小升初数学正比例和反比例专题讲解及训练(含试题与答案)

合集下载

小学数学总复习专题讲解及训练(八)正比例和反比例

小学数学总复习专题讲解及训练(八)正比例和反比例

小学数学总复习— 正比例和反比例知识总结1、两种相关联的量,一种量变化,另一种量也随着变化。

如果这两种量中相对应的两个数的比的比值(也就是商)一定,这两种量就叫做成正比例的量,它们之间的关系叫做正比例关系。

如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用这样的式子来表示:xy= K (一定)。

2、用“描点法”可以得到正比例的图像,正比例的图像是一条直线。

对照图像,能根据一种量的值,估计另一种量相对应的值。

3、两种相关联的量,一种量变化,另一种量也随着变化。

如果这两种量中相对应的两个数的乘积一定,这两种量就叫做成反比例的量,它们之间的关系叫做反比例关系。

如果用字母x和y分别表示两种相关联的量,用k表示它们的积,反比例关系可以用这样的式子来表示:xy = K (一定)。

4、两个变量的比值一定,这两个变量成正比例;两个变量的积一定,这两个变量成反比例;没有上述两种关系,这两个变量不成比例。

典型例题例1、(正比例的意义)一列火车行驶的时间和路程如下表。

这两种量有什么关系?分析与解:(1)从上表可以看出,表中有时间和路程两种量。

(2)从左往右看,时间扩大,路程也扩大;从右往左看,时间缩小,路程也缩小。

所以它们是两种相关联的量。

(3)路程和时间的比值始终不变,1120 = 120,2240= 120,3360 = 120……这个比值就是火车的行驶速度。

通过观察和计算,我们对路程和时间的关系有两点发现:第一点路程和时间是两种相关联的量,也就是时间变化,路程也随着变化;第二点路程和对应的时间的比的比值(也就是速度)是一定的,有这样的关系:时间路程= 速度(一定)。

具备了这两个条件,我们就可以得到结论:行驶的路程和时间成正比例关系;行驶的路程和时间成正比例的量。

点评:判断两种量是不是成正比例,分三步:一看它们是不是相关联的两种量;二是看一种量变化,另一种量是不是也随着变化;满足了前面两个条件,再看它们的比值是否一定。

小升初数学正比例和反比例专题讲解及训练(含试题与答案)

小升初数学正比例和反比例专题讲解及训练(含试题与答案)

小升初数学正比例和反比例专题讲解及训练(含试题与答案)主要内容正比例和反比例学习目标1、使学生结合实际情境认识成正比例和反比例的量,能根据正、反比例的意义判断两种相关联的量是否成正比例或反比例。

2、使学生初步认识正比例的图像是一条直线,能利用给出的具有正比例关系的数据在方格纸上画出相应的直线,能根据具有正比例关系的一个量的数值看图估计另一个量的数值。

3、使学生在认识成正比例、反比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步提升思维水平。

4、使学生进一步体会数学与日常生活的密切联系,增强探索数学知识和规律的意识,养成积极主动地参与学习活动的习惯,提高学好数学的信心。

考点分析1、两种相关联的量,一种量变化,另一种量也随着变化。

如果这两种量中相对应的两个数的比的比值(也就是商)一定,这两种量就叫做成正比例的量,它们之间的关系叫做正比例关系。

如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用这样的式子来表示:xy= K (一定)。

2、用“描点法”可以得到正比例的图像,正比例的图像是一条直线。

对照图像,能根据一种量的值,估计另一种量相对应的值。

3、两种相关联的量,一种量变化,另一种量也随着变化。

如果这两种量中相对应的两个数的乘积一定,这两种量就叫做成反比例的量,它们之间的关系叫做反比例关系。

如果用字母x和y分别表示两种相关联的量,用k表示它们的积,反比例关系可以用这样的式子来表示:xy = K (一定)。

4、两个变量的比值一定,这两个变量成正比例;两个变量的积一定,这两个变量成反比例;没有上述两种关系,这两个变量不成比例。

典型例题例1、(正比例的意义)一列火车行驶的时间和路程如下表。

这两种量有什么关系?分析与解:(1)从上表可以看出,表中有时间和路程两种量。

(2)从左往右看,时间扩大,路程也扩大;从右往左看,时间缩小,路程也缩小。

小升初数学正比例反比例应用题练习

小升初数学正比例反比例应用题练习

小升初数学正比例反比例应用题练习1、某服装生产车间要做612套学生服装,前5天做了170套,照这样计算,要做完这批服装需要多少天?(用比例知识解答)解:设完成这批服装需要x天每天做的服装的数量一定,服装的总量和需要的时间成正比例关系170:5=612:xX=182、李师傅用电锯把一根钢材锯成5段,需要24分钟,照这样计算,他把一根同样的钢材锯成7段需要多长时间?(用比例知识解答)锯5段的次数:5-1=4(次)锯7段的次数:7-1=6(次)锯1次的时间一定,锯的次数与需要的总时间成正比例关系解:设锯7段需要的时间是x分钟24:4=x:6x=363、小明过生日,妈妈为她买来了生日蛋糕和蜡烛,已知蜡烛每分钟燃烧的长度一定,已知点火8分钟后,蜡烛的长度是12厘米,点火18分钟后,蜡烛的长度是7厘米,你能算出蜡烛最初的长度是多少厘米吗?(用比例知识解答)解:设蜡烛最初的长度为x厘米每分钟燃烧的长度一定,时间和燃烧的总长度成正比例关系(x-12):8=(x-7):18X=164、一个车间计划生产725台机床,实际前5天生产了145台,照这样计算,剩下的多少天可以完成任务?(用比例知识解答)解:设剩下的x天可以完成任务145:5=(725-145):xX=205、甲乙丙三人进行200米赛跑(他们的速度保持不变),甲到终点时,乙还差20米,丙离终点还有25米,问乙到达终点时,丙还差多少米?解:设乙到终点时,丙还差x米甲到终点时,乙跑的路程:200-20=180(米)甲到终点时,丙跑的路程:200-25=175(米)时间一定时,速度与路程成正比例,速度之比=路程之比180:175=200:(200-x)X=50/9。

人教版数学小升初正比例和反比例专题突破训练(附答案)

人教版数学小升初正比例和反比例专题突破训练(附答案)

人教版数学小升初正比例和反比例专题突破训练(附答案)一、选择题1.如果x与y互为倒数,那么x与y之间的关系是()A. 正比例B. 反比例C. 不成比例2.有一堆煤,烧掉的质量和剩余的质量()。

A. 成反比例B. 成正比例C. 不成比例3.下列各式中(a、b均不为0),a和b成反比例的是( )。

A. B. 9a=6b C. 2a-5=b D.4.甲、乙两地的路程一定,一辆汽车从甲地开往乙地,速度与所用时间( )A. 成正比例B. 成反比例C. 不成比例D. 无法确定5.下面题中的两种量成不成比例,成什么比例.()正方体的体积和棱长.A. 成正比例B. 成反比例C. 不成比例6.表示x和y成正比例的关系式是( )。

A. x+y=k (一定)B. = k (一定)C. xy=k (一定)7.下面每题中的两种量,成正比例关系的是()。

A. 小伟比小红大4岁,小伟的年龄和小红的年龄。

B. 圆柱的体积一定,它的底面积和高。

C. 一条路,未修的长度与已修的长度。

D. 报纸的单价一定,订阅的份数与总价。

8.下列各选项中,两个量成反比例关系的是()A. 正方形的边长和面积B. 速度一定,路程和时间C. 总价一定,单价和数量D. 同学的年龄一定,他的身高与体重9.下面题中的两种量是不是成比例?成什么比例?除数一定,被除数和商( ).A. 成正比例B. 成反比例C. 不成比例10.工作效率不断提高,工作总量和工作时间()A. 成正比例B. 成反比例C. 不成比例二、判断题11.全班学生人数一定,出勤人数和出勤率成反比例。

()12.教室的面积一定,铺的瓷砖块数和瓷砖的面积成反比。

()13.加工一批零件,每小时加工数与所需时间成反比例。

()14.从家走到学校,小明用8分钟,小红用9分钟,小明和小红的速度比是8:9。

()15.被除数一定,除数和商成反比例.()三、填空题16.红燕服装厂6天生产服装288套,照这样计算,全月(按20个工作日计算)可生产服装________套.(用比例解)17.在一次科学实验中,小伟同学记录了一壶水加热过程中的水温变化情况,并把它制成了统计图。

正比例和反比例的习题答案

正比例和反比例的习题答案

正比例和反比例的习题答案正比例和反比例是数学中常见的两种关系,它们在实际生活中也有广泛的应用。

本文将通过一些习题的解答,来探讨正比例和反比例的性质和应用。

1. 正比例关系的习题解答题目:某电子商务平台上,商品的价格与销量成正比。

若一种商品的价格为100元,销量为10件,求价格为200元时的销量。

解答:设价格为x元时的销量为y件。

根据正比例关系,可以得到等式:100/10 = x/y。

通过交叉相乘,可以得到等式:100y = 10x。

将x取200代入等式,得到200y = 2000。

解这个一元一次方程,可得y = 10。

因此,价格为200元时的销量为10件。

2. 反比例关系的习题解答题目:某工厂生产一种产品,每天需要10台机器运作8小时才能完成生产任务。

现在工厂决定每天增加2台机器,为了保持生产任务的完成时间不变,每天应该减少多少小时的工作时间?解答:设每天应该减少的工作时间为x小时。

根据反比例关系,可以得到等式:10 × 8 = (10 + 2) × (8 - x)。

解这个一元一次方程,可得x = 1。

因此,每天应该减少1小时的工作时间。

3. 正比例和反比例的应用正比例和反比例关系在实际生活中有许多应用。

例如,人均消费和人口数量之间的关系就是正比例关系。

当一个地区的人口增加时,人均消费也会相应增加。

另外,汽车行驶的速度和行驶时间之间的关系就是反比例关系。

当汽车的速度增加时,行驶时间会相应减少。

正比例和反比例关系还可以应用于图表的绘制和解读。

例如,绘制一条直线图来表示正比例关系,可以通过选择合适的比例尺和坐标轴来展示数据。

而对于反比例关系,可以绘制一个双曲线图来表示。

通过观察图表,我们可以更直观地理解和解读正比例和反比例的关系。

总结:正比例和反比例是数学中常见的两种关系,它们在实际生活中有广泛的应用。

通过解答一些习题,我们可以更好地理解和应用这两种关系。

同时,正比例和反比例关系也可以通过图表来表示和解读,使得我们对它们的性质和应用有更深入的认识。

正反、比例问题(讲义)六年级下册小升初数学应用题真题汇编通用版

正反、比例问题(讲义)六年级下册小升初数学应用题真题汇编通用版

小升初数学运用题真题汇编典型运用题—正反、比例问题班级姓名得分1.(广东深圳六年级期末)下列各图中的a和b是否成正比例或反比例?为什么?(1)三角形的面积为1。

(2)线段总长度为1。

(3)长方形的面积为1。

(4)长方体的体积为1。

2.(甘肃陇南小升初考试)厨房的师傅们每天要做1000个包子,今天他们30分钟做了240个,照这样计算,做完这些包子需要多少分钟?(用比例解)知识梳理基础题3.(湖南常德小升初考试)小红的身高为1.6米,她的影长是2.8米。

如果同一时间、同一地点测得一棵树的影长为4.2米,这棵树有多高?(用比例解)4.(山西太原六年级期末)一对互相咬合的齿轮,主动轮有25个齿,主动轮每分钟转多少转?列比例解答。

提高题5.(山西太原小升初考试)李奶奶要用下图这种84消毒液10克清洗浴缸,需要多少千克清水配制?使用说明消毒对象配制比例(原液:清水)一般物体表面1:300织物1:1256.(山东济南六年级期末)北京冬奥会的吉祥物冰墩墩以其可爱的造型和象征纯洁、坚强的冬奥会特点的寓意,一经上市就深受人们的喜爱。

据悉,某冬奥旗舰店“冰墩墩手办”的单29价是88元,“冰墩墩钥匙扣”的单价是“冰墩墩手办”的,买29个“冰墩墩手办”的钱,可44以买多少个“冰墩墩钥匙扣”?(用比例知识解答)7.(四川南充六年级期末)给一间屋子铺地砖,如果用边长为60厘米的方砖,要用96块,如果改用边长为80厘米的方砖来铺,需要多少块?8.(浙江温州小升初考试)工厂要加工600个零件,前5小时已加工120个零件。

照这样的速度,还要加工几小时才能完成任务?(用比例解答)培优题9.(河北承德六年级期末)Y丫看一本故事书,每天看18页,7天只看了这本书的一半,此后她每天多看3页,Y丫看完这本书还要多少天?10.(山东济宁小升初考试)亮亮利用课余时间读一本故事书,他计划每天读6页,20天可以读完。

现在他准备提前8天读完,你认为他每天要比原计划多读几页?(用比例知识解决)11.(陕西渭南小升初考试)某公益活动招募了216名志愿者,其中女性占,后来又来了若干名女性志愿者,使女性志愿者与男性志愿者的人数之比是3:7,后来又来了多少名女性志愿者?(用比例解答)12.(陕西榆林小升初考试)某工程队修一条路,3天修的路程与剩下的路程的3。

小升初数学总复习专题训练:正比例和反比例的意义、求比值和化简比、解比例

小升初数学总复习专题训练:正比例和反比例的意义、求比值和化简比、解比例

正比例和反比例的意义一、单选题1.每辆汽车载重量一定,汽车辆数和载重量总数()A. 成正比例B. 成反比例C. 不成比例D. 不成正比例2.下面题中的两种量成不成比例,成什么比例.()正方体的体积和棱长.A. 成正比例B. 成反比例C. 不成比例3.根据规律判断比例关系,并填空X与Y成那种比例A. 成正比例B. 成反比例C. 不成比例4.在下面四句叙述中,正确的是()①给一间教室铺地砖,每块地砖的面积和所需地砖的块数成反比例;②把45米长的绳子平均分成4段,每段占全长的15;③一个自然数不是奇数就是偶数,不是质数就是合数;④一个圆柱和圆锥体积相等,底面积也相等,圆柱的高为6cm,那圆锥的高一定是18cm.A. ①②B. ①③C. ②④D. ①④5.下题中的两种量成什么比例.一辆汽车的速度一定,行驶的时间和路程.()A. 成正比例B. 成反比例C. 不成比例6.小明从家里去学校,所需时间与所行速度()。

A. 成正比例B. 成反比例C. 不成比例7.每袋茶叶的重量一定,茶叶的总重量和袋数( )A. 成反比例B. 成正比例C. 不成比例D. 不成正比例8.正方形的面积和边长()A. 成正比例B. 成反比例C. 不成比例9.长方形的面积一定,长与宽成()A. 反比例B. 正比例C. 不成比例D. 无法判断10.大米的总量一定,吃掉的和剩下()A. 不成比例B. 成正比例11.班级数一定,每班人数和总人数( )A. 成反比例B. 成正比例C. 不成比例D. 不成正比例12.正方体的表面积和()成正比例.A. 棱长B. 底面积13.如果x= 14y,那么1x与y成()比例.A. 正B. 反C. 不成D. 无法确定14.下面每组中的两种量,不成正比例的是()。

A. 一个人的年龄和体重B. x÷y=0.2C. 2m=n15.圆的半径和周长( )A. 成正比例B. 成反比例C. 不成比例D. 不成正比例16.题中的两个量订阅《少年报》的份数和钱数.( )A. 成正比例B. 成反比例C. 不成比例17.平行四边形面积一定时,底和高成()A. 正比例B. 反比例C. 不能确定18. 下面的四句话中,正确的一句是()A. 任何等底等高的三角形都可以拼成一个平行四边形B. 路程一定,时间和速度成反比例关系C. 把0.78扩大到它的100倍是7800D. b(b>1)的所有因数都小于b19.题中的两个量()圆的半径和周长.A. 成正比例B. 成反比例C. 不成比例20.下面题中的两种量成什么比例?x∶3=y,x和y.( )A. 成正比例B. 成反比例C. 不成比例二、判断题21.判断对错.长方形的周长一定,长与宽成反比例.22.订阅《少年文艺》的份数与总钱数成反比例.23.大豆的出油率一定,那么大豆的数量和出油量成正比例。

(小升初培优讲义)专题20 正比例和反比例-六年级一轮复习(知识点精讲+达标检测)(教师版)

(小升初培优讲义)专题20  正比例和反比例-六年级一轮复习(知识点精讲+达标检测)(教师版)

专题20 正比例和反比例的认识1.正比例。

(1)两种相关联的量,已知一种量变化,另一种量也随着变化,如果两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫作成正比例的量。

(2)正比例的关系式:用字母x表示一个变量,用字母y表示另一个量,用字母k表示比值(也就是商)一定。

yx=k(一定)。

2.反比例。

(1)两种相关联的量,已知一种量变化,另一种量也随着变化,如果两种量中相对应的两个数的积一定,这两种量就叫作成反比例的量。

(2)反比例的关系式:用字母x表示一个变量、用字母y表示另一个量,用字母k表示积一定。

x·y=k(一定)。

3.正比例和反比例的异同。

不同点名称意义不同变化方向不同关系式不同相同点正比例两种量中相对应的两个数的比值,也就是商一定。

一种量扩大(或缩小),另一种量也随之扩大(或缩小)。

yx=k (一定)反比例两种量中相对应的两个数的乘积一定。

一种量扩大(或缩小),另一种量却随之缩小(或扩大)。

x·y=k (一定)两种相关联的量,一种量变化,另一种量也随着变化。

4.判断两种量成不成比例的方法。

[提示]在判断两种量是否成比例时,(1)首先要找到这两种相关联的量;(2)然后根据两种量与第三个量的关系,列出数量关系式;(3)根据数量关系式判断:如采是积一定,则成反比例;如采是比值一定,则成正比例。

知识梳理【例1】判断:下面各题中的两种量是否成比例?成什么比例?(1)小红从家去学校,她行走的时间和速度。

(2)车轮的直径一定,它所行驶的路程和车轮转数。

(3)3x =15y ,x 和y 。

(4)正方形的面积和边长。

(5)三角形的面积一定,底和这条底上的高。

【点拨分析】判断两种量是否成比例,首先要确定这两种量之间的关系式,然后判断这两种量的比值(或积)是否一定,当比值(或积)一定时成正(或反)比例。

【答 案】(1)小红家到学校的路程一定,路程=速度×时间,所以速度与时间成比例,成反比例。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小升初数学正比例和反比例专题讲解及训练(含试题与答案)主要内容正比例和反比例学习目标1、使学生结合实际情境认识成正比例和反比例的量,能根据正、反比例的意义判断两种相关联的量是否成正比例或反比例。

2、使学生初步认识正比例的图像是一条直线,能利用给出的具有正比例关系的数据在方格纸上画出相应的直线,能根据具有正比例关系的一个量的数值看图估计另一个量的数值。

3、使学生在认识成正比例、反比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步提升思维水平。

4、使学生进一步体会数学与日常生活的密切联系,增强探索数学知识和规律的意识,养成积极主动地参与学习活动的习惯,提高学好数学的信心。

考点分析1、两种相关联的量,一种量变化,另一种量也随着变化。

如果这两种量中相对应的两个数的比的比值(也就是商)一定,这两种量就叫做成正比例的量,它们之间的关系叫做正比例关系。

如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用这样的式子来表示:xy= K (一定)。

2、用“描点法”可以得到正比例的图像,正比例的图像是一条直线。

对照图像,能根据一种量的值,估计另一种量相对应的值。

3、两种相关联的量,一种量变化,另一种量也随着变化。

如果这两种量中相对应的两个数的乘积一定,这两种量就叫做成反比例的量,它们之间的关系叫做反比例关系。

如果用字母x和y分别表示两种相关联的量,用k表示它们的积,反比例关系可以用这样的式子来表示:xy = K (一定)。

4、两个变量的比值一定,这两个变量成正比例;两个变量的积一定,这两个变量成反比例;没有上述两种关系,这两个变量不成比例。

典型例题例1、(正比例的意义)一列火车行驶的时间和路程如下表。

这两种量有什么关系?分析与解:(1)从上表可以看出,表中有时间和路程两种量。

(2)从左往右看,时间扩大,路程也扩大;从右往左看,时间缩小,路程也缩小。

所以它们是两种相关联的量。

(3)路程和时间的比值始终不变,1120 = 120,2240 = 120,3360= 120……这个比值就是火车的行驶速度。

通过观察和计算,我们对路程和时间的关系有两点发现:第一点路程和时间是两种相关联的量,也就是时间变化,路程也随着变化;第二点路程和对应的时间的比的比值(也就是速度)是一定的,有这样的关系:时间路程= 速度(一定)。

具备了这两个条件,我们就可以得到结论:行驶的路程和时间成正比例关系;行驶的路程和时间成正比例的量。

点评:判断两种量是不是成正比例,分三步:一看它们是不是相关联的两种量;二是看一种量变化,另一种量是不是也随着变化;满足了前面两个条件,再看它们的比值是否一定。

不要省去任何一步。

如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用这样的式子来表示:xy= K (一定)。

例2、(判断是否成正比例)练习本的单价一定,买练习本的数量和总价是不是成正比例?为什么? 分析与解:根据正比例的意义,看两个变量的比值是否一定,如果两个变量的比值一定,那么这两个变量就成正比例,反之,则不成正比例。

买练习本的数量和总价是两种相关联的量,它们与练习本的单价有下面的关系:数量买练习本的总价= 练习本的单价(一定)所以练习本的数量和总价成正比例。

例3、(正比例的图像)磁悬浮列车匀速行驶时,路程与时间的关系如下。

(1)图中的点A 表示时间为1分钟时,磁悬浮列车驶过的路程为7千米。

请你试着描出其他各点。

(2)连接各点,它们在一条直线上吗?(3)根据图像判断,列车运行2分半钟时,行驶的路程是多少千米?行驶30千米大约需要几分钟?1 2 3 4 5 6 7时间/分分析与解:根据提供的各组数据描出图像的许多个点,再依次连成直线。

路程和时间相对应的数的比值都是7,即速度一定,路程和时间成正比例,图像是一条直线。

对照图像,可以根据时间的值估计出路程的值,也可以根据路程的值估计出时间的值,估计时允许有一定的出入。

(1)描点、连线如图。

1 2 3 4 5 6 7时间/分(2)在一条直线上,因为路程和时间成正比例,正比例的图像是一条直线。

(3)根据图像,列车运行2分半钟时,行驶的路程是17.5千米;行驶30千米大约需要4.3分钟。

例4、(辨析)圆的周长和直径成正比例,圆的面积和半径成正比例?分析与解:圆的周长和直径成正比例,而圆的面积和半径却不成正比例。

圆的周长和直径的相对应的数的比值都是 3.14,所以圆的周长和直径成正比例。

而圆的面积和半径的相对应的数的比值是变化的,所以圆的面积和半径不成正比例。

圆的周长和直径成正比例,圆的面积和半径却不成正比例。

例5、(反比例的意义)下表是王师傅加工一批零件时,每小时加工零件个数随时间变化的情况。

这两种量有什么关系?分析与解:(1)从上表可以看出,表中有每小时加工零件的个数和加工的时间两种量。

(2)从左往右看,每小时加工零件的个数扩大,加工的时间反而缩小;从右往左看,每小时加工零件的个数缩小,加工的时间反而扩大。

所以它们是两种相关联的量。

(3)每小时加工零件的个数和相对应的加工的时间的积都始终不变,如20 × 12 = 240,30 × 8 = 240,40 ×6 = 240……而这个积就是这批零件的总个数。

通过观察和计算,我们发现:每小时加工零件的个数和加工的时间是两种相关联的量,每小时加工零件的个数随着加工的时间变化而变化,但无论它们怎么变化,相对应的积是一定的,有这样的关系:每小时加工零件的个数×加工的时间 = 零件的总个数(一定)。

所以每小时加工零件的个数和加工的时间成反比例的量,它们之间的关系叫做反比例关系。

点评:判断两种量是不是成反比例,和正比例一样,分三步:一看它们是不是相关联的两种量;二是看一种量变化,另一种量是不是也随着变化;满足了前面两个条件,再看它们的乘积是否一定,进行判断。

不要省去任何一步。

如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用这样的式子来表示:xy = K(一定)。

例6、(判断是否成反比例)总产量一定,每公顷的产量和公顷数是不是成反比例?为什么?分析与解:根据反比例的意义,看两个变量的乘积是否一定,如果两个变量的积一定,那么这两个变量就成反比例,反之,则不成反比例。

每公顷的产量和公顷数是两种相关联的量,它们与总产量有下面的关系:每公顷的产量×公顷数 = 总产量(一定)所以每公顷的产量和公顷数成反比例。

例7、(辨析)和一定,一个加数和另一个加数成反比例。

分析与解:判断两个变量是否成反比例,关键是看两个变量的乘积是否一定。

很明显,和一定,两个加数的积是变化的,所以它们不成反比例。

和一定,一个加数和另一个加数不成反比例。

因为它们的积不一定。

点评:有些相关联的量,虽然也是一种量变化,另一种量也随着变化,但它们不是积一定,也不是比值一定,它们就不成比例。

像这样的还有:人的跳高高度和身高;减数一定,被减数和差等。

例8、(综合题1)(1)长方形的面积一定,长和宽成反比例吗?为什么? (2)长方形的周长一定,长和宽成反比例吗?为什么?分析与解:判断时可以用列表的方式列举数据,也可以根据计算的公式来推导。

(1)因为长方形的长 × 宽 = 长方形的面积(一定),所以长和宽成反比例。

(2)长方形的周长 = (长+宽)× 2 ,长方形的周长一定,长+宽的和一定,但不是积一定,所以长和宽不成反比例。

例9、(综合题2)分别说明大米的总千克数、每天吃的千克数和天数这三种量中,每两种量的比例关系。

(1)大米的总千克数一定,每天吃的千克数和天数; (2)每天吃的千克数一定,大米的总千克数和天数; (3)天数一定,大米的总千克数和每天吃的千克数。

分析与解:在大米的总千克数、每天吃的千克数和天数这三种量中,当某一种量一定时,另外两种量可能成正比例关系,也可能成反比例关系。

可以根据数量关系式来判断。

(1)因为每天吃的千克数 × 天数 = 大米的总千克数(一定),所以大米的总千克数一定时,每天吃的千克数和天数成反比例。

(2)因为天数大米的总千克数= 每天吃的千克数(一定),所以每天吃的千克数一定时,大米的总千克数和天数成正比例。

(3)因为每天吃的千克数大米的总千克数= 天数(一定),所以天数一定时,大米的总千克数和每天吃的千克数成正比例。

模拟试题及答案1、仔细观察每张表格,思考表格中两种量之间有关系吗?有什么关系?为什么? 表格1表格2表格3 用60元钱购买笔记本,笔记本的单价和可以购买的数量如下表:2、用一批纸装订练习本,每本25页,可以装订400本。

如果要装订500本,每本有X页。

题中()量一定,关系式:()○()=()(一定),()和()成()比例。

3、一间会客室地面用边长0.3米的正方形地砖铺,需要640块。

如果改用边长0.4米的正方形地砖,需要Y块。

题中()量一定,关系式:()○()=()(一定),()和()成()比例。

4、在圆柱的侧面积、底面周长、高这三种量中当底面周长一定时,()与()成()比例;当高一定时,()与()成()比例;当侧面积一定时,()与()成()比例。

5、在被除数、除数、商这三种量中,当()一定时,()与()成正比例;当()一定时,()与()成反比例;6、当a ×b =c(a、b、c 为三种量,且均不为0)。

( )一定,()与()成()比例;()一定,()与()成()比例;()一定,()与()成()比例;7、判断。

(1)、工作总量一定,工作效率和工作时间成反比例。

()(2)、图上距离和实际距离成正比例。

()(3)、X和Y表示两种变化的相关联的量,同时5X-7Y=0,X和Y不成比例。

()(4)、分数的大小一定,它的分子和分母成正比例。

()(5)、在一定的距离内,车轮周长和它转动的圈数成反比例。

()(6)、两种相关联的量,不成正比例,就成反比例。

()(7)订阅《小学数学评价手册》的份数与所需钱数成正比例。

( )(8)在400米赛跑中,跑步的速度和所用时间成反比例。

( )(9)工作总量一定,已完成的量和未完成的量成反比例。

( )(10)正方体的棱长和体积成正比例。

( )(11)被除数一定,除数和商成反比例。

( )(12)圆的周长和它的直径成正比例。

( )8、判断下面每题中的两种量是不是成比例,如果成比例,成什么比例。

(1)、装配一批电视机,每天装配台数和所需的天数()。

(2)、正方形的边长和周长()。

(3)、水池的容积一定,水管每小时注水量和所用时间()。

(4)、房间面积一定,每块砖的面积和铺砖的块数()。

(5)、在一定时间里,加工每个零件所用的时间和加工零件的个数()。

相关文档
最新文档