结构动力学课件.20页PPT
合集下载
结构动力学完整ppt课件

输出 (动力反应)
.
第四类问题:控制问题
输入 (动力荷载)
结构 (系统)
输出 (动力反应)
控制系统 (装置、能量)
本课程主要介绍结构的反应分析
任务 讨论结构在动力荷载作用下反应的分析的方法。寻找
结构固有动力特性、动力荷载和结构反应三者间的相互关 系,即结构在动力荷载作用下的反应规律,为结构的动力 可靠性(安全、舒适)设计提供依据。
结构动力学是研究结构、动荷载、结构反应三者关 系的学科。
.
当前结构动力学的研究内容为:
第一类问题:反应分析(结构动力计算)
输入 (动力荷载)
结构 (系统)
输出 (动力反应)
第二类问题:参数(或称系统)识别
输入 (动力荷载)
结构 (系统)
第三类问题:荷载识别。
输出 (动力反应)
输入 (动力荷载)
结构 (系统)
11
l3 3 EI
柔度系数
m y (t)3lE3 Iy(t)P(t)
柔度法步骤: 1.在质量上沿位移正向加惯性力; 2.求外力和惯性力引起的位移; 3.令该位移等于体系位移。
.
二、刚度法
P(t)
m
1
m y(t)
y(t)
l EI
y
k11
k11y(t)
k 1y 1 (t)P (t) m y (t)
EI
m
l/2
l/2
W
m y(t)
1
11
st y(t)
Y(t)y(t)st
加速度为
Y(t) y(t)
y (t) s t 1[P 1 (t) W m y (t)]
st W11
结构动力学
《结构动力学》PPT课件

q(
x)Y
(
x)dx
2
0l q(x)Y (x)dx
0l m[Y (x)]2 dxmiYi2
例12 试求等截面简支梁的第一频率。
4
EI m
1)假设位移形状函数为抛物线
x
l
Y (x) x(l x)
满足边界条件且与第 一振型相近
y
2
2EIl ml5 / 60
2
120EI ml4
高频率误差较大。故 Rayleigh法主要用于求ω1的近似解。 3、相应于第一频率所设的振型曲线,应当是结构比较容易出现的变形 形式。曲率小,拐点少。
4、通常可取结构在某个静荷载q(x)(如自重)作用下的弹性曲线作
为Y(x)的近似表达式。此时应变能可用相应荷载q(x)所作的功来代
替,即
U
1 2
0l
1
h0
x
3
12 l
单位长度的质量: m h0 x
l
x l
设位移形状函数: Y (x)a(1 x )2 l
满足边界条件:Y (l) 0,Y (l) 0
2
5Eh02
2l 4
,
1.581h0 l2
E
与精确解
1.534h0 l2
E
相比误差为3%
2 0l EI[Y (x)]2 dx
1
§10-6 近似法求自振频率
2
1、能量法求第一频率——Rayleigh法
根据能量守恒定律,当不考虑阻尼自由振动时,振动体系在任何时刻的动能T 和应 变能U 之和应等于常数。 ※根据简谐振动的特点可知:在体系通过静力平衡位置的瞬间,速度最大(动能具有 最大值),动位移为零(应变能为零);当体系达到最大振幅的瞬间(变形能最大), 速度为零(动能为零)。对这两个特定时刻,根据能量守恒定律得:
《结构动力学》PPT课件

0
P
sin t
计算步骤: 1.求振型、频率;
2.求广义质量、广义荷载;
3.求组合系数;
4.按下式求组合系数;
N
y(t)
Y
i
Di
(t )
i 1
15
例一.求图示体系的稳态振幅.
Psin t
m1 m2 m 3.415 EI / ml3
m1
m2
EI
解:
1 5.692
6
为了使假设的振型尽可能的接近真实振型,尽可能减小假设振型对体系所 附加的约束, Ritz 提出了改进方法:
1、假设多个近似振型 2、将它们进行线性组合
1,2 n 都满足前述两个条件。 Y(x) a1 1 a2 2 an n
(a1、a2、·········、an是待定常数)
j
Y T j
2 j
K
* j
/
M
* j
k Y j
2 j
Y
T j
mY j
折算体系
13
一.振型分解法(不计阻尼)
P1(t) P2 (t)
PN (t)
运动方程
m1 m2
mN
my(t) ky(t) P(t)
设
N
y(t) Yi Di (t)
EI
D2 (t)
2 2
D2
(t )
P2* (t)
/
M
* 2
D2 (t)
0.1054
10 2
Pl 3 EI
s in t
例一.求图示体系的稳态振幅.
P
sin t
计算步骤: 1.求振型、频率;
2.求广义质量、广义荷载;
3.求组合系数;
4.按下式求组合系数;
N
y(t)
Y
i
Di
(t )
i 1
15
例一.求图示体系的稳态振幅.
Psin t
m1 m2 m 3.415 EI / ml3
m1
m2
EI
解:
1 5.692
6
为了使假设的振型尽可能的接近真实振型,尽可能减小假设振型对体系所 附加的约束, Ritz 提出了改进方法:
1、假设多个近似振型 2、将它们进行线性组合
1,2 n 都满足前述两个条件。 Y(x) a1 1 a2 2 an n
(a1、a2、·········、an是待定常数)
j
Y T j
2 j
K
* j
/
M
* j
k Y j
2 j
Y
T j
mY j
折算体系
13
一.振型分解法(不计阻尼)
P1(t) P2 (t)
PN (t)
运动方程
m1 m2
mN
my(t) ky(t) P(t)
设
N
y(t) Yi Di (t)
EI
D2 (t)
2 2
D2
(t )
P2* (t)
/
M
* 2
D2 (t)
0.1054
10 2
Pl 3 EI
s in t
例一.求图示体系的稳态振幅.
第12章结构动力学 ppt课件

§14-1 概 述
一、结构动力计算的特点 动力荷载作用下,结构将发生振动,各种量值均随时间而变化。
1、内容: (1)研究动力荷载作用下,结构的内力、位移等计算原理和计算方法。 求出它们的最大值并作为结构设计的依据。
(2)研究单自由度及多自由度的自由振动、强迫振动。 2、静荷载和动荷载 (1)静荷载:荷载的大小和方向不随时间变化(如梁板自重)。 (2)动荷载:荷载的大小和方向随时间变化,需要考虑惯性力。 3、特点 (1)必须考虑惯性力。 (2)内力与荷载不能构成静平衡。必须考据惯性力。依达朗伯原理, 加惯性力后,将动力问题转化为静力问题。
动力自由度的确定方法:加附加链杆约束质点位移,最少链杆数即为自 由度
图刚架上有四个集中质点,但只需要加三根链杆 便可限制全部质点的位置。如图e。
自由度=3 或
图示梁,其分布质量集度为m,可看作有无穷多 个mdx的集中质量,是无限自由度结构。
自由度的数目与结构是否静定或超静定无关
§14-2 结构振动的自由度
2、运动方程的解:
方程
y2y0
为一常系数线性齐次微分方程,其通解为
y (t) A 1 co t s A 2sitn
A1和A2为任意常数,可有初始条件来确定。
振动的初始条件为 t 0 时 y y , 0 , y y 0
式中y0—初位移, y0—初速度。则有Fra bibliotekA1y0,A2
y0
可得
yy0cots y0si nt
第十四章 结构动力学
§14-1 概 述 §14-2 结构振动的自由度 §14-3 单自由度结构的自由振动 §14-4 单自由度结构在简谐荷载作用下的强迫振动 §14-5 单自由度结构在任意荷载作用下的强迫振动 §14-6 多自由度结构的自由振动 §14-7 多自由度结构在简谐荷载作用下的强迫振动 §14-8 振型分解法 §14-9 无限自由度结构的振动 §14-10 计算频率的近似法
结构动力学(课用ppt)

11/14/2011
25
注意! 注意!
振动体系的自由度数与计算假定有关,而与集中质量的数目和 超静定次数无关,如下图所示的体系。
11/14/2011
26
2、广义坐标法
广义坐标:能决定体系几何位置的彼此独立的量,称为该体系的广义坐标
变形曲线可用三角级数的和来表示:
n πx = u ( x, t ) = bn sin L n =1
11/14/2011
18
(4)一般任意荷载 荷载的幅值变化复杂、难以用解析函数解析表示的荷 载。 由环境振动引起的地脉动、地震引起的地震动, 以及脉动风引起的结构表面的风压时程等。
11/14/2011
19
1.5 结构动力分析中的自由度
一. 自由度的定义 结构动力学和静力学的一个本质区别:考虑惯性力的影响 结构产生动力反应的内因(本质因素):惯性力 惯性力的产生是由结构的质量引起的 动力自由度(数目):在动力计算中,一个体系的动力自由度是指为了确定 运动过程中任一时刻全部质体位置所需的独立的几何参数数目。 独立参数也称为体系的广义坐标,可以是位移、转角或其它广义量。
11/14/2011 29
11/14/2011
30
11/14/2011
5
结构动力问题的基本特征: 1、动力问题随时间而变化,必须建立反应时程中感兴趣的全部时间点 上的一系列解。 2、与静力问题相比,由于动力反应中结构的位移随时间迅速变化,从 而产生惯性力,惯性力对结构的反应又产生重要影响。
11/14/2011
6
动力反应的特点: 在动荷载作用下,结构的动力反应(动内力、动位移等) 都随时间变化,它的除与动荷载的变化规律有关外,还与结 构的固有特性(自振频率、振型和阻尼)有关。 不同的结构,如果它们具有相同的阻尼、频率和振型,则 在相同的荷载下具有相同的反应。可见,结构的固有特性能 确定动荷载下的反应,故称之为结构的动力特性。
哈尔滨工业大学结构动力学PPT课件

x0 x0 , x0 x0 xt c1n cosnt c2n sinnt
c1 x0 n , c2 x0
第36页/共42页
x
t
x0
n
sin nt
x0
cos nt
令
x0 cos n
, x0 sin
则可化为
其中:
xt sinnt
2
x02
x0
n
tg x0n arctg x0n
T1
1 2
l 0
d
l
2
x2
1 2
(1 3
l)x2
1 m1 23
x2TΒιβλιοθήκη T1Tm1 2
m1 3
m
x2
1 2
meq x2
又因为: 弹簧的势能与弹簧质量无关, 则
V 1 kx2 2
由能量法,可得
meq x kx 0 弹性元件质量不能忽略时,利用等
效质量,将质量折算到质量块上, 弹性元件仍看作无质量的。
• 18世纪线性振动理论成熟期。
第11页/共42页
• 19世纪非线性振动理论,各种工程实际结构振动的近似 求解方法。
• 20世纪50年代初由于航空航天工程的发展,原本确定性 理论无法解释包含随机变化的工程问题,发展了随机振 动理论。
• 20世纪后期计算机技术的飞速发展,数值计算方法和理 论成为主要研究方法之一。
第7页/共42页
三、结构动力学研究的内容
结构动力学就是研究结构系统在激励力作用下产生的响 应规律的科学,研究激励力、结构和响应三者关系的科 学。
现代结构动力学主要研究以下三个方面的内容 第一类问题:响应分析(结构动力计算)
输入 (动力荷载)
《结构动力计算》PPT课件

Psint
1 k
1 EI
1 2
l 2
l 4
2 3
l 4
2
l3 48EI
2
k m
1
m
1
m
48EIg Ql3
EI
0.5l
0.5l
1
48
2.11011 7.48 105 9.8 35 103 43
57.43 / s
2.
荷载频率:
2n
60
2
500 60
52.36 / s
EI
0.25l MM1
3.
动力系数:
其中,
c 2m
为阻尼比, c为阻尼系数。
22
阻尼比ξ是结构阻尼的重要参数 。
§10.4 阻尼对振动的影响
1. 阻尼对体系自振频率的影响
考虑阻尼时体系的自振频率
r 1 2
<1为小阻尼,体系具有振动的性质;自振频率减小
>1(大阻尼)和=1(临界阻尼)时,体系不具有
振动的性。
通常ξ很小,一般结构可取 r≈ 。
的自振周期。EI1=3.528107Nm2.
I=∞
l=6m
• 结构的刚度系数即使柱顶发生单
位位移时,在柱顶需施加的力。 EI1
EI1
考虑梁AB的平衡可得:
k
24EI1
3
l
1
1
结构的自振频率和周期:
k m
2
24EI1g Wl 3
EI1
T
2
2
Wl 3 24EI1g
T 2
24
20 103 63 3.528 107 9.8
4. 最大动位移(振幅): yd max P 5.03mm
结构动力学(课用ppt)

10/28/2015 29
10/28/2015
30
10/28/2015
18
(4)一般任意荷载 荷载的幅值变化复杂、难以用解析函数解析表示的荷 载。 由环境振动引起的地脉动、地震引起的地震动, 以及脉动风引起的结构表面的风压时程等。
10/28/2015
19
1.5 结构动力分析中的自由度
一. 自由度的定义
结构动力学和静力学的一个本质区别:考虑惯性力的影响
结构产生动力反应的内因(本质因素):惯性力 惯性力的产生是由结构的质量引起的 动力自由度(数目):在动力计算中,一个体系的动力自由度是指为了确定 运动过程中任一时刻全部质体位置所需的独立的几何参数数目。
独立参数也称为体系的广义坐标,可以是位移、转角或其它广义量。
10/28/2015
20
二. 自由度的简化 实际结构都是无限自由度体系,这不仅导致分析困难,而且从工程 角度也没必要。常用简化方法有:
张亚辉 林家浩 编著, 结构动力学基础,大连理工大学出版社,2007. 刘晶波等编著,结构动力学,机械工业出版社,2005. 张子明等编著,结构动力学,河海大学出版社,2001.
10/28/2015
3
第一章 绪论
1.1 动力问题的基本特征 1.2 结构动力分析的目的
1.3 结构动力学研究的内容
1.4 动力荷载类型
注意!
振动体系的自由度数与计算假定有关,而与集中质量的数目和 超静定次数无关,如下图所示的体系。
10/28/2015
26
2、广义坐标法
广义坐标:能决定体系几何位置的彼此独立的量,称为该体系的广义坐标
变形曲线可用三角级数的和来表示:
nx nx u( x, t ) bn sin bn (t ) sin L L n 1 n 1
10/28/2015
30
10/28/2015
18
(4)一般任意荷载 荷载的幅值变化复杂、难以用解析函数解析表示的荷 载。 由环境振动引起的地脉动、地震引起的地震动, 以及脉动风引起的结构表面的风压时程等。
10/28/2015
19
1.5 结构动力分析中的自由度
一. 自由度的定义
结构动力学和静力学的一个本质区别:考虑惯性力的影响
结构产生动力反应的内因(本质因素):惯性力 惯性力的产生是由结构的质量引起的 动力自由度(数目):在动力计算中,一个体系的动力自由度是指为了确定 运动过程中任一时刻全部质体位置所需的独立的几何参数数目。
独立参数也称为体系的广义坐标,可以是位移、转角或其它广义量。
10/28/2015
20
二. 自由度的简化 实际结构都是无限自由度体系,这不仅导致分析困难,而且从工程 角度也没必要。常用简化方法有:
张亚辉 林家浩 编著, 结构动力学基础,大连理工大学出版社,2007. 刘晶波等编著,结构动力学,机械工业出版社,2005. 张子明等编著,结构动力学,河海大学出版社,2001.
10/28/2015
3
第一章 绪论
1.1 动力问题的基本特征 1.2 结构动力分析的目的
1.3 结构动力学研究的内容
1.4 动力荷载类型
注意!
振动体系的自由度数与计算假定有关,而与集中质量的数目和 超静定次数无关,如下图所示的体系。
10/28/2015
26
2、广义坐标法
广义坐标:能决定体系几何位置的彼此独立的量,称为该体系的广义坐标
变形曲线可用三角级数的和来表示:
nx nx u( x, t ) bn sin bn (t ) sin L L n 1 n 1
结构力学——结构动力学PPT课件

由静止状态考虑一个瞬时冲量的影响。dS FE( )d
FE(t)
dS=FE()d
mdy
dy( ) FE ( )d
m
d
t
dy( ) FE ( ) (d )2
2m
0
瞬时激振作用效果就在于使质点在τ时
t
刻产生一个初速度,而初位移为零。质
点作以此初始条件引起的自由振动。
dy(t) dy0 sin(t )
y 0
2
A0
A1
A2
arctan
y0
y 0
A0 ——振幅(amplitude of vibration)
——初始相位角。
总动力位移
第4页/共65页
4 / 67
第三节 单自由体系自由振动
1、无阻尼的自由振动 ( = 0 )
T
2
f1 T
称周期(振动一次所需的时间) 称工程频率(单位时间内振动次数)
23 / 67
第三节 单自由体系自由振动
3、确定体系阻尼比的方法
y
Ae
y
t
s
i
n
(dt
)
发现
1/
衰减性振动;
Ae t
2/ 非周期性振动; 3/ 质点两次通过平衡位
o
t
置的时间间隔相等
2
Td d 准周期
第24页/共65页
24 / 67
第三节 单自由体系自由振动
3、确定体系阻尼比的方法 ① 阻尼对自振频率的影响.
第31页/共65页
31 / 67
第四节 单自由体系受迫振动
1、单自由体系受迫振动的一般解
整个加载过程可以考虑成是由一系列瞬时冲量对同一时
《结构动力学》课件

《结构动力学》PPT课件
欢迎来到《结构动力学》PPT课件。本课程将带领您深入了解结构动力学的理 论和应用,探索建筑在外力作用下的响应和行为。让我们一起开启这个精彩 的学习之旅吧!
引言
1 研究对象及内容
探索结构动力学的研究范围,包括结构振动、动态响应等。
2 相关概念解释
解释与结构动力学相关的术语和概念,如动力学基础知识、振动分析方法等。
1 常见结构材料
列举常用的结构材料,如 钢材、混凝土、木材等。
2 材料特性与选用原则
介绍结构材料的特性和选 用原则,以保证结构的安 全和可靠性。
3 材料处理与加工
讨论结构材料的处理和加 工过程,如焊接、锻造等。
结构的实验及检测
1 实验设备及方法
介绍用于结构实验的设备和方法,如振动台、应变测量等。
2 实验数据分析
2 振动分析方法
介绍结构振动分析的常用 方法,包括自由振动和强 迫振动的分析。
3 动态响应分析方法
研究结构在外力作用下的 响应规律,包括频率响应 和时程分析等方法。
结构的稳定性分析
1 基础概念
介绍结构稳定性分析的基本概念,如失稳、临界荷载等。
2 总体稳定分析
分析结构整体的稳定性,探讨各种失稳模式的产生和防范。
介绍与结构安全管理相关 的法规和规范,保证结构 的安全性和可靠性。
结论
1 结构动力学研究的未来发展趋势
展望结构动力学领域的未来发展方向和研究 重点。
2 结构动力学在现代工程实践中的应
用价值
总结结构动力学在工程实践中的应用价值和 意义,如地震工程、桥梁设计等。
参考文献
整理了一份涵盖结构动力学领域相关文献的参考书目,供读者深入研究和进 一步学习。
欢迎来到《结构动力学》PPT课件。本课程将带领您深入了解结构动力学的理 论和应用,探索建筑在外力作用下的响应和行为。让我们一起开启这个精彩 的学习之旅吧!
引言
1 研究对象及内容
探索结构动力学的研究范围,包括结构振动、动态响应等。
2 相关概念解释
解释与结构动力学相关的术语和概念,如动力学基础知识、振动分析方法等。
1 常见结构材料
列举常用的结构材料,如 钢材、混凝土、木材等。
2 材料特性与选用原则
介绍结构材料的特性和选 用原则,以保证结构的安 全和可靠性。
3 材料处理与加工
讨论结构材料的处理和加 工过程,如焊接、锻造等。
结构的实验及检测
1 实验设备及方法
介绍用于结构实验的设备和方法,如振动台、应变测量等。
2 实验数据分析
2 振动分析方法
介绍结构振动分析的常用 方法,包括自由振动和强 迫振动的分析。
3 动态响应分析方法
研究结构在外力作用下的 响应规律,包括频率响应 和时程分析等方法。
结构的稳定性分析
1 基础概念
介绍结构稳定性分析的基本概念,如失稳、临界荷载等。
2 总体稳定分析
分析结构整体的稳定性,探讨各种失稳模式的产生和防范。
介绍与结构安全管理相关 的法规和规范,保证结构 的安全性和可靠性。
结论
1 结构动力学研究的未来发展趋势
展望结构动力学领域的未来发展方向和研究 重点。
2 结构动力学在现代工程实践中的应
用价值
总结结构动力学在工程实践中的应用价值和 意义,如地震工程、桥梁设计等。
参考文献
整理了一份涵盖结构动力学领域相关文献的参考书目,供读者深入研究和进 一步学习。
结构动力学课件

矩阵M和K两边相乘的是同一个振型向量φi时, 它们的乘 积等于一个数:
Mi Mi
Mi 称为广义质量. Ki 称为广义刚度.
i Ki Ki
T
返回目录
自测题
一、判断题
1. 动力荷载对结构的影响不仅随时间而变化,而 且使结构产生不容忽视的惯性力。( √ ) 2. 动力位移总是要比静力位移大一些。( ╳ ) 3. 多自由度体系, 刚度系数与柔度系数的关系是: kij=1/δij 。 ( ╳) 4. 图示体系作动力计算时,若不计轴向变形影响则为 m 单自由度体系。( ╳ )
F F
t 1
自测题
三、考研题选解
1. 在动力计算中,图a、b所示体系的动力自由度分 别为:( A )(4分)(西南交通大学1997年)
A. 1,4
(a)
B. 2,3
(b)
C. 2,2
(c)
D.3,4
(d) (d)
(a)
(b)
(c)
提示:用附加链杆法分析,附加链杆分别如图 c、d, 有几个附加链杆,就有几个自由度。
4. 建立运动方程的方法
基本方法是惯性力法,即在体系的各运动质点上加入惯性力并认 为各质点处于瞬时的平衡状态,采用静力学方法列出运动方程。 y ,速 注意,通常取静平衡位置为位移 y的坐标原点,位移 度 、加速度 y 的正方向取为一致。 y
(1)刚度法
FI (t ) Fc (t ) Fe (t ) Fp (t ) 0 (t ) cy (t ) k11 y(t ) Fp (t ) m y
X (1) X (2) X X (n)
1 X (2) X (1) X ( n ) X ( 1 )
结构动力学课件(华中科技大学)

v02
2
y(t)
a
v0 a cos 初始相位角 tan1 y0
v0
T
自由振动总位移:
y0
0
t
a
13.2.3 结构的自振周期和自振频率
由式: y(t) a sin(t ) 可知
时间经 T 2后 ,质量完成了一个振动周期。
用T 表示周期,周期函数的条件: y(t+T )=y(t )
动力计算的内容:
1)结构本身的动力特性:自振频率、阻尼、振型 2)荷载的变化规律及其动力反应 (自由振动)
(受迫振动)
13.1.2 动力荷载的分类
1)周期荷载
P(t ) 简谐荷载 t
2)冲击荷载
P(t)
P(t)
P
爆炸荷载1
P
P
一般周期荷载
t
P(t) 爆炸荷载2 P
突加荷载
tr
t
tr
t
t
P(t)
3)随机荷载
结构 (系统)
第四类问题:控制问题
输入 (动力荷载)
结构 (系统)
输出 (动力反应)
输出 (动力反应)
控制系统 (装置、能量)
13.1.2 动力荷载的分类
本课程主要任务是:
求解结构的动力特性;剖析结构动力反应规律,提出
结构在动力反应的分析方法;为结构设计提供可靠的依
据。
可靠性设计依据:
安全性:确定结构在动力荷载作用下可能产生的最大内 力,作为强度设计的依据;
l/2
l/2
l/2
l/2
l/2
l/2
(a)
(b)
(c)
13.2.3 结构的自振周期和自振频率