中考数学专题突破几何综合
北京市中考数学专题突破九:几何综合(含答案)
北京市中考数学专题突破九:几何综合(含答案)专题突破(九)几何综合在北京中考试卷中,几何综合题通常出现在后两题,分值为8分或7分.几何综合题主要包含三角形(全等、相似)、四边形、锐角三角函数、圆等知识,主要研究图形中的数量关系、位置关系、几何计算以及图形的运动、变换等规律.求解几何综合题时,关键是抓住“基本图形”,能在复杂的几何图形中辨认、分解出基本图形,或通过添加辅助线补全、构造基本图形,或运用图形变换的思想将分散的条件集中起来,从而产生基本图形,再根据基本图形的性质,合理运用方程、三角函数的运算等进行推理与计算.2011-2015年北京几何综合题考点对比年份20112012201320142015考点平行四边形的性质、从特殊到一般、构造图形(全等三角形或等边三角形或特殊平行四边形)旋转变换、对称变换、构造全等三角形全等三角形的判定与性质、等边三角形的性质,等腰直角三角形旋转的性质以轴对称和正方形为载体,考查了等腰三角形、全等三角形、勾股定理、圆及圆周角定理以正方形为载体,考查了平移作图,利用轴对称图形的性质证明线段相等及写出求线段长的过程1.[2015·北京]在正方形ABCD中,BD是一条对角线,点P在射线CD上(与点C,D不重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QH⊥BD于点H,连接AH,PH.(1)若点P在线段CD上,如图Z9-1(a).①依题意补全图(a);②判断AH与PH的数量关系与位置关系,并加以证明.(2)若点P在线段CD的延长线上,且∠AHQ =152°,正方形ABCD的边长为1,请写出求DP长的思路.(可以不写出计算结果.........)图Z9-12.[2014·北京]在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F.(1)依题意补全图Z9-2①;(2)若∠PAB=20°,求∠ADF的度数;(3)如图②,若45°<∠PAB<90°,用等式表示线段AB,FE,FD之间的数量关系,并证明.图Z9-23.[2013·北京]在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B逆时针旋转60°得到线段B D.(1)如图Z9-3①,直接写出∠ABD的大小(用含α的式子表示);(2)如图②,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明;(3)在(2)的条件下,连接DE,若∠DEC=45°,求α的值.图Z9-34.[2012·北京]在△ABC中,BA=BC,∠BAC=α,M是AC的中点,P是线段BM上的动点,将线段PA绕点P顺时针旋转2α得到线段PQ.(1)若α=60°且点P与点M重合(如图Z9-4①),线段CQ的延长线交射线BM于点D,请补全图形,并写出∠CDB的度数;(2)在图②中,点P不与点B,M重合,线段CQ的延长线与射线BM交于点D,猜想∠CDB的大小(用含α的代数式表示),并加以证明;(3)对于适当大小的α,当点P在线段BM上运动到某一位置(不与点B,M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQ =DQ,请直接写出α的范围.图Z9-45.[2011·北京]在平行四边形ABCD中,∠BAD的平分线交直线BC于点E,交直线DC 于点F.(1)在图Z9-5①中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图②),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB,DG(如图③),求∠BDG的度数.图Z9-51.[2015·怀柔一模]在等边三角形ABC外侧作直线AP,点B关于直线AP的对称点为D,连接BD,CD,其中CD交直线AP于点E.(1)依题意补全图Z9-6①;(2)若∠PAB=30°,求∠ACE的度数;(3)如图②,若60°<∠PAB<120°,判断由线段AB,CE,ED可以构成一个含有多少度角的三角形,并证明.图Z9-62.[2015·朝阳一模]在△ABC中,∠C=90°,AC=BC,点D在射线BC上(不与点B,C重合),连接AD,将AD绕点D顺时针旋转90°得到DE,连接BE.(1)如图Z9-7(a),点D在BC边上.①依题意补全图(a);②作DF⊥BC交AB于点F,若AC=8,DF=3,求BE的长.(2)如图(b),点D在BC边的延长线上,用等式表示线段AB,BD,BE之间的数量关系(直接写出结论).图Z9-73.[2015·海淀一模]在菱形ABCD中,∠ADC=120°,点E是对角线AC上一点,连接DE,∠DEC=50°,将线段BC绕点B逆时针旋转50°并延长得到射线BF,交ED的延长线于点G.(1)依题意补全图形;(2)求证:EG=BC;(3)用等式表示线段AE,EG,BG之间的数量关系:________.图Z9-84.[2015·海淀二模]如图Z9-9①,在△ABC中,AB=AC,∠ABC=α,D是BC边上一点,以AD为边作△ADE,使AE=AD,∠DAE+∠BAC=180°.(1)直接写出∠ADE的度数(用含α的式子表示).(2)以AB,AE为边作平行四边形ABFE.①如图②,若点F恰好落在DE上,求证:BD=CD;②如图③,若点F恰好落在BC上,求证:BD=CF.图Z9-95.[2015·西城一模]在△ABC中,AB=AC,取BC边的中点D,作DE⊥AC于点E,取DE 的中点F,连接BE,AF交于点H.(1)如图Z9-10①,如果∠BAC=90°,那么∠AHB=________°,AFBE=________;(2)如图②,如果∠BAC=60°,猜想∠AHB的度数和AFBE的值,并证明你的结论;(3)如果∠BAC=α,那么AFBE=________.(用含α的代数式表示)图Z9-106.[2015·丰台一模]在△ABC中,CA=CB,CD为AB边上的中线,点P是线段AC上任意一点(不与点C重合),过点P作PE交CD于点E,使∠CPE=12∠CAB,过点C作CF⊥PE交PE的延长线于点F,交AB于点G.(1)如果∠ACB=90°,①如图Z9-11(a),当点P与点A重合时,依题意补全图形,并指出与△CDG全等的一个三角形;②如图(b),当点P不与点A重合时,求CF PE的值.(2)如果∠CAB=a,如图(c),请直接写出CF PE的值.(用含a的式子表示)图Z9-117.[2015·海淀]将线段AB绕点A逆时针旋转60°得到线段AC,继续旋转α(0°<α<120°)得到线段AD,连接CD.(1)连接BD,①如图Z9-12(a),若α=80°,则∠BDC 的度数为________.②在第二次旋转过程中,请探究∠BDC的大小是否改变.若不变,求出∠BDC的度数;若改变,请说明理由.(2)如图(b),以AB为斜边作直角三角形ABE,使得∠B=∠ACD,连接CE,DE.若∠CED =90°,求α的值.图Z9-128.[2015·西城二模]正方形ABCD的边长为3,点E,F分别在射线DC,DA上运动,且DE=DF.连接BF,作EH⊥BF所在直线于点H,连接CH.(1)如图Z9-13①,若点E是DC的中点,CH与AB之间的数量关系是________.(2)如图②,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由.(3)如图③,当点E,F分别在射线DC,DA 上运动时,连接DH,过点D作直线DH的垂线,交直线BF于点K,连接CK,请直接写出线段CK长的最大值.图Z9-13参考答案北京真题体验1.解:(1)①如图(a)所示.②AH=PH,AH⊥PH.证明:连接CH,由条件易得:△DHQ为等腰直角三角形,又∵DP=CQ,∴△HDP≌△HQC,∴PH=CH,∠HPC=∠HCP.∵BD为正方形ABCD的对称轴,∴AH=CH,∠DAH=∠HCP,∴AH=PH,∠DAH=∠HPC,∴∠AHP=180°-∠ADP=90°,∴AH=PH且AH⊥PH.(2)如图(b),过点H作HR⊥PC于点R,∵∠AHQ=152°,∴∠AHB=62°,∴∠DAH=17°,∴∠DCH=17°.设DP=x,则DR=HR=RQ=1-x 2.由tan17°=HRCR得1-x21+x2=tan17°,∴x=1-tan17°1+tan17°.2.解:(1)补全图形如图①所示:(2)如图①,连接AE,则∠PAB=∠PAE=20°,AE=AB.∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∴∠EAD=130°,AE=AD.∴∠ADF=25°.(3)如图②,连接AE,BF,BD.由轴对称的性质可得EF =BF ,AE =AB =AD ,∠ABF =∠AEF =∠ADF ,∴∠BFD =∠BAD =90°.∴BF 2+FD 2=BD 2.∴EF 2+FD 2=2AB 2.3.解:(1)∵AB =AC ,∠A =α,∴∠ABC =∠ACB =12(180°-∠A )=90°-12α. ∵∠ABD =∠ABC -∠DBC ,∠DBC =60°,∴∠ABD =30°-12α. (2)△ABE 是等边三角形.证明:连接AD ,CD ,ED ,∵线段BC 绕点B 逆时针旋转60°得到线段BD ,则BC =BD ,∠DBC =60°.∴△BCD 为等边三角形.∴BD =CD.∵∠ABE =60°,∴∠ABD =60°-∠DBE =∠EBC =30°-12α. 在△ABD 与△ACD 中,⎩⎪⎨⎪⎧AB =AC ,AD =AD ,BD =CD ,∴△ABD ≌△ACD ,∴∠BAD =∠CAD =12∠BAC =12α. ∵∠BCE =150°,∴∠BEC =180°-(30°-12α)-150°=12α=∠BAD.在△ABD 和△EBC 中,⎩⎪⎨⎪⎧∠BEC =∠BAD ,∠EBC =∠ABD ,BC =BD ,∴△ABD ≌△EBC ,∴AB =BE .又∵∠ABE =60°,∴△ABE 是等边三角形.(3)∵∠BCD =60°,∠BCE =150°, ∴∠DCE =150°-60°=90°. ∵∠DEC =45°,∴△DEC 为等腰直角三角形,∴DC =CE =BC.∵∠BCE =150°.∴∠EBC =12(180°-150°)=15°. ∵∠EBC =30°-12α=15°, ∴α=30°.4.解:(1)如图①,∵BA =BC ,∠BAC =60°,M 是AC 的中点,∴BM ⊥AC ,AM =MC.∵将线段PA 绕点P 顺时针旋转2α得到线段PQ ,∴AM =MQ ,∠AMQ =120°, ∴CM =MQ ,∠ CMQ =60°, ∴△CMQ 是等边三角形,∴∠ACQ =60°,∴∠CDB =30°.(2)连接PC ,AD ,∵AB =BC ,M 是AC 的中点, ∴BM ⊥AC ,∴AD =CD ,AP =PC.在△APD 与△CPD 中,∵⎩⎪⎨⎪⎧AD =CD ,PD =PD ,PA =PC ,∴△APD ≌△CPD ,∴∠ADB =∠CDB ,∠PAD =∠PCD , ∴∠ADC =2∠CDB.又∵PQ =PA ,∴PQ =PC ,∴∠PQC =∠PCD =∠PAD , ∴∠PAD +∠PQD =∠PQC +∠PQD =180°,∴∠APQ+∠ADC=360°-(∠PAD+∠PQD)=180°,∴∠ADC=180°-∠APQ=180°-2α,∴2∠CDB=180°-2α,∴∠CDB=90°-α.(3)∵∠CDB=90°-α,且PQ=QD,∴∠PAD=∠PCQ=∠PQC=2∠CDB=180°-2α.∵点P不与点B,M重合,∴∠BAD>∠PAD>∠MAD,∴2α>180°-2α>α,∴45°<α<60°.5.解:(1)∵AF平分∠BAD,∴∠BAF=∠DAF.∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAF=∠CEF,∠BAF=∠F.∴∠CEF=∠F.∴CE=CF.(2)∠BDG=45°.(3)如图,分别连接GB,GE,GC,∵AD∥BC,AB∥CD,∠ABC=120°,∴∠ECF=∠ABC=120°.∵FG∥CE且FG=CE,∴四边形CEGF是平行四边形.由(1)得CE=CF.∴四边形CEGF是菱形,∴GE=EC,①∠GCF=∠GCE=12∠ECF=60°,∴△ECG与△FCG是等边三角形,∴∠GEC=∠FCG,∴∠BEG=∠DCG,②由AD∥BC及AF平分∠BAD可得∠BAE =∠AEB,∴AB=BE.在▱ABCD中,AB=DC,∴BE=D C.③由①②③得△BEG≌△DCG,∴BG=DG,∠1=∠2,∴∠BGD=∠1+∠3=∠2+∠3=∠EGC =60°,∴∠BDG=180°-∠BGD2=60°. 北京专题训练1.解:(1)补全图形,如图①所示.(2)连接AD,如图①.∵点D与点B关于直线AP对称,∴AD=AB,∠DAP=∠BAP=30°,∵AB=AC,∠BAC=60°,∴AD=AC,∠DAC=120°,∴2∠ACE+120°=180°.∴∠ACE=30°.(3)线段AB,CE,ED可以构成一个含有60°角的三角形.证明:连接AD,EB,如图②.∵点D与点B关于直线AP对称,∴AD=AB,DE=BE,可证得∠EDA=∠EB A.∵AB=AC,AB=AD,∴AD=AC,∴∠ADE=∠ACE,∴∠ABE=∠ACE.设AC,BE交于点F,∵∠AFB=∠CFE,∴∠BAC=∠BEC=60°,∴线段AB,CE,ED可以构成一个含有60°角的三角形.2.解:(1)①补全图形,如图(a)所示.②如图(b),由题意可知AD=DE,∠ADE =90°.∵DF⊥BC,∴∠FDB=90°.∴∠ADF=∠ED B.∵∠C=90°,AC=BC,∴∠ABC=∠DFB=45°.∴DB=DF.∴△ADF≌△EDB.∴AF=EB.在△ABC和△DFB中,∵AC=8,DF=3,∴AB=8 2,BF=3 2.AF=AB-BF=5 2,即BE=5 2,(2)2BD=BE+AB.3.解:(1)补全图形,如图①所示.(2)方法一:证明:连接BE,如图②. ∵四边形ABCD是菱形,∴AD∥BC.∵∠ADC=120°,∴∠DCB=60°.∵AC]是菱形ABCD的对角线,∴∠DCA=12∠DCB=30°.∴∠EDC=180°-∠DEC-∠DCA=100°.由菱形的对称性可知,∠BEC=∠DEC=50°,∠EBC=∠EDC=100°,∴∠GEB=∠DEC+∠BEC=100°.∴∠GEB=∠CBE.∵∠FBC=50°,∴∠EBG =∠EBC -∠FBC =50°. ∴∠EBG =∠BEC.在△GEB 与△CBE 中,⎩⎪⎨⎪⎧∠GEB =∠CBE ,BE =EB ,∠EBG =∠BEC ,∴△GEB ≌△CBE .∴EG =BC .方法二:证明:连接BE ,设BG 与EC 交于点H ,如图②.∵四边形ABCD 是菱形,∴AD ∥BC.∵∠ADC =120°,∴∠DCB =60°.∵AC 是菱形ABCD 的对角线,∴∠DCA =12∠DCB =30°. ∴∠EDC =180°-∠DEC -∠DCA =100°.由菱形的对称性可知,∠BEC =∠DEC =50°,∠EBC =∠EDC =100°,∵∠FBC =50°,∴∠EBG =∠EBC -∠FBC =50°=∠BEC .∴BH =EH .在△GEH 与△CBH 中,⎩⎪⎨⎪⎧∠GEH =∠CBH ,EH =BH ,∠EHG =∠B HC ,∴△GEH ≌△CBH .∴EG =BC .(3)AE +BG =3EG .4.解:(1)∠ADE =90°-α.(2)①证明:∵四边形ABFE 是平行四边形, ∴AB ∥EF .∴∠EDC =∠ABC =α.由(1)知∠ADE =90°-α,∴∠ADC =∠ADE +∠EDC =90°. ∴AD ⊥BC.∵AB =AC ,∴BD =CD.②证明:∵AB =AC ,∠ABC =α, ∴∠C =α.∵四边形ABFE 是平行四边形,∴AE∥BF,AE=BF.∴∠EAC=∠C=α.由(1)知∠DAE=180°-2∠ADE=180°-2(90°-α)=2α,∴∠DAC=α.∴∠DAC=∠C.∴AD=CD.∵AD=AE=BF,∴BF=CD.∴BD=CF.5.解:(1)901 2(2)结论:∠AHB=90°,AFBE=32.证明:如图,连接AD.∵AB =AC ,∠BAC =60°, ∴△ABC 是等边三角形.∵D 为BC 的中点,∴AD ⊥BC.∴∠1+∠2=90°.又∵DE ⊥AC ,∴∠DEC =90°.∴∠2+∠C =90°.∴∠1=∠C =60°.设AB =BC =k (k >0),则CE =12CD =k 4,DE =34k . ∵F 为DE 的中点,∴DF =12DE =38k ,AD =32AB =32k . ∴AD BC =32,DF CE =32. ∴AD BC =DF CE. 又∵∠1=∠C ,∴△ADF ∽△BCE .∴AF BE =AD BC =32,∠3=∠4.又∵∠4+∠5=90°,∠5=∠6, ∴∠3+∠6=90°.∴∠AHB =90°. (3)12tan(90°-α2).6.解:(1)①作图.△ADE (或△PDE ).②过点P 作PN ∥AG 交CG 于点N ,交CD 于点M ,∴∠CPM =∠CAB.∵∠CPE =12∠CAB , ∴∠CPE =12∠CPN .∴∠CPE =∠FPN . ∵PF ⊥CG ,∴∠PFC =∠PFN =90°. ∵PF =PF ,∴△PFC ≌△PFN .∴CF =FN . 由①得:△PME ≌△CMN .∴PE =CN .∴CF PE =CF CN =12. (2)12tan α. 7.解:(1)①30°.②不改变,∠BDC 的度数为30°. 方法一:由题意知AB =AC =A D.∴点B ,C ,D 在以点A 为圆心,AB 为半径的圆上.∴∠BDC =12∠BAC =30°. 方法二:由题意知AB =AC =A D. ∵AC =AD ,∠CAD =α,∴∠ADC =∠ABD =180°-α2=90°-12α.∵AB =AD ,∠BAD =60°+α,∴∠ADB =∠ABD =180°-⎝⎛⎭⎫60°+α2=120°-α2=60°-12α. ∴∠BDC =∠ADC -∠ADB =(90°-12α)-(60°-12α)=30°. (2)过点A 作AM ⊥CD 于点M ,连接EM .∴∠AMC =90°.在△AEB 与△AMC 中,⎩⎪⎨⎪⎧∠AEB =∠AMC ,∠B =∠ACD ,AB =AC ,∴△AEB ≌△AMC.∴AE =AM ,∠BAE =∠CAM .∴∠EAM =∠EAC +∠CAM =∠EAC +∠BAE =∠BAC =60°.∴△AEM 是等边三角形.∴EM =AM =AE .∵AC =AD ,AM ⊥CD ,∴CM =DM .又∵∠DEC =90°,∴EM =CM =DM .∴AM=CM=DM.∴点A,C,D在以M为圆心,MC为半径的圆上.∴α=∠CAD=90°.8.解:(1)CH=AB(2)结论成立.证明:如图,连接BE.在正方形ABCD中,AB=BC=CD=AD,∠A=∠BCD=∠ABC =90°.∵DE=DF,∴AF=CE.在△ABF和△CBE中,⎩⎪⎨⎪⎧AB =CB ,∠A =∠BCE ,AF =CE ,∴△ABF ≌△CBE .∴∠1=∠2.∵EH ⊥BF ,∠BCE =90°,∴H ,C 两点都在以BE 为直径的圆上. ∴∠3=∠2.∴∠3=∠1.∵∠3+∠4=90°,∠1+∠HBC =90°, ∴∠4=∠HB C.∴CH =CB.∴CH =AB. (3)3 2+3.。
中考数学压轴题重难点突破十 几何图形综合题 类型五利用三角函数解决与√2 ,√3,二分之一有关的问题
(3)Ⅰ)如图②,由(2)知△ADG∽△ACE, ∴DCGE=AADC= 22,∴DG= 22CE, ∵四边形 ABCD 是正方形, ∴AD=BC=8 2,AC= AB2+BC2=16, ∵AG= 22AD,∴AG= 22AD=8,
∵四边形 AFEG 是正方形, ∴∠AGE=90°,GE=AG=8, ∵C,G,E 三点共线, ∴CG= AC2-AG2= 162-82=8 3, ∴CE=CG-EG=8 3-8,
(1)解:如图①中,设 AC=CD=x. 在 Rt△ACB 中,AB=10,AC=x,BC=CD+BD=x+2, ∵AB2=AC2+BC2,∴102=x2+(x+2)2, 解得 x=6 或-8(舍弃), ∵12AC·BC=12AB·CE,
∴CE=61×08=254.
(2)证明:如图②中,作 DH⊥CF 于点 H. ∵∠ACD=∠AEC=∠DHC=90°, ∴∠ACE+∠CAE=90°,∵∠ACE+∠BCE=90°, ∴∠CAE=∠DCH,∴△ACE≌△CDH,∴AE=CH, 在 Rt△DHF 中,∵∠DHF=90°,∠F=30°, ∴HF=DF·cos 30°= 23DF, ∴CF=CH+FH=AE+ 23DF.
(3)AB=8 2,AG= 22AD,将正方形 AFEG 绕 A 逆时针方向旋转α(0°<α <360°),当 C,G,E 三点共线时,请直接写出 DG 的长度.
解:(1)∵四边形 ABCD 是正方形,四边形 AFEG 是正方形, ∴∠AGE=∠D=90°,∠DAC=45°, ∴AAEG= 2,EG∥CD,
若题中已知一条边,常以这条边为直角边或斜边构造等腰直角三角形, 就会出现 2倍数量关系.
方法二:构造含 30°角的直角三角形( 3,12倍数量关系)
中考数学 精讲篇 专题突破十二 几何综合题 一、方法技巧突破
证明:过点 D 作 DH⊥CF 于点 H, ∵∠ACD=∠AEC=∠DHC=90°, ∴∠ACE+∠CAE=90°,∠ACE+∠DCH=90°, ∴∠CAE=∠DCH,
∴△ACE≌△CDH(AAS), ∴AE=CH,而 HF=DF·cos 30°= 23DF, ∴CF=CH+HF=AE+ 23DF.
解:∵AD⊥BC,DE⊥AC, ∴∠ADC=∠AED=90°, ∵∠DAE=∠DAC, ∴△DAE∽△CAD, ∴AD∶AC=AE∶AD.∴AD2=AC·AE. ∵AC=AB=4,∴AD2=AB·AE=4×3=12.
∴AD=2 3. 连接 DF. ∵AB=4,∠ADB=90°,BF=AF, ∴DF=12AB=2.
类型三:构造与 2, 3,12倍的线段 数量关系的方法
[重庆:A 卷 2021T26(2)、2020T26、2019T25;B 卷 2021T26(2)]
方法 1:构造 45°角的等腰直角三角形( 2倍的数量关系)
【方法归纳】
基本图形 辅助线作法
结论
作∠ADB=90°
AB= 2AD= 2BD
已知
∵AF 平分∠BAC, ∴∠FAC=45°. ∵CF⊥AF,∴∠AFC=90°, ∴△AFC 是等腰直角三角形,∴AF=CF. ∵∠BAC=90°,点 E 是 BC 的中点,∴AE=CE. 又∵FE=FE,∴△AFE≌△CFE(SSS). ∴∠AFE=∠CFE.
(2)连接 EH, ∵∠BAG=90°,AH⊥BG 且 AH 平分∠BAC, ∴点 H 为 BG 的中点,∠HAG=45°. 又∵点 E 为 BC 的中点,∴HE=12CG,HE∥CG. ∴∠FHE=∠HAG=45°. ∵∠HFE=∠CFE,∠AFC=90°,
类型二:与角平分线有关的辅助线作法
中考数学解答题压轴题突破 重难点突破八 几何综合题 类型六:旋转在几何综合题中的应用
(2)证明:BE=AH+DF.
(2)证明:将△ABH绕着点B顺时针旋转90° 得到△BCM,∵四边形ABCD是正方形, ∴AD=BC,∠ADC=∠C=90°,∴∠ADF=∠C, ∵AF∥BE,∴∠F=∠BEC,∴△ADF≌△BCE(AAS), ∴DF=CE.又由旋转可知AH=CM,∠AHB=∠M,∠BAH=∠BCM=90°, ∵∠BCD=90°,∴∠BCD+∠BCM=180°, ∴点E,C,M在同一直线.∴AH+DF=EC+CM=EM.
类型六:旋转在几何综合 题中的应用
模型一:旋转构造基本图形 【解题方法模型构建】 若题干中出现“共顶点、等线段(相邻等线段)”这一特征.常考虑构造 旋转,通过旋转可以将线段转移,将已知条件集中,从而解决问题.
1.遇60°旋转60°,构造等边三角形(等边三角形旋转模型).
通过旋转可将线段AP,BP,CP转移在同一个三角形中(△CPP′). 注:根据“旋转的相互性”也可绕A点旋转△APC,或绕B,C点旋转相应 三角形(还有5种构造方法).
模型二:旋转构造模型 【解题方法模型构建】 1.如图,在△OAB中,OA=OB,在△OCD中,OC=OD,∠AOB=∠COD=
α,将△OCD绕点O旋转一定角度后,连接AC,BD,相交于点E.简记 为:双等腰,共顶点,顶角相等,旋转得全等.
【结论】(1)△AOC≌△BOD(SAS); (2)AC=BD; (3)两条拉手线AC,BD所在直线的夹角与∠AOB相等或互补.
【结论】△ABD≌△AEC;△ABE∽△ADC.
2.请阅读下列材料: 问题:如图①,在等边三角形ABC内有一点P,且PA=2,PB= 3 ,PC= 1,求∠BPC度数的大小和等边三角形ABC的边长. 李明同学的思路:将△BPC绕点B逆时针旋转60°,画出旋转后的图形 (如图②),连接PP′,可得△P′PB是等边三角形,而△PP′A又是直角 三角形(由勾股定理的逆定理可证),∴∠AP′B=150°,而∠BPC=∠ AP′B=150°,进而求出等边角形ABC的边长为 7,问题得到解决.
中考数学解答题压轴题突破 重难点突破十 几何综合题
(1)证明:∵四边形 ABCD 是矩形,
∴AB∥CD,AB=CD,∠A=90°.
∵点 E,F 分别是 AB,CD 的中点,
1
1
∴AE=2AB,DF=2CD,∴AE=DF.
∵AE∥DF,∴四边形 AEFD 是平行四边形,
∵∠A=90°,∴四边形 AEFD 是矩形.
(2)解:如解图①,连接 OA,AM, ∵点 A 关于 BP 的对称点为点 M, ∴BP 垂直平分 AM, ∴OA=OM. ∵四边形 AEFD 是矩形, ∴EF⊥AB. ∵点 E 是 AB 的中点, ∴EF 垂直平分 AB, ∴OA=OB,∴OB=OM.
(3)证明:如解图,连接 AC,过点 B 作 BP∥AC 交 AF 的延长线于点 P, ∴△BFP∽△CFA, ∴BCFF=BCPA, ∵四边形 ABCD 是平行四边形,AB=AD, ∴四边形 ABCD 是菱形, ∵∠ABC=60°, ∴∠PBC=∠ACB=60°. ∴∠ABP=120°,∴∠DAE=∠ABP,
在△ADE 与△BAP 中, ∠DAE=∠ABP, AD=AB, ∠ADE=∠BAF, ∴△ADE≌△BAP(ASA),
∴AE=BP,
又∵AC=AD, BF AE
∴CF=AD.
类型二:动点问题
(省卷:2017T23;昆明:2020T23)
(2020·岳阳)如图 1,在矩形 ABCD 中,AB=6,BC=8,动点 P,Q 分別从 C 点,A 点同时以每秒 1 个单位长度的速度出发,且分别在边 CA, AB 上沿 C→A,A→B 的方向运动,当点 Q 运动到点 B 时,P,Q 两点同时 停止运动.设点 P 运动的时间为 t(s),连接 PQ,过点 P 作 PE⊥PQ,PE 与边 BC 相交于点 E,连接 QE.
2024年中考数学总复习第二部分经典专题突破专题五几何综合题练习2对称(折叠)综合题、动点综合题
福建经典专题突破
练习2
专题五 几何综合题
对称(折叠)综合题 动点综合题
1. (2023·
厦门思明模拟)如图,在菱形ABCD中,∠B=60°,E,F分别
是边AB,BC上的动点,且AE=BF,连接AF,CE相交于点P,连接PD
交AC于点G.
(1) 求∠APC的大小;
解 : ( 1 ) ∵ 四 边 形 ABCD 是 菱 形 , ∴ AB = BC.
∠I=60°.∴ ∠HDI=∠ADC.∴ ∠HDI-∠ADH=∠ADC-
∠ADH,即∠ADI=∠CDH.又∵ ∠I=∠CHD,AD=CD,
∴ △ADI≌△CDH.∴ DI=DH.
1
2
3
4
5
6
第1题答案
又∵ DI⊥AF,DH⊥CE,∴ PD平分∠APC.∴
∠CPD=∠APC=60°.∴
∠CPD=∠CAD.又∵ ∠CGP=∠DGA,∴ 180°-∠CPD-∠CGP=180°
2
2
2
AF +EF ,即CD = (AF2+EF2)
1
2
3
4
5
6
CD=
AC,∴
2CD2=
(3) 在DP绕点D转动的过程中,设AF=a,EF=b,请直接用含a,b
的式子表示DF的长.
解:(3) 当点F在点D,H之间时,DF=
-b);当点D在点F,H之间时,DF=
a);当点H在点D,F之间时,DF=
∠DAN.又∵ AC=AD,AN=AN,∴ △CAN≌△DAN.∴ CN=DN,
∠ACN=∠ADN.又∵ CG=DM,∴ △CNG≌△DNM. ∴ ∠CNG=
中考数学专题复习——几何综合(最新讲义)
中考数学——几何综合(讲义)➢ 知识点睛1. 几何综合问题的处理思路①标注条件,合理转化 ②组合特征,分析结构 ③由因导果,执果索因 2. 常见的思考角度304560 1 ↔⎧⎪↔⎪⎪↔⎨⎪↔⎪⎪︒︒︒↔⎩,,同位角、内错角、同旁内角平行内角、外角、对顶角、余角、补角转化计算角圆心角、圆周角在圆中,由弧找角,由角看弧直角互余、勾股定理、高、距离、直径特殊角等在直角三角形中,找边角关系() 2 ↔⎧⎪⎧⎪↔⎨⎪⎩⎪⎪⎧⎨⎪⎪⎪↔⎨⎪⎪⎪⎪⎪⎩⎪↔⎩、角平分线、垂直平分线轴对称性质勾股定理放在直角三角形中边角关系遇弦,作垂线边、线段连半径转移边放在圆中遇直径找直角遇切线连半径结合全等相似线段间比(例关系) 3 n ⎧⎧⎪⎪⎪⎪→⎨⎪⎪⎪⎨⎪⎩⎪⎪⎧⎪→⎨⎪⎩⎩倍长中线中位线中点三线合一特殊点斜边中线等于斜边的一半相似等分点面积转化() 4 ⎧⎧⎪⎪⎧⎪⎪→⎨⎪⎪⎨⎪⎪⎨⎪⎪⎩⎩⎪⎪⎧⎪→⎨⎪⎩⎩公式法相似规则图形转化法同底面积共高分割求和不规则图形割补法)补形作差(3. 常见结构、常用模型⎧→⎧⎪⎪→⎪⎪⎨⎪→⎪⎪⎪→⎪⎩⎪⎧⎨⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩⎩中点结构中点的思考角度直角结构斜转直常见结构旋转结构全等变换折叠结构轴对称的思考层次角平分线模型弦图模型常用模型相似基本模型三等角模型半角模型 ➢ 课前预习1. 如图,在△ABC 中,D 是BC 边的中点,E 是AD 上一点,BE =AC ,BE 的延长线交AC 于点F .若∠AEF =55°,则∠EAF=________.F EDCBA提示:倍长中线,构造全等三角形转移条件.具体操作:D 为中点,延长AD 到G 使DG =AD ,连接BG .得到△ADC ≌△GDB .2. 如图,在直角梯形ABCD 中,AB ∥CD ,∠ADC =90°,∠C =70°,点E 是BC的中点,CD =CE ,则∠EAD 的度数为( ) A .35°B .45°C .55°D .65°提示:平行夹中点,构造全等三角形补全图形.AD CE B具体操作:AB ∥CD ,E 为BC 的中点,延长AE 交直线CD 于点F .得到△ABE ≌△FCE .3. 如图,在四边形ABCD 中,AD =BC ,E ,F ,G 分别是AB ,CD ,AC 的中点,若∠ACB =66°,∠CAD =20°,则∠EFG =____.AB CD FEG提示:多个中点考虑中位线,利用中位线性质转移角、转移边.具体操作:GF ,GE 分别为△CDA ,△ABC 的中位线.4. 如图,在△ABC 中,AB =AC ,BD =DC =3,sin C =45,则△ABC 的周长为______.提示:等腰三角形底边上的的中点——通过等腰三角形三线合一,构造直角三角形.具体操作:连接AD ,得到Rt △ADC .5. 如图,在锐角三角形ABC 中,∠BAC =60°,BN ,CM 为高,P 是BC 的中点,连接MN ,MP ,NP .则以下结论:①NP =MP ;②当∠ABC =60°时,MN ∥BC ;③BN =2AN ;④当∠ABC =45°时,BNPC .其中正确的有( )具体操作:在Rt △BMC 中,MP 为斜边中线;在Rt △BNC 中,NP 为斜边中线.6. 如图,正方形ABCD 边长为9,点E 是线段CD 上一点,且CE 长为3,连接BE ,作线段BE 的垂直平分线分别交线段AD ,BC 于点F ,H ,垂足为G ,则AF 的长为______.H G F EDCBA方法1:提示:从边的角度考虑直角,往往先表达,然后用勾股定理建等式. 具体操作:连接BF ,EF ,则BF =EF ,设AF 为x ,分别在Rt △BAF 和Rt △EDF 中表达BF 2,EF 2,再利用BF 2=EF 2求解. 方法2:提示:从角度转移考虑直角,往往先找角相等,然后证相似或全等. 具体操作:过点F 作FM ⊥BC 于点M ,则可证△FMH ≌△BCE ,则MH =CE =3,连接EH ,利用勾股定理求解EH (BH ),则AF =BH -MH . 7. 如图,在△ABC 中,∠CAB =120°,AB =4,AC =2,AD ⊥BC 于D .则AD 的长为_______________.DCBA提示:①特殊角+直角;②直角两边可看做是面积中的底或高.具体操作:①过点C 作CE ⊥AB ,交BA 延长线于点E ,在Rt △CAE 中利用特殊角60°求解;②将AD 看成高,求出BC 后,利用CE AB AD BC ⋅=⋅求解.8. 如图,在△ABC 中,∠A =90°,AB =AC ,BD 平分∠ABC ,CE ⊥BD 交BD 的延长线于E ,若CE =5cm ,则BD =________.ABECD提示:直角+角平分线,逆用三线合一构造出等腰三角形.具体操作:BE 既是角平分线、又是高.延长BA ,CE 交于点F ,可证△CAF ≌△BAD .9. 如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D ,BD =2,AD =8,则CD =_________.DC提示:多个直角(直角三角形斜边上的高),考虑母子型相似.具体操作:由∠ACB =∠ADC =90°,考虑△BDC ∽△CDA ∽ △BCA .10. 如图,在梯形ABCD 中,AB ∥CD ,∠B =∠C =90°,点E 在BC 边上,AB =3,CD =2,BC =7.若∠AED =90°,则CE =_____.ABCDE提示:多个直角(一线三等角),考虑三等角模型.具体操作:∠ABE =∠ECD =∠AED =90°,考虑△ABE ∽△ECD .11. 如图,在Rt △ABC 中,∠ACB =90°,以斜边AB 为边向外作正方形ABDE ,且正方形对角线交于点O ,连接OC ,已知AC =5,OC=BC 的长为________.CB OAED提示:多个直角(斜放置的正方形、等腰直角三角形),考虑弦图.具体操作:过点D 作DF ⊥CB ,交CB 延长线于点F ,连接OF .由弦图可知,△OCF 是等腰直角三角形.12. 如图,将三角板放在矩形ABCD 上,使三角板的一边恰好经过点B ,三角板的直角顶点E 落在矩形对角线AC 上,另一边交CD 于点F .若AB =3,BC =4,则EF EG=________. FEDCG (B )A提示:斜直角要放平(关键是与其他直角配合),利用互余转移角后,寻找三角形相似或全等.具体操作:过点E 分别作EM ⊥CD 于M ,EN ⊥BC 于N ,则△EMF ∽△ENG .13. 已知直线l 1:y =112x b -+与直线l 2垂直,且直线l 2经过定点A (3,0),则直线l 2表达式为________________.提示:坐标系下的垂直,优先考虑121k k ⋅=-. 具体操作:由121k k ⋅=-求得k 2,再利用A (3,0)求b 2.14. 如图,在⊙O 中,弦AB,弦ADACB =45°,则弦AD 所对的圆心角为_______.CA提示:圆背景下,要构造直角,考虑:①直径所对的圆周角是直角;②垂径定理.具体操作:连接AO 并延长交⊙O 于点E ,连接DE ,BE .在Rt △ABE 中,求解直径AE ;在Rt △ADE 中,利用边角关系,求解∠AED 进而得到∠AOD . 15. 如图,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边上的点B ′处.若AE =2,DE =6,∠EFB =60°,则矩形ABCD 的面积是__________.B'A'F EDCBA提示:折叠,考虑:①利用对应边、对应角相等,考虑转移边、转移角;②矩形中的折叠常出现等腰三角形.具体操作:由折叠∠EFB =∠EFB′=60°,AE =A′E =2,∠B =∠A′B′F =90°,结合内错角∠B′EF =∠BFE =60°,可在Rt △A′B′E 中求解A′B′,即AB 的长.16. 如图,将长为4cm ,宽为2cm 的矩形纸片ABCD 折叠,使点B 落在CD 边的中点E 处,压平后得到折痕MN ,则线段AM 的长为__________.BCFAEMD提示:折叠,考虑折痕是对应点连线的垂直平分线.具体操作:连接BE ,BM ,ME ,则BM =ME ,在Rt △BAM 和Rt △MDE 中表达BM 2,ME 2,利用相等建等式求解.17. 如图,已知直线l :y =122x -+与x 轴交于点A ,与y 轴交于点B ,将△AOB沿直线l 折叠,点O 落在点C 处,则点C 的坐标为_________.提示:折叠,可考虑折痕垂直平分对应点连线.函数背景下的折叠可以考虑121k k ⋅=-和中点坐标公式的组合应用.具体操作:连接OC ,先利用原点坐标和121k k ⋅=-求得OC 解析式;联立OC 和AB 解析式求出OC 的中点坐标后,进而求出点C 坐标.18. 如图,Rt △ABC 的边BC 位于直线l 上,ACACB =90°,∠A =30°.若Rt △ABC 由现在的位置向右无滑动地翻转,则当点A 第3次落在直线l 上时,点A 所经过的路线长为__________.(结果保留π)19.的位置,使得CC′∥AB ,则∠BAB′的度数为( ) A .30°B .35°C .40°D .50°C'B'ABC提示:旋转是全等变换,对应边相等,对应角相等;会出现等腰三角形. 具体操作:由旋转可知AC =AC′(对应边相等),∠BAB′=∠CAC′(旋转角相等).20. 如图,P 是等边三角形ABC 内的一点,连接P A ,PB ,PC ,以BP 为边作∠PBQ =60°,且BQ =BP ,连接PQ ,CQ .若P A :PB :PC =3:4:5,则∠PQC =________.QBCPA提示:利用旋转可以重新组合条件.当看到等腰结构时往往会考虑利用旋转思想构造全等.具体操作:由等腰结构AB =BC ,PB =BQ ,先考虑△APB 和△BQC 的旋转关系,证明△APB ≌△CQB 后验证,重新组合条件后利用勾股定理进行证明.➢ 精讲精练1. 如图,在△ABC 中,∠BAC =30°,AB =AC ,AD 是BC 边上的中线,∠ACE =12∠BAC ,CE 交AB 于点E ,交AD 于点F .若BC =2,则EF 的长为________. FEDBA2. 如图,矩形ABCD 中,AB =8,点E 是AD 上一点,且AE =4,BE 的垂直平分线交BC 的延长线于点F ,交AB 于点H ,连接EF 交CD 于点G .若G 是CD 的中点,则BC 的长是_______.HGOB A DEC F3. 如图,在□ABCD 中,AB :BC =3:2,∠DAB =60°,点E 在AB 边上,且AE :EB =1:2,F 是BC 的中点,过点D 分别作DP ⊥AF 于点P ,DQ ⊥CE 于点Q ,则DP :DQ 等于( ) A .3:4BCD.QDCFBPEACBGFEDA第3题图 第4题图4. 如图,在△ABC 中,∠ABC =90°,BD 为AC 边上的中线,过点C 作CE ⊥BD于点E ,过点A 作BD 的平行线,交CE 的延长线于点F ,在AF 的延长线上截取FG =BD ,连接BG ,DF .若AG =13,CF =6,则四边形BDFG 的周长为________.5. 如图,已知四边形ABCD 为等腰梯形,AD ∥BC ,AB =CD,AD =CD 中点,连接AE,且AE =BF =________.BCEADF6. 如图,直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =3,BC =5,将腰DC 绕点D 逆时针方向旋转90°并缩小,恰好使DE =23CD ,连接AE ,则△ADE 的面积是________.7. 如图,在平面直角坐标系中,已知直线y=x 上一点P (1,1),C 为y 轴上一点,连接PC .线段PC 绕点P 顺时针旋转90°至线段PD ,过点D 作直线AB ⊥x 轴,垂足为B ,直线AB 与直线y =x 交于点A ,且BD =2AD .若直线CD 与直线y =x 交于点Q ,则点Q 的坐标为__________.8. 如图,把矩形ABCD 沿直线AC 折叠,点B 落在点E 处,连接DE .若DE :AC =3:5,则ADAB的值为_________. ED C B AEDCBA9. 如图1,将正方形纸片ABCD 对折,使AB 与CD 重合,折痕为EF ;如图2,展开再折叠一次,使点C 落在线段EF 上,折痕为BM ,BM 交EF 于O ,且△NMO的周长为3,展开再折叠一次,使点C 与点E 重合,折痕为GH ,点B 的对应点为P ,EP 交AB 于Q ,则△AQE 的周长为_______.图1BAD FC EMN图2OBAD F CE PHG 图3Q BA D F CE10.如图,在边长为的正方形ABCD 中,E 是AB 边上一点,G 是AD 延长线上一点,BE =DG ,连接EG ,CF ⊥EG 于点H ,交AD 于点F ,连接CE ,BH .若BH =8,则FG =_______.GHBA D F CE11.顺时针旋转得到△A B′C′,连接CC ′并延长,交AB 于点O ,交BB ′于点F .若CC ′=CA ,则BF =_____.C'O B AFC B'12. 如图,在正方形ABCD 外取一点E ,连接AE ,BE ,DE ,过点A 作AE 的垂线交DE 于点P ,连接BP .若AE =AP =1,PB =APD ≌△AEB ;②BE ⊥DE ;③点B 到直线AE;④1△△APD APB S S +=⑤4ABCD S =正方形 ) A .③④⑤B .①②⑤C .①③⑤D .①②④⑤PDA B CE【参考答案】 ➢ 课前预习1. 55°2. A3. 23°4. 165. B6. 27.7 8. 10 cm 9. 410. 1或6 11. 712. 4313. 26y x =-14.120°15.16.138cm17.816 () 55,18.(4π19.C20.90°➢精讲精练1.12.73.D4.205.4-6.27.99 () 44,8.1 29.1210.11.5 212.B。
中考数学专题复习:几何综合题
【考点总结】四、全等三角形的性质与判定
1.概念:能够完全重合的两个三角形叫做全等三角形. 2.性质:全等三角形的对应边、对应角分别相等. 3.判定:(1)有三边对应相等的两个三角形全等,简记为(SSS); (2)有两边和它们的夹角对应相等的两个三角形全等,简记为(SAS); (3)有两角和它们的夹边对应相等的两个三角形全等,简记为(ASA); (4)有两角和其中一角的对边对应相等的两个三角形全等,简记为(AAS); (5)有斜边和一条直角边对应相等的两个直角三角形全等,简记为(HL).
三角形专题
1,掌握三角形相关基础知识(2课时)
目标
2,掌握三角形有关模型的全等或相似证明(3课时) 3,完成三角形有关模型的全等或相似证明(3课时)
三角形
模型
手拉手模型
三垂直模型
相似模型
三角形有关的知识
【考点总结】一、三角形中的重要线段 1.三角形的高线:从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做 三角形的高线,简称高. 特性:三角形的三条高线相交于一点. 2.三角形的中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.特性:三角 形的三条中线交于一点. 3.三角形的中位线:连接三角形两边中点的线段叫做三角形的中位线. 定理:三角形的中位线平行于第三边,且等于它的一半 4.三角形的角平分线:三角形一个角的平分线和这个角的对边相交,这个角的顶点和交点之间的线 段叫做三角形的角平分线. 特性:三角形的三条角平分线交于一点,这点叫做三角形的内心. 性质:角平分线上的点到角的两边的距离相等.
小组合作
1.在△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D.
(1)如图1,点M,N分别在AD,AB上,且∠BMN=90°,当∠AMN=30°,AB=2时,求线段
中考数学核心考点强化突破几何综合应用含解析
中考数学核心考点强化突破:几何综合应用类型1 以三角形为背景的计算和证明问题1.如图,一条4 m 宽的道路将矩形花坛分为一个直角三角形和一个直角梯形,根据图中数据,可知这条道路的占地面积为____ m 2.【解析】如图,作DE⊥AC 于点E,可证△DAE∽△ACB∴DE AB =AE BC .即:4AB =312解得:AB =16(m),∴道路的面积为AD×AB=5×16=80(m 2). 2.在Rt △ABC 中,∠A=90°,AC =AB =4,D,E 分别是边AB,AC 的中点.若等腰Rt △ADE 绕点A 逆时针旋转,得到等腰Rt △AD 1E 1,设旋转角为α(0<α≤180°),记直线BD 1与CE 1的交点为P.(1)如图1,当α=90°时,线段BD 1的长等于;(直接填写结果)(2)如图2,当α=135°时,求证:BD 1=CE 1,且BD 1⊥CE 1;(3)求点P 到AB 所在直线的距离的最大值.(直接写出结果)解:(2)证明:当α=135°时,由旋转可知∠D 1AB =∠E 1AC =135°.又∵AB=AC,AD 1=AE 1,∴△D 1A B≌△E 1AC.∴BD 1=CE 1且∠D 1BA =∠E 1CA.设直线BD 1与AC 交于点F,有∠BFA=∠CFP ,∴∠CPF=∠FAB=90°.∴BD 1⊥CE 1.(3)1+3(四边形AD 1PE 1为正方形时,距离最大,此时PD 1=2,PB =2+23).3.如图,已知△ABC 中AB =AC =12厘米,BC =9厘米,点D 为AB 的中点.(1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.①若点P 点Q 的运动速度相等,经过1秒后,△BPD 与△CQP 是否全等,请说明理由;②若点P 点Q 的运动速度不相等,当点Q 的运动速度为多少时,能够使△BPD 与△CQP 全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿△ABC 三边运动,求经过多长时间,点P 与点Q 第一次在△ABC 的哪条边上相遇?解:(1)①∵t=1(秒),∴BP=CQ =3(厘米)∵AB=12,D 为AB 中点,∴BD=6(厘米)又∵PC=BC -BP =9-3=6(厘米)∴PC=BD∵AB=AC,∴∠B=∠C ,在△BPD 与△CQP中,⎩⎪⎨⎪⎧BP =CQ ∠B=∠C BD =PC,∴△BPD≌△CQP(SAS ),②∵V P ≠V Q ,∴BP≠CQ ,又∵∠B=∠C ,要使△BPD≌△CPQ ,只能BP =CP =4.5,∵△BPD≌△CPQ ,∴CQ=BD =6.∴点P 的运动时间t =BP 3=4.53=1.5(秒),此时V Q =CQ t =61.5=4(厘米/秒);(2)因为V Q >V P ,只能是点Q 追上点P,即点Q 比点P 多走AB +AC 的路程,设经过x 秒后P 与Q 第一次相遇,依题意得4x =3x +2×12,解得x =24(秒),此时P 运动了24×3=72(厘米)又∵△ABC 的周长为33厘米,72=33×2+6,∴点P 、Q 在BC 边上相遇,即经过24秒,点P 与点Q 第一次在BC边上相遇.类型2 以四边形为背景的计算和证明问题4.已知正方形ABCD的边长为4,一个以点A为顶点的45°角绕点A旋转,角的两边分别与边BC、DC的延长线交于点E、F,连接EF.设CE=a,CF=b.(1)如图1,当∠EAF被对角线AC平分时,求a,b的值;(2)当△AEF是直角三角形时,求a,b的值;(3)如图3,探索∠EAF绕点A旋转的过程中a,b满足的关系式,并说明理由.解:(1)可证△ACF≌△ACE,∴CE=CF,∵CE=a,CF=b,∴a=b,∵△ACF≌△ACE,∴∠AEF=∠AFE,∵∠EAF=45°,∴∠AEF=∠AFE=67.5°,∵CE=CF,∠ECF=90°,∠AEC=∠AFC=22.5°,∵∠CAF =∠CAE=22.5°,∴∠CAE=∠CEA,∴CE=AC=42,即:a=b=42;(2)当△AEF是直角三角形时,①当∠AEF=90°时,∵∠EAF=45°,∴∠AFE=45°,∴△AEF是等腰直角三角形,∴AF2=2FE2=2(CE2+CF2),AF2=2(AD2+BE2),∴2(CE2+CF2)=2(AD2+BE2),∴CE2+CF2=AD2+BE2,∴CE2+CF2=16+(4+CE)2,∴CF2=8(CE+4)①∵∠AEB+∠BEF=90°,∠AEB+∠BAE=90°,∴∠BEF=∠BAE,∴△ABE∽△ECF,∴4CE =CE+4CF,∴4CF=CE(CE+4)②,联立①②得,CE=4,CF=8∴a=4,b=8,②当∠AFE=90°时,同①的方法得,CF=4,CE=8,∴a=8,b=4.(3)ab=32,理由:如图,可证△ACF∽△ECA ,∴EC×CF=AC 2=2AB 2=32∴ab=32.5.已知:如图所示,在平面直角坐标系xOy 中,四边形OABC 是矩形,OA =4,OC =3,动点P 从点C 出发,沿射线CB 方向以每秒2个单位长度的速度运动;同时,动点Q 从点O 出发,沿x 轴正半轴方向以每秒1个单位长度的速度运动.设点P 、点Q 的运动时间为t(s).(1)当t =1 s 时,求经过点O,P,A 三点的抛物线的解析式;(2)当t =2s 时,求tan ∠QPA 的值;(3)当线段PQ 与线段AB 相交于点M,且BM =2AM 时,求t(s )的值;(4)连接CQ,当点P,Q 在运动过程中,记△CQP 与矩形OABC 重叠部分的面积为S,求S 与t 的函数关系式.解:(1)当t =1 s 时,则CP =2,∴P(2,3),且A(4,0),∴y=-34x 2+3x ;(2)当t =2 s 时,则CP =2×2=4=BC,即点P 与点B 重合,OQ =2,如图1,∴AQ=OA -OQ =4-2=2,且AP =OC =3,∴tan ∠QPA=AQ AP =23;(3)当线段PQ 与线段AB 相交于点M,则可知点Q 在线段OA 上,点P 在线段CB 的延长线上,如图2,则CP=2t,OQ =t,∴BP=PC -CB =2t -4,AQ =OA -OQ =4-t,∵PC∥OA ,∴△PBM∽△QAM ,∴BP AQ =BM AM ,∴2t -44-t=2,解得t =3;(4)当0≤t≤2时,如图3,由题意可知CP =2t,∴S=S △PCQ =12×2t×3=3t ;当2<t≤4时,设PQ 交AB 于点M,如图4,由题意可知PC =2t,OQ =t,则BP =2t -4,AQ =4-t,同(3)可得BP AQ =BMAM =2t -44-t ,解得AM =12-3t t,∴S=S 四边形BCQM =S 矩形OA BC -S △COQ -S △AMQ =24-24t-3t ;当t >4时,设CQ 与AB 交于点M,如图5,由题意可知OQ =t,AQ =t -4,∵AB∥OC ,∴AM OC =AQ OQ ,即AM 3=t -4t ,解得AM =3t -12t ,∴BM=12t,∴S=S △BCM =12×4×12t =24t;综上可知: S =⎩⎪⎨⎪⎧3t (0≤t≤2)24-24t -3t (2<t≤4)24t (t >4).。
中考数学 精讲篇 中考压轴题突破 二、解答题压轴题突破 重难点突破十 几何图形综合题
(2)如解图,连接 EF, 由(1)知△BCE≌△ADF,∴AF=BE,又∵AF∥BE, ∴四边形 ABEF 为平行四边形, ∴S△AEF=S△AEB,同理 S△DEF=S△DEC, ∴T=S△AEB+S△DEC. ∵T=S△AED+S△ADF=S△AED+S△BCE,
S ∴S=S△AEB+S△AED+S△BCE+S△DEC=2T,∴T=2.
(1)解:①在 Rt△ABC 中,∵BC=2,AC=4, ∴AB= 22+42=2 5.∵AD=CD=2,∴BD=2 2. 由翻折可知 BP=BA=2 5. ②证明:∵△BCD 是等腰直角三角形, ∴∠BDC=45°,∴∠ADB=∠BDP=135°,
∴∠PDC=135°-45°=90°.∴∠BCD=∠PDC=90°,∴DP∥BC. ∵PD=AD=BC=2,∴四边形 BCPD 是平行四边形.
重难点突破十 几何图形 综合题
类型一:与全等三角形有关的问题 (安徽:2018,2014,2011T23)
如图,在△ABC 中,∠ACB=90°,AC=BC,延长 AB 至点 D,使 DB= AB,连接 CD,以 CD 为边作△CDE,其中∠DCE=90°,CD=CE,连接 BE. (1)求证:△ACD≌△BCE; (2)若 AB=6 cm,则 BE=______cm; (3)BE 与 AD 有何位置关系?请说明理由.
证明:(1)∵∠ACB=90°,AC=BC, ∴∠ABC=45°=∠PBA+PBC, ∵∠APB=135°, ∴∠PAB+PBA=45°, ∴∠PBC=∠PAB, ∵∠APB=∠BPC=135°, ∴△PAB∽△PBC.
(2)∵△PAB∽△PBC, PA PB AB
∴PB=PC=BC, 在 Rt△ABC 中,AC=BC, ∴ABBC= 2, ∴PA= 2PB,PB= 2PC, ∴PA=2PC.
中考数学解答题压轴题突破 重难点突破八 几何综合题
3 34 ∴点B到直线EH的距离为 17 .
2.(2022·渝中区校级模拟)在△ABC中,记∠BAC=α,将BC绕点B逆时 针旋转α得到线段BD,连接AD,取AD的中点E. (1)如图①,过点D作DF⊥AB于点F,连接EF.若α=90°,tan∠BDF= 1 3,EF=2 13,求AC的长;
解:(1)∵∠BAC=∠CBD=90°,∴∠DBF+∠ABC=90°, ∠ABC+∠C=90°,∴∠DBF=∠C,∵DF⊥AB,∴∠DFB=90°, ∴∠DFB=∠BAC=90°,∵BC=BD,∴△ABC≌△FDB(AAS),
∴△CNM≌△QNF(SAS),∴FQ=CM=BC, 延长CF到点P,使得PF=BF,则△PBF是等边三角形, ∴∠PBC+∠PCB=∠PCB+∠FCM=120°, ∴∠PFQ=∠FCM=∠PBC. ∵PB=PF,∴△PFQ≌△PBC(SAS), ∴PQ=PC,∠CPB=∠QPF=60°, ∴△PCQ是等边三角形,∴BF+CF=PC=QC=2CN.
∴PBQC=2
2+ 27
6=2
14+ 14
42.
【试题特点解读】重庆连续三年都以三角形的综合题作为数学的压轴 题,难度较大.主要是三角形的旋转和折叠,其中有中点模型、角平分 线模型、截长补短模型、旋转模型、几何图形最值模型、主从联动模 型,综合性较强,学生在解答这类题时,要有一定的空间想象、几何直 观和数学运算能力,以及先测量再猜想的技巧,掌握和熟练运用几何模 型的能力.
∵sin A=AE=AB,∴ 8 =2 5,∴DE= 5 .
(2)如图②,当点D落在CB的延长线上时,连接AD,过点C作CF⊥AB于点 F,延长CF交AD于点E,连接BE,求证:AB=CE+BE;
(2)证明:如答图①中,过点D作DG⊥CD交CE的延长线于点G. ∵CA=CD,∠ACD=90°,∴∠ADC=∠CAD=45°,∵CF⊥AB, ∴∠CAB+∠ACF=90°,∠DCG+∠ACF=90°,∴∠CAB=∠DCG, ∵∠ACB=∠CDG=90°,AC=DC, ∴△ACB≌△CDG(ASA),∴CB=DG,AB=CG, ∵AC=CD=2CB,∴CB=DB=DG,∵DE=DE, ∠EDB=∠EDG=45°,∴△EDB≌△EDG(SAS), ∴BE=EG.∴AB=CG=CE+EG=CE+EB.
人教版中考数学解答题压轴题突破 重难点突破八 几何综合探究题 类型五:阅读理解问题
州2022~2018T23)
(2021·随州第23题11分)等面积法是一种常用的、重要的数学解题 方法.它是利用“同一个图形的面积相等”、“分割图形后各部分的面 积之和等于原图形的面积”、“同底等高或等底同高的两个三角形面积 相等”等性质解决有关数学问题,在解题中,灵活运用等面积法解决相 关问题,可以使解题思路清晰,解题过程简便快捷.
将△BCD绕点C顺时针旋转60°得到△ACE,点B与点A重合,点D落到点E 处,连接DE.由旋转性质可知AE=BD,CE=CD,∠DCE=60°, ∴△CDE是等边三角形,∴ED=CD,∠CDE=60°, ∴∠ADE=∠ADC+∠CDE=90°, ∴AD2+ED2=AE2. 又∵ED=CD,AE=BD,∴AD2+CD2=BD2.
解:Ⅰ)设BD=m,由已知可得△ABD,△AEH,△CEG,△BFG都是等腰直
角三角形,四边形DGEH是矩形,∴AD=BD=CD=m,
∵E是AC中点,∴HE=DG=12m=AH,
1
3
∴CG=CD-DG=2m,BG=FG=BD+DG=2m,∴S1=S△BFG+S△CEG
=12×32m×32m+12×12m×12m=54m2, S2=S△ABD+S△AEH=12m2+12×12m×12m=58m2,∴SS21=2.故答案为2.
∴点A,B,C,D四点在同一个圆上,∴∠3=∠4,
∵∠3=45°,∴∠4=45°.故答案为45°.
(3)拓展探究:如图④,已知△ABC是等腰三角形,AB=AC,点D在BC上 (不与BC的中点重合),连接AD.作点C关于AD的对称点E,连接EB并延长 交AD的延长线于F,连接AE,DE. Ⅰ)求证:A,D,B,E四点共圆;
中考数学解答题压轴题突破 重难点突破八 几何综合探究题 类型二:操作型探究问题
5.(2022·嘉兴)小东在做九上课本 123 页习题:“1∶ 2 也是一个很有 趣的比.已知线段 AB(如图①),用直尺和圆规作 AB 上的一点 P,使 AP∶ AB=1∶ 2.”小东的作法是:如图②,以 AB 为斜边作等腰直角三角形 ABC,再以点 A 为圆心,AC 长为半径作弧,交线段 AB 于点 P,点 P 即为 所求作的点.小东称点 P 为线段 AB 的“趣点”.
(1)【阅读理解】我国是最早了解勾股定理的国家之一,它被记载于我国 古代的数学著作《周髀算经》中.汉代数学家赵爽为了证明勾股定理, 创制了一幅如图①所示的“弦图”,后人称之为“赵爽弦图”. 根据“赵爽弦图”写出勾股定理和推理过程;
解: a2+b2=c2(直角三角形两条直角边的平方和等于斜边的平方). 推理如下: ∵如图①,4 个△ADE 的面积和+正方形 EFGH 的面积=正方形 ABCD 的面 积, 即 4×12ab+(b-a)2=c2, 整理得 a2+b2=c2.
解:∵在正方形 PQMN 中,PN=PQ=DE,PN∥BC,∴△APN∽△ABC,AE=
PN AE AD-DE=AD-PN,∴BC=AD,
PN h-PN
ah
ah
∴ a = h ,∴PN=a+h,∴正方形 PQMN 的边长为a+h.
(2)【操作推理】如何画出这个正方形 PQMN 呢? 如图②,小杰画出了图①的△ABC,然后又进行以下操作:先在 AB 边上 任取一点 P′,画正方形 P′Q′M′N′,使点 Q′,M′在 BC 边上,点 N ′在△ABC 内,然后连接 BN′,并延长交 AC 于点 N,作 NM⊥BC 于点 M, NP⊥NM 交 AB 于点 P,PQ⊥BC 于点 Q,得到四边形 PQMN.证明:图②中的 四边形 PQMN 是正方形; 【分层分析】先推出四边形 PQMN 是矩形,再根据 P′N′∥PN,M′N′∥ MN,可得P′PNN′=N′NMM′,结合 M′N′=P′N′,推得 MN=PN 进而得证;
潍坊市中考专题突破专题四:几何变换综合题(含答案解析)
专题类型突破专题四几何变换综合题类型一涉及一个动点的几何问题(·长春中考)如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=4,动点P从点A出发,沿AB以每秒2个单位长度的速度向终点B运动.过点P作PD⊥AC 于点D(点P不与点A,B重合),作∠DPQ=60°,边PQ交射线DC于点Q.设点P 的运动时间为t秒.(1)用含t的代数式表示线段DC的长;(2)当点Q与点C重合时,求t的值;(3)设△P DQ与△ABC重叠部分图形的面积为S,求S与t之间的函数关系式;(4)当线段PQ的垂直平分线经过△ABC一边中点时,直接写出t的值.【分析】 (1)先求出AC,用三角函数求出AD,即可得出结论;(2)利用AD+DQ=AC,即可得出结论;(3)分两种情况,利用三角形的面积公式和面积差即可得出结论;(4)分三种情况,利用锐角三角函数,即可得出结论.【自主解答】1.(·江西中考)在菱形ABCD中,∠ABC=60°,点P是射线BD上一动点,以AP为边向右侧作等边△APE,点E的位置随着点P的位置变化而变化.(1)如图1,当点E在菱形ABCD内部或边上时,连接CE,BP与CE的数量关系是,CE与AD的位置关系是;(2)当点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理);(3)如图4,当点P在线段BD的延长线上时,连接BE,若AB=23,BE=219,求四边形ADPE的面积.类型二涉及两个动点的几何问题(·青岛中考)已知:如图,四边形ABCD,AB∥DC,CB⊥AB,AB=16 cm,BC=6 cm,CD=8 cm,动点P从点D开始沿DA边匀速运动,动点Q从点A开始沿AB边匀速运动,它们的运动速度均为2 cm/s.点P和点Q同时出发,以QA,QP为边作平行四边形AQPE,设运动的时间为t(s),0<t<5.根据题意解答下列问题: (1)用含t 的代数式表示AP ;(2)设四边形CPQB 的面积为S(cm 2),求S 与t 的函数关系式; (3)当QP⊥BD 时,求t 的值;(4)在运动过程中,是否存在某一时刻t ,使点E 在∠ABD 的平分线上?若存在,求出t 的值;若不存在,请说明理由.【分析】 (1)作D H⊥AB 于点H ,则四边形DHBC 是矩形,利用勾股定理求出AD 的长即可解决问题;(2)作PN⊥AB 于N ,连接PB ,根据S =S △PQ B +S △BCP 计算即可;(3)当QP⊥BD 时,∠PQN+∠DBA =90°,∠QPN+∠PQN=90°,推出∠QPN =∠DBA ,由此利用三角函数即可解决问题;(4)连接BE 交DH 于点K ,作KM⊥BD 于点M.当BE 平分∠ABD 时,△K B H≌△K BM ,推出KH =KM.作EF⊥AB 于点F ,则△A EF≌△QPN,推出EF =PN ,AF =QN ,由KH∥EF 可得KH EF =BHBF ,由此构建方程即可解决问题.【自主解答】2.(·黄冈中考)如图,在平面直角坐标系xOy 中,菱形OABC 的边OA 在x 轴正半轴上,点B ,C 在第一象限,∠C =120°,边长OA =8.点M 从原点O 出发沿x 轴正半轴以每秒1个单位长的速度作匀速运动,点N 从A 出发沿边AB -BC -CO 以每秒2个单位长的速度作匀速运动,过点M 作直线MP 垂直于x 轴并交折线OCB 于P ,交对角线OB 于Q ,点M 和点N 同时出发,分别沿各自路线运动,点N 运动到原点O 时,M 和N 两点同时停止运动. (1)当t =2时,求线段PQ 的长; (2)求t 为何值时,点P 与N 重合;(3)设△APN 的面积为S ,求S 与t 的函数关系式及t 的取值范围.类型三 图形的平移变换(·扬州中考)如图,将△ABC 沿着射线BC 方向平移至△A ′B ′C ′,使点A ′落在∠ACB 的外角平分线CD 上,连接AA ′. (1)判断四边形ACC ′A ′的形状,并说明理由;(2)在△ABC 中,∠B =90°,AB =24,cos ∠BAC =1213,求CB ′的长.【分析】 (1)根据平行四边形的判定定理(有一组对边平行且相等的四边形是平行四边形)知四边形ACC′A′是平行四边形.再根据对角线平分对角的平行四边形是菱形知四边形ACC′A′是菱形.(2)通过解直角△ABC得到AC,BC的长度,由(1)中菱形ACC′A′的性质推知AC =AA′,由平移的性质得四边形ABB′A′是平行四边形,则AA′=BB′,所以CB′=BB′-BC.【自主解答】平移变换命题的呈现形式主要有:(1)坐标系中的点、函数图象的平移问题;(2)涉及基本图形平移的几何问题;(3)利用平移变换作为工具解题.其解题思路:(1)特殊点法:解题的关键是学会运用转化的思想,如坐标系中图象的平移问题,一般是通过图象上一个关键(特殊)点的平移来研究整个图象的平移;(2)集中条件法:通过平移变换添加辅助线,集中条件,使问题获得解决;(3)综合法:已知条件中涉及基本图形的平移或要求利用平移作图的问题时,要注意找准对应点,看清对应边,注意变换性质的理解和运用.3.(·安徽中考)如图,直线l1,l2都与直线l垂直,垂足分别为M,N,MN=1.正方形ABCD的边长为2,对角线AC在直线l上,且点C位于点M处.将正方形ABCD沿l向右平移,直到点A与点N重合为止.记点C平移的距离为x,正方形ABCD的边位于l1,l2之间部分的长度和为y,则y关于x的函数图象大致为( )4.如图,在平面直角坐标系中,△AOB 的顶点O 为坐标原点,点A 的坐标为(4,0),点B 的坐标为(0,1),点C 为边AB 的中点,正方形OBDE 的顶点E 在x 轴的正半轴上,连接CO ,CD ,CE.(1)线段OC 的长为 ; (2)求证:△CBD ≌△COE ;(3)将正方形OBDE 沿x 轴正方向平移得到正方形O 1B 1D 1E 1,其中点O ,B ,D ,E 的对应点分别为点O 1,B 1,D 1,E 1,连接CD 1,CE 1,设点E 1的坐标为(a ,0),其中a ≠2,△CD 1E 1的面积为S.①当1<a <2时,请直接写出S 与a 之间的函数解析式; ②在平移过程中,当S =14时,请直接写出a 的值.类型四图形的旋转变换(·潍坊中考)边长为6的等边△ABC中,点D,E分别在AC,BC边上,D E∥AB,EC=2 3.(1)如图1,将△DEC沿射线EC方向平移,得到△D′E′C′,边D′E′与AC的交点为M,边C′D′与∠ACC′的角平分线交于点N.当CC′多大时,四边形MCND′为菱形?并说明理由.(2)如图2,将△DEC绕点C旋转∠α(0°<α<360°),得到△D′E′C,连接AD′,B E′.边D′E′的中点为P.①在旋转过程中,AD′和B E′有怎样的数量关系?并说明理由;②连接AP,当AP最大时,求AD′的值.(结果保留根号)【分析】 (1)先判断出四边形MCND′为平行四边形,可得△M C E′和△N CC′为等边三角形,即可求出CC′,得出CN=CM,即证四边形MCND′为菱形;(2)①分两种情况,利用旋转的性质,即可判断出△ACD′≌△BC E′,即可得出结论;②先判断出点A,C,P三点共线,求出CP,AP,最后用勾股定理即可得出结论.【自主解答】旋转变换问题的解题思路:(1)以旋转为背景的问题,要根据题意,找准对应点,看清对应边,注意对旋转的性质的理解和运用,想象其中基本元素,如点、线(角)之间的变化规律,再结合几何图形的性质,大胆地猜想结果并加以证明来解决问题;(2)利用旋转变换工具解决问题,要注意观察,通过旋转图形中的部分,运用旋转的性质,将复杂问题简单化.5.(·菏泽中考)问题情境:在综合与实践课上,老师让同学们以“矩形纸片的剪拼”为主题开展数学活动.如图1,将矩形纸片ABCD沿对角线AC剪开,得到△ABC和△ACD.并且量得AB=2 cm,AC=4 cm.操作发现:(1)将图1中的△ACD以点A为旋转中心,按逆时针方向旋转∠α,使∠α=∠BAC,得到如图2所示的△AC′D,过点C作AC′的平行线,与DC′的延长线交于点E,则四边形ACEC′的形状是.(2)创新小组将图1中的△ACD以点A为旋转中心,按逆时针方向旋转,使B,A,D三点在同一条直线上,得到如图3所示的△AC′D,连接CC′,取CC′的中点F,连接AF并延长至点G,使FG=AF,连接CG,C′G,得到四边形ACGC′,发现它是正方形,请你证明这个结论.实践探究:(3)缜密小组在创新小组发现结论的基础上,进行如下操作:将△ABC沿着BD方向平移,使点B与点A重合,此时A点平移至A′点,A′C与BC′相交于点H,如图4所示,连接CC′,试求t a n∠C′CH的值.类型五图形的翻折变换(·德州中考)如图1,在矩形纸片ABCD 中,AB =3 cm ,AD =5 cm ,折叠纸片使B 点落在边AD 上的E 处,折痕为PQ.过点E 作EF∥AB 交PQ 于F ,连接BF. (1)求证:四边形BFEP 为菱形;(2)当点E 在AD 边上移动时,折痕的端点P ,Q 也随之移动. ①当点Q 与点C 重合时(如图2),求菱形BFEP 的边长;②若限定P ,Q 分别在边BA ,BC 上移动,求出点E 在边AD 上移动的最大距离.【分析】 (1)由折叠的性质得出PB =PE ,BF =EF ,∠BPF =∠EPF,由平行线的性质得出∠BPF =∠EFP,证出∠EPF=∠EFP,得出EP =EF ,因此BP =BF =EF =EP ,即可得出结论;(2)①由矩形的性质得出BC =AD =5 cm ,CD =AB =3 cm ,∠A =∠D =90°,由对称的性质得出CE =BC =5 cm ,在Rt △CDE 中,由勾股定理求出DE =4 cm ,得出AE =AD -DE =1 cm ;在Rt △APE 中,由勾股定理得出方程,解方程得出EP =53 cm即可;②当点Q 与点C 重合时,点E 离点A 最近,由①知,此时AE =1 cm ;当点P 与点A 重合时,点E 离点A 最远,此时四边形ABQE 为正方形,AE =AB =3 cm ,即可得出答案. 【自主解答】翻折变换问题的解题思路:以翻折变换为载体,考查几何图形的判定和性质问题.一般先作出折叠前、后的图形位置,考虑折叠前、后哪些线段、角对应相等,哪些量发生了变化.然后再利用轴对称的性质和相关图形的性质推出相等的线段、角、全等三角形等,当有直角三角形出现时,考虑利用勾股定理以及方程思想来解决.6.(·兰州中考)如图1,将一张矩形纸片ABCD 沿着对角线BD 向上折叠,顶点C 落到点E 处,BE 交AD 于点F. (1)求证:△BDF 是等腰三角形;(2)如图2,过点D 作D G∥BE ,交BC 于点G ,连接FG 交BD 于点O. ①判断四边形BFDG 的形状,并说明理由; ②若AB =6,AD =8,求FG 的长.类型六 图形的相似变换【探究证明】(1)某班数学课题学习小组对矩形内两条相互垂直的线段与矩形两邻边的数量关系进行探究,提出下列问题,请你给出证明:如图1,矩形ABCD 中,EF⊥GH,EF 分别交AB ,CD 于点E ,F ,GH 分别交AD ,BC 于点G ,H.求证:EF GH =ADAB ;【结论应用】(2)如图2,在满足(1)的条件下,又A M⊥BN ,点M ,N 分别在边BC ,CD 上.若EFGH=1115,则BNAM 的值为 ; 【联系拓展】(3)如图3,四边形ABCD 中,∠ABC =90°,AB =AD =10,BC =CD =5,A M⊥DN ,点M ,N 分别在边BC ,AB 上,求DNAM的值.【分析】 (1)过点A 作A P∥EF,交CD 于点P ,过点B 作B Q∥GH,交AD 于点Q ,易证AP =EF ,GH =BQ ,△P DA ∽△Q AB ,然后运用相似三角形的性质就可以解决问题;(2)只需运用(1)中的结论,就可得到EF GH =AD AB =BNAM ,就可以解决问题;(3)过D 作AB 的平行线,交BC 的延长线于点E ,作A F⊥AB 交直线DE 于点F ,易证得四边形ABEF 是矩形,通过等量代换,得∠1=∠3,进而得到△AD F∽△DCE ,根据相似三角形的性质,得出线段DE ,AF ,DC ,AD 之间的关系,再通过设未知数及勾股定理求出AF ,最后根据(1)中的结论,即可解决问题. 【自主解答】求两条线段的比,一般有两种方法:一是根据定义,求出两条线段的长度,再求两条线段的比;二是利用比例线段,等比转换,能够产生比例线段的是相似三角形和平行线,可以利用相似三角形和平行线的性质去寻找比例线段.在含有比值与相似的问题中,关键是证明三角形相似.判定三角形相似的方法一般有:(1)条件中若有平行线,可采用找角相等证两个三角形相似;(2)条件中若有一组对应角相等,可再找一组对应角相等或再找此角所在的两边对应成比例;(3)条件中若有两边对应成比例,可找夹角相等;(4)条件中若有一组直角,可考虑再找一组等角或证明斜边、直角边对应成比例;(5)条件中若有等腰关系,可找顶角相等或找对应底角相等或底和腰对应成比例.7.(·湖州中考)已知在Rt △ABC 中,∠BAC =90°,AB ≥AC ,D ,E 分别为AC ,BC 边上的点(不包括端点),且DC BE =ACBC =m ,连接AE ,过点D 作D M⊥AE ,垂足为点M ,延长DM 交AB 于点F.(1)如图1,过点E 作EH⊥AB 于点H ,连接DH. ①求证:四边形DHEC 是平行四边形; ②若m =22,求证:AE =DF ;(2)如图2,若m =35,求DFAE的值.类型七 类比、拓展类探究问题(·淄博中考)(1)操作发现:如图1,小明画了一个等腰三角形ABC ,其中AB =AC ,在△ABC 的外侧分别以AB ,AC 为腰作了两个等腰直角三角形ABD ,ACE.分别取BD ,CE ,BC 的中点M ,N ,G.连接GM ,GN.小明发现了:线段GM 与GN 的数量关系是 ;位置关系是 .(2)类比思考:如图2,小明在此基础上进行了深入思考.把等腰三角形ABC 换为一般的锐角三角形.其中AB>AC ,其他条件不变,小明发现的上述结论还成立吗?请说明理由.(3)深入探究:如图3,小明在(2)的基础上,又作了进一步探究,向△ABC 的内侧分别作等腰直角三角形ABD ,ACE.其他条件不变,试判断△GMN 的形状,并给予证明.【分析】 (1)利用S A S 判断出△AEB ≌△ACD ,得出EB =CD ,∠AEB =∠ACD ,进而判断出EB ⊥CD ,最后用三角形中位线定理即可得出结论; (2)同(1)的方法即可得出结论;(3)同(1)的方法得出MG =NG ,最后利用三角形中位线定理和等量代换即可得出结论. 【自主解答】8.(·日照中考)问题背景:我们学习等边三角形时得到直角三角形的一个性质:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.即:如图1,在Rt △ABC 中,∠ACB =90°,∠ABC =30°,则AC =12AB.探究结论:小明同学对以上结论作了进一步探究.(1)如图1,连接AB 边上中线CE ,由于CE =12AB ,易得结论:①△ACE 为等边三角形;②BE 与CE 之间的数量关系为 ;(2)如图2,点D 是边CB 上任意一点,连接AD ,作等边△ADE ,且点E 在∠ACB 的内部,连接BE.试探究线段BE 与DE 之间的数量关系,写出你的猜想并加以证明;(3)当点D 为边CB 延长线上任意一点时,在(2)条件的基础上,线段BE 与DE 之间存在怎样的数量关系?请直接写出你的结论 ;拓展应用:如图3,在平面直角坐标系xOy 中,点A 的坐标为(-3,1),点B 是x 轴正半轴上的一动点,以AB 为边作等边△ABC.当C 点在第一象限内,且B(2,0)时,求C 点的坐标.参考答案类型一【例1】 (1)∵在Rt △ABC 中,∠A=30°,AB =4, ∴AC=2 3.∵PD⊥AC,∴∠ADP=∠CDP=90°. 在Rt △ADP 中,AP =2t ,∴DP=t ,AD =3t ,∴CD=AC -AD =23-3t(0<t <2). (2)在Rt △PDQ 中, ∵∠DPQ=60°,∴∠PQD=30°=∠A,∴PA=PQ. ∵PD⊥AC,∴AD=DQ.∵点Q 和点C 重合,∴AD+DQ =AC ,∴23t =23,∴t=1. (3)当0<t≤1时,S =S △PDQ =12DQ·DP=12×3t·t=32t 2.如图,当1<t <2时,CQ =AQ -AC =2AD -AC = 23t -23=23(t -1). 在Rt △CEQ 中,∠CQE=30°,∴CE=CQ·t a n ∠CQE=23(t -1)×33=2(t -1),∴S=S △PDQ -S △ECQ =12×3t·t-12×23(t -1)×2(t-1)=-332t 2+43t -23,∴S=⎩⎪⎨⎪⎧32t 2(0<t≤1),-332t 2+43t -23(1<t<2).(4)①如图,当PQ 的垂直平分线过AB 的中点F 时,∴∠PGF=90°,PG =12PQ =12AP =t ,AF =12AB =2. ∵∠A=∠AQP=30°,∴∠FPG=60°,∴∠PFG=30°,∴PF=2PG =2t , ∴AP+PF =2t +2t =2, ∴t=12.②如图,当PQ 的垂直平分线过AC 的中点N 时,∴∠QMN=90°, AN =12AC =3,QM =12PQ =12AP =t.在Rt △NMQ 中,NQ =MQ cos 30°=233t.∵AN+NQ =AQ ,∴3+233t =23t ,∴t=34.③如图,当PQ 的垂直平分线过BC 的中点F 时,∴BF=12BC =1,PE =12PQ =t ,∠H=30°.∵∠ABC=60°, ∴∠BFH=30°=∠H, ∴BH=BF =1.在Rt △PEH 中,PH =2PE =2t.∵AH=AP +PH =AB +BH ,∴2t+2t =5, ∴t=54.即当线段PQ 的垂直平分线经过△ABC 一边中点时,t 的值为12或34或54.变式训练1.解:(1)BP =CE CE⊥AD 提示:如图,连接AC.∵四边形ABCD 是菱形, ∠ABC=60°,∴△ABC,△ACD 都是等边三角形,∠ABD=∠CBD=30°,∴A B =AC. 又∵△APE 是等边三角形,∴AP=AE ,∠BAC=∠PAE=60°,∴∠BAP=∠CAE, ∴△BAP≌△CAE,∴BP=CE ,∠ABP=∠ACE=30°. 延长CE 交AD 于点H. ∵∠CAH=60°, ∴∠CAH+∠ACH=90°, ∴∠AHC=90°,即CE⊥AD.(2)结论仍然成立.理由:如图,连接AC交BD于点O,设CE交AD于点H.∵四边形ABCD是菱形,∠ABC=60°,∴△ABC,△ACD都是等边三角形,∠ABD=∠CBD=30°,∴AB=AC.∵△APE是等边三角形,∴AP=AE,∠BAC=∠PAE=60°,∴∠BAP=∠CAE,∴△BAP≌△CAE,∴BP=CE,∠ABP=∠ACE=30°.∵∠CAH=60°,∴∠CA H+∠ACH=90°,∴∠AHC=90°,即CE⊥AD.也可选用图3进行证明,方法同上.(3)如图,连接AC交BD于点O,连接CE交AD于点H,由(2)可知EC⊥AD,CE=BP.在菱形ABCD中,AD∥BC,∴EC⊥BC.∵BC=AB=23,BE=219,在Rt△BC E中,EC=(219)2-(23)2=8,∴BP=CE =8.∵AC 与BD 是菱形的对角线, ∴∠ABD=12∠ABC=30°,AC⊥BD,∴BD=2BO =2AB·cos 30°=6, ∴OA=12AB =3,DP =BP -BD =8-6=2,∴OP=OD +DP =5.在Rt △AOP 中,AP =AO 2+OP 2=27,∴S 四边形ADPE =S △ADP +S △AEP =12×2×3+34×(27)2=8 3.类型二【例2】 (1)如图,作DH⊥AB 于点H ,则四边形DHBC 是矩形, ∴CD=BH =8,DH =BC =6. ∵AH=AB -BH =8, ∴AD=DH 2+AH 2=10, ∴AP =AD -DP =10-2t.(2)如图,作PN⊥AB 于点N ,连接PB. 在Rt △APN 中,PA =10-2t , ∴PN=PA·sin ∠DAH=35(10-2t),AN =PA·cos ∠DAH=45(10-2t),∴BN=16-AN =16-45(10-2t),∴S=S △PQB +S △BCP =12·(16-2t)·35(10-2t)+12×6×[16-45(10-2t)]=65t 2-545t +72.(3)当QP⊥BD 时,∠PQN+∠DBA=90°. ∵∠QPN+∠PQN=90°,∴∠QPN=∠DBA, ∴t a n ∠QPN=QN PN =34,∴45(10-2t )-2t 35(10-2t )=34,解得t =3527.经检验,t =3527是分式方程的解,且符合题意,∴当t =3527时,QP⊥BD.(4)存在.理由如下:如图,连接BE 交DH 于点K ,作KM⊥BD 于点M. 当BE 平分∠ABD 时,△KBH≌△KBM, ∴KH=KM ,BH =BM =8. ∵BD=CD 2+BC 2=10, ∴DM=2. 设KH =KM =x ,在Rt △DKM 中,(6-x)2=22+x 2, 解得x =83.如图,作EF⊥AB 于点F ,则△AEF≌△QPN, ∴EF=PN =35(10-2t),AF =QN =45(10-2t)-2t.∴BF=16-[45(10-2t)-2t].∵KH∥EF,∴KH EF =BH BF , ∴8335(10-2t )=816-[45(10-2t )-2t], 解得t =2518. 经检验,t =2518是分式方程的解,且符合题意, ∴当t =2518时,点E 在∠ABD 的平分线上.变式训练2.解:(1)当t =2时,OM =2,在Rt △OPM 中,∠POM=60°,∴PM=OM·t a n 60°=2 3.在Rt △OMQ 中,∠QOM=30°,∴QM=OM·t a n 30°=233, ∴PQ=PM -QM =23-233=433. (2)当t≤4时,AN =PO =2OM =2t ,t =4时,P 到达C 点,N 到达B 点,点P ,N 在边BC 上相遇.设t 秒时,点P 与N 重合,则(t -4)+2(t -4)=8,解得t =203,即t =203秒时,点P 与N 重合.(3)①当0<t≤4时,S =12·2t·43=43t. ②当4<t≤203时,S =12×[8-(t -4)-(2t -8)]×4 3 =403-63t.③当203<t≤8时,S =12×[(t-4)+(2t -8)-8]×4 3 =63t -40 3. ④当8<t≤12时,S =S 菱形ABCO -S △AON -S △ABP -S △CPN =323-12·(24-2t)·43-12·[8-(t -4)]·43-12(t -4)·32·(2t-16)=-32t 2+123t -56 3. 综上所述,S 与t 的函数关系式为S =⎩⎪⎪⎨⎪⎪⎧43t (0<t≤4),403-63t (4<t ≤203),63t -403(203<t≤8),-32t 2+123t -563(8<t≤12). 类型三【例3】 (1)四边形ACC′A′是菱形.理由如下:由平移的性质得到AC∥A′C′,且AC =A′C′,则四边形ACC′A′是平行四边形,∴∠ACC′=∠AA′C′.又∵CD 平分∠ACB 的外角,即CD 平分∠ACC′,易证CD 也平分∠AA′C′,∴四边形ACC′A′是菱形.(2)∵在△ABC 中,∠B=90°,AB =24,cos ∠BAC=1213, ∴cos ∠BAC=AB AC =1213,即24AC =1213,∴AC=26, ∴由勾股定理知BC =AC 2-AB 2=262-242=10.又由(1)知,四边形ACC′A′是菱形,∴AC=AA′=26.由平移的性质得到AB∥A′B′,AB =A′B′,则四边形ABB′A′是平行四边形,∴AA′=BB′=26,∴CB′=BB′-BC =26-10=16.变式训练3.A4.解:(1)172(2)∵∠AOB=90°,点C 是AB 的中点,∴OC=BC =12AB ,∴∠CBO=∠COB. ∵四边形OBDE 是正方形,∴BD=OE ,∠DBO=∠EOB=90°,∴∠CBD=∠COE.在△CBD 和△COE 中,⎩⎪⎨⎪⎧CB =CO ,∠CBD=∠COE,BD =OE ,∴△CBD≌△COE(S A S ). (3)①S=-12a +1. ②a=32或52.类型四【例4】 (1)当CC′=3时,四边形MCND′为菱形.理由:由平移的性质得CD∥C′D′,DE∥D′E′.∵△ABC为等边三角形,∴∠B=∠ACB=60°,∴∠ACC′=180°-60°=120°.∵CN是∠ACC′的角平分线,∴∠NCC′=60°.∵AB∥DE,DE∥D′E′,∴AB∥D′E′,∴∠D′E′C′=∠B=60°,∴∠D′E′C′=∠NCC′,∴D′E′∥CN,∴四边形MCND′为平行四边形.∵∠ME′C′=∠MCE′=60°,∠NCC′=∠NC′C=60°,∴△MCE′和△NCC′为等边三角形,∴MC=CE′,NC=CC′.又∵E′C′=23,CC′=3,∴CE′=CC′=3,∴MC=CN,∴四边形MCND′为菱形.(2)①AD′=BE′.理由:当α≠180°时,由旋转的性质得∠ACD′=∠BCE′.由(1)知AC=BC,CD′=CE′,∴△ACD′≌△BCE′,∴AD′=BE′.当α=180°时,AD′=AC+CD′,BE′=BC+CE′,即AD′=BE′.综上可知,AD′=BE′.②如图,连接CP,在△ACP中,由三角形三边关系得AP<AC+CP,∴当A,C,P三点共线时AP最大.此时,AP=AC+CP.在△D′CE′中,由P为D′E′中点得AP⊥D′E′,PD′=3,∴CP=3,∴AP=6+3=9.在Rt△APD′中,由勾股定理得AD′=AP2+PD′2=92+(3)2=221.变式训练5.(1)解:菱形(2)证明:∵点F是CC′的中点,∴CF=FC′.∵FG=AF,∴四边形ACGC′是平行四边形.∵在Rt△ABC和Rt△AC′D中,∠BAC+∠ACB=90°,∠ACB=∠DAC′,∴∠BAC+∠DAC′=90°.又∵B,A,D三点在同一条直线上,∴∠CAC′=90°,∴四边形ACGC′是矩形.∵AC=AC′,∴四边形ACGC′是正方形.(3)解:在Rt△A′BC和Rt△BC′D中,BC=BD=42-22=2 3.∵Rt△A′BC≌Rt△BC′D,∴∠DBC′+∠BA′C=90°,∴∠BHA′=90°,∴BC′⊥A′C.在Rt△A′BC中,A′C·BH=BC·A′B,即4BH=2×23,∴BH=3,∴C′H=BC′-BH=4- 3.在Rt △A′BH 中,A′H=A′B 2-BH 2=22-(3)2=1,∴CH=4-1=3,∴t a n ∠C′CH=C′H CH =4-33, ∴t a n ∠C′CH 的值为4-33. 类型五【例5】 (1)∵折叠纸片使B 点落在边AD 上的E 处,折痕为PQ ,∴点B 与点E 关于PQ 对称,∴PB=PE ,BF =EF ,∠BPF=∠EPF.又∵EF∥AB,∴∠BPF=∠EFP,∴∠EPF =∠EFP,∴EP=EF ,∴BP=BF =FE =EP ,∴四边形BFEP 为菱形.(2)①如图1,图1∵四边形ABCD 为矩形,∴BC=AD =5 cm ,CD =AB =3 cm ,∠A=∠D=90°.∵点B 与点E 关于PQ 对称,∴CE=BC =5 cm .在Rt △CDE 中,DE 2=CE 2-CD 2,即DE 2=52-32,∴DE=4 cm ,∴AE=AD -DE =5-4=1(cm ).在Rt △APE 中,AE =1,AP =3-PB =3-PE ,∴EP 2=12+(3-EP)2,解得EP =53 cm , ∴菱形BFEP 的边长为53cm . ②图2当点Q 与点C 重合时,如图1,点E 离A 点最近,由①知,此时AE =1 cm .当点P 与点A 重合时,如图2,点E 离A 点最远,此时四边形ABQE 为正方形, AE =AB =3 cm ,∴点E 在边AD 上移动的最大距离为2 cm .变式训练6.(1)证明:根据折叠的性质知∠DBC=∠DBE.又∵AD∥BC,∴∠DBC=∠ADB,∴∠DBE=∠ADB,∴DF=BF ,∴△BDF 是等腰三角形.(2)解:①∵四边形ABCD 是矩形,∴AD∥BC,∴FD∥BG.又∵DG∥BE,∴四边形BFDG 是平行四边形.∵DF=BF ,∴四边形BFDG 是菱形.②∵AB=6,AD =8,∴BD=10,∴OB=12BD =5. 假设DF =BF =x ,则AF =AD -DF =8-x ,∴在Rt △ABF 中,AB 2+AF 2=BF 2,即62+(8-x)2=x 2,解得x =254,即BF =254,∴FO=BF 2-OB 2=⎝ ⎛⎭⎪⎫2542-52=154, ∴FG=2FO =152. 类型六【例6】 (1)如图,过点A 作AP∥EF,交CD 于点P ,过点B 作BQ∥GH,交AD 于点Q ,交AP 于点T.∵四边形ABCD 是矩形,∴AB∥DC,AD∥BC,∴四边形AEFP 和四边形BHGQ 都是平行四边形,∴AP=EF ,GH =BQ. ∵GH⊥EF,∴AP⊥BQ,∴∠QAT+∠AQT=90°.∵四边形ABCD 是矩形,∴∠DAB=∠D=90°,∴∠DAP+∠DPA=90°,∴∠AQT=∠DPA, ∴△PDA∽△QAB,∴AP BQ =AD BA ,∴EF GH =AD AB. (2)1115. 提示:∵EF⊥GH,AM⊥BN,∴由(1)结论可得EF GH =AD AB ,BN AM =AD AB, ∴BN AM =EF GH =1115. (3)如图,过D 作AB 的平行线,交BC 的延长线于E ,作AF⊥AB 交ED 延长线于点F.∵∠BAF=∠B=∠E=90°,∴四边形ABEF 是矩形.连接AC ,由已知条件得△ADC≌△ABC, ∴∠ADC=∠ABC=90°,∠1+∠2=90°.又∵∠2+∠3=90°,∴∠1=∠3,∴△ADF∽△DCE, ∴DE AF =DC AD =510=12. 设DE =x ,则AF =2x ,DF =10-x.在Rt △ADF 中,AF 2+DF 2=AD 2,即(2x)2+(10-x)2=100,解得x 1=4,x 2=0(舍去),∴AF=2x =8,∴DN AM =AF AB =810=45. 变式训练7.(1)①证明:∵EH⊥AB,∠BAC=90°,∴EH∥CA,∴△BHE∽△BAC,∴BE BC =HE AC. ∵DC BE =AC BC ,∴BE BC =DC AC, ∴HE AC =DC AC,∴HE=DC. ∵EH∥DC,∴四边形DHEC 是平行四边形.②证明:∵AC BC =22,∠BAC=90°,∴AC=AB. ∵DC BE =22,HE =DC ,∴HE BE =22. ∵∠BHE=90°,∴BH=HE.∵HE=DC ,∴BH=CD ,∴AH=AD.∵DM⊥AE,EH⊥AB,∴∠EHA=∠AMF=90°,∴∠HAE+∠HEA=∠HAE+∠AFM=90°, ∴∠HEA=∠AFD.∵∠EHA=∠FAD=90°,∴△HEA≌△AFD,∴AE=DF.(2)解:如图,过点E 作EG⊥AB 于点G.∵CA⊥AB,∴EG∥CA,∴△EGB∽△CAB,∴EG CA =BE BC ,∴EG BE =CA BC =35. ∵CD BE =35,∴EG=CD. 设EG =CD =3x ,AC =3y ,∴BE=5x ,BC =5y , ∴BG=4x ,AB =4y.∵∠EGA=∠A MF =90°,∴∠GEA+∠EAG=∠EAG+∠AFM,∴∠AFM=∠AEG.∵∠FAD=∠EGA=90°,∴△FAD∽△EGA,∴DF AE =AD AG =3y -3x 4y -4x =34. 类型七【例7】 (1)MG =NG MG⊥NG提示:如图,连接EB ,DC ,EB ,DC 交于点F.∵AE=AC ,AB =AD ,∠EAC=∠BAD=90°,∴∠EAB=∠CAD,∴△AEB≌△ACD,∴EB=CD ,∠AEB=∠ACD.∵∠AHE=∠FHC,∴∠EFC=∠EAC=90°,∴EB⊥CD.∵M,N ,G 分别是BD ,CE ,BC 的中点,∴NG∥EB,且NG =12EB ,MG∥CD,且MG =12CD , ∴MG=NG ,MG⊥NG.(2)成立.理由:类似于(1)的证明方法,可以得出△ADC≌△ABE,从而得出EB⊥CD,再利用三角形中位线定理可证明结论还成立.(3)△GMN 是等腰直角三角形.证明:如图,连接EB ,DC ,并分别延长交于点F.∵AE=AC ,AB =AD ,∠EAB=∠CAD,∴△AEB≌△ACD,∴EB=CD ,∠AEB=∠ACD,∴∠AEB+∠ACF=180°.又∠EAC=90°,∴∠F=90°,∴EB⊥CD.∵M,N ,G 分别是BD ,CE ,BC 的中点,∴NG∥EB,且NG =12EB , MG∥CD,且MG =12CD , ∴MG=NG ,MG⊥NG,∴△GMN 是等腰直角三角形.变式训练8.解:(1)BE =CE(2)BE =DE.证明如下:如图,取AB 的中点P ,连接EP.由(1)结论可知△CPA 为等边三角形,∴∠CAP=60°,CA =PA.∵△ADE 为等边三角形,∴∠DAE=60°,AD =AE ,∴∠CAP=∠DAE,∴∠CAP-∠DAB=∠DAE-∠DAB,∴∠CAD=∠PAE,∴△ACD≌△APE(S A S ),∴∠APE=∠ACD=90°,∴EP⊥AB.∵P为AB的中点,∴AE=BE.∵DE=AE,∴BE=DE.(3)BE=DE拓展应用:如图,连接OA,OC,过点A作AH⊥x轴于点H.∵A的坐标为(-3,1),∴∠AOH=30°.由探究结论(3)可知CO=CB.∵O(0,0),B(2,0),∴点C的横坐标为1.设C(1,m).∵CO2=CB2=12+m2,AB2=12+(2+3)2,AB=CB,∴12+m2=12+(2+3)2,∴m=2+3,∴C点的坐标是(1,2+3).。
中考数学解答题压轴题突破 重难点突破八 几何综合题 类型四:与角度有关的几何问题
(2)如图②,当点D在△ABC外部ห้องสมุดไป่ตู้,连接AE,F为AE的中点,连接FD并延 长到点G,连接EG,若EG=EB,求证:∠EGF=∠FDA;
(2)证明:延长GF到点H,使FH=FD,连接EH. ∵EF=AF,∠EFH=∠AFD,∴△EFH≌△AFD(SAS), ∴∠FDA=∠H,AD=EH. ∵AC=BC,∠ACD=∠BCE,CD=CE,∴△ACD≌△BCE(SAS), ∴AD=BE.∵BE=EG,∴EH=EG,∴∠EGF=∠H,∴∠EGF=∠FDA.
(3)如图③,当点D在△ABC中线CF上时,在线段BF上取一点Q(不与点F重 合),连接DQ,将△FDQ沿DQ翻折得到△F′DQ,连接BF′,EF′,若CD =2,AC=3 2,当BF′最小时,求△DEF′的面积.
(3)解:连接BD,∵△ABC是等腰直角三角形,CF是中线,∴CF⊥AB,
∵AC=3 2,∴CF=BF=3,∵CD=2,∴DF=1,DE=2 2,
②判断∠DEC和∠EDC的数量关系,并说明理由; ②解:∠DEC+∠EDC=90°,理由:∵DB=DC,DA⊥BC, ∴∠BDA=12∠BDC=30°,∵△BAD≌△BEC,∴∠BCE=∠BDA=30°, 在等边三角形BCD中,∠BCD=60°,∴∠DCE=∠BCE+∠BCD=90°, ∴∠DEC+∠EDC=90°.
∴∠BDA=∠CDA=12∠BDC=30°,在△BDA中,DB=DA, 180°-∠BDA
∴∠BAD= 2 =75°,在△DAC中,DA=DC, 180°-∠ADC
∴∠DAC= 2 =75°, ∴∠BAC=∠BAD+∠DAC=75°+75°=150°;
②当点A在线段DF上时, ∵以点B为旋转中心,把BA顺时针方向旋转60°至BE,∴BA=BE, ∠ABE=60°,在等边三角形BDC中,BD=BC,∠DBC=60°, ∴∠DBC=∠ABE,∠DBC-∠ABC=∠ABE-∠ABC,即∠DBA=∠EBC, ∴△DBA≌△CBE,∴DA=CE,在Rt△DFC中,∠DFC=90°,∴DF<DC, ∵DA<DF,DA=CE,∴CE<DC, 由②可知△DCE为直角三角形,∴∠DEC≠45°.
中考数学压轴题重难点突破十 几何图形综合题 类型一:与全等三角形有关的问题
∠CRD=12∠ARB=45°.∴∠MON=135°.
此时,P,O,B 在一条直线上,△PAB 为直角三角 PQ= 2PQ,则PQ= 2.
1.如图,在△ABC 和△ADE 中,AB=AC,AD=AE,∠BAC=∠DAE,F 为 BD,CE 的交点. (1)求证:BD=CE; (2)连接 AF,求证:AF 平分∠BFE.
Ⅲ)∵∠EMD=45°,∠DGM=90°, ∴∠DMG=∠GDM,∴DG=GM, 又∵DM=6 2, ∴DG=GM=6, ∵DE=12, ∴EG= ED2-DG2=6 3, ∴EM=GM+EG=6+6 3.
模型二:半角模型
如图,在正方形 ABCD 中,点 E,F 分别在边 BC,CD 上,分别连接 EF, AE,AF,∠EAF=45°.求证: (1)EF=BE+DF; (2)AF 平分∠EFD.
证明:(1)将△ADF 绕点 A 顺时针旋转 90°, 得到△ABG, ∵四边形 ABCD 为正方形, ∴∠BAD=∠D=∠ABC=90°,
出现等顶角,共顶点,等线段就能构造全等型手拉手.
1.(2016·安徽第 23 题 14 分)如图①,A,B 分别在射线 OM,ON 上,且 ∠MON 为钝角.现以线段 OA,OB 为斜边向∠MON 的外侧作等腰直角三角 形,分别是△OAP,△OBQ,点 C,D,E 分别是 OA,OB,AB 的中点. (1)求证:△PCE≌△EDQ; (2)延长 PC,QD 交于点 R. Ⅰ)如图②,若∠MON=150°,求证:△ABR 为等边三角形; Ⅱ)如图③,若△ARB∽△PEQ,求∠MON 的大小和APBQ的值.
(2)Ⅰ)证明:如图②,连接 OR. ∵PR 与 QR 分别为线段 OA 与 OB 的中垂线, ∴AR=OR=BR,∠ARC=∠ORC,∠ORD=∠BRD. 在四边形 OCRD 中, ∠OCR=∠ODR=90°,∠MON=150°, ∴∠CRD=30°. ∴∠ARB=∠ARO+∠BRO =2∠CRO+2∠ORD =2∠CRD=60°. ∴△ABR 为等边三角形.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年北京中考专题突破几何综合在北京中考试卷中,几何综合题通常出现在后两题,分值为8分或7分.几何综合题主要包含三角形(全等、相似)、四边形、锐角三角函数、圆等知识,主要研究图形中的数量关系、位置关系、几何计算以及图形的运动、变换等规律.求解几何综合题时,关键是抓住“基本图形”,能在复杂的几何图形中辨认、分解出基本图形,或通过添加辅助线补全、构造基本图形,或运用图形变换的思想将分散的条件集中起来,从而产生基本图形,再根据基本图形的性质,合理运用方程、三角函数的运算等进行推理与计算.1.[2015·北京] 在正方形ABCD中,BD是一条对角线,点P在射线CD上(与点C,D 不重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QH⊥BD于点H,连接AH,PH.(1)若点P在线段CD上,如图Z9-1(a).①依题意补全图(a);②判断AH与PH的数量关系与位置关系,并加以证明.(2)若点P在线段CD的延长线上,且∠AHQ=152°,正方形ABCD的边长为1,请写出求DP长的思路.(可以不写出计算结果.........)图Z9-12.[2014·北京] 在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F.(1)依题意补全图Z9-2①;(2)若∠PAB=20°,求∠ADF的度数;(3)如图②,若45°<∠PAB<90°,用等式表示线段AB,FE,FD之间的数量关系,并证明.图Z9-23.[2013·北京] 在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B 逆时针旋转60°得到线段B D.(1)如图Z9-3①,直接写出∠ABD的大小(用含α的式子表示);(2)如图②,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明;(3)在(2)的条件下,连接DE,若∠DEC=45°,求α的值.图Z9-34.[2012·北京] 在△ABC中,BA=BC,∠BAC=α,M是AC的中点,P是线段BM上的动点,将线段PA绕点P顺时针旋转2α得到线段PQ.(1)若α=60°且点P与点M重合(如图Z9-4①),线段CQ的延长线交射线BM于点D,请补全图形,并写出∠CDB的度数;(2)在图②中,点P不与点B,M重合,线段CQ的延长线与射线BM交于点D,猜想∠CDB 的大小(用含α的代数式表示),并加以证明;(3)对于适当大小的α,当点P在线段BM上运动到某一位置(不与点B,M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQ=DQ,请直接写出α的范围.图Z9-45.[2011·北京] 在平行四边形ABCD中,∠BAD的平分线交直线BC于点E,交直线DC 于点F.(1)在图Z9-5①中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图②),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB,DG(如图③),求∠BDG的度数.图Z9-51.[2015·怀柔一模] 在等边三角形ABC外侧作直线AP,点B关于直线AP的对称点为D,连接BD,CD,其中CD交直线AP于点E.(1)依题意补全图Z9-6①;(2)若∠PAB=30°,求∠ACE的度数;(3)如图②,若60°<∠PAB<120°,判断由线段AB,CE,ED可以构成一个含有多少度角的三角形,并证明.图Z9-62.[2015·朝阳一模] 在△ABC中,∠C=90°,AC=BC,点D在射线BC上(不与点B,C重合),连接AD,将AD绕点D顺时针旋转90°得到DE,连接BE.(1)如图Z9-7(a),点D在BC边上.①依题意补全图(a);②作DF⊥BC交AB于点F,若AC=8,DF=3,求BE的长.(2)如图(b),点D在BC边的延长线上,用等式表示线段AB,BD,BE之间的数量关系(直接写出结论).图Z9-73.[2015·海淀一模] 在菱形ABCD中,∠ADC=120°,点E是对角线AC上一点,连接DE,∠DEC=50°,将线段BC绕点B逆时针旋转50°并延长得到射线BF,交ED的延长线于点G.(1)依题意补全图形;(2)求证:EG=BC;(3)用等式表示线段AE,EG,BG之间的数量关系:________.图Z9-84.[2015·海淀二模] 如图Z9-9①,在△ABC中,AB=AC,∠ABC=α,D是BC边上一点,以AD为边作△ADE,使AE=AD,∠DAE+∠BAC=180°.(1)直接写出∠ADE的度数(用含α的式子表示).(2)以AB,AE为边作平行四边形ABFE.①如图②,若点F恰好落在DE上,求证:BD=CD;②如图③,若点F恰好落在BC上,求证:BD=CF.图Z9-95.[2015·西城一模] 在△ABC 中,AB =AC ,取BC 边的中点D ,作DE ⊥AC 于点E ,取DE 的中点F ,连接BE ,AF 交于点H .(1)如图Z9-10①,如果∠BAC =90°,那么∠AHB =________°,AF BE=________; (2)如图②,如果∠BAC =60°,猜想∠AHB 的度数和AF BE的值,并证明你的结论; (3)如果∠BAC =α,那么AF BE=________.(用含α的代数式表示)图Z9-106.[2015·丰台一模] 在△ABC 中,CA =CB ,CD 为AB 边上的中线,点P 是线段AC 上任意一点(不与点C 重合),过点P 作PE 交CD 于点E ,使∠CPE =12∠CAB ,过点C 作CF ⊥PE 交PE 的延长线于点F ,交AB 于点G .(1)如果∠ACB =90°,①如图Z9-11(a),当点P 与点A 重合时,依题意补全图形,并指出与△CDG 全等的一个三角形;②如图(b),当点P 不与点A 重合时,求CF PE的值.(2)如果∠CAB =a ,如图(c ),请直接写出CF PE的值.(用含a 的式子表示)图Z9-117.[2015·海淀] 将线段AB 绕点A 逆时针旋转60°得到线段AC ,继续旋转α(0°<α<120°)得到线段AD,连接CD.(1)连接BD,①如图Z9-12(a),若α=80°,则∠BDC的度数为________.②在第二次旋转过程中,请探究∠BDC的大小是否改变.若不变,求出∠BDC的度数;若改变,请说明理由.(2)如图(b),以AB为斜边作直角三角形ABE,使得∠B=∠ACD,连接CE,DE.若∠CED =90°,求α的值.图Z9-128.[2015·西城二模] 正方形ABCD的边长为3,点E,F分别在射线DC,DA上运动,且DE=DF.连接BF,作EH⊥BF所在直线于点H,连接CH.(1)如图Z9-13①,若点E是DC的中点,CH与AB之间的数量关系是________.(2)如图②,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立若成立给出证明;若不成立,说明理由.(3)如图③,当点E,F分别在射线DC,DA上运动时,连接DH,过点D作直线DH的垂线,交直线BF于点K,连接CK,请直接写出线段CK长的最大值.图Z9-13参考答案1.解:(1)①如图(a)所示.②AH =PH ,AH ⊥PH . 证明:连接CH ,由条件易得:△DHQ 为等腰直角三角形, 又∵DP =CQ ,∴△HDP ≌△HQC , ∴PH =CH ,∠HPC =∠HCP .∵BD 为正方形ABCD 的对称轴, ∴AH =CH ,∠DAH =∠HCP , ∴AH =PH ,∠DAH =∠HPC ,∴∠AHP =180°-∠ADP =90°, ∴AH =PH 且AH ⊥PH .(2)如图(b),过点H 作HR ⊥PC 于点R ,∵∠AHQ =152°,∴∠AHB =62°,∴∠DAH =17°,∴∠DCH =17°.设DP =x ,则DR =HR =RQ =1-x 2.由tan17°=HR CR 得1-x 21+x 2=tan17°,∴x =1-tan17°1+tan17°.2.解:(1)补全图形如图①所示:(2)如图①,连接AE ,则∠PAB =∠PAE =20°,AE =AB. ∵四边形ABCD 是正方形, ∴∠BAD =90°,AB =AD , ∴∠EAD =130°,AE =AD. ∴∠ADF =25°.(3)如图②,连接AE ,BF ,BD.由轴对称的性质可得EF =BF ,AE =AB =AD ,∠ABF =∠AEF =∠ADF , ∴∠BFD =∠BAD =90°.∴BF 2+FD 2=BD 2.∴EF 2+FD 2=2AB 2.3.解:(1)∵AB =AC ,∠A =α,∴∠ABC =∠ACB =12(180°-∠A )=90°-12α.∵∠ABD =∠ABC -∠DBC ,∠DBC =60°, ∴∠ABD =30°-12α.(2)△ABE 是等边三角形.证明:连接AD ,CD ,ED ,∵线段BC 绕点B 逆时针旋转60°得到线段BD , 则BC =BD ,∠DBC =60°. ∴△BCD 为等边三角形. ∴BD =CD.∵∠ABE =60°,∴∠ABD =60°-∠DBE =∠EBC =30°-12α.在△ABD 与△ACD 中,⎩⎪⎨⎪⎧AB =AC ,AD =AD ,BD =CD ,∴△ABD ≌△ACD ,∴∠BAD =∠CAD =12∠BAC =12α.∵∠BCE =150°,∴∠BEC =180°-(30°-12α)-150°=12α=∠BAD.在△ABD 和△EBC 中, ⎩⎪⎨⎪⎧∠BEC =∠BAD ,∠EBC =∠ABD ,BC =BD ,∴△ABD ≌△EBC , ∴AB =BE .又∵∠ABE =60°,∴△ABE 是等边三角形.(3)∵∠BCD =60°,∠BCE =150°, ∴∠DCE =150°-60°=90°. ∵∠DEC =45°,∴△DEC 为等腰直角三角形, ∴DC =CE =BC. ∵∠BCE =150°.∴∠EBC =12(180°-150°)=15°.∵∠EBC =30°-12α=15°,∴α=30°.4.解:(1)如图①,∵BA =BC ,∠BAC =60°,M 是AC 的中点, ∴BM ⊥AC ,AM =MC.∵将线段PA 绕点P 顺时针旋转2α得到线段PQ ,∴AM =MQ ,∠AMQ =120°, ∴CM =MQ ,∠ CMQ =60°, ∴△CMQ 是等边三角形, ∴∠ACQ =60°, ∴∠CDB =30°. (2)连接PC ,AD ,∵AB =BC ,M 是AC 的中点, ∴BM ⊥AC ,∴AD =CD ,AP =PC. 在△APD 与△CPD 中,∵⎩⎪⎨⎪⎧AD =CD ,PD =PD ,PA =PC ,∴△APD ≌△CPD ,∴∠ADB =∠CDB ,∠PAD =∠PCD , ∴∠ADC =2∠CDB. 又∵PQ =PA ,∴PQ =PC ,∴∠PQC =∠PCD =∠PAD , ∴∠PAD +∠PQD =∠PQC +∠PQD =180°,∴∠APQ +∠ADC =360°-(∠PAD +∠PQD )=180°, ∴∠ADC =180°-∠APQ =180°-2α, ∴2∠CDB =180°-2α, ∴∠CDB =90°-α.(3)∵∠CDB =90°-α,且PQ =QD ,∴∠PAD =∠PCQ =∠PQC =2∠CDB =180°-2α. ∵点P 不与点B ,M 重合, ∴∠BAD >∠PAD >∠MAD , ∴2α>180°-2α>α, ∴45°<α<60°.5.解:(1)∵AF 平分∠BAD , ∴∠BAF =∠DAF .∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB ∥CD ,∴∠DAF =∠CEF ,∠BAF =∠F . ∴∠CEF =∠F . ∴CE =CF .(2)∠BDG =45°.(3)如图,分别连接GB ,GE ,GC , ∵AD ∥BC ,AB ∥CD ,∠ABC =120°, ∴∠ECF =∠ABC =120°. ∵FG ∥CE 且FG =CE ,∴四边形CEGF 是平行四边形. 由(1)得CE =CF .∴四边形CEGF 是菱形, ∴GE =EC ,①∠GCF =∠GCE =12∠ECF =60°,∴△ECG 与△FCG 是等边三角形, ∴∠GEC =∠FCG , ∴∠BEG =∠DCG ,②由AD ∥BC 及AF 平分∠BAD 可得∠BAE =∠AEB , ∴AB =BE .在▱ABCD 中,AB =DC , ∴BE =D C.③由①②③得△BEG ≌△DCG , ∴BG =DG ,∠1=∠2,∴∠BGD =∠1+∠3=∠2+∠3=∠EGC =60°, ∴∠BDG =180°-∠BGD2=60°.1.解:(2)连接AD ,如图①.∵点D 与点B 关于直线AP 对称,∴AD =AB ,∠DAP =∠BAP =30°, ∵AB =AC ,∠BAC =60°,∴AD =AC ,∠DAC =120°, ∴2∠ACE +120°=180°.∴∠ACE =30°.(3)线段AB ,CE ,ED 可以构成一个含有60°角的三角形. 证明:连接AD ,EB ,如图②. ∵点D 与点B 关于直线AP 对称, ∴AD =AB ,DE =BE , 可证得∠EDA =∠EB A. ∵AB =AC ,AB =AD ,∴AD =AC ,∴∠ADE =∠ACE , ∴∠ABE =∠ACE . 设AC ,BE 交于点F ,∵∠AFB =∠CFE ,∴∠BAC =∠BEC =60°,∴线段AB ,CE ,ED 可以构成一个含有60°角的三角形. 2.解:(1)①补全图形,如图(a )所示.②如图(b ),由题意可知AD =DE ,∠ADE =90°. ∵DF ⊥BC , ∴∠FDB =90°. ∴∠ADF =∠ED B.∵∠C =90°,AC =BC , ∴∠ABC =∠DFB =45°. ∴DB =DF .∴△ADF ≌△EDB. ∴AF =EB.在△ABC 和△DFB 中,∵AC =8,DF =3,∴AB =8 2,BF =3 2.AF =AB -BF =5 2,即BE =5 2, (2)2BD =BE +AB.3.解:(1)补全图形,如图①所示.(2)方法一:证明:连接BE ,如图②.∵四边形ABCD 是菱形,∴AD ∥BC.∵∠ADC =120°,∴∠DCB =60°.∵AC ]是菱形ABCD 的对角线,∴∠DCA =12∠DCB =30°. ∴∠EDC =180°-∠DEC -∠DCA =100°.由菱形的对称性可知,∠BEC =∠DEC =50°,∠EBC =∠EDC =100°, ∴∠GEB =∠DEC +∠BEC =100°.∴∠GEB =∠CBE .∵∠FBC =50°,∴∠EBG =∠EBC -∠FBC =50°.∴∠EBG =∠BEC.在△GEB 与△CBE 中,⎩⎪⎨⎪⎧∠GEB =∠CBE ,BE =EB ,∠EBG =∠BEC ,∴△GEB ≌△CBE .∴EG =BC .方法二:证明:连接BE ,设BG 与EC 交于点H ,如图②.∵四边形ABCD 是菱形,∴AD ∥BC.∵∠ADC =120°,∴∠DCB =60°.∵AC 是菱形ABCD 的对角线,∴∠DCA =12∠DCB =30°. ∴∠EDC =180°-∠DEC -∠DCA =100°.由菱形的对称性可知,∠BEC =∠DEC =50°,∠EBC =∠EDC =100°, ∵∠FBC =50°,∴∠EBG =∠EBC -∠FBC =50°=∠BEC .∴BH =EH .在△GEH 与△CBH 中,⎩⎪⎨⎪⎧∠GEH =∠CBH ,EH =BH ,∠EHG =∠B HC ,∴△GEH ≌△CBH .∴EG =BC .(3)AE +BG =3EG .4.解:(1)∠ADE =90°-α.(2)①证明:∵四边形ABFE 是平行四边形,∴AB ∥EF .∴∠EDC =∠ABC =α.由(1)知∠ADE =90°-α,∴∠ADC =∠ADE +∠EDC =90°.∴AD ⊥BC.∵AB =AC ,∴BD =CD.②证明:∵AB =AC ,∠ABC =α,∴∠C =α.∵四边形ABFE 是平行四边形,∴AE ∥BF ,AE =BF .∴∠EAC =∠C =α.由(1)知∠DAE =180°-2∠ADE =180°-2(90°-α)=2α, ∴∠DAC =α.∴∠DAC =∠C.∴AD =CD .∵AD =AE =BF ,∴BF =CD.∴BD =CF .5.解:(1)90 12(2)结论:∠AHB =90°,AF BE =32. 证明:如图,连接AD .∵AB =AC ,∠BAC =60°,∴△ABC 是等边三角形.∵D 为BC 的中点,∴AD ⊥BC.∴∠1+∠2=90°.又∵DE ⊥AC ,∴∠DEC =90°.∴∠2+∠C =90°.∴∠1=∠C =60°.设AB =BC =k (k >0),则CE =12CD =k 4,DE =34k . ∵F 为DE 的中点,∴DF =12DE =38k ,AD =32AB =32k . ∴AD BC =32,DF CE =32. ∴AD BC =DF CE . 又∵∠1=∠C ,∴△ADF ∽△BCE . ∴AF BE =ADBC =32, ∠3=∠4.又∵∠4+∠5=90°,∠5=∠6,∴∠3+∠6=90°.∴∠AHB =90°. (3)12tan(90°-α2). 6.解:(1)①作图.△ADE (或△PDE ).②过点P 作PN ∥AG 交CG 于点N ,交CD 于点M ,∴∠CPM =∠CAB.∵∠CPE =12∠CAB , ∴∠CPE =12∠CPN .∴∠CPE =∠FPN . ∵PF ⊥CG ,∴∠PFC =∠PFN =90°.∵PF =PF ,∴△PFC ≌△PFN .∴CF =FN .由①得:△PME ≌△CMN .∴PE =CN .∴CF PE =CF CN =12. (2)12tan α. 7.解:(1)①30°.②不改变,∠BDC 的度数为30°.方法一:由题意知AB =AC =A D.∴点B ,C ,D 在以点A 为圆心,AB 为半径的圆上.∴∠BDC =12∠BAC =30°. 方法二:由题意知AB =AC =A D.∵AC =AD ,∠CAD =α,∴∠ADC =∠ABD =180°-α2=90°-12α. ∵AB =AD ,∠BAD =60°+α,∴∠ADB =∠ABD =180°-()60°+α2=120°-α2=60°-12α.∴∠BDC =∠ADC -∠ADB =(90°-12α)-(60°-12α)=30°. (2)过点A 作AM ⊥CD 于点M ,连接EM .∴∠AMC =90°.在△AEB 与△AMC 中,⎩⎪⎨⎪⎧∠AEB =∠AMC ,∠B =∠ACD ,AB =AC ,∴△AEB ≌△AMC.∴AE =AM ,∠BAE =∠CAM .∴∠EAM =∠EAC +∠CAM =∠EAC +∠BAE =∠BAC =60°. ∴△AEM 是等边三角形.∴EM =AM =AE .∵AC =AD ,AM ⊥CD ,∴CM =DM .又∵∠DEC =90°,∴EM =CM =DM .∴AM =CM =DM .∴点A ,C ,D 在以M 为圆心,MC 为半径的圆上.∴α=∠CAD =90°.8.解:(1)CH =AB(2)结论成立.证明:如图,连接BE .在正方形ABCD 中,AB =BC =CD =AD ,∠A =∠BCD =∠ABC =90°.∵DE =DF ,∴AF =CE .在△ABF 和△CBE 中,⎩⎪⎨⎪⎧AB =CB ,∠A =∠BCE ,AF =CE ,∴△ABF ≌△CBE .∴∠1=∠2.∵EH ⊥BF ,∠BCE =90°,∴H ,C 两点都在以BE 为直径的圆上.∴∠3=∠2.∴∠3=∠1.∵∠3+∠4=90°,∠1+∠HBC =90°,∴∠4=∠HB C.∴CH =CB.∴CH =AB. (3)3 2+3.。