高等电力电子要点

合集下载

2024年电力电子学知识点总结

2024年电力电子学知识点总结

2024年电力电子学知识点总结电力电子学是研究将电力进行控制、转换和处理的一门学科。

它广泛应用于电力系统、电气驱动和电力供应等领域。

随着科技的不断发展和创新,电力电子学也在不断演进。

以下是2024年电力电子学的一些重要知识点总结。

1.功率半导体器件:功率半导体器件是电力电子学的基础。

常见的功率半导体器件包括晶闸管、IGBT、MOSFET等。

这些器件具有耐高电压、高电流和高温等特点,可以实现高效的功率转换和控制。

2.开关电源:开关电源是一种将电能进行高效转换和稳定输出的电源系统。

常见的开关电源拓扑结构包括脉冲宽度调制(PWM)控制的单端和双端开关电源,以及谐振开关电源。

开关电源具有高效率、体积小和重量轻的特点,被广泛应用于计算机、通信和工业控制等领域。

3.交流调压:交流调压是将交流电能转换为直流电能的过程。

常见的交流调压技术包括整流和逆变。

整流将交流电转换为脉动的直流电,而逆变将直流电转换为交流电。

交流调压技术被广泛应用于电力系统的输电和配电、电动车充电和可再生能源发电等领域。

4.电力因数校正:电力因数是交流电中有功功率与视在功率之比。

电力因数校正是通过电力电子技术改善电力系统的功率因数。

常见的电力因数校正技术包括有源功率因数校正和无源功率因数校正。

电力因数校正可以提高电力系统的效率、减少系统的损耗,并符合电力系统的标准和规范。

5.电力质量控制:电力质量是指电力系统中电压、电流和频率等参数的稳定性和纯净度。

电力质量控制是通过电力电子技术实现对电力质量的监测、调节和保护。

常见的电力质量控制技术包括谐波滤波、电压调节和无功补偿。

电力质量控制可以提高电力系统的稳定性,减少电力中的谐波和干扰,并保证电力设备的正常运行。

6.电力电子与可再生能源:可再生能源包括太阳能、风能、水能等,它们是未来能源发展的重要方向。

电力电子技术在可再生能源的发电、转换和集成方面发挥着重要作用。

通过电力电子技术,可以实现可再生能源与电力系统的无缝连接,提高能源的利用效率和系统的稳定性。

大二电力电子技术基础知识点总结

大二电力电子技术基础知识点总结

大二电力电子技术基础知识点总结如下是大二电力电子技术基础知识点的总结:电力电子技术是电气工程领域的重要分支之一,它主要涉及电力电子器件和电力电子电路的设计与应用。

在大二的学习中,我们接触到了很多电力电子技术的基础知识点,这些知识点对于我们的学习和未来的工作都有着重要的意义。

下面是对这些知识点的总结:1. 电力电子器件电力电子器件是实现电力电子技术的基石,常见的电力电子器件有功率场效应管(MOSFET)、双极型晶体管(BJT)、绝缘栅双极型晶体管(IGBT)等。

这些器件具有不同的特性和应用场景,我们需要掌握它们的工作原理、特性参数以及选型和驱动方法。

2. 电力电子电路电力电子电路是电力电子技术的核心,其中包括直流-直流变换器、直流-交流变换器、交流-交流变换器等。

我们需要了解这些电路的结构和工作原理,掌握它们的控制方法、效率计算以及应用领域。

3. 开关功率器件开关功率器件是电力电子电路的关键组成部分,常见的开关功率器件有晶闸管(SCR)、双向可控硅(Triac)、发光二极管(LED)等。

了解开关功率器件的工作原理、特性和保护方法,能够更好地设计和应用电力电子电路。

4. 电力电子变换器电力电子变换器是实现电能的变换与调控的关键设备,常见的电力电子变换器有直流电压变换器、直流电流变换器、交流电压变换器等。

我们需要了解这些变换器的结构和动作原理,掌握它们的控制策略、效率计算以及在电力系统中的应用。

5. 短路保护与故障诊断在电力电子技术应用中,短路故障是常见的问题。

我们需要学习短路保护的原理和方法,能够设计和应用短路保护电路。

同时,故障诊断技术也十分重要,我们需要了解故障诊断的基本原理和方法,能够快速准确地分析和解决故障问题。

6. 可编程控制器(PLC)在电力电子技术中的应用近年来,可编程控制器在电力电子技术中的应用越来越广泛。

我们需要了解PLC的基本原理和应用技巧,能够利用PLC实现电力电子设备的自动控制和远程监控。

电力电子学知识点总结(2篇)

电力电子学知识点总结(2篇)

电力电子学知识点总结在大学里面,我们所学习的更多的是理论上的东西,而对现实的实物、实例了解较少。

理论联系实际方面做的不够,理论与实际相脱节,这对深入学习是不利的,是所谓的闭门造车,没有实践的指导,理论不会得到很高提升。

而来到景洪电厂之后,以前理论的东西得到了实物的指导,使原本模糊的概念变得清晰。

突出表现在对发电机转子、定子、水轮机,励磁系统、调速系统、水工建筑等的结构有很深感性认识。

2、专业技能的提高在运行期间,我跟随班组师傅首先从如何巡检设备开始学习,在巡检过程中要注意哪些事项及如何使用巡检仪,在师傅们的带领下,我们慢慢地开始学习监盘及一些简单的操作,在监盘过程中需要重点监视的对象、设备的正常运行状态及如何判断机组故障及故障处理,在每次运行值守期间,师兄都要对我们提出问题,争取在每个八小时中学会一项简单的操作。

值班期间,一定要做好事故预想,一定要掌握当前全厂设备的状况,对存在缺陷的设备要加强监视。

在On-call期间,我们主要学习了如何写操作票、如何办理各种工作票,在机组检修时候,随同师傅做好检修机组的安全措施,在检修工作结束后,学习如何恢复安全措施。

这些工作,无一不需要我们认真对待、仔细检查,只有这样,才能保证机组的安全稳定运行。

运行期间我多次参加了机组的开、停机操作,对开停机的流程及需要检查注意的事项有了一定程度的认识。

在维护期间,在师傅的指导下我学会了看电气二次图,了解了励磁系统和调速器的基本工作原理,学习了一些电气控制器与PLC基本原理及应用。

在____号机组检修期间,我主要跟随师傅学习仪表方面的知识,掌握了功率变送器、频率变送器、压力表、数字显示表等测量元件的工作原理和校验方法;并且掌握了我厂主要油温、油压、油位、瓦温等非电量测量点的布置情况及其整定值。

同时掌握了一些实验设备的使用方法。

在热工仪表方面,了解了其它传感器的工作原理及其作用。

除此之外,我还参加了____号机组调速器的检修工作,通过现场学习,我对调速器系统有了更深的认识,对图纸上的东西也有了系统的理解。

电力电子学知识点总结

电力电子学知识点总结

电力电子学知识点总结电力电子学是研究电力系统中的电力变换、控制和调节的学科,主要包括功率半导体器件、电力电子器件、电力电子电路、电力电子系统以及其工作原理和应用等方面的内容。

下面将对电力电子学的基本知识点进行总结,以便更好地理解和应用电力电子技术。

一、功率半导体器件功率半导体器件是电力电子电路中的核心部件,其主要作用是实现电能的变换和控制。

常见的功率半导体器件有二极管、晶闸管、可控硅、大功率晶体管和金属氧化物半导体场效应晶体管(MOSFET)等。

这些器件的工作原理、特性和应用有所不同,选择适合的器件对电力电子系统的性能具有重要影响。

1.二极管:二极管是一种具有两个电极的器件,主要用于整流电源电路中。

其工作原理是当正向电压施加在二极管上时,电流可以流过,而反向电压施加时,二极管具有很高的阻抗。

2.晶闸管:晶闸管是一种具有三个电极的器件,主要用于控制高功率交流电流。

其工作原理是通过一个控制电极的信号来控制另外两个电极之间的导通和截止状态。

3.可控硅:可控硅也是一种具有三个电极的器件,其特点是只有在一个特定的触发脉冲下才能开启,一旦开启就可以持续导通。

可控硅主要用于交流电压控制以及电能的调节。

4.大功率晶体管:大功率晶体管是一种可以承受大电流和大功率的晶体管。

它具有高增益和低饱和压降的特点,适用于高频率和高功率的应用。

5.MOSFET:MOSFET是一种依靠电场效应来控制导通的器件。

它具有低导通电阻、高开关速度和优异的抗击穿能力,适用于高频率和高效率的应用。

二、电力电子电路电力电子电路是将功率半导体器件组合成特定功能的电路,用于实现电能的变换、控制和调节。

常见的电力电子电路有整流电路、逆变电路、升压和降压变换器等。

1.整流电路:整流电路是将交流电转换为直流电的电路。

常见的整流电路有单相和三相整流桥电路,可以采用二极管或可控硅进行整流。

2.逆变电路:逆变电路是将直流电转换为交流电的电路。

逆变电路有单相和三相逆变电路,可以采用晶闸管或可控硅进行逆变。

电力电子重点总结

电力电子重点总结

电力电子重点总结1各电力电子器件的特点、导通条件、导通维持条件、关断条件电力二极管(不可控器件),静态特性主要指其伏安特性,当电力二极管承受的正向电压大到一定值时,正向电流才开始明显增加处于稳定导通状态。

当其承受反向电压时,只有少子引起的微小而数值近似恒定的反向饱和漏电流,但随温度的升高而有所增加。

动态特性电力二极管在零偏置(外加电压为零),正向偏置和反向偏置这三种状态之间转换的时候必然经历一个过渡过程,因而其电压—电流特性不能用伏安特性来描述,而是随时间变化的。

并且往往专指反映通态和断态之间转换过程的开关特性。

晶闸管(半控型器件),(1)当晶闸管承受反向电压是,不论门极是否有触发电流,晶闸管都不会导通。

(2)晶闸管是一种单向导电器件,即在正常触发导通时电流只能从阳极流向阴极。

(3)晶闸管导通的条件,晶闸管承受正向电压,同时在门极有触发电流作用。

只有在这两个条件同时具备的情况下晶闸管才能导通。

(4)晶闸管的关断条件:若要使已导通的晶闸管关断,只能利用外加反偏电压或外电路的作用使流过晶闸管的电流降到接近于零的某个临界值以下。

(5)晶闸管维持导通的条件:晶闸管一旦导通,门极就失去控制作用,不论门极触发信号是否还存在,只要流过晶闸管的电流不低于其维持电流,晶闸管就能维持导通。

(6)晶闸管误导通条件:阳极正偏电压过高;du/dt过大;结温过高。

(7)晶闸管具有双向阻断作用,既具有正向电压阻断能力,又具有反向电压阻断能力。

而不是像二极管那样仅具有反向电压阻断能力。

2 PE系统需要隔离的原因及隔离措施;主电路中的电压和电流一般都比较大,而控制带南路的元器件只能承受较小的电压和电流,因此在主电路和控制电路连接的路径上,如驱动电路于主电路的连接处,或者驱动电路与控制信号的连接处,以及主电路与检测电路的连接处,一般都需要通过光或磁的手段来传递信号并实现电气隔离。

强,弱电系统之间通常需要电气隔离,不共地,消除相互影响,减小干扰,提高可靠性。

电力电子复习提纲--南京工程学院

电力电子复习提纲--南京工程学院
③◆安全工作区: A、正偏安全工作区(FBSOA)——最大集电极电流、最大集射极间电压 和最大集电极功耗确定。 B、反向偏置安全工作区(RBSOA)——最大集电极电流、最大集射极间 电压和最大允许电压上升率 duCE/dt 确定。 ④在 1/2 或 1/3 额定电流以下的区段,通态压降具有负的温度系数;在以上 的区段则具有正温度系数,并联使用时也具有电流的自动均衡能力,易于并联。 (9)电力电子器件对触发脉冲的要求 ①Thysistor:幅值、宽度、门极安全触发区域、可靠性 ②GTO:幅值和陡度要求更高,关断加 5V 负偏压 ③GTR:开通处于准饱和,关断加 6V 负偏压 ④Power MOSFET:开通的驱动电压一般 10—15V,关断时施加-5—-15V
4
负偏压 ⑤IGBT:开通的驱动电压一般 15—20V,关断时施加-5—-15V 负偏压
(10)保护 ①过电压 A、外因:a、雷击 b、操作 B、内因:a、换相 b、关断 最常见内因过电压保护措施:RC 保护电路,C 两端电压不能突变,R 消耗
过电压能量 ②过电流:A、短路 B、过载 最常见过电流保护措施:快速熔断器(简称快熔)
5
第三章 整流电路
1、复习方法 (1)电路原理图 (2)工作原理 (3)波形分析 (4)定量计算 ①输出电压、电流的平均值和有效值②流过晶闸管电流的平均值、有效值③变 压器二次绕组电流④元器件和设备选取⑤功率因数⑥变压器二次绕组电流和输 出电压的谐波分析 (5)主要特点 2、基本概念: (1)相控和斩控 (2)自然换相点 (3)控制角 (4)导通角 (5)移相范围 (6)同步 (7)导电停止角 (8)换流或换相 (9)单拍和双拍 (10)直流磁化 (11)基波和谐波 (12)总谐波畸变率(THD) (13)电压或电流纹波因数 3、基本公式见附表: (1)阻感负载时,注意电感电流不能突变,电感反感应电动势阻止电流的变化, 由于电感的储能在电源电压变负后晶闸管会继续导通,输出电压出现负的部分。 负载电流随负载电感的大小而变化,通常情况下讨论负载电感很大(电感极大、

(完整word版)电力电子必备知识点(良心出品必属精品)

(完整word版)电力电子必备知识点(良心出品必属精品)

电力电子必背知识点1.电力电子电路中能实现电能的变换和控制的半导体电子器件称为电力电子器件(Power Electronic Device)。

2.电力电子器件的基本特性注:很重要,一定记住(1)电力电子器件一般都工作在开关状态。

(2)电力电子器件的开关状态由(驱动电路)外电路来控制。

(3)在工作中器件的功率损耗(通态、断态、开关损耗)很大。

为保证不至因损耗散发的热量导致器件温度过高而损坏,在其工作时一般都要安装散热器。

3.按器件的开关控制特性可以分为以下三类:① 不可控器件:器件本身没有导通、关断控制功能,而需要根据电路条件决定其导通、关断状态的器件称为不可控器件。

如:电力二极管(Power Diode);②半控型器件:通过控制信号只能控制其导通,不能控制其关断的电力电子器件称为半控型器件。

如:晶闸管(Thyristor)及其大部分派生器件等;③全控型器件:通过控制信号既可控制其导通又可控制其关断的器件,称为全控型器件。

如:门极可关断晶闸管(Gate-Turn-Off Thyristor )、功率场效应管(Power MOSFET)和绝缘栅双极型晶体管(Insulated-Gate Bipolar Transistor)等。

4.前面已经将电力电子器件分为不可控型、半控型和全控型。

按控制信号的性质不同又可分为两种:① 电流控制型器件:此类器件采用电流信号来实现导通或关断控制。

如:晶闸管、门极可关断晶闸管、功率晶体管、IGCT等;② 电压控制半导体器件:这类器件采用电压控制(场控原理控制)它的通、断,输入控制端基本上不流过控制电流信号,用小功率信号就可驱动它工作。

如:代表性器件为MOSFET管和IGBT管。

5.几点结论(重要)1.晶闸管具有单向导电和可控开通的开关特性。

2.晶闸管由阻断状态转为导通状态时,应具备两个条件:从主电路看,晶闸管应承受正向阳极电压;从控制回路看,应有符合要求的正向门极电流。

高度电力电子技术复习提纲

高度电力电子技术复习提纲

电力电子技术复习提纲1电力电子技术的基本概念电力电子技术是应用于电力领域的电子技术,是使用电力电子器件对电能进行变换和控制的技术。

通常把电力电子技术分为电力电子器件制造技术和变流技术两个分支。

前者的理论基础是半导体物理,是电力电子技术的基础;后者的理论基础是电路理论,是电力电子技术的核心。

电力电子学是由电力学,电子学和控制理论三个学科交叉而形成的。

2两级式光伏并网逆变器的基本拓扑与控制(1)基本拓扑:两级式光伏并网逆变器主要包括前级DC/DC变换器和后级DC/AC 变换器。

两个变换器之间一般均设有一个足够容量的直流滤波电容,该直流滤波电容在缓冲前后级能量的同时,也起到了前后级控制上的解耦作用。

一般情况下,由于光伏电池的输出电压通常都低于电网电压的峰值,因此要实现并网发电,应先将光伏电池输出的直流电通过前级Boost变换器升压后再输出给后级的网侧逆变器。

单相三相(略)(2)控制策略:对前后级变换器的控制策略一般可以独立地进行研究。

一般而言,在具有两级变换的光伏并网逆变系统中,前级DC/DC变换器主要实现最大功率点跟踪(MPPT)控制,而后级的DC/AC变换器(并网逆变器)则有两个基本控制要求:一是要保持前后级之间的直流侧电压稳定;二是要实现并网电流的控制(网侧单位功率因数正弦波电流控制),甚至需根据指令进行电网的无功功率调节。

MPPT控制方法:1)基于输出特性曲线的开环MPPT方法;2)扰动观测法;3)电导增量法;4)智能MPPT方法。

并网逆变器的控制策略:1)基于电压定向的矢量控制策略;2)基于电压定向的直接功率控制策略;3)基于虚拟磁链定向的矢量控制策略;4)基于虚拟磁链定向的直接功率控制策略。

图1基于电压矢量定向的矢量控制系统(VOC)示意图图2基于虚拟磁链定向矢量控制(VFOC)的控制结构u*dc图3基于无电网电压传感器V-DPC的控制结构a ib i ci a e b e ce L L LPWMAS BS CS dcu dcu αi -PIp q*p*q --p S qS E空空空空βi αψβψA S B S CS *dcu 空空空空空空空空空空空空空空空空空空空空空空空空空图4基于无电网电压传感器VF-DPC 的控制结构3并网风力发电机组的基本类型与其变流器的基本拓扑3.1发电机组基本类型(1)恒速系统笼型/绕线型转子异步风发电机系统(2)半变速系统异步双馈(有齿轮箱)(3)全变速系统电励磁/永磁同步直驱(无齿轮箱)3.2变流器的基本拓扑(1)全功率电压型风机变流器拓扑二极管不控整流+升压斩波(boost)+三相电压型逆变器双PWM变流器三电平(2)全功率电流型风机变流器拓扑(3)全功率混合型风机变流器拓扑(4)矩阵型风机变流器拓扑4三相无源PWM逆变器的拓扑与控制策略,其输出滤波器的设计(1)三相无源PWM逆变器的拓扑(2)控制策略由于VSI直流侧多采用整流电源或蓄电池等供电,因此一般无需直流电压反馈。

电力电子技术知识点总结

电力电子技术知识点总结

电力电子技术知识点总结一、电力电子器件1. 晶闸管:晶闸管是一种具有双向导电性能的电子器件,可以控制大电流、大功率的交流电路。

其结构简单,稳定性好,具有一定的可逆性,可用作直流电压调节元件、交流电压调节元件、静止开关、逆变器等。

2. 可控硅:可控硅是一种具有双向导电性的半导体器件,具有控制开关特性,可用于控制大电流、大功率的交流电路。

可控硅具有可控性强,工作稳定等特点,适用于电力调节、交流电源、逆变器等领域。

3. MOSFET:MOSFET是一种以金属氧化物半导体栅极场效应晶体管为基础的器件,和普通的MOS晶体管相比,MOSFET在导通电阻上有较低的压降、耗散功率小、寄生电容小、开关速度快等优点,适用于开关电路、逆变器、电源调节等领域。

4. IGBT:IGBT是一种继承了MOSFET和双极晶体管的特点的半导体器件,具有高阻塞电压、低导通压降、大电流、耐脉冲电流等特点,适用于高频开关电路、变频器、电源逆变器、电机调速等领域。

5. 二极管:二极管是最基本的电子元件之一,具有正向导通和反向截止的特点,广泛用于整流、短路保护、开关电源等方面。

以上所述的电力电子器件是电力电子技术的基础,掌握了这些器件的特性和应用,对于电力电子技术的学习和应用具有重要的意义。

二、电力电子拓扑结构1. 变流器拓扑结构:变流器是电力电子技术中的一种重要装置,用于将直流电转换为交流电或者改变交流电的频率、电压和相数等。

常见的变流器拓扑结构包括单相全桥变流器、三相全桥变流器、单相半桥变流器、三相半桥变流器等。

2. 逆变器拓扑结构:逆变器是电力电子技术中的一种重要装置,用于将直流电转换为交流电,逆变器可以选择不同的拓扑结构和控制策略,以满足不同的电力系统需求。

常见的逆变器拓扑结构包括单相全桥逆变器、三相全桥逆变器、单相半桥逆变器、三相半桥逆变器等。

3. 母线型柔性直流输电系统:母线型柔性直流输电系统是一种新型电力电子系统,用于将大容量的交流电转换为直流电进行长距离输电。

电力电子技术-期末考试复习要点

电力电子技术-期末考试复习要点

电⼒电⼦技术-期末考试复习要点课程学习的基本要求及重点难点内容分析第⼀章电⼒电⼦器件的原理与特性1、本章学习要求1.1 电⼒电⼦器件概述,要求达到“熟悉”层次。

1)电⼒电⼦器件的发展概况及其发展趋势。

2)电⼒电⼦器件的分类及其各⾃的特点。

1.2 功率⼆极管,要求达到“熟悉”层次。

1)功率⼆极管的⼯作原理、基本特性、主要参数和主要类型。

2)功率⼆极管额定电流的定义。

1.3 晶闸管,要求达到“掌握”层次。

1)晶闸管的结构、⼯作原理及伏安特性。

2)晶闸管主要参数的定义及其含义。

3)电流波形系数k f的定义及计算⽅法。

4)晶闸管导通和关断条件5)能够根据要求选⽤晶闸管。

1.4 门极可关断晶闸管(GTO),要求达到“熟悉”层次。

1)GTO的⼯作原理、特点及主要参数。

1.5 功率场效应管,要求达到“熟悉”层次。

1)功率场效应管的特点,基本特性及安全⼯作区。

1.6 绝缘栅双极型晶体管(IGBT),要求达到“熟悉”层次。

1)IGBT的⼯作原理、特点、擎住效应及安全⼯作区。

1.7 新型电⼒电⼦器件简介,要求达到“熟悉”层次。

2、本章重点难点分析有关晶闸管电流计算的问题:晶闸管是整流电路中⽤得⽐较多的⼀种电⼒电⼦器件,在进⾏有关晶闸管的电流计算时,针对实际流过晶闸管的不同电流波形,应根据电流有效值相等的原则选择计算公式,即允许流过晶闸管的实际电流有效值应等于额定电流I T对应的电流有效值。

利⽤公式I = k f×I d = 1.57I T进⾏晶闸管电流计算时,⼀般可解决两个⽅⾯的问题:⼀是已知晶闸管的实际⼯作条件(包括流过的电流波形、幅值等),确定所要选⽤的晶闸管额定电流值;⼆是已知晶闸管的额定电流,根据实际⼯作情况,计算晶闸管的通流能⼒。

前者属于选⽤晶闸管的问题,后者属于校核晶闸管的问题。

1)计算与选择晶闸管的额定电流解决这类问题的⽅法是:⾸先从题⽬的已知条件中,找出实际通过晶闸管的电流波形或有关参数(如电流幅值、触发⾓等),据此算出通过晶闸管的实际电流有效值I,考虑(1.5~2)倍的安全裕量,算得额定电流为I T = (1.5~2) I /1.57,再根据I T值选择相近电流系列的晶闸管。

高等电力电子学

高等电力电子学
2018/4/18 高等电力电子学
21
电力电子技术与其他学科的关系
其 他 学 科
新的手段
新的研究目标
电 力 电 子
2018/4/18
高等电力电子学
22
4 电力电/18
高等电力电子学
23
4.1 层次法

对一个具体电路研究要分层次进行
电路的全部特性
主电路特性
控制电路特性
高效
•本质上要求数字控制, 但实现上有许多困难
快速
1.4 为什么本课程称为高等电力电子学
新的控制手段、 方法的引入
低压小功 率应用的 特殊问题
基本电路 基本原理、工作波形 移相 PWM 反馈
新的应 用场合 提出的 问题
高压大功 率应用的 特殊问题
基本数量关系
参数计算
新拓扑、新器 件应用提出的 问题
高等电力电子学



什么是电力电子学 电力电子学的研究内容 电力电子学与其他学科的关系 电力电子学的学习方法 小结
2018/4/18
高等电力电子学
2
1 什么是电力电子学?

定义 对一种事物的本质特征或一个概念 的内涵或外延的确切而简要的说明。
2018/4/18
高等电力电子学
3
1.1 从外延上看电力电子学定义
数字化、网络化
研究的角度
研究的内容 开关电路产生电 磁干扰的机理 缓冲、吸收
电 磁 兼 容 研 究
如何减小 干扰源
如何减小 耦合途径
软开关
敏感对象对 干扰的敏感 度是多少
滤波、屏蔽、 布线、布局
噪声和电磁波对设 备和生物影响研究
研究的角度
研究的内容 如何用现有电路组合 或设计新的电路以适 应新领域的应用要求 冗余 集成 模块化 系统的最优结 构与协调运行 故障监测与诊断

电力电子教材知识点部分总结

电力电子教材知识点部分总结

电力电子教材知识点部分总结电力电子是电力工程领域中的一个重要分支,也是电子工程的一个重要方向。

电力电子技术应用广泛,涉及到交流电气传输、电力调制、变频调速等众多领域。

要学好电力电子,需要了解不少的知识点。

本文就电力电子教材知识点部分进行总结。

1. 交流电路分析交流电路是由交流电源、电路元件和负载组成的电路,交流电路分析是电路基础。

电力电子中交流电路分析知识点需要掌握交流电路电压、电流的特性,相位、相角、频率、幅值等概念,掌握交流电路瞬时值、平均值、有效值和相位差的计算公式。

2. 稳压电路稳压电路是将电压经过稳定处理后保持不变的电路。

电力电子中稳压电路常用的元件为二极管和稳压集成电路,稳压电路的分类有电阻型稳压电路和Zener二极管稳压电路。

3. 开关电源开关电源是一种高效率、小体积、轻重量的电源。

开关电源采用交流电源输入,通过充电电路进行充电,再通过开关变换器和滤波器输出转换后直流电。

开关电源安全性高,稳定性好,应用范围广泛。

4. 电力变换器电力变换器主要用于交流电能转换,在交流电源和交流负荷之间完成电力转换功能。

电力电子中常用的电力变换器有单相桥式变流电路、三相桥式变流电路、斩波电路、谐振电路、滤波电路等。

5. 脉宽调制技术脉宽调制是指根据交流负载需要的输出信号来控制开关的时间或周期,从而控制输出电压的大小,从而实现交流电气传输、电机调速等功能。

电力电子中常用的脉宽调制技术有PWM调制和SPWM调制。

本文概述了电力电子教材中的五个知识点,涵盖了电力电子的基础知识、电路分析、开关电源、电力变换器等方面。

电力电子这个领域发展迅速,知识点也在不断更新,需要持续学习和掌握最新技术才能应用于实际工程中,为电力行业的发展做出贡献。

电力电子知识点总结

电力电子知识点总结

电力电子知识点总结电力电子知识点总结1 电力电子技术定义:是使用电力电子器件对电能进行变换和控制的技术,是应用于电力领域的电子技术,主要用于电力变换。

2 电力变换的种类(1)交流变直流AC-DC:整流(2)直流变交流DC-AC:逆变(3)直流变直流DC-DC:一般通过直流斩波电路实现,也叫斩波电路(4)交流变交流AC-AC:可以是电压或电力的变换,一般称作交流电力控制3 电力电子技术分类:分为电力电子器件制造技术和变流技术。

4、相控方式;对晶闸管的电路的控制方式主要是相控方式5、斩空方式:与晶闸管电路的相位控制方式对应,采用全空性器件的电路的主要控制方式为脉冲宽度调制方式。

相对于相控方式可称之为斩空方式。

电力电子器件1 电力电子器件与主电路的.关系(1)主电路:电力电子系统中指能够直接承担电能变换或控制任务的电路。

(2)电力电子器件:指应用于主电路中,能够实现电能变换或控制的电子器件。

广义可分为电真空器件和半导体器件。

2 电力电子器件一般特征:1、处理的电功率小至毫瓦级大至兆瓦级。

2、都工作于开关状态,以减小本身损耗。

3、由电力电子电路来控制。

4、安有散热器3 电力电子系统基本组成与工作原理(1)一般由主电路、控制电路、检测电路、驱动电路、保护电路等组成。

(2)检测主电路中的信号并送入控制电路,根据这些信号并按照系统工作要求形成电力电子器件的工作信号。

(3)控制信号通过驱动电路去控制主电路中电力电子器件的导通或关断。

(4)同时,在主电路和控制电路中附加一些保护电路,以保证系统正常可靠运行。

4 电力电子器件的分类根据控制信号所控制的程度分类(1)半控型器件:通过控制信号可以控制其导通而不能控制其关断的电力电子器件。

如SCR晶闸管。

(2)全控型器件:通过控制信号既可以控制其导通,又可以控制其关断的电力电子器件。

如GTO、GTR、MOSFET和IGBT。

(3)不可控器件:不能用控制信号来控制其通断的电力电子器件。

电力电子知识点总结

电力电子知识点总结

电力电子知识点总结一、电力电子的基本原理电力电子是运用半导体器件实现电能的变换、控制和调节的技术领域。

在电力电子领域中最常用的器件是晶闸管、可控硅、晶闸管二极管、IGBT等。

它们通过对电压和电流的控制,实现将电能从一种形式转换为另一种形式。

电力电子的基本原理可以分为电力电子器件、电力电子电路和电力电子系统三个方面。

1. 电力电子器件电力电子器件是实现电力电子技术的基础。

常见的电力电子器件有晶闸管、可控硅、三端闭管、IGBT等,在电力电子中起着至关重要的作用。

晶闸管是一种四层结构的半导体器件,能够控制电流的导通和截止,实现电能的控制和调节。

可控硅是一种三端器件,具有双向导通特性,广泛应用于交流电路中。

IGBT集结了MOS管和双极型晶体管的优点,具有高开关速度、低导通压降等特点,是目前应用范围最广泛的功率器件之一。

2. 电力电子电路电力电子电路是利用电力电子器件构成的电路,实现对电能的控制和调节。

常见的电力电子电路包括整流电路、逆变电路、斩波电路等。

整流电路能够将交流电转换为直流电,逆变电路能够将直流电转换为交流电,斩波电路能够实现对电压和频率的调节。

这些电路在各种电力电子设备中得到了广泛应用,如变频调速器、逆变焊接电源等。

3. 电力电子系统电力电子系统是由多个电力电子电路组成的系统,实现对电能的复杂控制和转换。

常见的电力电子系统包括交流电调压系统、柔性直流输电系统、电能质量调节系统等。

这些系统在能源转换、传输和利用方面发挥着关键作用,是现代电力系统中不可或缺的一部分。

二、电力电子的常见器件和应用电力电子领域中常见的器件有晶闸管、可控硅、IGBT等。

而在现代工业中,电力电子技术得到了广泛的应用,如变频调速器、逆变焊接电源、电动汽车充电设备等。

1. 变频调速器变频调速器是一种能够实现电机转速调节的设备,它利用电力电子技术对电机供电进行控制,实现对电机转速的调节。

通过变频调速器,可以实现电机的恒流恒功率调节,使得电动汽车、电梯、风力发电机等设备具有更加灵活和高效的性能。

2024年电力电子学知识点总结

2024年电力电子学知识点总结

2024年电力电子学知识点总结随着科技的不断发展,电力电子学在能源转换与控制领域发挥着重要的作用。

2024年,电力电子学领域的研究和应用已经取得了许多重要的进展。

本文将总结2024年电力电子学的一些关键知识点,以帮助读者了解电力电子学的最新进展。

1. 功率半导体器件:功率半导体器件是电力电子学的基础。

2024年,主要有IGBT(绝缘栅双极结型晶体管)、MOSFET(金属氧化物半导体场效应晶体管)和SiC(碳化硅)等功率半导体器件得到广泛应用。

这些器件具有低导通压降、高开关速度和高温特性等优点,适用于各种功率电子应用。

2. 电力电子转换拓扑:电力电子转换系统的拓扑结构是电力电子学研究的重点之一。

2024年,常见的拓扑结构包括桥式整流器、逆变器、变换器和多电平逆变器等。

这些拓扑结构常用于变换、传递和调节电能,以满足不同应用场景对电能的需求。

3. 智能电力电子系统:智能电力电子系统是电力电子学的发展趋势之一。

2024年,随着人工智能和大数据技术的不断发展,电力电子系统的智能化程度得到了提高。

智能电力电子系统具有自适应、自优化和自保护等特性,在电力转换和控制过程中能够实现更高效、更可靠的能量转换和管理。

4. 新型电力电子应用:2024年,电力电子学在新型应用领域的研究得到了迅速发展。

例如,电动车、可再生能源发电和电网储能等领域对电力电子技术的需求不断增加。

这些应用对功率半导体器件、电力转换拓扑和智能电力电子系统等方面提出了新的挑战,同时也为电力电子学的发展提供了新的机遇。

5. 高效低功耗设计:节能和环保是电力电子学研究的重要目标。

2024年,研究人员在功率半导体器件的材料和结构设计、电力电子转换拓扑的优化和能耗管理技术等方面取得了重要进展,以实现高效低功耗的电力电子系统设计。

这将有助于推动可再生能源的广泛应用和提升能源利用效率。

综上所述,2024年电力电子学领域的关键知识点包括功率半导体器件、电力电子转换拓扑、智能电力电子系统、新型电力电子应用和高效低功耗设计等方面。

2024年电力电子学知识点总结

2024年电力电子学知识点总结

2024年电力电子学知识点总结____年电力电子学知识点总结一、概述电力电子学是研究电力系统中电能的调控、转换和控制的学科。

它涵盖了电力电子器件、电力电子电路、电力电子控制和电力电子系统等方面的内容。

随着电力系统结构的演进和新技术的引入,电力电子学的研究也在不断更新和发展。

二、电力电子器件1. 功率半导体器件功率半导体器件是电力电子学中最基础的组成部分。

在____年,功率半导体器件将会有以下几个重要的发展趋势:- 高性能:功率半导体器件的集成度、耐压能力和开关速度将不断提高,以满足电力系统的高效率和高可靠性要求。

- 宽功率范围:功率半导体器件将逐渐向高电压、大电流和高功率领域发展,以满足电力系统的不同应用需求。

- 高温工作:功率半导体器件的耐高温性能将会得到改善,以适应电力系统中高温环境的要求。

- 宽温度范围:功率半导体器件将在更宽的温度范围内工作,以适应不同地域和环境的应用需求。

2. 光电子器件光电子器件是电力电子学中新兴的领域,它将光学和电力电子学相结合,具有高速、高效和低功耗的特点。

在____年,光电子器件的发展将会有以下几个重要的趋势:- 高速调制:光电子器件的调制速度将会大幅提高,以满足高频率电力系统对数据传输和信号处理的需求。

- 高效能量转换:光电子器件将通过光电转换实现电能的高效转换和传输,以提高电力系统的能量利用率。

- 高密度集成:光电子器件将实现更高的集成度,以减小体积和重量,同时提高系统的可靠性。

三、电力电子电路1. 变换器和逆变器变换器和逆变器是电力电子学中常见的电路,用于实现电能的变换和控制。

在____年,变换器和逆变器的发展将会有以下几个重要的趋势:- 高效率:变换器和逆变器的能量转换效率将会提高,以减少能量的损耗和浪费。

- 多电平结构:变换器和逆变器将采用多电平结构来提高波形质量和降低电磁干扰。

- 高频率工作:变换器和逆变器将工作在更高的频率范围内,以提高系统的响应速度和减小体积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

凯文师兄当时那届的重点:
1、PFC;
2、嵌位缓冲;
3、多电平;
4、LCR缓冲;
5、软开关
具体:
1、什么是重复控制策略,画出逆变电源重复控制原理框图。

2、什么是无差拍控制。

3、什么是空间矢量调制。

4、什么是复合校正,有啥特点
5、啥是规则采样PWM,对称规则采样PWM和不对称规则采样PWM的比较。

6、单相逆变电源的状态空间模型与控制方框图
7、PAPF和SAPF的工作原理
8、二极管箝位多电平的优点
9、ZVS-PWM的基本工作原理
仅供参考。

还是以PPT为准~
复习重点:
第一章;绪论
三相桥式电路
第二章:有源电力滤波器
THD,TDD,DF1,PF
PAPF,工作机理,控制系统框图。

SAPF,工作机理,控制系统框图
第三章:逆变器及其控制
谐波系数HF,总谐波畸变率THD,畸变系数DF。

复合校正(前馈+反馈):扰动前馈,输入前馈。

根轨迹,状态空间理论,重复控制,无差拍控制。

第四章:电力电子电路的新拓扑
硬开关开关轨迹(Lσ=0和Lσ≠0)
引入LC缓冲电路的软开关,并联电容(充放电有能耗)用于关断缓冲VT,开通AQEC,关断CAPA。

电力二极管、晶体管的RC软开关。

P-MOSFET、IGBT的限幅钳位缓冲器CDR。

关断过程CBMPA,开通AFC。

电容C起限幅钳位作用,限制VT不至于太大。

LC谐振的零开关,ZVS-PWM有T1&T2零电压开通+软关断,ZVS-PFM有零电压开通,ZCS-PWM有T1&T2零电流关断+软开通,ZCS-PFM零电流关断。

移相全桥零电压开关DC/AC-AC/DC,开关器件零电压导通条件,占空比丢失。

第五章:功率因数校正
输入电流总畸变率THD,输入功率因数PF。

APFC。

带反激式功率因数校正器的高频整流
三相PFC,由单相构成。

能量可回馈的PWM整流器,控制Vi来实现P,Q的双向传输。

第六章,多电平变换器
二极管钳位型多电平逆变器工作原理
第七章,PWM方式
自然采样,规则采样(锯齿波规则,三角波规则,三角波不规则)
三次谐波注入PWM,提高调制比M,线电压峰值到2Vdc。

空间矢量脉冲宽度调制,两电平。

空间矢量调制的调制波和零矢量的处理,不连续调制K=0或K=1或交替变换,开关频率降低1/3,采样频率提高1/2。

空间矢量调制的谐波电流,谐波消除PWM,最优PWM,随机PWM。

闭环PWM调制,滞环控制,Delta调制。

第八章,电力电子电路的计算机仿真
元件级,系统级。

2013年电力电子试题回忆版(陈晓森师兄提供)
●电力电子的内涵定义;变换器的分类;两类应用;复合控制的类型
●含L的Buck电路开通关断波形及轨迹
●并联型有源滤波器;功率因数、控制框图、提高功率因数原理
●ZVS移相全桥;驱动波形、滞后臂实现ZVS困难、占空比丢失计算
●三相逆变器的两相静止坐标系下的状态空间方程和程序框图
●三相高频PWM整流;单相等效电路、实现有功功率和无功功率从电网到变换器传输的
条件。

调制方式
●注入三次谐波PWM调制方式的调制波波形和特点
●仿真中电力电子开关的三种等效模型
●钳位二极管多电平的主电路的三个模态。

相关文档
最新文档