二次函数实际应用题专题训练

合集下载

二次函数的应用(解决实际问题)带答案)

二次函数的应用(解决实际问题)带答案)

二次函数的应用1.如图,假设篱笆(虚线部分)的长度16m ,则所围成矩形ABCD 的最大面积是( ) A .60m 2 B .63m 2 C .64m 2 D .66m 2【答案】C .考点:1.二次函数的应用;2.应用题;3.二次函数的最值;4.二次函数的最值.2.厂为扬州三月经贸旅游节特别设计制作一种新型礼炮,这种礼炮的升空高度(m)h 与飞行时间(s)t 的关系式是252012h t t =-++,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为( )A .3sB .4sC .5sD .6s【答案】B .考点:二次函数的应用. 3.如图,正三角形ABC 的边长为,在三角形中放入正方形DEMN 和正方形EFPH ,使得D 、E 、F在边CB 上,点P 、N 分别在边CA 、AB 上,设两个正方形的边长分别为m ,n ,则这两个正方形的面积和的最小值为A.B.C.3 D.【答案】D【解析】【分析】设正方形DEMN、正方形EFPH的边长分别为m、n,它们的面积和为S,根据等边三角形的性质得∠A=∠B=60°,AB=3+,利用含30°的直角三角形三边的关系得BD=DN=m,CF=PF=n,则m+m+n+n=3+,所以n=3-m,S=m2+n2=m2+(3-m)2=2(m-)2+,接着确定m的取值范围,然后根据二次函数的性质求出S的最小值.【详解】设正方形DEMN、正方形EFPH的边长分别为m、n,它们的面积和为S,∵△ABC为等边三角形,∴∠A =∠B=60°,AB=3+,在Rt△ADN中,BD=DN=m,在Rt△BPF中,CF=PF=n,∵AD+DE+EF+BF=AB,∴m+m+n+n=3+,∴m+n=3,∴n=3-m,∴S=m2+n2=m2+(3-m)2=2(m-)2+,当点M落在AC上,则正方形PHEC的边长最小,正方形DNME的边长最大,如图,在Rt△ADN中,BD=DN,CM=DN,∴DN+DN=3+,解得DN=3-3,在Rt△CPF中,CF=PF,∴(3-3)+3-3+EF+PF=3+,解得PF=6-9,∴6-9≤m≤3-3,∴当m=时,S最小,S的最小值为,故答案选D.4.把一个物体以初速度v0(米/秒)竖直向上抛出,在不计空气阻力的情况下,物体的运动路线是一条抛物线,且物体的上升高度h(米)与抛出时间t(秒)之间满足:h=v0t- gt2(其中g是常数,取10米/秒2).某时,小明在距地面2米的O点,以10米/秒的初速度向上抛出一个小球,抛出2.1秒时,该小球距地面的高度是( ) A.1.05米B.-1.05米C.0.95米D.-0.95米【答案】C【解析】【分析】把t=2.1代入h=v0t-gt2,求出h的值,然后加2即可.【详解】把t=2.1代入h=v0t-gt2得,h=10×2.1-×10×2.12=-1.05(米),-1.05+2=0.95(米).故选C.5.点为线段上的一个动点,,分别以和为一边作等边三角形,用表示这两个等边三角形的面积之和,下列判断正确的是()A.当为的三等分点时,最小B.当是的中点时,最大C.当为的三等分点时,最大D.当是的中点时,最小【答案】D【解析】【分析】根据四个选择项,可知要判断的问题是C在AB的什么位置时,S有最大或最小值.由于点C是线段AB上的一个动点,可设AC=x,然后用含x的代数式表示S,得到S与x的函数关系式,最后根据函数的性质进行判断.【详解】设AC=x,则CB=1-x,S=x2+(1-x)2,即S=x2-x+=(x-)2+,∵a=>0,∴当x=时,S最小,此时,C是AB的中点,故选D.【点睛】本题考查了二次函数的最值,根据题意建立二次函数的关系式,然后根据二次根式的性质进行解答是关键.6.抛物线p :y=ax 2+bx+c 的顶点为C ,与x 轴相交于A 、B 两点(点A 在点B 左侧),点C 关于x 轴的对称点为C′,我们称以A 为顶点且过点C′,对称轴与y 轴平行的抛物线为抛物线p 的“梦之星”抛物线,直线AC′为抛物线p 的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是y =x 2+2x +1和y =2x +2,则这条抛物线的解析式为_____________________. 【答案】223y x x =--. 【解析】试题分析:由题意可得,抛物线y =x 2+2x +1和直线y =2x +2的交点坐标就是点A 、C′的坐标,把y =x 2+2x +1和y =2x +2联立组成方程组,解得方程组的解即可的得A (—1,0)、C′(1,4).又因y=ax 2+bx+c 的顶点为C 与C′关于x 轴对称,所以C (1,-4). y=ax 2+bx+c 的顶点为C (1, —4)且过点A (—1,0).可设抛物线的解析式为y=a (x —1)2 —4,把点A (—1,0)代入即可求得a=1,所以y=(x —1)2 —4,即223y x x =--.考点:阅读理解题;求函数的交点坐标;求函数的解析式.学科网7. 某果园有100颗橙子树,平均每颗树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,假设果园多种了x 棵橙子树.(1)直接写出平均每棵树结的橙子个数y (个)与x 之间的关系; (2)果园多种多少棵橙子树时,可使橙子的总产量最大?最大为多少个?【答案】(1)6005y x =-;(2)果园多种10棵橙子树时,可以使橙子的总产量最大,最大为60500个. 【分析】(1)根据每多种一棵树,平均每棵树就会少结5个橙子列式即可;(2)根据题意列出函数解析式,利用配方法把二次函数化为顶点式,根据二次函数的性质进行解答即可. 【解析】(1)平均每棵树结的橙子个数y (个)与x 之间的关系为:y =600﹣5x (0≤x <120);(2)设果园多种x 棵橙子树时,可使橙子的总产量为w ,则w =(600﹣5x )(100+x )=25(10)60500x --+ 则果园多种10棵橙子树时,可使橙子的总产量最大,最大为60500个. 考点:二次函数的应用.8.某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m (30<m ≤100)人时,每增加1人,人均收费降低1元;超过m 人时,人均收费都按照m 人时的标准.设景点接待有x 名游客的某团队,收取总费用为y 元.(1)求y 关于x 的函数表达式;(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求m 的取值范围.【答案】(1)y =120 (030)[120(30)] (30)[120(30)] (100)x x x x x m m x m x <≤⎧⎪--<≤⎨⎪--<≤⎩;(2)30<m ≤75.【分析】(1)根据收费标准,分0<x ≤30,30<x ≤m ,m <x ≤100分别求出y 与x 的关系即可.(2)由(1)可知当0<x ≤30或m <x <100,函数值y 都是随着x 是增加而增加,30<x ≤m 时,2150y x x =-+,根据二次函数的性质即可解决问题.【解析】(1)y =120 (030)[120(30)] (30)[120(30)] (100)x x x x x m m x m x <≤⎧⎪--<≤⎨⎪--<≤⎩.(2)由(1)可知当0<x ≤30或m <x <100,函数值y 都是随着x 是增加而增加,当30<x ≤m 时,22150(75)5625y x x x =-+=--+,∵a =﹣1<0,∴x ≤75时,y 随着x 增加而增加,∴为了让收取的总费用随着团队中人数的增加而增加,∴30<m ≤75.考点:二次函数的应用;分段函数;最值问题;二次函数的最值9. 某宾馆拥有客房100间,经营中发现:每天入住的客房数y (间)与其价格x (元)(180≤x ≤300)满足一次函数关系,部分对应值如表:x (元) 180 260 280 300 y (间) 100 60 50 40(1)求y 与x 之间的函数表达式;(2)已知每间入住的客房,宾馆每日需支出各种费用100元;每日空置的客房需支出各种费用60元,当房价为多少元时,宾馆当日利润最大?求出最大值.(宾馆当日利润=当日房费收入﹣当日支出) 【答案】(1)11902y x =-+(180≤x ≤300);(2)当房价为210元时,宾馆当日利润最大,最大利润为8450元.【分析】(1)设一次函数表达式为y =kx +b (k ≠0),由点的坐标(180,100)、(260,60)利用待定系数法即可求出该一次函数表达式;(2)设房价为x 元(180≤x ≤300)时,宾馆当日利润为w 元,依据“宾馆当日利润=当日房费收入﹣当日支出”即可得出w 关于x 的二次函数关式,根据二次函数的性质即可解决最值问题.【解析】(1)设一次函数表达式为y=kx+b(k≠0),依题意得:18010016060k bk b+=⎧⎨+=⎩,解得:12190kb⎧=-⎪⎨⎪=⎩,∴y与x之间的函数表达式为11902y x=-+(180≤x≤300).(2)设房价为x元(180≤x≤300)时,宾馆当日利润为w元,依题意得:w=(12-x+190)(x﹣100)﹣60×[100﹣(12-x+190)]=21210136002x x-+-=21(210)84502x--+,∴当x=210时,w取最大值,最大值为8450.答:当房价为210元时,宾馆当日利润最大,最大利润为8450元.考点:二次函数的应用;二次函数的最值;最值问题.10.小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:售价(元/件)100 110 120 130 …月销量(件)200 180 160 140 …已知该运动服的进价为每件60元,设售价为x元.(1)请用含x的式子表示:①销售该运动服每件的利润是元;②月销量是件;(直接填写结果)(2)设销量该运动服的月利润为y元,那么售价为多少时,当月的利润最大,最大利润是多少?【答案】(1)①(x-60);②(-2x + 400)(2)售价为每件130元时,当月的利润最大为9800元试题解析:(1)①(x-60);②(-2x + 400)(2)依题意可得:y=(x-60)×(-2x + 400= -2x2 + 520x – 24000= -2(x-130)2 + 9800当x=130时,y有最大值9800所以售价为每件130元时,当月的利润最大为9800元考点:二次函数的应用.11.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)设每天盈利w元,求出w关于x的函数关系式,并说明每天盈利是否可以达到8000元?(6分)(2)若该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?(6分) 【答案】(1)(10)(50020)y x x =+-,不能;(2)5.试题解析:(1)设每千克涨价x 元,利润为y 元,由题意,得:215(10)(50020)20()61252y x x x =+-=--+ ∴a =﹣20<0,∴抛物线开口向下,当x =7.5时,y 最大值=6125,∴每天盈利不能达到8000元. (2)当y =6000时,6000(10)(50020)x x =+-,解得:110x =,25x =, ∵要使顾客得到实惠,∴x =5. 答:每千克应涨价为5元. 考点:二次函数的应用.12.技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看成一个点)的路线是抛物线,已知起跳点A 距地面的高度为1米,弹跳的最大高度距地面4.75米,距起跳点A 的水平距离为2.5米,建立如图所示的平面直角坐标系, (1)求演员身体运行路线的抛物线的解析式?(2)已知人梯高BC =3.4米,在一次表演中,人梯到起跳点A 的水平距离是4米,问这次表演是否成功?说明理由.【答案】(1)23315y x x =-++;(2)能,理由见试题解析. 【解析】试题分析:(1)由题意可知二次函数过A (0,1),顶点(31924,),用顶点式即可求出二次函数的解析式; (2)当4x =时代入二次函数可得点B 的坐标在抛物线上.试题解析:(1)由题意可知二次函数过A (0,1),顶点(31924,),设二次函数解析式为:2519()24y a x =-+, 把A (0,1)代入得:2519144a =+,解得:35a =-,∴23519()524y x =--+,即23315y x x =-++;(2)能成功表演.理由是:当4x =时,234341 3.45y =-⨯+⨯+=.即点B (4,3.4)在抛物线23315y x x =-++上,因此,能表演成功.考点:二次函数的应用.13.某衬衣店将进价为30元的一种衬衣以40元售出,平均每月能售出600件,调查表明:这种衬衣售价每上涨1元,其销售量将减少10件.(1)写出月销售利润y (单位:元)与售价x (单位:元/件)之间的函数解析式. (2)当销售价定为45元时,计算月销售量和销售利润.(3)衬衣店想在月销售量不少于300件的情况下,使月销售利润达到10000元,销售价应定为多少? (4)当销售价定为多少元时会获得最大利润?求出最大利润.【答案】(1)2105006000y x x =-++;(2)550件,8250元;(3)50元;(4)65元,12250元. 【解析】试题分析:(1)根据设每个书包涨价x 元,由这种书包的售价每上涨1元,其销售量就减少10个,列出函数关系式;(2)销售价为45元,即上涨了5元,所以5x =,代入即可月销售量和销售利润; (3)令10000y =,解方程即可;(4)用配方法求出二次函数的最大值即可. 试题解析:(1)∵每个书包涨价x 元,∴2(4030)(60010)105006000y x x x x =-+-=-++, 答:y 与x 的函数关系式为:2105006000y x x =-++;(2)销售价为45元,即上涨了5元,所以月销量=600-10×5=550(件),销售利润=2105500560008250y =-⨯+⨯+=(元);考点:二次函数的应用.14.为满足市场需求,某超市在五月初五“端午节”来领前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y (盒)与每盒售价x (元)之间的函数关系式; (2)当每盒售价定为多少元时,每天销售的利润P (元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?【答案】(1)201600y x =-+;(2)售价定为60元时,每天销售的利润P (元)最大,最大利润是8000元;(3)440. 【解析】试题分析:(1)根据“当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒”即可得出每天的销售量y (盒)与每盒售价x (元)之间的函数关系式;(2)根据利润=1盒粽子所获得的利润×销售量列式整理,再根据二次函数的最值问题解答;(3)先由(2)中所求得的P 与x 的函数关系式,根据这种粽子的每盒售价不得高于58元,且每天销售粽子的利润不低于6000元,求出x 的取值范围,再根据(1)中所求得的销售量y (盒)与每盒售价x (元)之间的函数关系式即可求解.考点:二次函数的应用.15.已知某隧道截面积拱形为抛物线形,拱顶离地面10米,底部款20米.(1)建立如图1所示的平面直角坐标系,使y 轴为抛物线的对称轴,x 轴在地面上.求这条抛物线的解析式;(2)维修队对隧道进行维修时,为了安全,需要在隧道口搭建一个如图2所示的矩形支架AB -BC -CD (其中B 、C 两点在抛物线上,A .D 两点在地面上),现有总长为30米的材料,那么材料是否够用? (3)在(2)的基础上,若要求矩形支架的高度AB 不低于5米,已知隧道是双向行车道,正中间用护栏隔开,则同一方向行驶的两辆宽度分别为4米,高度不超过5米的车能否并排通过隧道口?(护栏宽度和两车间距忽略不计)【答案】(1)211010y x =-+;(2)够用;(3)不能.试题解析:(1)设2y ax c =+,由题意抛物线经过点(10,0),(0,10),则100010a c c +=⎧⎨=⎩,解得:11010a c ⎧=-⎪⎨⎪=⎩, 故抛物线的解析式为211010y x =-+; (2)设点C 的坐标为(m ,n ),则所需材料长度=2221112222()210210(5)251055m n m m m m m +=+⨯-+⨯=-++=--+, ∵105-<,∴当m =5时,所需材料最多,为25米,∴总长为30米的材料够用;(3)当5n =时,2110510m -+=,解得52m =, ∵5224<⨯,∴高度不超过5米的车不能并排通过隧道口. 考点:1.二次函数综合题;2.二次函数的应用.学科网。

第5章 二次函数(压轴必刷30题2种题型专项训练)(原卷版)

第5章 二次函数(压轴必刷30题2种题型专项训练)(原卷版)

第5章二次函数(压轴必刷30题2种题型专项训练)一.二次函数的应用(共3小题)1.(2023•建湖县三模)秀夫初中全校师生为学校修建植物园群策群力.九年级设计小组为更合理地利用空间,将计划种植各种树木的矩形空地一边靠墙(可利用的墙长不超过18米),另外三边由36米长的栅栏围成.设矩形ABCD空地中,垂直于墙的边AB=x米,面积为y米2,如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)若矩形空地的面积为160米2,求x;(3)若学校用8600元购买了甲、乙、丙三种树木共400棵(每种树木的单价和每棵栽种的合理用地面积如表).问丙种树木最多可以购买多少棵?此时,这批树木可以全部栽种到这块空地上吗?请说明理由.甲乙丙单价(元/棵)141628合理用地(米2/棵)0.410.42.(2023•海安市模拟)某企业接到一批帽子生产任务,按要求在20天内完成,约定这批帽子的出厂价为每顶8元.为按时完成任务,该企业招收了新工人,设新工人小华第x天生产的帽子数量为y顶,y与x满足如下关系式:y=(1)小华第几天生产的帽子数量为220顶?(2)如图,设第x天每顶帽子的成本是P元,P与x之间的关系可用图中的函数图象来刻画.若小华第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大值是多少元?(3)设(2)小题中第m天利润达到最大值,若要使第(m+1)天的利润比第m天的利润至少多49元,则第(m+1)天每顶帽子至少应提价几元?3.(2023春•江都区月考)某企业生产并销售某种产品,假设销售量与产量相等,图中的线段AB表示该产品每千克生产成本y1(单位:元)与产量x(单位:kg)之间的函数关系;线段CD表示该产品销售价y2(单位:元)与产量x(单位:kg)之间的函数关系,已知0<x≤120,m>60.(1)求线段AB所表示的y1与x之间的函数表达式;(2)若m=90,该产品产量为多少时,获得的利润最大?最大利润是多少?(3)若60<m<70,该产品产量为多少时,获得的利润最大?最大利润是多少?二.二次函数综合题(共27小题)4.(2023秋•太仓市期中)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣3,0)和点B(2,0)两点,且与y轴交于点C(0,6).连接AC,BC,P为抛物线在第二象限内一点.(1)求抛物线的解析式;(2)如图1,连接P A、PC,抛物线上是否存在点P,使得S△P AC:S四边形ABCP=1:3?若存在,请求出点P坐标;若不存在,请说明理由;(3)如图2,连接P A、PB,过点P作PD∥BC交AC于点D,连接BD.若,求点P坐标.5.(2023•崇川区校级四模)规定:如果两个函数图象上至少存在一组点是关于原点对称的,我们则称这两个函数互为“O—函数”.这组点称为“XC点”.例如:点P(1,1)在函数y=x2上,点Q(﹣1,﹣1)在函数y=﹣x﹣2上,点P与点Q关于原点对称,此时函数y=x2和y=﹣x﹣2互为“O—函数”,点P 与点Q则为一组“XC点”.(1)已知函数y=﹣2x﹣1和y=﹣互为“O—函数”,请求出它们的“XC点”;(2)已知函数y=x2+2x+4和y=4x+n﹣2022互为“O—函数”,求n的最大值并写出“XC点”;(3)已知二次函数y=ax2+bx+c(a>0)与y=2bx+1互为“O—函数”有且仅存在一组“XC点”,如图,若二次函数的顶点为M,与x轴交于A(x1,0),B(x2,0)其中0<x1<x2,AB=,过顶点M作x轴的平行线l,点P在直线l上,记P的横坐标为﹣,连接OP,AP,BP.若∠OP A=∠OBP,求t的最小值.6.(2023•鼓楼区校级三模)如图.在平面直角坐标系中,抛物线y=﹣x2+mx+4m的图象交x轴于点A、B,交y轴于点C(0,4),点P是第一象限内抛物线上的一个动点,连结AC、CP、P A,P A与直线BC 交于点D.(1)求抛物线的函数表达式;(2)当tan∠P AB=1时,判断CP与AB的数最关系,并说明理由;(3)设△CDP的面积为S1,△CDA的面积为S2,求的最大值.7.(2023•兴化市二模)已知二次函数y1=a(x﹣m)(x﹣m﹣d)(a,m,d均为正数)图象的顶点为P.(1)直接写出二次函数y1的图象与x轴的交点坐标以及点P的坐标(用含a、m、d的字母表示);(2)一次函数y2=kx﹣km(k为常数且k≠0),若函数y3=y1+y2,且y3的图象与x轴有且只有一个交点.①求函数y3的图象与x轴的交点坐标,并探求a、d、k之间的数量关系,说明理由;②将函数y2的图象向下平移d个单位长度,交函数y1图象的对称轴l于点M,点N是点M关于顶点P的对称点,过点N作x轴的平行线交平移后的直线于点Q,当点Q恰好在函数y1的图象上时,求此时k 的整数值.8.(2023•淮安区校级二模)数学兴趣小组同学们对二次函数y=nx2﹣(n+3)x+3(n为正数)进行如下探究:(1)同学们在探究中发现,该函数图象除与y轴交点不变外,还经过一个定点A,请写出A点坐标;(2)有同学研究后认为,该二次函数图象顶点不会落在第一象限,你认为是否正确,请说明理由;(3)若抛物线与x轴有两个交点,且交点与顶点构成的三角形是直角三角形,请帮兴趣小组同学求出n 的值.9.(2023•武进区校级模拟)如图,函数y=﹣x2+bx+c的图象交x轴于点A(﹣3,0)和点B,交y轴于点C(0,3).(1)求抛物线的函数解析式;(2)点P在抛物线上,求当∠CBP=45°时点P的坐标.10.(2023•连云港)如图,在平面直角坐标系xOy中,抛物线L1:y=x2﹣2x﹣3的顶点为P.直线l过点M (0,m)(m≥﹣3),且平行于x轴,与抛物线L1交于A、B两点(B在A的右侧).将抛物线L1沿直线l翻折得到抛物线L2,抛物线L2交y轴于点C,顶点为D.(1)当m=1时,求点D的坐标;(2)连接BC、CD、DB,若△BCD为直角三角形,求此时L2所对应的函数表达式;(3)在(2)的条件下,若△BCD的面积为3,E、F两点分别在边BC、CD上运动,且EF=CD,以EF 为一边作正方形EFGH,连接CG,写出CG长度的最小值,并简要说明理由.11.(2023•天宁区校级二模)已知二次函数y=ax2﹣2ax+4(a≠0),图象记为L.(1)如图,a=1时,求该二次函数图象的顶点坐标;(2)在(1)的条件下,将二次函数y=ax2﹣2ax+4(x<0)的图象向右平移2个单位,与二次函数y=ax2﹣2ax+4(x≥2)的图象组成一个新的函数图象,记为L′.设L′上的一点P的坐标为(m,n).①当m满足时,n随m的增大而增大;②当m>2时,过点P作y轴垂线,分别交L、L′于点M、N.若ON将△OPM的面积分成1:2两部分,求点P坐标;(3)若点(x1,3),(x2,6)在二次函数y=ax2﹣2ax+4图象上,直接写出a的取值范围.12.(2023•梁溪区一模)如图,将二次函数y=x2+2x+1的图象沿x轴翻折,然后向右平移1个单位长度,再向上平移4个单位长度,得到二次函数y=ax2+bx+c的图象.函数y=x2+2x+1的图象的顶点为A,函数y=ax2+bx+c的图象的顶点为B,和x轴的交点为C,D(点D位于点C左侧).(1)求函数y=ax2+bx+c的解析式;(2)从A,C,D三点中任取两点和点B构造三角形,求构造的三角形是等腰三角形的概率;(3)点M是线段BC上的动点,N是△ABC三边上的动点,是否存在以AM为斜边的Rt△AMN,使△AMN的面积为△ABC面积的?若存在,求tan∠MAN的值,若不存在,请说明理由.13.(2023•灌云县校级模拟)如图1,抛物线y=﹣x2+kx+k+1(k≥1)与x轴交于A、B两点,与y轴交于点C.(1)求抛物线的顶点纵坐标的最小值;(2)若k=2,点P为抛物线上一点,且在A、B两点之间运动.①是否存在点P使得S△P AB=,若存在,求出点P坐标,若不存在,请说明理由;②如图2,连接AP,BC相交于点M,当S△PMB﹣S△AMC的值最大时,求直线BP的表达式.14.(2023•南通二模)定义:在平面直角坐标系xOy中,若函数图象上的点P(x,y)满足x+y=a(其中x ≥0,a为常数),则称点P为函数图象的“a级和点”.(1)若点(2,m)为反比例函数图象的“1级和点”,则m=,k=;(2)若2≤a≤4时,直线y=kx+k+3上有“a级和点”,求k的取值范围;(3)若抛物线的“a级和点”恰有一个,求a的取值范围.15.(2023•建湖县三模)平面直角坐标系中,过一点分别作坐标轴的垂线,若两垂线与坐标轴围成矩形的周长数值是面积数值的2倍,则称这个点为“二倍点”.例如,点P(,3)是“二倍点”.(1)在点A(1,1),B(﹣3,),C(﹣6,3)中,是“二倍点”的有;(2)若点E为双曲线y=﹣(x>0)上任意一点.①请说明随着点E在图象上运动,为什么函数值y随自变量x的增大而增大?②若将点E向右平移一个单位,再向下平移一个单位得到点F.求证:点F为“二倍点”.(3)已知“二倍点”M在抛物线y=x2(x>0)的图象上,“二倍点”N在一次函数y=x(x>0)的图象上,点G在x轴上,坐标平面内有一点H,若以点M,N,G,H为顶点的四边形是矩形,请直接写出点H的坐标.16.(2023•如东县一模)定义:若函数G1的图象上至少存在一个点,该点关于x轴的对称点落在函数G2的图象上,则称函数G1,G2为关联函数,这两个点称为函数G1,G2的一对关联点.例如,函数y=2x与函数y=x﹣3为关联函数,点(1,2)和点(1,﹣2)是这两个函数的一对关联点.(1)判断函数y=x+2与函数y=﹣是否为关联函数?若是,请直接写出一对关联点;若不是,请简要说明理由;(2)若对于任意实数k,函数y=2x+b与y=kx+k+5始终为关联函数,求b的值;(3)若函数y=x2﹣mx+1与函数y=2x﹣(m,n为常数)为关联函数,且只存在一对关联点,求2m2+n2﹣6m的取值范围.17.(2023•宿豫区三模)如图,在平面直角坐标系中,一次函数y1=的图象与x轴交于点A,与y轴交于点C,对称轴为直线x=2的抛物线y2=ax2+bx+c(a≠0)也经过点A、点C,并与x轴正半轴交于点B.(1)求抛物线y2=ax2+bx+c(a≠0)的函数表达式;(2)设点E(0,),点F在抛物线y2=ax2+bx+c(a≠0)对称轴上,并使得△AEF的周长最小,过点F任意作一条与y轴不平行的直线交此抛物线于P(x1,y1),Q(x2,y2)两点,试探究的值是否为定值?说明理由;(3)将抛物线y2=ax2+bx+c(a≠0)适当平移后,得到抛物线y3=a(x﹣h)2(h>1),若当1<x≤m 时,y3≥﹣x恒成立,求m的最大值.18.(2023•盐城)定义:若一次函数的图象与二次函数的图象有两个交点,并且都在坐标轴上,则称二次函数为一次函数的轴点函数.【初步理解】(1)现有以下两个函数:①y=x2﹣1;②y=x2﹣x,其中,为函数y=x﹣1的轴点函数.(填序号)【尝试应用】(2)函数y=x+c(c为常数,c>0)的图象与x轴交于点A,其轴点函数y=ax2+bx+c与x轴的另一交点为点B.若OB=OA,求b的值.【拓展延伸】(3)如图,函数y=x+t(t为常数,t>0)的图象与x轴、y轴分别交于M,C两点,在x轴的正半轴上取一点N,使得ON=OC.以线段MN的长度为长、线段MO的长度为宽,在x轴的上方作矩形MNDE.若函数y=x+t(t为常数,t>0)的轴点函数y=mx2+nx+t的顶点P在矩形MNDE的边上,求n的值.19.(2023•梁溪区模拟)如图,已知二次函数y=ax2+2ax+c(a>0)的图象与x轴相交于A、B两点(A在B的左侧),它的对称轴l与图象交于点P,直线OP所对应的函数表达式为y=2x.(1)请直接写出点P的坐标.(2)若△P AB为直角三角形,设直线OP与这个二次函数的图象的另一个交点为Q.①求a、c的值与点Q的坐标;②若M为直线l上的点,且以M、B、Q为顶点的三角形是锐角三角形,请直接写出点M的纵坐标t的取值范围.20.(2023•沭阳县三模)如图1,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(4,0),与y轴交于点C,连接AC,BC,点P在第四象限的抛物线上运动,连接AP,BP,CP.(1)求抛物线的表达式;(2)若S△PBC﹣S△APC=2,求点P的坐标;(3)①如图2,若AP交BC于点E,过点P作x轴的垂线交BC于点F,当EF=EP,求点P的坐标;②如图3,在①的条件下,连接AP,BP,点M是线段AP上一点,点Q是线段BP上一点,连接MQ,过点M作x轴的垂线交抛物线于点H,过点H作HN∥PB交MQ于点N,当S△MHN=S△MHQ,直接写出线段MH的长.21.(2023•扬州)在平面直角坐标系xOy中,已知点A在y轴正半轴上.(1)如果四个点(0,0)、(0,2)、(1,1)、(﹣1,1)中恰有三个点在二次函数y=ax2(a为常数,且a≠0)的图象上.①a=;②如图1,已知菱形ABCD的顶点B、C、D在该二次函数的图象上,且AD⊥y轴,求菱形的边长;③如图2,已知正方形ABCD的顶点B、D在该二次函数的图象上,点B、D在y轴的同侧,且点B在点D的左侧,设点B、D的横坐标分别为m、n,试探究n﹣m是否为定值.如果是,求出这个值;如果不是,请说明理由.(2)已知正方形ABCD的顶点B、D在二次函数y=ax2(a为常数,且a>0)的图象上,点B在点D的左侧,设点B、D的横坐标分别为m、n,直接写出m、n满足的等量关系式.22.(2023春•兴化市月考)已知:二次函数y=ax2+2ax﹣8a(a为常数,且a>0)的图象与x轴交于点A、B(点A在点B的左侧),与y轴交于点C,顶点为点D.(1)分别求点A、B的坐标;(2)若△ABC是直角三角形,求该二次函数相应的表达式;(3)当时,一次函数的图象过B点,与二次函数的对称轴交于Q点,N为一次函数图象上一点,过N点作y的平行线交二次函数图象于M点,当D、M、N、Q四点组成的四边形是平行四边形时,求N点的坐标.23.(2023春•大丰区月考)如图,直线y=﹣x+m与抛物线y=ax2+bx都经过点A(6,0),点B,过B作BH垂直x轴于H,OA=3OH.直线OC与抛物线AB段交于点C.(1)求抛物线的解析式;(2)当点C的纵坐标是时,求直线OC与直线AB的交点D的坐标;(3)在(2)的条件下将△OBH沿BA方向平移到△MPN,顶点P始终在线段AB上,求△MPN与△OAC公共部分面积的最大值.24.(2023•常州)如图,二次函数y=x2+bx﹣4的图象与x轴相交于点A(﹣2,0),B,其顶点是C.(1)b=;(2)D是第三象限抛物线上的一点,连接OD,tan∠AOD=.将原抛物线向左平移,使得平移后的抛物线经过点D,过点(k,0)作x轴的垂线l.已知在l的左侧,平移前后的两条抛物线都下降,求k的取值范围;(3)将原抛物线平移,平移后的抛物线与原抛物线的对称轴相交于点Q,且其顶点P落在原抛物线上,连接PC、QC、PQ.已知△PCQ是直角三角形,求点P的坐标.25.(2023•灌云县校级三模)如图,抛物线y=ax2+bx+3(a≠0)与x轴交于A(﹣1,0),B(﹣3,0)两点,与y轴交于点C,点D为抛物线的顶点,连接AC,BC,CD.(1)求抛物线的表达式;(2)若点P为抛物线上的点,连接CP,当∠ACO=∠PCB时,求点P的坐标;(3)若在x轴上总存在一点Q,且点Q的横坐标为m(m>﹣3),当∠DCB<∠QCB<∠CAO时,直接写出m的取值范围.26.(2023•泗洪县模拟)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A(3,0),B(﹣1,0)两点,与y轴相交于点C(0,﹣4).(1)求该二次函数的解析;(2)若点P、Q同时从A点出发,以每秒1个单位长度的速度分别沿AB、AC边运动,其中一点到达端点时,另一点也随之停止运动.①当点P运动到B点时,在x轴上是否存在点E,使得以A、E、Q为顶点的三角形为等腰三角形?若存在,请求出E点的坐标;若不存在,请说明理由.②当P、Q运动到t秒时,△APQ沿PQ翻折,点A恰好落在抛物线上D点处,请直接写出t的值及D点的坐标.27.(2023•兴化市开学)如图,已知抛物线y=ax2(a<0)经过点A(2,﹣2),过点A的直线l平行于x 轴,横坐标分别m,s的点B、C(m<s<0)在抛物线上,且位于在直线l异侧,连接BC,AC,AB,线段BC与直线l相交于点D.(1)求a的值;(2)若m=﹣3,s=﹣1.①求AD的值;②试判断AD是否平分∠CAB,并说明理由;(3)若AD平分∠CAB,试判断tan(∠ABD+∠CAD)的值是否变化?如果不变,求出这个值,如果变化,请说明理由.28.(2023•昆山市校级一模)在平面直角坐标系中,抛物线y=ax2+bx+c与y轴交于点A(0,4)、与x轴交于点B(2,0)和点C(﹣1,0).(1)求抛物线的函数表达式;(2)若点D为第一象限的抛物线上一点.①过点D作DE⊥AB,垂足为点E,求线段DE长的取值范围;②若点F、G分别为线段OA、AB上一点,且四边形AFGD既是中心对称图形,又是轴对称图形,求此时点D的坐标.29.(2023•锡山区校级四模)已知抛物线y=mx2﹣(1﹣4m)x+c过点(1,a),(﹣1,a),(0,﹣1).(1)求该抛物线的解析式;(2)已知过原点的直线与该抛物线交于A,B两点(点A在点B右侧),该抛物线的顶点为C,连接AC,BC,点D在点A,C之间的抛物线上运动(不与点A,C重合).当点A的横坐标是4时,若△ABC的面积与△ABD的面积相等,求点D的坐标;(3)若直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则称该直线与抛物线相切.已知点F的坐标是(0,1),过该抛物线上的任意一点(除顶点外)作该抛物线的切线l,分别交直线y=1和y=﹣3直线于点P,Q,求FP2﹣FQ2的值.30.(2023•工业园区校级模拟)已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点.(1)直接写出抛物线的函数解析式;(2)如图1,M是抛物线顶点,点P在抛物线上,若直线AP经过△CBM外接圆的圆心,求点P的横坐标;(3)如图2,点N是第一象限内抛物线上的一动点,连接NA分别交BC、y轴于D、E两点,若△NBD、△CDE的面积分别为S1、S2,求S1﹣S2的最大值;(4)点Q是抛物线对称轴上一动点,当∠OQA的值最大时,请直接求出点Q的坐标.。

二次函数应用题专题(带答案)

二次函数应用题专题(带答案)

二次函数应用题专题(带答案)0)时,可用交点式y=a(x-x1x-x2求其解析式。

4)根据问题要求,利用解析式求出所需的未知量。

三、练1、一枚炮弹在发射点上空爆炸,爆炸点离发射点水平距离1800米,爆炸高度为400米,求炮弹的初速度和仰角。

2、一架飞机以900km/h的速度飞行,飞行高度为2km,发现前方有一座山峰,山顶离飞机水平距离为10km,求飞机的爬升率和俯冲率。

3、一个人从距离地面20米的悬崖上抛出一个物体,物体抛出初速度为20m/s,抛出角度为60度,求物体落地点到悬崖的水平距离。

XXX:1、设炮弹飞行时间为t,初速度为v,仰角为θ,则可列出方程组:x=vtcosθy=vtsinθ-1/2gtx2y21800)2400)=xxxxxxx解得v600m/s,θ≈48.6°。

2、设飞机的爬升率和俯冲率分别为a和b,则可列出方程组:tan(θ-a)=4000/tan(θ+b)=2000/解得a≈2.5°,b≈1.4°。

3、设物体落地点到悬崖的水平距离为d,则可列出方程:d=vcosθtt=2vsinθ/g代入可得d≈40.8m。

评析:二次函数应用题需要学生熟练掌握建立坐标系、求解析式、利用解析式求未知量的方法,同时也需要学生对物理知识有一定的掌握,如抛物线运动、平抛运动等。

练中的例题和练题都体现了这些要点,可以帮助学生加深对二次函数应用的理解和掌握。

在教学过程中,可以引导学生多思考实际问题中的数学应用,提高他们的应用能力和解决问题的能力。

例2、某商场购进一批单价为16元的日用品,经试验发现,若按每件20元的价格销售时,每月能卖360件,若按每件25元的价格销售时,每月能卖210件,假定每月销售件数y(件)是价格x(元/件)的一次函数.1)求y与x之间的关系式;2)在商品不积压,且不考虑其他因素的条件下,问销售价格定为多少时,才能使每月获得最大利润?每月的最大利润是多少?解:(1)依题意设y=kx+b,则有 y= -30x+960 (16≤x≤32).2)每月获得利润P=(-30x+960)(x-16)=30(-x+32)(x-16)=-30+48x-512+1920.所以当x=24时,P有最大值,最大值为1920.答:当价格为24元时,才能使每月获得最大利润,最大利润为1920元.注意:数学应用题来源于实践,用于实践,在当今社会市场经济的环境下,应掌握一些有关商品价格和利润的知识,总利润等于总收入减去总成本,然后再利用一次函数求最值.例3、在体育测试时,初三的一名高个子男同学推铅球,已知铅球所经过的路线是某个二次函数图像的一部分,如图所示,如果这个男同学的出手处A点的坐标为(0,2),铅球路线的最高处B点的坐标为(6,5)1)求这个二次函数的解析式;2)该男同学把铅球推出去多远?(精确到0.01米)解:(1)设二次函数的解析式为 y=ax^2+bx+c。

中考二次函数应用题(含答案解析)

中考二次函数应用题(含答案解析)

中考二次函数应用题(含答案解析)二次函数应用题1.某商场销售一种小商品,进货价为8元/件,当售价为10元/件时,每天的销售量为100件.在销售过程中发现:销售单价每上涨1元,每天的销售量就减少10件.设销售单价为x(元/件)(10x≥的整数),每天销售利润为y(元).(1)求y与x的函数关系式,并写出x的取值范围;(2)若每件该小商品的利润率不超过100%,且每天的进货总成本不超过800元,求该小商品每天销售利润y的取值范围.2.某地在“精准扶贫”活动中销售一农产品,经分析发现月销售量y(万件)与月份x(月)的关系为: y81620712x x xx x x+≤≤⎧=⎨-+≤≤⎩(,为整数)(,为整数),每件产品的利润z(元)与月份x(月)的关系如表:x123456789101112z191817161514131211101010(1)请你根据表格直接写出每件产品利润z(元)与月份x(月)的关系式;(2)若月利润w(万元)=当月销售量y(万件)×当月每件产品的利润z(元),求月利润w(万元)与月份x(月)的关系式;(3)当x为何值时,月利润w有最大值,最大值为多少?3.某商场购进一种每件成本为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系:(1)求出y与x之间的函数关系式;(2)写出每天的利润W与销售单价x之间的函数关系式;(3)疫情期间,有关部门规定每件商品的利润率不得超过30%,那么将售价定为多少,来保证每天获得的总利润最大,最大总利润是多少?(利润率=利润÷成本×100%)(4)疫情过后,有关部门规定每件商品的利润率不得超过50%,每销售一件商品便向某慈善机构捐赠a 元(10≤a ≤25),捐赠后发现,该商品每天销售的总利润仍随着售价的增大而增大.请直接写出a 的取值范围.4.北京冬奥会上,由于中国冰雪健儿们的发挥出色,中国金牌总数位列第三,向世界证明了中国是冰雪运动强国!青蛙公主谷爱凌发挥出色一人斩获两金一银.在数学上,我们不妨约定:在平面直角坐标系中,将点()2,1P 称为“爱凌点”,经过点()2,1P 的函数,称为“爱凌函数”.(1)若点()34,r s r s ++是“爱凌点”,关于x 的数2y x x t =-+都是“爱凌函数”,则r =_____,s =_____,t =_____.(2)若关于x 的函数y kx b =+和my x=都是“爱凌函数”,且两个函数图象有且只有一个交点,求k 的值.(3)如图,点()11,C x y 、()22,D x y 是抛物线232y x x =-+上两点,其中D 在第四象限,C 在第一象限对称轴右侧,直线AC 、AD 分别交y 轴于F 、E 两点: ①求点E ,F 的坐标;(用含1x ,2x 的代数式表示);②若1OE OF ⋅=,试判断经过C 、D 两点的一次函数()0y kx b k =+≠是否为“爱凌函数”,并说明理由.5.国家推行“节能减排,低碳经济”政策后,低排量的汽车比较畅销,某汽车经销商购进A ,B 两种型号的低排量汽车,其中A 型汽车的进货单价比B 型汽车的进货单价多2万元;花50万元购进A 型汽车的数量与花40万元购进B 型汽车的数量相同. (1)求A ,B 两种型号汽车的进货单价;(2)销售过程中发现:A 型汽车的每周销售量yA (台)与售价xA (万元台)满足函数关系yA =﹣xA +18;B 型汽车的每周销售量yB (台)与售价xB (万元/台)满足函数关系yB =﹣xB +14.若A 型汽车的售价比B 型汽车的售价高1万元/台,设每周销售这两种车的总利润为w 万元.①当A 型汽车的利润不低于B 型汽车的利润,求B 型汽车的最低售价?②求当B 型号的汽车售价为多少时,每周销售这两种汽车的总利润最大?最大利润是多少6.某商店购进一种商品,每件商品进价30元.试销中发现这种商品每天的销售量y (件)与每件销售价x (元)的关系数据如下: x 30 32 34 36 y40363228(1)已知y 与x 满足一次函数关系,根据上表,求出y 与x 之间的关系式(不写出自变量x 的取值范围);(2)设该商店每天销售这种商品所获利润为w (元),求出w 与x 之间的关系式,并求出每件商品销售价定为多少元时利润最大?7.某服装厂批发应季T 恤衫,其单价y (元)与一次批发数量x (件)(x 为正整数....)之间的关系满足图中折线的函数关系.(1)求y 与x 的函数关系式;(2)若每件T 恤衫的成本价是60元,当100400x <≤时,求服装厂所获利润w (元)与x (件)之间的函数关系式,并求一次批发多少件时所获利润最大,最大利润是多少? 8.嘉琪第一期培植盆景与花卉各40盆,售后统计,盆景的平均每盆利润是120元,花卉的平均每盆利润是15元,调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.嘉琪计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x 盆,第二期盆景与花卉售完后的利润分别为1W ,2W (单位:元).(1)第二期盆景的数量为_________盆,花卉的数量为_________盆; (2)用含x 的代数式分别表示1W ,2W ;(3)当x 取何值时,第二期培植的盆景与花卉售完后获得的总利润W 最大,最大总利润是多少?9.为响应政府“节能”号召,某强照明公司减少了白炽灯的生产数量,引进新工艺生产一种新型节能灯,己知这种节能灯的出厂价为每个20元.某商场试销发现,销售单价定为25元/个,每月销售量为250个;每涨价1元,每月少卖10个. (1)求出每月销售量y (个)与销售单价x (元)之间的函数关系式;(2)设该商场每月销售这种节能灯获得的利润为w (元)与销售单价x (元)之间的函数关(3)若每月销售量不少于200个,且每个节能灯的销售利润至少为7元,则销售单价定为多少元时,所获利润最大?最大利润是多少?10.如图,用长30米的竹篱笆围成一个矩形菜园,其中一面靠墙,墙长10米,墙的对面有一个2米宽的门,设垂直于墙的一边长为x 米,菜园的面积为S 平方米.(1)直接写出S 与x 的函数关系式; (2)若菜园的面积为96平方米,求x 的值;(3)若在墙的对面再开一个宽为a (0<a <3)米的门,且面积S 的最大值为124平方米,直接写出a 的值.【参考答案】二次函数应用题1.(1)2102801600y x x =-+- (10x ≥的整数) (2)200360y ≤≤ 【解析】 【分析】(1)销售单价为x 元/件时,每件的利润为(8)x -元,此时销量为[10010(10)]x --,由此计算每天的利润y 即可;(2)首先求出利润不超过100%时的销售单价的范围,且每天的进货总成本不超过800元,再结合(1)的解析式,利用二次函数的性质求解即可. (1)解:(1)根据题意得: (8)[10010(10)]y x x =--- 整理,得 2102801600y x x =-+-(10x ≥的整数) (2)解:∵每件小商品的利润不超过100%,∴8100%8x -⨯≤, ∴16x ≤,∵每天进货总成本不超过800元, ∴[100(10)10]8800x --⨯⨯≤, ∴10x ≥, ∴1016x ≤≤,∵2210280160010(14)360y x x x =-+-=--+, 当14x =时,有360y =最大值当10x =时,有210(1014)360200y =-⨯-+=最小值,∴小商品每天销售利润y 的取值范围是:200360y ≤≤ 【点睛】本题考查二次函数的实际应用问题,准确表示出题中的数量关系,熟练运用二次函数的性质求解是解题关键.2.(1)()()2019,101012,x x x z x x ⎧-+≤≤⎪=⎨≤≤⎪⎩为整数为整数 (2)()()()221216016,4040079,102001012,x x x x w x x x x x x x ⎧-++⎪=-+≤≤⎨⎪-+≤≤⎩为整数为整数为整数 (3)当6x =时,w 有最大值为196. 【解析】 【分析】(1)观察表中数据可得,当19x ≤≤时,20z x =-+;当1012x ≤≤时,10z =,则z 与x 的关系式可得;(2)分三种情况:当16x 时,当79x ≤≤时,当1020x ≤≤时,分别写出w 关于x 的函数关系式并化简,则可得答案;(3)分别写出当16x 时,当78x 时,当912x 时的函数最大值,然后比较取最大值即可. (1)解:观察表中数据可得,当19x ≤≤时,20z x =-+;当1012x ≤≤时,10z =. z ∴与x 的关系式为:()()2019,101012,x x x z x x ⎧-+≤≤⎪=⎨≤≤⎪⎩为整数为整数; (2)解:当16x 时,2(20)(8)12160w x x x x =-++=-++; 当79x ≤≤时,2(20)(20)40400w x x x x =-+-+=-+; 当1020x ≤≤时,10(20)10200w x x =-+=-+;w ∴与x 的关系式为:()()()221216016,4040079,102001012,x x x x w x x x x x x x ⎧-++⎪=-+≤≤⎨⎪-+≤≤⎩为整数为整数为整数;(3)解:当16x 时,212160w x x =-++2(6)196x =--+,6x ∴=时,w 有最大值为196;当79x ≤≤时,2240400(20)w x x x =-+=-,w 随x 增大而减小,7x ∴=时,w 有最大值为169;当1020x ≤≤时,10200w x =-+,w 随x 增大而减小,10x ∴=时,w 有最大值为100;100169196<<,6x ∴=时,w 有最大值为196.【点睛】本题考查了二次函数在实际问题中的应用,理清题中的数量关系正确列式并分段计算是解题的关键.3.(1)180(100180)y x x =-+<≤ (2)228018000(100180)W x x x =-+-<≤(3)将售价定为130元,每天获得的总利润最大,最大总利润是1500元 (4)2025a ≤≤ 【解析】 【分析】(1)设y 与x 之间的函数关系式为(0)y kx b k =+≠,利用待定系数法可求出其解析式,再求出x 的取值范围即可;(2)根据利润=(售价-单价)×销售量,即可得出答案;(3)根据题意可求出x 的取值范围,再根据二次函数的性质,即可得出答案;(4)根据题意可求出x 的取值范围和W 与x 、a 的关系式,再将其配方,根据该商品每天销售的总利润仍随着售价的增大而增,即可得出关于a 的不等式,解出a 的解集即可得出答案. (1)解:设y 与x 之间的函数关系式为(0)y kx b k =+≠, 根据图象可知点(130,50)和点(150,30)在y kx b =+的图象上,∴5013030150k b k b =+⎧⎨=+⎩, 解得:1180k b =-⎧⎨=⎩.∴180y x =-+. 令0y =,则1800x -+=, 解得:180x =,∴y 与x 之间的函数关系式为180(100180)y x x =-+<≤; (2)根据题意可得2(100)(100)(180)28018000W x y x x x x =-=--+=-+-,即每天的利润W 与销售单价x 之间的函数关系式为228018000(100180)W x x x =-+-<≤; (3)根据题意可得:10030%100x -≤, 解得:130x ≤. ∴100130x <≤.∵2228018000(140)1600W x x x =-+-=--+, ∴当130x =时,W 有最大值,且2max (130140)16001500W =--+=(元).故将售价定为130元,每天获得的总利润最大,最大总利润是1500元; (4)根据题意可知10050%100x -≤ 解得:150x ≤.22228018000(180)(140)40160024a a W x x a x x a ⎡⎤=-+---+=--++-+⎢⎥⎣⎦.∵该商品每天销售的总利润仍随着售价的增大而增大, ∴1401502a+≥, 解得:20a ≥. ∵1025a ≤≤, ∴2025a ≤≤. 【点睛】本题考查一次函数与二次函数的实际应用.根据题意找到等量关系,列出等式是解题关键.4.(1)2;-1;-1;(2)12k =-;(3)①()20,2E x -+;()10,2F x -+;②经过C 、D 两点的一次函数y =kx +b (k ≠0)是“爱凌函数”;理由见解析 【解析】 【分析】(1)根据已知条件,代入求解即可;(2)首先用待定系数法求出反比例函数解析式,然后应用一元二次方程根的判别式求出k 的值;(3)首先根据前提条件推出x 1与x 2的关系,然后利用C ,D 坐标用x 1和x 2表示出直线斜率kCD ,进一步代入点C 或者点D 的坐标,表示出截距b ,然后将坐标(2,1)代入一次函数,和前面的结论比较是否符合条件. (1)解:∵(3r +4s ,r +s )为“爱凌点”,∴3421r s r s ⎧⎨⎩+=+=, 解得:21r s ⎧⎨-⎩==,将(2,1)代入y =x 2−x +t 得:2122t =-+,解得t =−1. 故答案为:2;-1;-1. (2)将(2,1)分别代入y =kx +b 与y =mx中, 得1212k bm =+⎧⎪⎨=⎪⎩,即122b k m =-⎧⎨=⎩,∵两个函数图象有且只有一个交点,∴kx +1−2k =2x只有一个根,即:kx 2+(1−2k )x −2=0, Δ=(1−2k )2+8k =0, ∴k =−12. (3)①令x 2−3x +2=0,得:11x =,x 2=2, ∴A (1,0),B (2,0), ∵C 、D 两点在抛物线上,∴C (x 1,x 12−3x 1+2),D (x 2,22232x x -+),设AD 的函数关系式为:11AD y k x b =+,则11212122032k b k x b x x +=⎧⎨+=-+⎩, 解得:121222k x b x =-⎧⎨=-+⎩,∴()()2222AD y x x x =-+-+, 令x =0,则22y x =-+,∴()202E x -+,, 设AC 的函数关系式为:22AC y k x b =+,则22221211032k b k x b x x +=⎧⎨+=-+⎩, 解得:212122k x b x =-⎧⎨=-+⎩,∴()()1122AC y x x x =-+-+, 令x =0,则12y x =-+,∴()102F x -+,; ②y =kx +b 是“爱凌函数”,理由如下: ∵若OE •OF =1,∴21221x x -+-+=, ∴(2−x 2)(x 1−2)−1=0, ∴2x 1−x 1x 2+2x 2−5=0,∵一次函数y =kx +b 经过C 、D 两点,∴211122223232kx b x x kx b x x ⎧+=-+⎨+=-+⎩, 解得:121232k x x b x x =+-⎧⎨=-⎩,∴CD 的关系式为:y =(x 1+x 2−3)x +2−x 1x 2, 将(2,1)代入得: 2(x 1+x 2−3)+2−x 1x 2=1,即2x 1−x 1x 2+2x 2−5=0,与前提条件OE•OF =1所得出的结论一致, ∴经过C ,D 的一次函数y =kx +b 是“爱凌函数”. 【点睛】本题考查一次函数、反比例函数和二次函数相关知识点,将结论与前提条件进行比较,整个题目涉及的未知数比较多,计算过程中需要仔细.5.(1)A 种型号汽车的进货单价为10万元、B 两种型号汽车的进货单价为8万元 (2)①B 型汽车的最低售价为414万元/台,②A 、B 两种型号的汽车售价各为13万元、12万元时,每周销售这两种汽车的总利润最大,最大利润是23万元 【解析】 【分析】(1)设未知数,用未知数分别表示A 型汽车、B 型汽车的进价,然后根据花50万元购进A 型汽车的数量与花40万元购进B 型汽车的数量相同列分式方程求解即可.(2)①用利润公式:利润=(售价-进价)×数量,分别表示出A 、B 型汽车利润,然后列不等式求解即可;②B 型号的汽车售价为t 万元/台,然后将两车的总利润相加得出一个二次函数,求二次函数的最值即可. (1)解:设B 型汽车的进货单价为x 万元,根据题意,得: 502x +=40x, 解得x =8,经检验x =8是原分式方程的根, 8+2=10(万元),答:A 种型号汽车的进货单价为10万元、B 两种型号汽车的进货单价为8万元; (2)设B 型号的汽车售价为t 万元/台,则A 型汽车的售价为(t +1)万元/台, ①根据题意,得:(t +1﹣10)[﹣(t +1)+18]≥(t ﹣8)(﹣t +14), 解得:t ≥414,∴t 的最小值为414,即B 型汽车的最低售价为414万元/台, 答:B 型汽车的最低售价为414万元/台; ②根据题意,得:w =(t +1﹣10)[﹣(t +1)+18]+(t ﹣8)(﹣t +14) =﹣2t 2+48t ﹣265 =﹣2(t ﹣12)2+23,∵﹣2<0,当t =12时,w 有最大值为23.答:A 、B 两种型号的汽车售价各为13万元、12万元时,每周销售这两种汽车的总利润最大,最大利润是23万元. 【点睛】本题考查了分式方程的应用,不等式的应用,二次函数的应用,理清数量关系,明确等量关系是解题关键. 6.(1)2100y x =-+(2)221603000w x x =-+-,当销售单价为40元时获得利润最大 【解析】 【分析】(1)待定系数法求解一次函数解析式即可;(2)根据题意得210()(3)00w x x +--=,计算求出满足要求的解即可. (1)解:设该函数的表达式为y kx b =+,根据题意,得30403236k b k b +=⎧⎨+=⎩解得2100k b =-⎧⎨=⎩∴y 与x 之间的关系式为2100y x =-+. (2)解:根据题意,得210()(3)00w x x +--= 221603000x x =-+-224020(0)x =--+∵20a =-<∴当40x =时,w 的值最大∴当销售单价为40元时,获得利润最大. 【点睛】本题考查了一次函数的应用,二次函数的应用,二次函数的图象与性质.解题的关键在于熟练掌握一次函数与二次函数的知识. 7.(1)100(0100)1110(100400)1070(400)y x y y x x y x =≤≤⎧⎪⎪==-+<≤⎨⎪=>⎪⎩(2)一次批发250件时,获得的最大利润为6250元【解析】【分析】(1)利用待定系数法结合图象求出解析式;(2)根据件数乘以单件的利润列得函数关系式,根据二次根式的性质解答.(1)解:当0≤x ≤100时,y =100;当100<x ≤400时,设y 与x 的函数关系式为y =kx +b ,则10010040070k b k b +=⎧⎨+=⎩,解得110110k b ⎧=-⎪⎨⎪=⎩, ∴111010y x =-+; 当x >400时,y =70; 综上,100(0100)1110(100400)1070(400)y x y y x x y x =≤≤⎧⎪⎪==-+<≤⎨⎪=>⎪⎩ (2)11106010w x x ⎛⎫=-+- ⎪⎝⎭=215010x x -+ =()21250625010x --+ 当x =250时,w 有最大值,即一次批发250件时,最大利润为6250元.【点睛】此题考查了求函数解析式,二次函数的最值问题,正确理解函数图象求出函数解析式是解题的关键.8.(1)40x +,60x -(2)212404800W x x =-++,215900W x =-+(3)6x =时,W 最大,最大利润为5778元【解析】【分析】(1)根据第二期培植盆景与花卉共100盆,培植的盆景比第一期增加x 盆列式即可; (2)根据利润=平均利润×销售数量列式计算即可;(3)表示出总利润W ,根据二次函数的性质求出最大值即可.(1)解:由题意得:第二期盆景的数量为()40x +盆,则花卉的数量为()()1004060x x -+=-盆,故答案为:40x +,60x -;(2)解:由题意得:21(40)(1202)2404800W x x x x =+-=-++,()2156015900W x x =-=-+;(3)解:由题意得:22122404800159002255700W W W x x x x x -++--+=++=+=, ∵对称轴为254x =,而x 为正整数, ∴当6x =时,5778W =,当7x =时,5777W =,∵57785777>,∴6x =时,W 最大,最大利润为5778元.【点睛】本题主要考查了二次函数的应用,找到合适的数量关系列出算式是解题的关键. 9.(1)10500y x =-+(2)21070010000w x x =-+-(3)销售单价定为30元时,所获利润最大,最大利润是2000元.【解析】【分析】(1)根据“销售单价定为25元/个,每月销售量为250个;每涨价1元,每月少卖10个”可得函数解析式;(2)由(1)及题意可进行求解;(3)由题意可得10500200207x x -+≥⎧⎨-≥⎩,然后根据(2)及二次函数的性质可进行求解. (1)解:由题意得:()250102510500y x x =--=-+;(2)解:由(1)及题意得:()()220105001070010000w x x x x =--+=-+-;(3)解:由题意可得10500200207x x -+≥⎧⎨-≥⎩, 解得:2730x ≤≤,由(2)可知21070010000w x x =-+-,∵100-<,即开口向下,对称轴为直线352b x a=-=, ∴当2730x ≤≤时,w 随x 的增大而增大,∴当x =30时,所获利润最大,最大利润为1090070030100002000w =-⨯+⨯-=;答:销售单价定为30元时,所获利润最大,最大利润是2000元.【点睛】本题主要考查二次函数的应用,熟练掌握二次函数中的销售问题是解题的关键.10.(1)S=﹣2x2+32x(2)12(3)2.8【解析】【分析】(1)根据矩形面积公式即可写出函数关系式;(2)根据(1)所得关系式,将S=96代入即可求解;(3)再开一个宽为a的门,即矩形的另一边长为(32-2x+a)m,根据矩形的面积公式即可求解.(1)根据题意得,S=(30﹣2x+2)x=﹣2x2+32x;(2)当S=96时,即96=﹣2x2+32x,解得:x1=12,x2=4,∵墙长10米,∴30﹣8+2=25>10,∴x的值为12;(3)∵S=(30﹣2x+a+2)x=﹣2x2+(32+a)x,∵32﹣2x+a≤10,则x≥12a+11,∵面积取得最大值为S=124,∴﹣2x2+(32+a)x=124,把x=12a+11代入,得﹣2(12a+11)2+(32+a)(12a+11)=124,解得a=2.8.答:a的值为2.8.【点睛】本题主要考查二次函数的应用,根据矩形面积公式得出函数解析式是根本,根据养鸡场的长不超过墙长取舍是关键.。

二次函数综合应用题(有答案)中考23题必练经典

二次函数综合应用题(有答案)中考23题必练经典

二次函数综合应用题一、求利润的最值1.(2010·武汉)某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满。

当每个房间每天的房价每增加10元时,就会有一个房间空闲。

宾馆需对游客居住的每个房间每天支出20元的各种费用。

根据规定,每个房间每天的房价不得高于340元。

设每个房间的房价每天增加x 元(x 为10的正整数倍)。

(1) 设一天订住的房间数为y ,直接写出y 与x 的函数关系式及自变量x 的取值范围; (2) 设宾馆一天的利润为w 元,求w 与x 的函数关系式;(3) 一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?解:(1) y=50-101x (0≤x ≤160,且x 是10的整数倍)。

(2) W=(50-101x)(180+x -20)= -101x 2+34x +8000;(3) W= -101x 2+34x +8000= -101(x -170)2+10890,当x<170时,W 随x 增大而增大,但0≤x ≤160,∴当x=160时,W 最大=10880,当x=160时,y=50-101x=34。

答:一天订住34个房间时,宾馆每天利润最大,最大利润是10880元。

2.(2009武汉)某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨元(为正整数),每个月的销售利润为元.(1)求与的函数关系式并直接写出自变量的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?解:(1)(且为整数); (2).,当时,有最大值2402.5. ,且为整数,当时,,(元),当时,,(元)当售价定为每件55或56元,每个月的利润最大,最大的月利润是2400元.(3)当时,,解得:. 当时,,当时,.当售价定为每件51或60元,每个月的利润为2200元.当售价不低于51或60元,每个月的利润为2200元.当售价不低于51元且不高于60元且为整数时,每个月的利润不低于2200元(或当售价分别为51,52,53,54,55,56,57,58,59,60元时,每个月的利润不低于2200元).3.(2008·武汉)某商品的进价为每件30元,现在的售价为每件40元,每星期可卖出150件。

2023-2024年人教版九年级上册数学期末实际问题与二次函数应用题专题训练(含答案)

2023-2024年人教版九年级上册数学期末实际问题与二次函数应用题专题训练(含答案)

2023-2024年人教版九年级上册数学期末实际问题与二次函数应用题专题训练1.某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于40%,经试销发现,销售量y (件)与销售单价x (元)符合一次函数.(1)当销售单价为80元时,求商场获得的利润;(2)若该商场获得利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价x 的范围.2.某商品的进价为每件20元,售价为每件30元,每个月可卖出180件;如果每件商品的售价每上涨1元,则每个月就会少卖出10件,但每件售价不能高于35元,设每件商品的售价上涨元(为整数),每个月的销售利润为元.(1)求与的函数关系式,并直接写出自变量的取值范围;(2)每件商品的售价为多少元时,每个月可获得最大利润?最大利润是多少?(3)每件商品的售价定为多少元时,每个月的利润恰好是1920元?3.如图1,用一段长为33米的篱笆围成一个一边靠墙并且中间有一道篱笆隔墙的矩形菜园,墙长为12米.设的长为米,矩形菜园的面积为平方米.(1)分别用含的代数式表示与;(2)若,求的值;(3)如图2,若在分成的两个小矩形的正前方各开一个米宽的门(无需篱笆),当为何值时,取最大值,最大值为多少?120y x =-+x x y y x x ABCD AB x ABCD S x BC S 54S =x 1.5x S4.某商场销售一种成本为每件20元的商品,销售过程中发现,每月销售量y (件)(元)之间的关系可近似的看作一次函数:.(1)设商场销售该种商品每月获得利润为w (元),写出w 与x 之间的函数关系式;(2)如果商场想要销售该种商品每月获得2000元的利润,那么每月成本至少多少元?(3)为了保护环境,政府部门要求用更加环保的新产品替代该种商品,商场若销售新产品,每月销售量与销售价格之间的关系与原产品的销售情况相同,新产品成本为每件22元,同时对商场的销售量每月不小于150件的商场,政府部门给予每件3元的补贴,试求定价多少时,新产品每月可获得销售利润最大?并求最大利润.5.某商家在直播间销售一种进价为每件10元的日用商品,经调查发现该商品每天的销售量(件)与销售单价(元)满足,设销售这种商品每天的利润为(元).(1)求W 与x 之间的函数关系式;(2)该商家每天想获得1250元的利润,又要减少库存,应将销售单价定为多少元?(3)若销售单价不低于28元,且每天至少销售50件时,求W 的最大值.6.某商店经销一种旅行包,已知这种旅行包的成本价为每个30元,物价部门规定这种旅行包的销售单价不得高于43元.市场调查发现,这种旅行包每天的销售量y (个)与销售单价x (元)有如下关系:.设这种旅行包每天的销售利润为w 元.(1)求w 与x 之间的函数解析式;(2)该商店销售这种旅行包每天要获得200元的销售利润,销售单价应定为多少元?(3)这种旅行包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?7.小张购进一批食材制作特色美食,每盒售价为50元,由于食材需要冷藏保存,导致成本逐日增加,第天(且为整数)时每盒成本为元,已知与之间满10500y x =-+y x 10400=-+y x W 60y x =-+x 115x ≤≤x p p x(1)求抛物线的解析式;(2)斜坡上距离O水平距离为10米处有一棵高度为1.75面,且M点到水平地面的距离为2米,①通过计算说明:水流能不能刚好喷射到小树的顶部;(1)求水柱高度y与距离池中心的水平距离(2)求水柱落地点A到水池中心3.5m(3)若水池半径为,则喷头最大高度为(1)建立合适的平面直角坐标系,求该拋物线的表达式;(2)由于暴雨导致水位上涨了2米,求此时水面的宽度;2.63.2(3)已知一艘货船的高为米,宽为米,其截面如图3所示.为保证这艘货船可以安全通过拱桥,水面在正常水位的基础上最多能上升多少米?(结果精确到(1)请确定这个抛物线的顶点坐标;(2)求抛物线的函数关系式;(3)张强这次投掷成绩大约是多少?17.某农场计划利用一片空地建一个矩形场地,其中一面靠墙,这堵墙的长度为16米,已知现有的篱笆长为40米,设与墙相连的矩形边长为x 米.(1)求这个矩形场地面积S ()与矩形边长为x 米的函数关系式并求出矩形长为x 的取值范围.(2)能否围成一个面积为的矩形场地?(3)求围成的矩形场地的最大面积?18.如图,小明计划利用一面墙(墙长11米)其它三面利用21米篱笆围成一个矩形.一侧有一木门,宽1米,若设,面积为.(1)求与之间的函数关系,直接写出自变量的取值范围;(2)若鸡舍面积为60平方米时,求的长?(3)长多少时,鸡舍面积最大?19.戴口罩是阻断呼吸道病毒传播的重要措施之一,某商家对一款成本价为每盒50元的医用口罩进行销售,如果按每盒70元销售,每天可卖出20盒.通过市场调查发现,每盒口罩售价每降低1元,则日销售量增加2盒.设每盒售价降低元.(1)日销量可表示为____________盒,每盒口罩的利润为____________元(2)当每盒售价定为多少元时,商家可以获得最大日利润?并求出最大日利润.(3)如果每销售一盒口罩需支出元的相关费用,当时,商家日获利的最大值为420元,求的值.2m 2300m ABCD CD AB x =()2m y y x x AB AB x a ()02a <≤14x ≤≤a参考答案:1.(1)商场获得利润为800元(2)销售单价定为84元时,商场可获得最大利润,最大利润是864元(3)销售单价的范围是70≤x ≤842.(1)(2)当售价定为每件34元,每个月的利润最大,最大的月利润是1960元(3)当售价为每件32元,每个月的利润为1920元3.(1)(2)9(3)当时,有最大值4.(1)(2)2000元(3)当定价元时,新产品每月可获得销售利润最大值是元5.(1)(2)15元(3)2160元6.(1)(2)该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元;(3)当时,w 有最大值,最大值是221元.7.(1)(2)(3)第13天时当天的销售利润最大,最大销售利润是361元x ()21080180005y x x x =-++≤≤2333333BC x S x x=-=-+,8x =S 9621070010000w x x =-+-34.62402.52105004000,040 ;W x x x =-+-<≤2901800w x x =-+-43x =18p x =+()()2103201626192615x x w x x x ⎧-+≤≤⎪=⎨-++<≤⎪⎩。

二次函数实际应用题

二次函数实际应用题

二次函数实际应用题1.端午节前夕,某超市从厂家分两次购进A、B两种品牌的粽子,两次进货时,两种品牌粽子的进价不变.第一次购进A品牌粽子 100袋和B品牌粽子 150袋,总费用为 7000元;第二次购进A品牌粽子 180袋和B品牌粽子120袋,总费用为 8100元。

(1)求A、B两种品牌粽子每袋的进价各是多少元;(2)当B品牌粽子销售价为每袋54元时,每天可售出20袋,为了促销,该超市决定对B品牌粽子进行降价销售,经市场调研,若每袋的销售价每降低1元,则每天的销售量将增加5袋,当B品牌粽子每袋的销售价降低多少元时,每天售出B品牌粽子所获得的利润最大?最大利润是多少元?2.某商店购进了一种消毒用品,进价为每件8元,在销售过程中发现,每天的销售量y(件)与每件售价x(元)之间存在一次函数关系(其中8≤x≤15,且x为整数).当每件消毒用品售价为9元时,每天的销售量为105件;当每件消毒用品售价为11元时,每天的销售量为95件.(1)求y与x之间的函数关系式。

(2)若该商店销售这种消毒用品每天获得425元的利润,则每件消毒用品的售价为多少元?(3)设该商店销售这种消毒用品每天获利w(元),当每件消毒用品的售价为多少元时,每天的销售利润最大?最大利润是多少元?3.某超市购进一批水果,成本为8元/kg,根据市场调研发现,这种水果在未来10天的售价m(元/kg)与时间第x天之间满足函数关系式m=12x+18(1≤x≤10)x为整数),又通过分析销售情况,发现每天销售量y(kg)与时间第x天之间满足一次函数关系,下表是其中的三组对应值.(1)求y与x的函数解析式;(2)在这10天中,哪一天销售这种水果的利润最大,最大销售利润为多少元?4.丹东是我国的边境城市,拥有丰富的旅游资源. 某景区研发一款纪念品,每件成本为30元,投放景区内进行销售,规定销售单价不低于成本且不高于 54元,销售一段时间调研发现,每天的销售数量y(件)与销售单价x(元/件)满足一次函数关系,部分数据如下表所示:5.某超市采购了两批同样的冰墩墩挂件,第一批花了6600元,第二批花了8000元,第一批每个挂件的进价是第二批的1.1倍,且第二批比第一批多购进50个。

二次函数典型例题——常见应用题

二次函数典型例题——常见应用题

二次函数典型例题——常见应用题1、如图,小明在一次高尔夫球训练中,从山坡下P 点打出一球向球洞A 点飞去,球的飞行路线为抛物线,如果不考虑空气阻力,当球达到最大高度BD 为12米时,球移动的水平距离PD 为9米 .已知山坡P A 与水平方向PC 的夹角为30o ,AC ⊥PC 于点C , P 、A 两点相距83米.请你建立适当的平面直角坐标系解决下列问题. (1)求水平距离PC 的长;(2)求出球的飞行路线所在抛物线的解析式;(3)判断小明这一杆能否把高尔夫球从P 点直接打入球洞A .ABCD P2、某超市销售一款进价为50元/个的书包,物价部门规定这款书包的售价不得高于70元/个,市场调查发现:以60元/个的价格销售,平均每周销售书包100个;若每个书包的销售价格每提高1元,则平均每周少销售书包2个.(1)求该超市这款书包平均每周的销售量y (个)与销售价x (元/个)之间的函数关系式; (2)求该超市这款书包平均每周的销售利润w (元)与销售价x (元/个)之间的函数关系式;(3)当每个书包的销售价为多少元时,该超市这款书包平均每周的销售利润最大?最大利润是多少元? 解:(1) )60(2100--=x y ,即2202+-=x y ; (2))2202)(50(+--=x x w ,即1100032022-+-=x x w ;(3)∵抛物线1100032022-+-=x x w 的开口向下,在对称轴80=x 的左侧,w 随x 的增大而增大.由题意可知7060≤≤x , ∴当70=x 时,w 最大为1600.因此,当每个书包的销售价为70元时,该超市可以获得每周销售的最大利润1600元.我市某文具厂生产一种签字笔.已知这种笔的生产成本为每支6元.经市场调研发现:批发该种签字笔每天的销售量y (支)与售价x (元/支)之间存在着如下表所示的一次函数关系:售价x (元/支) … 7 8 … 销售量y (支)…300240…(利润=(售价-成本)×销售量)(1)求销售量y (支)与售价x (元/支)之间的函数关系式;(2)求销售利润W(元)与售价x (元/支)之间的函数关系式; (3)试问该厂应当以每支签字笔多少元出售时,才能使每天所获得的利润最大?最大利润是多少元?李经理在某地以10元/千克的批发价收购了2 000千克核桃,并借一仓库储存.在存放过程中,平均每天有6千克的核桃损耗掉,而且仓库允许存放时间最多为60天.若核桃的市场价格在批发价的基础上每天每千克上涨0.5元。

专题02 二次函数的实际应用(30题)(原卷版)-2024-2025学年九年级数学上册同步学与练(人

专题02 二次函数的实际应用(30题)(原卷版)-2024-2025学年九年级数学上册同步学与练(人

专题第02讲二次函数的实际应用(30题)1.(2022秋•泰兴市期末)一水果店售卖一种水果,以8元/千克的价格进货,经过往年销售经验可知:以12元/千克售卖,每天可卖60千克;若每千克涨价0.5元,每天要少卖2千克;若每千克降价0.5元,每天要多卖2千克,但不低于成本价.设该商品的价格为x元/千克时,一天销售总质量为y千克.(1)求y与x的函数关系式.(2)若水果店货源充足,每天以固定价格x元/千克销售(x≥8),试求出水果店每天利润W与单价x的函数关系式,并求出当x为何值时,利润达到最大.2.(2023•朝阳)某超市以每件10元的价格购进一种文具,销售时该文具的销售单价不低于进价且不高于19元.经过市场调查发现,该文具的每天销售数量y(件)与销售单价x(元)之间满足一次函数关系,部分数据如下表所示:销售单价x/元…121314……363432…每天销售数量y/件(1)直接写出y与x之间的函数关系式;(2)若该超市每天销售这种文具获利192元,则销售单价为多少元?(3)设销售这种文具每天获利w(元),当销售单价为多少元时,每天获利最大?最大利润是多少元?3.(2023•海淀区校级开学)电缆在空中架设时,两端挂起的电缆下垂可以近似的看成抛物线的形状.如图,在一个斜坡BD上按水平距离间隔60米架设两个塔柱,每个塔柱固定电缆的位置离地面高度为27米(AB =CD=27米),以过点A的水平线为x轴,水平线与电缆的另一个交点为原点O建立平面直角坐标系,如图所示.经测量,AO=40米,斜坡高度12米(即B、D两点的铅直高度差).结合上面信息,回答问题:(1)若以1米为一个单位长度,则D点坐标为,下垂电缆的抛物线表达式为.(2)若电缆下垂的安全高度是13.5米,即电缆距离坡面铅直高度的最小值不小于13.5米时,符合安全要求,否则存在安全隐患.(说明:直线GH⊥x轴分别交直线BD和抛物线于点H、G.点G距离坡面的铅直高度为GH的长),请判断上述这种电缆的架设是否符合安全要求?请说明理由.4.(2023春•江岸区校级月考)如图,在斜坡底部点O处安装一个的自动喷水装置,喷水头(视为点A)的高度(喷水头距喷水装置底部的距离)是1.8米,自动喷水装置喷射出的水流可以近似地看成抛物线.当喷射出的水流与喷水装置的水平距离为8米时,达到最大高度5米.以点O为原点,自动喷水装置所在的直线为y轴,建立平面直角坐标系.(1)求抛物线的解析式;(2)斜坡上距离O水平距离为10米处有一棵高度为1.75米的小树NM,MN垂直水平地面且M点到水平地面的距离为2米.①记水流的高度为y1,斜坡的高度为y2,求y1﹣y2的最大值(斜坡可视作直线OM);②如果要使水流恰好喷射到小树顶端的点N,直接写出自动喷水装置应向后平移(即抛物线向左)多少米?5.(2023•武汉模拟)如图,灌溉车为绿化带浇水,喷水口H离地竖直高度OH为1.2m.可以把灌溉车喷出水的上、下边缘抽象为平面直角坐标系中两条抛物线的部分图象;把绿化带横截面抽象为矩形DEFG,其水平宽度DE=3m,竖直高度EF=0.5m.下边缘抛物线是由上边缘抛物线向左平移得到,上边抛物线最高点A离喷水口的水平距离为2m,高出喷水口0.4m,灌溉车到绿化带的距离OD为d(单位:m).(1)求上边缘抛物线的函数解析式,并求喷出水的最大射程OC;(2)求下边缘抛物线与x轴的正半轴交点B的坐标;(3)要使灌溉车行驶时喷出的水能浇灌到整个绿化带,直接写出d的取值范围.6.(2022秋•华容区期末)农户销售某农产品,经市场调查发现:若售价为6元/千克,日销售量为40千克,若售价每提高1元/千克,日销售量就减少2千克.现设售价为x元/千克(x≥6且为正整数).(1)若某日销售量为24千克,求该日产品的单价;(2)若政府将销售价格定为不超过18元/千克.设每日销售额为w元,求w关于x的函数表达式,并求w的最大值和最小值;(3)市政府每日给农户补贴a元后(a为正整数),发现最大日收入(日收入=销售额+政府补贴)还是不超过450元,并且只有5种不同的单价使日收入不少于440元,请直接写出所有符合题意的a的值.7.(2023春•蔡甸区月考)如图,抛物线AB,AC是某喷水器喷出的水抽象而成,抛物线AB由抛物线AC 向左平移得到,把汽车横截面抽象为矩形DEFG,其中DE=米,DG=2米,OA=h米,抛物线AC表达式为y=a(x﹣2)2+h+,h=,且点A,B,D,G,C均在坐标轴上.(1)求抛物线AC表达式.(2)求点B的坐标.(3)要使喷水器喷出的水能洒到整个汽车,记OD长为d米,直接写出d的取值范围.8.(2022秋•华容区期末)如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A在y 轴上),运动员乙在距O点6米的B处发现球在自己头的正上方达到最高点M,距地面约4米高.球第一次落地点后又一次弹起.据实验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1)求足球开始飞出到第一次落地时,该抛物线的表达式.(2)运动员乙要抢到第二个落点D,他应再向前跑多少米?(取,)9.(2023•淮安一模)某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?10.(2023•盘锦)某工厂生产一种产品,经市场调查发现,该产品每月的销售量y(件)与售价x(万元/件)之间满足一次函数关系,部分数据如表:每件售价x/万元…2426283032…月销售量y/件…5248444036…(1)求y与x的函数关系式(不写自变量的取值范围).(2)该产品今年三月份的售价为35万元/件,利润为450万元.①求:三月份每件产品的成本是多少万元?②四月份工厂为了降低成本,提高产品质量,投资了450万元改进设备和革新技术,使每件产品的成本比三月份下降了14万元.若四月份每件产品的售价至少为25万元,且不高于30万元,求这个月获得的利润w(万元)关于售价x(万元/件)的函数关系式,并求最少利润是多少万元.11.(2023春•江都区月考)某企业生产并销售某种产品,假设销售量与产量相等,图中的线段AB表示该产品每千克生产成本y1(单位:元)与产量x(单位:kg)之间的函数关系;线段CD表示该产品销售价y2(单位:元)与产量x(单位:kg)之间的函数关系,已知0<x≤120,m>60.(1)求线段AB所表示的y1与x之间的函数表达式;(2)若m=90,该产品产量为多少时,获得的利润最大?最大利润是多少?(3)若60<m<70,该产品产量为多少时,获得的利润最大?最大利润是多少?12.(2023•梁溪区模拟)为加强劳动教育,各校纷纷落实劳动实践基地.某校学生在种植某种高产番茄时,经过试验发现:①当每平方米种植2株番茄时,平均单株产量为8.4千克;②在每平方米种植的株数不超过10的前提下,以同样的栽培条件,株数每增加1株,平均单株产量减少0.8千克.(1)求平均单株产量y(千克)与每平方米种植的株数x(x为整数,且2≤x<10)之间的函数关系式;(2)已知学校劳动基地共有10平方米的空地用于种植这种番茄.问:当每平方米种植多少株时,该学校劳动基地能获得最大的产量?最大产量为多少千克?13.(2023春•仓山区校级期末)根据以下素材,探索完成任务.如何设计大棚苗木种植方案?素材1:图1中有一个大棚苗木种植基地及其截面图,其下半部分是一个长为20m,宽为1m的矩形,其上半部分是一条抛物线,现测得,大棚顶部的最高点距离地面5m.素材2:种植苗木时,每棵苗木高1.76m,为了保证生长空间,相邻两棵苗木种植点之间间隔1m,苗木顶部不触碰大棚,且种植后苗木成轴对称分布.(1)任务1:确定大棚上半部分形状.根据图2建立的平面直角坐标系,通过素材1提供的信息确定点的坐标,求出抛物线的函数关系式;(2)任务2:探究种植范围.在图2的坐标系中,在不影响苗木生长的情况下,确定种植点的横坐标的取值范围.14.(2023•岳麓区校级二模)从2020年开始,越来越多的商家向线上转型发展,“直播带货”已经成为商家的一种促销的重要手段.某商家在直播间销售一种进价为每件10元的日用商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)满足y=﹣10x+400,设销售这种商品每天的利润为W(元).(1)求W与x之间的函数关系式;(2)该商家每天想获得1250元的利润,又要减少库存,应将销售单价定为多少元?(3)若销售单价不低于28元,且每天至少销售50件时,求W的最大值.15.(2022秋•蜀山区校级期末)某超市经销甲、乙两种商品.商品甲每千克成本为20元,经试销发现,该种商品每天销售量y(千克)与销售单价x(元/千克)满足如图所示的一次函数关系,商品乙的成本为4元/千克,销售单价为10元/千克,但每天供货总量只有80千克,且能当天销售完.为了让利消费者,超市开展了“买一送一”活动,即买1千克的商品甲,免费送1千克的商品乙.(1)直接写出销售量y与销售单价x之间的函数表达式;(2)设这两种商品的每天销售总额为S元,求出S(元)与x(元/千克)的函数关系式;(注:商品的销售额=销售单价×销售量)(3)设这两种商品销售总利润为W,若商品甲的售价不低于成本,不超过成本的150%,当销售单价定为多少时,才能使当天的销售总利润最大?最大利润是多少?(注:销售总利润=两种商品的销售总额﹣两种商品的总成本)16.(2023春•莲池区校级期中)为促进学生德智体美劳全面发展,推动文化学习与体育锻炼协调发展,某校举办了学生趣味运动会.该校计划用不超过5900元购买足球和篮球共36个,分别作为运动会团体一、二等奖的奖品.已知足球单价170元,篮球单价160元.(1)学校至多可购买多少个足球?(2)受卡塔尔世界杯的影响,学校商议决定按(1)问的结果购买足球作为一等奖奖品,以鼓励更多学生热爱足球,同时商场也对足球和篮球的价格进行调整,足球单价下降了a%,篮球单价上涨了,最终学校购买奖品的经费比计划经费的最大值节省了155元,求a的值.17.(2023春•宜都市期末)某公司分别在A,B两城生产同种产品,共100件.A城生产产品的总成本y(万元)与产品数量x(件)之间具有一次函数关系:y=ax+b.当x=5时,y=40;当x=30时,y=140.B 城生产产品的每件成本为7万元.(1)求a,b的值;(2)当A,B两城生产这批产品的总成本之和为660万元时,求A,B两城各生产产品多少件?(3)从A城把该产品运往C,D两地的费用分别为m万元/件和3万元/件;从B城把该产品运往C,D 两地的费用分别为1万元/件和2万元/件.C地需要90件,D地需要10件,在(2)的条件下,若A,B 两城总运费之和的最小值为150万元,求m的值.18.(2023•海淀区校级四模)某公园修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端安装一个可调节角度的喷水头,从喷水头喷出的水柱形状是一条抛物线.建立如图所示的平面直角坐标系,抛物线形水柱的竖直高度y(单位:m)与到池中心的水平距离x(单位:m)满足的关系式近似为y=a (x﹣h)2+k(a<0).(1)在某次安装调试过程中,测得x与y的部分对应值如下表:水平距离x/m00.51 1.52 2.53竖直高度y/m 2.25 2.81253 2.8125 2.25 1.31250根据表格中的数据,解答下列问题:①水管的长度是m;②求出y与x满足的函数解析式y=a(x﹣h)2+k(a<0);(2)安装工人在上述基础上进行了下面两种调试:①不改变喷水头的角度,将水管长度增加1m,水柱落地时与池中心的距离为d1;②不改变水管的长度,调节喷水头的角度,使得水柱满足y=﹣0.6(x﹣1.5)2+3.6,水柱落地时与池中心的距离为d2.则比较d1与d2的大小关系是:d1d2(填“>”或“=”或“<”)19.(2023•罗山县三模)实心球是中考体育项目之一.在掷实心球时,实心球被掷出后的运动路线可以看作是抛物线的一部分.已知小军在一次掷实心球训练中,第一次投掷时出手点距地面1.8m,实心球运动至最高点时距地面3.4m,距出手点的水平距离为4m.设实心球掷出后距地面的竖直高度为y(m),实心球距出手点的水平距离为x(m).如图,以水平方向为x轴,出手点所在竖直方向为y轴建立平面直角坐标系.(1)求第一次掷实心球时运动路线所在抛物线的表达式.(2)若实心球投掷成绩(即出手点与着陆点的水平距离)达到12.4m为满分,请判断小军第一次投掷实心球能否得满分.(3)第二次投掷时,实心球运动的竖直高度y与水平距离x近似满足函数关系y=﹣0.08(x﹣5)2+3.8记小军第一次投掷时出手点与着陆点的水平距离为d1,第二次投掷时出手点与着陆点的水平距离为d2,则d1d2.(填“>”“<”“=”)20.(2023•花溪区校级一模)过山车是一项富有刺激性的娱乐工具,在乘坐过山车的过程中能够亲身体验由能量守恒、加速度和力交织在一起产生的效果,那感觉真是妙不可言.如图是合肥某乐园中部分过山车滑道所抽象出来的函数图象,线段AB是一段直线滑道,且AB长为米,点A到地面距离OA=6米,点B到地面距离BE=3米,滑道B﹣C﹣D可以看作一段抛物线,最高点为C(8,4).(1)求滑道B﹣C﹣D部分抛物线的函数表达式;(2)当小车(看成点)沿滑道从A运动到D的过程中,小车距离x轴的垂直距离为2.5米时,它到出发点A的水平距离是多少?(3)现在需要对滑道C﹣D部分进行加固,建造某种材料的水平和竖直支架CF,PH,PG.已知这种材料的价格是75000元/米,为了预算充足,至少需要申请多少元的资金.21.(2022秋•丰都县期末)抛实心球是丰都中考体育考试项目之一,如图1是一名男生投实心球情境,实心球行进路线是一条抛物线,行进高度y(m)与水平距离x(m)之间的函数关系如图2所示,掷出时,起点处高度为1.9m,当水平距离为4m时,实心球行进至最高点3.5m处.(1)求y关于x的函数表达式;(2)根据中考体育考试评分标准(男生版),投掷过程中,实心球从起点到落地点的水平距离大于等于9.7m时,即可得满分10分.该男生在此项考试中能否得满分,请说明理由.22.(2022秋•建昌县期末)2022年11月,“中国传统制茶技艺及其相关习俗”申遗成功,弘扬茶文化,倡导“和美雅静”的生活方式已成时尚.某茶商经销某品牌茶,成本为50元/千克,经市场调查发现,每周的销量y(千克)与销售单价x(元/千克)满足一次函数关系,部分数据列表如下:566575…销售单价x(元/千克)销量y(千克)12811090…(1)求y与x的一次函数关系式;(2)求该茶商这一周销售该品牌茶叶所获利润w(元)的最大值.23.(2023•锦州二模)近年来国家出台政策要求电动车上牌照,“保安全、戴头盔”出行.某头盔专卖店购进一批单价为36元的头盔.在销售中,通过分析销售情况发现这种头盔的月销售量y(个)与售价x(元/个)(42≤x≤72)满足一次函数关系,下表是其中的两组对应值.售价x(元/个)…5055…月销售量y(个)…10090…(1)求y与x之间的函数关系式;(2)专卖店的优惠活动:若购买一个这种头盔,就赠送一个成本为6元的头盔面罩.请问这种头盔的售价定为多少元时,月销售利润最大,最大月销售利润是多少元?24.(2023•金湖县三模)某超市购进甲、乙两种商品,已知购进5件甲商品和2件乙商品,需80元:购进3件甲商品和4件乙商品,需90元.(1)甲、乙两种商品的进货单价分别是多少?(2)设甲商品的销售单价为x(单位:元/件),在销售过程中发现:当12≤x≤18时,甲商品的日销售量y(单位:件)与销售单价x之间存在一次函数关系,x、y之间的部分数值对应关系如表:销售单价x(元/件)1218日销售量y(件)164请写出当12≤x≤18时,y与x之间的函数关系式;(3)在(2)的条件下,设甲商品的日销售利润为w元,当甲商品的销售单价x(元/件)定为多少时,日销售利润最大?最大利润是多少?25.(2022秋•新抚区期末)疫情防控常态化,全国人民同心抗疫.某商家决定将一个月获得的利润全部捐赠给社区用于抗疫.已知商家购进一批产品,成本为10元/件,拟采取线上和线下两种方式进行销售,市场调查发现,线下的月销量y(件)与线下售价x(元/件,且12≤x≤16)之间满足一次函数关系,部分数据如下表:x(元/件)12131415y(件)1000900800700(1)求y与x之间的函数关系式;(2)若线上售价始终比线下每件便宜2元,且线上的月销量固定为600件.当x为何值时,线上和线下销售月利润总和W达到最大?最大利润是多少?(3)要使(2)中月利润总和W不低于4400元,请直接写出x的取值范围.26.(2023•嘉鱼县模拟)为巩固扶贫攻坚成果,我县政府督查各部门和单位对口扶贫情况.某单位的帮扶对象种植的农产品在某月(按30天计)的第x天(x为正整数)的销售价格p(元/千克)关于x的函数关系为p=,销售量y(千克)与x之间的关系如图所示.(1)直接写出y与x之间的函数关系式和x的取值范围;(2)求该农产品的销售量有几天不超过60千克?(3)当月第几天,该农产品的销售额最大,最大销售额是多少?(销售额=销售量×销售价格)27.(2023•云梦县校级三模)李丽大学毕业后回家乡创业,开了一家服装专卖店代理品牌服装的销售.已知该品牌服装进价每件40元,日销售y(件)与销售价x(元/件)之间的关系如图所示(实线),每天付员工的工资每人82元,每天应支付其他费用106元.(1)直接写出日销售y(件)与销售价x(元/件)之间的函数关系式;(2)当某天的销售价为48元/件时,收支恰好平衡(收入=支出),求该店员工人数;(3)若该店只有2名员工,则每天能获得的最大利润是多少元?此时,每件服装的价格应定为多少元?28.(2023•卧龙区二模)如图,在斜坡底部点O处安装一个自动喷水装置,喷水头(视为点A)的高度(喷水头距喷水装置底部的距离)是1.8米,自动喷水装置喷射出的水流可以近似地看成抛物线.当喷射出的水流与喷水装置的水平距离为8米时,达到最大高度5米.以点O为原点,自动喷水装置所在的直线为y轴,建立平面直角坐标系.(1)求抛物线的函数关系式;(2)斜坡上距离O水平距离为10米处有一棵高度为1.75米的小树NM,MN垂直水平地面,且M点到水平地面的距离为2米,绿化工人向左水平移动喷水装置后,水流恰好喷射到小树顶端的点N,求自动喷水装置向左水平平移(即抛物线向左)了多少米?29.(2023•竞秀区二模)过山车是一项富有刺激性的娱乐工具,深受年轻游客的喜爱.某游乐场修建了一款大型过山车.如图所示,A→B→C为这款过山车的一部分轨道(B为轨道最低点),它可以看成一段抛物线,其中OA=16.9米,OB=13米(轨道厚度忽略不计).(1)求抛物线A→B→C的函数表达式;(2)在轨道上有两个位置P和C到地面的距离均为n米,当过山车运动到C处时,又进入下坡段C→E (接口处轨道忽略不计,E为轨道最低点),已知轨道抛物线C→E→F的形状与抛物线A→B→C完全相同,E点坐标为(33,0),求n的值;(3)现需要对轨道下坡段A→B进行安全加固,建造某种材料的水平和竖直支架GD、GM、HI、HN,且要求MN=2OM,已知这种材料的价格是100000元/米,请计算OM多长时,造价最低?最低造价为多少元?30.(2023•利辛县模拟)如图,某小区的景观池中安装一雕塑OA,OA=2米,在点A处安装喷水装置,喷出两股水流,两股水流可以抽象为平面直角坐标系中的两条抛物线(图中的C1,C2)的部分图象,两条抛物线的形状相同且顶点的纵坐标相同,且经测算发现抛物线C2的最高点(顶点)C距离水池面2.5米,且与OA的水平距离为2米.(1)求抛物线C2的解析式;(2)求抛物线C1与x轴的交点B的坐标;(3)小明同学打算操控微型无人机在C1,C2之间飞行,为了无人机的安全,要求无人机在竖直方向上的活动范围不小于0.5米,设无人机与OA的水平距离为m,求m的取值范围.。

二次函数实际应用题

二次函数实际应用题

1. 为迎接第四届世界太阳城大会,德州市把主要路段路灯更换为太阳能路灯.已知太阳能路灯售价为5000元/个,目前两个商家有此产品.甲商家用如下方法促销:若购买路灯不超过100个,按原价付款;若一次购买100个以上,且购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3500元/个.乙店一律按原价的80℅销售.现购买太阳能路灯x个,如果全部在甲商家购买,则所需金额为y1元;如果全部在乙商家购买,则所需金额为y2元.(1)分别求出y1、y2与x之间的函数关系式;(2)若市政府投资140万元,最多能购买多少个太阳能路灯?2.某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于340元.设每个房间的房价每天增加x元(x为10的整数倍).(1)设一天订住的房间数为y,直接写出y与x的函数关系式及自变量x的取值范围;(2)设宾馆一天的利润为w元,求w与x的函数关系式;(3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?3.红星食品厂独家生产具有地方特色的某种食品,产量y1(万千克)与销售价格x(元/千克)(2≤x≤10)满足函数关系式y1=0.5x+11.经市场调查发现:该食品市场需求量y2(万千克)与销售价格x(元/千克)(2≤x≤10)的关系如图所示.当产量小于或等于市场需求量时,食品将被全部售出;当产量大于市场需求量时,只能售出符合市场需求量的食品,剩余食品由于保质期短将被无条件销毁.(1)求y2与x的函数关系式;(2)当销售价格为多少时,产量等于市场需求量?(3)若该食品每千克的生产成本是2元,试求厂家所得利润W(万元)与销售价格x(元/千克) (2≤x≤10)之间的函数关系式.4.某商店经营一种小商品,进价为2.5元,据市场调查,销售单价是13.5元时平均每天销售量是500件,而销售单价每降低1元,平均每天就可以多售出100件.(1)假设每件商品降低x元,商店每天销售这种小商品的利润是y元,请你写出y与x的之间的函数关系式,并注明x的取值范围;(2)每件小商品销售价是多少元时,商店每天销售这种小商品的利润最大?最大利润是多少?(注:销售利润=销售收入-购进成本)5.恩施州绿色、富硒产品和特色农产品在国际市场上颇具竞争力,其中香菇远销日本和韩国等地.上市时,外商李经理按市场价格10元/千克在我州收购了2000千克香菇存放入冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出各种费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售.(1)若存放x天后,将这批香菇一次性出售,设这批香菇的销售总金额为y元,试写出y 与x之间的函数关系式.(2)李经理想获得利润22500元,需将这批香菇存放多少天后出售?(利润=销售总金额-收购成本-各种费用)(3)李经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少?6.已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。

二次函数应用题集锦

二次函数应用题集锦

二次函数应用题集锦一、二次函数的实际应用--商品问题1.已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。

据市场调查反映:如果调整价格,每涨价1元,每星期要少卖出10件。

要想获得最大利润,该商品应定价为多少元?分析:若设销售单价定为x元,每周的利润为y元。

那么每件商品的利润可表示为(x-40)元,每周的销售量可表示为[300-10(x-60)]件,一周的利润可表示为y=(x-40)[300-10(x-60)] 元,要想获得最大利润可得Y=(x-40)[300-10(x-60)]=(x-40)(900-10x)=-10x²+1300x-36000=-10(x-65)²+6250所以当x=65时,所获得的利润最大为6250元,即商品定价为65元时,可获得最大利润为6250元。

如设销售单价涨了x元,那么每件商品的利润可表示为(20+x) 元,每周的销售量可表示为(300-10x) 件,一周的利润可表示为(20+x)(300-10x) 元,每周获得利润为y=(20+x)(300-10x) =-10(x-5)²+6250当x=5时y的最大值为6250,即当定价:60+5=65元时可获得最大利润为6250元。

2.已知某商品的进价为每件40元。

现在的售价是每件60元,每星期可卖出300件。

市场调查反映:如调整价格,每涨价一元,每星期要少卖出10件;每降价一元,每星期可多卖出20件。

如何定价才能使利润最大?解:设每件涨价为x元时获得的总利润为y元,则y =(60-40+x)(300-10x)=(20+x)(300-10x) (0≤x≤30)=-10x²+100x+6000=-10(x²-10x-600)=-10[(x-5)²-25-600]=-10(x-5)²+6250当x=5时,y的最大值是6250定价:60+5=65(元)第二问解:设每件降价x元时的总利润为y元.y=(60-40-x)(300+20x)=(20-x)(300+20x)=-20x²+100x+6000=-20(x²-5x-300)=-20(x-2.5)²+6125 (0≤x≤20)所以定价为60-2.5=57.5时利润最大,最大值为6125元.答:综合以上两种情况,定价为65元时可获得最大利润为6250元.已知某商品的进价为每件40元。

二次函数应用题(含答案)

二次函数应用题(含答案)

二次函数应用题一、选择题1.烟花厂为扬州烟花三月经贸旅游节特别设计制作一种新型礼炮,这种礼炮的升空高度与飞行时间t(s)的关系式是,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为( ) A.3s B.4s C.5s D.6s 2.一件工艺品进价为100元,标价135元售出,每天可售出100件.根据销售统计,一件每件需降价的钱工艺品每降价1元出售,则每天可多售出4件,要使每天获得的利润最大,要使每天获得的利润最大,每件需降价的钱数为( ) A.5元B.10元C.0元D.3600元3.一个运动员打高尔夫球,若球的飞行高度y(m)与水平距离x(m)之间的函数表达式为之间的函数表达式为,则高尔夫球在飞行过程中的最大高度为( ) A.10m B.20m C.30m D.60m 4.由表格中信息可知,若设,则下列y与x之间的函数关系式正确的是( ) 由表格中信息可知,若设x -1 0 118 3A.B.C.D.5.一人乘雪橇沿如图所示的斜坡笔直滑下,滑下的距离S(米)与时间t(秒)间的关系式为,若滑到坡底的时间为2秒,则此人下滑的高度为( ) A.24米B.12米C.米D.6米6.小敏在某次投篮中,球的运动路线是抛物线的一部分(如图),若命中篮圈中心,则他与篮底的距离是( ) A.3.5m B.4m C.4.5m D.4.6m 7.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,其一年中获得的利润y和月份n之间函数关系式为,则该企业一年中应停产的月份是( ) A.1月、2月、3月B.2月、3月、4月C.1月、2月、12月D.1月、11月、12月8.如图,点C是线段AB上的一个动点,AB=1,分别以AC和CB为一边作正方形,用S 表示这两个正方形的面积之和,下列判断正确的是( ) A.当C是AB的中点时,S最小最大最小 B.当C是AB的中点时,S最大C.当C为AB的三等分点时,S最小最大最小 D.当C为AB的三等分点时,S最大二、填空题9.如图,已知等腰直角△ABC的直角边长与正方形MNPQ的边长均为20厘米,AC与MN在同一直线上,开始时点A与点N重合,让△ABC以每秒2厘米的速度向左运动,最终点A与点M重合,则重叠部分面积y(厘米2)与时间t(秒)之间的函数关系式为_______.10.军事演习在平坦的草原上进行,一门迫击炮发射的一发炮弹飞行的高度.y(m)与飞行时军事演习在平坦的草原上进行,一门迫击炮发射的一发炮弹飞行的高度.间x(s)的关系满足.经过________秒时间炮弹到达它的最高点,最高点的秒时间,炮弹落到地上爆炸了.高度是________米,经过________秒时间,炮弹落到地上爆炸了.11.2006年,某市的国民生产总值是3000亿元,预计2007年比2006年、2008年比2007年每年增长率为x,则2007年这个市的国民生产总值为________亿元;设2008年该市的国次函数. 民生产总值为y亿元,则y与x之间的函数关系为________,y是x的________次函数.三、解答题12.为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m)的空地上修建一个矩形绿化带ABCD,绿化带一边靠墙,另三边用总长为40m的栅栏围住(如图).若设绿化带的BC边长为,绿化带的面积为.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;的取值范围;(2)当x为何值时,满足条件的绿化带的面积最大? 13.某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格出售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.箱.(1)求平均每天销售量(箱)与销售价(元/箱)之间的函数关系式.之间的函数关系式.(2)求该批发商平均每天的销售利润(元)与销售价(元/箱)之间的函数关系式.之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少? 14.我市某外资企业生产的一批产品上市后30天内全部售完,该企业对这批产品上市后每天的销售情况进行了跟踪调查.其中,国内市场的日销售量(万件)与时间(为整数,单位:天)的部分对应值如下表所示.而国外市场的日销售量(万件)与时间(为整数,单位:的关系如右图所示.天)的关系如右图所示.(1)请你从所学过的一次函数、二次函数和反比例函数中确定哪种函数能表示与的变化规律,写出化规律,写出的取值范围;与的函数关系式及自变量的取值范围;(2)分别探求该产品在国外市场上市20天前(不含第20天)与20天后(含第20天)的日销售量与时间所的取值范围;符合的函数关系式,并写出自变量的取值范围;(3)设国内、外市场的日销售总量为y万件,写出y与时间的函数关系式,并判断上市第几天国内、外市第几天国内、外市最大,并求出此时的最大值.场的日销售总量y最大,并求出此时的最大值.15.如图所示是永州八景之一的愚溪桥,.如图所示是永州八景之一的愚溪桥,桥身横跨愚溪,桥身横跨愚溪,桥身横跨愚溪,面临潇水,面临潇水,面临潇水,桥下冬暖夏凉,桥下冬暖夏凉,常有渔船停泊桥下避晒纳凉.船停泊桥下避晒纳凉.已知主桥拱为抛物线型,已知主桥拱为抛物线型,已知主桥拱为抛物线型,在正常水位下测得主拱宽在正常水位下测得主拱宽24m ,最高点离水面8m ,以水平线AB 为x 轴,AB 的中点为原点建立坐标系.的中点为原点建立坐标系. ①求此桥拱线所在抛物线的解析式.求此桥拱线所在抛物线的解析式. ②桥边有一浮在水面部分高4m ,最宽处的河鱼餐船,试探索此船能否开到桥下?说明理由.说明理由.16.如图,足球场上守门员在O 处开出一高球,球从离地面1米的A 处飞出(A 在y 轴上),运动员乙在距O 点6米的B 处发现球在自己头的正上方达到最高点M ,距地面约4米高,球落地后又一次弹起.球落地后又一次弹起.据实验,据实验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最最大高度减少到原来最大高度的一半.大高度减少到原来最大高度的一半.(1)求足球开始飞出到第一次落地时,该抛物线的表达式.求足球开始飞出到第一次落地时,该抛物线的表达式. (2)足球第一次落地点C 距守门员多少米?(取) (3)运动员乙要抢到第二个落点D ,他应再向前跑多少米?(取) 17.在平面直角坐标系中,已知二次函数的图象与轴相交于点A,B,顶点为C,点D在这个二次函数图象的对称轴上.若四边形ABCD是一个边长为2且有一个内角为60°的菱形.求此二次函数的表达式.的菱形.求此二次函数的表达式.参考答案一、选择题1.B 2.A 3.A 4.A 5.B 6.B 7.C 8.A 二、填空题9.10.25;125;5011.3000(1+x);y=3000(1+x)2,二,二 三、解答题12.自变量的取值范围是(2)∵,所以当时,有最大值200. 即当时,满足条件的绿化带的面积最大. 13.(1)化简得:(2)(3)∵,∴抛物线开口向下. 的增大而增大有最大值 又,随的增大而增大当时,有最大值∴当元时,的最大值为1125元∴当每箱苹果的销售价为55元时,可以获得1125元的最大利润. 14.解:(1)(0≤≤30,为整数)为整数)(2)从图中可知,当0≤20时,是的正比例函数,且图象过点(20,40),设,把点(20,40)代入,得.∴当0≤20时,. 当20≤≤30时,是的一次函数,且它的图象过点(20,40),(30,0),,得设,把(20,40),(30,0)代入,得解得∴. ∴(3)由,得当时,∵为整数,∴当时,最大值为79.8万件. 当时,∵随的增大而减小,∴当时,最大值为80万件. 综上所述,上市后第20天国内外市场日销售总量值最大,最大值为80万件. 15.解:(1)A(-12,0),B(12,0),C(0,8).设抛物线为C点坐标代入得:c=8 A,B点坐标代入得:解得,所求抛物线为(2)当时得,∴高出水面4m处,拱宽(船宽),所以此船在正常水位时不可以开到桥下. 16.解:(1)如图,设第一次落地时,抛物线的表达式为由已知:当时即,∴∴表达式为(或);(2)令,∴,(舍去). ∴足球第一次落地距守门员约13米. (3)解法一:如图,第二次足球弹出后的距离为CD 根据题意:CD=EF(即相当于抛物线AEMFC向下平移了2个单位) ∴解得,. ∴∴ BD=13-6+10=17(米). 解法二:令解得(舍),∴点C坐标为(13,0). 设抛物线CND为. 将C点坐标代入得:解得:(舍去),. 令(舍去),∴ BD=23-6=17(米). 解法三:由解法二知,,所以CD=2(18-13)=10,所以BD=(13-6)+10=17. 答:他应再向前跑17米. 17.解:本题共4种情况. 设二次函数的图象的对称轴与轴相交于点E. (1)如图①,当∠CAD=60°时,因为ACBD是菱形,一边长为2,所以DE=1,BE=,所以点B的坐标为,点C的坐标为(1,-1),解得. 所以(2)如图②,当∠ACB=60°时,由菱形性质知点A的坐标为(0,0),点C的坐标为(1,).解得,,所以. 同理可得:(3),(4),所以符合条件的二次函数的表达式有:所以符合条件的二次函数的表达式有:,,,。

二次函数与实际问题综合训练题精选(含18题)

二次函数与实际问题综合训练题精选(含18题)

二次函数与实际问题综合训练题精选(含18题)1.下图表示近5年来某市的财政收入情况.图中x轴上1,2,…,5依次表示第1年,第2年,…,第5年,即1997年,1998年,…,2001年,可以看出,图中的折线近似于抛物线的一部分.(1)请你求出过A、C、D三点的二次函数的解析式;(2)分别求出当x=2和x=5时,(1)中的二次函数的函数值;并分别与B、E两点的纵坐标相比较;(3)利用(1)中的二次函数的解析式预测今年该市的财政收入.2.已知商家购进一批产品,成本为10元/件,拟采取线上和线下两种方式进行销售.调查发现,线下的月销售量y(单位:件)与线下售价x(单位:元/件,12≤x<24)满足一次函数关系,部分数据如表:x(元/件)13141516y(件)11001000900800(1)求y与x的函数关系式;(2)当线下售价x为多少时,线下月销售量最大,最大是多少件?(3)若线上售价始终比线下每件便宜2元,且线上的月销售量固定为400件.①求出总利润w(单位:元)与线下售价x(单位:元/件,12≤x<24)的函数关系式;②回忆一次函数的概念,请你给上一问求出的函数命名,并用字母表示出它的一般形式.3.如图(单位:m),等腰直角三角形ABC以2米/秒的速度沿直线L向正方形移动,直到AB与CD重合.设x秒时,三角形与正方形不重叠部分的面积为ym2.(1)写出y与x的关系式,并写出自变量x的取值范围;(2)请画出此函数的图象;(3)当不重叠部分的面积是三角形面积的一半时,三角形移动了多长时间?4.某同学练习推铅球,铅球推出后在空中飞行的路线是一条抛物线,铅球在离地面0.5米高的A处推出,推出后达到最高点B时的高度是2.5米,水平距离是4米,铅球在地面上点C处着地.(1)根据如图所示的直角坐标系求抛物线的解析式;(2)这个同学推出的铅球有多远?5.如图是一种新型娱乐设施的示意图,x轴所在位置记为地面,平台AB∥x轴,OA=6米,AB=2米,BC是反比例函数y=的图象的一部分,CD是二次函数y=﹣x2+mx+n图象的一部分,连接点C为抛物线的顶点,且C点到地面的距离为2米,D点是娱乐设施与地面的一个接触点.(1)试求k,m,n的值;(2)试求点B与点D的水平距离.6.我市某文具厂生产一种签字笔,已知这种笔的生产成本为每支6元.经市场调研发现:批发该种签字笔每天的销售量y(支)与售价x(元/支)之间存在着如下表所示的一次函数关系:售价x(元/支)…78…销售量y (支) … 300 240 …(利润=(售价﹣成本)×销售量)(1)求销售量y (支)与售价x (元/支)之间的函数关系式;(2)求销售利润W (元)与售价x (元/支)之间的函数关系式;(3)试问该厂应当以每支签字笔多少元出售时,才能使每天获得的利润最大?最大利润是多少元?7.如图,某公路隧道横截面为抛物线,其最大高度为6米,底部宽度AB 长12米.(1)请以AB 所在直线为x 轴(射线AB 的方向为正方向),线段AB 的垂直平分线为y 轴建立平面直角坐标系,求出抛物线的解析式;(2)若要搭建一个矩形“支架CD ﹣DE ﹣EF ,使D 、E 两点在抛物线上,C 、F 两点在地面AB 上,若AC =2米,求支架的总长度.8.九年级数学兴趣小组经过市场调查,得到某种运动服进价为每件60元,每月的销量与售价的相关信息如表:售价x (元/件)100 110 120 130 … 月销量y (件) 200 180 160 140 … 设该运动服的售价为x 元.(1)请用含x 的式子表示:①销售该运动服每件的利润是 元,②月销量是 件.(直接写出结果);(2)若要在月销售成本不超过10000元的情况下,使月销售利润达到8000元,销售单价应定为多少?(3)设销售该运动服的月利润为y 元,那么售价为多少时,当月的利润最大,最大利润是多少?9.某服装经销商甲,库存有进价每套400元的A 品牌服装1200套,正常销售时每套600元,每月可卖出100套,一年内刚好卖完,现在市场上流行B品牌服装,此品牌服装进价每套200元,售出价每套500元,每月可卖出120套(两套服装的市场行情互不影响).目前有一可进B品牌的机会,若这一机会错过,估计一年内进不到这种服装,可是,经销商手头无流动资金可用,只有低价转让A品牌服装,经与经销商乙协商,达成协议,转让价格(元/套)与转让数量(套)有如下关系:120011001000900800700600500400300200100转让数量(套)价格240250260270280290300310320330340350(元/套)方案1:不转让A品牌服装,也不经销B品牌服装;方案2:全部转让A品牌服装,用转让来的资金购B品牌服装后,经销B品牌服装;方案3:部分转让A品牌服装,用转让来的资金购B品牌服装后,经销B品牌服装,同时经销A品牌服装.问:①经销商甲选择方案1与方案2一年内分别获得利润各多少元?②经销商甲选择哪种方案可以使自己一年内获得最大利润?若选用方案3,请问他转让给经销商乙的A品牌服装的数量是多少(精确到百套)?此时他在一年内共得利润多少元?10.一个圆形喷水池的中心竖立一根高为2.25m顶端装有喷头的水管,喷头喷出的水柱呈抛物线形.当水柱与池中心的水平距离为1m时,水柱达到最高处,高度为3m.(1)求水柱落地处与池中心的距离;(2)如果要将水柱的最大高度再增加1m,水柱的最高处与池中心的水平距离以及落地处与池中心的距离仍保持不变,那么水管的高度应是多少?11.某水果商将一种高档水果放在商场销售,该种水果成本价为10元/kg,售价为40元/kg,每天可销售20kg.调查发现,销售单价每下降1元,每天的销售量将增加5kg.(1)直接写出每天的销售量y(kg)与降价x(元)之间的函数关系式;(2)降价多少元时,每天的销售额w元最大,最大是多少元?(销售额=售价×数量)(3)每销售1kg水果,需向商场缴纳柜台费a元(a>0),水果商计划租赁柜台20天,为了促销,决定开展“每天降价1元”活动,即从第1天开始,每天的销售单价比前一天下降1元(第1天的销售单价为39元),经测算发现,销售的前11天,每天的利润Q 元随销售天数t(t为正整数)的增大而增大,试确定a的取值范围.(利润=销售额﹣成本﹣柜台费)12.实际测试表明1千克重的干衣物用水洗涤后拧干,湿重为2千克,今用浓度为1%的洗衣粉溶液洗涤0.5千克干衣物,然后用总量为20千克的清水分两次漂洗.假设在洗涤和漂洗的过程中,残留在衣物中的溶液浓度和它所在的溶液中的浓度相等,且每次洗、漂后都需拧干再进入下一道操作.问怎样分配这20千克清水的用量,可以使残留在衣物上的洗衣粉溶液浓度最小,残留在衣物上的洗衣粉有多少毫克?(保留3个有效数字)(溶液浓度=×100%,1千克=106毫克)13.某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x件.已知产销两种产品的有关信息如表:产品每件售价(万元)每件成本(万元)每年其他费用(万元)每年最大产销量(件)甲8a20200乙201030+0.05x290其中a为常数,且5≤a≤7(1)若产销甲、乙两种产品的年利润分别为y1万元、y2万元,直接写出y1、y2与x的函数关系式;(注:年利润=总售价﹣总成本﹣每年其他费用)(2)分别求出产销两种产品的最大年利润;(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.14.善于不断改进学习方法的小迪发现,对解题进行回顾反思,学习效果更好.某一天小迪有20min时间可用于学习.假设小迪用于解题的时间x(min)与学习收益量y的关系如图①所示,用于回顾反思的时间x(min)与学习收益量y的关系如图②所示(其中OA 是抛物线的一部分,A为抛物线的顶点),且用于回顾反思的时间不超过用于解题的时间.(1)求小迪解题的学习收益量y与用于解题的时间x之间的函数关系式;(2)求小迪回顾反思的学习收益量y与用于回顾反思的时间x的函数关系式;(3)小迪如何分配解题和回顾反思的时间,才能使这20min的学习收益总量最大?15.为了扩大内需,让惠于农民,丰富农民的业余生活,鼓励送彩电下乡,国家决定对购买彩电的农户实行政府补贴.规定每购买一台彩电,政府补贴若干元,经调查某商场销售彩电台数y(台)与补贴款额x(元)之间大致满足如图①所示的一次函数关系.随着补贴款额x的不断增大,销售量也不断增加,但每台彩电的收益z(元)会相应降低且z与x之间也大致满足如图②所示的一次函数关系.(1)在政府未出台补贴措施前,该商场销售彩电的总收益额为多少元?(2)在政府补贴政策实施后,分别求出该商场销售彩电台数y和每台家电的收益z与政府补贴款额x之间的函数关系式;(3)要使该商场销售彩电的总收益w(元)最大,政府应将每台补贴款额x定为多少并求出总收益w的最大值.16.为了解都匀市交通拥堵情况,经统计分析,都匀彩虹桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度为20辆/千米时,车流速度为80千米/小时.研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.(1)求彩虹桥上车流密度为100辆/千米时的车流速度;(2)在交通高峰时段,为使彩虹桥上车流速度大于40千米/小时且小于60千米/小时,应控制彩虹桥上的车流密度在什么范围内?(3)当车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.当20≤x≤220时,求彩虹桥上车流量y的最大值.17.我市一家电子计算器专卖店每只进价12元,售价20元,多买优惠;凡是一次买10只以上的,每多买1只,所买的全部计算器每只就降低0.10元,例如,某人买20只计算器,于是每只降价0.10×(20﹣10)=1(元),因此,所买的全部20只计算器都按照每只19元计算,但是最低价为每只16元.(1)求一次至少买多少只,才能以最低价购买;(2)求该专卖店当一次销售x只时(x>10),所获利润y(元)与x(只)之间的函数关系式,并写出自变量x的取值范围;(3)若店主一次卖的只数在10至50只之间,问一次卖多少只获得的利润最大?其最大利润为多少元?18.我市某外资企业生产的一批产品上市后30天内全部售完,该企业对这批产品上市后每天的销售情况进行了跟踪调查.其中,国内市场的日销售量y1(万件)与时间t(t为整数,单位:天)的部分对应值如下表所示.而国外市场的日销售量y2(万件)与时间t (t为整数,单位:天)的关系如图所示.(1)请你从所学过的一次函数、二次函数和反比例函数中确定哪种函数能表示y1与t 的变化规律,写出y1与t的函数关系式及自变量t的取值范围;(2)分别探求该产品在国外市场上市20天前(不含第20天)与20天后(含第20天)的日销售量y2与时间t所符合的函数关系式,并写出相应自变量t的取值范围;(3)设国内、外市场的日销售总量为y万件,写出y与时间t的函数关系式,并判断上市第几天国内、外市场的日销售总量y最大,并求出此时的最大值.0510********时间t(天)025*********日销售量y1(万件)。

2023年中考数学 二次函数实际应用问题 函数综合 专项练习(无答案)

2023年中考数学 二次函数实际应用问题 函数综合 专项练习(无答案)

【二次函数实际应用题+函数综合】专项练习1.某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:①该产品90天内日销售量(m件)与时间(第x天)满足一次函数关系,部分数据如下表:时间(第x天)13610…日销售量(m件)198194188180…②该产品90天内每天的销售价格与时间(第x天)的关系如下表:时间(第x天)1≤x<5050≤x≤90销售价格(元/件)x+60100(1)求m关于x的一次函数表达式;(2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品哪天的销售利润最大?最大利润是多少?(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.2.在平面直角坐标系中,已知抛物线y=x2+bx+c与x轴交于点A(﹣1,0)和点B,与y轴交于点C(0,﹣2).(1)求该抛物线的表达式,并写出其对称轴;(2)点D为该抛物线的顶点,设点E(m,0)(m>2),如果△BDE和△CDE的面积相等,求E点坐标.3.某花木公司生产的花卉产品年产量为6万件,每年可通过在网上销售和批发部销售全部售完.该花卉产品平均每件产品的利润与销售的关系如表:销售量(万件)平均每件产品的利润(元)网上销售x当0<x≤2时,y1=140当2≤x<6时,y1=﹣5x+150批发部销售n当0<n≤2时,y2=120当2≤n<6时,y2=﹣5n+130(1)①当网上销售量为4.2万件时,y1=;y2=②y2与x的函数关系为:当0<x≤时,y2=;当≤x<6时,y2=120.(2)求每年该公司销售这种花卉产品的总利润w(万元)与网上销售数量x(万件)的函数关系式,并指出x的取值范围;(3)该公司每年网上、批发部的销售量各为多少万件时,可使公司每年的总利润最大?最大值为多少万元?4.如图,在平面直角坐标系中,四边形ABCD是矩形,AD∥x轴,A(﹣,3 ),AB=2,AD=3.(1)直接写出B、C、D三点的坐标;(2)将矩形ABCD向右平移m个单位,使点A、C恰好同时落在反比例函数y=(x>0)的图象上,得矩形A'B'C'D'.求矩形ABCD的平移距离m和反比例函数的解析式.5.某电子科技公司开发一种新产品,公司对经营的盈亏情况每月最后一天结算1次.在1~12月份中,公司前x个月累计获得的总利润y(万元)与销售时间x(月)之间满足二次函数关系式y=a (x﹣h)2+k,二次函数y=a(x﹣h)2+k的一部分图象如图所示,点A为抛物线的顶点,且点A、B、C的横坐标分别为4、10、12,点A、B的纵坐标分别为﹣16、20.(1)试确定函数关系式y=a(x﹣h)2+k;(2)分别求出前9个月公司累计获得的利润以及10月份一个月内所获得的利润;(3)在前12个月中,哪个月该公司一个月内所获得的利润最多?最多利润是多少万元?6.如图,直线y=k1x+b1与反比例函数y=的图象及坐标轴依次相交于A、B、C、D四点,且点A坐标为(﹣3,),点B坐标为(1,n).(1)求反比例函数及一次函数的解析式;(2)求证:AC=BD;(3)若将一次函数的图象上下平移若干个单位后得到y=k1x+n,其与反比例函数图象及两坐标轴的交点仍然依次为A、B、C、D.(2)中的结论还成立吗?请写出理由,对于任意k<0的直线y=kx+b.(2)中的结论还成立吗?(请直接写出结论)7.大圩葡萄味美多汁,深受消费者喜爱.某品种的葡萄采摘后常温保存最多只能存放一周,如果立即放在冷库中保存则可适当延长保鲜时间(保鲜期延长最多不超过120天).另外冷藏保鲜时每天仍有一定数量的葡萄变质,保鲜期内的葡萄因水分流失损失的质量可忽略不计.现有一位个体户,按市场价10元/千克收购了这种葡萄2000千克放在冷库室内保鲜,据测算,伺候每千克鲜葡萄的市场价格每天可以上涨0.2元,但是,存放一天需各种费用20元,平均每天还有10千克葡萄变质丢弃.(1)存放x天后将这批葡萄一次性出售,设这批葡萄的销售金额为y元,写出y关于x的函数关系式,并说明销售金额y随存放天数x的变化情况;(2)考虑资金周转因式,该个体户决定在两个月(每月以30天计算)内将这批葡萄一次性出售,问该个体户将这批葡萄存放多少天后出售,可获得最大利润?最大利润时多少元?8.某生态农业园种植的青椒除了运往市区销售外,还可以让市民亲自去生态农业园购买.已知今年5月份该青椒在市区、园区的销售价格分别为6元/千克、4元/千克,今年5月份一共销售了3000千克,总销售额为16000元.(1)今年5月份该青椒在市区、园区各销售了多少千克?(2)6月份是青椒产出旺季.为了促销,生态农业园决定6月份将该青椒在市区、园区的销售价格均在今年5月份的基础上降低a%,预计这种青椒在市区、园区的销售量将在今年5月份的基础上分别增长30%、20%,要使6月份该青椒的总销售额不低于18360元,则a的最大值是多少?9.如图,已知抛物线经过点A(﹣2,0),B(﹣3,3)及原点O,顶点为C.(1)求抛物线的函数解析式;(2)连接BC交x轴于点F.试在y轴负半轴上找一点P,使得△POC∽△BOF.10.某企业生成一种节能产品,投放市场供不应求.若该企业每月的产量保持在一定的范围,每套产品的生产成本不高于50万元,每套产品的售价不低于120万元.已知这种产品的月产量x(套)与每套的售价y1(万元)之间满足关系式y1=190﹣2x.月产量x(套)与生成总成本y2(万元)存在如图所示的函数关系.(1)直接写出y2(2)与x之间的函数关系式;(3)求月产量x的取值范围;(4)当月产量x(套)为多少时,这种产品的利润W(万元)最大?最大利润是多少?11.如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.12.如图,一次函数y=﹣x+5的图象与反比例函数y=(k≠0)在第一象限的图象交于A(1,n)和B两点.(1)求反比例函数的解析式与点B坐标;(2)求△AOB的面积;(3)在第一象限内,当一次函数y=﹣x+5的值小于反比例函数y=(k≠0)的值时,写出自变量x的取值范围.13、某品牌手机去年每台的售价y(元)与月份x之间满足函数关系:y=﹣50x+2600,去年的月销量p(万台)与月份x之间成一次函数关系,其中1﹣6月份的销售情况如下表:(1)求p关于x的函数关系式;(2)求该品牌手机在去年哪个月的销售金额最大?最大是多少万元?(3)今年1月份该品牌手机的售价比去年12月份下降了m%,而销售量也比去年12月份下降了1.5m%.今年2月份,经销商决定对该手机以1月份价格的“八折”销售,这样2月份的销售量比今年1月份增加了1.5万台.若今年2月份这种品牌手机的销售额为6400万元,求m的值.14、某社区决定把一块长50m,宽30m的矩形空地建成居民健身广场,设计方案如图,阴影区域为绿化区(四块绿化区为大小、形状都相同的矩形),空白区域为活动区,且四周的4个出口宽度相同,其宽度不小于14m,不大于26m,设绿化区较长边为xm,活动区的面积为ym2.为了想知道出口宽度的取值范围,小明同学根据出口宽度不小于14m,算出x≤18.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)求活动区的最大面积;(3)预计活动区造价为50元/m2,绿化区造价为40元/m2,若社区的此项建造投资费用不得超过72000元,求投资费用最少时活动区的出口宽度?月份(x)1月2月3月4月5月6月销售量(p) 3.9万台 4.0万台 4.1万台 4.2万台 4.3万台 4.4万台15、一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg,销售单价不低于120元/kg.且不高于180元/kg,经销一段时间后得到如下数据:销售单价x(元/kg)120130 (180)每天销量y(kg)10095 (70)设y与x的关系是我们所学过的某一种函数关系.(1)直接写出y与x的函数关系式,并指出自变量x的取值范围;(2)当销售单价为多少时,每天销售利润最大?最大利润是多少?16、水库90天内的日捕捞量y(kg)与时间第x(天)满足一次函数的关系,部分数据如表:时间第x(天)13610日捕捞量(kg)198194188180(1)求出y与x之间的函数解析式;(2)水库前50天采用每天降低水位的办法减少捕捞成本,到达最低水位标准后,后40天水库维持最低水位进行捕捞.捕捞成本和时间的关系如下表:时间第x(天)1≤x<5050≤x≤90捕捞成本(元/kg)60﹣x10已知鲜鱼销售单价为每千克70元,假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出.设销售该鲜鱼的当天收入w元(当天收入=日销售额﹣日捕捞成本),①请写出w与x之间的函数解析式,并求出90天内哪天收入最大?当天收入是多少?②若当天收入不低于4800元,请直接写出x的取值范围?17、某公司生产A种产品,它的成本是6元/件,售价是8元/件,年销售量为5万件.为了获得更好的效益,公司准备拿出一定的资金做广告,根据经验,每年投入的广告费是x万元,产品的年销售量将是原销售量的y倍,且y与x之间满足我们学过的二种函数(即一次函数和二次函数)关系中的一种,它们的关系如下表:x(万元)00.51 1.52…y1 1.275 1.5 1.675 1.8…(1)求y与x的函数关系式(不要求写出自变量的取值范围)(2)如果把利润看作是销售总额减去成本费用和广告费用,试求出年利润W(万元)与广告费用x(万元)的函数关系式,并计算每年投入的广告费是多少万元时所获得的利润最大?(3)如果公司希望年利润W(万元)不低于14万元,请你帮公司确定广告费的范围.18、合肥周谷堆农副产品批发市场某商铺购进一批红薯,通过商店批发和在淘宝网上进行销售,首月进行了销售情况的统计.其中商店日批发量y1(百斤)与时间x(x为整数,单位:天)的部分对应值如下表所示;在淘宝网上的日销售量y2(百斤)与时间x(x为整数,单位:天)的部分对应值如图所示.时间x(天)0510********日批发量y1(百斤)025*********(1)请你在一次函数、二次函数和反比例函数中,选择合适的函数能反映y1与x之间的函数关系式;(2)求y2与x之间的函数关系式;(3)设这个月中,日销售总量为y,求y与x之间的函数关系式;并求出当x为何值时,日销售总量y最大,最大值为多少?19、为满足市场需求,某超市购进一种品牌糕点,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种糕点的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售糕点多少盒?20、农民购买农机设备政府会给予一定额度的补贴,其中购买Ⅰ、Ⅱ型农机设备的金额与政府补贴的金额存在表所示的函数对应关系:型号Ⅰ型设备Ⅱ型设备金额购买金额x(万元)x1x24补贴金额y(万元)y1=kx(k≠0)0.4y2=ax2+bx(a≠0) 2.4 3.2(1)分别求出y1和y2的函数解析式;(2)张大伯打算共用10万元购买Ⅰ、Ⅱ两型农机设备.请你帮助张大伯设计一个能获得最大补贴金额的方案,并求出按此方案能获得的最大补贴金额.。

二次函数的实际应用解答题专项练习(原卷版)—2024-2025学年九年级数学上册(人教版)

二次函数的实际应用解答题专项练习(原卷版)—2024-2025学年九年级数学上册(人教版)

二次函数实际应用解答题专项训练类型一:几何图形的面积问题类型二:销售中的利润问题类型三:抛物线形的形状问题类型四:抛物线形的运动轨迹问题类型一:几何图形的面积问题1.如图,有长为30m的篱笆,一面利用墙(墙的最大可用长度为10m),围成中间隔有一道篱笆(平行于AB)的矩形花圃.设花圃的一边AB为x m,面积为y m2.(1)若要围成面积为63m2的花圃,则AB的长是多少?(2)求AB为何值时,使花圃面积最大,并求出花圃的最大面积.2.某养殖户准备围建一个矩形鸡舍,其中一边靠墙MN,另外的边(虚线部分)用长为28米的篱笆围成,并将矩形鸡舍分成两个相同的房间,每个房间并各留出宽1米的门方便进出.已知墙的长度为12米,设这个鸡舍垂直于墙的一边的长为x米,鸡舍的面积为S.(1)求S与x之间的函数关系式,并写出自变量x的取值范围;(2)求出鸡舍的面积S的最大值,此时x为多少米?3.如图,是400米跑道示意图,中间的足球场ABCD是矩形,两边是半圆,直道AB的长是多少?你一定知道是100米!可你也许不知道,这不仅仅为了比赛的需要,还有另外一个原因,等你做完本题就明白了.设AB=x米.(1)请用含x的代数式表示BC.(2)设矩形ABCD的面积为S.①求出S关于x的函数表达式.②当直道AB为多少米时,矩形ABCD的面积最大?4.春回大地,万物复苏,又是一年花季到.某花圃基地计划将如图所示的一块长40m,宽20m的矩形空地划分成五块小矩形区域.其中一块正方形空地为育苗区,另一块空地为活动区,其余空地为种植区,分别种植A,B,C三种花卉.活动区一边与育苗区等宽,另一边长是10m.A,B,C三种花卉每平方米的产值分别是2百元、3百元、4百元.(1)设育苗区的边长为x m,用含x的代数式表示下列各量:花卉A的种植面积是 m2,花卉B的种植面积是 m2,花卉C的种植面积是 m2.(2)育苗区的边长为多少时,A,B两种花卉的总产值相等?(3)若花卉A与B的种植面积之和不超过560m2,求A,B,C三种花卉的总产值之和的最大值.5.如图1,用一段长为33米的篱笆围成一个一边靠墙并且中间有一道篱笆隔墙的矩形ABCD菜园,墙长为12米.设AB的长为x米,矩形ABCD菜园的面积为S平方米.(1)分别用含x的代数式表示BC与S;(2)若S=54,求x的值;(3)如图2,若在分成的两个小矩形的正前方各开一个1.5米宽的门(无需篱笆),当x为何值时,S取最大值,最大值为多少?6.如图,某农户计划用篱笆围成一个矩形场地养殖家禽,为充分利用现有资源,该矩形场地一面靠墙(墙的长度为18m),另外三面用篱笆围成,中间再用篱笆把它分成三个面积相等的矩形分别养殖不同的家禽,计划购买篱笆的总长度为32m,设矩形场地的长为x m,宽为y m,面积为s m2.(1)分别求出y与x,s与x的函数解析式;(2)当x为何值时,矩形场地的总面积最大?最大面积为多少?(3)若购买的篱笆总长增加8m,矩形场地的最大总面积能否达到100m2?若能,请求出x的值;若不能,请说明理由.7.某家禽养殖场,用总长为200m的围栏靠墙(墙长为65m)围成如图所示的三块矩形区域,矩形EAGH 与矩形HGBF面积相等,矩形EAGH面积等于矩形DEFC面积的二分之一,设AD长为x m,矩形区域ABCD的面积为y m2.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)当x为何值时,y有最大值?最大值是多少?(3)现需要在矩形EAGH和矩形DEFC区域分别安装不同种类的养殖设备,单价分别为40元/平方米和20元/平方米,若要使安装成本不超过30000元,请直接写出x的取值范围.8.小明准备给长16米,宽12米的长方形空地栽种花卉和草坪,图中I、II、III三个区域分别栽种甲、乙、丙三种花卉,其余区域栽种草坪.四边形ABCD和EFGH均为正方形,且各有两边与长方形边重合,矩形MFNC(区域II)是这两个正方形的重叠部分,如图所示.(1)若花卉均价为450元/米2,种植花卉的面积为S(米2),草坪均价为300元/米2,且花卉和草坪裁种总价不超过65400元,求S的最大值;(2)若矩形MFNC满足MF:FN=1:3.①求MF,FN的长;②若甲、乙、丙三种花卉单价分别为150元/米2,80元/米2,150元/米2,且边BN的长不小于边ME长的倍.求图中I、II、II三个区域栽种花卉总价W元的最大值.9.阅读下列材料:利用完全平方公式,将多项式x2+bx+c变形为(x+m)2+n的形式,然后由(x+m)2≥0就可求出多项式x2+bx+c的最小值.例题:求多项式x2﹣4x+5的最小值.解:x2﹣4x+5=x2﹣4x+4+1=(x﹣2)2+1,因为(x﹣2)2≥0,所以(x﹣2)2+1≥1.当x=2时,(x﹣2)2+1=1.因此(x﹣2)2+1有最小值,最小值为1,即x2﹣4x+5的最小值为1.通过阅读,理解材料的解题思路,请解决以下问题:(1)【理解探究】已知代数式A=x2+10x+20,则A的最小值为 ;(2)【类比应用】张大爷家有甲、乙两块长方形菜地,已知甲菜地的两边长分别是(3a+2)米,(2a+5)米,乙菜地的两边长分别是5a米,(a+5)米,试比较这两块菜地的面积S甲和S乙的大小,并说明理由;(3)【拓展升华】如图,△ABC中,∠C=90°,AC=8cm,BC=12cm,点M、N分别是线段AC和BC上的动点,点M 从A点出发以1cm/s的速度向C点运动;同时点N从C点出发以2cm/s的速度向B点运动,当其中一点到达终点时,两点同时停止运动,设运动的时间为t秒,请直接写出△MCN的面积最大值.10.综合与实践,研究小组想利用在前面的空地围出一个,矩的函数表达式,同时求出自变量的取值范围,再结合函数性质求出的最大值:比较并判断矩形种植园的面积最类型二:销售中的利润问题11.麻花是我国的一种特色油炸面食小吃,其色、香、味俱全,品种多样,十分畅销.阳光超市购进了一批麻花礼盒进行销售,成本价为30元/件,根据市场预测,在一段时间内,销售单价为40元/件时,每天的销售量为300件,销售单价每提高10元/件,将少售出50件.(1)求超市销售该麻花礼盒每天的销售量y(件)与销售单价x(元/件)之间的函数关系式,并求出出变量取值范围;(2)当销售单价定为多少时,超市销售该麻花礼盒每天获得的利润最大?并求出最大利润.12.某乡镇贸易公司开设了一家网店,销售当地某种农产品,已知该农产品成本为每千克10元,调查发现,每天销售量y(kg)与销售单价x(元)满足如图所示的函数关系(其中10<x≤30)(1)写出y与x之间的函数关系式及自变量的取值范围;(2)当销售单价x为多少元时,每天的销售利润最大?最大利润是多少元?13.某文具商店用销售进价为28元/盒的彩色铅笔,市场调查发现,若以每盒40元的价格销售,平均每天销售80盒,价格每提高1元,平均每天少销售2盒,设每盒彩色铅笔的销售,价为x(x>40)元,平均每天销售y盒,平均每天的销售利润为W元.(1)直接写出y与x之间的函数关系式: .(2)求W与x之间的函数关系式.(3)为稳定市场,物价部门规定每盒彩色铅笔的售价不得高于50元,当每盒的销售价为多少元时,平均每天获得的利润最大?最大利润是多少元?14.某商品的进价为每件40元,售价为每件50元,每个月可卖出210件,如果每件商品的售价上涨1元,则每个月少卖10件(每件售价不能高于65元),设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1)若每件商品的售价定价为55元,则每个月可卖出 件;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)若在销售过程中每一件商品有a(a>2)元的其他费用,商家发现当售价每件不低于57元时,每月的销售利润随x的增大而减小,请求出a的取值范围.15.为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.小柳按照政策投资销售本市生产的一种网红螺蛳粉.已知这种网红螺蛳粉的成本价为每箱80元,出厂价为每箱100元,每月销售量y(箱)与销售单价x(元)之间满足函数关系:y=﹣2x+400.(1)小柳在开始销售的第1月将螺蛳粉的销售单价定为120元,这个月他销售该螺蛳粉可获利 元.(2)设小柳销售螺蛳粉获得的月利润为w(元),当销售单价为多少元时,月利润最大,最大利润是多少元?(3)物价部门规定,这种网红螺蛳粉的销售单价不得高于150元,那么政府每个月为他承担的总差价最少为多少元?16.某商场某商品现在的售价为每件60元,每星期可以卖出300件.市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出10件.已知商品的进价为每件40元.设售价为x元/件(x为正整数),每星期销售量为y件,每星期销售利润为W元.(1)直接写出y与x,W与x的函数解析式以及自变量x的取值范围;(26000元,那么该商品的售价是多少?(3)当该商品的售价定为多少时,每星期的销售利润最大?最大利润是多少?17.某食品厂生产一种半成品食材,成本为2元/千克,每天的产量p(百千克)与销售价格x(元/千克)满足函数关系式p=x+8,从市场反馈的信息发现,该半成品食材每天的市场需求量q(百千克)与销售价格x(元/千克)满足一次函数关系,部分数据如表:销售价格x(元/千克)24 (10)市场需求量q(百千克)1210 (4)当每天的产量不大于市场需求量时,这种半成品食材能全部售出;而当每天的产量大于市场需求量时,只能售出符合市场需求量的半成品食材,剩余的食材由于保质期短而只能废弃.已知销售价格不低于2元/千克,不得高于10元/千克.(1)直接写出q与x的函数关系式,并注明自变量x的取值范围;(2)当每天的产量不大于市场需求量时,求厂家每天获得的利润的最大值;(3)当每天的产量大于市场需求量时,求厂家每天获得的最大利润.18.某商场以每件20元的价格购进一种商品,规定这种商品每件售价不低于进价,又不高于36元,经市场调查发现:该商品每天的销售量y(件)与每件售价x(元)之间符合一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)该商场销售这种商品要想每天获得600元的利润,每件商品的售价应定为多少元?(3)设商场销售这种商品每天获利w(元),当每件商品的售价定为多少元时,每天销售利润最大?最大利润是多少?19.端午节是中华民族的传统节日,吃粽子是端午节的风俗之一.在今年端午节即将到来之际,某食品店以15元/盒的价格购进某种粽子,为了确定售价,食品店安排人员调查了附近A,B,C,D,E五个食品店近期该种粽子的售价与日销量情况.【数据整理】将调查数据按照一定顺序进行整理,得到下列表格:(1)分析数据的变化规律,发现日销售量与售价间存在我们学过的某种函数关系,请求出这种函数关系式(不要求写出自变量的取值范围);【拓广应用】(2)①要想每天获得198元的利润,应如何定价?②售价定为多少时,每天能获得最大利润?最大利润是多少?20.某农户在30天内采用线下店面和抖音平台带货两种方式销售一批农产品.其中一部分农产品在抖音平台带货销售,已知抖音平台带货销售日销售量y1(件)与时间x(天)关系如图所示.另一部分农产品在线下店铺销售,农产品的日销售量y2(件)与时间x(天)之间满足函数关系,其中部分对应值如表所示.销售时间x(天)0102030日销售量y2(件)07510075(1)写出y1与x的函数关系式及自变量x的取值范围;(2)试确定线下店铺日销售量y2与x的函数关系式并求出线下店铺日销售量y2的最大值;(3)已知该农户线下销售该农产品每件利润为20元,在抖音平台销售该农产品每件利润为30元,设该农户销售农产品的日销售总利润为w,写出w与时间x的函数关系式,并判断第几天日销售总利润w最大,并求出此时最大值.类型三:抛物线形的形状问题21.蔬菜大棚是一种具有出色的保温性能的框架覆膜结构,它的出现使人们可以吃到反季节蔬菜.如图,某菜农搭建了一个横截面为抛物线的大棚,宽度AB为8米,棚顶最高点距离地面高度OC为4米.以AB所在直线为x轴,OC所在直线为y轴建立平面直角坐标系.(1)求该抛物线的函数表达式;(2)若借助横梁DE(DE∥AB)在大棚正中建一个2米高的门(DE到地面AB的距离为2米),求横梁DE的长度是多少米?(结果保留根号)22.一条河上横跨着一座宏伟壮观的悬索桥.桥梁的缆索L1与缆索L2均呈抛物线型,桥塔AO与桥塔BC 均垂直于桥面,如图所示,以O为原点,以直线FF′为x轴,以桥塔AO所在直线为y轴,建立平而直角坐标系.已知:缆索L1所在抛物线与缆索L2所在抛物线关于y轴对称,桥塔AO与桥塔BC之间的距离OC=100m,AO=BC=17m,缆索L1的最低点P到FF′的距离PD=2m.(桥塔的粗细忽略不计)(1)求缆索L1所在抛物线的函数表达式;(2)点E在缆索L2上,EF⊥FF′,且EF=2.6m,FO<OD,求FO的长.23.如图①为某景区一长廊,该长廊顶部的截面可近似看作抛物线型,其跨度AB为2m,长廊顶部的最高点与地面的距离CD为3m,两侧的柱子OA、BE均垂直于地面,且高度为2.5m,线段OE表示水平地面,建立如图②所示的平面直角坐标系.(1)求该抛物线的函数表达式;(2)为了夜间美观,景区工作人员计划分别在距离A,B两端水平距离为0.5m处的抛物线型长廊顶部各悬挂一盏灯笼,且灯笼底部要保持离地面至少2.6m的安全距离,现市面上有一款长度为0.2m的小灯笼,试通过计算说明该款灯笼是否符合要求(忽略悬挂处长度).24.如图1某桥拱截面OBA可视为抛物线的一部分,在某一时刻,桥拱内的水面宽OA=8m,桥拱顶点B 到水面的距离是4m.(1)按如图1所示的坐标系,求该桥拱OBA的函数表达式;(2)要保证高2.26米的小船能够通过此桥(船顶与桥拱的距离不小于0.3米),求小船的最大宽度是多少?(3)如图2,桥拱所在的函数图象的抛物线的x轴下方部分与桥拱OBA在平静水面中的倒影组成一个新函数图象.现将新函数图象向右平移m(m>0)个单位长度,使得平移后的函数图象在9≤x≤10之间,且y随x的增大而减小,请直接写出m的取值范围.25.某一抛物线形隧道,一侧建有垂直于地面的隔离墙,其横截面如图所示,并建立平面直角坐标系.已知抛物线经过(0,3),,三点.(1)求抛物线的解析式(不考虑自变量的取值范围);(2)有一辆高5m,顶部宽4m的工程车要通过该隧道,该车能否正常通过?并说明理由;(3)现准备在隧道上A处安装一个直角形钢架BAC,对隧道进行维修.B,C两点分别在隔离墙和地面上,且AB与隔离墙垂直,AC与地面垂直,求钢架BAC的最大长度.26.古往今来,桥给人们的生活带来便利,解决跨水或者越谷的交通,便于运输工具或行人在桥上畅通无阻,中国桥梁的桥拱线大多采用圆弧形、抛物线形和悬链形,坐落在河北省赵县汶河上的赵州桥建于隋朝,距今已有约1400年的历史,是当今世界上现存最早、保存最完整的古代敞肩石拱桥,赵州桥的主桥拱便是圆弧形.(1)某桥A主桥拱是圆弧形(如图①中),已知跨度AC=40m,拱高BD=10m,则这条桥主桥拱的半径是 m;(2)某桥B的主桥拱是抛物线形(如图②),若水面宽MN=10m,拱顶P(抛物线顶点)距离水面4m,求桥拱抛物线的解析式;(3)如图③,某时桥A和桥B的桥下水位均上升了2m,求此时两桥的水面宽度.27.开封黑岗口引黄调蓄水库上的东京大桥,又名“彩虹桥”.夜晚在桥上彩灯的映衬下好似彩虹般绚丽.主景观由三个抛物线型钢拱组成(如图①所示),其中最高的钢拱近似看成二次函数的图象抛物线,钢拱最高处C点与路面的距离OC为50米,若以点O为原点,OC所在的直线为y轴,建立如图②所示的平面直角坐标系,抛物线与x轴相交于A、B两点,且AB两点间的距离为80米.(1)求这条抛物线的解析式;(2)钢拱最高处C点与水面的距离CD为72米,请求出此时这条钢拱之间水面的宽度;(3)当﹣32<x<16时,求y的取值范围.28.根据以下素材,探索完成任务.)种植技术已十分成熟,一块土地上有一个蔬菜大棚,其横截面顶部上,根支DE根中棚顶向上调整,支架总数不变,对应支架上升(接问题解决29.综合与实践主题:设计高速公路的隧道高速公路隧道设计及行驶常识:为了行驶安全,高速公路的隧道设计一般是单向行驶车道,要求货车,车货总高度从地.为了保证行驶的安全,货车右侧某高速公路准备修建一个单向双车道(两个车道的宽度一样)的隧道,隧道的截面近似看成由抛物线3.5)与隧道两侧的距离类型四:抛物线形的运动轨迹问题30.某小区花园新安装了一排音乐喷泉装置,其中位于中间的喷水装置OA喷水能力最强,水流在各个方向上沿形状相同的抛物线路径落下,若喷出的水流高度为y(m),水流与OA之间的水平距离为x(m),y 与x之间满足二次函数关系.如图所示,经测量,喷水装置OA高度为3.5米,水流最高处离喷水装置OA的水平距离为3米,离地面竖直距离为8米.(1)求水流喷出的高度y(m)与水平距离x(m)之间的函数关系式;(2)若在音乐喷泉四周摆放花盆,不计其它因素,花盆需至少离喷水装置OA多少米处,才不会被喷出的水流击中?31.“急行跳远”是田径运动项目之一.运动员起跳后的腾空路线可以看作是抛物线的一部分,建立如图所示的平面直角坐标系,从起跳到落入沙坑的过程中,运动员的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=a(x﹣h)2+k(a<0).某运动员进行了两次训练.(1)第一次训练时,该运动员的水平距离x与竖直高度y的几组数据如下:水平距离x/m02 2.53 3.54竖直高度y/m00.80.8750.90.8750.8根据上述数据,直接写出该运动员竖直高度的最大值,并求出满足的函数关系y=a(x﹣h)2+k(a<0);(2)第二次训练时,该运动员的竖直高度y与水平距离x近似满足函数关系y=﹣0.25(x﹣2.2)2+1.21,记该运动员第一次训练落入沙坑点的水平距离为l1,第二次训练落入沙坑点的水平距离为l2,请比较l1,l2的大小.32.如图1,某公园一个圆形喷水池,在喷水池中心O处竖直安装一根高度为1m的水管OA,A处是喷头,喷出水流沿形状相同的曲线向各个方向落下,喷出水流的运动路线可以看作是抛物线的一部分.建立如图2所示的平面直角坐标系,测得喷出水流距离喷水池中心O的最远水平距离OB为3m,水流竖直高度的最高处位置C距离喷水池中心O的水平距离OD为1m.(1)求喷出水流的竖直高度y(m)与距离水池中心O的水平距离x(m)之间的关系式,并求水流最大竖直高度CD的长;(2)安装师傅调试时发现,喷头竖直上下移动时,抛物线形水流随之竖直上下移动(假设抛物线水流移动时,保持对称轴及形状不变),若要使水流离喷水池中心O的最远水平距离增大至4m,则水管OA的高度增加多少米?33.高楼火灾越来越受到重视,某区消防中队开展消防技能比赛,如图,在一废弃高楼距地面10m的点A 和其正上方点B处各设置了一个火源.消防员来到火源正前方,水枪喷出的水流看作抛物线的一部分(水流出口与地面的距离忽略不计),第一次灭火时,站在水平地面上的点C处,水流恰好到达点A处,且水流的最大高度为12m.待A处火熄灭后,消防员退到点D处,调整水枪进行第二次灭火,使水流恰好到达点B处,已知点D到高楼的水平距离为12m,假设两次灭火时水流的最高点到高楼的水平距离均为3m.建立如图所示的平面直角坐标系.(1)求消防员第一次灭火时水流所在抛物线的解析式;(2)若两次灭火时水流所在抛物线的形状相同,求A、B之间的距离;(3)若消防员站在到高楼水平距离为9m的地方,想要扑灭距地面高度12~18m范围内的火苗,当水流最高点到高楼的水平距离始终为3m时,直接写出a的取值范围.34.甲、乙两名同学进行羽毛球比赛,羽毛球发出并飞行一段距离后,其飞行路线可以看作是抛物线的一部分.如图建立平面直角坐标系,羽毛球从点O 的正上方发出,飞行过程中羽毛球与地面的垂直高度y (单位:m )与水平距离x (单位:m )之间近似满足二次函数关系.比赛中,甲同学某次发球时如图1,羽毛球飞出一段距离后,抛物线部分的飞行高度y 与此时水平距离x 的对应七组数据如下:水平距离x /m23 3.54 4.556…竖直高度y /m3.444.15 4.2 4.154 3.4…根据以上数据,回答下列问题:(1)①当羽毛球飞行到最高点时,距地面 m ,此时水平距离是 m ;②在水平距离5m 处,放置一个高1.55m 的球网,羽毛球  (填“是”或“否”)可以过网;(2)求出y 与x 的函数解析式;(3)若甲发球过网后,乙在羽毛球飞行的水平距离为7m 的点Q 处接住球(如图2).此时如果乙选择扣球,羽毛球的飞行高度y(m )与水平距离x (m )近似满足一次函数关系y =0.4x +m .如果乙选择吊球,羽毛球的飞行高度 y (m ) x (m ) 近似满足二次函数关系y =n (x ﹣6)2+3.2.上面两种击球方式均能使球过网.要使球的落地点到O 点的距离更远,请通过计算判断乙应选择哪种击球方式更合适.35.如图1,某广场要修建一个景观喷水池,水从喷头喷出后呈抛物线形状先向上至最高点后落下.将中间立柱近似看作一条线,以其为y轴建立如图2所示直角坐标系.已知中间立柱顶端C到地面的距离为6m,喷水头D恰好是立柱OC的中点.若水柱上升到最高点E时,高度为4m,到中间立柱的距离为1m.(1)求图2中第一象限内抛物线的函数表达式.(2)为了使水落下后全部进入水池中,请判断圆形水池的直径不能小于多少米?(3)实际施工时,决定对喷水设施做如下设计改进,把水池的直径修成7m,在不改变喷出的抛物线形水柱形状的情况下,且喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,需对水管的长度进行调整,求调整后水管的最大长度.36.如图,某跳水运动员进行10米跳台跳水训练,水面边缘点E(﹣1.5,﹣10),运动员(可视为一质点)在空中运动的路线是经过原点O的抛物线,在跳某个规定动作时,运动员在空中最高处点A(1,1.25),正常情况下,运动员在距水面高度5米前必须完成规定的翻腾,打开动作,并调整好入水姿势,否则就为失误.运动员入水后,运动路线为另一条抛物线.(1)求该运动员在空中运动时所对应抛物线的解析式;(2)若运动员在空中调整好入水姿势时,入水点恰好距点E的水平距离为5米,问该运动员此次跳水是否失误?请通过计算说明理由;(3)在该运动员入水点B的正前方M,N两点,且EM=10.5,EN=13.5,该运动员入水后运动路线对应的抛物线解析式为y=a(x﹣h)2+k且顶点C距水面4米.若该运动员的出水点D在MN之间(含M,N两点),求a的取值范围.。

专题04 二次函数应用题(学生版)

专题04 二次函数应用题(学生版)

专题04二次函数应用题1.2022年杭州亚运会会后,吉祥物“江南忆”很受欢迎,非常畅销.小李用1200元批发了一批吉祥物销售,很快售完,他又用1200元批发同样的吉祥物销售,由于批发价上涨了20%,因此第二批吉祥物的数量比第一批少了10个.(1)求每个吉祥物的批发原价是多少?(2)调查发现,每个吉祥物的售价为40元时,每周可售出30个.小李为了增加销量,决定降价促销,若售价每降低1元,每周的销量可增加5个,每个吉祥物需要扣除2元的小店运营成本.求当吉祥物的售价为多少时每周的利润最大?最大利润是多少?(吉祥物的进价全部按涨价后的价格计算).α=︒.为了对这个斜坡上的绿地进行喷灌,在斜坡底端安装了一个喷头A,喷2.如图1,斜坡与水平面夹角30头A喷出的水柱在空中走过的曲线可以看成抛物线的一部分.如图2,当水柱与A水平距离为4米时,达到最高点D,D与水平线AC的距离为4米.(1)在图2中建立平面直角坐标系,求水柱所在的抛物线的解析式(不需要写出自变量取值的范围);(2)若斜坡上有一棵高2.5米的树,它与喷头A的水平距离为2米,通过计算判断从A喷出的水柱能否越过这棵树.3.有一个抛物线形的拱形隧道,隧道的最大高度为6m,跨度为8m,把它放在如图所示的平面直角坐标系中.(1)求这条抛物线所对应的函数关系式;(2)若要在隧道壁上点P(如图)安装一盏照明灯,灯离地面高4.5m.求灯与点B的距离.(3)隧道内设双向单车道(中间有一条隔离带,隔离带宽度忽略不计),一辆满载后车身宽2.5m,高2.8m的卡车能否安全通过?4.某社区决定把一块长为50m、宽30m的矩形空地建为居民健身广场,设计方案如图所示,阴影区域为绿化区(四块绿化区均为大小、形状都相同的矩形),空白区域为活动区,且四周的四个出口宽度相同,其宽度不小于14m,不大于26m,设绿化区较长边为m x,活动区的面积为2m y.(1)求y与x的函数表达式,并直接写出自变量x的取值范围;(2)求活动区最大面积.5.2023年亚运会即将在杭州举行,某网络经销商购进了一批以亚运会为主题的文化衫进行销售,文化衫的进价为每件30元,当销售单价定为70元时,每天可售出20件.为了扩大销售,增加盈利,决定采取适当的降价措施,经调查发现:销售单价每降低1元,则每天可多售出2件(销售单价不低于进价),若设这款文化衫的销售单价为x(元),每天的销售量为y(件).(1)当销售单价定为65元时,每天可售出文化衫___________件;(2)求出每天的销售量y(件)与销售单价x(元)之间的函数关系式;(3)当销售单价为多少元时,销售这款文化衫每天所获得的利润为1248元?6.某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于65元,经市场调查、每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:售价x(元/千克)506070销售量y(千克)1008060(1)直接写出y与x之间的函数表达式;(2)设商品每天的总利润为W(元),求W与x之间的函数表达式,并指出售价为多少元时获得最大利润,最大利润是多少?7.某超市销售一批成本为20元/千克的绿色健康食品,深受游客青睐.经市场调查发现,该食品每天的销售量y(千克)与销售单价x(元/千克)之间满足一次函数关系,其图像如图所示.(1)求该食品每天的销售量y(千克)与销售单价x(元/千克)之间的函数关系式;(2)若超市按售价不低于成本价,且不高于40元销售,则销售单价定为多少,才能使销售该食品每天获得的利润W(元)最大?最大利润是多少?8.图是某跳台滑雪训练场的横截面示意图,取水平线为x轴,过跳台终点A作水平线的垂线为y轴,建立平面直角坐标系.图中的抛物线1C :2171126y x x =-++近似表示滑雪场地上的一座小山坡,某运动员从点O 正上方4米处的A 点滑出,滑出后沿一段抛物线2C :218y x bx c =-++运动.(1)当运动员运动到离A 处的水平距离为4米时,离水平线的高度为8米,求抛物线2C 的函数解析式(不要求写出自变量x 的取值范围);(2)在(1)的条件下,当运动员运动水平线的水平距离为多少米时,运动员与小山坡的竖直距离为1米?(3)当运动员运动到坡顶正上方,且与坡顶距离超过3米时,求b 的取值范围.9.某商店经销一种健身球,已知这种健身球的成本价为每个20元,市场调查发现,该种健身球每天的销售量y(个)与销售单价x (元)有如下关系:()2802040y x x =-+≤≤,设这种健身球每天的销售利润为w 元.(1)如果销售单价定为25元,那么健身球每天的销售量是____________个;(2)求w 与x 之间的函数关系式;(3)该种健身球销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?10.某服装专卖店A 款衣服的进价为100元/件,经市场调查发现,当A 款衣服的定价为140元/件时,每天可售出20件,在此基础上,A 款衣服的定价每件降价3元,该服装店每天就会多售出6件,设A 款衣服每件降价x 元.(1)A 款衣服每件的利润为元,每天的销量为件;(用含x 的代数式表示)(2)若该服装专卖店每天销售A 款衣服获利1200元,为了更多地让利于顾客,A 款衣服的定价应为多少元?(3)该服装专卖店每天销售A 款衣服的总利润可能达到1450元吗?请说明理由.11.某商家独家销售具有地方特色的某种商品,每件进价为40元.经过市场调查,得出一周的销售量y 件是销售单价()50x x ≥元/件的一次函数,其部分对应数据如下表所示:销售单价x (元/件) (55)607075…一周的销售量y (件)…450400300250…(1)求出y 与x 的函数关系式:(2)设一周的销售利润为S 元,请求出S 与x 的函数关系式;(3)雅安地震牵动亿万人民的心,商家决定将商品一周的销售利润全部寄往灾区,在商家购进该商品的货款不超过10000元情况下,请你求出该商家最大捐款数额是多少元?12.已知:如图,在Rt ACB 中,=90°C ∠,4cm AC =,3cm BC =,点P 由B 出发沿BA 方向向点A 匀速运动速度为1cm/s ;点Q 由A 出发沿AC 方向向点C 匀速运动,速度为2cm/s ;连接PQ .若设运动的时间为()()02t s t <<,解答下列问题:(1)当t 为何值时,点A 在PQ 垂直平分线上(2)当t 为何值时,APQ △为直角三角形?(3)设APQ △的面积为()2cm y ,求y 与t 之间的函数关系式;(4)是否存在某一时刻t ,使线段PQ 恰好把Rt ACB 的面积平分?若存在,求出此时t 的值;若不存在,说明理由.13.第二十四届冬奥会在北京成功举办,在跳台滑雪项目中,运动员首先沿着跳台助滑道飞速下滑,然后在起跳点腾空,身体在空中飞行至着陆坡着陆,再滑行到停止区终止.某数学小组对该项目中的数学问题进行了深入研究,下图是该小组绘制的赛道截面图,以停止区CD 所在水平线为x 轴,过起跳点A 与x 轴垂直的直线为y 轴,O 为坐标原点,建立平面直角坐标系,AC 为着陆坡,65m OA =,某运动员在A 处起跳腾空后,飞行至着陆坡的B处着陆,过点B 作BE y ⊥轴于点E ,且BE =,在空中飞行过程中,运动员到x 轴的距离()m y 与水平方向移动的距离()m x 具备二次函数关系,其解析式为213602y x x c =-+.(1)=c _________,点B 的坐标为_________;(2)进一步研究发现,该运动员在飞行过程中,其水平方向移动的距离()m x 与飞行时间()s t 具备一次函数关系,当运动员在起跳点腾空时,=0t ,=0x ;空中飞行5s 后着陆.①求x 关于t 的函数解析式;②当t 为何值时,运动员离着陆坡的竖直距离h 最大,最大值是多少?14.某蔬菜批发商以每千克18元的价格购进一批山野菜.经市场调查发现,山野菜的日销售量y (千克)与每千克售价x (元)之间满足3y x b =-+,当=20x 时,66y =.(1)求b 的值;(2)设该批发商每日销售这批山野菜所获得的利润为w 元.①求w 关于x 之间的函数解析式;②当每千克山野菜的售价定为多少元时,该批发商每日销售这批山野菜所获得的利润最大?最大利润为多少元?15.中山公园有一个抛物线形状的观景拱桥ABC ,其横截面如图所示,在图中建立的直角坐标系中,抛物线的解析式为2120y x c =-+且过顶点()0,5C (长度单位:m )(1)直接写出c 的值;(2)现因搞庆典活动,计划沿拱桥的台阶表面铺设一条宽度为1.5m 的地毯,地毯的价格为20元/2m ,求购买地毯需多少元?(3)在拱桥加固维修时,搭建的“脚手架”为矩形EFGH (H 、G 分别在抛物线的左右侧上),并铺设斜面EG .已知矩形EFGH 的周长为27.5m ,求斜面EG 在这个坐标系中的解析式.16.某商店销售一种商品,该商品的进价为40元/件,经市场调查发现:该商品的周销售量y (件)是售价x (元/件)的一次函数,部分数据如表:售价x(元/件)55658085周销售量y(件)90704030(1)直接写出y与x之间的函数表达式为______;(2)当售价定为多少元时,每周可获得最大利润?最大利润是多少元?(3)由于某种原因,该商店进价提高了m元/件(m>0),通过销售记录发现,当销售价格大于76元/件时,每周的利润随售价的增大而减小,请直接写出m的取值范围为______.17.园林基地计划投资种植花卉及树木,已知种植树木的利润1y与投资量x成正比例关系,种植花卉的利润2y与投资量x的平方..成正比例关系,并根据市场调查与预测,得到了表格中的数据.投资量x(万元)2y(万元)4种植树木利润1y(万元)2种植花卉利润2(1)请根据表格填空:利润1与投资量x的函数关系式为______;利润2y与投资量x的函数关系式为______;(2)如果这个基地计划以6万元资金全部投入种植花卉和树木,设投入种植花卉的金额为m万元,种植花卉和树木共获利W万元,求出W关于m的函数关系式,并求该基地至少获得多少利润?基地能获取的最大利润是多少?(3)若该基地想获利不低于12万,在(2)的条件下,请直接写出投资种植花卉的金额m的范围.18.某水果经销商以20元/千克的价格新进1000kg杨梅进行销售,因为杨梅不耐储存,在运输储存过程损耗率为16.为了得到日销售量y (千克)与销售价格x (元/千克)之间的关系,经过市场调查获得部分数据如下表:销售价格x (元/千克)2025303540日销售量y (千克)300225150750(1)这批杨梅的实际成本为_____元/千克,每千克定价为______元时,这批杨梅可获得5000元利润;(2)①请你根据表中的数据直接写出y 与x 之间的函数表达式.②该水果经销商应该如何确定这批杨梅的销售价格,才能使日销售利润1w 最大?(3)该水果经销商参与电商平台助农活动,开展网上直销,可以完全避免运输储存过程中的损耗成本,但每销售1千克杨梅需支出a 元()0a >的相关费用,销售量与销售价格之间关系不变.当2530x ≤≤,该水果经销商日获利2w 的最大值为1200元,求a 的值.(日获利=日销售利润-日支出费用)19.某商店销售一种商品,经市场调查发现:该商品的周销售量y (件)是售价x (元/件)的一次函数,其售价、周销售量、周销售利润w(元)的三组对应值如下表:售价x(元/件)506070周销售量y(件)806040周销售利润w(元)80012001200注:周销售利润=周销售量×(售价-进价)(1)求y关于x的函数解析式(不要求写出自变量的取值范围);(2)求该商品的进价和周销售的最大利润;m ,物价部门规定该商品售价不得超过60元/件,该商店在今(3)由于某种原因,该商品进价提高了m元/件(0)后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1080元,求的值.20.如图,某城区公园有直径为7m的圆形水池,水池边安有排水槽,在正中心O处修喷水装置,喷出的水流呈抛物线状,当水管OA高度在6m处时,距离OA水平距离1m处喷出的水流达到最大高度为8m.(1)求抛物线解析式,并求水流落地点B到点O的距离(即线段OB的长);(2)距离OA水平距离多远的E点处,放置高为3.5m的景观射灯EF使水流刚好到点F?(3)若不改变(1)中抛物线的形状和对称轴,若使水流落地点恰好落在圆形水池边排水槽内(不考虑边宽),则此时水管OA的高度为多少?。

(完整版)二次函数(应用题求最值)(含答案)

(完整版)二次函数(应用题求最值)(含答案)

二次函数应用题1、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元,请写出y 与x 之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?2.如图,在平面直角坐标系中,顶点为(4,1-)的抛物线交y 轴于A 点,交x 轴于B ,C 两点(点B 在点C 的左侧). 已知A 点坐标为(0,3).(1)求此抛物线的解析式;(2)过点B 作线段AB 的垂线交抛物线于点D , 如果以点C 为圆心的圆与直线BD 相切,请判断抛物线的对称轴l 与⊙C 有怎样的位置关系,并给出证明;(3)已知点P 是抛物线上的一个动点,且位于A ,C 两点之间,问:当点P 运动到什么位置时,PAC ∆的面积最大?并求出此时P 点的坐标和PAC ∆的最大面积.x(第13题)3、张大爷要围成一个矩形花圃.花圃的一边利用足够长的墙另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形ABCD .设AB 边的长为x 米.矩形ABCD 的面积为S 平方米.(1)求S 与x 之间的函数关系式(不要求写出自变量x 的取值范围).(2)当x 为何值时,S 有最大值?并求出最大值.(参考公式:二次函数2y ax bx c =++(0a ≠),当2bx a=-时,244ac b y a -=最大(小)值)4、某电视机生产厂家去年销往农村的某品牌电视机每台的售价y (元)与月份x 之间满足函数关系502600y x =-+,去年的月销售量p (万台)与月份x 之间成一次函数关系,其中两个月的销售情况如下表:月份 1月 5月 销售量 3.9万台 4.3万台(1)求该品牌电视机在去年哪个月销往农村的销售金额最大?最大是多少?(2)由于受国际金融危机的影响,今年1、2月份该品牌电视机销往农村的售价都比去年12月份下降了%m ,且每月的销售量都比去年12月份下降了1.5m%.国家实施“家电下乡”政策,即对农村家庭购买新的家电产品,国家按该产品售价的13%给予财政补贴.受此政策的影响,今年3至5月份,该厂家销往农村的这种电视机在保持今年2月份的售价不变的情况下,平均每月的销售量比今年2月份增加了1.5万台.若今年3至5月份国家对这种电视机的销售共给予了财政补贴936万元,求m 的值(保留一位小数). 34 5.83135 5.91637 6.08338 6.164)5、某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y (件)与销售单价x (元)符合一次函数y kx b =+,且65x =时,55y =;75x =时,45y =. (1)求一次函数y kx b =+的表达式;(2)若该商场获得利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价x 的范围.6、某商场在销售旺季临近时 ,某品牌的童装销售价格呈上升趋势,假如这种童装开始时的售价为每件20元,并且每周(7天)涨价2元,从第6周开始,保持每件30元的稳定价格销售,直到11周结束,该童装不再销售。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数实际应用题专题训练
1、某电子商投产一种新型电子产品,每件制造成本为18元,试销过程发现,每月销量y(万件)与销售单价x(元)之间关系可以近似地看作一次函数y=-2x+100.(利润=售价-制造成本)
(1)写出每月的利润z(万元)与销售单价x(元)之间函数解析式;
(2)当销售单价为多少元时,厂商每月能够获得350万元的利润?当销售单价为多少元时,厂商每月能够获得最大利润?最大利润是多少?
(3)根据相关部门规定,这种电子产品的销售单价不得高于32元.如果厂商要获得每月不低于350万元的利润,那么制造这种产品每月的最低制造成本需要多少万元?
2、某科技开发公司研制出一种新型产品,每件产品的成本为2400 元,销售单价定为3000 元.在该产品的试销期间,为了促销,鼓励商家购买该新型产品,公司决定商家一次购买这种新型产品不超过10 件时,每件按3000 元销售;若一次购买该种产品超过10 件时,每多购买一件,所购买的全部产品的销售单价均降低10 元,但销售单价均不低于2600 元.
(1)商家一次购买这种产品多少件时,销售单价恰好为2600 元?
(2)设商家一次购买这种产品x 件,开发公司所获的利润为y 元,求y(元)与x(件)之间的函数关系式,并写出自变量x 的取值范围.
(3)该公司的销售人员发现:当商家一次购买产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获的利润反而减少这一情况.为使商家一次购买的数量越多,公司所获的利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)
3、把一边长为40cm的正方形硬纸板,进行适当的剪裁,折成一个长方形盒子(纸板的厚度忽略不计)。

(1)如图,若在正方形硬纸板的四角各剪一个同样大小的正方形,将剩余部分折成一个无盖的长方形盒子。

①要使折成的长方形盒子的底面积为484cm2,那么剪掉的正方形的边长为多少?
②折成的长方形盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的边长;如果没有,说明理由。

(2)若在正方形硬纸板的四周剪掉一些矩形(即剪掉的矩形至少有一条边在正方形硬纸板的边上),将剩余部分折成一个有盖的长方形盒子,若折成的一个长方形盒子的表面积为550cm2,求此时长方形盒子的长、宽、高(只需求出符合要求的一种情况)。

●变式练习:
如图,在边长为24cm的正方形纸片ABCD上,剪去图中阴影部分的四个全等的等腰直角三角形,再沿图中的虚线折起,折成一个长方体形状的包装盒(A.B.C.D四个顶点正
好重合于上底面上一点).已知E、F在AB边上,是被剪去的一个等腰直角三角形斜边的两个端点,设AE=BF=x(cm).
(1)若折成的包装盒恰好是个正方体,试求这个包装盒的体积V;
(2)某广告商要求包装盒的表面(不含下底面)面积S最大,试问x应取何值?
4、如图,排球运动员站在点O处练习发球,将球从O点正上方2 m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x-6)2+h.已知球网与O 点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m。

(1)当h=2.6时,求y与x的关系式(不要求写出自变量x的取值范围);
(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;
(3)若球一定能越过球网,又不出边界,求h的取值范围。

5、卢浦大桥拱形可以近似看作抛物线的一部分.在大桥截面1∶11000的比例图上,跨度AB=5 cm,拱高OC=0.9 cm,线段DE表示大桥拱内桥长,DE∥AB,如图(1).在比例图上,以直线AB为x轴,抛物线的对称轴为y轴,以1 cm作为数轴的单位长度,建立平面直角坐标系,如图(2).
(1)求出图(2)上以这一部分抛物线为图象的
函数解析式,写出自变量的取值范围;
(2)如果DE与AB的距离OM=0.45 cm,求卢
2 ,
浦大桥拱内实际桥长(备用数据:4.1
计算结果精确到1米).
●变式练习:
如图,小明在一次高尔夫球争霸赛中,从山坡下O点打出一球向球洞A点飞去,球的飞行路线为抛物线,如果不考虑空气阻力,当球达到最大水平高度12米时,球移动的水平
距离为9米.已知山坡OA与水平方向OC的夹角为30o,O、A两点相距83米.
(1)求出点A的坐标及直线OA的解析式;
(2)求出球的飞行路线所在抛物线的解析式;
(3)判断小明这一杆能否把高尔夫球从O点直接打入球洞A点.
6、近年来,我市为了增强市民环保意识,政府决定对购买太阳能热水器的市民实行政府补
贴。

规定每购买一台热水器,政府补贴若干元,经调查某商场销售太阳能热水器台数y (台)与每台补贴款额x(元)之间
大致满足如图①所示的一次函数关系.随着补贴款额的不断增大,销售量也不断增加,但每台彩电的收益Z(元)会相应降低,且Z与x之间也大致满足如图②所示的一次函数关系.
(1)在政府未出台补贴措施前,该商场销售太阳能热水器的总收益额为多少元?
(2)在政府补贴政策实施后,分别求出该商场销售太阳能热水器台数y和每台太阳能热水器的收益z与政府补贴款额x之间的函数关系式;
(3)要使该商场销售太阳能热水器的总收益w(元)最大,政府应将每台补贴款额x定为多少并求出总收益w的最大值.
7某地区准备筹办特色小商品展销会,芙蓉工艺厂设计一款成本为10元/件的工艺品投放市场进行试销。

经过调查,得到如下数据:
(1)已知y与x之间是一次函数关系,求出此函数关系式;
(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价-成本总价)
8、政府大力支持大学生创业。

大学毕业生小明在政府的扶持下投资销售一种进价为每件
30元的学生台灯。

销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一
次函数:y=-10x+700.
(1) 小明每月获得的利润为w(元),试问当销售单价定为多少元时,每月可获得最大利润?
最大利润是多少?
(2) 如果小明想要每月获得3000元的利润,那么销售单价应定为多少元?
9、某汽车租赁公司拥有20辆同类汽车.据统计,当每辆车的日租金为400元时,可全部租
出;当每辆车的日租金每增加50元,未租出的车将增加1辆;公司平均每日的各项支出
共4800元.设公司每日租出x辆车时,日收益为y元.(日收益=日租金收入一平均每日
各项支出)
(1)公司每日租出x辆车时,每辆车的日租金为元(用含x的代数式表示,要求填写化简后的结果);
(2)当每日租出多少辆时,租赁公司的日收益不盈也不亏?
(3)当每日租出多少辆时,租赁公司日收益最大?最大是多少元?。

相关文档
最新文档