高一数学函数的运用1

合集下载

函数的应用(知识梳理)-高一数学单元复习(人教A版必修1)

函数的应用(知识梳理)-高一数学单元复习(人教A版必修1)

专题02函数的应用(知识梳理)第一节 函数与方程1.函数的零点 (1)函数零点的定义对于函数y =f (x ),我们把使f (x )=0的实数x 叫做函数y =f (x )的零点. (2)几个等价关系方程f (x )=0有实数根⇔函数y =f (x )的图象与x 轴有交点⇔函数y =f (x )有零点. (3)函数零点的判定(零点存在性定理)如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,并且有f (a )·f (b )<0,那么,函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b ),使得f (c )=0,这个c 也就是方程f (x )=0的根.2.二次函数y =ax 2+bx +c (a >0)的图象与零点的关系Δ>0Δ=0Δ<0图象与x 轴的交点 (x 1,0),(x 2,0)(x 1,0) 无交点 零点个数 21[小题体验]1.函数f (x )=2x +3x 的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1) D .(1,2)答案:B2.(教材习题改编)函数f (x )=ln x +2x -6的零点个数是______. 答案:13.函数f (x )=kx +1在[1,2]上有零点,则k 的取值范围是________. 答案:⎣⎡⎦⎤-1,-121.函数f (x )的零点是一个实数,是方程f (x )=0的根,也是函数y =f (x )的图象与x 轴交点的横坐标.2.函数零点存在性定理是零点存在的一个充分条件,而不是必要条件;判断零点个数还要根据函数的单调性、对称性或结合函数图象.[小题纠偏]1.(2018·诸暨模拟)函数f(x)按照下述方法定义:当x≤2时,f(x)=-x2+2x;当x>2时,f(x)=12(x-2)2,则方程f(x)=12的所有实数根之和是()A.2 B.3 C.5 D.8解析:选C画出函数f(x)的图象,如图所示:结合图象x<2时,两根之和是2,x>2时,由12(x-2)2=12,解得x=3,故方程f(x)=12的所有实数根之和是5,故选C.2.给出下列命题:①函数f(x)=x2-1的零点是(-1,0)和(1,0);②函数y=f(x)在区间(a,b)内有零点(函数图象连续不断),则一定有f(a)·f(b)<0;③二次函数y=ax2+bx+c(a≠0)在b2-4ac<0时没有零点;④若函数f(x)在(a,b)上单调且f(a)·f(b)<0,则函数f(x)在[a,b]上有且只有一个零点.其中正确的是________(填序号).答案:③④考点一函数零点所在区间的判定基础送分型考点——自主练透[题组练透]1.已知实数a>1,0<b<1,则函数f(x)=a x+x-b的零点所在的区间是()A.(-2,-1)B.(-1,0)C.(0,1) D.(1,2)解析:选B∵a>1,0<b<1,f(x)=a x+x-b,∴f(-1)=1a-1-b<0,f(0)=1-b>0,由零点存在性定理可知f(x)在区间(-1,0)上存在零点.2.设f(x)=ln x+x-2,则函数f(x)的零点所在的区间为()A.(0,1) B.(1,2)C.(2,3) D.(3,4)解析:选B函数f(x)的零点所在的区间转化为函数g(x)=ln x,h(x)=-x +2图象交点的横坐标所在的范围.作出两函数大致图象如图所示,可知f(x)的零点所在的区间为(1,2).故选B.3.函数f(x)=x2-3x-18在区间[1,8]上______(填“存在”或“不存在”)零点.解析:法一:∵f(1)=12-3×1-18=-20<0,f(8)=82-3×8-18=22>0,∴f(1)·f(8)<0,又f(x)=x2-3x-18在区间[1,8]的图象是连续的,故f(x)=x2-3x-18在区间[1,8]上存在零点.法二:令f(x)=0,得x2-3x-18=0,∴(x-6)(x+3)=0.∵x=6∈[1,8],x=-3∉[1,8],∴f(x)=x2-3x-18在区间[1,8]上存在零点.答案:存在[谨记通法]确定函数f(x)的零点所在区间的2种常用方法(1)定义法:使用零点存在性定理,函数y=f(x)必须在区间[a,b]上是连续的,当f(a)·f(b)<0时,函数在区间(a,b)内至少有一个零点,如“题组练透”第1题.(2)图象法:若一个函数(或方程)由两个初等函数的和(或差)构成,则可考虑用图象法求解,如f(x)=g(x)-h(x),作出y=g(x)和y=h(x)的图象,其交点的横坐标即为函数f(x)的零点,如“题组练透”第2题.考点二判断函数零点个数重点保分型考点——师生共研[典例引领]1.函数f(x)=|x-2|-ln x在定义域内的零点的个数为()A.0B.1C.2 D.3解析:选C 由题意可知f (x )的定义域为(0,+∞).在同一直角坐标系中画出函数y =|x -2|(x >0),y =ln x (x >0)的图象,如图所示:由图可知函数f (x )在定义域内的零点个数为2.2.已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,log 2x ,x >0,则函数y =f (f (x ))+1的零点的个数是( )A .4B .3C .2D .1解析:选A 由f (f (x ))+1=0得f (f (x ))=-1, 由f (-2)=f ⎝⎛⎭⎫12=-1 得f (x )=-2或f (x )=12.若f (x )=-2,则x =-3或x =14;若f (x )=12,则x =-12或x = 2.综上可得函数y =f (f (x ))+1的零点的个数是4,故选A.[由题悟法]判断函数零点个数的3种方法(1)方程法:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理法:利用定理不仅要求函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点或零点值所具有的性质.(3)数形结合法:转化为两个函数的图象的交点个数问题.先画出两个函数的图象,看其交点的个数,其中交点的横坐标有几个不同的值,就有几个不同的零点.[即时应用]1.已知函数f (x )=⎩⎪⎨⎪⎧3x,x ≤1,log 13x ,x >1,则函数y =f (x )+x -4的零点个数为( )A .1B .2C .3D .4解析:选B 函数y =f (x )+x -4的零点,即函数y =-x +4与y =f (x )的交点的横坐标.如图所示,函数y =-x +4与y =f (x )的图象有两个交点,故函数y =f (x )+x -4的零点有2个.故选B.2.(2018·杭州模拟)已知函数f (x )=⎩⎪⎨⎪⎧2x ,-1<x ≤1,f x -2+1,1<x ≤3,则函数g (x )=f (f (x ))-2在区间(-1,3]上的零点个数是( )A .1B .2C .3D .4解析:选C ∵函数f (x )=⎩⎪⎨⎪⎧2x ,-1<x ≤1,f x -2+1,1<x ≤3,∴当-1<x ≤1时,12<f (x )≤2,当1<x ≤3时,-1<x -2≤1,f (x )=f (x -2)+1=2x -2+1∈⎝⎛⎦⎤32,3; 设h (x )=f (f (x )),①当-1<x ≤0时,h (x )=22x ,2<h (x )≤2, ∴g (x )=h (x )-2有一个零点x =0; ②当0<x ≤1时,h (x )=22x -2+1,32<h (x )≤2,∴g (x )=h (x )-2有一个零点x =1; ③当1<x ≤3时,h (x )=22x -2+1-2+1, 22+1<h (x )≤3,g (x )有一个零点; 综上,函数g (x )在区间(-1,3]上有3个零点,故选C. 考点三 函数零点的应用重点保分型考点——师生共研[典例引领]已知函数f (x )是定义在R 上的偶函数,且当x ≥0时,f (x )=a |x -2|-a ,其中a >0,且为常数.若函数y =f (f (x ))有10个零点,则a 的取值范围是________.解析:当x ≥0时,令f (x )=0,得|x -2|=1, 即x =1或x =3.因为f (x )是定义在R 上的偶函数, 所以f (x )的零点为x =±1或x =±3. 令f (f (x ))=0, 则f (x )=±1或f (x )=±3.因为函数y =f (f (x ))有10个零点,所以函数y =f (x )的图象与直线y =±1和y =±3共有10个交点.由图可知1<a <3.答案:(1,3)[由题悟法]已知函数有零点(方程有根)求参数取值范围常用3方法 直接法 直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围 分离参数法 先将参数分离,转化成求函数值域问题加以解决数形结合法 先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解[即时应用]1.若函数f (x )=4x -2x -a ,x ∈[-1,1]有零点,则实数a 的取值范围是________. 解析:∵函数f (x )=4x -2x -a ,x ∈[-1,1]有零点, ∴方程4x -2x -a =0在[-1,1]上有解, 即方程a =4x -2x 在[-1,1]上有解. 方程a =4x -2x 可变形为a =⎝⎛⎭⎫2x -122-14, ∵x ∈[-1,1],∴2x ∈⎣⎡⎦⎤12,2, ∴⎝⎛⎭⎫2x -122-14∈⎣⎡⎦⎤-14,2. ∴实数a 的取值范围是⎣⎡⎦⎤-14,2. 答案:⎣⎡⎦⎤-14,2 2.(2018·浙江名校高考研究联盟联考)方程x 2+3x -2=0的解可视为函数y =x +3的图象与函数y =2x的图象交点的横坐标.若方程x 4+ax -4=0的各个实根x 1,x 2,…,x k (k ≤4)所对应的点⎝⎛⎭⎫x i ,4x i (i =1,2,…,k )均在直线y =x 的同侧,则实数a 的取值范围是________. 解析:由题意知,方程x 4+ax -4=0的实根是曲线y =x 3+a 与曲线y =4x 的交点的横坐标,而曲线y =x 3+a 是由函数y =x 3的图象向上或向下平移|a |个单位长度得到的.若方程x 4+ax -4=0的各个实数根x 1,x 2,…,x k (k ≤4)所对应的点⎝⎛⎭⎫x i ,4x i(i =1,2,…,k )均在直线y =x 的同侧,如图,结合图象可得⎩⎪⎨⎪⎧ a >0,-23+a >-2或⎩⎪⎨⎪⎧a <0,23+a <2,解得a <-6或a >6,所以实数a 的取值范围是(-∞,-6)∪(6,+∞).答案:(-∞,-6)∪(6,+∞)第二节 函数模型及其应用1.几类函数模型函数模型 函数解析式一次函数模型 f (x )=ax +b (a ,b 为常数,a ≠0) 反比例函 数模型 f (x )=kx +b (k ,b 为常数且k ≠0) 二次函数模型f (x )=ax 2+bx +c (a ,b ,c 为常数,a ≠0) 指数函数模型f (x )=ba x +c(a ,b ,c 为常数,b ≠0,a >0且a ≠1) 对数函数模型 f (x )=b log a x +c(a ,b ,c 为常数,b ≠0,a >0且a ≠1) 幂函数模型 f (x )=ax n +b (a ,b 为常数,a ≠0)函数 性质 y =a x (a >1) y =log a x (a >1) y =x n (n >0) 在(0,+∞) 上的增减性 单调递增 单调递增 单调递增 增长速度 越来越快 越来越慢 相对平稳 图象的变化随x 的增大 逐渐表现为 随x 的增大 逐渐表现为随n 值变化 而各有不同与y轴平行与x轴平行值的比较存在一个x0,当x>x0时,有log a x<x n<a x3.解函数应用问题的4步骤(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择函数模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的函数模型;(3)解模:求解函数模型,得出数学结论;(4)还原:将数学结论还原为实际意义的问题.以上过程用框图表示如下:[小题体验]1.(教材习题改编)一根蜡烛长20 cm,点燃后每小时燃烧5 cm,燃烧时剩下的高度h(cm)与燃烧时间t(h)的函数关系用图象表示为图中的()答案:B2.已知某种动物繁殖量y(只)与时间x(年)的关系为y=a log3(x+1),设这种动物第2年有100只,到第8年它们发展到________只.答案:2001.函数模型应用不当,是常见的解题错误.所以要正确理解题意,选择适当的函数模型.2.要特别关注实际问题的自变量的取值范围,合理确定函数的定义域.3.注意问题反馈.在解决函数模型后,必须验证这个数学结果对实际问题的合理性.[小题纠偏]1.甲、乙两人在一次赛跑中,从同一地点出发,路程S与时间t的函数关系如图所示,则下列说法正确的是()A.甲比乙先出发B.乙比甲跑的路程多C.甲、乙两人的速度相同D.甲比乙先到达终点答案:D2.据调查,某自行车存车处在某星期日的存车量为4 000辆次,其中变速车存车费是每辆一次0.3元,普通车存车费是每辆一次0.2元.若普通车存车量为x辆次,存车费总收入为y元,则y关于x的函数关系式是__________.答案:y=-0.1x+1 200(0≤x≤4 000)考点一二次函数模型重点保分型考点——师生共研[典例引领]某跳水运动员在一次跳水训练时的跳水曲线为如图所示抛物线的一段.已知跳水板AB长为2 m,跳水板距水面CD的高BC为3 m.为安全和空中姿态优美,训练时跳水曲线应在离起跳点A处水平距h m(h≥1)时达到距水面最大高度4 m,规定:以CD为横轴,BC为纵轴建立直角坐标系.(1)当h=1时,求跳水曲线所在的抛物线方程;(2)若跳水运动员在区域EF内入水时才能达到比较好的训练效果,求此时h的取值范围.解:由题意,最高点为(2+h,4),(h≥1).设抛物线方程为y=a[x-(2+h)]2+4.(1)当h=1时,最高点为(3,4),方程为y=a(x-3)2+4.(*)将点A(2,3)代入(*)式得a=-1.即所求抛物线的方程为y=-x2+6x-5.(2)将点A(2,3)代入y=a[x-(2+h)]2+4,得ah2=-1.由题意,方程a[x-(2+h)]2+4=0在区间[5,6]内有一解.令f (x )=a [x -(2+h )]2+4=-1h2[x -(2+h )]2+4,则⎩⎨⎧f 5=-1h 23-h 2+4≥0,f6=-1h24-h2+4≤0.解得1≤h ≤43.故达到比较好的训练效果时的h 的取值范围是⎣⎡⎦⎤1,43. [由题悟法]二次函数模型问题的3个注意点(1)二次函数的最值一般利用配方法与函数的单调性解决,但一定要密切注意函数的定义域,否则极易出错;(2)确定一次函数模型时,一般是借助两个点来确定,常用待定系数法; (3)解决函数应用问题时,最后要还原到实际问题.[即时应用]A ,B 两城相距100 km ,在两城之间距A 城x (km)处建一核电站给A ,B 两城供电,为保证城市安全,核电站距城市距离不得小于10 km.已知供电费用等于供电距离(km)的平方与供电量(亿度)之积的0.25倍,若A 城供电量为每月20亿度,B 城供电量为每月10亿度.(1)求x 的取值范围;(2)把月供电总费用y 表示成x 的函数;(3)核电站建在距A 城多远,才能使供电总费用y 最少? 解:(1)由题意知x 的取值范围为[10,90]. (2)y =5x 2+52(100-x )2(10≤x ≤90).(3)因为y =5x 2+52(100-x )2=152x 2-500x +25 000=152⎝⎛⎭⎫x -10032+50 0003, 所以当x =1003时,y min =50 0003. 故核电站建在距A 城1003 km 处,能使供电总费用y 最少.考点二 函数y =x +ax模型的应用重点保分型考点——师生共研[典例引领]为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:cm)满足关系C (x )=k3x +5(0≤x ≤10),若不建隔热层,每年能源消耗费用为8万元,设f (x )为隔热层建造费用与20年的能源消耗费用之和.(1)求k 的值及f (x )的表达式;(2)隔热层修建多厚时,总费用f (x )达到最小,并求最小值.解:(1)由已知条件得C (0)=8,则k =40,因此f (x )=6x +20C (x )=6x +8003x +5(0≤x ≤10). (2)f (x )=6x +10+8003x +5-10≥2 6x +10·f(8003x +5)-10=70(万元), 当且仅当6x +10=8003x +5, 即x =5时等号成立.所以当隔热层厚度为5 cm 时,总费用f (x )达到最小值,最小值为70万元.[由题悟法]应用函数y =x +a x模型的关键点 (1)明确对勾函数是正比例函数f (x )=ax 与反比例函数f (x )=b x叠加而成的. (2)解决实际问题时一般可以直接建立f (x )=ax +b x的模型,有时可以将所列函数关系式转化为f (x )=ax +b x的形式. (3)利用模型f (x )=ax +b x求解最值时,要注意自变量的取值范围,及取得最值时等号成立的条件. [即时应用]“水资源与永恒发展”是2015年联合国世界水资源日主题,近年来,某企业每年需要向自来水厂所缴纳水费约4万元,为了缓解供水压力,决定安装一个可使用4年的自动污水净化设备,安装这种净水设备的成本费(单位:万元)与管线、主体装置的占地面积(单位:平方米)成正比,比例系数约为0.2.为了保证正常用水,安装后采用净水装置净水和自来水厂供水互补的用水模式.假设在此模式下,安装后该企业每年向自来水厂缴纳的水费C (单位:万元)与安装的这种净水设备的占地面积x (单位:平方米)之间的函数关系是C (x )=k 50x +250(x ≥0,k 为常数).记y 为该企业安装这种净水设备的费用与该企业4年共将消耗的水费之和.(1)试解释C (0)的实际意义,并建立y 关于x 的函数关系式并化简;(2)当x 为多少平方米时,y 取得最小值,最小值是多少万元?解:(1)C (0)表示不安装设备时每年缴纳的水费为4万元,∵C (0)=k 250=4, ∴k =1 000,∴y=0.2x+1 00050x+250×4=0.2x+80x+5(x≥0).(2)y=0.2(x+5)+80x+5-1≥20.2×80-1=7,当x+5=20,即x=15时,y min=7,∴当x为15平方米时,y取得最小值7万元.考点三指数函数与对数函数模型重点保分型考点——师生共研[典例引领](2016·四川高考)某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是()(参考数据:lg 1.12≈0.05,lg 1.3≈0.11, lg 2≈0.30)A.2018年B.2019年C.2020年D.2021年解析:选B法一:设2015年后的第n年,该公司全年投入的研发资金开始超过200万元,由130(1+12%)n>200,得 1.12n>2013,两边取常用对数,得n>lg 2-lg 1.3lg 1.12≈0.30-0.110.05=195,∴n≥4,∴从2019年开始,该公司全年投入的研发资金开始超过200万元.法二:根据题意,知每年投入的研发资金增长的百分率相同,所以从2015年起,每年投入的研发资金组成一个等比数列{a n},其中,首项a1=130,公比q=1+12%=1.12,所以a n=130×1.12n-1.由130×1.12n-1>200,两边同时取常用对数,得n-1>lg 2-lg 1.3lg 1.12,又lg 2-lg 1.3lg 1.12≈0.3-0.110.05=3.8,则n>4.8,即a5开始超过200,所以2019年投入的研发资金开始超过200万元,故选B.[由题悟法]指数函数与对数函数模型的应用技巧(1)与指数函数、对数函数两类函数模型有关的实际问题,在求解时,要先学会合理选择模型,在两类模型中,指数函数模型是增长速度越来越快(底数大于1)的一类函数模型,与增长率、银行利率有关的问题都属于指数函数模型.(2)在解决指数函数、对数函数模型问题时,一般先需要通过待定系数法确定函数解析式,再借助函数的图象求解最值问题.[即时应用]某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量y(微克)与时间t(小时)之间近似满足如图所示的曲线.(1)写出第一次服药后y 与t 之间的函数关系式y =f (t );(2)据进一步测定,每毫升血液中含药量不少于0.25微克时治疗疾病有效,求服药一次后治疗疾病有效的时间.解:(1)由题图,设y =⎩⎪⎨⎪⎧ kt ,0≤t ≤1,⎝⎛⎭⎫12t -a ,t >1, 当t =1时,由y =4得k =4,由⎝⎛⎭⎫121-a =4得a =3.所以y =⎩⎪⎨⎪⎧4t ,0≤t ≤1,⎝⎛⎭⎫12t -3,t >1. (2)由y ≥0.25得⎩⎪⎨⎪⎧ 0≤t ≤1,4t ≥0.25或⎩⎪⎨⎪⎧ t >1,⎝⎛⎭⎫12t -3≥0.25,解得116≤t ≤5. 因此服药一次后治疗疾病有效的时间是5-116=7916(小时).。

高一数学函数解题技巧

高一数学函数解题技巧

高一数学函数解题技巧上了高中以后,数学这门课程基本上都离不开函数的学习,考试内容也会围绕函数来考察。

经了解,高中数学必须要掌握基本初等函数以及相关的变形,方能提高分数。

那么,高一数学函数解题技巧有哪些?下文中将会做出介绍。

高一数学函数解题技巧有哪些?解题方法一:代入法代入法主要有两种方式,一种是出现在选择题中,就是直接把题目的答案选项带入到题目中进行验证,这也是相对比较快的一种办法,另外一种就是求已知函数关于某点或者某条直线的对称函数,带入函数的表达公式或者函数的性质,直接性的求解题目,通常适用于填空题,难度也也不会太大。

解题方法二:单调性法单调性是在求解函数至于或者最值得时候很常见的一种高效解题的方法,函数的单调性是函数的一个特别重要的性质,也是每年高考考察的重点。

但是不少同学由于对基础概念认识不足,审题不清,在解答这类题时容易出现错解。

下面对做这类题时需注意的事项加以说明,以引起同学们的重视。

解题方法三:待定系数法待定系数法解题的关键是依据已知变量间的函数关系,正确列出等式或方程。

使用待定系数法,就是根据所给条件来确定这些未知系数,要判断一个问题是否用待定系数法求解,主要是看所求解的数学问题是否具有某种确定的数学表达式,如果具有,就可以用待定系数法求解。

运用待定系数法解答函数问题的基本步骤是:1、首先要确定所求问题含有待定系数的解析式;2、根据题目中恒等的条件,列出一组含待定系数的方程;3,用函数的基本性质解方程组或者消去待定系数,从而使问题得到解决。

解题方法四:换元法换元法主要用于解答复合函数题型问题,把一个小的函数表达式用一个变量来表现的形式称为换元法,运用换元法解题可以降低题目的难度,便于观察和理解。

解题方法五:构造方程法不管哪种函数性坏死,函数的方程在运用中无疑是可以降低解题难度的,所以构造函数的方程也是经常会用到的一种解题技巧,特别是在高考解答题压轴题中,构造函数这个步骤也是可以取得很高分数的,所大家必须要重视构造函数法这个技巧。

高一函数知识点总结

高一函数知识点总结

高一函数知识点总结高一函数知识点总结1一、函数的概念与表示1、映射(1)映射:设A、B是两个集合,如果按照某种映射法则f,对于集合A中的任一个元素,在集合B中都有唯一的元素和它对应,则这样的对应(包括集合A、B以及A到B的对应法则f)叫做集合A到集合B的映射,记作f:A→B。

注意点:(1)对映射定义的理解。

(2)判断一个对应是映射的方法。

一对多不是映射,多对一是映射2、函数构成函数概念的三要素①定义域②对应法则③值域两个函数是同一个函数的条件:三要素有两个相同二、函数的解析式与定义域1、求函数定义域的主要依据:(1)分式的分母不为零;(2)偶次方根的'被开方数不小于零,零取零次方没有意义;(3)对数函数的真数必须大于零;(4)指数函数和对数函数的底数必须大于零且不等于1;三、函数的值域1求函数值域的方法①直接法:从自变量x的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数;②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式;③判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;适合分母为二次且∈R的分式;④分离常数:适合分子分母皆为一次式(x有范围限制时要画图);⑤单调性法:利用函数的单调性求值域;⑥图象法:二次函数必画草图求其值域;⑦利用对号函数⑧几何意义法:由数形结合,转化距离等求值域。

主要是含绝对值函数四.函数的奇偶性1.定义:设y=f(x),x∈A,如果对于任意∈A,都有,则称y=f(x)为偶函数。

如果对于任意∈A,都有,则称y=f(x)为奇函数。

2.性质:①y=f(x)是偶函数y=f(x)的图象关于轴对称,y=f(x)是奇函数y=f(x)的图象关于原点对称,②若函数f(x)的定义域关于原点对称,则f(0)=0③奇±奇=奇偶±偶=偶奇某奇=偶偶某偶=偶奇某偶=奇[两函数的定义域D1,D2,D1∩D2要关于原点对称]3.奇偶性的判断①看定义域是否关于原点对称②看f(x)与f(-x)的关系五、函数的单调性1、函数单调性的定义:2设是定义在M上的函数,若f(x)与g(x)的单调性相反,则在M上是减函数;若f(x)与g(x)的单调性相同,则在M上是增函数。

高一函数题型及解题技巧

高一函数题型及解题技巧

高一函数题型及解题技巧高一函数是高中数学中的重要内容,包括函数的定义、性质、图像、变化规律等,在考试中也经常出现。

下面是一些高一函数题型及解题技巧的介绍。

1.函数的定义题型函数的定义题型考察的是对函数的基本概念和定义的理解。

通常会给出一个函数的表达式或定义,然后要求判断函数的性质或回答问题。

解题时要仔细分析函数的定义,注意函数值的范围、定义域和值域等因素。

2.函数的性质题型函数的性质题型考察的是对函数性质的理解和运用。

通常会给出一个函数的表达式或定义,并且要求判断函数的奇偶性、单调性、周期等性质。

解题时要根据函数的性质进行分析,可以使用导数、导数的符号变化、函数图像等方法。

3.函数的图像题型函数的图像题型考察的是对函数图像的理解和分析能力。

通常会给出一个函数的表达式或定义,然后要求画出函数的图像或分析图像的特点。

解题时可以先分析函数的性质,然后根据性质画图,注意函数的变化规律和特殊点的位置。

4.函数的变化规律题型函数的变化规律题型考察的是对函数变化规律的掌握和分析能力。

通常会给出一个函数的表达式或定义,然后要求分析函数的变化规律或进行函数的运算。

解题时要注意函数的变化趋势、特点和规律,可以使用导数、极值、最值等方法。

解题技巧:1.熟练掌握函数的基本概念和定义,理解函数的性质和特点。

2.注意观察题目中给出的已知条件和要求,对问题进行合理的分析和解答。

3.尽量画出函数的图像,根据图像进行分析和判断。

首先确定函数的性质和特点,然后根据特点进行计算或推导。

4.注意函数的定义域和值域,合理利用函数的性质进行推导和计算。

5.灵活运用导数和基本函数的性质,尤其是对于求导和导数的符号变化。

6.注意函数的极值和最值,找出极值点和最值点的位置和数值。

以上是一些高一函数题型及解题技巧的介绍,希望对你有帮助。

在学习函数的过程中,要多做练习题,熟练掌握函数的概念、性质和画图方法,提高解题能力。

函数的表示法第1课时高一上学期数学人教A版(2019)必修第一册+

函数的表示法第1课时高一上学期数学人教A版(2019)必修第一册+
1.直接法(代入法):已知f(x)的解析式,求f(g(x))的解析式,直接将
g(x)代入即可.
2.待定系数法:若已知函数的类型,可用待定系数法求解,即由函
数类型设出函数解析式,再根据条件列方程(或方程组),通过解
方程(组)求出待定系数,进而求出函数解析式.
3.换元法(有时可用“配凑法”):已知函数f(g(x))的解析式求f(x)的
钱数y
1
5
2
10
3
15
4
20
5
25
用图象法可将函数y=f(x)
表示为右图.
注意:
①函数图象既可以是连续的曲线,也可以是直线、折线、
离散的点等等;
②解析法:必须注明函数的定义域;
③图象法:是否连线;
④列表法:选取的自变量要有代表性,应能反映定义域的
特征.
例2.下表是某校高一(1)班三位同学在高一学年度几次数学
三、典例探究
例1.某种笔记本的单价是5元,买x(x∈{1,2,3,4,5})个笔记本需
要y元,试用三种表示法表示函数y=f(x).
解:这个函数的定义域是数集{1,2, 3,4,5}.
用解析法可将函数y=f(x)表示为 y=5x, x∈{1,2, 3,4,5}
用列表法可将函数y=f(x)表示为
笔记本数x
函数,用图象法表示 函数y=f(x),
如图所示.
由图可看到:
王伟同学的数学成绩始终高于班级平均分,学习情况比较稳定
而且成绩优秀;
张城同学的数学成绩不稳定,总是在班级平均分水平上下波动,
而且波动幅度较大;
赵磊同学的数学学习成绩呈上升趋势,表明他的数学成绩稳步
提高.
思考:三种表示方法各有什么特点?

高一数学函数的定义域与值域的常用方法

高一数学函数的定义域与值域的常用方法

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载高一数学函数的定义域与值域的常用方法地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容高一数学求函数的定义域与值域的常用法一:求函数解析式1、换元法:题目给出了与所求函数有关的复合函数表达式,可将函数用一个变量代换。

例1. 已知,试求。

解:设,则,代入条件式可得:,t≠1。

故得:。

说明:要注意转换后变量围的变化,必须确保等价变形。

2、构造程组法:对同时给出所求函数及与之有关的复合函数的条件式,可以据此构造出另一个程,联立求解。

例2. (1)已知,试求;(2)已知,试求;解:(1)由条件式,以代x,则得,与条件式联立,消去,则得:。

(2)由条件式,以-x代x则得:,与条件式联立,消去,则得:。

说明:本题虽然没有给出定义域,但由于变形过程一直保持等价关系,故所求函数的定义域由解析式确定,不需要另外给出。

例4. 求下列函数的解析式:(1)已知是二次函数,且,求;(2)已知,求,,;(3)已知,求;(4)已知,求。

【题意分析】(1)由已知是二次函数,所以可设,设法求出即可。

(2)若能将适当变形,用的式子表示就容易解决了。

(3)设为一个整体,不妨设为,然后用表示,代入原表达式求解。

(4),同时使得有意义,用代替建立关于,的两个程就行了。

【解题过程】⑴设,由得,由,得恒等式,得。

故所求函数的解析式为。

(2),又。

(3)设,则所以。

(4)因为①用代替得②解①②式得。

【题后思考】求函数解析式常见的题型有:(1)解析式类型已知的,如本例⑴,一般用待定系数法。

对于二次函数问题要注意一般式,顶点式和标根式的选择;(2)已知求的问题,法一是配凑法,法二是换元法,如本例(2)(3);(3)函数程问题,需建立关于的程组,如本例(4)。

高一数学必修一教案《函数模型及其应用》

高一数学必修一教案《函数模型及其应用》

高一数学必修一教案《函数模型及其运用》【导语】心无旁骛,全力以赴,争分夺秒,坚强拼搏脚踏实地,不骄不躁,长风破浪,直济沧海,我们,注定成功!作者高一频道为大家推荐《高一数学必修一教案《函数模型及其运用》》期望对你的学习有帮助!【篇一】【内容】建立函数模型刻画现实问题【内容解析】函数模型本身就来源于现实,并用于解决实际问题,所以本节内容是通过对展现的实例进行分析与探究使得学生能有更多的机会从实际问题中发觉或建立数学模型,并能体会数学在实际问题中的运用价值,同时本课题是学生在初中学习了函数的图象和性质的基础上刚上高中进行的一节探究式课堂教学。

在一个具体问题的解决进程中,学生可以从知道知识升华到熟练运用知识,使他们能辩证地看待知识知道与知识运用间的关系,与所学的函数知识前后牢牢相扣,相辅相成。

;另一方面,函数模型本身就是与实际问题结合在一起的,空讲理论只能导致学生不能真正知道函数模型的运用和在运用进程中函数模型的建立与解决问题的进程,而从简单、典型、学生熟悉的函数模型中发掘、提炼出来的思想和方法,更容易被学生接受。

同时,应尽量让学生在简单的实例中学习并感受函数模型的挑选与建立。

由于建立函数模型离不开函数的图象及数据表格,所以会有一定量的原始数据的处理,这可能会用到电脑和运算器以及图形工具,而我们的教学应更加关注的是通过实际问题的分析进程来挑选适当的函数模型和函数模型的构建进程。

在这个进程中,要使学生侧重体会的是模型的建立,同时体会模型建立的可操作性、有效性等特点,学习模型的建立以解决实际问题,培养发展有条理的思维和表达能力,提高逻辑思维能力。

【教学目标】(1)体现建立函数模型刻画现实问题的基本进程.(2)了解函数模型的广泛运用(3)通过学生进行操作和探究提高学生发觉问题、分析问题、解决实际问题的能力(4)提高学生探究学习新知识的爱好,培养学生,勇于探索的科学态度【重点】了解并建立函数模型刻画现实问题的基本进程,了解函数模型的广泛运用【难点】建立函数模型刻画现实问题中数据的处理【教学目标解析】通过对全班学生中抽样得出的样本进行分析和处理,,使学生认识到本节课的重点是利用函数建模刻画现实问题的基本进程和提高解决实际问题的能力,在引导突出重点的同时能过学生的小组合作探究来突破本节课的难点,这样,在小组合作学习与探究进程中实现教学目标中对知识和能力的要求(目标1,2,3)在如何用函数建模刻画现实问题的基本进程中让学生亲身体验函数运用的广泛性,同时提高学生探究学习新知识的爱好,培养学生主动参与、自主学习、勇于探索的科学态度,从而实现教学目标中的德育目标(目标4)【学生学习中预期的问题及解决方案预设】①描点的规范性;②实际操作的速度;③解析式的运算速度④运算终止后不进行检验针对上述可能显现的问题,我在课前课上处理是,课前给学生准备一些坐标纸来提高描点的规范性,同时让学生使用运算器利用小组讨论来进行多人合作以期提高相应运算速度,在解析式得出后引导学生得出的标准应当是只有一个的较好的,不能有很多的标准,这样以期引导学生想到对结果进行挑选从而引出检验.【教学用具】多媒体辅助教学(ppt、运算机)。

高一数学习题函数的综合运用

高一数学习题函数的综合运用

高一数学习题函数的综合运用在高一的数学学习中,函数是一个重要的概念和工具。

函数的综合运用则是展示学生对函数知识的掌握程度和应用能力的重要环节。

本文将通过几道具体的数学习题,展示高一学生如何运用函数进行综合问题求解。

1. 题目一:小明正在规划一个植物园,园中有两片草地A和B,其中草地A的面积是草地B的两倍。

小明想在这两片草地上分别种植玫瑰花和向日葵,使得两种花的总数量相等。

已知玫瑰花每平方米需要5株,向日葵每平方米需要3株。

请问小明应该在草地A和草地B分别种植多少面积的玫瑰花和向日葵,才能满足总数量相等的要求?解析:设草地A的面积为x平方米,则草地B的面积为2x平方米。

根据题意,可得到以下两个等式:5x = 3 * 2x接下来,我们解方程组:5x = 6x6x - 5x = 0x = 0根据解出的x值,我们可以得知草地A的面积为0平方米,草地B 的面积为0平方米。

因此,无法满足总数量相等的要求。

2. 题目二:某超市在一次特价促销中,将原价为100元的商品打折出售。

打折后的价格与原价之间的关系如下:当购买数量小于等于5件时,每件商品打8折;当购买数量超过5件时,每件商品打7折。

若小明购买了x件商品,问他所购商品的总金额f(x)与x的函数关系是什么?解析:当购买数量小于等于5件时,每件商品打8折,即折扣后价格为100 * 0.8 = 80元。

当购买数量超过5件时,每件商品打7折,即折扣后价格为100 * 0.7 = 70元。

根据以上分析,可以列出下面的函数关系式:f(x) ={80x, 当 x <= 5,70x, 当 x > 5}通过这个函数关系式,我们可以计算出小明购买任意数量的商品后的总金额。

3. 题目三:某公司的年度利润(单位:亿元)与销售额(单位:亿元)之间的关系如下:当销售额不超过10亿元时,利润为销售额的5%;当销售额超过10亿元但不超过50亿元时,利润为销售额的8%;当销售额超过50亿元时,利润为销售额的10%。

高一数学必修一中的函数极值与最值应用

高一数学必修一中的函数极值与最值应用

高一数学必修一中的函数极值与最值应用在高一数学必修一的学习中,函数极值与最值是非常重要的概念,它们在解决实际问题和数学理论中都有着广泛的应用。

首先,我们来明确一下函数极值和最值的定义。

函数的极值是指在函数定义域内的某个局部范围内,函数取得的最大值或最小值。

而函数的最值则是指在整个定义域内,函数所取得的最大值或最小值。

那么,如何求函数的极值和最值呢?这就需要用到导数这个工具。

对于一个可导函数,如果在某一点处导数为零,且在该点两侧导数的符号发生变化,那么这个点就是函数的极值点。

当导数从负变为正时,这个极值点是极小值点;当导数从正变为负时,这个极值点是极大值点。

在实际应用中,函数极值和最值有着诸多方面的体现。

比如在经济领域,企业常常需要考虑成本和利润的问题。

假设一家企业生产某种产品,其成本函数为 C(x),收入函数为 R(x),那么利润函数 P(x) = R(x) C(x)。

通过求利润函数的极值和最值,企业可以确定最优的生产数量,以实现利润的最大化。

再比如在物理问题中,常常会涉及到能量的变化。

例如一个物体在重力作用下自由下落,其高度与时间的关系可以用一个函数来表示。

通过求这个函数的极值和最值,可以确定物体下落的最大速度、最大高度等关键物理量。

在几何问题中,也经常会用到函数的极值和最值。

比如要在一个给定的矩形材料上剪出一个最大的圆形,就需要建立矩形边长与圆的半径之间的函数关系,然后求出这个函数的最值,从而确定圆的最大半径。

让我们通过一些具体的例子来更深入地理解函数极值与最值的应用。

例 1:某工厂生产一种产品,其成本 C 与产量 x 之间的函数关系为C(x) = 2x^2 10x + 50。

求当产量为多少时,平均成本最低?首先,平均成本函数为 C(x)/x = 2x 10 + 50/x 。

对其求导,得到导数为 2 50/x^2 。

令导数等于 0 ,解得 x = 5 。

当 x < 5 时,导数小于 0 ,函数单调递减;当 x > 5 时,导数大于 0 ,函数单调递增。

高一数学函数题型及解题技巧总结

高一数学函数题型及解题技巧总结

高一数学函数题型及解题技巧总结1. 函数概述在高一数学学习中,函数是一个重要的概念。

函数描述了自变量和因变量之间的关系,并在各个数学领域中被广泛应用。

通过掌握各种函数题型及解题技巧,我们能够更好地理解和运用函数,提升数学解题能力。

2. 一次函数一次函数是最基础的函数之一,形式为y=ax+b。

其中a表示直线的斜率,b表示直线在y轴上的截距。

在解一次函数的题目时,可以利用函数的定义、斜率和截距等性质来求解。

此外,还需要注意直线与x轴和y轴的交点,以及直线与其他线段的关系。

3. 二次函数二次函数是一个抛物线,通常由形式为y=ax^2+bx+c的方程表示,其中a、b、c为常数且a≠0。

解题时需要掌握二次函数的性质和基本特征。

例如,抛物线的开口方向由a的正负确定,顶点的坐标可以通过求解x的值来确定。

4. 指数函数和对数函数指数函数和对数函数是一对互为反函数的特殊函数。

指数函数形式为y=a^x,其中a为底数,x为指数。

对数函数形式为y=loga(x),表示以a为底,x的对数。

在解题时,需要掌握指数函数和对数函数的定义、性质和常用公式。

例如,指数函数与对数函数之间的关系可以帮助我们快速求解方程。

5. 三角函数三角函数是解析几何和三角学的重要内容。

常见的三角函数包括正弦函数、余弦函数和正切函数等。

在解题时,需要熟悉三角函数的周期性、正负性和基本关系。

例如,利用正弦函数和余弦函数的和差化积公式可以简化复杂的三角函数表达式。

6. 分段函数分段函数在解决实际问题和图像绘制中起到重要作用。

分段函数由多个不同的函数组成,每个函数在一定的区间内有效。

解题时需要找到各个区间的特点,并且针对不同区间使用相应的函数表达式。

7. 综合题型高一数学中的函数题往往是综合性的,要求综合运用多个函数的知识和技巧进行分析和求解。

这种题型常常需要从不同的角度考虑问题,运用多种函数的特性及相关知识,找到问题的关键点并进行适当的变换和求解。

总结:在高一数学学习中,函数题型及解题技巧是数学学习的核心内容之一。

函数的应用-高一数学教材配套教学课件(人教A版必修第一册)

函数的应用-高一数学教材配套教学课件(人教A版必修第一册)

2.函数零点存在定理
【函数零点存在定理】 条件:①f(x)在[a,b]连续,②f (a)·f (b)<0 结论:函数f(x)在(a,b)内至少有1个零点.
①两个条件缺一不可; 若二缺一,则f(x)在(a,b)内可能有零点、也可能无零点. ②其逆定理不成立. 即:若f(x)在(a,b)内有零点,f(a)·f(b)<0不一定成立.
A.(-1,0) B.(0,1)
C.(1,2) D.(2,3)
x -1 0 1 2 3 设f(x)=ex-(x+2)
ex 0.37 1 2.72 7.39 20.09 f(-1)=0.37-1<0 x+2 1 2 3 4 5 f(0)=1-2<0
f(1)=2.72-3<0
f(2)=7.39-4>0 f(3)=20.09-5>0
一元二次方程 01 根的分布问题
一元二次方程根的分布问题①
设方程ax2 bx c 0(a 0)的两根为x1, x2,
两根与0比较(a>0):
两根与0比较(a<0):
两个负根 两个正根 一正根一负根 两个负根 两个正根
一正根一负根
0
b 2a
0
f 0 0
0
x1
x2
b a
0
x1x2
开口系数±、△、
对称轴、临界点函数值±
0
b 2a
k0
ff (0k)00
0
b 2a
k0
ff(0k)00
f (k) 0 0
一元二次方程根的分布问题③
设方程ax2 bx c 0(a 0)的两根为x1, x2,
两根在区间上的分布(a>0):
两根都在 两根仅有一根 一根在(m,n)内

高一数学必修1函数的知识点归纳

高一数学必修1函数的知识点归纳

高一数学必修1函数的知识点归纳高一数学必修1函数的知识点篇一:反比例函数形如y=k/xm为常数),就相当于将双曲线图象向左或右平移一个单位。

(加一个数时向左平移,减一个数时向右平移) 高一数学必修1函数的知识点篇二:对数函数对数函数的一般形式为,它实际上就是指数函数的反函数。

因此指数函数里对于a的规定,同样适用于对数函数。

对于不同大小a所表示的函数图形:可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。

(1)对数函数的定义域为大于0的实数集合。

(2)对数函数的值域为全部实数集合。

(3)函数总是通过(1,0)这点。

(4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。

(5)显然对数函数无界。

高一数学必修1函数的知识点篇三:二次函数I.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c(a,b,c为常数,a0,且a决定函数的开口方向,a0时,开口方向向上,a0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.) 则称y为x的二次函数。

二次函数表达式的右边通常为二次三项式。

II.二次函数的三种表达式一般式:y=ax^2+bx+c(a,b,c为常数,a0)顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]交点式:y=a(x-x)(x-x)[仅限于与x轴有交点A(x,0)和B(x,0)的抛物线]注:在3种形式的互相转化中,有如下关系:h=-b/2ak=(4ac-b^2)/4ax,x=(-bb^2-4ac)/2aIII.二次函数的图像在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。

IV.抛物线的性质1.抛物线是轴对称图形。

对称轴为直线x=-b/2a。

对称轴与抛物线唯一的交点为抛物线的顶点P。

特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为P(-b/2a,(4ac-b^2)/4a)当-b/2a=0时,P在y轴上;当=b^2-4ac=0时,P在x轴上。

高一数学必修一函数的概念与性质知识点总结

高一数学必修一函数的概念与性质知识点总结

高一数学必修一函数的概念与性质知识点总结一、内容描述高一数学必修一函数的概念与性质知识点总结涵盖了高中阶段关于函数基础概念及其性质的核心内容。

文章首先介绍了函数的基本概念,包括函数的定义、表示方法以及函数的性质等。

文章详细阐述了函数的性质,包括单调性、奇偶性、周期性以及复合函数的性质等。

文章还介绍了函数图像的画法及其与性质之间的关系,以及如何利用函数性质解决实际问题。

文章总结了函数在数学学习中的重要性,强调掌握函数概念与性质对于后续数学学习的基础作用。

通过本文的学习,学生可以更好地理解和掌握函数知识,为后续数学学习打下坚实的基础。

1. 简述函数概念的重要性函数是描述自然现象和规律的重要工具。

在物理、化学、生物等自然学科中,许多现象的变化过程都可以通过函数关系进行描述。

物理学中的运动规律、化学中的化学反应速率与浓度的关系等,都需要借助函数概念进行建模和分析。

函数是数学体系中的核心和基础。

函数连接了代数、几何、三角学等多个分支,是数学知识和方法综合运用的基础。

对函数概念的深入理解,有助于我们更好地理解和掌握数学的其它分支和领域。

函数也是解决实际问题的重要工具。

在现实生活中,很多问题的解决都需要建立数学模型,而函数作为构建数学模型的基本元素之一,能够帮助我们准确地描述问题并找到解决方案。

在经济学、统计学、工程学等领域,函数的运用非常广泛。

函数概念的重要性不言而喻。

高一学生在学习数学时,应深入理解函数的概念,掌握其性质和特点,为后续学习和解决实际问题打下坚实的基础。

2. 引出本文目的:总结函数的概念与性质本文旨在系统梳理和归纳高一数学必修一课程中函数的核心概念与基本性质。

函数是数学中的核心概念之一,具有广泛的应用领域。

在高中阶段,学生需要深入理解函数的基础定义、性质和图像特征,为后续学习奠定坚实基础。

本文的目的在于帮助学生全面总结函数的相关知识点,加深对函数概念与性质的理解,以便更好地掌握和应用函数这一重要的数学工具。

高一数学函数解题技巧

高一数学函数解题技巧

高一数学函数解题技巧
1. 嘿,你知道吗?高一数学函数解题有个超级实用的技巧就是换元法!比如说,给定一个复杂的函数式子 f(x)=2(x+3)^2 - 5,我们就可以令
t=x+3,这样不就把复杂的问题简单化啦,多妙啊!
2. 哇塞,作图法也是很厉害的哦!就像函数 f(x)=x^2,你把它的图像画出来,很多性质不就一目了然了嘛,比起死盯着式子看可清晰多了呀!
3. 嘿,还有分类讨论呀!当遇到函数有多种情况的时候,可别嫌麻烦呀。

比如绝对值函数 f(x)=x-1,就要分x≥1 和 x<1 来分别讨论,这样就能把问题整得明明白白啦!
4. 呐,构造函数也是一绝呢!假设要证明一个不等式,我们可以巧妙地构造一个相关函数,然后通过研究这个函数的性质来解决问题,是不是很有意思呀!就像走迷宫找到了关键钥匙一样!
5. 哈哈,特殊值法也不能小瞧哦!例如一个函数说对任意实数都成立,那你就可以试试代入几个特殊值,说不定一下子就找到解题突破口啦!
6. 哦哟,整体法有时候能带来惊喜呢!碰到那种式子长得差不多的,把它们当成一个整体来看待呀,这感觉就像发现了新大陆一样兴奋呀!
7. 别忘了,等价转化也是个宝呀!把一个复杂的问题转化成一个等价但更好处理的问题,就好像给难题施了魔法一样呢!
总之,高一数学函数解题技巧真的很多很多,只要我们善于运用,那些难题都不再是事儿啦!。

高一函数题型及解题技巧

高一函数题型及解题技巧

高一函数题型及解题技巧函数是数学中非常重要的一个概念,高中阶段学习的函数包括常用基本函数、一次函数、二次函数、指数函数、对数函数、幂函数等。

掌握函数的概念和特点可以帮助学生更好地理解数学知识,并且在解题过程中能够更加灵活地运用函数的性质和特点。

接下来就让我们来了解一下高一阶段常见的函数题型及其解题技巧。

一次函数一次函数是一种最为基础也最为常见的函数类型,它的一般形式为y = kx + b,其中k和b是常数。

在一次函数的解题过程中,常见的题型有求解函数的值、求解函数的解析式、函数的图像、函数的特性等。

求解函数的值:对于给定的一次函数y = kx + b,当给定x的值时,我们需要计算出对应的y的值。

这样的题目主要考察对一次函数的计算能力,需要注意根据函数的解析式直接代入x的值并计算得出结果。

求解函数的解析式:有时候我们需要根据已知的函数图像或者函数的性质来求解一次函数的解析式。

这种题型需要根据已知条件列方程组,然后解方程求解函数的解析式。

函数的图像:对于给定的一次函数,有时我们需要根据函数的解析式画出函数的图像。

这里需要注意一次函数的图像是一条直线,根据函数的解析式可以确定其斜率和截距,并且根据斜率和截距可以画出函数的图像。

函数的特性:一次函数的斜率和截距是其最为重要的特性,根据斜率和截距可以确定函数的增减性、奇偶性、单调性等特性。

在解题过程中需要根据函数的特性来分析问题并求解答案。

二次函数二次函数是另外一种比较常见的函数类型,它的一般形式为y = ax^2 + bx + c,其中a、b和c是常数。

在解题过程中,常见的题型有求解函数的值、求解函数的解析式、函数的图像、函数的特性等。

求解函数的值:对于给定的二次函数y = ax^2 + bx + c,当给定x的值时,我们需要计算出对应的y的值。

这需要我们将x的值代入函数的解析式中,并通过计算得出对应的y的值。

求解函数的解析式:有时候我们需要根据已知的函数图像或者函数的性质来求解二次函数的解析式。

(word完整版)高一数学必修一函数专题

(word完整版)高一数学必修一函数专题

高一数学必修一函数专题(教师版)一.函数的奇偶性.(1)具有奇偶性的函数的定义域的特征:定义域必须关于原点对称!为此确定函数的奇偶性时,务必先判定函数定义域是否关于原点对称•(2)确定函数奇偶性的常用方法(若所给函数的解析式较为复杂,应先化简,再判断其奇偶性):①定义法;f(x) f( x) 0②利用函数奇偶性定义的等价形式:f( x) 1( f(x) 0).f (x)③图像法:奇函数的图象关于原点对称;偶函数的图象关于y轴对称.(3)函数奇偶性的性质:①奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同;偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反•②若f (x)为偶函数,贝U f( x) f (x) f (| x |).③若奇函数f(x)定义域中含有0,则必有f(0) 0.④奇函数的图象关于原点对称;偶函数的图象关于y轴对称.二.函数的单调性1. 函数单调性的定义:(1)如果函数f x对区间D内的任意x-! ,x2,当x1 x2时都有f % f x2,则f x在D内是增函数;当x1 x2时都有f为f x2,则f x在D内是减函数.(2)设函数y f (x)在某区间D内可导,若f X 0,则y f (x)在D内是增函数;若f x 0,则y f (x)在D内是减函数.2•单调性的定义的等价形式:(1)设x1 ,x2 a,b,那么匚勺——^-x^ 0 f x在a,b上是增函数;x1 x2(2) --------------------------------------- 设x1 ,x2 a,b,那么f x2 0 f x 在a,b 上是减函数;x1 x23.证明或判断函数单调性的方法:(1) 定义法:设元作差变形判断符号给出结论•其关键是作差变形,为了便于判断差的符号,通常将差变成因式连乘积、平方和等形式,再结合变量的范围,假设的两个变量的大小关系及不等式的性质作出判断;⑵复合函数单调性的判断方法:即“同增异减”法,即内层函数和外层函数的单调性相同,则复合函数为增函数;若相反,则复合函数为减函数•解决问题的关键是区分好内外层函数,掌握常用基本函数的单调性;(3)图象法:利用数形结合思想,画出函数的草图,直接得到函数的单调性;(4)导数法:利用导函数的正负来确定原函数的单调性,是最常用的方法.(5)利用常用结论判断:①奇函数在对称的单调区间内有相同的单调性,偶函数在对称的单调区间内有相反的单调性;②互为反函数的两个函数具有相同的单调性;③在公共定义域内,增函数f(x)增函数g(x)是增函数;减函数f(x)减函数g(x)是减函数;增函数f (x)减函数g(x)是增函数;减函数f (x)增函数g(x)是减函数;④复合函数法:复合函数单调性的特点是同增异减,特别提醒:求单调区间时,勿忘定义域,三.函数的周期性.(1)类比“三角函数图像”得:①若y f (x)图像有两条对称轴x a,x b(a b),则y f (x)必是周期函数,且一周期为T 2|a b| ;②若y f (x)图像有两个对称中心A(a,O), B(b,O)(a b),则y f(x)是周期函数,且一周期为T 2|a b| ;③如果函数y f (x)的图像有一个对称中心A(a,O)和一条对称轴x b(a b),则函数y f(x)必是周期函数,且一周期为T 4|a b| ;(2)由周期函数的定义“函数f(x)满足f x f a x (a 0),则f(x)是周期为a的周期函数”得:函数f (x)满足 f x f a x,则f(x)是周期为2a的周期函数。

高一函数题型及解题技巧

高一函数题型及解题技巧

高一函数题型及解题技巧高一的数学学习中,函数是一个非常重要的内容,学生们需要对函数的性质、图象、性质等进行深入的学习。

在高一的时候,学生们需要掌握一些函数的基本题型,以及解题技巧,下面我们来具体讨论一下。

一、基本题型1.基本函数类型在高一的数学中,学生们会接触到一些基本的函数类型,比如线性函数、二次函数、指数函数、对数函数、幂函数等等。

学生们需要对这些函数的性质、图象、性质等有一个清晰的认识。

2.函数的性质在学习函数的过程中,学生们需要对函数的性质有一个深入的了解。

比如函数的定义域、值域、奇偶性、单调性、最值等等。

3.函数的运算函数的运算是高一数学中的一个重要内容,比如函数的加减乘除、函数的复合运算等等。

4.方程与不等式在学习函数的过程中,学生们也会遇到一些关于函数的方程与不等式的题目,比如求函数的零点、求不等式的解集等等。

二、解题技巧1.对函数的性质有一个清晰的认识在解题的过程中,首先要对函数的性质有一个清晰的认识,比如对于线性函数来说,它的图象是一条直线,具有单调性、奇偶性等性质;对于二次函数来说,它的图象是一个抛物线,具有开口方向、最值等性质。

2.灵活运用函数的性质在解题的过程中,要灵活运用函数的性质,比如对于函数的定义域、值域有一个清晰的认识,可以帮助我们求解一些问题。

3.注意函数的运算细节在函数的运算过程中,要注意细节,比如对于函数的加减乘除,要注意函数的定义域和值域的变化。

4.灵活运用方程与不等式的解题方法在解函数的方程与不等式的过程中,要灵活运用方程与不等式的解题方法,比如对于一元二次方程来说,可以利用配方法、公式法、因式分解法等方法进行求解。

三、题型解析下面我们来分析一些常见的函数题型,并给出解题的具体方法。

1.求函数的定义域、值域对于这类题目,首先要对函数的性质有一个清晰的认识,然后根据函数的定义对函数的定义域、值域进行分析,求解出函数的定义域、值域。

2.求函数的零点、最值对于这类题目,首先要对函数的性质有一个清晰的认识,然后可以通过查表、图象、运算等方法求解函数的零点、最值。

函数的应用高一数学

函数的应用高一数学

函数的应用高一数学函数的应用高一数学函数的应用高一数学1函数的应用 (1)教学目标:了解指数函数,对数函数等函数模型的应用12.某种商品定价为每件60元,不加收附加税时,每年销售80万件,若政府征收附加税,每销售100元要征税p元,(即税率为p%),因此每年销售将削减万件。

(1)将政府每年对该商品征收的总税金(万元)表成p的函数,并求出定义域(2)要使政府在此项经营中每年征收税金不少于128万元,税率p%应怎样确定(3)在所收税金不少于128万元前提下,要让厂家获得最大销售金额,如何确定p值16.某客运公司购买了每辆价值为20万元的大客车投入运营,依据调查材料得知,每辆大客车每年客运收入约为10万元,且每辆客车第n年的油料费、修理费及其它各种管理费用总和与年数n成正比,又知第三年每辆客车以上费用是每年客运收入的48%(1)写出每辆客车运营的总利润(客运收入扣除总费用及成本)(万元)与n(n∈N)的函数关系式;(2)每辆客车运营多少年可使运营的年平均利润最大?并求出最大值。

17.某轮船在航行使用的燃料费用和轮船的航行速度的立方成正比,经测试,当船速为10公里/小时,燃料费用是每小时20元,其余费用(不论速度如何)都是每小时320元,试问该船以每小时多少公里的速度航行时,航行每公里耗去的总费用最少,大约是多少?18.某工厂建一座平面图为矩形且面积为200平方米的三级污水处理池(如图)。

假如池外围圈周壁建筑单价为每米400元,中间两条隔墙建筑单价为每米248元,池底建筑单价为每平方米80元,池壁厚度不计。

(1)试设计水池的长宽,使总造价最低,并求最低造价;(2)若受地形限制,水池长宽都不得超过16米,求最低造价。

课堂练习:略小结:了解指数函数,对数函数等函数模型的应用函数的应用高一数学2一、内容及其解析(一)内容:指数函数的性质的应用。

(二)解析:通过进一步巩固指数函数的图象和性质,把握由指数函数和其他简洁函数组成的复合函数的性质:定义域、值域、单调性,最值等性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
石器天空 https://
插入新幻灯片的快捷命令是。A.CTRL+MB.CTRL+ZC.ESCD.CTRL+C 依据《中华人民共和国仲裁法》,仲裁委员会应当。A.由双方协议选定B.实行级别管辖C.实行地域管辖D.实行专属管辖 在人的职业能力中,___被绝大多数学者和教育家看做人的一种关键能力或者叫核心能力。A.信息处理能力B.批判能力C.思维能力D.分析能力 某单层砖混结构建筑物,外墙高2.5m,长15m,宽5m(240mm厚灰砂墙),外墙上有四个1.5m×1.5m的窗和两个1m×2m的门。砌砖墙每立方米用砂浆0.26m&sup3;。需用砂浆m。A.5.24B.5.35C.5.43D.5.51 马铃薯的薯块是的变态,而红薯的地下膨大部分是的变态。 胃插管术操作方法 急性白血病骨髓移植治疗,错误的是A.应采用HLA匹配的同胞异基因骨髓B.应在第一次化疗缓解后进行C.应及早进行,与年龄性别无关D.可选择自体干细胞移植E.异基因骨髓移植可治愈急性白血病 α-酸是衡量酒花质量的重指标,α-酸呈弱酸性,在低pH值时溶解度降低,苦味,在高pH值时,苦味。 以下哪个不是中秋节相关的传说A.鹊桥相会B.玉兔捣药C.嫦娥奔月D.吴刚伐桂 由于某建设项目建成后可能产生环境噪声污染,建设单位编制了环境影响报告书,制定相应环境噪声污染防治措施,按照规定该报告书序报()的批准。A.城市规划管理部门B.环境保护行政部门C.工商行政管理部门D.建设行政管理部门 躯体运动性脑神经核不包括A.展神经核B.舌下神经核C.滑车神经核D.迷走神经核E.动眼神经核 人类行为可分为本能行为和A.外显行为B.社会行为C.生物行为D.遗传行为E.能动行为 茶汤中的刺激性滋味物质主要是哪种成分? 除哪项外均是全身性骨关节炎表现A.关节功能预后较差B.有明显家族聚集倾向C.有Bouchard结节D.有Hebereden结节E.累及多个指间关节 女,38岁,间歇性四肢乏力3年,测血压165/90mmHg,血钾3mmol/L,血浆肾素水平明显降低,可能是()A.嗜铬细胞瘤B.原发性醛固酮增多症C.原发性高血压D.肾小球肾炎E.肾盂肾炎 关于高渗性脱水,说法不正确的是A.以丢失水分为主B.细胞内脱水严重C.Na从细胞外向细胞内流D.抗利尿激素增加E.尿比重增高 所有的汽车行李舱。A.都有B.都没有C.不一定有 女孩从月经初潮至生殖器官逐渐发育成熟的时期称为A.青春期B.排卵期C.性成熟期D.月经期E.发育期 应激猪的生产的PSE、肉具有哪些特征?A、色泽苍白B、切面干燥C、质地坚硬D、质地松软E、有渗出液 下列不属于口头沟通特点的是.A、费时少,迅速交换意见B、可随时提问和解答C、方便,便于准备D、具有可追索性 根据投资者对的不同看法,证券组合管理方法可大致分为被动管理和主动管理两种类型。A.风险意识B.市场效率C.资金的拥有量D.投资业绩 怎样评比路政管理目标? 以下对脑血栓形成的描述不正确的是A.活动中发病较多B.发病年龄多在60岁以上C.脑脊液无色透明D.颅内压增高明显E.因其起病速度较快,故多数病人意识障碍较重 补体系统经典激活途径与旁路激活途径的汇合点是A.C1B.C2C3D.C4E.C5 牵头行将金融机构的双边贷款所形成的债权或贷款收益权,改造成基于相同融资条件的银团贷款,按照贷款金额、偿还期限或贷款风险等方法进行拆分,把拆分后的银团资产分销或转让给作为参加行的获准经营贷款业务的其他金融机构的业务叫?A、资产证券化B、直接投资C、直接银团转让D、间 伤寒侵犯A.胃B.空肠C.回肠D.结肠E.全食管 编制年度计划生育药具需求计划的依据是什么? 患者,女,胃癌手术前需插导尿管,患者有顾虑不配合,护士应()A.解释插管的目的,取得患者配合B.术前时间紧张,强行插入C.与医生联系,叫医生处理D.不置屏风遮挡,不解释插管目的E.不请同室患者离开后再插管 少数民族语言文字的使用依据及其他法律的有关规定。A.宪法、民族区域自治法B.宪法C.民族区域自治法 洗手刷应做到A、不必消毒B、一周一消毒C、一用一消毒D、一刷多用 病毒性肝炎的地区分布,下述不正确的是A.西方国家的HAV流行率较低B.HBsAg阳性率在西欧与北美较低C.丙肝主要见于发展中国家D.丁型肝炎在世界上分布极不平衡E.戊肝的地方性流行区主要在亚非拉 构成肩胛动脉网的动脉有A.肩胛上动脉、肩胛背动脉、旋肩胛动脉B.肩胛上动脉、肩胛背动脉、胸背动脉C.旋肱前动脉、旋肱后动脉、旋肩胛动脉、胸背动脉D.胸肩峰动脉、旋肩胛动脉、肩胛上动脉、胸背动脉E.胸肩峰动脉、肩胛背动脉、旋肩胛动脉 下列实验室指标中,最能反映贫血的是。A.红细胞计数B.红细胞沉降率C.网织红细胞计数D.血细胞比容E.血红蛋白定量 人体发育学属于A.儿童精神医学的分支领域B.儿童行为医学的分支领域C.发育科学的分支领域D.儿童心理学的分支领域E.儿童保健医学的分支领域 理解保证在工程建设中的应用。
ቤተ መጻሕፍቲ ባይዱ
相关文档
最新文档