五年级总复习理论
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五年级知识点总结
1、像0,1,2,3,4,5,6……这样的数是自然数。最小的自然数是0,没有最大的自然数,所有的自然数都是整数,整数不全是自然数。
2、像-3,-2,-1,0,1,2,3,……这样的数是整数。(注:整数包括自然数)
3、倍数和因数:倍数和因数是相互依存的。如:4×5=20,就可以说20是4和5的倍数,4和5是20的因数。(注意:我们只在自然数(0除外)范围内研究倍数和因数。)
* 判断题或填空题易出。如:4×5=20,4是因数,20是倍数,这是错误的。
*一个数的倍数有无数个,倍数的个数是无限的,而因数的个数是有限的。一个数最大的因数和最小的倍数都是它本身。
4、找因数:找一个数的因数,一对一对有序地找就不会重复和遗漏。①一个数最小的因数是1,②最大的因数是它本身。③一个数因数的个数是有限的。1的因数只有1个,就是1。如:36的因数有:1,36,2,18,3,12,4,9,6(成对出现)
5.找倍数:从1倍开始有序地找,①一个数的倍数的个数是无限的,②一个数没有最大的倍数,③最小的倍数是它本身。
例:一个数最大的因数与最小的倍数是18,这个数是(18)。
6、奇数和偶数:是2的倍数的数叫偶数,特征是:个位上是0,2,4,6,8。如:2,4,6,8等等。不是2的倍数的数叫奇数。特征是:个位上是1,3,5,7,9。如:1,3,33,99等等。
7、质数:一个数只有1和它本身两个因数,这个数叫质数。如:2,3,7,11等等。
8、合数:一个数除了1和它本身以外还有别的因数,这个数叫合数。合数至少有3个因数。如:4,12,49,36,51等等。注意:1既不是质数也不是合数。
例:最小的质数(2),最小的合数(4)最小的奇数(1)。
1、3、5、7、19、29、49、65、51当中是质数的有(3,5,7,19,29 )。
两个都是质数的连续自然数是:2,3。既是偶数又是质数的是:2。
两个质数的乘积是合数。
例题:下面几个判断题都是错误的。
1、一个自然数不是质数就是合数。
2、所有的奇数都是质数。
3、所有的偶数都是合数。
4、按一个数的因数分,自然数可以分为:(质数),(合数),(1)三类。按一个数的奇偶性来分,自然数可以分为(奇数和偶数)两类。(0是最小的偶数,暂不研究)
5、(翻杯子、渡船、开关灯……)经过偶数次变化,与开始状态相同;经过奇数次变化,与开始状态相反。
6、 2,3,5的倍数特征:个位上是0,2,4,6,8的数都是2的倍数。个位上是0或5的数都是5的倍数。各个数位上数字之和是3的倍数,这个数就是3的倍数。
既是2的倍数又是5的倍数的特征:个位是0的数。
既是2的倍数又是3的倍数的特征:①个位是0、2、4、6、8的数;②各个数位上的数字的和是3的倍数
既是3的倍数又是5的倍数的特征:①个位是0或5的数;
②各个数位上的数字的和是3的倍数
既是2的倍数又是3的倍数还是5的倍数的特征:①个位是0的数;②各个数位上的数字的和是3的倍数
9的倍数的特征:各个数位上的数字的和是9的倍数,这个数就是9的倍数。
12、数的奇偶性:偶数+偶数=偶数奇数+奇数=偶数偶数+奇数=奇数
13、分数单位:把单位“1”平均分成若干份,表示这样的1份的分数叫分数单位。十八分之五的分数单位是十八分之一等等。
14、分子小于分母的分数是真分数,真分数﹤1
分子大于或等于分母的分数是假分数,假分数≥1
带分数是由整数和一个真分数组成,带分数>1
假分数化成带分数的方法:分子除以分母,商为分数的整数部分,分母不变,余数为分子。带分数化成假分数的方法:分母不变,假分数的分母乘整数部分加原分子作分子。整数化成假分数:分母乘以整数做分子。
例:1等于2除以2。
易错题:1、分数单位是九分之一的最大真分数是(九分之八),最小假分数是(九分之九),最小带分数是(一又九分之一)。
2、分母是8的最大真分数(八分之七),分子是8的最大真分数(九分之八)。
15、分数与除法的关系:被除数相当于分子,除数相当于分母,商相当于分数值(除数不为0)。(分数转化为小数的最简单方法)
分数的基本性质:分数的分子与分母同时乘或除以相同的数(0除外),分数大小不变。
例题:把十六分之十的分母减去8,要使分数大小不变,分子减去()。(看清楚分子或者分母发生的变化,是扩大了还是缩小了,乘除法要注意是倍数)
16、几个数公有的因数,叫做这几个数的公因数。其中最大的一个,叫做他们的最大公因数。找两个数最大公因数的方法:
1、记好一些规律,提高速度。
规律一:4和5,8和7这些数是相邻的两个数,公因数只有1,最大公因数是1;
规律二:3和7, 7和11这些都是质数,公因数只有1,最大公因数是1;
规律三:5和9 , 3和10非倍数关系的质数和合数,最大公因数是1;
规律四:7和28 , 6和36 倍数关系的两个数,最大公因数是较小的那个数。
2、短除法和列举法解决一些比较复杂的情况:36和48 24和16
17、约分:把一个分数的分子、分母同时除以公因数,分数值不变,这个过程叫做约分。约分的方法:一是用公因数一个一个地去除,二是直接用两个数的最大公因数去除。分子、分母只有公因数1,不能再约分的分数,叫做最简分数。
18、几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。
找最小公倍数的方法:
方法一:最大公因数是1的两个相邻的自然数,最小公倍数是乘积;
方法二:倍数关系的两个数,最小公倍数是较大的那个数;
方法三:短除法解决比较复杂的情况。
19、通分:把异分母分数分别化成和原来分数相等的同分母分数,叫通分。通分的一般方法是:先求出原来几个分母的最小公倍数,然后把分数分别化成用这个最小公倍数做分母的分数。
20、分数化小数的方法:用分子除以分母小数化分数的方法:把小数改写成分母是10、100、1000……的分数,再约分成最简分数。
21.分母不是整十,整百,整千的分数化小数,要用分母去除分子,除不尽的,可以根据(题目要求)按四舍五入保留几位小数。
22、整数加减法的交换律、结合律对分数加法同样适用。注意:观察分母的特点,能简算的要简算。
23、分数加减运算: