故答案为:14.17.如图,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;…按照此规律,第n个图中正方形和等边三角形的个数之和为个.18.把1~9这9个数填入3×3的方格中,使其任意一行,任意一列及两条对角线上的数之和都等于15,这样便构成了一个“九宫格”,它源于我国古代的“洛书”(图1),是世界上最早的“幻方”.图2是仅可以看到部分数值的“九宫格”,则其中m的值为.三、解答题(本题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)计算:(1)(―8)+10+2+(―1);(2)4+(―2)3×5―(―28)÷4.【详解】(1)(―8)+10+2+(―1)=2+2―1(1)=4―1(2分)=3;(3分)(2)4+(―2)3×5―(―28)÷4=4+(―8)×5―(―28)÷4(4分)=4―40+7(5分)=―29.(6分)20.(6分)计算:(1)m―n2―m―n2;(2)―x+(2x―2)―(3x+5).【详解】(1)解:m―n2―m―n2=―2n2;(3分)(2)解:―x+(2x―2)―(3x+5)=―x+2x―2―3x―5(2分)=―2x―7.(6分)21.(6分)先化简,再求值:3x2―3y―3x2+y―x,其中x=―3,y=2.22.(10分)【知识呈现】我们可把5(x―2y)―3(x―2y)+8(x―2y)―4(x―2y)中的“x―2y”看成一个字母a,使这个代数式简化为5a―3a+8a―4a,“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.在数学中,常常用这样的方法把复杂的问题转化为简单问题.【解决问题】(1)上面【知识呈现】中的问题的化简结果为;(用含x、y的式子表示)(2)若代数式x2+x+1的值为3,求代数式2x2+2x―5的值为;【灵活运用】应用【知识呈现】中的方法解答下列问题:(3)已知a―2b=7,2b―c的值为最大的负整数,求3a+4b―2(3b+c)的值.【详解】解:(1)∵5a―3a+8a―4a=6a,∴5(x―2y)―3(x―2y)+8(x―2y)―4(x―2y)=6(x―2y)=6x―12y,(3分)故答案为:6x―12y;(2)∵x2+x+1=3,∴x2+x=2,(4分)∴2x2+2x―5=2(x2+x)―5=2×2―5=―1,(6分)故答案为:―1;(3)∵2b―c的值为最大的负整数,∴2b―c=―1,(7分)∴3a+4b―2(3b+c)(8分)=3a+4b―6b―2c,=3(a―2b)+2(2b―c),=3×7+2×(―1),=19.(10分)23.(10分)综合与实践【问题情景】七年级(1)班的同学们在劳动课上采摘红薯叶,通过对红薯叶的称重感受“正数与负数”在生活中的应用.【实践探索】同学们一共采摘了10筐红薯叶,以每筐15kg为标准,超过的千克数记作正数,不足的千克数记作负数,称重后记录如下:【问题解决】(1)求这10筐红薯叶的总重量为多少千克?(2)若市场上红薯叶售价为每千克5元,则这10筐红薯叶价值多少元?【详解】(1)―2.5+(―1.5)+(―3)+(―2)+0.5+1+(―2)+2+(―1.5)+2=―7,(4分)15×10―7=143(千克);(6分)答:这10筐红薯叶的总重量为143千克.(7分)(2)143×5=715(元);(9分)答:这10筐红薯叶全部售出可获得715元.(10分)24.(10分)将连续的奇数1,3,5,7,9,…排成如图所示的数表.(1)十字框中的五个数之和与中间数15有什么关系?(2)设中间数为a,如何用代数式表示十字框中五个数之和?(3)若将十字框上下左右移动,可框住另外五个数,这五个数还有上述的规律吗?(4)十字框中的五个数之和能为2018吗?能为2025吗?【详解】(1)解:(5+13+15+17+25)÷15=75÷15=5,(2分)则十字框中的五个数之和与中间数15的5倍;(2)解:设中间数为a,则其余的4个数分别为a―2,a+2,a―10,a+10,(3分)由题意,得a+a―2+a+2+a―10+a+10=5a,(4分)因此十字框中的五个数之和为5a.(3)解:设移动后中间数为b,则其余的4个数分别为b―2,b+2,b―10,b+10,(5分)由题意,得b+b―2+b+2+b―10+b+10=5b,(6分)因此这五个数之和还是中间数的5倍.(4)解:由(3)知,十字框中五个数之和总为中间数的5倍,2018÷5=403.6,(7分)因为403.6是小数,所以十字框中五个数之和不能为2018,(8分)2025÷5=405,(9分)因为405是整数,且405在第三列,所以十字框中五个数之和能为2025.(10分)25.(12分)秋风起,桂花飘香,也就进入了吃螃蟹的最好季节,清代文人李渔把秋天称作“蟹秋”.意为错过了螃蟹,便是错过了整个秋季,小贤去水产市场采购大闸蟹,极品母蟹每只30元,至尊公蟹每只20元.商家在开展促销活动期间,向客户提供以下两种优惠方案:方案①极品母蟹和至尊公蟹都按定价的8折销售;方案②买一只极品母蟹送一只至尊公蟹.现小贤要购买极品母蟹30只,至尊公蟹a(a>30)只.(1)按方案①购买极品母蟹和至尊公蟹共需付款______元(用含a的式子表示);按方案②购买极品母蟹和至尊公蟹共需付款______元(用含a的式子表示).(2)当a=40时,通过计算说明此时按上述哪种方案购买较合算.(3)若两种优惠方案可同时使用,当a=40时,你能通过计算给出一种最为省钱的购买方案吗?【详解】(1)解:由题意得:按方案①购买极品母蟹和至尊公蟹共需付款=0.8×(30×30+20a)=0.8×(900+20a)=(720+16a)元,按方案②购买极品母蟹和至尊公蟹共需付款=30×30+20(a―30)=900+20a―600=(300+20a)元,∴按方案①购买极品母蟹和至尊公蟹共需付款(720+16a)元;按方案②购买极品母蟹和至尊公蟹共需付款(300+20a)元,故答案为:(720+16a),(300+20a);(4分)(2)当a=40时,按方案①购买极品母蟹和至尊公蟹共需付款=720+16×40=720+640=1360(元),(6分)按方案②购买极品母蟹和至尊公蟹共需付款=300+20×40=300+800=1100(元),(8分)∵1100<1360,∴按方案②购买较为合算;(9分)(3)若两种优惠方案可同时使用,则可先按方案②购买30极品母蟹,再送30只至尊公蟹,然后按方案①购买10只至尊公蟹,理由:30×30+(40―30)×20×0.8=900+10×20×0.8=900+160=1060(元),(10分)∵1060<1100<1360,(11分)∴最为省钱的购买方案是:先按方案②购买30极品母蟹,再送30只至尊公蟹,然后按方案①购买10只至尊公蟹.(12分)26.(12分)综合实践【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:如图1,若数轴上点A、点B表示的数分别为a,b(b>a),则线段AB的长(点A到点B的距离)可表示为b―a,请用上面材料中的知识解答下面的问题:【问题情境】如图,一个点从数轴上的原点开始,先向左移动2个单位长度到达点A,再向右移动3个单位长度到达点B,然后再向右移动5个单位长度到达点C.(1)【问题探究】请在图2中表示出A、B、C三点的位置:(2)【问题探究】若点P从点A出发,以每秒1个单位长度的速度沿数轴向左匀速运动,同时点M、N从点B、点C分别以每秒23个单位长度速度沿数轴向右匀速运动.设移动时间为t秒(t>0).①A,B两点间的距离AB=______;②用含t的代数式表示:t秒时,点P表示的数为______,点M表示的数为______,点N表示的数为______;③试探究在移动的过程中,3PN―4PM的值是否随着时间t的变化而变化?若变化说明理由:若不变,请求其值.【详解】(1)解:A、B、C三点的位置在数轴上表示如图1所示:(3分)(2)①AB=1―(―2)=3,(4分)②如图2,由题意得:PA=t,BM=2t,CN=3t,∴t秒时,点P表示的数为―t―2,点M表示的数为2t+1,点N表示的数为3t+6,(7分)③在移动的过程中,3PN―4PM的值不随着时间t的变化而变化,理由如下:PN=(3t+6)―(―t―2)=4t+8,PM=(2t+1)―(―t―2)=3t+3,∴3PN―4PM=3(4t+8)―4(3t+3)=12t+24―12t―12=12.(11分)∴在移动的过程中,3PN―4PM的值总等于12,保持不变.(12分)。
人教版七年级数学期中试卷(含答案)
人教版七年级数学期中试卷(含答案)1.如果一个物体向后移动5m表示为-5m,那么移动+3m 表示为-2m。
2.-9 < -1 < -4.3.3x - 5x = -2x。
4.点P表示的数的相反数是-3.5.-8xy的一个同类项是-5xy。
6.xxxxxxx用科学记数法表示为2.32 × 10^6.7.(a+b)^5 - 5cd = -5(a^2b^2c^2d^2)。
8.降价20%后的售价是0.8m元。
9.与点A相距4个单位长度的点所表示的数是1.10.这三个数的和是3a + 27.11.(x+4) + |y+3| = 2,-x+y=-3.12.-1的绝对值是1,单项式-1/3,次数为0.13.多项式a-ab+1是二次三项式,不是单项式,xy的系数是-5/22,次数是2,多项式t-5的常数项是-5.14.1和-1都满足条件,答案不唯一。
15.所得近似数精确到万位。
16.a+b < 0.17.-22 < -1/2 < -1/3.18.第n层“●”的个数为4n。
19.-7+(-5)-(-90)-15 = 63.20.(2x+3)(x-4) = 2x^2 - 5x - 12.21.用科学计数法表示0.,答案为2.5 × 10^-5.22.(a+b)^2 = a^2 + 2ab + b^2,展开后为a^2 + 2ab + b^2.4-40+0.07…………2分35.93………………4分21.这一题有明显的格式错误,无法解答。
22.这一题有明显的格式错误,无法解答。
23.化简得:-2b-1.6b=-3.6b。
24.化简得:14x2y-2xy2.25.代入x=-1,y=2,化简得:-11.26.总质量为-3+1-1+23+2+2=24克,比标准质量多24克。
抽样的8袋总质量为24*8=192克。
27.小纸盒用料为2*(4+2+1.5+1.5)+2*(2+2+1.5)=27.5平方厘米,大纸盒用料为2*(8+4+3+3)+2*(4+4+3)=54平方厘米。
人教版七年级上册《数学》期中考试卷及答案【可打印】
一、选择题(每题1分,共5分)1. 一个等边三角形的每个内角是多少度?A. 30°B. 45°C. 60°D. 90°2. 一个正方形的对角线长是边长的多少倍?A. 1B. √2C. 2D. √33. 一个圆的半径是5cm,它的面积是多少平方厘米?A. 25πB. 50πC. 100πD. 25π4. 一个长方形的长是10cm,宽是5cm,它的面积是多少平方厘米?A. 50B. 25C. 20D. 155. 一个立方体的体积是27cm³,它的边长是多少厘米?A. 3B. 6C. 9D. 12二、判断题(每题1分,共5分)1. 一个等腰三角形的底角和顶角相等。
()2. 一个圆的直径等于它的半径的两倍。
()3. 一个正方形的对角线等于它的边长的√2倍。
()4. 一个长方形的面积等于它的长乘以宽。
()5. 一个立方体的体积等于它的边长的三次方。
()三、填空题(每题1分,共5分)1. 一个等边三角形的每个内角是______度。
2. 一个正方形的对角线长是边长的______倍。
3. 一个圆的半径是5cm,它的面积是______平方厘米。
4. 一个长方形的长是10cm,宽是5cm,它的面积是______平方厘米。
5. 一个立方体的体积是27cm³,它的边长是______厘米。
四、简答题(每题2分,共10分)1. 简述等边三角形的性质。
2. 简述正方形的性质。
3. 简述圆的性质。
4. 简述长方形的性质。
5. 简述立方体的性质。
五、应用题(每题2分,共10分)1. 一个等边三角形的边长是6cm,求它的面积。
2. 一个正方形的对角线长是10cm,求它的面积。
3. 一个圆的半径是4cm,求它的面积。
4. 一个长方形的长是8cm,宽是4cm,求它的面积。
5. 一个立方体的边长是3cm,求它的体积。
六、分析题(每题5分,共10分)1. 分析等边三角形、正方形、圆、长方形、立方体之间的区别和联系。
七年级人教版期中数学试卷
一、选择题(每题4分,共20分)1. 下列各数中,正整数是()A. -2B. 0C. 3.14D. -52. 已知x=2,则代数式2x-3的值为()A. 1B. 5C. 7D. 113. 如果一个长方形的长是6cm,宽是4cm,那么它的面积是()A. 10cm²B. 24cm²C. 36cm²D. 48cm²4. 下列各图中,是平行四边形的是()A.B.C.D.5. 若a=5,b=-3,则a²+b²的值为()A. 8C. 28D. 58二、填空题(每题5分,共25分)6. 0.25的小数点向右移动两位后得到的数是______。
7. 下列数中,最小的负整数是______。
8. 若一个数的相反数是-5,则这个数是______。
9. 已知等腰三角形的底边长为8cm,腰长为10cm,则该三角形的周长是______cm。
10. 在直角坐标系中,点P的坐标是(-2,3),则点P关于x轴的对称点的坐标是______。
三、解答题(每题10分,共30分)11. 解下列方程:(1)3x + 2 = 19(2)5 - 2x = 312. 已知等腰三角形的底边长为8cm,腰长为10cm,求该三角形的面积。
13. 在直角坐标系中,点A(-1,2),点B(3,4),求线段AB的长度。
四、应用题(每题10分,共20分)14. 小明家距离学校300米,他每天上学往返需要20分钟,请计算他上学的平均速度。
15. 某商店计划在10天内卖出200个玩具,实际每天卖出数量比计划多出10%,请问实际10天内共卖出多少个玩具?答案:一、选择题1. C3. B4. A5. C二、填空题6. 257. -18. 59. 2810. (-2,-3)三、解答题11. (1)x = 5(2)x = 112. 三角形面积 = (底边长× 高) / 2 = (8 × 10) / 2 = 40cm²13. 线段AB长度= √[(x₂ - x₁)² + (y₂ - y₁)²] = √[(3 - (-1))² + (4 - 2)²] = √[16 + 4] = √20 = 2√5四、应用题14. 平均速度 = 总路程 / 总时间= (300 × 2) / 20 = 60米/分钟15. 实际每天卖出数量 = 计划每天卖出数量× (1 + 10%) = 200 × 1.1 = 220个实际10天内共卖出玩具数量 = 实际每天卖出数量× 10 = 220 × 10 = 2200个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a
10沫阳中学-第一学期 七年级期中数学试卷
班级: 姓名: 得分: 一、耐心填一填,你一定很棒。
(每小题2分,共24分) 1、计算:(1) 8+(+2)= (2) (—2)+5= 2、—8的相反数是 ,倒数是 ,绝对值是 。
3、2006年9月20日,龙滩电站正式下闸蓄水,首批4台机组率先发电,预计年内发电6500 000 000度,这个数用科学记数法表示为 度。
4、近似数31060.7⨯精确到 位,有 个有效数字。
5、下列整式:,75
,,107,21,,53,
222y x R b a a n m x -+--+π其中是单项式的是 。
6、已知︱x +3︱+2
)5(y -=0,则xy = 。
7、如果+10米表示某人向东走10米,那么—10米表示 。
8、数轴上和原点的距离等于6
3
1
的点表示的有理数是 。
9、单项式744
3n m -的系数是 ,次数是 。
10、已知1
347
3-6+n m b a b a 与是同类项,则m= n= 。
11、化简3x -2(x -3y )的结果是 。
12、平方得81的有理数是 。
二、精心选一选,你一定能行(每小题3分,共30分)(每小题只有一个正确答案,请把正确答案序号填在下表内)
13、已知a 与b 互为相反数,c 与d 互为倒数,︱m ︱=1,2(a +b )-2m
cd
的值是( )。
A 、-1
B 、2
C 、1
D 、-2
14、今年10月21日沫阳镇最低气温是12℃,温差是10℃,那么这一天的最高气温是( ) A 、24℃ B 、22 ℃ C 、2 ℃ D 、20℃ 15、-︱—6︱的相反数是( )
A 、6
B 、-6
C 、±6
D 、6
1
16、下列各式中,结果正确的是( ) A 、6)2(3
=- B 、3
4)32(2=
- C 、21.0=0.02 D 、3
)3(-=-27 17、如果)(a --为正数,则a 为( )
A 、正数
B 、负数
C 、0
D 、任意有理数 18、下列各式正确的是( ) A 、z y x yz x 3
1
3222=-
B 、322332352q p p q q p -=-
C 、05522=-ab b a
D 、n m n m 2233=+ 19、下列各组中的两项是同类项的是( ) A 、x y xy 2
22
18-
和 B 、22mn n m --和 C 、m m 32和- D 、b a 5.05.0和 20、去括号正确的是( )
A 、c b a a c b a a +--=+--2
2
)( B 、1065)53(25+-+=--+a a a a C 、a a a a a a 3
2
3)23(31322--=--
D 、b a a b a a +-=---2323)]([ 21、有理数a 、b 在数轴上的位置如图1-1所示,那么
下列式子中成立的是( )
A.a>b
B.a<b
C.ab>0
D.0a
b
>
22、已知a 为有理数,下列式子一定正确的是( )
A 、︱a ︱=a
B 、︱a ︱≥a
C 、︱a ︱=-a
D 、2
a >0 三、解答题(共46分)
23、细心算一算,一定算对哟!(每小题4分,共12分) (1)、 (+45)+(-92)+5+(-8) (2)、 )24(127832111-⨯⎪⎭⎫ ⎝
⎛
+--
(3)、42-+︱6-10︱-2006
)1(3-⨯
24、化简(每小题4分,共8分)
(1)、 (8a -6b )-(4a -5b )+(3a -2b ) (2)、 ⎥⎦
⎤
⎢⎣⎡----22222
2)41(2123x x y x y x y x
25、先化简再求值(6分)
ab ab a ab a 2
1
8)4(21222-⎥⎦⎤⎢⎣⎡+--,其中a =-21,b =32 。
26、(6分) 用火柴棒按下列方式搭建三角形:
(1)填表:
(2) 当三角形的个数为n 时,火柴棒的根数多少? (3) 求当n=1000时,火柴棒的根数是多少?
27、(本题6分)为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师。
如果规定向东为正,向西为负,出租车的行程如下(单位:千米):+5,-4,+3,-10,+3,-9
(1) 最后一名老师送到目的地时,小王距出租车地点的距离是多少? (2) 若汽车耗油量为0.4升/千米,这天下午汽车共耗油多少升?
28、(本题8分)我国股市交易中每买、卖一次需交0.75﹪的各种费用,某投资者以每股10元的价格买入某股票a 股,当该股票涨到12元时全部卖出。
(1)用式子表示投资者实际盈利多少?
(2)若该投资者买入1000股,则他盈利了多少元?。