第8讲 二次函数应用题——实际建模.提高班
中考数学专题:二次函数应用专题(共17张ppt)
解:当S=288时
s
-2(x-15)2+450=288
500
450
∴x1=6,x2=24
400 300
288
当S≥288时,
200
由图象可知 6≤x≤24. 又∵墙长为36m,
100
6
24
O 5 10 15 20 25 30 x
∴ 12≤x<30
综上所述:12≤x≤24.
变式5.如图,若将60m的篱笆改为79m,墙长为36m, 为了方便进出,在平行于墙的一边开一个1m宽的门. (1)求菜园的最大面积;(2)若菜园面积不小于750m2,求 x的取值范围.
解:设矩形垂直墙的一边为xm,
则平行墙的一边为(60-2x)m.
S=(60-2x)x=-2x2+60x
s
=-2(x-15)2+450
500
450
400
∵x>0且60-2x>0,∴ 0<x<30 300
Hale Waihona Puke ∵a=-2<0, ∴S有最大值
200 100
当x=15时,S的最大值是450m2 O
则:60-2x=30(m)
墙20m
解:S=(60-2x) x=-2x2+60x
=-2(x-15)2+450
s
∵x>0且0<60-2x≤20
500
450
∴ 20≤x<30
400 300
∵a=-2<0,对称轴x=15.
200
∴当x>15时,S随x的增大而减小. 100
∵20≤x<30,
O 5 10 15 20 25 30 x
∴当x=20时,S的最大值是400m2.
二次函数综合应用题(有答案)中考23题必练经典
函数综合应用题题目分析及题目对学生的要求1.求解析式:要求学生能够根据题意建立相应坐标系,将实际问题转化成数学问题。
需要注意的是:(1) 不能忘记写自变量的取值范围(2) 在考虑自变量的取值范围时要结合它所代表的实际意义。
2. 求最值:实际生活中的最值能够指导人们进行决策,这一问要求学生能够熟练地对二次三项式进行配方,利用解析式探讨实际问题中的最值问题。
最值的求法:(1) 一次函数和反比例函数中求最值是根据函数在自变量取值范围内的增减性来确定的。
(2) 二次函数求最值是将解析式配方后,结合自变量取值范围来确定的。
3. 求范围,要求学生利用解析式求实际问题中的范围问题,主要是将函数与不等式结合起来。
推荐思路:画出不等式左右两边的图象,结合函数图象求出x的取值范围。
备选思路一:先将不等号看做等号,求出x的取值,再结合图象考虑将等号还原为不等号后x的取值范围;备选思路二:通过分类讨论或者其它方法,直接解出这个不等式。
这一问里需要注意的是在注意:最后下结论时一定要结合它的实际意义和前面所求得的自变量取值范围进行判断。
1/ 182 / 18一、求利润的最值(2010·武汉)23. (本题满分10分) 某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满。
当每个房间每天的房价每增加10元时,就会有一个房间空闲。
宾馆需对游客居住的每个房间每天支出20元的各种费用。
根据规定,每个房间每天的房价不得高于340元。
设每个房间的房价每天增加x 元(x 为10的正整数倍)。
(1) 设一天订住的房间数为y ,直接写出y 与x 的函数关系式及自变量x 的取值范围;(2) 设宾馆一天的利润为w 元,求w 与x 的函数关系式;(3) 一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?解:(1) y=50-101x (0≤x ≤160,且x 是10的整数倍)。
(2) W=(50-101x)(180+x -20)= -101x 2+34x +8000; (3) W= -101x 2+34x +8000= -101(x -170)2+10890,当x<170时,W 随x 增大而增大,但0≤x ≤160,∴当x=160时,W 最大=10880,当x=160时,y=50-101x=34。
二次函数培优专题
.二次函数提高训练(12)一、二次函数的定义例 1、已知函数 y=(m- 1)x m2 +1+5x- 3 是二次函数,求m的值。
22是关于 x 的二次函数,则m的取值范围为。
若函数 y=(m +2m- 7)x+4x+5二、图像的应用例 2. 已知抛物线y1x x,25232(1)用配方法求它的顶点坐标和对称轴(2)若该抛物线与 x 轴的两个交点为 A、 B,求线段 AB的长.1、抛物线y 2 x28x1的顶点坐标为()( A)( -2 , 7)( B)( -2 , -25 )( C)( 2, 7)(D)( 2,-9 )2、抛物线y a( x1)(x3)(a 0) 的对称轴是直线()A.x 1B.x1C.x3D.x 33、把二次函数y1x2x 3用配方法化成 y a x h 2k 的形式4三、 a, b, c 及b24ac 的符号确定例 3. 已知抛物线y ax2bx c 如图,试确定:( 1)a,b,c及b24ac 的符号;(2) a b c 与 a b c 的符号。
1、已知二次函数y ax2bx c(a0 )的图象如图所示,有下列四个结论:①b0② c0③ b24ac0④ a b c0 ,其中正确的个数有()A.1 个B.2 个C.3个D.4个y111 O x2、已知二次函数y ax2bx c 的图象如图所示,有以下结论:①a b c0;② a b c1;③ abc0 ;.A .①②B . ①③④C .①②③⑤D .①②③④⑤3、 二次函数y ax 2bx c 的图象如图所示,则下列关系式中错误 ..的是() yA . a < 0B . c >0C . b24ac > 0 D . a b c > 04、图 12 为二次函数 y ax2bx c 的图象,给出下列说法:-1O1 x① ab0 ;②方程2的根为,;③ a b c 0;④当 x 1时, y 随 x 值的增大而ax bx c 0x 131 x 2增大;⑤当 y 0时, 1 x 3 .其中,正确的说法有.(请写出所有正确说法的序号)5、已知 =次函数 y = ax 2+bx+c 的图象如图.则下列 5 个代数式: ac ,a+b+c ,4a - 2b+c , 2a+b ,2a - b 中,其值大于 0 的个数为()A .2B3C 、4D 、5四、二次函数解析式的确定例 4. 求二次函数解析式:( 1)抛物线过( 0,2),( 1, 1),( 3, 5);( 2)顶点 M ( -1 , 2),且过 N ( 2, 1);( 3)已知抛物线过 A ( 1, 0)和 B ( 4,0)两点,交 y 轴于 C 点且 BC = 5,求该二次函数的解析式。
九年级二次函数应用题
解:(1)y是x的一次函数,设y=kx+b,
图象过点(10,300),(12,240),
,
解得 ,
∴y=-30x+600,
当x=14时,y=180;当x=16时,y=120,
即点(14,180),(16,120)均在函数y=-30x+600图象上.
设t=a%,整理得:10t2+17t-13=0,
解得:t= ,
∵ ≈28.4,
∴t1≈0.57,t2≈-2.27(舍去),
∴a≈57,
答:a的值是57.
点评:此题主要考查了二次函数的应用和根据实际问题列反比例函数关系式和二次函数关系式、求二次函数最值等知识.此题阅读量较大,得出正确关于a%的等式方程是解题关键.
分析:(1)利用表中x、y的各组对应值作为点的坐标,在坐标系中描出即可,再根据点的分布得出y与x的函数关系式,求出即可;
(2)根据利润=销售总价-成本总价,由(1)中函数关系式得出W=(x-10)(-10x+700),,进而利用二次函数最值求法得出即可;
(3)利用二次函数的增减性,结合对称轴即可得出答案.
(1)请观察题中的表格和图象,用所学过的一次函数、反比例函数或二次函数的有关知识,分别直接写出y1,y2与x之间的函数关系式;
(2)请你求出该企业去年哪个月用于污水处理的费用W(元)最多,并求出这个最多费用;
(3)今年以来,由于自建污水处理设备的全面运行,该企业决定扩大产能并将所有污水全部自身处理,估计扩大产能后今年每月的污水量都将在去年每月的基础上增加a%,同时每吨污水处理的费用将在去年12月份的基础上增加(a-30)%,为鼓励节能降耗,减轻企业负担,财政对企业处理污水的费用进行50%的补助.若该企业每月的污水处理费用为18000元,请计算出a的整数值.
用二次函数解决实际问题》优质课课件
某商店销售一种商品,进价为每件8元,售价为每件10元,每天可售出100件。为了增加 利润,商店决定降价销售,经过调查发现,每降价0.5元,每天可多售出20件。求该商店 的最大利润。
最短路径问题的案例
总结词
利用二次函数求最短距离
详细描述
通过建立二次函数模型,利用函数的性质求出最短路径。
案例
某村计划修建一条水渠,从A点到河边的直线距离为30米,河宽为40米。由于地形限制,水渠必须沿A点 的切线方向修建。求水渠的最短长度。
抛物线运动问题的案例
总结词
利用二次函数描述抛物线运动轨 迹
详细描述
通过建立二次函数模型,描述物体 在垂直方向上的运动轨迹,并利用 函数的性质分析运动规律。
案例
一个物体从高处自由下落,其运动 轨迹可以近似地看作是抛物线。已 知物体下落的高度为10米,求物体 下落的时间和速度。
05
练习与思考
基础练习题
综合思考题
总结词
综合运用知识
思考题1
已知二次函数$f(x) = x^2 - 2x$在区间$[0,n]$上的值域为 $[0,3]$,求实数$n$的取值范围。
思考题2
求二次函数$f(x) = x^2 - 2x$在区间$[0,4]$上的极值点 。
思考题3
已知二次函数$f(x) = ax^2 + bx + c$经过点$(0,1)$和 $(3,5)$,且在区间$[0,3]$上单调递减,求$a, b, c$的值。
01 02 03 04
总结词:巩固基础
练习题1:求二次函数$f(x) = x^2 - 2x$在区间$[-1,3]$的最大值和最小 值。
练习题2:已知二次函数$f(x) = ax^2 + bx + c$的顶点坐标为$(2, -1)$, 求$a, b, c$的值。
九年级数学(下)提高班讲义(三) 二次函数的实际应用
九年级数学(下)提高班讲义(三)二次函数的实际应用九年级数学(下)提高班讲义(三)-二次函数的实际应用九年级数学改进课堂讲义(III)第1页,共8页九年级数学(下)提高班讲义(三)二次函数的实际应用班级:姓名:例1:一家公司生产的健身产品在市场上普遍很受欢迎,每年都能在国内外市场上销售一空。
该公司年产量为6000件。
如果在国内市场销售,每个产品的平均利润Y1(元)与国内销售数量x(1000件)之间的关系如下:(1)用x的代数式表示t为:t=;当0<x≤4时,y2与x的函数关系为y2=;什么时候≤ x<y2=100;(2)求每年该公司销售这种健身产品的总利润w(千元)与国内的销售数量x(千件)的函数关系式,并指出x的取值范围;(3)公司在国内外的年销售额是多少,这能使公司每年的总利润最大化?最大值是多少?同步练习:某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元.则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1)找出Y和X之间的函数关系,直接写出自变量X的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)当每种商品的价格定在多少元时,每月的利润只有2200元?根据以上结论,请直接写下销售价格范围,每月利润不低于2200元?例2:知识迁移:当a?0且x?0时,因为(x?aa2)≥0,所以x?2a?≥0,从而xxx?AA≥ 2A(x?A时取等号)还记得函数y吗?十、(a?0,x?0)。
从以上结论可以看出,当XXX?A、该函数的最小值为2A直接应用:已知函数Y1?X(X?0)和函数Y2?最小值为____变形应用:已知函数y1?x?1(x??1)与函数y2?(x?1)2?4(x??1),求指出取得该最小值时相应的x的值.实际应用:据了解,一辆车的一次性运输成本包括以下三部分:一是固定成本,共计360元;第二,燃料成本为每公里1.6元;第三个是折旧成本,它与距离的平方成正比,假设一次运输的车辆距离为x公里,比例系数为0.001。
数学备课大师【全免费】
专题提升(八)二次函数在实际生活中的应用【经典母题】某超市销售一种饮料,每瓶进价为9元,经市场调查表明,当售价在10元到14元之间(含10元,14元)浮动时,每瓶售价每增加0.5元,日均销量减少40瓶;当售价为每瓶12元时,日均销量为400瓶。
问销售价格定为每瓶多少元时,所得日均毛利润(每瓶毛利润=每瓶售价-每瓶进价)最大?最大日均毛利润为多少元?解:设售价为每瓶x元时,日均毛利润为y元,由题意,得日均销售量为400-40[(x-12)÷0.5]=1 360—80x,y=(x—9)(1 360-80x)=-80x2+2 080x-12 240(10≤x≤14).-=—080,2×(-80))=13,∵10≤13≤14,∴当x=13时,y取最大值,y=—80×132+2 080×13-12 240=1 280(元).最大答:售价定为每瓶13元时,所得日均毛利润最大,最大日均毛利润为1 280元。
【思想方法】本题是一道复杂的市场营销问题,在建立函数关系式时,应注意自变量的取值范围,在这个取值范围内,需了解函数的性质(最大最小值,变化情况,对称性,特殊点等)和图象,然后依据这些性质作出结论.【中考变形】1.[2017·锦州]某商店购进一批进价为20元/件的日用商品,第一个月,按进价提高50%的价格出售,售出400件,第二个月,商店准备在不低于原售价的基础上进行加价销售,根据销售经验,提高销售单价会导致销售量的减少.销售量y(件)与销售单价x(元)的关系如图Z8—1所示.(1)图中点P所表示的实际意义是当售价定为35元/件时,销售量为300件;销售单价每提高1元时,销售量相应减少20件;(2)请直接写出y与x之间的函数表达式:=20图Z8-1x+1_000;自变量x的取值范围为30≤x≤50;(3)第二个月的销售单价定为多少元时,可获得最大利润?最大利润是多少?解:(1)图中点P所表示的实际意义是:当售价定为35元/件时,销售量为300件;第一个月的该商品的售价为20×(1+50%)=30(元),销售单价每提高1元时,销售量相应减少数量为(400-300)÷(35—30)=20(件).(2)设y与x之间的函数表达式为y=+b,将点(30,400),(35,300)代入,得解得000,))∴y与x之间的函数表达式为y=-20x+1 000.当y=0时,x=50,∴自变量x的取值范围为30≤x≤50。
二次函数应用题有答案
二次函数应用题一、引言数学源于实际,数学的发展主要依赖于生产实践。
从数学应用的角度来处理数学、阐释数学、呈现数学,可以提高理论知识的可利用水平,增强理论知识可辨别性程度。
数学概念多是由实际问题抽象而来的,大多数都有实际背景。
尽管应用的广泛性是数学的一大特征,但常常被数学教材的严谨性和抽象性所掩盖,导致学生应用数学的意识薄弱,应用能力不强。
数学的“语言”供世界各民族所共有,是迄今为止惟一的世界通用的语言,是一种科学的语言。
科学数学化,社会数学化的过程,乃是数学语言的运用过程;科学成果也是用数学语言表述的,正如伽利略所说“自然界的伟大的书是用数学语言写成的”。
从而端正并加深对数学的认识,激发我们应用数学的自觉性、主动性。
二、例题例1、一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到最大高度3.5米,然后准确落入篮圈。
已知篮圈中心到地面的距离为3.05米。
(1)建立如图所示的直角坐标系,求抛物线的解析式;(2)该运动员身高1.8米,在这次跳投中,球在头顶上方0.25米处出手,问:球出手时,他跳离地面的高度是多少?简解:(1)由于抛物线的顶点是 (0,3.5),故可设其解析式为y=ax2+3.5。
又由于抛物线过(1.5,3.05),于是求得a=-0.2。
∴抛物线的解析式为y=-0.2x2+3.5。
(2)当x=-2.5时,y=2.25。
∴球出手时,他距地面高度是2.25-1.8-0.25=0.20(米)。
评析:运用投球时球的运动轨迹、弹道轨迹、跳水时人体的运动轨迹,抛物线形桥孔等设计的二次函数应用问题屡见不鲜。
解这类问题一般分为以下四个步骤:(1)建立适当的直角坐标系(若题目中给出,不用重建);(2)根据给定的条件,找出抛物线上已知的点,并写出坐标;(3)利用已知点的坐标,求出抛物线的解析式。
①当已知三个点的坐标时,可用一般式y=ax2+bx+c求其解析式;②当已知顶点坐标为(k,h)和另外一点的坐标时,可用顶点式y=a(x-k)2+h求其解析式;③当已知抛物线与x轴的两个交点坐标分别为(x1,0)、(x2,0)时,可用双根式y=a(x-x1)(x-x2)求其解析式;(4)利用抛物线解析式求出与问题相关的点的坐标,从而使问题获解。
实际问题中的二次函数建模训练
实际问题中的二次函数建模训练1.弹力球游戏规则:弹力球抛出后与地面接触一次,弹起降落,若落入筐中,则游戏成功.弹力球着地前后的运动轨迹可近似看成形状相同的两条抛物线.如图16,甲站在原点处,从离地面高度为1m的点A处抛出弹力球,弹力球在B处着地后弹起,落至点C处,弹力球第一次着地前抛物线的解析式为y=a(x﹣2)2+2.(1)a的值为;点B的横坐标为;(2)若弹力球在B处着地后弹起的最大高度为着地前手抛出的最大高度的一半.①求弹力球第一次着地后抛物线解析式;②求弹力球第二次着地点到点O的距离;③如果摆放一个底面半径为0.5m,高0.5m的圆柱形筐,且筐的最左端距离原点9m,若要甲能投球成功,需将筐沿x轴向左移动bm,直接写出b的取值范围.2.图1的小山丘是科研部门的小球弹射实验场地,在小山丘一侧的山坡上建有小球弹射发射装置,另一侧建有圆柱形小球接收装置.图2为实验场地的纵截面示意图,小山丘纵截面的外部轮廓线近似为抛物线的一部分,以小山丘纵截面与地面的交线为x轴,以过发射装置所在的直线AB为y轴,建立平面直角坐标系.发射装置底部在轮廓线的点A 处,距离地面为1米,在发射装置3米的点B处是发射点,已知小山丘纵截面的外部轮廓线为C1:y=﹣x2+x+1,从发射装置的发射点弹射一个小球(忽略空气阻力)时,小球的飞行路线为一段抛物线C2:y=﹣x2+bx+c.(1)直接写出c的值,当小球离B处的水平距离和竖直距离都为4米时,求b的值,并求小球到小山丘的竖直距离为1米时,小球离B处的水平距离;(2)若小球最远着陆点到y轴的距离为15米,当小球飞行到小山丘顶的正上方,且与顶部距离不小于米时,求b的取值范围,并求小球飞行路线的顶点到x轴距离的最小值;(3)圆柱形小球接收装置的最大截面为矩形CDEF,已知点E在C1上,其横坐标为14,CF∥x轴,CD=1.5,DE=1,若小球恰好落入该装置内(不触碰装置侧壁),请直接写出b的取值范围.3.如图是小智用数学软件模拟弹球运动轨迹的部分示意图,已知弹球P从x轴上的点A向右上方弹射出去,沿抛物线l1:y=﹣x2+2x+15运动,落到图示的台阶S1﹣S5某点Q处后,又立即向右上方弹起,运动轨迹形成另一条与L1,形状相同的抛物线L2,抛物线L2的顶点N与点Q的垂直距离为4,点A到台阶底部O的距离为3,最高一是台阶S1到x 轴的距离为9,S1~S5每层台阶的高和宽均分别为1和1.5.台阶的各拐角均为直角.(1)求弹球P上升到最高点M时,弹球到x轴的距离;(2)①指出落点Q在哪一层台阶上,并求出点Q的坐标;②求出抛物线L2的解析式;(3)已知△BCD的BC边紧贴x轴,∠C=90°,BC=1,CD=2,当弹球沿抛物线L2下落能击中△BCD时,求点C的横坐标的最大值与最小值.4.图1是运动员训练使用的带有乒乓球发射机的乒乓球台示意图.水平台面的长和宽分别为2.8m和1.6m,中间球网高度为0.15m,发射机安装于台面左侧边缘,能以不同速度向右侧不同方向水平发射乒乓球,发射点距台面高度为0.4m,乒乓球(看成点)在发射点P获得水平速度v(单位:m/s)后,从发射点向右下飞向台面,点Q是下落路线的某位置.忽略空气阻力,实验表明:P,Q的竖直距离h(单位:m)与飞出时间t(单位:s)的平方成正比,且当t=1时,h=5;P,Q的水平距离是vt(单位:m).(1)设v=10m/s,用t表示点Q的横坐标x和纵坐标y,并求出y与x的函数关系式;(不必写x的取值范围)(2)在(1)的条件下,①若发球机垂直于底线向正前方发球,根据(1)中的函数关系式及题目中的数据,判断这次发球能否过网?是否出界?并说明理由;②若球过网后的落点是右侧台面内的点M(如图3,点M距底线0.3m,边线0.3m),问发球点O在底线上的哪个位置?(参考数据:≈2.6)(3)将乒乓球发射机安装于台面左侧底线的中点,若乒乓球的发射速度v在某范围内,通过选择合适的方向,就能使乒乓球落到球网右侧台面上(不接触中网和底线),请直接出v的取值范围.(结果保留根号)5.将小球(看作一点))以速度v1竖直上抛,上升速度随时间推移逐渐减少直至为0,此时小球达到最大高度.小球相对于抛出点的高度y(m)与时间t(s)的函数解析式为两部分之和,其中一部分为速度v1(m/s)与时间t(s)的积,另一部分与时间t(s)的平方成正比.若上升的初始速度v1=10m/s,且当y=5m时,小球达到最大高度.(1)求小球上升的高度y与时间t的函数关系式(不必写范围),并写出小球上升到最大高度时的时间;(2)如图,向上抛出小球时再给小球一个水平向前的均匀速度v2(m/s),发现小球运动的路线为一抛物线,其相对于抛出点的高度y(m)与时间t(s)的函数解析式与(1)中的解析式相同.①若v2=5m/s,当t=s时,小球的坐标为,小球上升的最高点坐标为;求小球上升的高度y与小球距抛出点的水平距离x之间的函数关系式;②在小球的正前方的墙上有一高m的小窗户PQ,其上沿P的坐标为(6,),若小球恰好从窗户中穿过(不包括恰好击中点P,Q,墙厚度不计),请直接写出小球的水平速度v2的取值范围.6.如图,某跳水运动员进行10米跳台跳水训练,水面边缘点E的坐标为(﹣,﹣10).运动员(将运动员看成一点)在空中运动的路线是经过原点O的抛物线.在跳某个规定动作时,运动员在空中最高处A点的坐标为(1,),正常情况下,运动员在距水面高度5米以前,必须完成规定的翻腾、打开动作,并调整好入水姿势,否则就会失误.运动员入水后,运动路线为另一条抛物线.(1)求运动员在空中运动时对应抛物线的解析式并求出入水处B点的坐标;(2)若运动员在空中调整好入水姿势时,恰好距点E的水平距离为5米,问该运动员此次跳水会不会失误?通过计算说明理由;(3)在该运动员入水点的正前方有M,N两点,且EM=,EN=,该运动员入水后运动路线对应的抛物线解析式为y=a(x﹣h)2+k,且顶点C距水面4米,若该运动员出水点D在MN之间(包括M,N两点),请直接写出a的取值范围.。
二次函数的建模运用
二次函数的应用 1.有一座抛物线形拱桥,正常水位桥下面宽度为20米,拱顶距离水平面4米,如图建立直角坐标系,若正确水位时,桥下水深6米,为保证过往船只顺利航行,桥下水面宽度不得小于18米,则当水深超过多少米时,就会影响过往船只的顺利航行( )A .2.76米B .6.76米C .6米D .7米考点:二次函数的应用.专题:应用题;压轴题.分析:根据已知,假设解析式为y=ax 2,把(10,-4)代入求出解析式.假设在水面宽度18米时,能顺利通过,即可把x=9代入解析式,求出此时水面距拱顶的高度,然后和正常水位相比较即可解答.解答:解:设该抛物线的解析式为y=ax 2,在正常水位下x=10,代入解析式可得-4=a×102 ∴ 故此抛物线的解析式为:因为桥下水面宽度不得小于18米,所以令x=9时可得:此时水深6+4-3.24=6.76米即桥下水深6.76米时正好通过,所以超过6.76米时则不能通过.故选B .点评:本题考查点的坐标的求法及二次函数的实际应用,借助二次函数解决实际问题.难度中上,首先要知道水面宽度与水位上升高度的关系才能求解.2.林书豪身高1.91m ,在某次投篮中,球的运动路线是抛物线y=−51-x 2+3.5的一部分(如图),若命中篮圈中心,则他与篮底的距离约为( )A .3.2mB .4mC .4.5mD .考点:二次函数的应用.专题:数形结合.分析:把y=3.05代入所给二次函数解析式,求得相应的x 的值,加上2.5即为所求的数值.2251-y x =251-a =米24.381251-y -=⨯=解答:解:由题意得:3.05=−51-x 2+3.5, x 2=2.25,∵篮圈中心在第一象限,∴x=1.5, ∴他与篮底的距离约为1.5+2.5=4m ,故选B .点评:考查二次函数的应用;建立数学模型,求得篮圈中心与原点的水平距离是解决本题的关键.3.如图是江夏宁港灵山脚下古河道上一座已有了400年历史的古拱桥的截面图,这座拱桥桥洞上沿是抛物线形状,若把拱桥的截面图放在平面直角坐标系中,则抛物线两端点与水面的距离都是1m ,拱桥的跨度为10m ,桥洞与水面的最大距离是5m ,如果在桥洞两侧壁上各安装一盏距离水面4m 的景观灯,则两盏景观灯之间的水平距离是( )A .3mB .4mC .5mD .6m 考点:二次函数的应用.分析:根据抛物线在坐标系的位置,可知抛物线的顶点坐标为(5,5),抛物线的左端点坐标为(0,1),可设抛物线的顶点式求解析式,再根据两灯的纵坐标值,求横坐标,作差即可.解答:解:抛物线的顶点坐标为(5,5),且经过点(0,1),设抛物线解析式为y=a (x-5)2+5,把点(0,1)代入得:1=a (0-5)2+5,即∴抛物线解析式为令y=4,得∴盏景观灯之间的水平距离是: 故选C .点评:根据抛物线在坐标系中的位置及点的坐标特点,合理地设抛物线解析式,再运用解析式解答题目的问题.4.如图,在“江夏杯”钓鱼比赛中,选手甲钓到了一条大鱼,鱼竿被拉弯近似可看作以A 为最高点的一条抛物线,已知鱼线AB 长6m ,鱼隐约在水面了,估计鱼离鱼竿支点有8m ,254-a =5)5(254-y 2+-=x 215x 1=m 525-215=25x 2=此时鱼竿鱼线呈一个平面,且与水平面夹脚α恰好为60°,以鱼竿支点为原点,则鱼竿所在抛物线的解析式为考点:二次函数的应用.分析:过点A 作AC⊥OB,交OB 于点C ,在RT△ABC 中,可求出AC 、BC ,然后根据OB=8米,可得出点A 的坐标,根据二次函数过原点及二次函数的顶点坐标即可确定二次函数解析式.解答:解:过点A 作AC⊥OB,交OB 于点C ,∵AB=6米,OB=8米,α=60°,∴AC=ABsin∠α=米BC=ACcos∠α=3米,∴OC=OB -BC=5米,故可得点A 的坐标为设函数解析式为y=a (x-5)2+ 又∵函数经过原点, ∴0=a (0-5)2 +解得:故函数解析为: 故答案为:点评:此题考查了二次函数的应用,关键是利用几何知识求出点A 的坐标,另外要掌握二次函数的一般式及顶点式的特点,有一定难度.33)(33,533332533-a =33)5(2533-y 2+-=x 33)5(2533-y 2+-=x5.如图,AB 是自动喷灌设备的水管,点A 在地面,点B 高出地面1.5米.在B 处有一自动旋转的喷水头,在每一瞬间,喷出的水流呈抛物线状,喷头B 与水流最高点C 的连线与水平线成45°角,水流的最高点C 与喷头B 高出2米,在如图的坐标系中,水流的落地点D 到点A 的距离是 米.考点:二次函数的应用.分析:根据所建坐标系,易知B 点坐标和顶点C 的坐标,设抛物线解析式为顶点式,可求表达式,求AD 长就是求y=0是x 的值.解答:解:如图,建立直角坐标系,过C 点作CE⊥y 轴于E ,过C 点作CF⊥x 轴于F , ∴B(0,1.5),∴∠CBE=45°,∴EC=EB=2米,∵CF=AB+BE=2+1.5=3.5,∴C(2,3.5)设抛物线解析式为:y=a (x-2)2+3.5,又∵抛物线过点B ,∴1.5=a(0-2)2+3.5 ∴∴ ∴所求抛物线解析式为: ∵抛物线与x 轴相交时,y=0, ∴(舍去)727221-=+=x x∴点D 坐标为)(0,72+水流落点D 到A 点的距离为:米72+点评:此题主要考查了二次函数的应用,根据所建坐标系的特点设合适的函数表达式形式进而求出二次函数解析式是解决问题的关键.6.我市某工艺厂设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:(注:利润=销售总价-成本总价)销售单价x (元∕件) … 30 40 50 60 …21-a =23221-5.3)2(21-y 22++=+-=x x x 23221-y 2++=x x 23221-02++=x x每天销售量y(件)…500 400 300 200 …(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式;(2)在(1)的条件下,设工艺厂试销该工艺品每天所得利润为P元;①当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润P为8000元?②工艺厂自身发展要求试销单价不低于35元/件,同时,当地物价部门规定,该工艺品销售单价最高不能超过55元,写出在此情况下每天获利P的取值范围.考点:二次函数的应用.分析:(1)描点,由图可猜想y与x是一次函数关系,任选两点求表达式,再验证猜想的正确性;(2)①根据利润=销售总价-成本总价=单件利润×销售量;②据①中表达式,运用性质求P的取值范围.解答:解:(1)如图所示是一次函数解析式,设一次函数解析式为:y=ax+b30a+b=500.........①40a+b=400.........②解得:a=−10 b=800∴函数解析式为:y=-10x+800;(2)①由题意得出:P=yx=(-10x+800)(x-20)=8000,解得:x1=40,x2=60,∴当销售单价定为40元或60元时,工艺厂试销该工艺品每天获得的利润P为8000元;②∵P=yx=(-10x+800)(x-20)=-10x2+1000x-16000=-10(x-50)2+9000,∴当x=50时,P=9000元,当x=35时,P=6750元,∴P的取值范围是:6750≤P≤9000.点评:此题主要考查了二次函数的综合应用,根据已知得出y与x的函数关系式是解题7.某商家独家销售具有地方特色的某种商品,每件进价为40元.经过市场调查,一周的(2)设一周的销售利润为S元,请求出S与x的函数关系式,并确定当销售单价在什么范围内变化时,一周的销售利润随着销售单价的增大而增大?(3)雅安地震牵动亿万人民的心,商家决定将商品一周的销售利润全部寄往灾区,在商家购进该商品的贷款不超过10000元情况下,请你求出该商家最大捐款数额是多少元?解答:解:(1)设y=kx+b,由题意得,55k+b=450...........①60k+b=400...........②解得:k=−10 b=1000则函数关系式为:y=-10x+1000;(2)由题意得,S=(x-40)y=(x-40)(-10x+1000)=-10x2+1400x-40000=-10(x-70)2+9000,∵-10<0,∴函数图象开口向下,对称轴为x=70,∴当50≤x≤70时,销售利润随着销售单价的增大而增大;(3)∵由40(-10x+1000)≤10000解得x≥75∴当x=75时,利润最大,为8750元.点评:本题考查了二次函数的应用,难度一般,解答本题的关键是将实际问题转化为求函数最值问题,从而来解决实际问题.8.如图,是江夏广场设计的一建筑物造型的纵截面是抛物线的一部分,抛物线的顶点O 落在水平面上,对称轴是水平线OC .点A 、B 在抛物线造型上,且点A 到水平面的距离AC=4米,点B 到水平面距离为2米,OC=8米.(1)请建立适当的直角坐标系,求抛物线的函数解析式;(2)为了安全美观,现需在水平线OC 上找一点P ,用质地、规格已确定的圆形钢管制作两根支柱PA 、PB 对抛物线造型进行支撑加固,那么怎样才能找到两根支柱用料最省(支柱与地面、造型对接方式的用料多少问题暂不考虑)时的点P ?(无需证明)(3)为了施工方便,现需计算出点O 、P 之间的距离,那么两根支柱用料最省时点O 、P 之间的距离是多少?(请写出求解过程)考点:二次函数的应用.专题:压轴题. 分析:(1)以点O 为原点、射线OC 为y 轴的正半轴建立直角坐标系,可设抛物线的函数解析式为y=ax 2,又由点A 在抛物线上,即可求得此抛物线的函数解析式;(2)延长AC ,交建筑物造型所在抛物线于点D ,连接BD 交OC 于点P ,则点P 即为所求;(3)首先根据题意求得点B 与D 的坐标,设直线BD 的函数解析式为y=kx+b ,利用待定系数法即可求得直线BD 的函数解析式,把x=0代入y=-x+4,即可求得点P 的坐标. 解答:解:(1)以点O 为原点、射线OC 为y 轴的正半轴建立直角坐标系,设抛物线的函数解析式为y=ax 2,由题意知点A 的坐标为(4,8). ∵点A 在抛物线上,∴8=a×42, 解得:21=a 221y x =∴所求抛物线的函数解析式为:(2)找法:延长AC,交建筑物造型所在抛物线于点D,则点A、D关于OC对称.连接BD交OC于点P,则点P即为所求.(3)由题意知点B的横坐标为2,∵点B在抛物线上,∴点B的坐标为(2,2),又∵点A的坐标为(4,8),∴点D的坐标为(-4,8),设直线BD的函数解析式为y=kx+b,2k+b=2..........①−4k+b=8........②解得:k=-1,b=4.∴直线BD的函数解析式为y=-x+4,把x=0代入y=-x+4,得点P的坐标为(0,4),两根支柱用料最省时,点O、P之间的距离是4米.点评:此题考查了二次函数的实际应用问题.解此题的关键是根据题意构建二次函数模型,然后根据二次函数解题.。
《二次函数》的应用(附例题分析)
《二次函数》的应用(附例题分析)典型例题分析1:某商场要经营一种新上市的文具,进价为20元/件,试营销阶段发现:当销售单价25元/件时,每天的销售量是250件,销售单价每上涨1元,每天的销售量就减少10件.(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大;(3)商场的营销部结合上述情况,提出了A、B两种营销方案:方案A:该文具的销售单价高于进价且不超过30元;方案B:每件文具的利润不低于为25元且不高于29元.请比较哪种方案的最大利润更高,并说明理由.解:(1)由题意得,销售量=250﹣10(x﹣25)=﹣10x+500,则w=(x﹣20)(﹣10x+500)=﹣10x2+700x﹣10000;(2)w=﹣10x2+700x﹣10000=﹣10(x﹣35)2+2250.∵﹣10<0,∴函数图象开口向下,w有最大值,当x=35时,w最大=2250,故当单价为35元时,该文具每天的利润最大;(3)A方案利润高.理由如下:A方案中:20<x≤30,故当x=30时,w有最大值,此时wA=2000;B方案中:故x的取值范围为:45≤x≤49,∵函数w=﹣10(x﹣35)2+2250,对称轴为直线x=35,∴当x=35时,w有最大值,此时wB=1250,∵wA>wB,∴A方案利润更高.考点分析:二次函数的应用;一元二次方程的应用.题干分析:(1)根据利润=(销售单价﹣进价)×销售量,列出函数关系式即可;(2)根据(1)式列出的函数关系式,运用配方法求最大值;(3)分别求出方案A、B中x的取值范围,然后分别求出A、B 方案的最大利润,然后进行比较。
这是一道与二次函数有关的实际应用问题,贴近生活,考生能学习生活知识,同时更帮助学生理解数学知识和生活之间的关系。
研究题目,吃透题型是数学学习最有效,最实际的学习探究行为。
实际问题与二次函数—建立二次函数模型解决实际问题(教材配套课件)
到水面宽度变化时,拱顶离水面高度怎样变化.
典例精析
例1 图中是抛物线形拱桥,当水面在 时,拱顶离
水面2m,水面宽4m,水面下降1m时,水面宽度增
加了多少?
解法一: 如图所示以抛物线的顶点为原点,以抛物线的对称轴为y轴,建
立平面直角坐标系.
∴可设这条抛物线所表示的二次函数的解析式为y=ax2
∴-4=100a,a=-0.04
∴y=-0.04x2 .
C
A
O
h
20 m
D
x
B
在“拱桥类”问题中,一般知道拱高和拱长,这时可根据抛物线的对
称性建立以对称轴为y轴的坐标系,然后根据所建立的坐标系,确定抛物线
上一些点的坐标.若顶点在原点上,一般设二次函数的解析式为y=ax2;若
顶点不在原点上,一般设二次函数的解析式为y=ax2+k.
面的高度y(单位:m)与水平距离x(单位:m)
2
近似满足函数关系y=﹣ x + x+c,其图象如
图所示.已知铅球落地时的水平距离为10m.
(1)求铅球出手时离地面的高度;
(2)在铅球行进过程中,当它离
地面的高度为 m时,求此时铅球
的水平距离.
2
解:(1)根据题意,将(10,0)代入y=﹣ x +
当拱桥离水面2m时,水面宽4m
即抛物线过点(2,-2)
∴-2=a×22
∴a=-0.5
∴这条抛物线所表示的二次函数为y=-0.5x2 .
当水面下降1m时,水面的纵坐标为y=-3,这时有:
-3=-0.5x² 解得x=± ,这时水面宽度为2 m
二次函数应用题的解法技巧
二次函数应用题的解法技巧及实际应用情况1. 应用背景二次函数是高中数学中的重要概念,它具有很多实际应用,尤其是在物理和经济领域。
二次函数应用题主要通过建立二次函数模型来描述和解决与现实生活相关的问题。
这些问题往往涉及到物体运动、水平抛射、最优化等方面。
2. 应用过程解决二次函数应用题的关键是找到问题的背景信息并建立与之相符的二次函数模型,然后通过解方程或运用二次函数的性质来求解问题。
以下将介绍二次函数应用题的解法技巧及实际应用情况的几个常见例子。
2.1. 最高点与最低点问题描述:一个抛物线由一个向上凸起的二次函数模型来表示,我们需要找到这条抛物线的最高点或最低点。
解法步骤: 1. 根据问题的背景信息建立一个二次函数模型,通常形式为y=ax2+bx+c,其中a是二次项的系数。
2. 最高点对应于抛物线的顶点,最低点对应于抛物线的谷点,它们的x坐标可以通过公式x=−b2a 来求得。
3. 将x坐标代入二次函数模型中,可以得到最高点或最低点的y坐标。
实际应用情况:这个问题在物理学中常常出现,比如求取一个抛体达到最高点的高度或射程,或者求取一个反比例函数的最低点。
2.2. 描述物体运动问题描述:一个物体被抛出,上升到最高点后再下落,我们需要通过二次函数模型来描绘物体的运动轨迹。
解法步骤: 1. 将物体的初始高度设为c,初始速度设为v。
2. 物体的运动轨迹可以用二次函数模型y=−12gt2+vt+c来表示,其中g是重力加速度,t是时间。
3. 利用二次函数模型,可以求出物体达到最高点和落地点的时间,也可以求出这些点的高度。
实际应用情况:这个问题在物理学中经常出现,用以描述抛体的轨迹,比如抛球运动的高度、飞行物体的运动轨迹等。
2.3. 求取最优解问题描述:某个问题需要求取一个最大或最小值,我们需要利用二次函数模型来解决这个问题。
解法步骤: 1. 根据问题的背景信息建立一个二次函数模型,通常形式为y=ax2+bx+c,其中a是二次项的系数。
专题05 实际问题与二次函数-2019九年级数学讲义提高班(原卷版)
实际问题与二次函数知识网络图⎧⎨⎩实际问题运用实际问题与二次函数函数与几何综合5.1 二次函数的应用利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义. 利用二次函数解决实际问题的一般步骤是: (1)建立适当的平面直角坐标系;(2)把实际问题中的一些数据与点的坐标联系起来; (3)用待定系数法求出抛物线的关系式;(4)利用二次函数的图象及其性质去分析问题、解决问题.要点诠释:常见的问题:求最大(小)值(如求最大利润、最大面积、最小周长等)、涵洞、桥梁、抛物体、抛物线的模型问题等.解决这些实际问题关键是找等量关系,把实际问题转化为函数问题,列出相关的函数关系式.1.(2018•温州)温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件利润减少2元.设每天安排x 人生产乙产品.(1)根据信息填表(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润.小试牛刀(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W (元)的最大值及相应的x 值.2.(2018•荆门)随着龙虾节的火热举办,某龙虾养殖大户为了发挥技术优势,一次性收购了10000kg 小龙虾,计划养殖一段时间后再出售.已知每天养殖龙虾的成本相同,放养10天的总成本为166000,放养30天的总成本为178000元.设这批小龙虾放养t 天后的质量为akg ,销售单价为y 元/kg ,根据往年的行情预测,a 与t 的函数关系为a=,y 与t 的函数关系如图所示.(1)设每天的养殖成本为m 元,收购成本为n 元,求m 与n 的值; (2)求y 与t 的函数关系式;(3)如果将这批小龙虾放养t 天后一次性出售所得利润为W 元.问该龙虾养殖大户将这批小龙虾放养多少天后一次性出售所得利润最大?最大利润是多少?(总成本=放养总费用+收购成本;利润=销售总额﹣总成本)3.(2018•黔南州)某种蔬菜的销售单价y 1与销售月份x 之间的关系如图1所示,成本y 2与销售月份x 之间的关系如图2所示(图1的图象是线段,图2的图象是抛物线)(1)已知6月份这种蔬菜的成本最低,此时出售每千克的收益是多少元?(收益=售价﹣成本)再接再厉(2)哪个月出售这种蔬菜,每千克的收益最大?简单说明理由.(3)已知市场部销售该种蔬菜4、5两个月的总收益为22万元,且5月份的销售量比4月份的销售量多2万千克,求4、5两个月的销售量分别是多少万千克?4.(2018•安徽)小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆,售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元,调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元).(1)用含x的代数式分别表示W1,W2;(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?5.(2018•达州)“绿水青山就是金山银山”的理念已融入人们的日常生活中,因此,越来越多的人喜欢骑自行车出行.某自行车店在销售某型号自行车时,以高出进价的50%标价.已知按标价九折销售该型号自行车8辆与将标价直降100元销售7辆获利相同.(1)求该型号自行车的进价和标价分别是多少元?(2)若该型号自行车的进价不变,按(1)中的标价出售,该店平均每月可售出51辆;若每辆自行车每降价20元,每月可多售出3辆,求该型号自行车降价多少元时,每月获利最大?最大利润是多少?5.2二次函数的综合1.(2018•金华)如图,抛物线y=ax 2+bx (a <0)过点E (10,0),矩形ABCD 的边AB 在线段OE 上(点A 在点B 的左边),点C ,D 在抛物线上.设A (t ,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t 为何值时,矩形ABCD 的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD 不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G ,H ,且直线GH 平分矩形的面积时,求抛物线平移的距离.2.(2018•聊城)如图,已知抛物线y=ax 2+bx 与x 轴分别交于原点O 和点F (10,0),与对称轴l 交于点E (5, 5).矩形ABCD 的边AB 在x 轴正半轴上,且AB=1,边AD ,BC 与抛物线分别交于点M ,N .当矩形ABCD 沿x 轴正方向平移,点M ,N 位于对称轴l 的同侧时,连接MN ,此时,四边形ABNM的面积再接再厉小试牛刀记为S;点M,N位于对称轴l的两侧时,连接EM,EN,此时五边形ABNEM的面积记为S.将点A与点O重合的位置作为矩形ABCD平移的起点,设矩形ABCD平移的长度为t(0≤t≤5)(1)求出这条抛物线的表达式;(2)当t=0时,求S△OBN的值;(3)当矩形ABCD沿着x轴的正方向平移时,求S关于t(0<t≤5)的函数表达式,并求出t为何值时S有最大值,最大值是多少?3.(2018•盐城)如图①,在平面直角坐标系xOy中,抛物线y=ax2+bx+3经过点A(﹣1,0)、B(3,0)两点,且与y轴交于点C.(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于x轴,并沿x轴左右平移,直尺的左右两边所在的直线与抛物线相交于P、Q两点(点P在点Q的左侧),连接PQ,在线段PQ上方抛物线上有一动点D,连接DP、DQ.(1)若点P的横坐标为﹣,求△DPQ面积的最大值,并求此时点D的坐标;(Ⅱ)直尺在平移过程中,△DPQ面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.。
人教版初三数学:实际问题与二次函数—知识讲解(提高)
实际问题与二次函数—知识讲解(提高)1.能运用二次函数分析和解决简单的实际问题,培养分析问题、解决问题的能力和应用数学的意识.2.经历探索实际问题与二次函数的关系的过程,深刻理解二次函数是刻画现实世界的一个有效的数学模型.【要点梳理】要点一、列二次函数解应用题列二次函数解应用题与列整式方程解应用题的思路和方法是一致的,不同的是,学习了二次函数后,表示量与量的关系的代数式是含有两个变量的等式.对于应用题要注意以下步骤:(1)审清题意,弄清题中涉及哪些量,已知量有几个,已知量与变量之间的基本关系是什么,找出等量关系(即函数关系).(2)设出两个变量,注意分清自变量和因变量,同时还要注意所设变量的单位要准确.(3)列函数表达式,抓住题中含有等量关系的语句,将此语句抽象为含变量的等式,这就是二次函数.(4)按题目要求,结合二次函数的性质解答相应的问题。
(5)检验所得解是否符合实际:即是否为所提问题的答案.(6)写出答案.要点诠释:常见的问题:求最大(小)值(如求最大利润、最大面积、最小周长等)、涵洞、桥梁、抛物体、抛物线的模型问题等.解决这些实际问题关键是找等量关系,把实际问题转化为函数问题,列出相关的函数关系式.要点二、建立二次函数模型求解实际问题一般步骤:(1)恰当地建立直角坐标系;(2)将已知条件转化为点的坐标;(3)合理地设出所求函数关系式;(4)代入已知条件或点的坐标,求出关系式;(5)利用关系式求解问题.要点诠释:(1)利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义.(2)对于本节的学习,应由低到高处理好如下三个方面的问题:①首先必须了解二次函数的基本性质;②学会从实际问题中建立二次函数的模型;③借助二次函数的性质来解决实际问题.【典型例题】类型一、利用二次函数求实际问题中的最大(小)值1. (2016•黔东南州)凯里市某文具店某种型号的计算器每只进价12元,售价20元,多买优惠,优势方法是:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降价0.1元,例如:某人买18只计算器,于是每只降价0.1×(18﹣10)=0.8(元),因此所买的18只计算器都按每只19.2元的价格购买,但是每只计算器的最低售价为16元.(1)求一次至少购买多少只计算器,才能以最低价购买?(2)求写出该文具店一次销售x(x>10)只时,所获利润y(元)与x(只)之间的函数关系式,并写出自变量x的取值范围;(3)一天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的钱多,请你说明发生这一现象的原因;当10<x≤50时,为了获得最大利润,店家一次应卖多少只?这时的售价是多少?【思路点拨】(1)设一次购买x只,由于凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降低0.10元,而最低价为每只16元,因此得到20﹣0.1(x﹣10)=16,解方程即可求解;(2)由于根据(1)得到x≤50,又一次销售x(x>10)只,因此得到自变量x的取值范围,然后根据已知条件可以得到y与x的函数关系式;(3)首先把函数变为y=﹣0.1x2+9x=﹣0.1(x﹣45)2+202.5,然后可以得到函数的增减性,再结合已知条件即可解决问题.【答案与解析】解:(1)设一次购买x只,则20﹣0.1(x﹣10)=16,解得:x=50.答:一次至少买50只,才能以最低价购买;(2)当10<x≤50时,y=[20﹣0.1(x﹣10)﹣12]x=﹣0.1x2+9x,当x>50时,y=(16﹣12)x=4x;综上所述:y=;(3)y=﹣0.1x2+9x=﹣0.1(x﹣45)2+202.5,①当10<x≤45时,y随x的增大而增大,即当卖的只数越多时,利润更大.②当45<x≤50时,y随x的增大而减小,即当卖的只数越多时,利润变小.且当x=46时,y1=202.4,当x=50时,y2=200.y1>y2.即出现了卖46只赚的钱比卖50只赚的钱多的现象.当x=45时,最低售价为20﹣0.1(45﹣10)=16.5(元),此时利润最大.【点评】本题考查了二次函数的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在x=﹣时取得.举一反三:【高清课程名称:实际问题与二次函数高清ID 号:356777 关联的位置名称(播放点名称):例4】【变式】某服装公司试销一种成本为每件50元的T 恤衫,规定试销时的销售单价不低于成本价,又不高于每件70元,试销中销售量y (件)与销售单价x (元)的关系可以近似的看作一次函数(如图).(1)求y 与x 之间的函数关系式;(2)设公司获得的总利润为P 元,求P 与x 之间的函数关系式,并写出自变量x 的取值范围;根据题意判断:当x 取何值时,P 的值最大?最大值是多少?(总利润=总销售额-总成本)【答案】(1)设y 与x 的函数关系式为:y kx b =+(k≠0),∵函数图象经过点(60,400)和(70,300)∴⎩⎨⎧+=+=bk bk 7030060400 解得⎩⎨⎧=-=100010b k∴100010+-=x y(2))100010)(50(+--=x x P500001500102-+-=x x P (50≤x ≤70)∵752015002=--=-a b ,10-=a <0∴函数500001500102-+-=x x P 图象开口向下, 对称轴是直线x=75∵50≤x ≤70,此时y 随x 的增大而增大, ∴当x =70时,6000=最大值P .类型二、利用二次函数解决抛物线形建筑问题2.(2014秋•涿州市校级月考)某工厂大门是抛物线形水泥建筑,大门地面宽为4m ,顶部距离地面的高度为4.4m ,现有一辆满载货物的汽车欲通大门,其装货宽度为2.4m ,该车要想过此门,装货后 的最大高度应是多少m ?【思路点拨】因为校门是抛物线形,不妨将这一问题转化为二次函数进行研究,建立适当的直角坐标系,将已知数据转化为点的坐标,从而确定函数关系式,再根据关系式求高.【答案与解析】解:建立如图平面直角坐标系:设抛物线的解析式为y=ax2,由题意得:点A的坐标为(2,﹣4.4),∴﹣4.4=4a,解得:a=﹣1.1,∴抛物线的解析式为y=﹣1.1x2,当x=1.2时,y=﹣1.1×1.44=﹣1.584,∴线段OB的长为1.584米,∴BC=4.4﹣1.584=2.816米,∴装货后的最大高度为2.816米,故答案为:2.816米.【点评】利用二次函数解决抛物线形建筑问题一般步骤:(1)恰当地建立直角坐标系;(2)将已知条件转化为点的坐标;(3)合理地设出所求函数关系式;(4)代入已知条件或点的坐标,求出关系式;(5)利用关系式求解问题.类型三、利用二次函数求跳水、投篮等实际问题3. 如图所示,一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5 m时,达到最大高度3.5 m,然后准确落入篮筐,已知篮筐中心到地面的距离为3.05 m,若该运动员身高1.8 m,在这次跳投中,球在头顶上方0.25 m处出手,问:球出手时,他跳离地面的高度是多少?【答案与解析】如图所示,在直角坐标系中,点A(1.5,3.05)表示篮筐,点B(0,3.5)表示球运行的最大高度,点C表示球员篮球出手处,其横坐标为-2.5,设C 点的纵坐标为n ,过点C 、B 、A 所在的抛物线的解析式为2()y a x h k =-+,由于抛物线开口向下,则点B(0,3.5)为顶点坐标,∴ 23.5y ax =+. ∵ 抛物线23.5y ax =+经过点A(1.5,3.05), ∴ 3.05=a ·1.52+3.5, ∴ 15a =-. ∴ 抛物线解析式为21 3.55y x =-+. ∴ 21( 2.5) 3.55n =-⨯-+,∴ n =2.25.∴ 球出手时,球员跳离地面的高度为2.25-(1.8+0.25)=0.20(米).【点评】首先要建立适当的平面直角坐标系,构造函数模型,将已知数据转化为点的坐标,然后利用待定系数法求出函数解析式,再利用解析式求出抛物线上已知横坐标的点的纵坐标,结合已知条件,得到实际问题的解.类型四、利用二次函数求图形的边长、面积等问题4. 一条隧道的截面如图所示,它的上部是一个以AD 为直径的半圆O ,下部是一个矩形ABCD .(1)当AD =4米时,求隧道截面上部半圆O 的面积;(2)已知矩形ABCD 相邻两边之和为8米,半圆O 的半径为r 米.①求隧道截面的面积S(m)2关于半径r(m)的函数关系式(不要求写出r 的取值范围);②若2米≤CD ≤3米,利用函数图象求隧道截面的面积S 的最大值.(π取3.14,结果精确到0.1米) 【思路点拨】①根据几何图形的面积公式可求关于面积的函数解析式;②利用二次函数的有关性质,在自变量的取值范围内确定面积的最大值. 【答案与解析】(1)2S π=半圆(米2);(2)①∵ AD =2r ,AD+CD =8,∴ CD =8-AD =8-2r , ∴ 2221112(82)416222S r AD CD r r r r r πππ⎛⎫=+=+-=-+ ⎪⎝⎭. ②由①知,CD =8-2r ,又∵ 1.2米≤CD≤3米,∴ 2≤8-2r≤3,∴ 2.5≤r≤3.由①知,214162S r r π⎛⎫=-+ ⎪⎝⎭228642.4316 2.434 2.43 2.43r r ⎛⎫-+=--+ ⎪⎝⎭≈. ∵ -2.43<0,∴ 函数图象为开口向下的抛物线,函数图象对称轴83.32.43r =≈, 又2.5≤r≤3,由函数图象知,在对称轴左侧S 随r 的增大而增大,故当r =3时,S 有最大值.21431632S π⎛⎫=-⨯+⨯ ⎪⎝⎭最大1 3.14494826.12⎛⎫⨯-⨯+ ⎪⎝⎭≈≈(米2).【点评】解此类问题,一般先应用几何图形的面积公式,写出图形的面积与边长之间的关系,再用配方法或公式法求顶点坐标,结合二次函数性质与自变量的取值范围确定最大面积.举一反三:【高清课程名称:实际问题与二次函数高清ID 号:356777 关联的位置名称(播放点名称):例3】 【变式】(2015•泗洪县校级模拟)如图,矩形纸片ABCD ,AD=8,AB=10,点F 在AB 上,分别以AF 、FB 为边裁出的两个小正方形纸片面积和S 的取值范围是 .【答案】50≤S ≤68.【解析】解:设AF=x ,则BF=10﹣x ,由题意,得S=x 2+(10﹣x )2, S=2x 2﹣20x+100, S=2(x ﹣5)2+50. ∴a=2>0,∴x=5时,S 最小=50. ∵2≤x ≤8,当x=2时,S=68,当x=8时,S=68.∴50≤S≤68.故答案为:50≤S≤68.附录资料:弧长和扇形面积、圆锥的侧面展开图—知识讲解(基础)【学习目标】1.通过复习圆的周长、圆的面积公式,探索n°的圆心角所对的弧长和扇形面积的计算公式,并应用这些公式解决问题;2.了解圆锥母线的概念,理解圆锥侧面积计算公式,理解圆锥全面积的计算方法,会应用公式解决问题;3. 能准确计算组合图形的面积.【要点梳理】要点一、弧长公式半径为R的圆中360°的圆心角所对的弧长(圆的周长)公式:n°的圆心角所对的圆的弧长公式:(弧是圆的一部分)要点诠释:(1)对于弧长公式,关键是要理解1°的圆心角所对的弧长是圆周长的,即;(2)公式中的n表示1°圆心角的倍数,故n和180都不带单位,R为弧所在圆的半径;(3)弧长公式所涉及的三个量:弧长、圆心角度数、弧所在圆的半径,知道其中的两个量就可以求出第三个量.要点二、扇形面积公式1.扇形的定义由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.2.扇形面积公式半径为R的圆中360°的圆心角所对的扇形面积(圆面积)公式:n°的圆心角所对的扇形面积公式:要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量. (3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.要点三、圆锥的侧面积和全面积连接圆锥顶点和底面圆上任意一点的线段叫做圆锥的母线.圆锥的母线长为,底面半径为r ,侧面展开图中的扇形圆心角为n °,则圆锥的侧面积2360l S rl ππ=扇n =, 圆锥的全面积.要点诠释:扇形的半径就是圆锥的母线,扇形的弧长就是圆锥底面圆的周长.因此,要求圆锥的侧面积就是求展开图扇形面积,全面积是由侧面积和底面圆的面积组成的.【典型例题】类型一、弧长和扇形的有关计算1.如图(1),AB 切⊙O 于点B ,OA=23,AB=3,弦BC∥OA,则劣弧BC 的弧长为( ). A .33π B .32πC .πD .32π图(1) 【答案】A.【解析】连结OB 、OC ,如图(2)则0OBA ∠︒=9,OB=3,0A ∠︒=3,0AOB ∠︒=6, 由弦BC ∥OA 得60OBC AOB ∠∠=︒=, 所以△OBC 为等边三角形,0BOC ∠︒=6. 则劣弧BC 的弧长为6033=1803ππ,故选A. 图(2) 【总结升华】主要考查弧长公式:.CBAO举一反三:【变式】制作弯形管道时,需要先按中心线计算“展直长度”再下料,•试计算如图所示的管道的展直长度,即的长(结果精确到0.1mm)【答案】R=40mm,n=110∴的长==≈76.8(mm)因此,管道的展直长度约为76.8mm.【高清ID号:359387 高清课程名称:弧长扇形圆柱圆锥关联的位置名称(播放点名称):经典例题1-2】2.如图,⊙O的半径等于1,弦AB和半径OC互相平分于点M.求扇形OACB的面积(结果保留π)【答案与解析】∵弦AB和半径OC互相平分,∴OC⊥AB,OM=MC=OC=OA.∴∠B=∠A=30°,∴∠AOB=120°∴S扇形=.【总结升华】运用了垂径定理的推论,考查扇形面积计算公式.举一反三:【高清ID号:359387 高清课程名称:弧长扇形圆柱圆锥关联的位置名称(播放点名称):经典例题1-2】【变式】如图(1),在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于E,交AC于F,点P是⊙A上的一点,且∠EPF=40°,则图中阴影部分的面积是().A.449-π B.849-π C.489-π D.889-πAEB F P图(1)【答案】连结AD,则AD⊥BC,△ABC的面积是:BC•AD=×4×2=4,∠A=2∠EPF=80°.则扇形EAF的面积是:2 8028=. 3609ππ⨯故阴影部分的面积=△ABC的面积-扇形EAF的面积=84-9π.图(2)故选B.类型二、圆锥面积的计算3.(2014秋•广东期末)如图,一个圆锥的高为cm,侧面展开图是半圆,求:(1)圆锥的底面半径r与母线R之比;(2)圆锥的全面积.【思路点拨】(1)设出圆锥的底面半径及圆锥的母线长,利用底面周长等于圆锥的弧长得到圆锥的母线与底面的半径之比即可;(2)首先求得圆锥的底面半径和圆锥的母线长,然后利用圆锥的侧面积的计算方法求得其侧面积即可.【答案与解析】解:(1)由题意可知∴,R=2r(3分)r:R=r:2r=1:2;(2)在Rt△AOC中,∵R2=r2+h2∴,4r2=r2+27r2=9,r=±3∵r>0∴r=3,R=6.∴S侧=πRr=18π(cm2)(cm2)∴S全=S侧+S底=18π+9π=27π(cm2).【总结升华】本题考查了圆锥的计算,解题的关键是牢记有关的公式.类型三、组合图形面积的计算4.(2015•槐荫区三模)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,∠CDB=30°,CD=2,求图中阴影部分的面积.【答案与解析】解:∵AB是⊙O的直径,弦CD⊥AB,∴CE=.∵∠CDB=30°,∴∠COE=60°,在Rt△OEC中,OC==2,∵CE=DE,∠COE=∠DBE=60°∴Rt△COE≌Rt△DBE,∴S阴影=S扇形OBC=π×OC2=π×4=π.【总结升华】本题考查了垂径定理,扇形的面积等,解此题的关键是求出扇形和三角形的面积.。
著名机构九年级数学秋季班讲义第8讲:二次函数综合应用
二次函数的综合应用主要包括以下几个方面:(1)二次函数与经济问题,主要用于求解利润最大化;(2)二次函数与面积问题,涉及到实际图形面积关系式的表达、面积最值的求解等;(3)拟二次函数图像问题,包括拱桥问题,物体的运动轨迹问题等,可以利用二次函数的图像性质求解相关的问题;(4)二次函数与一次函数、反比例函数、一元二次方程和不等式等的代数综合;(5)二次函数与相似三角形、二次函数与动点、二次函数与圆等的几何综合.二次函数综合应用主要考察学生灵活运用二次函数解析式及图像性质解决实际问题、代数问题和几何问题的综合能力,难点在于不同知识点的融会贯通,是最近中考压轴题主要的考察题型之一.二次函数综合应用内容分析知识结构1、 利润问题求解二次函数与利润最大化的问题,主要是根据题意列出相关的二次函数解析式,再通过配方的方式求解最大值.这是一种实际应用的题型,需根据自变量的实际意义确定函数的定义域,在求解最大值时,也需注意自变量的取值范围.【例1】 进入夏季后,某电器商场为减少库存,对电风扇连续进行两次降价.若设平均每次降价的百分率为x ,降价后的价格为y 元,原价为a 元,则y 与x 之间的函数关系为( ) A .()21y a x =-B .()21y a x =-C .()21y a x =- D .()21y a x =-【例2】 某化工材料经销公司购进一种化工原料7吨,价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于每千克30元.经市场调查发现:单价为70元时,日均销售60千克;单价每降低1元,日均多售出2千克.在销售过程中,每天还要支付其他费用450元.设销售单价为x 元,日均获利为y 元.(1)求y 与x 的函数关系式,写出x 的取值范围.(2)若商店期望日均获利不少于1800元,则单价应定为多少? (3)在满足商店期望获利条件下,若要尽早销售完毕,则应如何定价?模块一:利润问题知识精讲例题解析ABCDO xy4260120【例3】某企业生产并销售某种产品,假设销售量与产量相等.如图,折线ABD、线段CD分别表示该产品每千克的生产成本1y(单位:元)、销售价2y(单位:元)与产量x(单位:kg)之间的函数关系.(1)解释图中点D的横坐标、纵坐标的实际意义;(2)求线段AB所表示的1y与x之间的函数解析式;(3)当该产品的产量为多少时,获得的利润最大?最大利润是多少?【例4】为了改善城市环境,某市规划在市中心修建一个市民休闲广场.设计如图所示,中间为一个矩形,分别以矩形的四条边为直径向外作半圆,要求整个广场的外围周长为628米.准备在中间的矩形区域内种植花木和铺设鹅卵石等,平均每平方米造价为428元;在四个半圆区域内种植草坪及铺设花岗岩,平均每平方米造价为400元.(π取3.14)(1)试写出矩形相邻两边长x(米)、y(米)满足的函数关系式;(2)设该项工程总造价为W元,求W与矩形一边长x(米)的函数关系式;(3)市政府预算投入1千万元,问能否完成该工程的建设任务?若能,请列出设计方案,若不能,请说明理由;(4)根据题意,显然中间的矩形区域面积越小,总造价越低.考虑到整体美观,要求矩形尽量接近黄金矩形0.618≈).结果通过企业募捐,又增加了部分资金,工程结束后核算,总造价为1064.82万元.问建成后矩形区域的长和宽各是多少?O tQ15010050 150 250【例5】某蔬菜基地种植西红柿,由历年市场行情得知,从2月1日起的300天内,西红柿市场售价P(元/100 kg)与上市时间t(2月1日开始的天数)有函数关系:()()30002002300200300t tPt t⎧-≤≤⎪=⎨-<≤⎪⎩,西红柿的种植成本Q(元/100 kg)与上市时间t也存在如图所示的二次函数关系式.设市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?【例6】四川汶川大地震发生后,某工厂A车间接到生产一批帐篷的紧急任务,要求不超过12天完成.已知每顶帐篷的成本价为800元,该车间平时每天能生产车间20顶.为了加快进度,车间组织工人加班,挖掘潜力,生产效率得到了提高.这样,第一天生产了22顶,以后每天生产的帐篷都比前一天多2顶.由于机器损耗能原因,当每天生产的帐篷数达到30顶后,每增加一顶帐篷,当天生产的所有帐篷,平均每顶的成本就增加20元.设第x天生产的帐篷为y顶.(1)直接写出y与x之间的函数关系式,并写出自变量x的取值范围;(2)若这批帐篷的订购价格为没顶1200元,该车间决定把获得最高利润的那一天的全部利润捐献给灾区.设该车间每天的利润为W元,试求出W与x之间的函数关系式,并求出该车间捐献给灾区多少钱?【例7】 某产品每件成本50元,出售价70元,2014年销售量5万件.为了进一步拓展销路,厂家投入一定资金做广告.2015年和2016年分别支出广告费用10万元和20万元,年销售量分别是做广告前的1.5倍和1.8倍.设做广告后年销售量与原销售量的比值y 是关于广告费x (万元)的二次函数. (1)求y 与x 的函数关系式;(2)设年销售总额减去成本和广告费后所得的利润为S 万元,求S 与x 的函数关系式;(3)你认为厂家是否应该继续投入大量广告费,以求年利润随广告费投入的增加而无限增加?门门门ABCO xy1、面积问题求解二次函数与面积结合的问题时,基本方法上与利润最大化是相同的,也是通过配方的方式求解相关面积的最值,当然也需要注意自变量的取值范围.而与利润最大化问题不同的是,面积问题中可能会涉及到三角形、四边形或者圆等图形,也可能会出现动点与面积相结合的类型,变化较多.【例8】二次函数2y=的图像如图所示,点O为坐标原点,点A在y轴的正半轴上,点B、C在二次函数的图像上,四边形OBAC为菱形,且120OBA∠=︒,则菱形OBAC的面积为______.【例9】一边靠长为15米的围墙,其他三边用总长40米的篱笆围成一个矩形花圃,如何围法,可使花圃的面积最大?【例10】某农场拟建两间矩形饲养室,一面靠现有墙壁(墙壁足够长),中间用一道墙隔开,并在如图所示的三处各留1 m宽的门.已知计划中的材料可建墙体(不包括门)总长为27 m,则能建成的饲养室的面积最大为______m2.模块二:面积问题知识精讲例题解析A BCDEFGHPxy【例11】为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80米的围网在水库中围成了如图所示的三块矩形区域,而且这三块矩形区域的面积相等,设BC的长度是x米,矩形区域ABCD的面积为y平方米.(1)求y与x之间的函数解析式,并注明自变量x的取值范围;(2)当x取何值时,y有最大值?最大值是多少?【例12】如图,某市在城建规划中,准备在市中心一块长方形空地ABCD上建一块长方形绿化区域.因为空地一角有一个文物保护设施,所以规划时不能超越线段EF,进入AEF内.已知长方形的长AB = 200米,宽AD = 160米,AE = 60米,AF = 40米.如何规划能使这个绿化区的面积最大?A BCDEFGH岸堤【例13】 如图1,为美化校园,某校计划在一块长为60米,宽为40米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为a 米.(1)用含a 的式子表示花圃的面积;(2)如果通道所占面积是整个长方形空地面积的38,求出此时通道的宽;(3)已知某园林公司修建通道、花圃的造价1y (元)、2y (元)与修建面积x (平方米)之间的函数关系如图2所示,如果学校决定由该公司承建此项目,并要求修建的通道的宽度不少于2米且不超过10米,那么当通道的宽为多少时,修建的通道和花圃的总造价最低,最低总造价为多少元?通道1200 4800062000800 xy图1图2D EFONMxy1、 拟二次函数图像问题拟二次函数函数图像问题的解题,依赖于合理的平面直角坐标系的建立,继而在平面直角坐标系中,利用二次函数的图像性质解答相关问题.主要包括拱桥问题、运行轨迹问题等.【例14】 一个足球从地面向上踢出,它距地面的高度h (m )与足球被踢出后经过的时间t (s )之间具有函数关系:219.6h at t =+,已知足球被踢出后经过4 s 落地,则足球距地面的最大高度是______m .【例15】 如图,三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小都相同.正常水位时,大孔水面宽度AB = 20米,顶点M 距水面6米(即MO = 6米),小孔顶点N 距水面4.5米(即NC = 4.5米).当水位上涨刚好淹没小孔时,求此时大孔的水面宽度模块三:拟二次函数图像问题知识精讲例题解析xyAB COxyO3米3米4米4米【例16】学校的围墙上端由一排相同的凹拱形栅栏组成,如图所示,已知拱形为抛物线的一部分,栅栏的跨径AB间,每隔相同的间距0.3米用1根立柱加固,拱高OC 为0.6米.(1)建立如图所示的平面直角坐标系,则抛物线的解析式为_________________;(2)一段这样的栅栏所需立柱的总长度(精确到0.1米)为______________.【例17】某校初三年级的一场篮球比赛中,队员甲正在投篮,若球出手时离地面209米,与篮圈中心的水平距离为7米.设篮球运行的路线为抛物线,当球出手后水平距离为4米时到达最大高度4米,已知篮圈离地面3米.(1)建立如图所示的平面直角坐标系,试问此球能否准确投中?(2)若对方队员乙再甲前面1米处跳起盖帽拦截,已知乙的最大摸高为3.1米,那么他能否拦截成功?Oxy3 1 10池边跳台支柱 【例18】 跳水运动员在空中运动时,身体的重心所经过的路线是一条抛物线.在某项10米跳台的一个规定动作中,正常情况下运动员在跳台边缘向上跃起,重心上升1米到达最高点,这时跃出水平距离0.4米,然后下落.在距离水面5米处完成规定的翻腾动作,并调整好入水姿势.(1)建立如图所示的坐标系,求出抛物线解析式(图中数值的单位是米) (2)运动员入水时距池边多少米(精确到0.1米)?(3)运动员在空中调整好入水姿势时,与水池边的水平距离是多少米(精确到0.1米)?A【例19】 如图,某乒乓球馆使用发球机进行辅助训练,出球口在桌面中线端点A 处的正上方,假设每次发出的乒乓球的路线固定不变,且落在中线上.在乒乓球运行时,设乒乓球与端点A 的水平距离为x (m ),与桌面的高度为y (m ),运行时间(1)当t 为何值时,乒乓球达到最大高度?(2)乒乓球落在桌面时,与端点A 的水平距离是多少? (3)乒乓球落在桌面上弹起后,y 与x 满足()23y a x k =-+.○1用含a 的代数式表示k ; ○2球网高度为0.14 m ,球桌长(1.42⨯)m .若球弹起后,恰好有唯一的击球点,可以将球沿直线扣杀到点A ,求a 的值.xy xy x yxy1、 代数综合二次函数与代数的综合涉及到二次函数与一次函数、反比例函数在同一直角坐标系中的图像性质问题、交点问题等.难点是函数思想与方程思想、不等式思想的相互转化和结合.【例20】 一次函数y ax b =+与二次函数2y ax bx =-在同一坐标系中的图像可能是( ) A . B . C . D .【例21】 利用函数图像,求解不等式2440x x -+>.模块四:代数综合知识精讲例题解析【例22】 已知关于x 的方程()231230mx m x m --+-=.(1)当m 取何整数值时,关于x 的方程()231230mx m x m --+-=的根都是整数?(2)若抛物线()23123y mx m x m =--+-向左平移一个单位后,过反比例函数ky x=(0k ≠)上的一点(1-,3). ○1求抛物线()23123y mx m x m =--+-的解析式; ○2利用函数图像求不等式0kkx x->的解.【例23】 已知一次函数2y x =-与二次函数2y x kx k =++.(1)若两个函数图像交点的横坐标的平方和等于9,求二次函数解析式; (2)若二次函数图像与x 轴的两个交点位于一次函数图像与x 轴交点的两侧,求k 的取值范围;(3)k 能否取值,使得y 轴右侧抛物线总在直线的下方?若能够,求出k 的取值范围;若不能,试说明理由.【例24】 已知抛物线2y x px q =++上有一点M (0x ,0y )位于x 轴下方.(1)求证:此抛物线与x 轴有两个交点;(2)设此抛物线与x 轴交点为A (1x ,0),B (2x ,0),且,求证:102x x x <<; (3)当M 的坐标为(1,2-)时,求整数1x ,2x .【例25】 已知关于x 的一元二次方程()()21210m x m x -+--=(m 为实数).(1)若方程有两个不相等的实数根,求m 的取值范围;(2)在(1)的条件下,求证:无论m 取何值,抛物线()()2121y m x m x =-+--总过x 轴上的一个固定点;(3)若m 是整数,且关于x 的一元二次方程()()21210m x m x -+--=有两个不相等的整数根,把抛物线()()21210m x m x -+--=向右平移3个单位长度,求平移后的解析式.ABCOxyx yA B CDO1、 几何综合二次函数与几何的综合,主要是将几何图形与二次函数的图像相结合,求解面积问题、角相等问题、相似问题等.难点是数形结合的思想,这也是中考要求的重点和难点.【例26】 如图,在平面直角坐标系中,点A 在抛物线222y x x =-+上运动,过点A 作AC x ⊥轴于点C ,以AC 为对角线作矩形ABCD ,连接BD ,则对角线BD 长的最小值为_____.【例27】 如图所示,抛物线2122y x bx =-++交x 轴于A 、B 两点(点B 在点A 的左侧),交y 轴于点C ,其对称轴为32x =,O 为坐标原点. (1)求A 、B 、C 三点的坐标;(2)求证:ACB ∠是直角.模块五:几何综合知识精讲例题解析xyOPN MAB A B COPl MQxy【例28】 如图,一条直线过点(0,4),且与抛物线214y x =交于A 、B 两点,其中点A 的横坐标是2-.(1)求这条直线的函数解析式及点B 的坐标;(2)在x 轴上是否存在点C ,使得ABC ∆是直角三角形?若存在,求出点C 的坐标;若不存在,请说明理由;(3)过线段AB 上一点P ,作PM // x 轴,交抛物线于点M ,点M 在第一象限,点N 的坐标为(0,1),当点M 的横坐标为何值时,MN + 3MP 的长度最大?最大值是多少?【例29】 已知抛物线2221y x mx m m =-++-(m 是常数)的顶点为P ,直线l :1y x =-.(1)求证:点P 在直线l 上;(2)当3m =-时,抛物线与x 轴交于A 、B 两点,与y 轴交于点C ,与直线l 的另一个交点为Q ,M 是x 轴下方抛物线上的一点,ACM PAQ ∠=∠(如图),求点M 的坐标;(3)若以抛物线和直线l 的两个交点及坐标原点为顶点的三角形是等腰三角形,请直接写出所有符合条件的m 的值.xy xyOPQOPQABABT【例30】 如图,在平面直角坐标系xOy 中,将抛物线2y x =的对称轴绕着点P (0,2)顺时针旋转45°后与该抛物线交于A 、B 两点,Q 是抛物线上一点. (1)求直线AB 的函数解析式;(2)如图1,若点Q 在直线AB 的下方,求点Q 到直线AB 的距离的最大值; (3)如图2,若点Q 在y 轴左侧,且点T (0,t )(t < 2)是射线PO 上一点,当以P 、B 、Q 为顶点的三角形与PAT ∆相似时,求所有满足条件的t 的值.ABC DABODx yxyx y x y xy【习题1】河北省赵县的赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数解析式为,当水面离桥拱顶的高度DO 是4米是,这时水面的宽度AB 为( )米A .20-B .10C .20D .10-【习题2】函数2y ax a =+与ay x =(0a ≠)在同一坐标系中的图像可能是( ) A . B . C . D .【习题3】如图,假设篱笆(虚线部分)的长度为16米,则所围成的矩形ABCD 的最大面积为( )平方米A .60B .63C .64D .66【习题4】利用函数图像,解不等式230x x +-≤.随堂检测A Oxy【习题5】某水果批发市场经销一种水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)当每千克涨价为多少元时,每天的盈利最多?最多为多少?(2)若商场只要求保证每天的盈利为6000元,同时又可使顾客得到实惠,每千克应涨价多少元?【习题6】如图,某足球运动员站在点O 处练习射门,将足球从离地面0.5 m 的A处正对球门踢出(点A 在y 轴上),足球的飞行高度y (单位:m )与飞行时间t (单位:s )之间满足函数关系式:25y at t c =++,已知足球飞行0.8 s 时,离地面的高度为3.5 m .(1)足球飞行的时间是多少时,足球离地面最高?最大高度为多少? (2)若足球飞行的水平距离x (单位:m )与飞行时间t (单位:s )之间具有函数关系式x = 10t ,已知球门的高度为2.44 m ,如果该运动员正对球门射门时,离球门的水平距离为28 m ,那么他能否将球直接射入球门?xyOPAOA BMxy【习题7】如图所示是二次函数()2y x m k =++的图像,其顶点坐标为M (1,4-).(1)求出图像与x 轴的交点A 、B 的坐标; (2)在二次函数的图像上是否存在点P ,使54PAB MAB S S ∆∆=,若存在,求出点P 的坐标,若不存在,请说明理由.【习题8】如图,一小球从斜坡点O 处抛出,球的抛出路线可以用二次函数24y x x =-+的图像来刻画,斜坡可以用一次函数12y x =的图像来刻画.(1)请用配方法求二次函数图像的最高点P 的坐标; (2)小球的落点是A ,求点A 的坐标;(3)连接抛物线的最高点P 与点O 、A 得POA ∆,求POA ∆的面积;(4)在OA 上方的抛物线上存在一点M (点M 与点P 不重合),MOA ∆的面积等于POA ∆的面积,请直接写出点M 的坐标.ABCDOPxy【习题9】已知抛物线2y ax bx c=++(0a≠)的顶点坐标为Q(2,1-),且与y 轴交于点C(0,3),与x轴交于A、B两点(点A在点B的右侧),点P是该抛物线上一动点,从点C沿抛物线向点A运动(P与A不重合),过点P作PD // y轴,交AC于点D.(1)求该抛物线的函数解析式;(2)当ADP∆是直角三角形时,求点P的坐标;(3)在问题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标,若不存在,请说明理由.A BCD EOxyA BCD EOxyA BCD EOxyP NM图(a )图(b )图(c )【习题10】 如图(a ),抛物线()263y a x =+-与x 轴相交于A 、B 两点,与y 轴相交于点C ,点D 为抛物线的顶点,直线DE x ⊥轴,垂足为E ,23AE DE =. (1)求这个抛物线的解析式;(2)P 为直线DE 上的一点,且PAC ∆是以PC 为斜边的直角三角形,见图(b ),求tan PCA ∠的值;(3)如图(c )所示,M 为抛物线上的一动点,过点M 作直线MN DM ⊥,交直线DE 于点N ,当M 点在抛物线的第二象限的部分上运动时,是否存在使点E 三等分线段DN 的情况?若存在,请求出符合条件的所有的点M 的坐标;若不存在,请说明理由.A BCDO x yAB COP N Mxy S tS t S t St【作业1】如图是某拱形大桥的示意图,桥拱与桥面的交点为O 、B ,以点O 为原点,水平直线OB 为x 轴,建立平面直角坐标系,桥的拱形可近似看成抛物线()218016400y x =--+,桥拱与桥墩AC 的交点C 恰好在水面,有ACx ⊥轴,若OA = 10米,则高度AC 为()A .91640米 B.174米C .71640米D .154米【作业2】 如图,有一块边长为6 cm 的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是( )cm 2A B C D【作业3】如图,已知A 、B 是反比例函数(k > 0,x > 0)图像上的两点,BC // x 轴,交y 轴与点C ,动点P 从坐标原点O 出发,沿O →A →B →C 匀速运动,终点为C .过P 作PM x ⊥轴,PN y ⊥轴,垂足分别为M 、N .设矩形OMPN 的面积为S ,点P 运动时间为t ,则S 与t 的函数图像大致为( )A .B .C .D .课后作业xy A B CDO EO ABMxy【作业4】如图,顶点M 在y 轴上的抛物线与直线y = x + 1相交于A 、B 两点,且点A 在x 轴上,点B 的横坐标为2,连接AM 、BM . (1)求抛物线的函数解析式;(2)判断ABM ∆的形状,并说明理由.【作业5】如图,隧道的截面由抛物线和长方形构成,长方形的长是12米,宽是4米.按照图中所示的直角坐标系,抛物线可以用216y x bx c =-++表示,且抛物线上的点C 到墙面OB 的水平距离为3米,到地面OA 的距离为172米. (1)求该抛物线的函数解析式,并计算出拱顶D 到地面OA 的距离; (2)一辆货车载一长方体集装箱后高为6米,宽为4米,如果隧道内设双向车道,那么这辆货车能否安全通过?(3)在抛物线形拱璧需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8米,那么两排灯的水平距离最小是多少?xyOABCD【作业6】某商场在销售旺季临近时,某品牌的童装销售价格呈上升趋势,假如这种童装开始时售价为每件20元,并且每周涨价2元,从第6周开始,保持每件30元的稳定价格销售,直到11周结束,该童装不再销售. (1)请建立销售价格y (元)与周次x 之间的函数关系式;(2)若该品牌童装于进货当周售完,且这种童装每件进价z (元)与周次x 之间的关系为()218128z x =--+,111x ≤≤,且x 为整数,那么该品牌童装在第几周售出后,每件获得的利润最大?最大利润为多少?【作业7】如图,正比例函数和反比例函数的图像都经过点A (3,3),把直线OA向下平移后,与反比例函数的图像交于点B (6,m ),与x 轴、y 轴分别交于C 、D 两点. (1)求m 的值;(2)求过A 、B 、D 三点的抛物线的解析式;(3)在抛物线上是否另外存在点E ,使四边形OECD 与四边形OACD 的面积相等?若存在,求出点E 的坐标;若不存在,请说明理由.xABCOy【作业8】如图所示,在平面直角坐标系中,抛物线2y x bx c =++与x 轴交于A 、B两点,C 为抛物线上一点,且直线AC 的解析式为2y mx m =+(0m ≠),45CAB ∠=︒,tan 2COB ∠=.(1)求A 、C 的坐标;(2)求直线AC 和抛物线的解析式;(3)在抛物线上是否存在点D ,使得四边形ABCD 为梯形?若存在,请求出点D 的坐标;若不存在,请说明理由.【作业9】已知关于x 的二次函数()22422y x k x k =+-+-的顶点在y 轴的正半轴上.(1)求此抛物线的解析式;(2)设A 是y 轴右侧抛物线上的一个动点,过点A 作AB 垂直于x 轴于点B ,过点A 作x 轴的平行线交抛物线于点D ,再过点D 作DC 垂直于x 轴于点C ,可得到矩形ABCD (B 、C 两点在x 轴上).设矩形ABCD 的周长为l ,点A 的横坐标为m ,试求l 关于m 的函数关系式,并写出m 的取值范围;(3)当点A 在y 轴右侧的抛物线上运动时,矩形ABCD 能否成为正方形,若能,xyOPMQAB C D【作业10】 如图,已知抛物线()21y a x =-+0a ≠)经过点A (2-,0),抛物线的顶点为D ,过点O 作射线OM // AD ,过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连接BC . (1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为t (s ).问当t 为何值是,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形?(3)若OC = OB ,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时,另一个点也随之停止运动.设它们的运动时间为k (s ),连接PQ ,四边形BCPQ 的面积为S ,求S 关于k 的函数关系式,并写出定义域.。
中考数学总复习 二次函数的应用(1)——实际问题中的二次函数模型
求利润最大
函数为y
ቤተ መጻሕፍቲ ባይዱ
卖出的总件数=300-10x
确定利润的关系式
确定x 考虑x的取值范围
总利y润=(=每60件+x的-4利0)润(x卖30出0-1的0x总)件数
每每件件的的利利润润==售60价+x-进-4价0
设每件涨价x元
售价=(60+x)元 少卖10x件
300-10 x 0 x 0
0 x 30
例题讲解
y
O 11
MD N x
A(-2,-2)
B(2,-2) C
-3
归纳提升
1. 结合题中已知条件,根据实际问题的数量关系和 图像,把问题转化为二次函数模形进行解决;
2.抓住题中关键信息和隐含信息。
实际问题中的二次函数应用
实际问题
结合条件和图像 数量关系
确定解题方法 抓住关键信息 转化为函数问题 隐含信息
解:以抛物线的顶点为原点建立如图所示的坐标系
由题意可知:A
设抛物线的解析式为:y = a
∴ =a ×
∴ a=
∴这个二次函数的解析式为:y =
当 x = 1 时,y =
∴=
则 CD = OC OD =
=
所以水面宽由 4 米上涨到水面宽 2 米时水面上涨的高度为 1.5 米 此时需时间为 1.5÷0.5=3 小时 故小红的爸爸务必在下午 6 点之前经过这座拱桥。
初中数学重难点微课
二次函数的应用(1)
——实际问题中的二次函数模型
课程出品:蒋鼎年工作室
课程设计: 徐碧珊 课程讲解: 祝继芳
广东省教育技术中心 监制
知识回顾 重点讲解 难点突破 归纳提升
知识回顾
二次函数在实际生活中的应用及建模应用
二次函数的建模知识归纳:求最值的问题的方法归纳起来有以下几点: 1.运用配方法求最值;2.构造一元二次方程,在方程有解的条件下,利用判别式求最值; 3.建立函数模型求最值;4.利用基本不等式或不等分析法求最值. 一、利用二次函数解决几何面积最大问题1、如图1,用长为18米的篱笆(虚线部分)和两面墙围成矩形苗圃。
(1)设矩形的一边长为x (米),面积为y (平方米),求y 关于x 的函数关系式; (2)当x 为何值时,所围成的苗圃面积最大?最大面积是多少?解:(1)设矩形的长为x (米),则宽为(18- x )(米), 根据题意,得:x x x x y 18)18(2+-=-=; 又∵180,0180<x<x >x >∴⎩⎨⎧- (自变量x 的取值范围是关键,在几何类题型中,经常采用的办法是: 利用含有自变量的加减代数式的边长来确定自变量的取值范围,例如上式中,18-x ,就是含有自变量的加减代数式,考虑到18-x 是边长,所以边长应该>0,但边长最长不能超过18,于是有0<18-x <18,0<x <18)(2)∵x x x x y 18)18(2+-=-=中,a= -1<0,∴y 有最大值,即当9)1(2182=-⨯-=-=a b x 时, 81)1(41804422max =-⨯-=-=ab ac y 故当x=9米时,苗圃的面积最大,最大面积为81平方米。
点评:在回答问题实际时,一定注意不要遗漏了单位。
2、如图2,用长为50米的篱笆围成一个养鸡场,养鸡场的一面靠墙。
问如何围,才能使养鸡场的面积最大?解:设养鸡场的长为x (米),面积为y (平方米),则宽为(250x-)(米),根据题意,得:x x x x y 2521)250(2+-=-=; 又∵500,02500<x<>x x >∴⎪⎩⎪⎨⎧-∵x x x x y 2521)250(2+-=-=中,a=21-<0,∴y 有最大值,即当25)21(2252=-⨯-=-=abx 时,2625)21(42504422max=-⨯-=-=a b ac y故当x=25米时,养鸡场的面积最大,养鸡场最大面积为2625平方米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.将一元二次方程3x 2+1=6x 化为一般形式后,二次项系数和一次项系数分别为()A .3,-6B .3,6C .3,1D .3x 2,-6x2.已知x =1是一元二次方程ax 2+bx +c -3=0的解,则a +b +c 的值为()A .-1B .1C .3D .-33.方程x 2+3=2x 的根的情况为()A .有两个不相等的实数根B .有两个相等的实数根C .有一个实数根D .没有实数根4.(2010·日照)如果关于x 的一元二次方程x 2+px +q =0的两根分别为x 1=2,x 2=1,那么p ,q 的值分别是()A .-3,2B .3,-2C .2,-3D .2,35.(2008·兰州)根据下列表格中二次函数y =ax 2+bx +c 的自变量x 与函数值y 的对应值,判断方程ax 2+bx +c =0(a ≠0,a ,b ,c 为常数)的一个解x 的范围是()D .6.19<x <6.206.(2012·兰州)抛物线y =(x +2)2-3可以由抛物线y =x 2平移得到,则下列平移过程正确的是()A .先向左平移2个单位,再向上平移3个单位B .先向左平移2个单位,再向下平移3个单位C .先向右平移2个单位,再向下平移3个单位D .先向右平移2个单位,再向上平移3个单位7.为迎接“2011李娜和朋友们国际网球精英赛”,某款桑普拉斯网球包原价168元,连续两次降价a %后售价为128元.下列所列方程中正确的是()A .168(1+a %)2=128B .168(1-a 2%)=128C .168(1-2a %)=128D .168(1-a %)2=1288.当ab >0时,y =ax 2与y =ax +b 的图象大致是()9.已知抛物线y =ax 2+bx +c (0<2a <b ),点A (1,y A )、B (0,y B )、C (-1,y C )在该抛物线上,下列正确的是()A .yB <yC <y A B .y B <y A <y C C .y A <y B <y CD .y C <y B <y A08二次函数应用——实际建模模块一课前检测这类问题对于解析式的确定通常采用顶点式:1.球类问题分为篮球问题、足球问题及羽毛球问题。
篮球问题会考察“球是否入篮”,即看篮筐所在点是否在抛物线上;“足球是否进球门”即看球到达球门所在位置时纵坐标是比球门高还是低;羽毛球涉及过网越界问题,即计算在过网位置纵坐标比网高还是低,越界考察在界限位置纵坐标是正数还是负数。
2.跳水问题考察的是动作是否在规定范围内规范,同样考察在指定位置的纵坐标与限定高度的大小比较。
3.喷泉问题考察的比较多的是圆形水池的半径,需要计算抛物线与水池水平面的交点坐标。
【例1】如图,羽毛球运动员甲站在点O 处练习发球,将球从O 点正上方23m 的P 处发出,把球勘察点,其运行路线是抛物线的一部分,当球运动到最高点时,其高度为617m ,离甲站立地点O 的水平距离为4m ,球网BA 离O 点的水平距离为5m ,以O 为坐标原点建立如图所示的坐标系,乙站立地点C 的坐标为(m ,0)①求出抛物线的解析式;(不写自变量的取值范围)②求排球落地点N 离球网的水平距离;③乙原地起跳可接球的最大高度为49米,若乙因为接球高度不够而失球,求m的取值范围.知识点睛典型例题模块二球类、跳水、喷泉问题(2)某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示坐标系下经过原点O的一条抛物线(图中标出的数据为已知条件).在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面323米,入水处距池边的距离为4米,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误.①求这条抛物线的解析式.②在某次试跳中,测得运动员在空中的运动路线是①中的抛物线,且运动员在空中完成规定的翻腾动作并调整好入水姿势时,距池边的水平距离为3.6米,问此次跳水会不会失误?并通过计算说明理由.(3)如图所示,公园要建造圆形的喷水池,水池中央垂直于水面处安装一个柱子OA,O 恰在水面中心,OA=1.25m,由柱子顶端A处喷头向外喷水,水流在各个方向沿形状相同的抛物线落下,为使水流形状较为漂亮,要求设计成水流在OA距离为1m处达到距水面最大高度2.25m.①若不计其他因素,那么水池的半径至少要多少米,才能使喷出的水流不能落到池外?②若水流喷出的抛物线形状与①相同,水池的半径为3.5m,要使水流不落到池外,此时水流最大高度应达多少米?20m,与篮【巩固】(1)一场篮球赛中,球员甲跳起投篮,已知球在A处出手时离地面9筐中心C的水平距离为7m,当球运行的水平距离是4m时,达到最大高度4m(B处),篮筐距地面3m,篮球运行的路线为抛物线(如图所示).①建立适当的平面直角坐标系,并求出抛物线的解析式;②判断此球能否投中?(2)(2015•武汉模拟)如图,小区中央公园要修建一个圆形的喷水池,在水池中央垂直于地面安装一个柱子OA,O恰好在水面的中心,OA=1.25米.由柱子顶端A处的喷头向外喷水,水流在各个方向沿形状相同的抛物线路线落下,为使水流形状较为漂亮,要求设计水流在离OA距离为1米处达到距水面的最大高度2.25米.①建立适当的平面直角坐标系,使A点的坐标为(0,1.25),水流的最高点的坐标为(1,2.25),求水流的抛物线路线在第一象限内对应的函数关系式(不要求写取值范围);②若不计其他因素,则水池的半径至少要多少米,才能使喷出的水流不至于落到池外?③若水流喷出的抛物线形状与①相同,水池半径为3.5米,要使水流不落到池外,此时水流距水面的最大高度就达到多少米?隧道、过桥问题通常采用的是y=ax 2+c 的形式,通常考察的是车或者船是否能够通过,考察的是车或者船的高度比车或者船边缘对应纵坐标的数值大小比较。
注意抛物线的对称性,及该问题考察的是单隧道问题或者双隧道问题。
【例2】有一座抛物线形拱桥,正常水位时桥下水面宽度为20m ,拱顶距离水面4m .①在如图所示的直角坐标系中,求出该抛物线的解析式;②设正常水位时桥下的水深为2m ,为保证过往船只顺利航行,桥下水面的宽度不得小于18m,求水深超过多少米时就会影响过往船只在桥下的顺利航行.【巩固】如图,隧道的截面由抛物线AED 和矩形ABCD 构成,矩形的长BC 为8m ,宽AB 为2m ,以BC 所在的直线为x 轴,线段BC 的中垂线为y 轴,建立平面直角坐标系(如图1),y 轴是抛物线的对称轴,顶点E 到坐标原点O 的距离为6m.①求抛物线的解析式;②现有一辆货运卡车,高4.4m ,宽2.4m ,它能通过该隧道吗?③如果该隧道内设双向道(如图2),为了安全起见,在隧道正中间设有0.4m 的隔离带,则该辆货运卡车还能通过隧道吗?知识点睛模块三隧道、过桥问题典型例题模块四几何问题知识点睛1.面积问题与面积计算公式相关,无需建模,可以直接得到解析式;2.面积问题需要注意自变量取值范围,取值范围需要计算;3.配成顶点式求最大值。
典型例题【例3】如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度a为10米),围成一个长方形的花圃.设花圃的宽AB为x米,面积为S平方米.①求S与x的函数关系式;写出自变量x的取值范围.②怎样围才能使长方形花圃的面积最大?最大值为多少?【巩固】(2015秋•武汉校级期末)用一段长32m的篱笆和长8m的墙,围成一个矩形的菜园.①如图1,如果矩形菜园的一边靠墙AB,另三边由篱笆CDEF围成Ⅰ.设DE等于x m,直接写出菜园面积y与x之间的函数关系式,并写出自变量的取值范围;Ⅱ.菜园的面积能不能等于110m2?若能,求出此时x的值;若不能,请说明理由;②如图2,如果矩形菜园的一边由墙AB和一节篱笆BF构成,另三边由篱笆ADEF围成,求菜园面积的最大值.【例4】如图,足球上守门员在O 处开出一高球.球从离地面1米的A 处飞出(A 在y 轴上),把球看成点.其运行的高度y (单位:m )与运行的水平距离x (单位:m )满足关系式y=a (x ﹣6)2+h .(1)①当此球开出后.飞行的最高点距离地面4米时.求y 与x 满足的关系式.②在①的情况下,足球落地点C 距守门员多少米?(取43≈7)③如图所示,若在①的情况下,求落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.求:站在距离O 点6米的B 处的球员甲要抢到第二个落点D 处的球.他应再向前跑多少米?(取26=5)(2)球员乙升高为1.75米.在距O 点11米的H 处.试图原地跃起用头拦截.守门员调整开球高度.若保证足球下落至H 正上方时低于球员乙的身高.同时落地点在距O 点15米之内.求h的取值范围.能力提升【例8】如图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB 和矩形的三边AE 、ED 、DB 组成,已知河底ED 是水平的,16ED =米,8AE =米,抛物线的顶点C 到ED 的距离是11米,以ED 所在的直线为x 轴,抛物线的对称轴为y 轴建立平面直角坐标系.(1)求抛物线的解析式.(2)已知从某时刻开始的40小时内,水面与河底ED 的距离h (单位:米)随时间t (单位:时)的变化满足函数关系()21198128h t =--+(040t ≤≤),且当水面到顶点C 的距离不大于5米时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行?【习题1】如图,一位篮球运动员甲在距篮球筐下4米处跳起投篮,球的运行线路为抛物线,当球运行到水平距离为2.5米时达到最高高度为3.5米,然后准确地落入篮筐,已知篮圈中心到地面的高度为3.05米,该运动员的身高为1.8米.(1)在这次投篮中,球在该运动员的头顶上方0.25米处出手,则当球出手时,该运动员离地面的高度为米.(2)运动员乙跳离地面时,最高能摸到3.3米运动员乙在运动员甲与篮板之间的什么范围内能在空中截住球?真题解析课后作业【习题2】如图(1)是某河上一座古拱桥的截面图,拱桥桥洞上沿是抛物线形状.抛物线两端点与水面的距离都是1m,拱桥的跨度为10cm.桥洞与水面的最大距离是5m.桥洞两侧壁上各有一盏距离水面4m的景观灯.现把拱桥的截面图放在平面直角坐标系中,如图(2).求:(1)抛物线的解析式;(2)两盏景观灯P1、P2之间的水平距离.【习题3】用长为32米的篱笆围成一个矩形养鸡场,设围成的矩形一边长为x米,面积为y 平方米.(1)求y关于x的函数关系式;(2)当x为何值时,围成的养鸡场面积为60平方米?(3)能否围成面积最大的养鸡场?如果能,请求出其边长及最大面积;如果不能,请说明理由.【习题4】工人师傅用8米长的铝合金材料制作一个如图所示的矩形窗框,图中的①、②、③区域都是矩形,且BE=2AE,M,N分别是AD、EF的中点.(说明:图中黑线部分均需要使用铝合金材料制作,铝合金材料宽度忽略不计).(1)当矩形窗框ABCD的透光面积是2.25平方米时,求AE的长度.(2)当AE为多长时,矩形窗框ABCD的透光面积最大?最大面积是多少?【习题5】在2014年仁川亚运会上中国队包揽了跳水所有项目的金牌.过去十一届亚运会的跳水金牌也全部归于中国跳水队!优秀成绩的取得离不开艰辛的训练.某跳水运动员在进行一次跳水训练时,身体(看成一点)在空中的运动路线是如图所示的一条抛物线.已知跳板AB长为2米,跳板距水面CD高BC为3米,为安全和空中姿势优美,训练时跳水曲线在离起跳点水平距离1米时达到距水面最大高度4米,现以CD为横轴,CB为纵轴建立直角坐标系.(1)求这条抛物线的解析式;(2)图中CE=4.5米,CF=5.5米,若跳水运动员在区域EF内入水时才能达到训练要求,试通过计算说明这次跳水是否能达到要求.。