四川省乐山市2020届中考数学试卷
2020年四川省乐山市中考数学试卷及答案
2020年四川省乐山市中考数学试卷一、选择题:本大题共10个小题,每小题3分,共30分. 1.(3分)12的倒数是( )A .−12B .12C .﹣2D .22.(3分)某校在全校学生中举办了一次“交通安全知识”测试,张老师从全校学生的答卷中随机地抽取了部分学生的答卷,将测试成绩按“差”、“中”、“良”、“优”划分为四个等级,并绘制成如图所示的条形统计图.若该校学生共有2000人,则其中成绩为“良”和“优”的总人数估计为( )A .1100B .1000C .900D .1103.(3分)如图,E 是直线CA 上一点,∠FEA =40°,射线EB 平分∠CEF ,GE ⊥EF .则∠GEB =( )A .10°B .20°C .30°D .40°4.(3分)数轴上点A 表示的数是﹣3,将点A 在数轴上平移7个单位长度得到点B .则点B 表示的数是( ) A .4B .﹣4或10C .﹣10D .4或﹣105.(3分)如图,在菱形ABCD 中,AB =4,∠BAD =120°,O 是对角线BD 的中点,过点O 作OE ⊥CD 于点E ,连结OA .则四边形AOED 的周长为( )A.9+2√3B.9+√3C.7+2√3D.86.(3分)直线y=kx+b在平面直角坐标系中的位置如图所示,则不等式kx+b≤2的解集是()A.x≤﹣2B.x≤﹣4C.x≥﹣2D.x≥﹣47.(3分)观察下列各方格图中阴影部分所示的图形(每一小方格的边长为1),如果将它们沿方格边线或对角线剪开重新拼接,不能拼成正方形的是()A.B.C.D.8.(3分)已知3m=4,32m﹣4n=2.若9n=x,则x的值为()A.8B.4C.2√2D.√29.(3分)在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1.如图所示,将△ABC 绕点A按逆时针方向旋转90°后得到△AB′C′.则图中阴影部分面积为()A .π4B .π−√32C .π−√34D .√32π 10.(3分)如图,在平面直角坐标系中,直线y =﹣x 与双曲线y =kx 交于A 、B 两点,P 是以点C (2,2)为圆心,半径长1的圆上一动点,连结AP ,Q 为AP 的中点.若线段OQ 长度的最大值为2,则k 的值为( )A .−12B .−32C .﹣2D .−14二、填空题:本大题共6个小题,每小题3分,共18分. 11.(3分)用“>”或“<”符号填空:﹣7 ﹣9.12.(3分)某小组七位学生的中考体育测试成绩(满分40分)依次为37,40,39,37,40,38,40.则这组数据的中位数是 .13.(3分)如图是某商场营业大厅自动扶梯示意图.自动扶梯AB 的倾斜角为30°,在自动扶梯下方地面C 处测得扶梯顶端B 的仰角为60°,A 、C 之间的距离为4m .则自动扶梯的垂直高度BD = m .(结果保留根号)14.(3分)已知y ≠0,且x 2﹣3xy ﹣4y 2=0.则xy 的值是 .15.(3分)把两个含30°角的直角三角板按如图所示拼接在一起,点E 为AD 的中点,连结BE 交AC 于点F .则AF AC= .16.(3分)我们用符号[x ]表示不大于x 的最大整数.例如:[1.5]=1,[﹣1.5]=﹣2.那么: (1)当﹣1<[x ]≤2时,x 的取值范围是 ;(2)当﹣1≤x <2时,函数y =x 2﹣2a [x ]+3的图象始终在函数y =[x ]+3的图象下方.则实数a 的范围是 .三、本大题共3个小题,每小题9分,共27分. 17.(9分)计算:|﹣2|﹣2cos60°+(π﹣2020)0. 18.(9分)解二元一次方程组:{2x +y =2,8x +3y =9.19.(9分)如图,E 是矩形ABCD 的边CB 上的一点,AF ⊥DE 于点F ,AB =3,AD =2,CE =1.求DF 的长度.四、本大题共3个小题,每小题10分,共30分. 20.(10分)已知y =2x ,且x ≠y ,求(1x−y+1x+y)÷x 2yx 2−y 2的值. 21.(10分)如图,已知点A (﹣2,﹣2)在双曲线y =kx 上,过点A 的直线与双曲线的另一支交于点B (1,a ). (1)求直线AB 的解析式;(2)过点B 作BC ⊥x 轴于点C ,连结AC ,过点C 作CD ⊥AB 于点D .求线段CD 的长.22.(10分)自新冠肺炎疫情爆发以来,我国人民上下一心,团结一致,基本控制住了疫情.然而,全球新冠肺炎疫情依然严重,境外许多国家的疫情尚在继续蔓延,疫情防控不可松懈.如图是某国截止5月31日新冠病毒感染人数的扇形统计图和折线统计图.根据上面图表信息,回答下列问题:(1)截止5月31日该国新冠肺炎感染总人数累计为万人,扇形统计图中40﹣59岁感染人数对应圆心角的度数为°;(2)请直接在图中补充完整该国新冠肺炎感染人数的折线统计图;(3)在该国所有新冠肺炎感染病例中随机地抽取1人,求该患者年龄为60岁或60岁以上的概率;(4)若该国感染病例中从低到高各年龄段的死亡率依次为1%、2.75%、3.5%、10%、20%,求该国新冠肺炎感染病例的平均死亡率.五、本大题共2个小题,每小题10分,共20分.23.(10分)某汽车运输公司为了满足市场需要,推出商务车和轿车对外租赁业务.下面是乐山到成都两种车型的限载人数和单程租赁价格表:车型每车限载人数(人)租金(元/辆)商务车6300轿车4(1)如果单程租赁2辆商务车和3辆轿车共需付租金1320元,求一辆轿车的单程租金为多少元?(2)某公司准备组织34名职工从乐山赴成都参加业务培训,拟单程租用商务车或轿车前往.在不超载的情况下,怎样设计租车方案才能使所付租金最少?̂上一点,DE⊥AB于点E,24.(10分)如图1,AB是半圆O的直径,AC是一条弦,D是AC交AC于点F,连结BD交AC于点G,且AF=FG.̂;(1)求证:点D平分AC(2)如图2所示,延长BA至点H,使AH=AO,连结DH.若点E是线段AO的中点.求证:DH是⊙O的切线.六、本大题共2个小题,第25题12分,第26题13分,共25分.25.(12分)点P是平行四边形ABCD的对角线AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C向直线BP作垂线,垂足分别为点E、F.点O为AC的中点.(1)如图1,当点P与点O重合时,线段OE和OF的关系是;(2)当点P运动到如图2所示的位置时,请在图中补全图形并通过证明判断(1)中的结论是否仍然成立?(3)如图3,点P在线段OA的延长线上运动,当∠OEF=30°时,试探究线段CF、AE、OE之间的关系.26.(13分)已知抛物线y =ax 2+bx +c 与x 轴交于A (﹣1,0),B (5,0)两点,C 为抛物线的顶点,抛物线的对称轴交x 轴于点D ,连结BC ,且tan ∠CBD =43,如图所示. (1)求抛物线的解析式;(2)设P 是抛物线的对称轴上的一个动点.①过点P 作x 轴的平行线交线段BC 于点E ,过点E 作EF ⊥PE 交抛物线于点F ,连结FB 、FC ,求△BCF 的面积的最大值; ②连结PB ,求35PC +PB 的最小值.2020年四川省乐山市中考数学试卷参考答案与试题解析一、选择题:本大题共10个小题,每小题3分,共30分. 1.(3分)12的倒数是( )A .−12B .12C .﹣2D .2【解答】解:根据倒数的定义,可知12的倒数是2. 故选:D .2.(3分)某校在全校学生中举办了一次“交通安全知识”测试,张老师从全校学生的答卷中随机地抽取了部分学生的答卷,将测试成绩按“差”、“中”、“良”、“优”划分为四个等级,并绘制成如图所示的条形统计图.若该校学生共有2000人,则其中成绩为“良”和“优”的总人数估计为( )A .1100B .1000C .900D .110【解答】解:2000×85+2525+85+72+18=1100(人),故选:A .3.(3分)如图,E 是直线CA 上一点,∠FEA =40°,射线EB 平分∠CEF ,GE ⊥EF .则∠GEB =( )A .10°B .20°C .30°D .40°【解答】解:∵∠FEA =40°,GE ⊥EF ,∴∠CEF =180°﹣∠FEA =180°﹣40°=140°,∠CEG =180°﹣∠AEF ﹣∠GEF =180°﹣40°﹣90°=50°,∵射线EB平分∠CEF,∴∠CEB=12∠CEF=12×140°=70°,∴∠GEB=∠CEB﹣∠CEG=70°﹣50°=20°,故选:B.4.(3分)数轴上点A表示的数是﹣3,将点A在数轴上平移7个单位长度得到点B.则点B表示的数是()A.4B.﹣4或10C.﹣10D.4或﹣10【解答】解:点A表示的数是﹣3,左移7个单位,得﹣3﹣7=﹣10,点A表示的数是﹣3,右移7个单位,得﹣3+7=4.所以点B表示的数是4或﹣10.故选:D.5.(3分)如图,在菱形ABCD中,AB=4,∠BAD=120°,O是对角线BD的中点,过点O作OE⊥CD于点E,连结OA.则四边形AOED的周长为()A.9+2√3B.9+√3C.7+2√3D.8【解答】解:∵四边形ABCD为菱形,∴AD=AB=4,AB∥CD,∵∠BAD=120°,∴∠ADB=∠CDB=30°,∵O是对角线BD的中点,∴AO⊥BD,在Rt△AOD中,AO=12AD=2,OD=√3OA=2√3,∵OE⊥CD,∴∠DEO=90°,在Rt △DOE 中,OE =12OD =√3, DE =√3OE =3,∴四边形AOED 的周长=4+2+√3+3=9+√3. 故选:B .6.(3分)直线y =kx +b 在平面直角坐标系中的位置如图所示,则不等式kx +b ≤2的解集是( )A .x ≤﹣2B .x ≤﹣4C .x ≥﹣2D .x ≥﹣4【解答】解:∵直线y =kx +b 与x 轴交于点(2,0),与y 轴交于点(0,1), ∴{2k +b =0b =1,解得{k =−12b =1 ∴直线为y =−12x +1,当y =2时,2=−12x +1,解得x =﹣2, 由图象可知:不等式kx +b ≤2的解集是x ≥﹣2, 故选:C .7.(3分)观察下列各方格图中阴影部分所示的图形(每一小方格的边长为1),如果将它们沿方格边线或对角线剪开重新拼接,不能拼成正方形的是( )A .B .C .D .【解答】解:由题意,选项D 阴影部分面积为6,A ,B ,C 的阴影部分的面积为5, 如果能拼成正方形,选项D 的正方形的边长为√6,选项A ,B ,C 的正方形的边长为√5, 观察图象可知,选项A ,B ,C 阴影部分沿方格边线或对角线剪开均可得图1的5个图形,可以拼成图2的边长为√5的正方形,故选:D .8.(3分)已知3m =4,32m﹣4n=2.若9n =x ,则x 的值为( )A .8B .4C .2√2D .√2【解答】解:∵3m =4,32m ﹣4n=(3m )2÷(3n )4=2.∴42÷(3n )4=2, ∴(3n )4=42÷2=8, 又∵9n =32n =x ,∴(3n )4=(32n )2=x 2, ∴x 2=8, ∴x =√8=2√2. 故选:C .9.(3分)在△ABC 中,已知∠ABC =90°,∠BAC =30°,BC =1.如图所示,将△ABC 绕点A 按逆时针方向旋转90°后得到△AB ′C ′.则图中阴影部分面积为( )A .π4B .π−√32C .π−√34D .√32π 【解答】解:∵∠ABC =90°,∠BAC =30°,BC =1, ∴AB =√3BC =√3,AC =2BC =2, ∴90⋅π×22360−90⋅π×3360−(12×1×√3−30⋅π×3360)=π−√32, 故选:B .10.(3分)如图,在平面直角坐标系中,直线y=﹣x与双曲线y=kx交于A、B两点,P是以点C(2,2)为圆心,半径长1的圆上一动点,连结AP,Q为AP的中点.若线段OQ 长度的最大值为2,则k的值为()A.−12B.−32C.﹣2D.−14【解答】解:点O是AB的中点,则OQ是△ABP的中位线,当B、C、P三点共线时,PB最大,则OQ=12BP最大,而OQ的最大值为2,故BP的最大值为4,则BC=BP﹣PC=4﹣1=3,设点B(m,﹣m),则(m﹣2)2+(﹣m﹣2)2=32,解得:m2=1 2,∴k=m(﹣m)=−1 2,故选:A.二、填空题:本大题共6个小题,每小题3分,共18分.11.(3分)用“>”或“<”符号填空:﹣7>﹣9.【解答】解:∵|﹣7|=7,|﹣9|=9,7<9,∴﹣7>﹣9,故答案为:>.12.(3分)某小组七位学生的中考体育测试成绩(满分40分)依次为37,40,39,37,40,38,40.则这组数据的中位数是39.【解答】解:把这组数据从小到大排序后为37,37,38,39,40,40,40,其中第四个数据为39,所以这组数据的中位数为39. 故答案为39.13.(3分)如图是某商场营业大厅自动扶梯示意图.自动扶梯AB 的倾斜角为30°,在自动扶梯下方地面C 处测得扶梯顶端B 的仰角为60°,A 、C 之间的距离为4m .则自动扶梯的垂直高度BD = 2√3 m .(结果保留根号)【解答】解:∵∠BCD =∠BAC +∠ABC ,∠BAC =30°,∠BCD =60°, ∴∠ABC =∠BCD ﹣∠BAC =30°, ∴∠BAC =∠ABC , ∴BC =AC =4,在Rt △BDC 中,sin ∠BCD =BDBC, ∴sin60°=BD 4=√32, ∴BD =2√3(m ),答:自动扶梯的垂直高度BD =2√3m , 故答案为:2√3.14.(3分)已知y ≠0,且x 2﹣3xy ﹣4y 2=0.则xy 的值是 4或﹣1 .【解答】解:∵x 2﹣3xy ﹣4y 2=0,即(x ﹣4y )(x +y )=0, 可得x =4y 或x =﹣y , ∴xy =4或xy=−1,即x y的值是4或﹣1; 故答案为:4或﹣1.15.(3分)把两个含30°角的直角三角板按如图所示拼接在一起,点E 为AD 的中点,连结BE 交AC 于点F .则AF AC=35.【解答】解:连接CE ,∵∠CAD =30°,∠ACD =90°,E 是AD 的中点, ∴AC =√32AD ,CE =12AD =AE , ∴∠ACE =∠CAE =30° ∵∠BAC =30°,∠ABC =90°, ∴AB =√32AC =34AD ,∠BAC =∠ACE , ∴AB ∥CE , ∴△ABF ∽△CEF , ∴AF CF =AB CE =34AD 12AD =32,∴AF AC=35,故答案为35.16.(3分)我们用符号[x ]表示不大于x 的最大整数.例如:[1.5]=1,[﹣1.5]=﹣2.那么: (1)当﹣1<[x ]≤2时,x 的取值范围是 0≤x ≤2 ;(2)当﹣1≤x <2时,函数y =x 2﹣2a [x ]+3的图象始终在函数y =[x ]+3的图象下方.则实数a 的范围是 a <−1或a ≥32 . 【解答】解:(1)由题意∵﹣1<[x ]≤2, ∴0≤x ≤2, 故答案为0≤x ≤2.(2)由题意:当﹣1≤x <2时,函数y =x 2﹣2a [x ]+3的图象始终在函数y =[x ]+3的图象下方,则有x =﹣1时,1+2a +3<﹣1+3,解得a <﹣1, 或x =2时,4﹣2a +3≤1+3,解得a ≥32, 故答案为a <﹣1或a ≥32.三、本大题共3个小题,每小题9分,共27分. 17.(9分)计算:|﹣2|﹣2cos60°+(π﹣2020)0. 【解答】解:原式=2−2×12+1 =2.18.(9分)解二元一次方程组:{2x +y =2,8x +3y =9.【解答】解:{2x +y =2①8x +3y =9②,法1:②﹣①×3,得 2x =3, 解得:x =32,把x =32代入①,得 y =﹣1, ∴原方程组的解为{x =32y =−1; 法2:由②得:2x +3(2x +y )=9, 把①代入上式, 解得:x =32,把x =32代入①,得 y =﹣1, ∴原方程组的解为{x =32y =−1. 19.(9分)如图,E 是矩形ABCD 的边CB 上的一点,AF ⊥DE 于点F ,AB =3,AD =2,CE =1.求DF 的长度.【解答】解:∵四边形ABCD 是矩形, ∴DC =AB =3,∠ADC =∠C =90°. ∵CE =1,∴DE =√DC 2+CE 2=√10. ∵AF ⊥DE ,∴∠AFD =90°=∠C ,∠∠ADF +∠DAF =90°. 又∵∠ADF +∠EDC =90°, ∴∠EDC =∠DAF , ∴△EDC ∽△DAF , ∴DE AD=CE FD ,即√102=1FD, ∴FD =√105,即DF 的长度为√105.四、本大题共3个小题,每小题10分,共30分.20.(10分)已知y =2x ,且x ≠y ,求(1x−y +1x+y )÷x 2y22的值.【解答】解:原式=2x (x+y)(x−y)÷x 2yx 2−y 2=2x x 2−y 2×x 2−y 2x 2y =2xy , ∵y =2x ,∴原式=2x⋅2x=1 解法2:同解法1,得原式=2xy, ∵y =2x , ∴xy =2, ∴原式=22=1. 21.(10分)如图,已知点A (﹣2,﹣2)在双曲线y =kx 上,过点A 的直线与双曲线的另一支交于点B (1,a ). (1)求直线AB 的解析式;(2)过点B 作BC ⊥x 轴于点C ,连结AC ,过点C 作CD ⊥AB 于点D .求线段CD 的长.【解答】解:(1)将点A (﹣2,﹣2)代入y =k x,得k =4, 即y =4x ,将B (1,a )代入y =4x ,得a =4, 即B (1,4),设直线AB 的解析式为y =mx +n ,将A (﹣2,﹣2)、B (1,4)代入y =kx +b ,得{−2=−2m +n 4=m +n ,解得{m =2n =2,∴直线AB 的解析式为y =2x +2;(2)∵A (﹣2,﹣2)、B (1,4), ∴AB =√(−2−1)2+(−2−4)2=3√5,∵S△ABC=12×AB×CD=12×BC×3,∴CD=BC×3AB=35=4√55.22.(10分)自新冠肺炎疫情爆发以来,我国人民上下一心,团结一致,基本控制住了疫情.然而,全球新冠肺炎疫情依然严重,境外许多国家的疫情尚在继续蔓延,疫情防控不可松懈.如图是某国截止5月31日新冠病毒感染人数的扇形统计图和折线统计图.根据上面图表信息,回答下列问题:(1)截止5月31日该国新冠肺炎感染总人数累计为20万人,扇形统计图中40﹣59岁感染人数对应圆心角的度数为72°;(2)请直接在图中补充完整该国新冠肺炎感染人数的折线统计图;(3)在该国所有新冠肺炎感染病例中随机地抽取1人,求该患者年龄为60岁或60岁以上的概率;(4)若该国感染病例中从低到高各年龄段的死亡率依次为1%、2.75%、3.5%、10%、20%,求该国新冠肺炎感染病例的平均死亡率.【解答】解:(1)截止5月31日该国新冠肺炎感染总人数累计为9÷45%=20(万人),扇形统计图中40﹣59岁感染人数对应圆心角的度数为360°×420=72°,故答案为:20、72;(2)20﹣39岁人数为20×10%=2(万人),补全的折线统计图如图2所示;(3)该患者年龄为60岁及以上的概率为:9+4.520×100%=67.5%=0.675;(4)该国新冠肺炎感染病例的平均死亡率为:0.5×1%+2×2.75%+4×3.5%+9×10%+4.5×20%20×100%=10%.五、本大题共2个小题,每小题10分,共20分.23.(10分)某汽车运输公司为了满足市场需要,推出商务车和轿车对外租赁业务.下面是乐山到成都两种车型的限载人数和单程租赁价格表:车型 每车限载人数(人)租金(元/辆)商务车 6 300 轿车4(1)如果单程租赁2辆商务车和3辆轿车共需付租金1320元,求一辆轿车的单程租金为多少元?(2)某公司准备组织34名职工从乐山赴成都参加业务培训,拟单程租用商务车或轿车前往.在不超载的情况下,怎样设计租车方案才能使所付租金最少? 【解答】解:(1)设租用一辆轿车的租金为x 元, 由题意得:300×2+3x =1320, 解得 x =240,答:租用一辆轿车的租金为240元;(2)①若只租用商务车, ∵346=523,∴只租用商务车应租6辆,所付租金为300×6=1800(元); ②若只租用轿车, ∵344=8.5,∴只租用轿车应租9辆,所付租金为240×9=2160(元);③若混和租用两种车,设租用商务车m 辆,租用轿车n 辆,租金为W 元. 由题意,得 {6m +4n =34W =300m +240n ,由6m +4n =34,得 4n =﹣6m +34,∴W =300m +60(﹣6m +34)=﹣60m +2040, ∵﹣6m +34=4n ≥0, ∴m ≤173, ∴1≤m ≤5,且m 为整数, ∵W 随m 的增大而减小,∴当m =5时,W 有最小值1740,此时n =1.综上,租用商务车5辆和轿车1辆时,所付租金最少为1740元.24.(10分)如图1,AB 是半圆O 的直径,AC 是一条弦,D 是AC ̂上一点,DE ⊥AB 于点E ,交AC 于点F ,连结BD 交AC 于点G ,且AF =FG . (1)求证:点D 平分AĈ; (2)如图2所示,延长BA 至点H ,使AH =AO ,连结DH .若点E 是线段AO 的中点.求证:DH 是⊙O 的切线.【解答】证明:(1)如图1,连接AD 、BC , ∵AB 是半圆O 的直径, ∴∠ADB =90°,∵DE⊥AB,∴∠ADE=∠ABD,又∵AF=FG,即点F是Rt△AGD的斜边AG的中点,∴DF=AF,∴∠DAF=∠ADF=∠ABD,又∵∠DAC=∠DBC,∴∠ABD=∠DBC,∴AD̂=DĈ,∴即点D平分AĈ;(2)如图2所示,连接OD、AD,∵点E是线段OA的中点,∴OE=12OA=12OD,∴∠AOD=60°,∴△OAD是等边三角形,∴AD=AO=AH,∴△ODH是直角三角形,且∠HDO=90°,∴DH是⊙O的切线.六、本大题共2个小题,第25题12分,第26题13分,共25分.25.(12分)点P是平行四边形ABCD的对角线AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C向直线BP作垂线,垂足分别为点E、F.点O为AC的中点.(1)如图1,当点P与点O重合时,线段OE和OF的关系是OE=OF;(2)当点P运动到如图2所示的位置时,请在图中补全图形并通过证明判断(1)中的结论是否仍然成立?(3)如图3,点P在线段OA的延长线上运动,当∠OEF=30°时,试探究线段CF、AE、OE之间的关系.【解答】解:(1)∵四边形ABCD是平行四边形,∴AO=CO,又∵∠AEO=∠CFO,∠AOE=∠COF=90°,∴△AEO≌△CFO(AAS),∴OE=OF,故答案为:OE=OF;(2)补全图形如图所示,结论仍然成立,理由如下:延长EO交CF于点G,∵AE⊥BP,CF⊥BP,∴AE∥CF,∴∠EAO=∠GCO,∵点O为AC的中点,∴AO=CO,又∵∠AOE =∠COG ,∴△AOE ≌△COG (AAS ),∴OE =OG ,∵∠GFE =90°,∴OE =OF ;(4)点P 在线段OA 的延长线上运动时,线段CF 、AE 、OE 之间的关系为OE =CF +AE , 证明如下:如图,延长EO 交FC 的延长线于点H ,由(2)可知△AOE ≌△COH ,∴AE =CH ,OE =OH ,又∵∠OEF =30°,∠HFE =90°,∴HF =12EH =OE ,∴OE =CF +CH =CF +AE .26.(13分)已知抛物线y =ax 2+bx +c 与x 轴交于A (﹣1,0),B (5,0)两点,C 为抛物线的顶点,抛物线的对称轴交x 轴于点D ,连结BC ,且tan ∠CBD =43,如图所示.(1)求抛物线的解析式;(2)设P 是抛物线的对称轴上的一个动点.①过点P 作x 轴的平行线交线段BC 于点E ,过点E 作EF ⊥PE 交抛物线于点F ,连结FB 、FC ,求△BCF 的面积的最大值;②连结PB ,求35PC +PB 的最小值.【解答】解:(1)根据题意,可设抛物线的解析式为:y =a (x +1)(x ﹣5), ∵抛物线的对称轴为直线x =2,∴D (2,0),又∵tan ∠CBD =43=CD DB, ∴CD =BD •tan ∠CBD =4,即C (2,4),代入抛物线的解析式,得4=a (2+1)(2﹣5),解得 a =−49,∴二次函数的解析式为 y =−49(x +1)(x −5)=−49x 2+169x +209; (2)①设P (2,t ),其中0<t <4,设直线BC 的解析式为 y =kx +b ,∴{0=5k +b ,4=2k +b., 解得 {k =−43,b =203.即直线BC 的解析式为 y =−43x +203, 令y =t ,得:x =5−34t ,∴点E (5−34t ,t ),把x =5−34t 代入y =−49(x +1)(x −5),得 y =t(2−t 4),即F(5−34t ,2t −14t 2),∴EF =(2t −14t 2)−t =t −t 24,∴△BCF 的面积=12×EF ×BD =32(t −t 24)=−38(t 2−4t)=−38(t −2)2+32, ∴当t =2时,△BCF 的面积最大,且最大值为32; ②如图,连接AC ,根据图形的对称性可知∠ACD =∠BCD ,AC =BC =5,∴sin ∠ACD =AD AC =35,过点P 作PG ⊥AC 于G ,则在Rt △PCG 中,PG =PC ⋅sin ∠ACD =35PC , ∴35PC +PB =PG +PB , 过点B 作BH ⊥AC 于点H ,则PG +PH ≥BH ,∴线段BH 的长就是35PC +PB 的最小值, ∵S △ABC =12×AB ×CD =12×6×4=12,又∵S △ABC =12×AC ×BH =52BH ,∴52BH =12, 即BH =245,∴35PC +PB 的最小值为245.。
【最新人教版初中数学精选】2020年四川省乐山市中考数学试卷.doc
2020年四川省乐山市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项符合题目要求.1.(3分)﹣2的倒数是()A.﹣ B.C.2 D.﹣22.(3分)随着经济发展,人民的生活水平不断提高,旅游业快速增长,2016年国民出境旅游超过120 000 000人次,将120 000 000用科学记数法表示为()A.1.2×109B.12×107 C.0.12×109D.1.2×1083.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(3分)含30°角的直角三角板与直线l1、l2的位置关系如图所示,已知l1∥l2,∠ACD=∠A,则∠1=()A.70°B.60°C.40°D.30°5.(3分)下列说法正确的是()A.打开电视,它正在播广告是必然事件B.要考察一个班级中的学生对建立生物角的看法适合用抽样调查C.在抽样调查过程中,样本容量越大,对总体的估计就越准确D.甲、乙两人射中环数的方差分别为S甲2=2,S乙2=4,说明乙的射击成绩比甲稳定6.(3分)若a2﹣ab=0(b≠0),则=()A.0 B.C.0或D.1或27.(3分)如图是“明清影视城”的一扇圆弧形门,小红到影视城游玩,他了解到这扇门的相关数据:这扇圆弧形门所在的圆与水平地面是相切的,AB=CD=0.25米,BD=1.5米,且AB、CD与水平地面都是垂直的.根据以上数据,请你帮小红计算出这扇圆弧形门的最高点离地面的距离是()A.2米 B.2.5米C.2.4米D.2.1米8.(3分)已知x+=3,则下列三个等式:①x2+=7,②x﹣,③2x2﹣6x=﹣2中,正确的个数有()A.0个 B.1个 C.2个 D.3个9.(3分)已知二次函数y=x2﹣2mx(m为常数),当﹣1≤x≤2时,函数值y的最小值为﹣2,则m的值是()A.B.C.或D.或10.(3分)如图,平面直角坐标系xOy中,矩形OABC的边OA、OC分别落在x、y轴上,点B坐标为(6,4),反比例函数y=的图象与AB边交于点D,与BC 边交于点E,连结DE,将△BDE沿DE翻折至△B'DE处,点B'恰好落在正比例函数y=kx图象上,则k的值是()A.B.C.D.二、填空题:本大题共6小题,每小题3分,共18分.11.(3分)3﹣2=.12.(3分)二元一次方程组==x+2的解是.13.(3分)如图,直线a、b垂直相交于点O,曲线C关于点O成中心对称,点A的对称点是点A',AB⊥a于点B,A'D⊥b于点D.若OB=3,OD=2,则阴影部分的面积之和为.14.(3分)点A、B、C在格点图中的位置如图5所示,格点小正方形的边长为1,则点C到线段AB所在直线的距离是.15.(3分)庄子说:“一尺之椎,日取其半,万世不竭”.这句话(文字语言)表达了古人将事物无限分割的思想,用图形语言表示为图1,按此图分割的方法,可得到一个等式(符号语言):1=+++…++….图2也是一种无限分割:在△ABC中,∠C=90°,∠B=30°,过点C作CC1⊥AB于点C1,再过点C1作C1C2⊥BC于点C2,又过点C2作C2C3⊥AB于点C3,如此无限继续下去,则可将利△ABC分割成△ACC1、△CC1C2、△C1C2C3、△C2C3C4、…、△C n﹣2C n﹣1C n、….假设AC=2,这些三角形的面积和可以得到一个等式是.16.(3分)对于函数y=x n+x m,我们定义y'=nx n﹣1+mx m﹣1(m、n为常数).例如y=x4+x2,则y'=4x3+2x.已知:y=x3+(m﹣1)x2+m2x.(1)若方程y′=0有两个相等实数根,则m的值为;(2)若方程y′=m﹣有两个正数根,则m的取值范围为.三、本大题共3小题,每小题9分,共27分.17.(9分)计算:2sni60°+|1﹣|+20200﹣.18.(9分)求不等式组的所有整数解.19.(9分)如图,延长▱ABCD的边AD到F,使DF=DC,延长CB到点E,使BE=BA,分别连结点A、E和C、F.求证:AE=CF.四、本大题共3小题,每小题10分,共30分.20.(10分)化简:(﹣)÷.21.(10分)为了了解我市中学生参加“科普知识”竞赛成绩的情况,随机抽查了部分参赛学生的成绩,整理并制作出如下的统计表和统计图,如图所示.请根据图表信息解答下列问题:(1)在表中:m=,n=;(2)补全频数分布直方图;(3)小明的成绩是所有被抽查学生成绩的中位数,据此推断他的成绩在组;(4)4个小组每组推荐1人,然后从4人中随机抽取2人参加颁奖典礼,恰好抽中A、C两组学生的概率是多少?并列表或画树状图说明.22.(10分)如图,在水平地面上有一幢房屋BC与一棵树DE,在地面观测点A 处测得屋顶C与树梢D的仰角分别是45°与60°,∠CAD=60°,在屋顶C处测得∠DCA=90°.若房屋的高BC=6米,求树高DE的长度.五、本大题共2小题,每小题10分,共20分.23.(10分)某公司从2014年开始投入技术改进资金,经技术改进后,其产品的成本不断降低,具体数据如下表:(1)请你认真分析表中数据,从一次函数和反比例函数中确定哪一个函数能表示其变化规律,给出理由,并求出其解析式;(2)按照这种变化规律,若2020年已投入资金5万元.①预计生产成本每件比2016年降低多少万元?②若打算在2020年把每件产品成本降低到3.2万元,则还需要投入技改资金多少万元?(结果精确到0.01万元).24.(10分)如图,以AB边为直径的⊙O经过点P,C是⊙O上一点,连结PC 交AB于点E,且∠ACP=60°,PA=PD.(1)试判断PD与⊙O的位置关系,并说明理由;(2)若点C是弧AB的中点,已知AB=4,求CE•CP的值.六、本大题共2小题,第25题12分,第26题13分,共25分.25.(12分)在四边形ABCD中,∠B+∠D=180°,对角线AC平分∠BAD.(1)如图1,若∠DAB=120°,且∠B=90°,试探究边AD、AB与对角线AC的数量关系并说明理由.(2)如图2,若将(1)中的条件“∠B=90°”去掉,(1)中的结论是否成立?请说明理由.(3)如图3,若∠DAB=90°,探究边AD、AB与对角线AC的数量关系并说明理由.26.(13分)如图1,抛物线C1:y=x2+ax与C2:y=﹣x2+bx相交于点O、C,C1与C2分别交x轴于点B、A,且B为线段AO的中点.(1)求的值;(2)若OC⊥AC,求△OAC的面积;(3)抛物线C2的对称轴为l,顶点为M,在(2)的条件下:①点P为抛物线C2对称轴l上一动点,当△PAC的周长最小时,求点P的坐标;②如图2,点E在抛物线C2上点O与点M之间运动,四边形OBCE的面积是否存在最大值?若存在,求出面积的最大值和点E的坐标;若不存在,请说明理由.2020年四川省乐山市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项符合题目要求.1.(3分)(2020•乐山)﹣2的倒数是()A.﹣ B.C.2 D.﹣2【分析】根据乘积是1的两个数叫做互为倒数解答.【解答】解:∵(﹣2)×(﹣)=1,∴﹣2的倒数是﹣.故选A.【点评】本题考查了倒数的定义,是基础题,熟记概念是解题的关键.2.(3分)(2020•乐山)随着经济发展,人民的生活水平不断提高,旅游业快速增长,2016年国民出境旅游超过120 000 000人次,将120 000 000用科学记数法表示为()A.1.2×109B.12×107 C.0.12×109D.1.2×108【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:120 000 000=1.2×108.故选:D.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.3.(3分)(2020•乐山)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、不是轴对称图形,是中心对称图形,故本选项错误;C、既不是轴对称图形,也不是中心对称图形,故本选项错误;D、既是轴对称图形又是中心对称图形,故本选项正确.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.(3分)(2020•乐山)含30°角的直角三角板与直线l1、l2的位置关系如图所示,已知l1∥l2,∠ACD=∠A,则∠1=()A.70°B.60°C.40°D.30°【分析】先根据三角形外角性质得到∠CDB的度数,再根据平行线的性质,即可得到∠1的度数.【解答】解:∵∠ACD=∠A=30°,∴∠CDB=∠A+∠ACD=60°,∵l1∥l2,∴∠1=∠CDB=60°,故选:B.【点评】本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,内错角相等.5.(3分)(2020•乐山)下列说法正确的是()A.打开电视,它正在播广告是必然事件B.要考察一个班级中的学生对建立生物角的看法适合用抽样调查C.在抽样调查过程中,样本容量越大,对总体的估计就越准确D.甲、乙两人射中环数的方差分别为S甲2=2,S乙2=4,说明乙的射击成绩比甲稳定【分析】根据随机事件的概念、全面调查和抽样调查的关系、方差的性质判断即可.【解答】解:A、打开电视,它正在播广告是随机事件,A错误;B、要考察一个班级中的学生对建立生物角的看法适合用全面调查,B错误;C、在抽样调查过程中,样本容量越大,对总体的估计就越准确,C正确;D、甲、乙两人射中环数的方差分别为S甲2=2,S乙2=4,说明甲的射击成绩比乙稳定,D错误;故选:C.【点评】本题考查的是随机事件、全面调查和抽样调查、方差,掌握随机事件的概念、全面调查和抽样调查的关系、方差的性质是解题的关键.6.(3分)(2020•乐山)若a2﹣ab=0(b≠0),则=()A.0 B.C.0或D.1或2【分析】首先求出a=0或a=b,进而求出分式的值.【解答】解:∵a2﹣ab=0(b≠0),∴a=0或a=b,当a=0时,=0.当a=b时,=,故选C.【点评】本题主要考查了分式的值,解题的关键是要注意题目有两个答案,容易漏掉值为0的情况.7.(3分)(2020•乐山)如图是“明清影视城”的一扇圆弧形门,小红到影视城游玩,他了解到这扇门的相关数据:这扇圆弧形门所在的圆与水平地面是相切的,AB=CD=0.25米,BD=1.5米,且AB、CD与水平地面都是垂直的.根据以上数据,请你帮小红计算出这扇圆弧形门的最高点离地面的距离是()A.2米 B.2.5米C.2.4米D.2.1米【分析】连接OF,交AC于点E,设圆O的半径为R米,根据勾股定理列出方程,解方程即可.【解答】解:连接OF,交AC于点E,∵BD是⊙O的切线,∴OF⊥BD,∵四边形ABDC是矩形,∴AC∥BD,∴OE⊥AC,EF=AB,设圆O的半径为R,在Rt△AOE中,AE===0.75米,OE=R﹣AB=R﹣0.25,∵AE2+OE2=OA2,∴0.752+(R﹣0.25)2=R2,解得R=1.25.1.25×2=2.5(米).答:这扇圆弧形门的最高点离地面的距离是2.5米.故选:B.【点评】本题考查的是垂径定理的应用,掌握平分弦(不是直径)的直径垂直于弦是解题的关键,注意勾股定理的灵活运用.8.(3分)(2020•乐山)已知x+=3,则下列三个等式:①x2+=7,②x﹣,③2x2﹣6x=﹣2中,正确的个数有()A.0个 B.1个 C.2个 D.3个【分析】将x+=3两边同时平方,然后通过恒等变形可对①作出判断,由x﹣=±可对②作出判断,方程2x2﹣6x=﹣2两边同时除以2x,然后再通过恒等变形可对③作出判断.【解答】解:∵x+=3,∴(x+)2=9,整理得:x2+=7,故①正确.x﹣=±=±,故②错误.方程2x2﹣6x=﹣2两边同时除以2x得:x﹣3=﹣,整理得:x+=3,故③正确.故选:C.【点评】本题主要考查的是完全平方公式的应用,熟练掌握完全平方公式是解题的关键.9.(3分)(2020•乐山)已知二次函数y=x2﹣2mx(m为常数),当﹣1≤x≤2时,函数值y的最小值为﹣2,则m的值是()A.B.C.或D.或【分析】将二次函数配方成顶点式,分m<﹣1、m>2和﹣1≤m≤2三种情况,根据y的最小值为﹣2,结合二次函数的性质求解可得.【解答】解:y=x2﹣2mx=(x﹣m)2﹣m2,①若m<﹣1,当x=﹣1时,y=1+2m=﹣2,解得:m=﹣;②若m>2,当x=2时,y=4﹣4m=﹣2,解得:m=<2(舍);③若﹣1≤m≤2,当x=m时,y=﹣m2=﹣2,解得:m=或m=﹣<﹣1(舍),∴m的值为﹣或,故选:D.【点评】本题主要考查二次函数的最值,根据二次函数的增减性分类讨论是解题的关键.10.(3分)(2020•乐山)如图,平面直角坐标系xOy中,矩形OABC的边OA、OC分别落在x、y轴上,点B坐标为(6,4),反比例函数y=的图象与AB边交于点D,与BC边交于点E,连结DE,将△BDE沿DE翻折至△B'DE处,点B'恰好落在正比例函数y=kx图象上,则k的值是()A.B.C.D.【分析】根据矩形的性质得到,CB∥x轴,AB∥y轴,于是得到D(6,1),E(,4),根据勾股定理得到ED==,连接BB′,交ED于F,过B′作B′G⊥BC于G,根据轴对称的性质得到BF=B′F,BB′⊥ED求得BB′=,设EG=x,则BG=﹣x根据勾股定理即可得到结论.【解答】解:∵矩形OABC,∴CB∥x轴,AB∥y轴,∵点B坐标为(6,4),∴D的横坐标为6,E的纵坐标为4,∵D,E在反比例函数y=的图象上,∴D(6,1),E(,4),∴BE=6﹣=,BD=4﹣1=3,∴ED==,连接BB′,交ED于F,过B′作B′G⊥BC于G,∵B,B′关于ED对称,∴BF=B′F,BB′⊥ED,∴BF•ED=BE•BD,即BF=3×,∴BF=,∴BB′=,设EG=x,则BG=﹣x,∵BB′2﹣BG2=B′G2=EB′2﹣GE2,∴()2﹣(﹣x)2=()2﹣x2,∴x=,∴EG=,∴CG=,∴B′G=,∴B′(,﹣),∴k=﹣.故选B.【点评】本题考查了翻折变换(折叠问题),矩形的性质,勾股定理,熟练掌握折叠的性质是解题的关键.二、填空题:本大题共6小题,每小题3分,共18分.11.(3分)(2020•乐山)3﹣2=.【分析】根据幂的负整数指数运算法则计算.【解答】解:原式==.故答案为:.【点评】本题考查的是幂的负整数指数运算,先把底数化成其倒数,然后将负整数指数幂当成正的进行计算.12.(3分)(2020•乐山)二元一次方程组==x+2的解是.【分析】根据二元一次方程组的解法即可求出答案.【解答】解:原方程可化为:,化简为,解得:.故答案为:;【点评】本题考查二元一次方程的解法,解题的关键是将原方程化为方程组,本题属于基础题型.13.(3分)(2020•乐山)如图,直线a、b垂直相交于点O,曲线C关于点O成中心对称,点A的对称点是点A',AB⊥a于点B,A'D⊥b于点D.若OB=3,OD=2,则阴影部分的面积之和为6.【分析】根据中心对称图形的概念,以及长方形的面积公式即可解答.【解答】解:∵直线a、b垂直相交于点O,曲线C关于点O成中心对称,点A 的对称点是点A',AB⊥a于点B,A'D⊥b于点D,OB=3,OD=2,∴AB=2,∴阴影部分的面积之和为3×2=6.故答案为:6.【点评】此题主要考查了长方形的面积及中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.14.(3分)(2020•乐山)点A、B、C在格点图中的位置如图5所示,格点小正方形的边长为1,则点C到线段AB所在直线的距离是.【分析】连接AC,BC,设点C到线段AB所在直线的距离是h,利用勾股定理求出AB的长,利用三角形的面积公式即可得出结论.【解答】解:连接AC,BC,设点C到线段AB所在直线的距离是h,=3×3﹣×2×1﹣×2×1﹣×3×3﹣1=9﹣1﹣1﹣﹣1=,∵S△ABCAB==,∴×h=,∴h=.故答案为:.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.15.(3分)(2020•乐山)庄子说:“一尺之椎,日取其半,万世不竭”.这句话(文字语言)表达了古人将事物无限分割的思想,用图形语言表示为图1,按此图分割的方法,可得到一个等式(符号语言):1=+++…++….图2也是一种无限分割:在△ABC中,∠C=90°,∠B=30°,过点C作CC1⊥AB于点C1,再过点C1作C1C2⊥BC于点C2,又过点C2作C2C3⊥AB于点C3,如此无限继续下去,则可将利△ABC分割成△ACC1、△CC1C2、△C1C2C3、△C2C3C4、…、△C n﹣2C n﹣1C n、….假设AC=2,这些三角形的面积和可以得到一个等式是2=.=;进而得到=【分析】先根据AC=2,∠B=30°,CC 1⊥AB,求得S△ACC1×,=×()2,=×()3,根据规律可知=AC×BC=×2×2=2,即可=×()n﹣1,再根据S得到等式.【解答】解:如图2,∵AC=2,∠B=30°,CC1⊥AB,∴Rt△ACC1中,∠ACC1=30°,且BC=2,∴AC1=AC=1,CC1=AC1=,=•AC1•CC1=×1×=;∴S△ACC1∵C1C2⊥BC,∴∠CC1C2=∠ACC1=30°,∴CC2=CC1=,C1C2=CC2=,∴=•CC 2•C1C2=××=×,同理可得,=×()2,=×()3,…∴=×()n﹣1,=AC×BC=×2×2=2,又∵S△ABC∴2=+×+×()2+×()3+…+×()n﹣1+…∴2=.故答案为:2=.【点评】本题主要考查了图形的变化类问题,解决问题的关键是找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.16.(3分)(2020•乐山)对于函数y=x n+x m,我们定义y'=nx n﹣1+mx m﹣1(m、n为常数).例如y=x4+x2,则y'=4x3+2x.已知:y=x3+(m﹣1)x2+m2x.(1)若方程y′=0有两个相等实数根,则m的值为;(2)若方程y′=m﹣有两个正数根,则m的取值范围为且.【分析】根据新定义得到y′=x3+(m﹣1)x2+m2=x2+2(m﹣1)x+m2,(1)由判别式等于0,解方程即可;(2)根据根与系数的关系列不等式组即可得到结论.【解答】解:根据题意得y′=x2+2(m﹣1)x+m2,(1)∵方程x2﹣2(m﹣1)x+m2=0有两个相等实数根,∴△=[﹣2(m﹣1)]2﹣4m2=0,解得:m=,故答案为:;(2)y′=m﹣,即x2+2(m﹣1)x+m2=m﹣,化简得:x2+2(m﹣1)x+m2﹣m+=0,∵方程有两个正数根,∴,解得:且.故答案为:且.【点评】本题考查了抛物线与x轴的交点,根的判别式,根与系数的关系,正确的理解题意是解题的关键.三、本大题共3小题,每小题9分,共27分.17.(9分)(2020•乐山)计算:2sni60°+|1﹣|+20200﹣.【分析】首先计算乘方、开方和乘法,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:2sni60°+|1﹣|+20200﹣=2×+﹣1+1﹣3=﹣【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.18.(9分)(2020•乐山)求不等式组的所有整数解.【分析】先求出不等式组的解集,再求出不等式组的整数解即可.【解答】解:解不等式①得:x>1,解不等式②得:x≤4,所以,不等式组的解集为1<x≤4,故不等式组的整数解为2,3,4.【点评】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集找出不等式组的解集是解此题的关键.19.(9分)(2020•乐山)如图,延长▱ABCD的边AD到F,使DF=DC,延长CB 到点E,使BE=BA,分别连结点A、E和C、F.求证:AE=CF.【分析】根据平行四边形的性质可得AD=BC,AD∥BC,再证出BE=DF,得出AF=EC,进而可得四边形AECF是平行四边形,从而可得AE=CF.【解答】证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴AF∥EC,∵DF=DC,BE=BA,∴BE=DF,∴AF=EC,∴四边形AECF是平行四边形,∴AE=CF.【点评】此题主要考查了平行四边形的性质和判定,关键是掌握平行四边形对边平行且相等,一组对边平行且相等的四边形是平行四边形.四、本大题共3小题,每小题10分,共30分.20.(10分)(2020•乐山)化简:(﹣)÷.【分析】根据分式的减法和除法可以解答本题.【解答】解:(﹣)÷=====.【点评】本题考查分式的混合运算,解答本题的关键是明确分式的混合运算的计算方法.21.(10分)(2020•乐山)为了了解我市中学生参加“科普知识”竞赛成绩的情况,随机抽查了部分参赛学生的成绩,整理并制作出如下的统计表和统计图,如图所示.请根据图表信息解答下列问题:(1)在表中:m=120,n=0.3;(2)补全频数分布直方图;(3)小明的成绩是所有被抽查学生成绩的中位数,据此推断他的成绩在C组;(4)4个小组每组推荐1人,然后从4人中随机抽取2人参加颁奖典礼,恰好抽中A、C两组学生的概率是多少?并列表或画树状图说明.【分析】(1)先根据A组频数及其频率求得总人数,再根据频率=频数÷总人数可得m、n的值;(2)根据(1)中所求结果即可补全频数分布直方图;(3)根据中位数的定义即可求解;(4)画树状图列出所有等可能结果,再找到抽中A、C的结果,根据概率公式求解可得.【解答】解:(1)∵本次调查的总人数为30÷0.1=300(人),∴m=300×0.4=120,n=90÷300=0.3,故答案为:120,0.3;(2)补全频数分布直方图如下:(3)由于共有300个数据,则其中位数为第150、151个数据的平均数,而第150、151个数据的平均数均落在C组,∴据此推断他的成绩在C组,故答案为:C;(4)画树状图如下:由树状图可知,共有12种等可能结果,其中抽中A﹑C两组同学的有2种结果,∴抽中A﹑C两组同学的概率为=.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,也考查列表法或画树状图法求概率.22.(10分)(2020•乐山)如图,在水平地面上有一幢房屋BC与一棵树DE,在地面观测点A处测得屋顶C与树梢D的仰角分别是45°与60°,∠CAD=60°,在屋顶C处测得∠DCA=90°.若房屋的高BC=6米,求树高DE的长度.【分析】首先解直角三角形求得表示出AC,AD的长,进而利用直角三角函数,求出答案.【解答】解:如图3,在Rt△ABC中,∠CAB=45°,BC=6m,∴(m);在Rt△ACD中,∠CAD=60°,∴(m);在Rt△DEA中,∠EAD=60°,,答:树DE的高为米.【点评】此题主要考查了解直角三角形的应用,熟练应用锐角三角函数关系是解题关键.五、本大题共2小题,每小题10分,共20分.23.(10分)(2020•乐山)某公司从2014年开始投入技术改进资金,经技术改进后,其产品的成本不断降低,具体数据如下表:(1)请你认真分析表中数据,从一次函数和反比例函数中确定哪一个函数能表示其变化规律,给出理由,并求出其解析式;(2)按照这种变化规律,若2020年已投入资金5万元.①预计生产成本每件比2016年降低多少万元?②若打算在2020年把每件产品成本降低到3.2万元,则还需要投入技改资金多少万元?(结果精确到0.01万元).【分析】(1)根据实际题意和数据特点分情况求解,根据排除法可知其为反比例函数,利用待定系数法求解即可;(2)①直接把x=5万元代入函数解析式即可求解;②直接把y=3.2万元代入函数解析式即可求解;【解答】解:(1)设其为一次函数,解析式为y=kx+b,当x=2.5时,y=7.2;当x=3时,y=6,∴,解得k=﹣2.4,b=13.2∴一次函数解析式为y=﹣2.4x+13.2把x=4时,y=4.5代入此函数解析式,左边≠右边.∴其不是一次函数.同理.其也不是二次函数.设其为反比例函数.解析式为y=.当x=2.5时,y=7.2,可得:7.2=,解得k=18∴反比例函数是y=.验证:当x=3时,y==6,符合反比例函数.同理可验证x=4时,y=4.5,x=4.5时,y=4成立.可用反比例函数y=表示其变化规律.(2)①当x=5万元时,y=3.6.4﹣3.6=0.4(万元),∴生产成本每件比2016年降低0.4万元.②当y=3.2万元时,3.2=,∴x=5.625,∴5.625﹣5=1.125≈0.63(万元)∴还约需投入0.63万元.【点评】本题主要考查了反比例函数的应用.解题的关键是根据实际意义列出函数关系式,从实际意义中找到对应的变量的值,利用待定系数法求出函数解析式,再根据自变量的值求算对应的函数值.要注意用排除法确定函数的类型.24.(10分)(2020•乐山)如图,以AB边为直径的⊙O经过点P,C是⊙O上一点,连结PC交AB于点E,且∠ACP=60°,PA=PD.(1)试判断PD与⊙O的位置关系,并说明理由;(2)若点C是弧AB的中点,已知AB=4,求CE•CP的值.【分析】(1)连结OP,根据圆周角定理可得∠AOP=2∠ACP=120°,然后计算出∠PAD和∠D的度数,进而可得∠OPD=90°,从而证明PD是⊙O的切线;(2)连结BC,首先求出∠CAB=∠ABC=∠APC=45°,然后可得AC长,再证明△CAE∽△CPA,进而可得,然后可得CE•CP的值.【解答】解:(1)如图,PD是⊙O的切线.证明如下:连结OP,∵∠ACP=60°,∴∠AOP=120°,∵OA=OP,∴∠OAP=∠OPA=30°,∵PA=PD,∴∠PAO=∠D=30°,∴∠OPD=90°,∴PD是⊙O的切线.(2)连结BC,∵AB是⊙O的直径,∴∠ACB=90°,又∵C为弧AB的中点,∴∠CAB=∠ABC=∠APC=45°,∵AB=4,.∵∠C=∠C,∠CAB=∠APC,∴△CAE∽△CPA,∴,∴CP•CE=CA2=(2)2=8.【点评】此题主要考查了切线的判定和相似三角形的性质和判定,关键是掌握切线的判定定理和相似三角形的判定与性质定理.六、本大题共2小题,第25题12分,第26题13分,共25分.25.(12分)(2020•乐山)在四边形ABCD中,∠B+∠D=180°,对角线AC平分∠BAD.(1)如图1,若∠DAB=120°,且∠B=90°,试探究边AD、AB与对角线AC的数量关系并说明理由.(2)如图2,若将(1)中的条件“∠B=90°”去掉,(1)中的结论是否成立?请说明理由.(3)如图3,若∠DAB=90°,探究边AD、AB与对角线AC的数量关系并说明理由.【分析】(1)结论:AC=AD+AB,只要证明AD=AC,AB=AC即可解决问题;(2)(1)中的结论成立.以C为顶点,AC为一边作∠ACE=60°,∠ACE的另一边交AB延长线于点E,只要证明△DAC≌△BEC即可解决问题;(3)结论:.过点C作CE⊥AC交AB的延长线于点E,只要证明△ACE是等腰直角三角形,△DAC≌△BEC即可解决问题;【解答】解:(1)AC=AD+AB.理由如下:如图1中,在四边形ABCD中,∠D+∠B=180°,∠B=90°,∴∠D=90°,∵∠DAB=120°,AC平分∠DAB,∴∠DAC=∠BAC=60°,∵∠B=90°,∴,同理.∴AC=AD+AB.(2)(1)中的结论成立,理由如下:以C为顶点,AC为一边作∠ACE=60°,∠ACE的另一边交AB延长线于点E,∵∠BAC=60°,∴△AEC为等边三角形,∴AC=AE=CE,∵∠D+∠B=180°,∠DAB=120°,∴∠DCB=60°,∴∠DCA=∠BCE,∵∠D+∠ABC=180°,∠ABC+∠EBC=180°,∴∠D=∠CBE,∵CA=CB,∴△DAC≌△BEC,∴AD=BE,∴AC=AD+AB.(3)结论:.理由如下:过点C作CE⊥AC交AB的延长线于点E,∵∠D+∠B=180°,∠DAB=90°,∴DCB=90°,∵∠ACE=90°,∴∠DCA=∠BCE,又∵AC平分∠DAB,∴∠CAB=45°,∴∠E=45°.∴AC=CE.又∵∠D+∠B=180°,∠D=∠CBE,∴△CDA≌△CBE,∴AD=BE,∴AD+AB=AE.在Rt△ACE中,∠CAB=45°,∴,∴.【点评】本题考查四边形综合题、等边三角形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.26.(13分)(2020•乐山)如图1,抛物线C1:y=x2+ax与C2:y=﹣x2+bx相交于点O、C,C1与C2分别交x轴于点B、A,且B为线段AO的中点.(1)求的值;(2)若OC⊥AC,求△OAC的面积;(3)抛物线C2的对称轴为l,顶点为M,在(2)的条件下:①点P为抛物线C2对称轴l上一动点,当△PAC的周长最小时,求点P的坐标;②如图2,点E在抛物线C2上点O与点M之间运动,四边形OBCE的面积是否存在最大值?若存在,求出面积的最大值和点E的坐标;若不存在,请说明理由.【分析】(1)由两抛物线解析式可分别用a和b表示出A、B两点的坐标,利用B为OA的中点可得到a和b之间的关系式;(2)由抛物线解析式可先求得C点坐标,过C作CD⊥x轴于点D,可证得△OCD ∽△CAD,由相似三角形的性质可得到关于a的方程,可求得OA和CD的长,可求得△OAC的面积;(3)①连接OC与l的交点即为满足条件的点P,可求得OC的解析式,则可求得P点坐标;②设出E点坐标,则可表示出△EOB的面积,过点E作x轴的平行线交直线BC 于点N,可先求得BC的解析式,则可表示出EN的长,进一步可表示出△EBC的面积,则可表示出四边形OBCE的面积,利用二次函数的性质可求得其最大值,及E点的坐标.【解答】解:(1)在y=x2+ax中,当y=0时,x2+ax=0,x1=0,x2=﹣a,∴B(﹣a,0),在y=﹣x2+bx中,当y=0时,﹣x2+bx=0,x1=0,x2=b,∴A(0,b),∵B为OA的中点,∴b=﹣2a,∴;(2)联立两抛物线解析式可得,消去y整理可得2x2+3ax=0,解得x1=0,,∴,过C作CD⊥x轴于点D,如图1,∴,∵∠OCA=90°,∴△OCD∽△CAD,∴,∴CD2=AD•OD,即,∴a1=0(舍去),(舍去),,∴,,∴;(3)①抛物线,∴其对称轴,点A关于l2的对称点为O(0,0),,则P为直线OC与l2的交点,设OC的解析式为y=kx,∴,得,∴OC的解析式为,∴;②设,则,而,,设直线BC的解析式为y=kx+b,由,解得,∴直线BC的解析式为,过点E作x轴的平行线交直线BC于点N,如图2,则,即x=,∴EN=,∴=S△OBE+S△∴S四边形OBCE==EBC,∵,∴当时,,当时,,∴,.【点评】本题为二次函数的综合应用,涉及待定系数法、相似三角形的判定和性质、轴对称的性质、三角形的面积、二次函数的性质及方程思想等知识.在(1)中分别表示出A、B的坐标是解题的关键,在(2)中求得C点坐标,利用相似三角形的性质求得a的值是解题的关键,在(3)①中确定出P点的位置是解题的关键,在(3)②中用E点坐标分别表示出△OBE和△EBC的面积是解题的关键.本题考查知识点较多,综合性较强,计算量较大,难度较大.。
2020年四川省乐山市中考数学试卷(含解析)
2020年四川省乐山市中考数学试卷(考试时间:120分钟满分:150分)一、选择题(本大题共10个小题,每小题3分,共30分)1.的倒数是()A.﹣B.C.﹣2 D.22.某校在全校学生中举办了一次“交通安全知识”测试,张老师从全校学生的答卷中随机地抽取了部分学生的答卷,将测试成绩按“差”、“中”、“良”、“优”划分为四个等级,并绘制成如图所示的条形统计图.若该校学生共有2000人,则其中成绩为“良”和“优”的总人数估计为()A.1100 B.1000 C.900 D.1103.如图,E是直线CA上一点,∠FEA=40°,射线EB平分∠CEF,GE⊥EF.则∠GEB=()A.10°B.20°C.30°D.40°4.数轴上点A表示的数是﹣3,将点A在数轴上平移7个单位长度得到点B.则点B表示的数是()A.4 B.﹣4或10 C.﹣10 D.4或﹣105.如图,在菱形ABCD中,AB=4,∠BAD=120°,O是对角线BD的中点,过点O作OE⊥CD于点E,连结OA.则四边形AOED的周长为()A.9+2B.9+C.7+2D.86.直线y=kx+b在平面直角坐标系中的位置如图所示,则不等式kx+b≤2的解集是()A.x≤﹣2 B.x≤﹣4 C.x≥﹣2 D.x≥﹣47.观察下列各方格图中阴影部分所示的图形(每一小方格的边长为1),如果将它们沿方格边线或对角线剪开重新拼接,不能拼成正方形的是()A.B.C.D.8.已知3m=4,32m﹣4n=2.若9n=x,则x的值为()A.8 B.4 C.2D.9.在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1.如图所示,将△ABC绕点A按逆时针方向旋转90°后得到△AB′C′.则图中阴影部分面积为()A.B.C.D.π10.如图,在平面直角坐标系中,直线y=﹣x与双曲线y=交于A、B两点,P是以点C(2,2)为圆心,半径长1的圆上一动点,连结AP,Q为AP的中点.若线段OQ长度的最大值为2,则k的值为()A.﹣B.﹣C.﹣2 D.﹣二、填空题(本大题共6个小题,每小题3分,共18分)11.用“>”或“<”符号填空:﹣7 ﹣9.12.某小组七位学生的中考体育测试成绩(满分40分)依次为37,40,39,37,40,38,40.则这组数据的中位数是.13.如图是某商场营业大厅自动扶梯示意图.自动扶梯AB的倾斜角为30°,在自动扶梯下方地面C处测得扶梯顶端B的仰角为60°,A、C之间的距离为4m.则自动扶梯的垂直高度BD=m.(结果保留根号)14.已知y≠0,且x2﹣3xy﹣4y2=0.则的值是.15.把两个含30°角的直角三角板按如图所示拼接在一起,点E为AD的中点,连结BE交AC于点F.则=.16.我们用符号[x]表示不大于x的最大整数.例如:[1.5]=1,[﹣1.5]=﹣2.那么:(1)当﹣1<[x]≤2时,x的取值范围是;(2)当﹣1≤x<2时,函数y=x2﹣2a[x]+3的图象始终在函数y=[x]+3的图象下方.则实数a的范围是.三、解答题(共102分)17.(9分)计算:|﹣2|﹣2cos60°+(π﹣2020)0.18.(9分)解二元一次方程组:19.(9分)如图,E是矩形ABCD的边CB上的一点,AF⊥DE于点F,AB=3,AD=2,CE=1.求DF的长度.20.(10分)已知y=,且x≠y,求()÷的值.21.(10分)如图,已知点A(﹣2,﹣2)在双曲线y=上,过点A的直线与双曲线的另一支交于点B(1,a).(1)求直线AB的解析式;(2)过点B作BC⊥x轴于点C,连结AC,过点C作CD⊥AB于点D.求线段CD的长.22.(10分)自新冠肺炎疫情爆发以来,我国人民上下一心,团结一致,基本控制住了疫情.然而,全球新冠肺炎疫情依然严重,境外许多国家的疫情尚在继续蔓延,疫情防控不可松懈.如图是某国截止5月31日新冠病毒感染人数的扇形统计图和折线统计图.根据上面图表信息,回答下列问题:(1)截止5月31日该国新冠肺炎感染总人数累计为万人,扇形统计图中40﹣59岁感染人数对应圆心角的度数为°;(2)请直接在图中补充完整该国新冠肺炎感染人数的折线统计图;(3)在该国所有新冠肺炎感染病例中随机地抽取1人,求该患者年龄为60岁或60岁以上的概率;(4)若该国感染病例中从低到高各年龄段的死亡率依次为1%、2.75%、3.5%、10%、20%,求该国新冠肺炎感染病例的平均死亡率.23.(10分)某汽车运输公司为了满足市场需要,推出商务车和轿车对外租赁业务.下面是乐山到成都两种车型的限载人数和单程租赁价格表:车型每车限载人数(人)租金(元/辆)商务车 6 300轿车 4(1)如果单程租赁2辆商务车和3辆轿车共需付租金1320元,求一辆轿车的单程租金为多少元?(2)某公司准备组织34名职工从乐山赴成都参加业务培训,拟单程租用商务车或轿车前往.在不超载的情况下,怎样设计租车方案才能使所付租金最少?24.(10分)如图1,AB是半圆O的直径,AC是一条弦,D是上一点,DE⊥AB于点E,交AC于点F,连结BD交AC于点G,且AF=FG.(1)求证:点D平分;(2)如图2所示,延长BA至点H,使AH=AO,连结DH.若点E是线段AO的中点.求证:DH是⊙O的切线.25.(12分)点P是平行四边形ABCD的对角线AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C向直线BP作垂线,垂足分别为点E、F.点O为AC的中点.(1)如图1,当点P与点O重合时,线段OE和OF的关系是;(2)当点P运动到如图2所示的位置时,请在图中补全图形并通过证明判断(1)中的结论是否仍然成立?(3)如图3,点P在线段OA的延长线上运动,当∠OEF=30°时,试探究线段CF、AE、OE之间的关系.26.(13分)已知抛物线y=ax2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,C为抛物线的顶点,抛物线的对称轴交x轴于点D,连结BC,且tan∠CBD=,如图所示.(1)求抛物线的解析式;(2)设P是抛物线的对称轴上的一个动点.①过点P作x轴的平行线交线段BC于点E,过点E作EF⊥PE交抛物线于点F,连结FB、FC,求△BCF的面积的最大值;②连结PB,求PC+PB的最小值.参考答案与试题解析一、选择题1.【解答】解:根据倒数的定义,可知的倒数是2.故选:D.2.【解答】解:2000×=1100(人),故选:A.3.【解答】解:∵∠FEA=40°,GE⊥EF,∴∠CEF=180°﹣∠FEA=180°﹣40°=140°,∠CEG=180°﹣∠AEF﹣∠GEF=180°﹣40°﹣90°=50°,∵射线EB平分∠CEF,∴,∴∠GEB=∠CEB﹣∠CEG=70°﹣50°=20°,故选:B.4.【解答】解:点A表示的数是﹣3,左移7个单位,得﹣3﹣7=﹣10,点A表示的数是﹣3,右移7个单位,得﹣3+7=4.所以点B表示的数是4或﹣10.故选:D.5.【解答】解:∵四边形ABCD为菱形,∴AD=AB=4,AB∥CD,∵∠BAD=120°,∴∠ADB=∠CDB=30°,∵O是对角线BD的中点,∴AO⊥BD,在Rt△AOD中,AO=AD=2,OD=OA=2,∵OE⊥CD,∴∠DEO=90°,在Rt△DOE中,OE=OD=,DE=OE=3,∴四边形AOED的周长=4+2++3=9+.故选:B.6.【解答】解:∵直线y=kx+b与x轴交于点(2,0),与y轴交于点(0,1),∴,解得∴直线为y=﹣+1,当y=2时,2=﹣+1,解得x=﹣2,由图象可知:不等式kx+b≤2的解集是x≥﹣2,故选:C.7.【解答】解:由题意,选项A阴影部分分面积为6,B,C,D的阴影部分的面积为5,如果能拼成正方形,选项A的正方形的边长为,选项B,C,D的正方形的边长为,观察图象可知,选项B,C,D阴影部分沿方格边线或对角线剪开均可得图1的5个图形,可以拼成图2的边长为的正方形,故选:D.8.【解答】解:∵3m=4,32m﹣4n=(3m)2÷(3n)4=2.∴42÷(3n)4=2,∴(3n)4=42÷2=8,又∵9n=32n=x,∴(3n)4=(32n)2=x2,∴x2=8,∴x==.故选:C.9.【解答】解:∵∠ABC=90°,∠BAC=30°,BC=1,∴AB=BC=,AC=2BC=2,∴﹣﹣(﹣)=,故选:B.10.【解答】解:点O是AB的中点,则OQ是△ABP的中位线,当B、C、P三点共线时,PB最大,则OQ=BP最大,而OQ的最大值为2,故BP的最大值为4,则BC=BP﹣PC=4﹣1=3,设点B(m,﹣m),则(m﹣2)2+(﹣m﹣2)2=32,解得:m2=,∴k=m(﹣m)=﹣,故选:A.二、填空题11.【解答】解:∵|﹣7|=7,|﹣9|=9,7<9,∴﹣7>﹣9,故答案为:>.12.【解答】解:把这组数据从小到大排序后为37,37,38,39,40,40,40,其中第四个数据为39,所以这组数据的中位数为39.故答案为39.13.【解答】解:∵∠BCD=∠BAC+∠ABC,∠BAC=30°,∠BCD=60°,∴∠ABC=∠BCD﹣∠BAC=30°,∴∠BAC=∠ABC,∴BC=AC=4,在Rt△BDC中,sin∠BCD=,∴sin60°==,∴BD=2(m),答:自动扶梯的垂直高度BD=2m,故答案为:2.14.【解答】解:∵x2﹣3xy﹣4y2=0,即(x﹣4y)(x+y)=0,可得x=4y或x=﹣y,∴或,即则的值是4或﹣1;故答案为:4或﹣1.15.【解答】解:连接CE,∵∠CAD=30°,∠ACD=90°,E是AD的中点,∴AC=AD,CE=AD=AE,∴∠ACE=∠CAE=30°∵∠BAC=30°,∠ABC=90°,∴AB=AC=AD,∠BAC=∠ACE,∴AB∥CE,∴△ABF∽△CEF,∴,∴,故答案为.16.【解答】解:(1)由题意∵﹣1<[x]≤2,∴0≤x≤2,故答案为0≤x≤2.(2)由题意:当﹣1≤x<2时,函数y=x2﹣2a[x]+3的图象始终在函数y=[x]+3的图象下方,则有x=﹣1时,1+2a+3<﹣1+3,解得a<﹣1,或x=2时,4﹣2a+3≤1+3,解得a≥,故答案为a<﹣1或a≥.二、解答题17.【解答】解:原式==2.18.【解答】解:,法1:②﹣①×3,得 2x=3,解得:x=,把x=代入①,得 y=﹣1,∴原方程组的解为;法2:由②得:2x+3(2x+y)=9,把①代入上式,解得:x=,把x=代入①,得 y=﹣1,∴原方程组的解为.19.【解答】解:∵四边形ABCD是矩形,∴DC=AB=3,∠ADC=∠C=90°.∵CE=1,∴DE==.∵AF⊥DE,∴∠AFD=90°=∠C,∠∠ADF+∠DAF=90°.又∵∠ADF+∠EDC=90°,∴∠EDC=∠DAF,∴△EDC∽△DAF,∴=,即=,∴FD=,即DF的长度为.20.【解答】解:原式===,∵,∴原式=解法2:同解法1,得原式=,∵,∴xy=2,∴原式==1.21.【解答】解:(1)将点A(﹣2,﹣2)代入,得k=4,即,将B(1,a)代入,得a=4,即B(1,4),设直线AB的解析式为y=mx+n,将A(﹣2,﹣2)、B(1,4)代入y=kx+b,得,解得,∴直线AB的解析式为y=2x+2;(2)∵A(﹣2,﹣2)、B(1,4),∴,∵,∴.22.【解答】解:(1)截止5月31日该国新冠肺炎感染总人数累计为9÷45%=20(万人),扇形统计图中40﹣59岁感染人数对应圆心角的度数为360°×=72°,故答案为:20、72;(2)20﹣39岁人数为20×10%=2(万人),补全的折线统计图如图2所示;(3)该患者年龄为60岁及以上的概率为:=0.675;(4)该国新冠肺炎感染病例的平均死亡率为:.23.【解答】解:(1)设租用一辆轿车的租金为x元,由题意得:300×2+3x=1320,解得 x=240,答:租用一辆轿车的租金为240元;(2)①若只租用商务车,∵,∴只租用商务车应租6辆,所付租金为300×6=1800(元);②若只租用轿车,∵,∴只租用轿车应租9辆,所付租金为240×9=2160(元);③若混和租用两种车,设租用商务车m辆,租用轿车n辆,租金为W元.由题意,得,由6m+4n=34,得 4n=﹣6m+34,∴W=300m+60(﹣6m+34)=﹣60m+2040,∵﹣6m+34=4n≥0,∴,∴1≤m≤5,且m为整数,∵W随m的增大而减小,∴当m=5时,W有最小值1740,此时n=1.综上,租用商务车5辆和轿车1辆时,所付租金最少为1740元.24.【解答】证明:(1)如图1,连接AD、BC,∵AB是半圆O的直径,∴∠ADB=90°,∵DE⊥AB,∴∠ADE=∠ABD,又∵AF=FG,即点F是Rt△AGD的斜边AG的中点,∴DF=AF,∴∠DAF=∠ADF=∠ABD,又∵∠DAC=∠DBC,∴∠ABD=∠DBC,∴=,∴即点D平分;(2)如图2所示,连接OD、AD,∵点E是线段OA的中点,∴,∴∠AOD=60°,∴△OAD是等边三角形,∴AD=AO=AH,∴△ODH是直角三角形,且∠HDO=90°,∴DH是⊙O的切线.25.【解答】解:(1)∵四边形ABCD是平行四边形,∴AO=CO,又∵∠AEO=∠CFO,∠AOE=∠COF=90°,∴△AEO≌△CFO(AAS),∴OE=OF,故答案为:OE=OF;(2)补全图形如图所示,结论仍然成立,理由如下:延长EO交CF于点G,∵AE⊥BP,CF⊥BP,∴AE∥CF,∴∠EAO=∠GCO,∵点O为AC的中点,∴AO=CO,又∵∠AOE=∠COG,∴△AOE≌△COG(AAS),∴OE=OG,∵∠GFE=90°,∴OE=OF;(4)点P在线段OA的延长线上运动时,线段CF、AE、OE之间的关系为OE=CF+AE,证明如下:如图,延长EO交FC的延长线于点H,由(2)可知△AOE≌△COH,∴AE=CH,OE=OH,又∵∠OEF=30°,∠HFE=90°,∴HF=EH=OE,∴OE=CF+CH=CF+AE.26.【解答】解:(1)根据题意,可设抛物线的解析式为:y=a(x+1)(x﹣5),∵抛物线的对称轴为直线x=2,∴D(2,0),又∵=,∴CD=BD•tan∠CBD=4,即C(2,4),代入抛物线的解析式,得4=a(2+1)(2﹣5),解得,∴二次函数的解析式为=﹣x2++;(2)①设P(2,t),其中0<t<4,设直线BC的解析式为 y=kx+b,∴,解得即直线BC的解析式为,令y=t,得:,∴点E(5﹣t,t),把代入,得,即,∴,∴△BCF的面积=×EF×BD=(t﹣)=,∴当t=2时,△BCF的面积最大,且最大值为;②如图,连接AC,根据图形的对称性可知∠ACD=∠BCD,AC=BC=5,∴,过点P作PG⊥AC于G,则在Rt△PCG中,,∴,过点B作BH⊥AC于点H,则PG+PH≥BH,∴线段BH的长就是的最小值,∵,又∵,∴,即,∴的最小值为.。
2023年四川省乐山市中考数学真题+答案解析
2023年四川省乐山市中考数学真题+答案解析(真题部分)一、选择题:本大题共10个小题,每小题3分,共30分.1.(3分)计算:2a﹣a=()A.a B.﹣a C.3a D.12.(3分)下面几何体中,是圆柱的为()A.B.C.D.3.(3分)下列各点在函数y=2x﹣1图象上的是()A.(﹣1,3)B.(0,1)C.(1,﹣1)D.(2,3)4.(3分)从水利部长江水利委员会获悉,截止2023年3月30日17时,南水北调中线一期工程自2014年12月全面通水以来,已累计向受水区实施生态补水约90亿立方米.其中9000000000用科学记数法表示为()A.9×108B.9×109C.9×1010D.9×10115.(3分)乐山是一座著名的旅游城市,有着丰富的文旅资源.某校准备组织初一年级500名学生进行研学旅行活动,政教处周老师随机抽取了其中50名同学进行研学目的地意向调查,并将调查结果制成如图统计图,如图所示.估计初一年级愿意去“沫若故居”的学生人数为()A.100 B.150 C.200 D.4006.(3分)如图,菱形ABCD的对角线AC与BD相交于点O,E为边BC的中点,连结OE.若AC=6,BD=8,则OE=()A.2 B.C.3 D.47.(3分)若关于x的一元二次方程x2﹣8x+m=0两根为x1、x2,且x1=3x2,则m的值为()A.4 B.8 C.12 D.168.(3分)我国汉代数学家赵爽在注解《周髀算经》时给出“赵爽弦图”,如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形面积为25,小正方形面积为1,则sinθ=()A.B.C.4 D.9.(3分)如图4,抛物线y=ax2+bx+c经过点A(﹣1,0)、B(m,0),且1<m<2,有下列结论:①b<0;②a+b>0;③0<a<﹣c;④若点C(﹣,y1),D(,y2)在抛物线上,则y1>y2.其中,正确的结论有()A.4个B.3个C.2个D.1个10.(3分)如图,在平面直角坐标系xOy中,直线y=﹣x﹣2与x轴、y轴分别交于A、B两点,C、D是半径为1的⊙O上两动点,且CD=,P为弦CD的中点.当C、D两点在圆上运动时,△P AB面积的最大值是()A.8 B.6 C.4 D.3二、填空题:本大题共6个小题,每小题3分,共18分.11.(3分)不等式x﹣1>0的解集是.12.(3分)小张在“阳光大课间”活动中进行了5次一分钟跳绳练习,所跳个数分别为:160,163,160,157,160.这组数据的众数为.13.(3分)如图,点O在直线AB上,OD是∠BOC的平分线,若∠AOC=140°,则∠BOD的度数为.14.(3分)若m、n满足3m﹣n﹣4=0,则8m÷2n=.15.(3分)如图,在平行四边形ABCD中,E是线段AB上一点,连结AC、DE交于点F.若,则=.16.(3分)定义:若x,y满足x2=4y+t,y2=4x+t且x≠y(t为常数),则称点M(x,y)为“和谐点”.(1)若P(3,m)是“和谐点”,则m=;(2)若双曲线y=(﹣3<x<﹣1)存在“和谐点”,则k的取值范围.三、解答题:本大题共10个小题,共102分.解答应写出必要的文字说明,证明过程或演算步骤.17.(9分)计算:|﹣2|+20230﹣.18.(9分)解二元一次方程组:.19.(9分)如图,已知AB与CD相交于点O,AC∥BD,AO=BO,求证:AC=BD.20.(10分)如图,在Rt△ABC中,∠C=90°,点D为AB边上任意一点(不与点A、B重合),过点D作DE∥BC,DF∥AC,分别交AC、BC于点E、F,连结EF.(1)求证:四边形ECFD是矩形;(2)若CF=2,CE=4,求点C到EF的距离.21.(10分)为了践行习近平总书记提出的“绿水青山就是金山银山”的发展理念,某地计划在规定时间内种植梨树6000棵.开始种植时,由于志愿者的加入,实际每天种植梨树的数量比原计划增加了20%,结果提前2天完成任务.问原计划每天种植梨树多少棵?22.(10分)为培养同学们爱劳动的习惯,某班开展了“做好一件家务”主题活动,要求全班同学人人参与.经统计,同学们做的家务类型为“洗衣”“拖地”“煮饭”“刷碗”,班主任将以上信息绘制成了统计图表,如图所示.家务类型洗衣拖地煮饭刷碗人数(人)10 12 10 m根据上面图表信息,回答下列问题:(1)m=;(2)在扇形统计图中,“拖地”所占的圆心角度数为;(3)班会课上,班主任评选出了近期做家务表现优异的4名同学,其中有2名男生.现准备从表现优异的同学中随机选取两名同学分享体会,请用画树状图或列表的方法求所选同学中有男生的概率.23.(10分)如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(m,4),与x轴交于点B,与y轴交于点C(0,3).(1)求m的值和一次函数的表达式;(2)已知P为反比例函数y=图象上的一点,S△OBP =2S△OAC,求点P的坐标.24.(10分)如图,已知⊙O是Rt△ABC的外接圆,∠ACB=90°,D是圆上一点,E是DC延长线上一点,连结AD,AE,且AD=AE,CA=CE.(1)求证:直线AE是⊙O是的切线;(2)若sin E=,⊙O的半径为3,求AD的长.25.(12分)在学习完《图形的旋转》后,刘老师带领学生开展了一次数学探究活动.【问题情境】刘老师先引导学生回顾了华东师大版教材七年级下册第121页“探索”部分内容:如图1,将一个三角形纸板△ABC绕点A逆时针旋转θ到达的位置△A′B′C′的位置,那么可以得到:AB=AB′,AC=AC′,BC=B′C′;∠BAC=∠B′AC′,∠ABC=∠AB′C′,∠ACB=∠AC′B′.(_____)刘老师进一步谈到:图形的旋转蕴含于自然界的运动变化规律中,即“变”中蕴含着“不变”,这是我们解决图形旋转的关键.故数学就是一门哲学.【问题解决】(1)上述问题情境中“(_____)”处应填理由:;(2)如图2,小王将一个半径为4cm,圆心角为60°的扇形纸板ABC绕点O逆时针旋转90°到达扇形纸板A′B′C′的位置.①请在图中作出点O;②如果BB′=6cm,则在旋转过程中,点B经过的路径长为;【问题拓展】小李突发奇想,将与(2)中完全相同的两个扇形纸板重叠,一个固定在墙上,使得一边位于水平位置.另一个在弧的中点处固定,然后放开纸板,使其摆动到竖直位置时静止.此时,两个纸板重叠部分的面积是多少呢?如图3所示,请你帮助小李解决这个问题.26.(13分)已知(x1,y1),(x2,y2)是抛物线C1:y=﹣x2+bx(b为常数)上的两点,当x1+x2=0时,总有y1=y2.(1)求b的值;(2)将抛物线C1平移后得到抛物线C2:y=﹣(x﹣m)2+1(m>0).当0≤x≤2时,探究下列问题:①若抛物线C1与抛物线C2有一个交点,求m的取值范围;②设抛物线C2与x轴交于A,B两点,与y轴交于点C,抛物线C2的顶点为点E,△ABC外接圆的圆心为点F.如果对抛物线C1上的任意一点P,在抛物线C2上总存在一点Q,使得点P、Q的纵坐标相等.求EF长的取值范围.2023年四川省乐山市中考数学真题+答案解析(答案部分)一、选择题:本大题共10个小题,每小题3分,共30分.1.(3分)计算:2a﹣a=()A.a B.﹣a C.3a D.1【分析】直接合并同类项得出答案.【解析】解:2a﹣a=a.故选:A.【点评】此题主要考查了合并同类项,正确掌握合并同类项法则是解题关键.2.(3分)下面几何体中,是圆柱的为()A.B.C.D.【分析】根据各个选项中的几何体的形体特征进行判断即可.【解析】解:A.选项中的几何体是圆锥体,因此选项A不符合题意;B.选项中的几何体是球体,因此选项B不符合题意;C.选项中的几何体是圆柱体,因此选项C符合题意;D.选项中的几何体是四棱柱,因此选项D不符合题意;故选:C.【点评】本题考查认识立体图形,掌握圆柱体,圆锥体,棱柱,球的形体特征是正确判断的前提.3.(3分)下列各点在函数y=2x﹣1图象上的是()A.(﹣1,3)B.(0,1)C.(1,﹣1)D.(2,3)【分析】利用一次函数图象上点的坐标特征,逐一对四个选项进行验证即可求解.【解析】解:A.当x=﹣1时,y=2×(﹣1)﹣1=﹣3,∴点(﹣1,3)不在函数y=2x﹣1图象上;B.当x=0时,y=2×0﹣1=﹣1,∴点(0,1)不在函数y=2x﹣1图象上;C.当x=1时,y=2×1﹣1=1,∴点(1,﹣1)不在函数y=2x﹣1图象上;D.当x=2时,y=2×2﹣1=3,∴点(2,3)在函数y=2x﹣1图象上;故选:D.【点评】本题考查了一次函数图象上点的坐标特征,解题的关键是直线上任意一个点的坐标都满足函数解析式y=kx+b.4.(3分)从水利部长江水利委员会获悉,截止2023年3月30日17时,南水北调中线一期工程自2014年12月全面通水以来,已累计向受水区实施生态补水约90亿立方米.其中9000000000用科学记数法表示为()A.9×108B.9×109C.9×1010D.9×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解析】解:9000000000=9×109.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(3分)乐山是一座著名的旅游城市,有着丰富的文旅资源.某校准备组织初一年级500名学生进行研学旅行活动,政教处周老师随机抽取了其中50名同学进行研学目的地意向调查,并将调查结果制成如图统计图,如图所示.估计初一年级愿意去“沫若故居”的学生人数为()A.100 B.150 C.200 D.400【分析】用总人数乘以样本中去“沫若故居”的学生人数所占比例即可.【解析】解:估计初一年级愿意去“沫若故居”的学生人数为500×=200(人),故选:C.【点评】本题主要考查用样本估计总体,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.6.(3分)如图,菱形ABCD的对角线AC与BD相交于点O,E为边BC的中点,连结OE.若AC =6,BD=8,则OE=()A.2 B.C.3 D.4【分析】由菱形的性质得到OC=AC=3,OB=BD=4,AC⊥BD,由勾股定理求出BC的长,由直角三角形斜边中线的性质,即可求出OE的长.【解析】解:∵四边形ABCD是菱形,∴OC=AC,OB=BD,AC⊥BD,∵AC=6,BD=8,∴OC=3,OB=4,∴CB==5,∵E为边BC的中点,∴OE=BC=.故选:B.【点评】本题考查菱形的性质,直角三角形斜边的中线,勾股定理,关键是由菱形的性质求出OC,OB的长,由勾股定理求出BC的长,由直角三角形斜边的中线的性质即可求出OE的长.7.(3分)若关于x的一元二次方程x2﹣8x+m=0两根为x1、x2,且x1=3x2,则m的值为()A.4 B.8 C.12 D.16【分析】首先根据根与系数的关系得出x1+x2=8,再根据x1=3x2,求得x1,x2,进一步得出x1x2=m求得答案即可.【解析】解:∵一元二次方程x2﹣8x+m=0的两根为x1,x2,∴x1+x2=8,∵x1=3x2,解得x1=6,x2=2,∴m=x1x2=6×2=12.故选:C.【点评】本题考查了根与系数的关系.二次项系数为1,常用以下关系:x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q,反过来可得p=﹣(x1+x2),q=x1x2,前者是已知系数确定根的相关问题,后者是已知两根确定方程中未知系数.8.(3分)我国汉代数学家赵爽在注解《周髀算经》时给出“赵爽弦图”,如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形面积为25,小正方形面积为1,则sinθ=()A.B.C.4 D.【分析】根据题意和题目中的数据,可以求出斜边各边的长,然后即可计算出sinθ的值.【解析】解:设大正方形的边长为c,直角三角形的短直角边为a,长直角边为b,由题意可得:c2=25,b﹣a==1,a2+b2=c2,解得a=3,b=4,c=5,∴sinθ==,故选:A.【点评】本题考查勾股定理的证明、解直角三角形,解答本题的关键是明确题意,求出各边的长.9.(3分)如图4,抛物线y=ax2+bx+c经过点A(﹣1,0)、B(m,0),且1<m<2,有下列结论:①b<0;②a+b>0;③0<a<﹣c;④若点C(﹣,y1),D(,y2)在抛物线上,则y1>y2.其中,正确的结论有()A.4个B.3个C.2个D.1个【分析】根据题意画出抛物线的大致图象,利用函数图象,由抛物线开口方向得a>0,由抛物线的对称轴位置得b<0,由抛物线与y轴的交点位置得c<0,再根据二次函数的性质和图象分别判断即可得出答案.【解析】解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的右侧,∴b<0,故①正确;∵抛物线与y轴的交点在x轴下方,∴c<0,∵抛物线经过点A(﹣1,0),∴a﹣b+c=0,∴c=b﹣a,∵当x=2时,y>0,∴4a+2b+c>0,∴4a+2b+b﹣a>0,∴3a+3b>0,∴a+b>0,故②正确;∵a﹣b+c=0,∴a+c=b,∵b<0,∴a+c<0,∴0<a<﹣c,故③正确;∵点C(﹣,y1)到对称轴的距离比点D(,y2)到对称轴的距离近,∴y1<y2,故④的结论错误.故选:B.【点评】本题考查二次函数图象与系数的关系,解题关键是掌握二次函数的性质.10.(3分)如图,在平面直角坐标系xOy中,直线y=﹣x﹣2与x轴、y轴分别交于A、B两点,C、D是半径为1的⊙O上两动点,且CD=,P为弦CD的中点.当C、D两点在圆上运动时,△P AB面积的最大值是()A.8 B.6 C.4 D.3【分析】判断三角形PCD和三角形OAB都是等腰直角三角形,由题得,当P、O、Q共线时,S △ABP最大,求出AB、PQ,根据面积公式计算即可.【解析】解:作OQ⊥AB,连接OP、OD、OC,∵CD=,OC=OD=1,∴OC2+OD2=CD2,∴△OCD为等腰直角三角形,由y=﹣x﹣2得,点A(﹣2,0)、B(0,﹣2),∴OA=OB=2,∴△OAB为等腰直角三角形,∴AB=2,OQ=,由题得,当P、O、Q共线时,S最大,△ABP∵P为中点,∴OP=,∴PQ=OP+OQ=,=AB•PQ=3.∴S△ABP故选:D.【点评】本题考查了圆的相关知识点的应用,点圆最值的计算是解题关键.二、填空题:本大题共6个小题,每小题3分,共18分.11.(3分)不等式x﹣1>0的解集是x>1.【分析】根据不等式的基本性质,左右两边同时加上1,就可求出x的取值范围.【解析】解:解不等式x﹣1>0得,x>1.【点评】解答此题的关键是要熟知不等式两边同时加上一个数,不等号的方向不变.12.(3分)小张在“阳光大课间”活动中进行了5次一分钟跳绳练习,所跳个数分别为:160,163,160,157,160.这组数据的众数为160.【分析】根据众数的定义求解即可.【解析】解:由题意知,这组数据中160出现3次,次数最多,所以这组数据的众数为160,故答案为:160.【点评】本题主要考查众数,一组数据中出现次数最多的数据叫做众数.13.(3分)如图,点O在直线AB上,OD是∠BOC的平分线,若∠AOC=140°,则∠BOD的度数为20°.【分析】根据邻补角定义求得∠BOC的度数,再根据角平分线定义即可求得答案.【解析】解:∵∠AOC=140°,∴∠BOC=180°﹣140°=40°,∵OD是∠BOC的平分线,∴∠BOD=∠BOC=20°,故答案为:20°.【点评】本题主要考查角平分线的定义,此为几何中基础且重要知识点,必须熟练掌握.14.(3分)若m、n满足3m﹣n﹣4=0,则8m÷2n=16.【分析】直接利用幂的乘方运算法则将原式变形,进而计算得出答案.【解析】解:∵3m﹣n﹣4=0,∴3m﹣n=4,∴8m÷2n=23m÷2n=23m﹣n=24=16.故答案为:16.【点评】此题主要考查了幂的乘方运算,正确将原式变形是解题关键.15.(3分)如图,在平行四边形ABCD中,E是线段AB上一点,连结AC、DE交于点F.若,则=.【分析】通过证明△AEF∽△CDF,可得=,即可求解.【解析】解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵,∴设AE=2a,则BE=3a,∴AB=CD=5a,∵AB∥CD,∴△AEF∽△CDF,∴=,∴=,故答案为:.【点评】本题考查了相似三角形的判定和性质,平行四边形的性质,证明三角形相似是解题的关键.16.(3分)定义:若x,y满足x2=4y+t,y2=4x+t且x≠y(t为常数),则称点M(x,y)为“和谐点”.(1)若P(3,m)是“和谐点”,则m=﹣7;(2)若双曲线y=(﹣3<x<﹣1)存在“和谐点”,则k的取值范围3<k<4.【分析】(1)根据题意得出,消去t得到m2+4m﹣21=0,解方程即可求得m=﹣7;(2)根据题意得出,①﹣②得(x+)(x﹣)=﹣4(x﹣),整理得(x﹣)(x++4)=0,由x≠y,得出x++4=0,理得k=﹣x2﹣4x=﹣(x+2)2+4,由﹣3<x<﹣1,得出3<k<4.【解析】解:(1)∵P(3,m)是“和谐点”,∴,消去t得到m2+4m﹣21=0,解得m=﹣7或3,∵x≠y,∴m=﹣7;故答案为:﹣7;(2)∵双曲线y=(﹣3<x<﹣1)存在“和谐点”,∴,①﹣②得(x+)(x﹣)=﹣4(x﹣),∴(x﹣)(x++4)=0,∵x≠y,∴x++4=0,整理得k=﹣x2﹣4x=﹣(x+2)2+4,∵﹣3<x<﹣1,∴3<k<4.故答案为:3<k<4.【点评】本题考查了新定义,反比例函数图象上点的坐标特征,二次函数的最值等知识,本题综合性强,有一定难度.三、解答题:本大题共10个小题,共102分.解答应写出必要的文字说明,证明过程或演算步骤.17.(9分)计算:|﹣2|+20230﹣.【分析】直接利用绝对值的性质以及零指数幂的性质、二次根式的性质分别化简,进而得出答案.【解析】解:原式=2+1﹣2=1.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.18.(9分)解二元一次方程组:.【分析】利用加减消元法进行计算,即可解答.【解析】解:,①×2得:2x﹣2y=2③,②+③得:5x=10,解得:x=2,把x=2代入①中得:2﹣y=1,解得:y=1,∴原方程组的解为:.【点评】本题考查了解二元一次方程组,熟练掌握加减消元法是解题的关键.19.(9分)如图,已知AB与CD相交于点O,AC∥BD,AO=BO,求证:AC=BD.【分析】由平行线的性质可得∠A=∠B,∠C=∠D,利用AAS即可判定△AOC≌△BOD,从而得AC=BD.【解析】证明:∵AC∥BD,∴∠A=∠B,∠C=∠D,在△AOC和△BOD中,,∴△AOC≌△BOD(AAS),∴AC=BD.【点评】本题主要考查全等三角形的判定与性质,解答的关键是熟记全等三角形的判定定理与性质并灵活运用.20.(10分)如图,在Rt△ABC中,∠C=90°,点D为AB边上任意一点(不与点A、B重合),过点D作DE∥BC,DF∥AC,分别交AC、BC于点E、F,连结EF.(1)求证:四边形ECFD是矩形;(2)若CF=2,CE=4,求点C到EF的距离.【分析】(1)先证四边形ECFD为平行四边形,即可求解;(2)由勾股定理可求EF的长,由面积法可求解.【解析】(1)证明:∵FD∥CA,BC∥DE,∴四边形ECFD为平行四边形,又∵∠C=90°,∴四边形ECFD为矩形;(2)解:过点C作CH⊥EF于H,在Rt△ECF中,CF=2,CE=4,∴EF===2,∵S=×CF•CE=×EF•CH,△ECF∴CH==,∴点C到EF的距离为.【点评】本题考查了矩形的判定和性质,勾股定理,面积法等知识,灵活运用这些性质解决问题是解题的关键.21.(10分)为了践行习近平总书记提出的“绿水青山就是金山银山”的发展理念,某地计划在规定时间内种植梨树6000棵.开始种植时,由于志愿者的加入,实际每天种植梨树的数量比原计划增加了20%,结果提前2天完成任务.问原计划每天种植梨树多少棵?【分析】设原计划每天种植梨树x棵,则实际每天种植梨树(1+20%)x棵,利用工作时间=工作总量÷工作效率,结合实际比原计划提前2天完成任务,可得出关于x的分式方程,解之经检验后,即可得出结论.【解析】解:设原计划每天种植梨树x棵,则实际每天种植梨树(1+20%)x棵,根据题意得:﹣=2,解得:x=500,经检验,x=500是所列方程的解,且符合题意.答:原计划每天种植梨树500棵.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.22.(10分)为培养同学们爱劳动的习惯,某班开展了“做好一件家务”主题活动,要求全班同学人人参与.经统计,同学们做的家务类型为“洗衣”“拖地”“煮饭”“刷碗”,班主任将以上信息绘制成了统计图表,如图所示.家务类型洗衣拖地煮饭刷碗人数(人)10 12 10 m根据上面图表信息,回答下列问题:(1)m=8;(2)在扇形统计图中,“拖地”所占的圆心角度数为108°;(3)班会课上,班主任评选出了近期做家务表现优异的4名同学,其中有2名男生.现准备从表现优异的同学中随机选取两名同学分享体会,请用画树状图或列表的方法求所选同学中有男生的概率.【分析】(1)先根据煮饭人数及其所占百分比求出总人数,继而可得m的值;(2)用360°乘以“拖地”所占比例即可;(3)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【解析】解:(1)因为被调查的总人数为10÷25%=40(人),所以m=40﹣(10+12+10)=8,故答案为:8;(2)在扇形统计图中,“拖地”所占的圆心角度数为360°×=108°,故答案为:108°;(3)列表如下:男1 男2 女1 女2男1 (男1,男2)(男1,女1)(男1,女2)男2 (男2,男1)(男2,女1)(男2,女2)女1 (女1,男1)(女1,男2)(女1,女2)女2 (女2,男1)(女2,男2)(女2,女1)由表知,共有12种等可能结果,其中所选同学中有男生的有10种结果,所以所选同学中有男生的概率为=.【点评】本题考查的是条形统计图和扇形统计图以及求随机事件的概率,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.(10分)如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(m,4),与x轴交于点B,与y轴交于点C(0,3).(1)求m的值和一次函数的表达式;(2)已知P为反比例函数y=图象上的一点,S△OBP =2S△OAC,求点P的坐标.【分析】(1)把A(m,4)代入反比例函数解析式求得m的值,然后利用待定系数法即可求得一次函数的解析式;(2)过点A作AH⊥y轴于点H,过点P作PD⊥x轴于点D,由S△OBP =2S△OAC得到,即,解得PD=2,即可求得点P的纵坐标为2或﹣2,进一步求得点P的坐标.【解析】解:(1)∵点A(m,4)在反比例函数的图象上,∴,∴m=1,∴A(1,4),又∵点A(1,4)、C(0,3)都在一次函数y=kx+b的图象上,∴,解得,∴一次函数的解析式为y=x+3;(2)对于y=x+3,当y=0时,x=﹣3,∴OB=3,∵C(0,3),∴OC=3,过点A作AH⊥y轴于点H,过点P作PD⊥x轴于点D,∵S△OBP =2S△OAC,∴,即,解得PD=2,∴点P的纵坐标为2或﹣2,将y=2或﹣2代入得x=2或﹣2,∴点P(2,2)或(﹣2,﹣2).【点评】本题是反比例函数与一次函数的交点问题,考查了反比例函数图象上点的坐标特征,待定系数法求一次函数的解析式,三角形的面积,数形结合是解题的关键.24.(10分)如图,已知⊙O是Rt△ABC的外接圆,∠ACB=90°,D是圆上一点,E是DC延长线上一点,连结AD,AE,且AD=AE,CA=CE.(1)求证:直线AE是⊙O是的切线;(2)若sin E=,⊙O的半径为3,求AD的长.【分析】(1)先由∠ACB=90°,证明AB是⊙O的直径,再证明∠CAE=∠B,则∠OAE=∠CAE+∠CAB=∠B+∠CAB=90°,即可证明直线AE是⊙O是的切线;(2)由∠E=∠CAE=∠B,得=sin B=sin E==,则CE=CA=AB=×6=4,CF=CE =×4=,所以AF=BF==,则AD=AE=2AF=.【解析】(1)证明:∵∠ACB=90°,∴AB是⊙O的直径,∵AD=AE,∴∠E=∠D,∵∠B=∠D,∴∠E=∠B,∵CA=CE,∴∠E=∠CAE,∴∠CAE=∠B,∴∠OAE=∠CAE+∠CAB=∠B+∠CAB=90°,∵OA是⊙O的半径,且AE⊥OA,∴直线AE是⊙O是的切线.(2)解:作CF⊥AE于点F,则∠CFE=90°,∵∠E=∠CAE=∠B,∴=sin B=sin E==,∵OA=OB=3,∴AB=6,∴CE=CA=AB=×6=4,∴CF=CE=×4=,∴AF=BF===,∴AD=AE=2AF=2×=,∴AD的长是.【点评】此题重点考查切线的判定、圆周角定理、等腰三角形的性质、勾股定理、锐角三角函数与解直角三角形等知识,正确地作出所需要的辅助线是解题的关键.25.(12分)在学习完《图形的旋转》后,刘老师带领学生开展了一次数学探究活动.【问题情境】刘老师先引导学生回顾了华东师大版教材七年级下册第121页“探索”部分内容:如图1,将一个三角形纸板△ABC绕点A逆时针旋转θ到达的位置△A′B′C′的位置,那么可以得到:AB=AB′,AC=AC′,BC=B′C′;∠BAC=∠B′AC′,∠ABC=∠AB′C′,∠ACB=∠AC′B′.(_____)刘老师进一步谈到:图形的旋转蕴含于自然界的运动变化规律中,即“变”中蕴含着“不变”,这是我们解决图形旋转的关键.故数学就是一门哲学.【问题解决】(1)上述问题情境中“(_____)”处应填理由:旋转前后的图形对应线段相等,对应角相等;(2)如图2,小王将一个半径为4cm,圆心角为60°的扇形纸板ABC绕点O逆时针旋转90°到达扇形纸板A′B′C′的位置.①请在图中作出点O;②如果BB′=6cm,则在旋转过程中,点B经过的路径长为cm;【问题拓展】小李突发奇想,将与(2)中完全相同的两个扇形纸板重叠,一个固定在墙上,使得一边位于水平位置.另一个在弧的中点处固定,然后放开纸板,使其摆动到竖直位置时静止.此时,两个纸板重叠部分的面积是多少呢?如图3所示,请你帮助小李解决这个问题.【分析】【问题解决】(1)由旋转的性质即可知答案为旋转前后的图形对应线段相等,对应角相等;(2)①作线段BB',AA'的垂直平分线,两垂直平分线交于O,点O为所求;②由∠BOB'=90°,OB=OB',可得OB==3,再用弧长公式可得答案;【问题拓展】连接P A',交AC于M,连接P A,PD,AA',PB',PC,求出A'D===,DM=A'D=,可得S△A'DP=××4=;S扇形P A'B'==,证明△PB′D≌△PCD(SSS)可知阴影部分关于PD对称,故重叠部分面积为2(﹣)=(cm2).【解析】解:【问题解决】(1)根据题意,AB=AB′,AC=AC′,BC=B′C′;∠BAC=∠B′AC′,∠ABC=∠AB′C′,∠ACB=∠AC′B′的理由是:旋转前后的图形对应线段相等,对应角相等,故答案为:旋转前后的图形对应线段相等,对应角相等;(2)①如图:作线段BB',AA'的垂直平分线,两垂直平分线交于O,点O为所求;②∵∠BOB'=90°,OB=OB',∴△BOB'是等腰直角三角形,∵BB'=6,∴OB==3,∵=(cm),∴点B经过的路径长为cm,故答案为:cm;【问题拓展】连接P A',交AC于M,连接P A,PD,AA',PB',PC,如图:∵点P为中点,∴∠P AB=,由旋转得∠P A'B'=30°,P A=P A′=4,在Rt△P AM中,PM=P A•sin∠P AM=4×sin30°=2,∴A'M=P A'﹣PM=4﹣2=2,在Rt△A′DM中,A'D===,DM=A'D=,∴S△A'DP=××4=;S扇形P A'B'==,下面证明阴影部分关于PD对称:∵∠P AC=∠P A'B'=30°,∠ADN=∠A'DM,∴∠AND=∠A'MD=90°,∴∠PNA'=90°,∴PN=P A'=2,∴AN=P A﹣PN=2,∴AN=A′M,∴△AND≌△A'MD(AAS),∴AD=A′D,∴CD=B'D,∵PD=PD,PB'=PC,∴△PB′D≌△PCD(SSS),∴阴影部分面积被PD等分,∴S阴影=2(S△A'DP﹣S扇形P A'B')=2(﹣)=(cm2).∴两个纸板重叠部分的面积是cm2.【点评】本题考查圆的综合应用,涉及扇形的旋转问题,三角形全等的判定与旋转,三角形,扇形的面积等,证明阴影部分关于AD对称是解题的关键.26.(13分)已知(x1,y1),(x2,y2)是抛物线C1:y=﹣x2+bx(b为常数)上的两点,当x1+x2=0时,总有y1=y2.(1)求b的值;(2)将抛物线C1平移后得到抛物线C2:y=﹣(x﹣m)2+1(m>0).当0≤x≤2时,探究下列问题:①若抛物线C1与抛物线C2有一个交点,求m的取值范围;②设抛物线C2与x轴交于A,B两点,与y轴交于点C,抛物线C2的顶点为点E,△ABC外接圆的圆心为点F.如果对抛物线C1上的任意一点P,在抛物线C2上总存在一点Q,使得点P、Q的纵坐标相等.求EF长的取值范围.【分析】(1)根据当x1+x2=0时,总有y1=y2,构建方程,求解即可;(2)①求出抛物线经过(0,0)或(2,﹣1)时的m的值,可得结论;②判断出抛物线经过(1,0)或(2,0)时m的值,求出m的取值范围,再根据FH2+HB2=FG2+GC2,设FH=t,构建关系式,求出即,可得结论.【解析】解:(1)由题可知:y1=﹣+bx1,y2=﹣+bx2,∵当x1+x2=0 时,总有y1=y2,∴﹣+bx1=﹣+bx2,整理得:(x1﹣x2)(x1+x2﹣4b)=0,∵x1≠x2,∴x1﹣x2≠0,∴x1+x2﹣4b=0,∴b=0;(2)①注意到抛物线C2最大值和开口大小不变,m只影响图象左右平移.下面考虑满足题意的两种临界情形:(i)当抛物线C2过点(0,0)时,如图1所示,此时,x=0,,解得m=2或﹣2(舍).(i)当抛物线C2过点(2,﹣1)时,如图2所示,此时,x=2,解得或(舍).综上所述,2≤m≤2+2;②同①考虑满足题意的两种临界情形:(i)当抛物线C2过点(0,﹣1)时,如图3所示,此时,x=0,,解得或(舍).(ii)当抛物线C2过点(2,0)时,如图4所示,此时,x=2,,解得m=4 或0(舍).综上所述,.如图5,由圆的性质可知,点E、F在线段AB的垂直平分线上,,解得x A=m﹣2,x B=m+2,∴HB=m+2﹣m=2,∵FB=FC.∴FH2+HB2=FG2+GC2,设FH=t,∴t2+22=(﹣1﹣t)2+m2,∴(﹣1)2﹣2(﹣1)t+m2﹣4=0,∴(﹣1)(﹣2t+3)=0,∵m≥2,∴﹣1≠0,∴,即,∵∴,即<FH≤,∵EF=FH+1,∴.【点评】本题属于二次函数综合题,考查了二次函数的性质,一元二次方程等知识,解题的关键是理解题意,学会寻找特殊点解决问题,属于中考压轴题.。
2020年乐山市中考数学试题、试卷(解析版)
2020年乐山市中考数学试题、试卷(解析版)一、选择题:本大题共10个小题,每小题3分,共30分.1.(3分)12的倒数是( ) A .−12 B .12 C .﹣2 D .22.(3分)某校在全校学生中举办了一次“交通安全知识”测试,张老师从全校学生的答卷中随机地抽取了部分学生的答卷,将测试成绩按“差”、“中”、“良”、“优”划分为四个等级,并绘制成如图所示的条形统计图.若该校学生共有2000人,则其中成绩为“良”和“优”的总人数估计为( )A .1100B .1000C .900D .1103.(3分)如图,E 是直线CA 上一点,∠FEA =40°,射线EB 平分∠CEF ,GE ⊥EF .则∠GEB =( )A .10°B .20°C .30°D .40°4.(3分)数轴上点A 表示的数是﹣3,将点A 在数轴上平移7个单位长度得到点B .则点B 表示的数是( )A .4B .﹣4或10C .﹣10D .4或﹣105.(3分)如图,在菱形ABCD 中,AB =4,∠BAD =120°,O 是对角线BD 的中点,过点O 作OE ⊥CD 于点E ,连结OA .则四边形AOED 的周长为( )A.9+2√3B.9+√3C.7+2√3D.86.(3分)直线y=kx+b在平面直角坐标系中的位置如图所示,则不等式kx+b≤2的解集是()A.x≤﹣2B.x≤﹣4C.x≥﹣2D.x≥﹣47.(3分)观察下列各方格图中阴影部分所示的图形(每一小方格的边长为1),如果将它们沿方格边线或对角线剪开重新拼接,不能拼成正方形的是()A.B.C.D.8.(3分)已知3m=4,32m﹣4n=2.若9n=x,则x的值为()A.8B.4C.2√2D.√29.(3分)在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1.如图所示,将△ABC 绕点A按逆时针方向旋转90°后得到△AB′C′.则图中阴影部分面积为()A .π4B .π−√32C .π−√34D .√32π 10.(3分)如图,在平面直角坐标系中,直线y =﹣x 与双曲线y =k x 交于A 、B 两点,P 是以点C (2,2)为圆心,半径长1的圆上一动点,连结AP ,Q 为AP 的中点.若线段OQ 长度的最大值为2,则k 的值为( )A .−12B .−32C .﹣2D .−14二、填空题:本大题共6个小题,每小题3分,共18分.11.(3分)用“>”或“<”符号填空:﹣7 ﹣9.12.(3分)某小组七位学生的中考体育测试成绩(满分40分)依次为37,40,39,37,40,38,40.则这组数据的中位数是 .13.(3分)如图是某商场营业大厅自动扶梯示意图.自动扶梯AB 的倾斜角为30°,在自动扶梯下方地面C 处测得扶梯顶端B 的仰角为60°,A 、C 之间的距离为4m .则自动扶梯的垂直高度BD = m .(结果保留根号)14.(3分)已知y ≠0,且x 2﹣3xy ﹣4y 2=0.则x y 的值是 . 15.(3分)把两个含30°角的直角三角板按如图所示拼接在一起,点E 为AD 的中点,连结BE 交AC 于点F .则AF AC = .16.(3分)我们用符号[x ]表示不大于x 的最大整数.例如:[1.5]=1,[﹣1.5]=﹣2.那么:(1)当﹣1<[x ]≤2时,x 的取值范围是 ;(2)当﹣1≤x <2时,函数y =x 2﹣2a [x ]+3的图象始终在函数y =[x ]+3的图象下方.则实数a 的范围是 .三、本大题共3个小题,每小题9分,共27分.17.(9分)计算:|﹣2|﹣2cos60°+(π﹣2020)0.18.(9分)解二元一次方程组:{2x +y =2,8x +3y =9.19.(9分)如图,E 是矩形ABCD 的边CB 上的一点,AF ⊥DE 于点F ,AB =3,AD =2,CE =1.求DF 的长度.四、本大题共3个小题,每小题10分,共30分.20.(10分)已知y =2x ,且x ≠y ,求(1x−y +1x+y )÷x 2y x 2−y 2的值. 21.(10分)如图,已知点A (﹣2,﹣2)在双曲线y =k x 上,过点A 的直线与双曲线的另一支交于点B (1,a ).(1)求直线AB 的解析式;(2)过点B 作BC ⊥x 轴于点C ,连结AC ,过点C 作CD ⊥AB 于点D .求线段CD 的长.22.(10分)自新冠肺炎疫情爆发以来,我国人民上下一心,团结一致,基本控制住了疫情.然而,全球新冠肺炎疫情依然严重,境外许多国家的疫情尚在继续蔓延,疫情防控不可松懈.如图是某国截止5月31日新冠病毒感染人数的扇形统计图和折线统计图.根据上面图表信息,回答下列问题:(1)截止5月31日该国新冠肺炎感染总人数累计为万人,扇形统计图中40﹣59岁感染人数对应圆心角的度数为°;(2)请直接在图中补充完整该国新冠肺炎感染人数的折线统计图;(3)在该国所有新冠肺炎感染病例中随机地抽取1人,求该患者年龄为60岁或60岁以上的概率;(4)若该国感染病例中从低到高各年龄段的死亡率依次为1%、2.75%、3.5%、10%、20%,求该国新冠肺炎感染病例的平均死亡率.五、本大题共2个小题,每小题10分,共20分.23.(10分)某汽车运输公司为了满足市场需要,推出商务车和轿车对外租赁业务.下面是乐山到成都两种车型的限载人数和单程租赁价格表:车型每车限载人数(人)租金(元/辆)商务车6300轿车4(1)如果单程租赁2辆商务车和3辆轿车共需付租金1320元,求一辆轿车的单程租金为多少元?(2)某公司准备组织34名职工从乐山赴成都参加业务培训,拟单程租用商务车或轿车前往.在不超载的情况下,怎样设计租车方案才能使所付租金最少?̂上一点,DE⊥AB于点E,24.(10分)如图1,AB是半圆O的直径,AC是一条弦,D是AC交AC于点F,连结BD交AC于点G,且AF=FG.̂;(1)求证:点D平分AC(2)如图2所示,延长BA至点H,使AH=AO,连结DH.若点E是线段AO的中点.求证:DH是⊙O的切线.六、本大题共2个小题,第25题12分,第26题13分,共25分.25.(12分)点P是平行四边形ABCD的对角线AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C向直线BP作垂线,垂足分别为点E、F.点O为AC的中点.(1)如图1,当点P与点O重合时,线段OE和OF的关系是;(2)当点P运动到如图2所示的位置时,请在图中补全图形并通过证明判断(1)中的结论是否仍然成立?(3)如图3,点P在线段OA的延长线上运动,当∠OEF=30°时,试探究线段CF、AE、OE之间的关系.26.(13分)已知抛物线y =ax 2+bx +c 与x 轴交于A (﹣1,0),B (5,0)两点,C 为抛物线的顶点,抛物线的对称轴交x 轴于点D ,连结BC ,且tan ∠CBD =43,如图所示.(1)求抛物线的解析式;(2)设P 是抛物线的对称轴上的一个动点.①过点P 作x 轴的平行线交线段BC 于点E ,过点E 作EF ⊥PE 交抛物线于点F ,连结FB 、FC ,求△BCF 的面积的最大值;②连结PB ,求35PC +PB 的最小值.2020年四川省乐山市中考数学试卷参考答案与试题解析一、选择题:本大题共10个小题,每小题3分,共30分.1.(3分)12的倒数是( ) A .−12 B .12C .﹣2D .2 【解答】解:根据倒数的定义,可知12的倒数是2.故选:D .2.(3分)某校在全校学生中举办了一次“交通安全知识”测试,张老师从全校学生的答卷中随机地抽取了部分学生的答卷,将测试成绩按“差”、“中”、“良”、“优”划分为四个等级,并绘制成如图所示的条形统计图.若该校学生共有2000人,则其中成绩为“良”和“优”的总人数估计为( )A .1100B .1000C .900D .110 【解答】解:2000×85+2525+85+72+18=1100(人), 故选:A .3.(3分)如图,E 是直线CA 上一点,∠FEA =40°,射线EB 平分∠CEF ,GE ⊥EF .则∠GEB =( )A .10°B .20°C .30°D .40°【解答】解:∵∠FEA =40°,GE ⊥EF ,∴∠CEF =180°﹣∠FEA =180°﹣40°=140°,∠CEG =180°﹣∠AEF ﹣∠GEF =180°﹣40°﹣90°=50°,∵射线EB平分∠CEF,∴∠CEB=12∠CEF=12×140°=70°,∴∠GEB=∠CEB﹣∠CEG=70°﹣50°=20°,故选:B.4.(3分)数轴上点A表示的数是﹣3,将点A在数轴上平移7个单位长度得到点B.则点B表示的数是()A.4B.﹣4或10C.﹣10D.4或﹣10【解答】解:点A表示的数是﹣3,左移7个单位,得﹣3﹣7=﹣10,点A表示的数是﹣3,右移7个单位,得﹣3+7=4.所以点B表示的数是4或﹣10.故选:D.5.(3分)如图,在菱形ABCD中,AB=4,∠BAD=120°,O是对角线BD的中点,过点O作OE⊥CD于点E,连结OA.则四边形AOED的周长为()A.9+2√3B.9+√3C.7+2√3D.8【解答】解:∵四边形ABCD为菱形,∴AD=AB=4,AB∥CD,∵∠BAD=120°,∴∠ADB=∠CDB=30°,∵O是对角线BD的中点,∴AO⊥BD,在Rt△AOD中,AO=12AD=2,OD=√3OA=2√3,∵OE⊥CD,∴∠DEO=90°,在Rt △DOE 中,OE =12OD =√3,DE =√3OE =3,∴四边形AOED 的周长=4+2+√3+3=9+√3.故选:B .6.(3分)直线y =kx +b 在平面直角坐标系中的位置如图所示,则不等式kx +b ≤2的解集是( )A .x ≤﹣2B .x ≤﹣4C .x ≥﹣2D .x ≥﹣4【解答】解:∵直线y =kx +b 与x 轴交于点(2,0),与y 轴交于点(0,1),∴{2k +b =0b =1,解得{k =−12b =1∴直线为y =−12x +1,当y =2时,2=−12x +1,解得x =﹣2,由图象可知:不等式kx +b ≤2的解集是x ≥﹣2,故选:C .7.(3分)观察下列各方格图中阴影部分所示的图形(每一小方格的边长为1),如果将它们沿方格边线或对角线剪开重新拼接,不能拼成正方形的是( ) A . B .C .D .【解答】解:由题意,选项D 阴影部分面积为6,A ,B ,C 的阴影部分的面积为5, 如果能拼成正方形,选项D 的正方形的边长为√6,选项A ,B ,C 的正方形的边长为√5, 观察图象可知,选项A ,B ,C 阴影部分沿方格边线或对角线剪开均可得图1的5个图形,可以拼成图2的边长为√5的正方形,故选:D .8.(3分)已知3m =4,32m﹣4n=2.若9n =x ,则x 的值为( )A .8B .4C .2√2D .√2【解答】解:∵3m =4,32m ﹣4n=(3m )2÷(3n )4=2.∴42÷(3n )4=2, ∴(3n )4=42÷2=8, 又∵9n =32n =x ,∴(3n )4=(32n )2=x 2, ∴x 2=8, ∴x =√8=2√2. 故选:C .9.(3分)在△ABC 中,已知∠ABC =90°,∠BAC =30°,BC =1.如图所示,将△ABC 绕点A 按逆时针方向旋转90°后得到△AB ′C ′.则图中阴影部分面积为( )A .π4B .π−√32C .π−√34D .√32π 【解答】解:∵∠ABC =90°,∠BAC =30°,BC =1, ∴AB =√3BC =√3,AC =2BC =2, ∴90⋅π×22360−90⋅π×3360−(12×1×√3−30⋅π×3360)=π−√32, 故选:B .10.(3分)如图,在平面直角坐标系中,直线y=﹣x与双曲线y=kx交于A、B两点,P是以点C(2,2)为圆心,半径长1的圆上一动点,连结AP,Q为AP的中点.若线段OQ 长度的最大值为2,则k的值为()A.−12B.−32C.﹣2D.−14【解答】解:点O是AB的中点,则OQ是△ABP的中位线,当B、C、P三点共线时,PB最大,则OQ=12BP最大,而OQ的最大值为2,故BP的最大值为4,则BC=BP﹣PC=4﹣1=3,设点B(m,﹣m),则(m﹣2)2+(﹣m﹣2)2=32,解得:m2=1 2,∴k=m(﹣m)=−1 2,故选:A.二、填空题:本大题共6个小题,每小题3分,共18分.11.(3分)用“>”或“<”符号填空:﹣7>﹣9.【解答】解:∵|﹣7|=7,|﹣9|=9,7<9,∴﹣7>﹣9,故答案为:>.12.(3分)某小组七位学生的中考体育测试成绩(满分40分)依次为37,40,39,37,40,38,40.则这组数据的中位数是39.【解答】解:把这组数据从小到大排序后为37,37,38,39,40,40,40,其中第四个数据为39,所以这组数据的中位数为39. 故答案为39.13.(3分)如图是某商场营业大厅自动扶梯示意图.自动扶梯AB 的倾斜角为30°,在自动扶梯下方地面C 处测得扶梯顶端B 的仰角为60°,A 、C 之间的距离为4m .则自动扶梯的垂直高度BD = 2√3 m .(结果保留根号)【解答】解:∵∠BCD =∠BAC +∠ABC ,∠BAC =30°,∠BCD =60°, ∴∠ABC =∠BCD ﹣∠BAC =30°, ∴∠BAC =∠ABC , ∴BC =AC =4,在Rt △BDC 中,sin ∠BCD =BDBC, ∴sin60°=BD 4=√32, ∴BD =2√3(m ),答:自动扶梯的垂直高度BD =2√3m , 故答案为:2√3.14.(3分)已知y ≠0,且x 2﹣3xy ﹣4y 2=0.则xy 的值是 4或﹣1 .【解答】解:∵x 2﹣3xy ﹣4y 2=0,即(x ﹣4y )(x +y )=0, 可得x =4y 或x =﹣y , ∴xy =4或xy=−1,即x y的值是4或﹣1; 故答案为:4或﹣1.15.(3分)把两个含30°角的直角三角板按如图所示拼接在一起,点E 为AD 的中点,连结BE 交AC 于点F .则AF AC=35.【解答】解:连接CE ,∵∠CAD =30°,∠ACD =90°,E 是AD 的中点, ∴AC =√32AD ,CE =12AD =AE , ∴∠ACE =∠CAE =30° ∵∠BAC =30°,∠ABC =90°, ∴AB =√32AC =34AD ,∠BAC =∠ACE , ∴AB ∥CE , ∴△ABF ∽△CEF , ∴AF CF =AB CE =34AD 12AD =32,∴AF AC=35,故答案为35.16.(3分)我们用符号[x ]表示不大于x 的最大整数.例如:[1.5]=1,[﹣1.5]=﹣2.那么: (1)当﹣1<[x ]≤2时,x 的取值范围是 0≤x ≤2 ;(2)当﹣1≤x <2时,函数y =x 2﹣2a [x ]+3的图象始终在函数y =[x ]+3的图象下方.则实数a 的范围是 a <−1或a ≥32 . 【解答】解:(1)由题意∵﹣1<[x ]≤2, ∴0≤x ≤2, 故答案为0≤x ≤2.(2)由题意:当﹣1≤x <2时,函数y =x 2﹣2a [x ]+3的图象始终在函数y =[x ]+3的图象下方,则有x =﹣1时,1+2a +3<﹣1+3,解得a <﹣1, 或x =2时,4﹣2a +3≤1+3,解得a ≥32, 故答案为a <﹣1或a ≥32.三、本大题共3个小题,每小题9分,共27分. 17.(9分)计算:|﹣2|﹣2cos60°+(π﹣2020)0. 【解答】解:原式=2−2×12+1 =2.18.(9分)解二元一次方程组:{2x +y =2,8x +3y =9.【解答】解:{2x +y =2①8x +3y =9②,法1:②﹣①×3,得 2x =3, 解得:x =32,把x =32代入①,得 y =﹣1, ∴原方程组的解为{x =32y =−1; 法2:由②得:2x +3(2x +y )=9, 把①代入上式, 解得:x =32,把x =32代入①,得 y =﹣1, ∴原方程组的解为{x =32y =−1. 19.(9分)如图,E 是矩形ABCD 的边CB 上的一点,AF ⊥DE 于点F ,AB =3,AD =2,CE =1.求DF 的长度.【解答】解:∵四边形ABCD 是矩形, ∴DC =AB =3,∠ADC =∠C =90°. ∵CE =1,∴DE =√DC 2+CE 2=√10. ∵AF ⊥DE ,∴∠AFD =90°=∠C ,∠∠ADF +∠DAF =90°. 又∵∠ADF +∠EDC =90°, ∴∠EDC =∠DAF , ∴△EDC ∽△DAF , ∴DE AD=CE FD ,即√102=1FD, ∴FD =√105,即DF 的长度为√105.四、本大题共3个小题,每小题10分,共30分.20.(10分)已知y =2x ,且x ≠y ,求(1x−y +1x+y )÷x 2y22的值.【解答】解:原式=2x (x+y)(x−y)÷x 2yx 2−y 2=2x x 2−y 2×x 2−y 2x 2y =2xy , ∵y =2x ,∴原式=2x⋅2x=1 解法2:同解法1,得原式=2xy, ∵y =2x , ∴xy =2, ∴原式=22=1. 21.(10分)如图,已知点A (﹣2,﹣2)在双曲线y =kx 上,过点A 的直线与双曲线的另一支交于点B (1,a ). (1)求直线AB 的解析式;(2)过点B 作BC ⊥x 轴于点C ,连结AC ,过点C 作CD ⊥AB 于点D .求线段CD 的长.【解答】解:(1)将点A (﹣2,﹣2)代入y =k x,得k =4, 即y =4x ,将B (1,a )代入y =4x ,得a =4, 即B (1,4),设直线AB 的解析式为y =mx +n ,将A (﹣2,﹣2)、B (1,4)代入y =kx +b ,得{−2=−2m +n 4=m +n ,解得{m =2n =2,∴直线AB 的解析式为y =2x +2;(2)∵A (﹣2,﹣2)、B (1,4), ∴AB =√(−2−1)2+(−2−4)2=3√5,∵S△ABC=12×AB×CD=12×BC×3,∴CD=BC×3AB=35=4√55.22.(10分)自新冠肺炎疫情爆发以来,我国人民上下一心,团结一致,基本控制住了疫情.然而,全球新冠肺炎疫情依然严重,境外许多国家的疫情尚在继续蔓延,疫情防控不可松懈.如图是某国截止5月31日新冠病毒感染人数的扇形统计图和折线统计图.根据上面图表信息,回答下列问题:(1)截止5月31日该国新冠肺炎感染总人数累计为20万人,扇形统计图中40﹣59岁感染人数对应圆心角的度数为72°;(2)请直接在图中补充完整该国新冠肺炎感染人数的折线统计图;(3)在该国所有新冠肺炎感染病例中随机地抽取1人,求该患者年龄为60岁或60岁以上的概率;(4)若该国感染病例中从低到高各年龄段的死亡率依次为1%、2.75%、3.5%、10%、20%,求该国新冠肺炎感染病例的平均死亡率.【解答】解:(1)截止5月31日该国新冠肺炎感染总人数累计为9÷45%=20(万人),扇形统计图中40﹣59岁感染人数对应圆心角的度数为360°×420=72°,故答案为:20、72;(2)20﹣39岁人数为20×10%=2(万人),补全的折线统计图如图2所示;(3)该患者年龄为60岁及以上的概率为:9+4.520×100%=67.5%=0.675;(4)该国新冠肺炎感染病例的平均死亡率为:0.5×1%+2×2.75%+4×3.5%+9×10%+4.5×20%20×100%=10%.五、本大题共2个小题,每小题10分,共20分.23.(10分)某汽车运输公司为了满足市场需要,推出商务车和轿车对外租赁业务.下面是乐山到成都两种车型的限载人数和单程租赁价格表:车型 每车限载人数(人)租金(元/辆)商务车 6 300 轿车4(1)如果单程租赁2辆商务车和3辆轿车共需付租金1320元,求一辆轿车的单程租金为多少元?(2)某公司准备组织34名职工从乐山赴成都参加业务培训,拟单程租用商务车或轿车前往.在不超载的情况下,怎样设计租车方案才能使所付租金最少? 【解答】解:(1)设租用一辆轿车的租金为x 元, 由题意得:300×2+3x =1320, 解得 x =240,答:租用一辆轿车的租金为240元;(2)①若只租用商务车, ∵346=523,∴只租用商务车应租6辆,所付租金为300×6=1800(元); ②若只租用轿车, ∵344=8.5,∴只租用轿车应租9辆,所付租金为240×9=2160(元);③若混和租用两种车,设租用商务车m 辆,租用轿车n 辆,租金为W 元. 由题意,得 {6m +4n =34W =300m +240n ,由6m +4n =34,得 4n =﹣6m +34,∴W =300m +60(﹣6m +34)=﹣60m +2040, ∵﹣6m +34=4n ≥0, ∴m ≤173, ∴1≤m ≤5,且m 为整数, ∵W 随m 的增大而减小,∴当m =5时,W 有最小值1740,此时n =1.综上,租用商务车5辆和轿车1辆时,所付租金最少为1740元.24.(10分)如图1,AB 是半圆O 的直径,AC 是一条弦,D 是AC ̂上一点,DE ⊥AB 于点E ,交AC 于点F ,连结BD 交AC 于点G ,且AF =FG . (1)求证:点D 平分AĈ; (2)如图2所示,延长BA 至点H ,使AH =AO ,连结DH .若点E 是线段AO 的中点.求证:DH 是⊙O 的切线.【解答】证明:(1)如图1,连接AD 、BC , ∵AB 是半圆O 的直径, ∴∠ADB =90°,∵DE⊥AB,∴∠ADE=∠ABD,又∵AF=FG,即点F是Rt△AGD的斜边AG的中点,∴DF=AF,∴∠DAF=∠ADF=∠ABD,又∵∠DAC=∠DBC,∴∠ABD=∠DBC,∴AD̂=DĈ,∴即点D平分AĈ;(2)如图2所示,连接OD、AD,∵点E是线段OA的中点,∴OE=12OA=12OD,∴∠AOD=60°,∴△OAD是等边三角形,∴AD=AO=AH,∴△ODH是直角三角形,且∠HDO=90°,∴DH是⊙O的切线.六、本大题共2个小题,第25题12分,第26题13分,共25分.25.(12分)点P是平行四边形ABCD的对角线AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C向直线BP作垂线,垂足分别为点E、F.点O为AC的中点.(1)如图1,当点P与点O重合时,线段OE和OF的关系是OE=OF;(2)当点P运动到如图2所示的位置时,请在图中补全图形并通过证明判断(1)中的结论是否仍然成立?(3)如图3,点P在线段OA的延长线上运动,当∠OEF=30°时,试探究线段CF、AE、OE之间的关系.【解答】解:(1)∵四边形ABCD是平行四边形,∴AO=CO,又∵∠AEO=∠CFO,∠AOE=∠COF=90°,∴△AEO≌△CFO(AAS),∴OE=OF,故答案为:OE=OF;(2)补全图形如图所示,结论仍然成立,理由如下:延长EO交CF于点G,∵AE⊥BP,CF⊥BP,∴AE∥CF,∴∠EAO=∠GCO,∵点O为AC的中点,∴AO=CO,又∵∠AOE =∠COG ,∴△AOE ≌△COG (AAS ),∴OE =OG ,∵∠GFE =90°,∴OE =OF ;(4)点P 在线段OA 的延长线上运动时,线段CF 、AE 、OE 之间的关系为OE =CF +AE , 证明如下:如图,延长EO 交FC 的延长线于点H ,由(2)可知△AOE ≌△COH ,∴AE =CH ,OE =OH ,又∵∠OEF =30°,∠HFE =90°,∴HF =12EH =OE ,∴OE =CF +CH =CF +AE .26.(13分)已知抛物线y =ax 2+bx +c 与x 轴交于A (﹣1,0),B (5,0)两点,C 为抛物线的顶点,抛物线的对称轴交x 轴于点D ,连结BC ,且tan ∠CBD =43,如图所示.(1)求抛物线的解析式;(2)设P 是抛物线的对称轴上的一个动点.①过点P 作x 轴的平行线交线段BC 于点E ,过点E 作EF ⊥PE 交抛物线于点F ,连结FB 、FC ,求△BCF 的面积的最大值;②连结PB ,求35PC +PB 的最小值.【解答】解:(1)根据题意,可设抛物线的解析式为:y =a (x +1)(x ﹣5), ∵抛物线的对称轴为直线x =2,∴D (2,0),又∵tan ∠CBD =43=CD DB, ∴CD =BD •tan ∠CBD =4,即C (2,4),代入抛物线的解析式,得4=a (2+1)(2﹣5),解得 a =−49,∴二次函数的解析式为 y =−49(x +1)(x −5)=−49x 2+169x +209; (2)①设P (2,t ),其中0<t <4,设直线BC 的解析式为 y =kx +b ,∴{0=5k +b ,4=2k +b., 解得 {k =−43,b =203.即直线BC 的解析式为 y =−43x +203, 令y =t ,得:x =5−34t ,∴点E (5−34t ,t ),把x =5−34t 代入y =−49(x +1)(x −5),得 y =t(2−t 4),即F(5−34t ,2t −14t 2),∴EF =(2t −14t 2)−t =t −t 24,∴△BCF 的面积=12×EF ×BD =32(t −t 24)=−38(t 2−4t)=−38(t −2)2+32, ∴当t =2时,△BCF 的面积最大,且最大值为32; ②如图,连接AC ,根据图形的对称性可知∠ACD =∠BCD ,AC =BC =5,∴sin ∠ACD =AD AC =35,过点P 作PG ⊥AC 于G ,则在Rt △PCG 中,PG =PC ⋅sin ∠ACD =35PC , ∴35PC +PB =PG +PB , 过点B 作BH ⊥AC 于点H ,则PG +PH ≥BH ,∴线段BH 的长就是35PC +PB 的最小值, ∵S △ABC =12×AB ×CD =12×6×4=12,又∵S △ABC =12×AC ×BH =52BH ,∴52BH =12, 即BH =245,∴35PC +PB 的最小值为245.。
2020年四川省乐山市中考数学试题(word版,含答案)
乐山市2020年初中学业水平考试数 学本试题卷分第一部分(选择题)和第二部分(非选择题),共8页.考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效.满分150分.考试时间120分钟.考试结束后,将本试题卷和答题卡一并交回.考生作答时,不能使用任何型号的计算器.第Ⅰ卷(选择题 共30分)注意事项:1.选择题必须使用2B 铅笔将答案标号填涂在答题卡对应题目标号的位置上.2.在每小题给出的四个选项中,只有一个选项符合题目要求.一、选择题:本大题共10个小题,每小题3分,共30分. 1. 21的倒数是 )A (21- )B (21 )C ( 2- )D (2 2.某校在全校学生中举办了一次“交通安全知识”测试,张老师从全校学生的答卷中随机地抽取了 部分学生的答卷,将测试成绩按“差”、“中”、“良”、 “优”划分为四个等级,并绘制成如图1所示的条形统计图.若该校学生共有2000人,则其中成绩为“良”和“优”的总人数估计为)A (1100)B (1000 )C (900)D (1103.如图2,E 是直线CA 上一点,︒=∠40FEA ,射线EB 平分CEF ∠,EF GE ⊥. 则=∠GEB)A ( ︒10)B (︒20 )C ( ︒30 )D (︒404. 数轴上点A 表示的数是3-,将点A 在数轴上平移7个单位长度得到点B .则点B 表示的数是)(A 4 )(B 4-或10)(C 10- )(D 4或10-5.如图3,在菱形ABCD 中,4=AB ,︒=∠120BAD ,O 是对角线BD 的中点,过点O 作CD OE ⊥ 于点E ,连结OA .则四边形AOED 的周长为)(A 329+ )(B 39+ )(C 327+ )(D 86.直线b kx y +=在平面直角坐标系中的位置如图4所示,则不等式2≤+b kx 的解集是)A (2-≤x)B (4-≤x )C (2-≥x )D (4-≥x7.观察下列各方格图中阴影部分所示的图形(每一小方格的边长为1),如果将它们沿方格边线或对角线剪开重新拼接,不能拼成正方形的是)A ( )B ( )C ( )D (8. 已知43=m ,2342=-n m .若x n =9,则x 的值为)A ( 8 )B ( 4 )C (22 )D (29. 在ABC ∆中,已知︒=∠90ABC ,︒=∠30BAC ,1=BC .如图5所示,将ABC ∆绕点A 按逆时针方向旋转︒90后得到''C AB ∆.则图中阴影部分面积为)A (4π )B ( 23-π)C ( 43-π )D ( π23 10. 如图6,在平面直角坐标系中,直线x y -=与双曲线xk y =交于A 、B 两点,P 是以点)2,2(C 为圆心,半径长1的圆上一动点,连结AP ,Q 为AP 的中点.若线段OQ 长度的最大值为2,则k 的值为)A (21- )B (23- )C (2- )D (41-第Ⅱ卷(非选择题 共120分)注意事项1.考生使用0.5mm 黑色墨汁签字笔在答题卡上题目所指示的答题区域内作答,答在试题卷上无效.2.作图时,可先用铅笔画线,确认后再用0.5mm 黑色墨汁签字笔描清楚.3.解答题应写出文字说明、证明过程或推演步骤.4.本部分共16个小题,共120分.二、填空题:本大题共6个小题,每小题3分,共18分.11. 用“>”或“<”符号填空:7- ▲ 9-. 12. 某小组七位学生的中考体育测试成绩(满分40分)依次为37,40,39,37,40,38,40.则这组数据的中位数是 ▲ .13. 图7是某商场营业大厅自动扶梯示意图.自动扶梯AB 的倾斜角为︒30,在自动扶梯下方地面C处测得扶梯顶端B 的仰角为︒60,A 、C 之间的距离为4m . 则自动扶梯的垂直高度BD = ▲ m .(结果保留根号)14.已知0≠y ,且04322=--y xy x .则yx 的值是 ▲ . 15.把两个含︒30角的直角三角板按如图8所示拼接在一起,点E 为AD 的中点,连结BE 交AC 于 点F .则ACAF = ▲ .16.我们用符号[]x 表示不大于x 的最大整数.例如:[]15.1=,[]25.1-=-.那么:(1)当[]21≤<-x 时,x 的取值范围是 ▲ ;(2)当21<≤-x 时,函数[]322+-=x a x y 的图象始终在函数[]3+=x y 的图象下方.则实数a 的范围是 ▲ .三、本大题共3个小题,每小题9分,共27分.17. 计算:0)2020(60cos 22-+︒--π.18. 解二元一次方程组:⎩⎨⎧=+=+.938,22y x y x19. 如图9,E 是矩形ABCD 的边CB 上的一点,DE AF ⊥于点F ,3=AB ,2=AD ,1=CE .求DF 的长度.20. 已知x y 2=,且y x ≠,求222)11(y x y x y x y x -÷++-的值. 21.如图10,已知点)22(--,A 在双曲线xk y =上,过点A 的直线与双曲线的另一支交于点)1(a B ,.(1)求直线AB 的解析式;(2)过点B 作x BC ⊥轴于点C ,连结AC ,过点C 作AB CD ⊥于点D .求线段CD 的长.22. 自新冠肺炎疫情爆发以来,我国人民上下一心,团结一致,基本控制住了疫情.然而,全球新冠肺炎疫情依然严重,境外许多国家的疫情尚在继续蔓延,疫情防控不可松懈. 图11是某国截止5月31日新冠病毒感染人数的扇形统计图和折线统计图.根据上面图表信息,回答下列问题:(1)截止5月31日该国新冠肺炎感染总人数累计为 ▲ 万人,扇形统计图中40-59岁感 染人数对应圆心角的度数为 ▲ º ;(2)请直接在图11中补充完整该国新冠肺炎感染人数的折线统计图;(3)在该国所有新冠肺炎感染病例中随机地抽取1人,求该患者年龄为60岁或60岁以上的概 率;(4)若该国感染病例中从低到高各年龄段的死亡率依次为%1、%75.2、%5.3、%10、%20,求该国新冠肺炎感染病例的平均死亡率.23. 某汽车运输公司为了满足市场需要,推出商务车和轿车对外租赁业务.下面是乐山到成都两种车型的限载人数和单程租赁价格表:车型每车限载人数(人)租金(元/辆)商务车 6 300轿车 4(1)如果单程租赁2辆商务车和3辆轿车共需付租金1320元,求一辆轿车的单程租金为多少元?(2)某公司准备组织34名职工从乐山赴成都参加业务培训,拟单程租用商务车或轿车前往.在不超载的情况下,怎样设计租车方案才能使所付租金最少?DE⊥于点E,交AC 24.如图12.1,AB是半圆O的直径,AC是一条弦,D是上一点,ABAF=.于点F,连结BD交AC于点G,且FG(1)求证:点D平分;AH=,连结DH. 若点E是线段AO的中点.(2)如图12.2所示,延长BA至点H,使AO求证:DH是⊙O的切线.六、本大题共2个小题,第25题12分,第26题13分,共25分.25. 点P 是平行四边形ABCD 的对角线AC 所在直线上的一个动点(点P 不与点A 、C 重合),分别过点A 、C 向直线BP 作垂线,垂足分别为点E 、F .点O 为AC 的中点.(1)如图13.1,当点P 与点O 重合时,线段OE 和OF 的关系是 ▲ ;(2)当点P 运动到如图13.2所示的位置时,请在图中补全图形并通过证明判断(1)中的结论是否仍然成立?(3)如图13.3,点P 在线段OA 的延长线上运动,当︒=∠30OEF 时,试探究线段CF 、AE 、OE 之间的关系.26. 已知抛物线c bx ax y ++=2与x 轴交于)01(,-A ,)05(,B 两点,C 为抛物线的顶点,抛物线的对称轴交x 轴于点D ,连结BC ,且34tan =∠CBD ,如图14所示. (1)求抛物线的解析式;(2)设P 是抛物线的对称轴上的一个动点.①过点P 作x 轴的平行线交线段BC 于点E ,过点E 作PE EF ⊥交抛物线于点F ,连结 FB 、FC ,求BCF ∆的面积的最大值;②连结PB ,求PB PC +53的最小值.乐山市2020年初中学业水平考试数学参考答案及评分意见一、选择题:本大题共10小题,每小题3分,共30分.二、填空题:本大题共6小题,每小题3分,共18分. 11. > 12.39 13.3214.14-或 15.53 16.20≤≤x ,231≥-<a a 或 注:第14题填对1个得1分,填对2个得3分,凡有错均不得分;第16题第(1)问1分,第(2)问2分.三、本大题共3小题,每小题9分,共27分.17.解:原式 =12122+⨯-…………………………………6分 =2. ………………………………9分18.解法1:②-①3⨯,得 32=x , ………………………2分解得 23=x , ……………………………4分 把23=x 代入①,得 1-=y ;………………………7分 ∴原方程组的解为⎪⎩⎪⎨⎧-==.123y x , ……………………9分解法2:由②得:9)2(32=++y x x , ………………………2分把①代入上式,解得 23=x ,……………………………4分 把23=x 代入①,得 1-=y ;………………………7分 ∴原方程组的解为⎪⎩⎪⎨⎧-==.123y x , ……………………9分19.解:∵四边形ABCD 是矩形,∴3==AB DC ,︒=∠=∠90C ADC , ………………2分∵1=CE ,∴101322=+=DE , ………………………………3分 ∵DE AF ⊥,︒=∠+∠90EDC ADF ,︒=∠+∠90DAF ADF , ∴DAF EDC ∠=∠, ………………………………4分 ∴EDC ∆∽DAF ∆, ………………………………6分 ∴DFEC AD DE =,即DF 1210=, …………………………8分 解得510=DF ,即DF 的长度为510. ………………9分 四、本大题共3小题,每小题10分,共30分.20.解法1:原式=222))((2y x y x y x y x x -÷-+……………………2分 =y x y x y x x 222222-⨯-……………………4分 =xy 2, …………………6分 ∵x y 2=,∴原式=122=⋅xx .……………………10分 解法2:同解法1,得原式=xy 2, …………………6分 ∵xy 2=,∴ 2=xy , ………………8分 ∴原式=22=1. ……………………………10分 21. 解:(1)将点)22(--,A 代入x k y =,得4=k ,即x y 4=,……1分 将)1(a B ,代入x y 4=,得4=a ,即)41(,B ,……………2分 设直线AB 的解析式为n mx y +=,将)22(--,A 、)41(,B 代入b kx y +=,得 ⎩⎨⎧+=+-=-.422n m n m ,,解得⎩⎨⎧==.22n m ,………………………4分 ∴直线AB 的解析式为22+=x y . ………………………5分(2)解法1:∵)22(--,A 、)41(,B ,∴53)42()12(22=--+--=AB ,………………………8分 ∵32121⨯⨯=⨯⨯=∆BC CD AB S ABC , ∴55453343=⨯=⨯=AB BC CD . ……………………10分 解法2:设AB 与x 轴交于点E ,如图1.将点0=y 代入22+=x y ,得 1-=x ,∴)01(,-E , …………………………………6分∴522==BE EC ,, ………………………………8分易知CDE ∆~BCE ∆,∴BE EC BC CD =,即5224=CD , 图1 ∴554=CD . …………………………………10分 解法3:设AB 与x 轴交于点E ,如图1.将点0=y 代入22+=x y ,得 1-=x ,∴)01(,-E , …………………………………6分 ∴52,2==BE EC , ……………………………8分在BEC Rt ∆和CED Rt ∆中,由EC CD BE BC BEC ==∠sin ,得 2524CD =, ∴554=CD . ………………………………10分 22.解:(1)20,72;……………………4分(2)补全的折线统计图如图2所示;…………6分(3)该患者年龄为60岁及以上的概率为:%5.67%100205.49=⨯+; …………………8分 (4)该国新冠肺炎感染病例的平均死亡率为:%10%10020%205.4%109%5.34%75.22%15.0=⨯⨯+⨯+⨯+⨯+⨯.………10分五、本大题共2小题,每小题10分,共20分.23.解:(1)设租用一辆轿车的租金为x 元.由题意得:132032300=+⨯x . …………………1分 解得 240=x , …………………2分 答:租用一辆轿车的租金为240元. ……………………3分(2)方法1:①若只租用商务车,∵325634=, ∴只租用商务车应租6辆,所付租金为18006300=⨯(元);………4分 ②若只租用轿车,∵5.8434=, ∴只租用轿车应租9辆,所付租金为21609240=⨯(元); ………5分 ③若混和租用两种车,设租用商务车m 辆,租用轿车n 辆,租金为W 元. 由题意,得 ⎩⎨⎧+==+n m W n m 2403003446 ……………………6分 由3446=+n m ,得 3464+-=m n ,∴204060)346(60300+-=+-+=m m m W ,……………………8分∵04346≥=+-n m ,∴317≤m , ∴51≤≤m ,且m 为整数,∵W 随m 的增大而减小,∴当5=m 时,W 有最小值1740,此时1=n ,……………………9分综上,租用商务车5辆和轿车1辆时,所付租金最少为1740元.……10分 方法2:设租用商务车m 辆,租用轿车n 辆,租金为W 元.由题意,得 ⎩⎨⎧+==+nm W n m 2403003446 ……………………6分由3446=+n m ,得 03464≥+-=m n ,∴317≤m , ∵m 为整数,∴m 只能取0,1,2,3,4,5,故租车方案有:不租商务车,则需租9辆轿车,所需租金为21602409=⨯(元);租1商务车,则需租7辆轿车,所需租金为198024073001=⨯+⨯(元); 租2商务车,则需租6辆轿车,所需租金为204024063002=⨯+⨯(元); 租3商务车,则需租4辆轿车,所需租金为186024043003=⨯+⨯(元); 租4商务车,则需租3辆轿车,所需租金为192024033004=⨯+⨯(元); 租5商务车,则需租1辆轿车,所需租金为174024013005=⨯+⨯(元); 由此可见,最佳租车方案是租用商务车5辆和轿车1辆,此时所付租金最少,为1740元. ………………10分24. 证明:(1)连接AD 、BC ,如图3所示,∵AB 是半圆O 的直径,∴︒=∠90ADB , ………………1分∵AB DE ⊥,∴ABD ADE ∠=∠, ………………2分又∵FG AF =,即点F 是AGD Rt ∆的斜边AG 的中点,∴AF DF =,∴ABD ADF DAF ∠=∠=∠,……3分又∵DBC DAC ∠=∠,(同弧所对的圆周角相等)∴DBC ABD ∠=∠, ………………4分∴ ,即点D 平分 ; ………………5分(2)如图4所示,连接OD 、AD ,∵点E 是线段OA 的中点, ∴OD OA OE 2121==, ………………6分 ∴︒=∠60AOD ,∴OAD ∆是等边三角形, ……7分∴AH AO AD ==, ………………8分∴ODH ∆是直角三角形,且︒=∠90HDO , ……………9分∴DH 是⊙O 的切线. ……………………10分六、本大题共2小题,第25题12分,第26题13分,共25分25.解:(1)OF OE =;……………………………………2分(2)补全图形如右图5所示,……………………………………3分OF OE =仍然成立.……………………4分 证明如下: 延长EO 交CF 于点G ,∵BP CF BP AE ⊥⊥,,∴CF AE //,∴GCO EAO ∠=∠,∵点O 为AC 的中点,∴CO AO =,又∵COG AOE ∠=∠,∴COG AOE ∆≅∆,……………………6分∴OG OE =,∵︒=∠90GFE ,∴OF OE =,……………………………………7分(3)当点P 在线段OA 的延长线上时,线段CF 、AE 、OE 之间的关系为AE CF OE +=.…………8分证明如下:延长EO 交FC 的延长线于点H ,如图6所示,由(2) 可知 COH AOE ∆≅∆,………………9分∴CH AE =,OH OE =,……………10分又∵︒=∠30OEF ,︒=∠90HFE , ∴OE EH HF ==21, ∴AE CF CH CF OE +=+=.………………12分26.解:(1)根据题意,可设抛物线的解析式为:)5)(1(-+=x x a y , ……1分∵CD 是抛物线的对称轴,∴)02(,D ,又∵34tan =∠CBD ,∴4tan =∠⋅=CBD BD CD ,即)42(,C , …2分 代入抛物线的解析式,得)52)(12(4-+=a ,解得 94-=a , …………3分 ∴二次函数的解析式为 )5)(1(94-+-=x x y 或920916942++-=x x y ;…4分 (2)①设)2(t P ,,其中40<<t ,直线BC 的解析式为 b kx y +=,∴⎩⎨⎧+=+=.2450b k b k , 解得 ⎪⎪⎩⎪⎪⎨⎧=-=.32034b k , 即直线BC 的解析式为 32034+-=x y , ……………………5分 令t y =,得:t x 435-=,即)435(t t E ,-, 把t x 435-=代入)5)(1(94-+-=x x y ,得 )42(t t y -=,即)412435(2t t t F --,, ……………………6分 ∴4)412(22t t t t t EF -=--=, ……………………7分 ∴BCF ∆的面积)4(23212t t BD EF S -=⨯⨯= 23)2(83)4(8322+--=--=t t t , ……………………8分 ∴当2=t 时,BCF ∆的面积最大,且最大值为23; ……………………9分 ②如图6,连接AC ,根据图形的对称性可知 BCD ACD ∠=∠,5==BC AC ,∴53sin ==∠AC AD ACD , ……………………10分 过点P 作AC PG ⊥于G ,则在PCG Rt ∆中,PC ACD PC PG 53sin =∠⋅=, ∴PB PG PB PC +=+53, …………………11分 再过点B 作AC BH ⊥于点H ,则BH PH PG ≥+,∴线段BH 的长就是PB PC +53的最小值,…………12分 ∵12462121=⨯⨯=⨯⨯=∆CD AB S ABC , 又∵BH BH AC S ABC 2521=⨯⨯=∆, ∴1225=BH ,即524=BH , ∴PB PC +53的最小值为524. ………………13分。
2024年四川省乐山中考数学真题答案
乐山市2024年初中学业水平考试数学参考答案及评分标准第Ⅰ卷(选择题共30分)一、选择题:本大题共10小题,每小题3分,共30分.题号12345678910答案A D C A D DB AC B第Ⅱ卷(非选择题共120分)二、填空题:本大题共6小题,每小题3分,共18分.11.3a ;12.66;13.120︒;14.29;15.19;16.(1)③;(2)102m -< 或102m < .注:16题第(1)空1分,第(2)空2分.三、解答题:本大题共10个小题,共102分.解答应写出必要的文字说明,证明过程或演算步骤.17.解:原式313=+-……………………………………………………………………………………6分1=.…………………………………………………………………………………………9分注:第一步含有三个式子的计算,答对一个得2分.18.解:4,2 5.x y x y +=⎧⎨-=⎩①②解法一:①+②,得39x =,解得3x =.……………………………………………………………3分将3x =代入①,得1y =.…………………………………………………………………6分31x y =⎧∴⎨=⎩.……………………………………………………………………………………9分解法二:由①,得4y x =-③.将③代入②,得2(4)5x x --=,解得3x =.…………………………………………3分将3x =代入③,得1y =.…………………………………………………………………6分31x y =⎧∴⎨=⎩.……………………………………………………………………………………9分19.证明:AB 是CAD ∠的平分线,CAB DAB ∴∠=∠.……………………………………………………………………………3分∴在ABC △和ABD △中,AC AD =,CAB DAB ∠=∠,AB AB =,ABC ∴△≌ABD △(SAS ).………………………………………………………………7分C D ∴∠=∠.……………………………………………………………………………………9分20.解:(1)第③步开始出现了错误.……………………………………………………………………3分(2)2212142(2)(2)2x x x x x x x -=---+--……………………………………………………4分22(2)(2)(2)(2)x x x x x x +=-+--+…………………………………………5分22(2)(2)x x x x --=+-……………………………………………………………6分2(2)(2)x x x -=+-……………………………………………………………7分12x =+.……………………………………………………………………8分当3x =时,原式15=.…………………………………………………………………………10分21.解:(1)总人数为240人,m 的值为35.…………………………………………………………2分(2)如下图所示.…………………………………………5分(3)记A :麻辣烫,B :跷脚牛肉,C :钵钵鸡,D :甜皮鸭.解法一:由题可得树状图:…………………………………………8分P (选到“钵钵鸡和跷脚牛肉”)16=.………………………………………………………10分解法二:由题可列表:第一次第二次A B C D A (,)B A (,)C A (,)D A B(,)A B (,)C B (,)D BC (,)A C (,)B C (,)D C D(,)A D (,)B D (,)C D …………………………………………8分P (选到“钵钵鸡和跷脚牛肉”)16=.………………………………………………………10分22.解:(1) 点(1,)A m 、(,1)B n 在反比例函数3y x=图象上,3m ∴=,3n =.…………………………………………………………………………………2分又 一次函数y kx b =+过点(1,3)A ,(0,1)C ,3,1.k b b +=⎧∴⎨=⎩解得2,1.k b =⎧⎨=⎩………………………………………………………………………4分∴一次函数表达式为21y x =+.………………………………………………………………5分(2)如图,连结BC .过点A 作AD BC ⊥,垂足为点D ,过点C 作CE AB ⊥,垂足为点E .(0,1)C ,(3,1)B ,BC x ∴//轴,3BC =.…………………………………………………………………………6分点(1,3)A ,(3,1)B ,AD BC ⊥,∴点(1,1)D ,2AD =,2DB =.在Rt ADB △中,AB ==.………………………………………………7分又1122ABC S BC AD AB CE =⋅=⋅ △,……………………………………………………8分即113222CE ⨯⨯=⨯,2CE ∴=,即点C 到线段AB 的距离为2.…………………………………………10分23.解:(1)如图,过点A '作A B OA '⊥,垂足为点B .设秋千绳索的长度为x 尺.由题可知,OA OA x '==,4AB =,10A B '=,4OB OA AB x ∴=-=-.在Rt OA B '△中,由勾股定理得:222A B OB OA ''+=22210(4)x x ∴+-=.……………………………………………………………………………3分解得14.5x =.答:秋千绳索的长度为14.5尺.…………………………………………………………………5分(2)能.…………………………………………………………………………………………6分由题可知,90OPA OQA '''∠=∠=︒,OA OA OA '''==.在Rt OA P '△中,cos cos OP OA OA αα'=⋅=⋅.……………………………………………7分同理,cos cos OQ OA OA ββ''=⋅=⋅.…………………………………………………………8分OQ OP h -= ,cos cos OA OA h βα∴⋅-⋅=.…………………………………………………………………9分cos cos hOA βα∴=-.…………………………………………………………………………10分24.证明:(1)如图,连结OC .CD 为O 的切线,点C 在O 上,90OCD ∴∠=︒,即90DCA OCA ∠+∠=︒.…………………………………………………1分又AB 为直径,90ACB ∴∠=︒,即190OCA ∠+∠=︒.1DCA ∴∠=∠.…………………………………………………………………………………2分OC OB = ,12∴∠=∠.………………………………………………………………………………………3分AC CE= ,23∴∠=∠.………………………………………………………………………………………4分3DCA ∴∠=∠.DC AE ∴//.……………………………………………………………………………………5分(2)连结OE 、BE .EF 垂直平分OB ,OE BE ∴=.又OE OB = ,OEB ∴△为等边三角形.60BOE ∴∠=︒,120AOE ∠=︒.………………………………………………………………6分OA OE = ,30OAE OEA ∴∠=∠=︒.DC AE // ,30D OAE ∴∠=∠=︒.又90OCD ∠=︒ ,60DOC ∴∠=︒.OA OC = ,AOC ∴△为等边三角形.60OCA ∴∠=︒,OA OC AC ==.30DCA ∴∠=︒.D DCA ∴∠=∠.3DA AC OA OC OE ∴=====.……………………………………………………………8分33sin 602EF OE ∴=⋅︒=.19324OAE S AO EF ∴=⋅=△.又12093360OAE S ππ︒⨯==︒扇形,34OAE OAE S S S π∴=-=-阴影扇形△.………………………………………………………10分25.解:(1)当1a =时,抛物线2222(1)1y x x x =-+=-+.………………………………………2分∴顶点坐标(1,1).…………………………………………………………………………………3分(2)由题可知(0,2)A a .线段OA 上的“完美点”的个数大于3个且小于6个,∴“完美点”的个数为4个或5个.……………………………………………………………4分∴当“完美点”个数为4个时,分别为(0,0),(0,1),(0,2),(0,3);当“完美点”个数为5个时,分别为(0,0),(0,1),(0,2),(0,3),(0,4).325a ∴< .……………………………………………………………………………………6分∴a 的取值范围是3522a < .…………………………………………………………………7分(3)易知抛物线的顶点坐标为(1,)a ,过点(2,2)P a ,(3,5)Q a ,(4,10)R a .显然,“完美点”(1,1),(2,2),(3,3)符合题意.下面讨论抛物线经过(2,1),(3,2)的两种情况:1当抛物线经过(2,1)时,解得12a =.此时,(2,1)P ,5(3,2Q ,(4,5)R .如图所示,满足题意的“完美点”有(1,1),(2,1),(2,2),(3,3),共4个.…………………………………………………………………9分2当抛物线经过(3,2)时,解得25a =.此时,4(2,)5P ,(3,2)Q ,(4,4)R .如图所示,满足题意的“完美点”有(1,1),(2,1),(2,2),(3,2),(3,3),(4,4),共6个.…………………………………………………………………11分∴a 的取值范围是2152a < .…………………………………………………………………12分26.解:(1)①ADE △≌AD E '△;②222EC CD ED ''+=;③5.…………………………………3分(2)222DN BM MN +=.………………………………………………………………………4分证明:如图,将ABE △绕点A 逆时针旋转90︒,得到ADF '△.过点D 作DH BD ⊥交边AF '于点H ,连结NH .由旋转的特征得AE AF '=,BE DF '=,BAE DAF '∠=∠.由题意得EF EC FC DC BC DF FC EC BE ++=+=+++,EF DF BE DF DF F F ''∴=+=+=.在AEF △和AF F '中,AE AF '=,EF F F '=,AF AF =,AEF ∴△≌AF F '(SSS ).…………………………………………………………………5分EAF F AF '∴∠=∠.又BD 为正方形ABCD 的对角线,45ABD ADB ∴∠=∠=︒.DH BD ⊥ ,45ADH HDB ADB ∴∠=∠-∠=︒.在ABM △和ADH △中,BAM DAH ∠=∠,AB AD =,ABM ADH ∠=∠,ABM ∴△≌ADH △(ASA ).………………………………………………………………6分AM AH ∴=,BM DH =.在AMN △和AHN △中,AM AH =,MAN HAN ∠=∠,AN AN =,AMN ∴△≌AHN △(SAS ).………………………………………………………………7分MN HN ∴=.在Rt HND △中,222DN DH HN +=,222DN BM MN ∴+=.…………………………………………………………………………8分(3)22222BE DF EF +=.……………………………………………………………………10分(4)如图,将BEC △绕点B 逆时针旋转90︒,得到BE C '',连结E D '.过点E 作EG BC ⊥,垂足为点G ,过点E '作EG BC ''⊥,垂足为G '.过点E '作E F BA '//,过点D 作DF BC //交AB 于点H ,E F '、DF 交于点F .由旋转的特征得BE BE '=,CBE C BE ''∠=∠,EG E G ''=,BG BG '=.90ABC ∠=︒ ,45DBE ∠=︒,45CBE DBA ∴∠+∠=︒.45C BE DBA ''∴∠+∠=︒,即45DBE '∠=︒.在EBD △和E BD '△中,BE BE '=,DBE DBE '∠=∠,BD BD =,EBD ∴△≌E BD '△(SAS ).DE DE '∴=.90ABC ∠=︒ ,4AB =,3BC =,∴5AC ==.又AD x = ,CE y=5DE DE x y '∴==--.DF BC// ADH C ∴∠=∠,90AHD ABC ∠=∠=︒.AHD ∴△∽ABC △.5AH HD AD x AB BC AC ∴===,即45AH x =,35HD x =.445HB AB AH x ∴=-=-.同理可得45EG y =,35GC y =.45E G y ''∴=,335BG BG y '==-.E G AB ''⊥ ,90ABC ∠=︒,E G BC FD ''∴////.又E F AB '// ,90FHG AHD '∠=∠=︒,∴四边形FE G H ''为矩形.90F ∴∠=︒,45FH E G y ''==,3455DF DH FH x y =+=+43434(3)15555FE HG HB BG x y x y '''==-=---=-+.在Rt E FD '△中,222E F DF E D ''+=.()2224334(1)()55555x y x y x y ∴-+++=--.解得2160528x y x -=-.………………………………………………………………………………13分。
2020年四川省乐山市中考数学试卷
D. 40 ,
CEG 180 AEF GEF 180 40 90 50 ,
射线 EB 平分 CEF ,
CEB 1 CEF 1 140 70 ,
2
2
GEB CEB CEG 70 50 20 ,
故选: B .
4.(3 分)数轴上点 A 表示的数是 3 ,将点 A 在数轴上平移 7 个单位长度得到点 B .则点 B
C. 30
D. 40
4.(3 分)数轴上点 A 表示的数是 3 ,将点 A 在数轴上平移 7 个单位长度得到点 B .则点 B
表示的数是 ( )
A.4
B. 4 或 10
C. 10
D.4 或 10
5.(3 分)如图,在菱形 ABCD 中, AB 4 , BAD 120 , O 是对角线 BD 的中点,过点
第 6 页(共 26 页)
26.(13 分)已知抛物线 y ax2 bx c 与 x 轴交于 A(1,0) , B(5,0) 两点,C 为抛物线的顶 点,抛物线的对称轴交 x 轴于点 D ,连结 BC ,且 tan CBD 4 ,如图所示.
3 (1)求抛物线的解析式; (2)设 P 是抛物线的对称轴上的一个动点. ①过点 P 作 x 轴的平行线交线段 BC 于点 E ,过点 E 作 EF PE 交抛物线于点 F ,连结 FB 、 FC ,求 BCF 的面积的最大值; ②连结 PB ,求 3 PC PB 的最小值.
D. 2
9.(3 分)在 ABC 中,已知 ABC 90 , BAC 30 , BC 1.如图所示,将 ABC 绕 点 A 按逆时针方向旋转 90 后得到△ ABC .则图中阴影部分面积为 ( )
第 2 页(共 26 页)
A. 4
2020年四川省乐山市中考数学试卷(附答案解析)
2020年四川省乐山市中考数学试卷一、选择题:本大题共10个小题,每小题3分,共30分.1.(3分)的倒数是()A.-B.C.-2D.22.(3分)某校在全校学生中举办了一次“交通安全知识”测试,张老师从全校学生的答卷中随机地抽取了部分学生的答卷,将测试成绩按“差”、“中”、“良”、“优”划分为四个等级,并绘制成如图所示的条形统计图.若该校学生共有2000人,则其中成绩为“良”和“优”的总人数估计为()A.1100B.1000C.900D.1103.(3分)如图,E是直线CA上一点,∠FEA=40°,射线EB平分∠CEF,GE⊥EF.则∠GEB=()A.10°B.20°C.30°D.40°4.(3分)数轴上点A表示的数是-3,将点A在数轴上平移7个单位长度得到点B.则点B表示的数是()A.4B.-4或10C.-10D.4或-105.(3分)如图,在菱形ABCD中,AB=4,∠BAD=120°,O是对角线BD的中点,过点O作OE⊥CD于点E,连结OA.则四边形AOED的周长为()A.9+2B.9+C.7+2D.86.(3分)直线y=kx+b在平面直角坐标系中的位置如图所示,则不等式kx+b≤2的解集是()A.x≤-2B.x≤-4C.x≥-2D.x≥-47.(3分)观察下列各方格图中阴影部分所示的图形(每一小方格的边长为1),如果将它们沿方格边线或对角线剪开重新拼接,不能拼成正方形的是()A.B.C.D.8.(3分)已知3m=4,32m-4n=2.若9n=x,则x的值为()A.8B.4C.2D.9.(3分)在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1.如图所示,将△ABC绕点A按逆时针方向旋转90°后得到△AB′C′.则图中阴影部分面积为()A.B.C.D.π10.(3分)如图,在平面直角坐标系中,直线y=-x与双曲线y=交于A、B两点,P是以点C(2,2)为圆心,半径长1的圆上一动点,连结AP,Q为AP的中点.若线段OQ长度的最大值为2,则k的值为()A.-B.-C.-2D.-二、填空题:本大题共6个小题,每小题3分,共18分.11.(3分)用“>”或“<”符号填空:-7-9.12.(3分)某小组七位学生的中考体育测试成绩(满分40分)依次为37,40,39,37,40,38,40.则这组数据的中位数是.13.(3分)如图是某商场营业大厅自动扶梯示意图.自动扶梯AB的倾斜角为30°,在自动扶梯下方地面C处测得扶梯顶端B的仰角为60°,A、C之间的距离为4m.则自动扶梯的垂直高度BD=m.(结果保留根号)14.(3分)已知y≠0,且x2-3xy-4y2=0.则的值是.15.(3分)把两个含30°角的直角三角板按如图所示拼接在一起,点E为AD的中点,连结BE交AC于点F.则=.16.(3分)我们用符号[x]表示不大于x的最大整数.例如:[1.5]=1,[-1.5]=-2.那么:(1)当-1<[x]≤2时,x的取值范围是;(2)当-1≤x<2时,函数y=x2-2a[x]+3的图象始终在函数y=[x]+3的图象下方.则实数a的范围是.三、本大题共3个小题,每小题9分,共27分.17.(9分)计算:|-2|-2cos60°+(π-2020)0.18.(9分)解二元一次方程组:19.(9分)如图,E是矩形ABCD的边CB上的一点,AF⊥DE于点F,AB=3,AD=2,CE=1.求DF的长度.四、本大题共3个小题,每小题10分,共30分.20.(10分)已知y=,且x≠y,求()÷的值.21.(10分)如图,已知点A(-2,-2)在双曲线y=上,过点A的直线与双曲线的另一支交于点B(1,a).(1)求直线AB的解析式;(2)过点B作BC⊥x轴于点C,连结AC,过点C作CD⊥AB于点D.求线段CD的长.22.(10分)自新冠肺炎疫情爆发以来,我国人民上下一心,团结一致,基本控制住了疫情.然而,全球新冠肺炎疫情依然严重,境外许多国家的疫情尚在继续蔓延,疫情防控不可松懈.如图是某国截止5月31日新冠病毒感染人数的扇形统计图和折线统计图.根据上面图表信息,回答下列问题:(1)截止5月31日该国新冠肺炎感染总人数累计为万人,扇形统计图中40-59岁感染人数对应圆心角的度数为°;(2)请直接在图中补充完整该国新冠肺炎感染人数的折线统计图;(3)在该国所有新冠肺炎感染病例中随机地抽取1人,求该患者年龄为60岁或60岁以上的概率;(4)若该国感染病例中从低到高各年龄段的死亡率依次为1%、2.75%、3.5%、10%、20%,求该国新冠肺炎感染病例的平均死亡率.五、本大题共2个小题,每小题10分,共20分.23.(10分)某汽车运输公司为了满足市场需要,推出商务车和轿车对外租赁业务.下面是乐山到成都两种车型的限载人数和单程租赁价格表:车型每车限载人数(人)租金(元/辆)商务车6300轿车4为多少元?(2)某公司准备组织34名职工从乐山赴成都参加业务培训,拟单程租用商务车或轿车前往.在不超载的情况下,怎样设计租车方案才能使所付租金最少?24.(10分)如图1,AB是半圆O的直径,AC是一条弦,D是上一点,DE⊥AB于点E,交AC于点F,连结BD交AC于点G,且AF=FG.(1)求证:点D平分;(2)如图2所示,延长BA至点H,使AH=AO,连结DH.若点E是线段AO的中点.求证:DH是⊙O的切线.六、本大题共2个小题,第25题12分,第26题13分,共25分.25.(12分)点P是平行四边形ABCD的对角线AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C向直线BP作垂线,垂足分别为点E、F.点O为AC的中点.(1)如图1,当点P与点O重合时,线段OE和OF的关系是;(2)当点P运动到如图2所示的位置时,请在图中补全图形并通过证明判断(1)中的结论是否仍然成立?(3)如图3,点P在线段OA的延长线上运动,当∠OEF=30°时,试探究线段CF、AE、OE之间的关系.26.(13分)已知抛物线y=ax2+bx+c与x轴交于A(-1,0),B(5,0)两点,C为抛物线的顶点,抛物线的对称轴交x轴于点D,连结BC,且tan∠CBD=,如图所示.(1)求抛物线的解析式;(2)设P是抛物线的对称轴上的一个动点.①过点P作x轴的平行线交线段BC于点E,过点E作EF⊥PE交抛物线于点F,连结FB、FC,求△BCF的面积的最大值;②连结P B,求PC+PB的最小值.【试题答案】一、选择题:本大题共10个小题,每小题3分,共30分.1.D【解答】解:根据倒数的定义,可知的倒数是2.2.A【解答】解:2000×=1100(人).3.B【解答】解:∵∠FEA=40°,GE⊥EF,∴∠CEF=180°-∠FEA=180°-40°=140°,∠CEG=180°-∠AEF-∠GEF=180°-40°-90°=50°,∵射线EB平分∠CEF,∴,∴∠GEB=∠CEB-∠CEG=70°-50°=20°.4.D【解答】解:点A表示的数是-3,左移7个单位,得-3-7=-10,点A表示的数是-3,右移7个单位,得-3+7=4.所以点B表示的数是4或-10.5.B【解答】解:∵四边形ABCD为菱形,∴AD=AB=4,AB∥CD,∵∠BAD=120°,∴∠ADB=∠CDB=30°,∵O是对角线BD的中点,∴AO⊥BD,在Rt△AOD中,AO=AD=2,OD=OA=2,∵OE⊥CD,∴∠DEO=90°,在Rt△DOE中,OE=OD=,DE=OE=3,∴四边形AOED的周长=4+2++3=9+.6.C【解答】解:∵直线y=kx+b与x轴交于点(2,0),与y轴交于点(0,1),∴,解得∴直线为y=-+1,当y=2时,2=-+1,解得x=-2,由图象可知:不等式kx+b≤2的解集是x≥-2.7.D【解答】解:由题意,选项D阴影部分面积为6,A,B,C的阴影部分的面积为5,如果能拼成正方形,选项D的正方形的边长为,选项A,B,C的正方形的边长为,观察图象可知,选项A,B,C阴影部分沿方格边线或对角线剪开均可得图1的5个图形,可以拼成图2的边长为的正方形,8.C【解答】解:∵3m=4,32m-4n=(3m)2÷(3n)4=2.∴42÷(3n)4=2,∴(3n)4=42÷2=8,又∵9n=32n=x,∴(3n)4=(32n)2=x2,∴x2=8,∴x==.9.B【解答】解:∵∠ABC=90°,∠BAC=30°,BC=1,∴AB=BC=,AC=2BC=2,∴--=.10.A【解答】解:点O是AB的中点,则OQ是△ABP的中位线,当B、C、P三点共线时,PB最大,则OQ=BP最大,而OQ的最大值为2,故BP的最大值为4,则BC=BP-PC=4-1=3,设点B(m,-m),则(m-2)2+(-m-2)2=32,解得:m2=,∴k=m(-m)=-.二、填空题:本大题共6个小题,每小题3分,共18分.11.>【解答】解:∵|-7|=7,|-9|=9,7<9,∴-7>-9.12.39【解答】解:把这组数据从小到大排序后为37,37,38,39,40,40,40,其中第四个数据为39,所以这组数据的中位数为39.13.2【解答】解:∵∠BCD=∠BAC+∠ABC,∠BAC=30°,∠BCD=60°,∴∠ABC=∠BCD-∠BAC=30°,∴∠BAC=∠ABC,∴BC=AC=4,在Rt△BDC中,sin∠BCD=,∴sin60°==,∴BD=2(m).14.4或-1【解答】解:∵x2-3xy-4y2=0,即(x-4y)(x+y)=0,可得x=4y或x=-y,∴或,即的值是4或-1.15.【解答】解:连接CE,∵∠CAD=30°,∠ACD=90°,E是AD的中点,∴AC=AD,CE=AD=AE,∴∠ACE=∠CAE=30°∵∠BAC=30°,∠ABC=90°,∴AB=AC=AD,∠BAC=∠ACE,∴AB∥CE,∴△ABF∽△CEF,∴,∴。
2020全国中考数学试卷分类汇编(2)专题23 直角三角形与勾股定理
直角三角形与勾股定理一.选择题1. (2020•四川省自贡市•4分)如图,在Rt △ABC 中,∠=∠=C 90,A 50,以点B 为圆心,BC 长为半径画弧,交AB 于点D ,连接CD ;则∠ACD 的度数为()A. 50°D. 20°【解析】∵∠A =50°,可得∠B =40°,∵BC =BD ,∴∠BCD =∠BDC ,∵∠B +∠BCD +∠BDC =180°,∴∠BCD =70°,∴∠ACD =90°-70°=20°,故答案为D 2.(2020•内蒙古包头市•3分)如图,在Rt ABC 中,90ACB ∠=︒,D 是AB 的中点,BE CD ⊥,交CD 的延长线于点E .若2AC =,22BC =,则BE 的长为( )A. 263B. 6C. 3D. 2【答案】A【解析】【分析】根据题意将BD ,BC 算出来,再利用勾股定理列出方程组解出即可.【详解】∵AC =2,BC =2∴()2222223AB =+=∵D 是AB 的中点,∴AD =CD =BD 3.由题意可得:A DC()2222=338BE DE BE DE ⎧+⎪⎨++=⎪⎩两式相减得: ()22383DE DE +-=-,解得DE =33,BE =263, 故选A . 【点睛】本题考查直角三角形中点性质和勾股定理,关键在于找出等式列出方程组. 3.(2020•广东省广州市•3分)往直径为52cm 的圆柱形容器内装入一些水以后,截面如图所示,若水面宽48AB cm =,则水的最大深度为( )A. 8cmB. 10cmC. 16cmD. 20cm【答案】C 【解析】【分析】 过点O 作OD ⊥AB 于D ,交⊙O 于E ,连接OA ,根据垂径定理即可求得AD 的长,又由⊙O 的直径为52cm ,求得OA 的长,然后根据勾股定理,即可求得OD 的长,进而求得油的最大深度DE 的长.【详解】解:过点O 作OD ⊥AB 于D ,交⊙O 于E ,连接OA ,由垂径定理得:11482422AD AB cm ==⨯=, ∵⊙O 的直径为52cm ,∴26OA OE cm ==,在Rt AOD ∆中,由勾股定理得:22222624O m O A D A D c -=-,∴261016DE OE OD cm =-=-=,∴油的最大深度为16cm ,故选:C .【点睛】本题主要考查了垂径定理的知识.此题难度不大,解题的关键是注意辅助线的作法,构造直角三角形,利用勾股定理解决.2. (2020•山东淄博市•4分)如图,在△ABC 中,AD ,BE 分别是BC ,AC 边上的中线,且AD ⊥BE ,垂足为点F ,设BC =a ,AC =b ,AB =c ,则下列关系式中成立的是( )A .a 2+b 2=5c 2B .a 2+b 2=4c 2C .a 2+b 2=3c 2D .a 2+b 2=2c 2【分析】设EF =x ,DF =y ,根据三角形重心的性质得AF =2y ,BF =2EF =2x ,利用勾股定理得到4x 2+4y 2=c 2,4x 2+y 2=b 2,x 2+4y 2=a 2,然后利用加减消元法消去x 、y 得到A.B.c 的关系.【解答】解:设EF =x ,DF =y ,∵AD ,BE 分别是BC ,AC 边上的中线,∴点F 为△ABC 的重心,AF =AC =b ,BD =a ,∴AF =2DF =2y ,BF =2EF =2x ,∵AD ⊥BE ,∴∠AFB =∠AFE =∠BFD =90°,在Rt △AFB 中,4x 2+4y 2=c 2,①在Rt△AEF中,4x2+y2=b2,②在Rt△BFD中,x2+4y2=a2,③②+③得5x2+5y2=(a2+b2),∴4x2+4y2=(a2+b2),④①﹣④得c2﹣(a2+b2)=0,即a2+b2=5c2.故选:A.【点评】本题考查了三角形的重心:重心到顶点的距离与重心到对边中点的距离之比为2:1.也考查了勾股定理.4. (2020•陕西•3分)如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,若BD是△ABC的高,则BD的长为()A.B.C.D.【分析】根据勾股定理计算AC的长,利用面积差可得三角形ABC的面积,由三角形的面积公式即可得到结论.【解答】解:由勾股定理得:AC==,∵S△ABC=3×3﹣=3.5,∴,∴,∴BD=,故选:D.【点评】本题考查了勾股定理,三角形的面积的计算,掌握勾股定理是解题的关键.5. (2020•山东济宁市•3分)如图,在△ABC中点D为△ABC的内心,∠A=60°,CD=2,BD=4.则△DBC的面积是()33 C. 2 D. 4【答案】B【解析】【分析】过点B作BH⊥CD于点H.由点D为△ABC的内心,∠A=60°,得∠BDC=120°,则∠BDH=60°,由BD=4,BD:CD=2:1得BH3CD=2,于是求出△DBC的面积.【详解】解:过点B作BH⊥CD于点H.∵点D为△ABC的内心,∠A=60°,∴∠BDC=90°+12∠A=90°+12×60°=120°,则∠BDH=60°,∵BD=4,BD:CD=2:1∴DH=2,BH3CD=2,∴△DBC的面积为12CD•BH=12×2×33故选B.【点睛】本题考查了三角形内心的相关计算,熟练运用含30°角的直角三角形的性质是解题的关键.二.填空题1.(2020•宁夏省•3分)我国古代数学经典著作《九章算术》中记载了一个“圆材埋壁”的问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”意思是:今有一圆柱形木材,埋在墙壁中,不知其大小.用锯去锯这木材,锯口深ED=1寸,锯道长AB=1尺(1尺=10寸).问这根圆形木材的直径是26寸.【分析】根据题意可得OE⊥AB,由垂径定理可得尺=5寸,设半径OA =OE=r,则OD=r﹣1,在Rt△OAD中,根据勾股定理可得:(r﹣1)2+52=r2,解方程可得出木材半径,即可得出木材直径.【解答】解:由题意可知OE⊥AB,∵OE为⊙O半径,∴尺=5寸,设半径OA=OE=r,∵ED=1,∴OD=r﹣1,则Rt△OAD中,根据勾股定理可得:(r﹣1)2+52=r2,解得:r=13,∴木材直径为26寸;故答案为:26.【点评】本题考查垂径定理结合勾股定理计算半径长度.如果题干中出现弦的垂线或者弦的中点,则可验证是否满足垂径定理;与圆有关的题目中如果求弦长或者求半径直径,也可以从题中寻找是否有垂径定理,然后构造直角三角形,用勾股定理求解.2.(2020•贵州省安顺市•4分)如图,△ABC中,点E在边AC上,EB=EA,∠A=2∠CBE,CD垂直于BE的延长线于点D,BD=8,AC=11,则边BC的长为4.【分析】延长BD到F,使得DF=BD,根据等腰三角形的性质与判定,勾股定理即可求出答案.【解答】解:延长BD到F,使得DF=BD,∵CD⊥BF,∴△BCF是等腰三角形,∴BC=CF,过点C点作CH∥AB,交BF于点H∴∠ABD=∠CHD=2∠CBD=2∠F,∴HF=HC,∵BD=8,AC=11,∴DH=BH﹣BD=AC﹣BD=3,∴HF=HC=8﹣3=5,在Rt△CDH,∴由勾股定理可知:CD=4,在Rt△BCD中,∴BC ==4,故答案为:4【点评】本题考查勾股定理,解题的关键是熟练运用等腰三角形的性质与判定,本题属于中等题型.3.(2020•山东东营市•4分)如图,在Rt AOB 中,23,30,OB A O =∠=︒的半径为1,点P 是AB 边上的动点,过点P 作O 的一条切线PQ (其中点Q 为切点),则线段PQ 长度的最小值为____.【答案】2【解析】【分析】如图:连接OP 、OQ ,根据222PQ OP OQ =-,可得当OP ⊥AB 时,PQ 最短;在Rt AOB 中运用含30°的直角三角形的性质和勾股定理求得A B.AQ 的长,然后再运用等面积法求得OP 的长,最后运用勾股定理解答即可.【详解】解:如图:连接OP 、OQ ,∵PQ 是O 的一条切线∴PQ ⊥OQ∴222PQ OP OQ =-∴当OP ⊥AB 时,PQ 最短在Rt △ABC 中,23,30OB A =∠=︒ ∴AB =2OB =43,AO =cos ∠A ·AB =3432⨯ ∵S △AOB =1122AO OB PO AB ⋅=⋅ ∴112364322PO ⨯⨯=⋅,即OP =3 在Rt △OPQ 中,OP =3,OQ =1∴PQ =22223122OP OQ =-=-.故答案为22.【点睛】本题考查了切线的性质、含30°直角三角形的性质、勾股定理等知识点,此正确作出辅助线、根据勾股定理确定当PO ⊥AB 时、线段PQ 最短是解答本题的关键.4.(2020•山东菏泽市•3分)如图,矩形ABCD 中,AB =5,AD =12,点P 在对角线BD 上,且BP =BA ,连接AP 并延长,交DC 的延长线于点Q ,连接BQ ,则BQ 的长为 3 .【分析】根据矩形的性质可得BD=13,再根据BP=BA可得DQ=DP=8,所以得CQ =3,在Rt△BCQ中,根据勾股定理即可得BQ的长.【解答】解:∵矩形ABCD中,AB=5,AD=12,∠BAD=∠BCD=90°,∴BD==13,∵BP=BA=5,∴PD=BD﹣BP=8,∵BA=BP,∴∠BAP=∠BP A=∠DPQ,∵AB∥CD,∴∠BAP=∠DQP,∴∠DPQ=∠DQP,∴DQ=DP=8,∴CQ=DQ﹣CD=DQ﹣AB=8﹣5=3,∴在Rt△BCQ中,根据勾股定理,得BQ===3.故答案为:3.【点评】本题考查了矩形的性质、勾股定理、等腰三角形的性质,解决本题的关键是综合运用以上知识.5.(2020•山东临沂市•3分)我们知道,两点之间线段最短,因此,连接两点间线段的长度叫做两点间的距离;同理,连接直线外一点与直线上各点的所有线段中,垂线段最短,因此,直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.类似地,连接曲线外一点与曲线上各点的所有线段中,最短线段的长度,叫做点到曲线的距离.依此定义,如图,在平面直角坐标系中,点A(2,1)到以原点为圆心,以1为半径的圆的距离为﹣1.【分析】连接AO交⊙O于B,则线段AB的长度即为点A(2,1)到以原点为圆心,以1为半径的圆的距离,根据勾股定理即可得到结论.【解答】解:连接AO交⊙O于B,则线段AB的长度即为点A(2,1)到以原点为圆心,以1为半径的圆的距离,∵点A(2,1),∴OA==,∵OB=1,∴AB=﹣1,即点A(2,1)到以原点为圆心,以1为半径的圆的距离为﹣1,故答案为:﹣1.【点评】本题考查了坐标与图形性质,勾股定理,线段的性质,正确的理解题意是解题的关键.6. 2.(2020•广东省•4分)有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫、老鼠都理想化为同一平面内的线或点,模型如题17图,∠ABC=90°,点M、N分别在射线B A.BC上,MN长度始终不变,MN=4,E为MN的中点,点D到B A.BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为_________________.【答案】2-52【解析】 点B 到点E 的距离不变,点E 在以B 为圆心的圆上,线段BD 与圆的交点即为所求最短距离的E 点,BD =52,BE =2【考点】直角三角形的性质、数学建模思想、最短距离问题7. (2020•四川省乐山市•3分)把两个含30角的直角三角板按如图所示拼接在一起,点E 为AD 的中点,连结BE 交AC 于点F .则AFAC=_________.【答案】35【解析】 【分析】连接CE ,设CD =2x ,利用两个直角三角形的性质求得AD =4x ,AC 3,BC 3x ,AB =3,再由已知证得CE ∥AB ,则有AF BF CF EF=,由角平分线的性质得32AB BF AE EF ==,进而求得AFAC的值. 【详解】连接CE ,设CD =2x ,在Rt ΔACD 和Rt ΔABC 中,∠BAC =∠CAD =30º, ∴∠D =60º,AD =4x ,AC 2223AD CD x -=,BC=12AC=3x,AB=223AC BC-=x,∵点E为AD的中点,∴CE=AE=DE=12AD=2x,∴ΔCED为等边三角形,∴∠CED=60º,∵∠BAD=∠BAE+∠CAD=30º+30º=60º,∴∠CED=∠BAD,∴AB∥CE,∴AF BF CF EF=,在ΔBAE中,∵∠BAE=∠CAD=30º∴AF平分∠BAE,∴3322 AB BF xAE EF x===,∴32 AF BFCF EF==,∴35 AFAC=,故答案为:3 5 .【点睛】本题考查了含30º的直角三角形、等边三角形的判定与性质、平行线分线段成比例、角平分线的性质等知识,是一道综合性很强的填空题,解答的关键是认真审题,找到相关知识的联系,确定解题思路,进而探究、推理并计算.三.解答题1.(2020•广东省深圳市•9分)背景:一次小组合作探究课上,小明将两个正方形按背景图位置摆放(点E ,A ,D 在同一条直线上),发现BE =DG 且BE ⊥DG 。
乐山市2020版中考数学试卷C卷
乐山市2020版中考数学试卷C卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2019九上·东莞期末) 从,0,π,,6这五个数中随机抽取一个数,抽到有理数的概率是()A .B .C .D .2. (2分)(2018·江油模拟) 如图是由5个相同的小正方体构成的几何体,其俯视图是()A .B .C .D .3. (2分) (2016九上·海原期中) 不解方程,判断方程2x2+3x﹣4=0的根的情况是()A . 有两个相等的实数根B . 有两个不相等的实数根C . 只有一个实数根D . 没有实数根4. (2分)甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好是9.4环,方差分别是S甲2=0.90,S乙2=1.22,S丙2=0.43,S丁2=1.68,在本次射击测试中,成绩最稳定的是()A . 甲B . 乙C . 丙D . 丁5. (2分) (2019九上·鄂尔多斯期中) 如图,在⊙O中,AC∥OB ,∠BAO=m°,则∠BOC的度数为()A . m°B . 2m°C . (90﹣m)°D . (180﹣2m)°6. (2分) (2017七下·寿光期中) 下列运算中,计算结果错误的是()A . x•x=x2B . a6÷a2=a4C . (ab)3=a3b3D . (﹣a3)2=﹣a57. (2分)如图,等圆⊙O1和⊙O2相交于A,B两点,⊙O1经过⊙O2的圆心O2 ,连接AO1并延长交⊙O1于点C,则∠ACO2的度数为()A . 60°B . 45°C . 30°D . 20°8. (2分)(2020·如皋模拟) 某商店在节日期间开展优惠促销活动:购买原价超过500元的商品,超过500元的部分可以享受打折优惠.若购买商品的实际付款金额y(单位:元)与商品原价x(单位:元)的函数关系的图像如图所示,则超过500元的部分可以享受的优惠是()A . 打六折B . 打七折C . 打八折D . 打九折二、填空题 (共8题;共8分)9. (1分)分解因式:9a3﹣ab2= ________.10. (1分) 2014年底我县人口约370000人,将370000用科学记数法表示为________.11. (1分)(2020·衢江模拟) 从,,,,6这5个数中随机抽取一个数,抽到无理数的概率是________.12. (1分)如图,五边形ABCDE与五边形A′B′C′D′E′是位似图形,且位似比为=,若五边形ABCDE的面积为15cm2 ,那么五边形A′B′C′D′E′的面积为________.13. (1分) (2019七下·文登期末) 如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A (﹣1,﹣2),则不等式4x+2<kx+b的解集为________.14. (1分) (2020八下·高新期末) 菱形两条对角线长分别为、,则这个菱形的面积为________.15. (1分)(2020·广水模拟) 如图,Rt△AOB的一条直角边OB在x轴上,双曲线y= (x>0)经过斜边OA的中点C,与另一直角边交于点D.若S△OCD=9,则S△OBD的值为________.16. (1分) (2020七下·吉林期末) 若一正方形的面积为,则它的边长为________ .三、解答题 (共9题;共80分)17. (5分)(2020·广元) 先化简,再求值:,其中a是关于x的方程的根.18. (12分)(2020·杭州模拟) 某校组织八年级学生参加汉字听写大赛,并随机抽取部分学生成绩作为样本进行分析,绘制成如下的统计表:成绩x/分频数频率x<6020.0460≤x<7060.1270≤x<809b80≤x<90a0.3690≤x≤100150.30请根据所给信息,解答下列问题(1) a=________,b=________(2)请补全频数分布直方图;(3)若得分不低于80分的成绩为“优秀”,则这次抽取成绩为“优秀”所占抽取人数的百分比是多少?19. (6分)(2017·和平模拟) 小明和小亮用6张背面完全相同的纸牌进行摸牌游戏,游戏规则如下:将牌面分别标有数字1、3、6的三张纸牌给小明,将牌面分别标有数字2、4、5的三张纸牌给小亮,小明小亮分别将纸牌背面朝上,从各自的三张纸牌中随机抽出一张,并将抽出的两张卡片上的数字相加,如果和为偶数,则小明获胜;如果和为奇数,则小亮获胜.(1)小明抽到标有数字6的纸牌的概率为________;(2)请用树状图或列表的方法求小亮获胜的概率.20. (6分)(1)请你写出一个以为解二元一次方程组________;(2)由大小两种货车,3辆大车与4辆小车一次可以运货22吨,2辆大车与6辆小车一次可以运货23吨.请根据以上信息,提出一个能用方程组解决的问题,并写出这个问题的解答过程.21. (5分)(2019·朝阳模拟) 某公园的人工湖边上有一座山,山顶上有一直竖的建筑物,高为10米.某校数学兴趣小组的同学为了测量山的高度,在公园找了一水平地面,在处测得建筑物点(即山顶)的仰角为,沿水平方向前进20米到达点,测得建筑物顶部点的仰角为,求山的高度 .(结果精确到1米,参考数据:,,)22. (10分)(2018·湖北模拟) 如图,△ABC内接于⊙O,AC是直径,BC=BA,在∠AC B的内部作∠ACF=30°,且CF=CA,过点F作FH⊥AC于点H,连接BF.(1)若CF交⊙O于点G,⊙O的半径是4,求的长;(2)请判断直线BF与⊙O的位置关系,并说明理由.23. (10分) (2018八上·北仑期末) 某商城的智能手机销售异常火爆,若销售10部型和20部型手机的利润共4000元,每部型手机的利润比每部型手机多50元.(1)求每部型手机和型手机的销售利润.(2)商城计划一次购进两种型号的手机共100部,其中型手机的进货量不超过型手机的2倍,则商城购进型、型手机各多少部,才能使销售利润最大?最大利润是多少?24. (11分) (2019九上·慈溪期中) 如果三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为“准互余三角形”.(1)若△ABC是“准互余三角形”,∠C>90°,∠A=60°,则∠B=________°;(2)如图①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分线,不难证明△ABD是“准互余三角形”.试问在边BC上是否存在点E(异于点D),使得△ABE也是“准互余三角形”?若存在,请求出BE的长;若不存在,请说明理由.(3)如图②,在四边形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC是“准互余三角形”,求对角线AC的长.25. (15分) (2020九上·中山期末) 如图,抛物线y=ax2- x+c与x轴相交于点A(-2,0)、B(4,0),与y轴相交于点C,连接AC、BC,以线段BC为直径作⊙M,过点C作直线CE∥AB,与抛物线和⊙M分别交于点D、E,点P在BC下方的抛物线上运动。
乐山市2020年中考数学试卷(I)卷
乐山市2020年中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题:本大题共8小题,每小题3分,共24分 (共8题;共16分)1. (2分)(2017·鄞州模拟) 若关于x的一元二次方程x2﹣x﹣m=0的一个根是x=1,则m的值是()A . 1B . 0C . ﹣1D . 22. (2分) -5的相反数是()A .B . -C . 5D . -53. (2分)若点E(-a,-a)在第一象限,则点F(-a2,-2a)在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限4. (2分)(2017·南岸模拟) 如图,直线a∥b,直线c与直线a、b相交,若∠2=70°,则∠1等于()A . 130°B . 120°C . 110°D . 70°5. (2分)不等式组的解集在数轴上可表示为()A .B .C .D .6. (2分)如图,已知点A,B,C,D是边长为1的正方形的顶点,连接任意两点均可得到一条线段,以下的树状图是所有可能发生的结果,在连接两点所得的所有线段中任取一条线段,取到长度为1的线段的概率为()A .B .C .D .7. (2分)某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为()A . 200(1+x)2=1000B . 200+200×2x=1000C . 200+200×3x=1000D . 200[1+(1+x)+(1+x)2]=10008. (2分)(2011·南宁) 如图,三视图描述的实物形状是()A . 棱柱B . 棱锥C . 圆柱D . 圆锥二、填空题:本大题共8小题,每小题3分,共24分 (共8题;共8分)9. (1分) (2018七下·宁远期中) 多项式-3x2y3z+9x3y3z-6x4yz2因式分解时,提取的公因式是________.10. (1分)(2018·绍兴模拟) 如图,动点P在函数y= (x>0)的图象上移动,⊙P半径为2,A(3,0),B(6,0),点Q是⊙P上的动点,点C是QB的中点,则AC的最小值是________.11. (1分)(2017·南开模拟) 在Rt△AB C中,∠C=90°,cosB=0.6,把这个直角三角形绕顶点C旋转后得到Rt△A'B'C,其中点B'正好落在AB上,A'B'与AC相交于点D,那么B′D:CD=________.12. (1分)如表是某校女子排球队队员的年龄分布:年龄13141516频数1254则该校女子排球队队员的平均年龄为________岁.13. (1分) (2018八下·镇海期末) 如图,四边形ABCD为菱形,点A在y轴正半轴上,AB∥x轴,点B,C 在反比例函数上,点D在反比例函数上,那么点D的坐标为________.14. (1分)已知整数k<5,若△ABC的边长均满足关于x的方程x2﹣3x+8=0,则△ABC的周长是________ .15. (1分)(2017·苏州) 如图,在一笔直的沿湖道路上有、两个游船码头,观光岛屿在码头北偏东的方向,在码头北偏西的方向,.游客小张准备从观光岛屿乘船沿回到码头或沿回到码头,设开往码头、的游船速度分别为、,若回到、所用时间相等,则 ________(结果保留根号).16. (1分) (2017九上·满洲里期末) 如图,一男生推铅球,铅球行进高度(米)与水平距离(米)之间的关系是,则铅球推出距离________米.三、解答题:本大题共4小题,17、18、19各9分20题12分, (共4题;共23分)17. (5分) (2019七下·寿县期末) 计算 + + + -|-5|18. (5分)已知x2+y2+6x+4y=-13,求yx的值.19. (5分) (2019八下·芜湖期中) 如图,在平行四边形ABCD中,直线GH分别与边CB,AD的延长线相交于点E,F,且G,H分别在AB,CD上,BG=DH.求证:DF=BE20. (8分) (2017七下·五莲期末) 在“十三五”规划纲要中,“全民阅读”位列国家八大文化重大工程之一,我县各学校一直积极开展课外阅读活动,我县某初中学校为了解全校学生每周课外阅读的时间量t(单位:小时),采用随机抽样的方法抽取部分学生进行了问卷调查,调查结果按0≤t<2,2≤t<3,3≤t<4,t≥4分为四个等级,并分别用A、B、C、D表示,根据调查结果统计数据绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题(写出规范完整计算步骤):(1)求这次调查的学生总数是多少人,并求出x的值;(2)在统计图①中,t≥4部分所对应的圆心角是多少度?(3)将图②补充完整;④若该校共有学生1200人,试估计每周课外阅读时间量满足2≤t<4的人数.四、解答题:本大题共3小题,21、22各9分23题10分,共28 (共3题;共25分)21. (5分)(2011·连云港) 根据我省“十二五”铁路规划,连云港至徐州客运专线项目建成后,连云港至徐州的最短客运时间将由现在的2小时18分缩短为36分钟,其速度每小时将提高260km.求提速后的火车速度.(精确到1km/h)22. (10分)(2020·余姚模拟) 如图,已知二次函数y=-x2+bx+c的图象经过点A(3,1),点B(0,4)。
乐山市2020版中考数学试卷A卷
乐山市2020版中考数学试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2018·东宝模拟) 下面计算中正确的是()A .B .C .D .2. (2分)(2017·济宁模拟) 下列事件中是必然事件的是()A . 明天太阳从西边升起B . 篮球队员在罚球线上投篮一次,未投中C . 抛出一枚硬币,落地后正面朝上D . 实心铁球投入水中会沉入水底3. (2分)(2017·重庆) 下列图形中是轴对称图形的是()A .B .C .D .4. (2分)单项式﹣ab2的系数是()A . 1B . -1C . 2D . 35. (2分)(2020·台州) 无理数在()A . 2和3之间B . 3和4之间C . 4和5之间D . 5和6之间6. (2分)计算cos80°﹣sin80°的值大约为()A . 0.8111B . ﹣0.8111C . 0.81127. (2分)(2019·白银) 下面的计算过程中,从哪一步开始出现错误().A . ①B . ②C . ③D . ④8. (2分)甲,乙两人在做“报40”的游戏,其规则是:“两人轮流连续数数,每次最多可以连续数三个数,谁先报到40,谁就获胜”.那么采取适当策略,其结果是()A . 后说数者胜B . 先说数者胜C . 两者都能胜D . 无法判断9. (2分)在半径为2的圆中,弦AB的长为2,则的长等于()A .B .C .D .10. (2分)(2018·临沂) 新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1﹣5月份每辆车的销售价格是多少万元?设今年1﹣5月份每辆车的销售价格为x万元.根据题意,列方程正确的是()A . =B . =C . =D . =11. (2分)如图,△ABC中,∠B=90°,∠C=30°,AB=1,将△ABC绕顶点A旋转180°,点C落在点C′处,则CC′的长为()A .B . 4C .D .12. (2分) (2019九上·西城期中) 如图,在平面直角坐标系xOy中,已知点A(3,4),将OA绕坐标原点O逆时针旋转90°至OA′,则点A′的坐标是().A . (-4,3)B . (-3,4)C . (3,-4)D . (4,-3)二、填空题 (共5题;共5分)13. (1分)如图,直线m∥n,△ABC为等腰三角形,∠BAC=90°,则∠1=________度.14. (1分)(2019·婺城模拟) 因式分解m3﹣4m=________.15. (1分) (2018九上·和平期末) 如图,在平行四边形ABCD中,已知AD=12cm,AB=8m,AE平分∠BAD 交BC边于点E,则CE的长等于________厘米.16. (1分)二次函数y=kx2﹣6x+3的图象与x轴有两个交点,则k的取值范围是________.17. (1分) (2020八下·马山期末) 观察下列各式:,,,,请你找出其中规律,并将第n()个等式写出来________.三、解答题 (共7题;共76分)18. (5分) (2019七下·梅江月考) 化简求值:,其中, .19. (5分)如图,AB∥CD,∠1= ∠2,∠EFD=70°.求∠D.20. (10分)(2017·东明模拟) 2016年3月,我市某中学举行了“爱我中国•朗诵比赛”活动,根据学生的成绩划分为A、B、C、D四个等级,并绘制了不完整的两种统计图.根据图中提供的信息,回答下列问题:(1)参加朗诵比赛的学生共有________人,并把条形统计图补充完整;________(2)扇形统计图中,m=________,n=________;C等级对应扇形有圆心角为________度;(3)学校欲从获A等级的学生中随机选取2人,参加市举办的朗诵比赛,请利用列表法或树形图法,求获A 等级的小明参加市朗诵比赛的概率.21. (20分)(2018·黄冈模拟) 已知反比例函数y= 的图象与一次函数y=kx+m的图象相交于点A(2,1).(1)分别求出这两个函数的解析式;(2)当x取什么范围时,反比例函数值大于0;(3)若一次函数与反比例函数另一交点为B,且纵坐标为﹣4,当x取什么范围时,反比例函数值大于一次函数的值;(4)试判断点P(﹣1,5)关于x轴的对称点P′是否在一次函数y=kx+m的图象上.22. (15分)(2017·濉溪模拟) [发现]如图∠ACB=∠ADB=90°,那么点D在经过A,B,C三点的圆上(如图①)[思考]如图②,如果∠ACB=∠ADB=a(a≠90°)(点C,D在AB的同侧),那么点D还在经过A,B,C三点的⊙O 上吗?我们知道,如果点D不在经过A,B,C三点的圆上,那么点D要么在⊙O外,要么在⊙O内,以下该同学的想法说明了点D不在⊙O外.请结合图④证明点D也不在⊙O内.【证】[结论]综上可得结论,如果∠ACB=∠ADB=α(点C,D在AB的同侧),那么点D在经过A,B,C三点的圆上,即:A、B、C、D四点共圆.[应用]利用上述结论解决问题:如图⑤,已知△ABC中,∠C=90°,将△ACB绕点A顺时针旋转α度(α为锐角)得△ADE,连接BE、CD,延长CD交BE于点F;(1)用含α的代数式表示∠ACD的度数;(2)求证:点B、C、A、F四点共圆;(3)求证:点F为BE的中点.23. (11分)如图,四边形ABCD是边长为2,一个锐角等于60°的菱形纸片,将一个∠EDF=60°的三角形纸片的一个顶点与该菱形顶点D重合,按顺时针方向旋转这个三角形纸片,使它的两边分别交CB,BA(或它们的延长线)于点E,F;(1)当CE=AF时,如图①,DE与DF的数量关系是________;(2)继续旋转三角形纸片,当CE≠AF时,如图②,(1)的结论是否成立?若成立,加以证明;若不成立,请说明理由;(3)再次旋转三角形纸片,当点E,F分别在CB,BA的延长线上时,如图③,请直接写出DE与DF的数量关系.24. (10分)(2017·锡山模拟) 已知:在平面直角坐标系中,抛物线y=ax2﹣x+3(a≠0)交x轴于A、B两点,交y轴于点C,且对称轴为直线x=﹣2.(1)求该抛物线的解析式及顶点D的坐标;(2)若点P(0,t)是y轴上的一个动点,请进行如下探究:探究一:如图1,设△PAD的面积为S,令W=t•S,当0<t<4时,W是否有最大值?如果有,求出W的最大值和此时t的值;如果没有,说明理由;探究二:如图2,是否存在以P、A、D为顶点的三角形与Rt△AOC相似?如果存在,求点P的坐标;如果不存在,请说明理由.(参考资料:抛物线y=ax2+bx+c(a≠0)对称轴是直线x= )参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共5题;共5分)13-1、14-1、15-1、16-1、17-1、三、解答题 (共7题;共76分)18-1、19-1、20-1、20-2、20-3、21-1、21-2、21-3、21-4、22-1、22-2、22-3、23-1、23-2、23-3、24-1、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前
四川省乐山市2020届中考数学试卷
学校:___________
注意事项:注意事项:1、答题前填写好自己的姓名、班级、考号等信息 2、请将答案正确填写在答题卡上
一、单选题
1.1
2
的倒数是( )
A.
1
2
- B.
1
2
C.-2
D.2
2.某校在全校学生中举办了一次“交通安全知识”测试,张老师从全校学生的答卷中随机地抽取了部分学生的答卷,将测试成绩按“差”、“中”、“良”、“优”划分为四个等级,并绘制成如图1所示的条形统计图.若该校学生共有2000人,则其中成绩为“良”和“优”的总人数估计为( )
A.1100
B.1000
C.900
D.110
3.如图2,E是直线CA上一点,40
FEA
∠=︒,射线EB平分CEF
∠,GE EF
⊥.则GEB
∠= ( )
A.10
B.20
C.30
D.40
4.数轴上点A表示的数是-3,将点A在数轴上平移7个单位长度得到点B.则点B表示的数是( )
A.4
B.-4或10
C.-10
D.4或-10
5.如图3,在菱形ABCD中,4
AB= ,120
BAD
∠=︒ ,O是对角线BD的中点,过点O作OE CD
⊥
于点E,连结OA.则四边形AOED的周长为( )
A.9+
B.9+
C.7+
D.8
6.直线y kx b =+在平面直角坐标系中的位置如图4所示,则不等式2kx b +≤的解集是 ( )
A.2x ≤-
B.4x ≤-
C.2x ≥-
D.4x ≥-
7.观察下列各方格图中阴影部分所示的图形(每一小方格的边长为1),如果将它们沿方格边线或对 角线剪开重新拼接,不能拼成正方形的是( )
A. B.
C. D.
8.已知34m =,2432m n -=.若9n x =,则x 的值为( )
A.8
B.4
C.
9.在ABC △中,已知90ABC ∠=︒,30BAC ∠=︒ ,1BC =.如图5所示,将ABC △绕点A 按逆时针方向旋转90︒后得到''AB C △.则图中阴影部分面积为( )
A.π4 10.如图6,在平面直角坐标系中,直线y x =-与双曲线k y x
=交于,A B 两点,P 是以点(2,2)C 为圆心,
半径长1的圆上一动点,连结AP ,Q 为AP 的中点.若线段OQ 长度的最大值为2,则k 的值为 ( )
A.12-
B.32-
C.-2
D.14
- 二、解答题
11.计算:022cos 60(π2020)--︒+-.
12.解二元一次方程组:22839x y x y +=⎧⎨+=⎩
. 13.如图9,E 是矩形ABCD 的边CB 上的一点,AF DE ⊥于点F ,3AB = ,2AD = ,1CE =. 求DF 的长度.
14.已知2y x =,且x y ≠,求222
11()x y x y x y x y +÷-+-的值. 15.如图10,已知点(2,2)A --在双曲线k y x
=上,过点A 的直线与双曲线的另一支交于点(1,)B a .
(1)求直线AB 的解析式;
(2)过点B 作BC x ⊥轴于点C ,连结AC ,过点C 作CD AB ⊥于点D .求线段CD 的长.
16.自新冠肺炎疫情爆发以来,我国人民上下一心,团结一致,基本控制住了疫情.然而,全球新冠
肺炎疫情依然严重,境外许多国家的疫情尚在继续蔓延,疫情防控不可松懈. 图11是某国截止5月31日新冠病毒感染人数的扇形统计图和折线统计图.
根据上面图表信息,回答下列问题:
(1)截止5月31日该国新冠肺炎感染总人数累计为_______万人,扇形统计图中40-59岁感
染人数对应圆心角的度数为 _________º ;
(2)请直接在图11中补充完整该国新冠肺炎感染人数的折线统计图;
(3)在该国所有新冠肺炎感染病例中随机地抽取1人,求该患者年龄为60岁或60岁以上的概
率;
(4)若该国感染病例中从低到高各年龄段的死亡率依次为1%、2.75%、3.5%、10%、
20%,求该国新冠肺炎感染病例的平均死亡率.
17.某汽车运输公司为了满足市场需要,推出商务车和轿车对外租赁业务.下面是乐山到成都两种车型的限载人数和单程租赁价格表:
(1)
(2)某公司准备组织34名职工从乐山赴成都参加业务培训,拟单程租用商务车或轿车前往.在不超载的情况下,怎样设计租车方案才能使所付租金最少?
18.如图12.1,AB是半圆O的直径,AC是一条弦,D是弧AC上一点,DE AB
⊥于点E,交AC于点F,连结BD交AC于点G,且AF FG
=.。