承德圆周运动专题练习(word版

合集下载

(完整版)圆周运动习题及答案.docx

(完整版)圆周运动习题及答案.docx

《圆周运动》练习(二)1.如图所示,两个质量均为 m 的小木块 a 和 b(可视为质点 )放在水平圆盘上, a 与转轴 OO ′的距离为 l , b 与转轴的距离为 2l ,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g.若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是( )A . b 一定比 a 先开始滑动B .a 、 b 所受的摩擦力始终相等C .ω=kg是 b 开始滑动的临界角速度2lD .当 ω=2kg时, a 所受摩擦力的大小为 kmg3l2.如图所示,一质量为 M 的光滑大圆环,用一细轻杆固定在竖直平面内;套在大环上质量为 m 的小环 (可视为质点 ),从大环的最高处由静止滑下.重力加速度大小为 g.当小环滑到大环的最低点时,大环对轻杆拉力的大小为 ()A . Mg - 5mgB . Mg + mgC .Mg + 5mgD . Mg + 10mg3.如图所示的曲线是某个质点在恒力作用下的一段运动轨迹.质点从M 点出发经 P 点到达 N 点,已知弧长 MP 大于弧长 PN ,质点由 M 点运动到 P 点与从 P 点运动到 N 点所用的时间相等.则下列说法 中正确的是 ()A .质点从 M 到 N 过程中速度大小保持不变B .质点在这两段时间内的速度变化量大小相等,方向相同C .质点在这两段时间内的速度变化量大小不相等,但方向相同D .质点在 M 、 N 间的运动不是匀变速运动4.如图所示,质量相同的钢球①、②分别放在 A 、 B 盘的边缘, A 、 B 两盘的半径之比为 2∶ 1,a 、 b 分别是与 A 盘、 B 盘同轴的轮, a 、 b 轮半径之比为 1∶ 2.当 a 、 b 两轮在同一皮带带动下匀速转动时,钢球①、②受到的向心力大小之比为 ( )A . 2∶ 1B . 4∶ 1C .1∶ 4D . 8∶ 15.利用双线可以稳固小球在竖直平面内做圆周运动而不易偏离竖直面,如图所示,用两根长为 L 的细线系一质量为m 的小球,两线上端系于水平横杆上的A 、B 两点, A 、 B 两点相距也为 L ,若小球恰能在竖直面内做完整的圆周运动,则小球运动到最低点时,每根线承受的张力为 ( )A . 2 3mgB . 3mg73mgC.2.5mg D. 26.如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴距离3(设最大静摩擦力等于2.5 m 处有一小物体与圆盘始终保持相对静止.物体与盘面间的动摩擦因数为 2滑动摩擦力 ),盘面与水平面的夹角为30°, g 取 10 m/s2.则ω的最大值是 ()A. 5 rad/sB. 3 rad/sC.1.0 rad/s D.0.5 rad/ s7.如图所示,在竖直平面内有xOy 坐标系,长为 l 的不可伸长细绳,一端固定在 A 点,A 点的坐标为 (0,l2),另一端系一质量为m 的小球.现在x 坐标轴上 (x>0)固定一个小钉,拉小球使细绳绷直并呈水平位置,再让小球从静止释放,当细绳碰到钉子以后,小球可以绕钉子在竖直平面内做圆周运动.5(1) 当钉子在 x=4 l 的 P 点时,小球经过最低点时细绳恰好不被拉断,求细绳能承受的最大拉力;(2) 为使小球释放后能绕钉子在竖直平面内做圆周运动,而细绳又不被拉断,求钉子所在位置的范围.8.如图所示,一小物块自平台上以速度v0水平抛出,刚好落在邻近一倾角为α=53°的粗糙斜面AB 顶端,并恰好沿该斜面下滑,已知斜面顶端与平台的高度差h= 0.032 m ,小物块与斜面间的动摩擦因数为μ=0.5,A 点离 B 点所在平面的高度H= 1.2 m.有一半径为R 的光滑圆轨道与斜面AB 在 B 点相切连接,已知 cos 53 °= 0.6, sin 53 =°0.8, g 取 10 m/s2.求:(1)小物块水平抛出的初速度v0是多少;(2) 若小物块能够通过圆轨道最高点,圆轨道半径R 的最大值.9.如图所示为某游乐场内水上滑梯轨道示意图,整个轨道在同一竖直平面内,表面粗糙的 AB 段轨道与四分之一光滑圆弧轨道 BC 在 B 点水平相切.点 A 距水面的高度为 H ,圆弧轨道 BC 的半径为 R ,圆心 O 恰在水面.一质量为m 的游客 (视为质点 )可从轨道 AB 的任意位置滑下,不计空气阻力.(1) 若游客从 A 点由静止开始滑下,到 B 点时沿切线方向滑离轨道落在水面D 点, OD = 2R ,求游客滑到 B 点时的速度 v B 大小及运动过程轨道摩擦力对其所做的功 W f ;(2) 某游客从 AB 段某处滑下,恰好停在B 点,又因受到微小扰动,继续沿圆弧轨道滑到P 点后滑离轨道,求 P 点离水面的高度 h.(提示:在圆周运动过程中任一点,质点所2受的向心力与其速率的关系为 F 向 =m v )R10.如图所示, 一块足够大的光滑平板放置在水平面上,能绕水平固定轴 MN 调节其与水平面的倾角. 板上一根长为 l = 0.6 m 的轻细绳,它的一端系住一质量为m 的小球 P ,另一端固定在板上的O 点.当平板的倾角固定为 α时,先将轻绳平行于水平轴 MN 拉直,然后给小球一沿着平板并与轻绳垂直的初速度v 0= 3 m/s.若小球能在板面内做圆周运动,倾角α的值应在什么范围内 (取重力加速度 g =10 m/ s 2)?11.半径为 R 的水平圆盘绕过圆心O 的竖直轴匀速转动, A 为圆盘边缘上一点.在 O 的正上方有一个可视为质点的小球以初速度v 水平抛出时,半径 OA 方向恰好与 v 的方向相同,如图所示.若小球与圆盘只碰一次,且落在 A 点,重力加速度为g,则小球抛出时距O 的高度 h= ________,圆盘转动的角速度大小ω= ________.12.一长 l= 0.80 m 的轻绳一端固定在O 点,另一端连接一质量m= 0.10 kg 的小球,悬点O 距离水平地面的高度H= 1.00 m.开始时小球处于 A 点,此时轻绳拉直处于水平方向上,如图所示.让小球从静止释放,当小球运动到 B 点时,轻绳碰到悬点O 正下方一个固定的钉子P 时立刻断裂.不计轻绳断裂的能量损失,取重力加速度g= 10 m/s2.求:(1)当小球运动到 B 点时的速度大小;(2) 绳断裂后球从 B 点抛出并落在水平地面上的 C 点,求 C 点与 B 点之间的水平距离;(3)若 OP= 0.6 m,轻绳碰到钉子 P 时绳中拉力达到所能承受的最大拉力断裂,求轻绳能承受的最大拉力.4答案1. 答案 AC解析小木块 a 、 b 做圆周运动时,由静摩擦力提供向心力,即f = m ω 2R.当角速度增加时,静摩擦力增大,当增大到最大静摩擦力时,发生相对滑动,对木块 a : f a2 l ,当a2 aaa=m ω f =kmg 时, kmg = m ωl , ω=kg2 b2 bkg;对木块 b : f bbb,所以 b 先达到最大静摩l =m ω ·2l ,当 f = kmg 时, kmg = m ω ·2l , ω =2l擦力,选项 A 正确;两木块滑动前转动的角速度相同,则f a2 b 2 a b=m ω l , f = m ω ·2l , f <f ,选项 B 错误;kg2kg2 当 ω=2l 时 b 刚开始滑动,选项C 正确;当 ω= 3l 时, a 没有滑动,则f a = m ω2l = 3kmg ,选项 D 错误. 2. 答案 C解析 设大环半径为 R ,质量为m 的小环下滑过程中遵守机械能守恒定律,所以122mv = mg ·2R.小环滑mv 2到大环的最低点时的速度为v =2 gR ,根据牛顿第二定律得F N - mg = R ,所以在最低点时大环对小mv2环的支持力 F N = mg + R = 5mg.根据牛顿第三定律知, 小环对大环的压力F N ′= F N = 5mg ,方向向下.对大环,据平衡条件,轻杆对大环的拉力 T = Mg + F N ′ = Mg + 5mg.根据牛顿第三定律,大环对轻杆拉力的大小为 T ′ =T = Mg + 5mg ,故选项 C 正确,选项 A 、 B 、D 错误.3. 答案 B解析 由题图知,质点在恒力作用下做一般曲线运动,不同地方弯曲程度不同,即曲率半径不同,所以速度大小在变,所以A 错误;因是在恒力作用下运动,根据牛顿第二定律 F = ma ,所以加速度不变,根据v =a t 可得在相同时间内速度的变化量相同,故 B 正确, C 错误;因加速度不变,故质点做匀变速运动,所以 D 错误.4. 答案 D解析皮带传送,边缘上的点线速度大小相等,所以v a = v b ,因为 a 轮、 b 轮半径之比为 1∶ 2,根据线 速度公式 ωa 2v = ωr 得: b= ,共轴的点, 角速度相等, 两个钢球的角速度分别与共轴轮子的角速度相等,2 ω 1 a 1 8 F 1 8 ω1 2 则 ω2=1.根据向心加速度 a = r ω,则 a 2= 1,由 F = ma 得F 2=1,故 D 正确, A 、 B 、C 错误.5. 答案 A 2解析小球恰好过最高点时有:mg = m v 1R解得 v 1 =32 gL ①根据动能定理得:1 2 1 2mg · 3L = 2mv 2 - 2mv 1②2由牛顿第二定律得:v 23T - mg =m③5联立 ①②③ 得, T = 2 3mg故 A 正确, B 、C 、 D 错误.6. 答案 C解析当小物体转动到最低点时为临界点,由牛顿第二定律知,μmgcos 30 °- mgsin 30 °= m ω2r解得 ω=1.0 rad/s ,故选项 C 正确.7. 审题突破(1)由数学知识求出小球做圆周运动的轨道半径, 由机械能守恒定律求出小球到达最低点时的速度,然后由牛顿第二定律求出绳子的拉力.(2)由牛顿第二定律求出小球到达最高点的速度,由机械能守恒定律求出钉子的位置,然后确定钉子位置范围.解析 (1) 当钉子在 x = 5l2 +x 24 l 的 P 点时,小球绕钉子转动的半径为: R 1= l -2小球由静止到最低点的过程中机械能守恒:mg( l + R )= 1mv 211222v 1在最低点细绳承受的拉力最大,有:F - mg =m R 1联立求得最大拉力F = 7mg.(2) 小球绕钉子做圆周运动恰好到达最高点时,有:2 v 2mg = m R 2运动中机械能守恒: mg( l - R 2)= 1mv 222 2钉子所在位置为 x ′ = l - R 2 2l 2- 2联立解得 x ′ =76 l因此钉子所在位置的范围为75 6 l ≤ x ≤ 4 l .答案 (1)7 mg (2)756 l ≤ x ≤4 l8. 解析 (1) 小物块自平台做平抛运动, 由平抛运动知识得: v y = 2gh = 2× 10× 0.032 m/s = 0.8 m/ s(2分 )由于物块恰好沿斜面下滑,则tan 53 =°v y(3 分 )v 0得 v 0= 0.6 m/s.(2 分 )(2) 设小物块过圆轨道最高点的速度为v ,受到圆轨道的压力为 N.v 2则由向心力公式得: N + mg = m R (2 分)μ mgHcos 53 °1 2 1 2由动能定理得: mg(H + h)- sin 53 °- mg(R + Rcos 53)°=2mv - 2mv 0 (5 分 )小物块能过圆轨道最高点,必有 N ≥ 0(1 分 )联立以上各式并代入数据得:88R ≤21 m ,即 R 最大值为 21 m . (2 分 )答案(1)0.6 m/s(2) 8m219. 答案(1) 2gR - (mgH - 2mgR) (2)2R3解析(1) 游客从 B 点做平抛运动,有2R =v B t ①1 R =2gt2 ②由 ①② 式得v B = 2gR ③从 A 到 B ,根据动能定理,有1 2mg(H - R)+W f = 2mv B - 0④由 ③④ 式得W f =- (mgH - 2mgR)⑤(2) 设 OP 与 OB 间夹角为 θ,游客在 P 点时的速度为 v P ,受到的支持力为 N ,从 B 到 P由机械能守恒定律,有1 mg(R - Rcos θ)= mv2 - 0⑥P2过 P 点时,根据向心力公式,有2 v Pmgcos θ- N = m R ⑦N =0⑧hcos θ=R⑨2由 ⑥⑦⑧⑨ 式解得 h =3R ⑩10. 答案 α≤ 30°解析小球在板面上运动时受绳子拉力、板面弹力、重力的作用.在垂直板面方向上合力为0,重力在沿板面方向的分量为mgsin α,小球在最高点时, 由绳子的拉力和重力分力的合力提供向心力:T + mgsin2 mv 1α= l ①研究小球从释放到最高点的过程,据动能定理:1212 - mglsin α= 2mv 1 - 2mv 0② 若恰好通过最高点绳子拉力 F T2= 0,v 321联立 ①② 解得: sin α= 03gl = 3× 10× 0.6 = 2.故 α最大值为 30°,可知若小球能在板面内做圆周运动,倾角α的值应满足α≤ 30°.11.答案gR22nπv2v2R (n= 1,2,3,⋯ )解析小球做平抛运,在直方向:12 h=gt ①2在水平方向R= vt②gR2由①②两式可得h=2v2③小球落在 A 点的程中, OA 的角度θ=2nπ=ωt (n=1,2,3,⋯ )④2nπv由②④两式得ω=R(n= 1,2,3,⋯ )12.答案 (1)4 m/s (2)0.80 m (3)9 N解析(1) 小球运到 B 点的速度大小v B,由机械能守恒定律得12=mgl2mvB解得小球运到 B 点的速度大小v B=2gl= 4 m/s(2)小球从 B 点做平抛运,由运学律得x= v B t1y= H- l= gt2解得 C 点与 B 点之的水平距离x= v B 2 H - l= 0.80 m g(3) 若碰到子,拉力恰好达到最大F m,由牛定律得2v BF m-mg=m rr = l- OP由以上各式解得F m= 9 N。

圆周运动测试题及答案.docx

圆周运动测试题及答案.docx

圆周运动基础训练A1.如图所示,轻杆的一端有个小球,另一端有光滑的固定轴O现给球一”初速度,使球和杆一起绕O轴在竖直面内转动,不计空气阻力,用F表示球到∕z、'达最高点时杆对小球的作用力,则F (): QA.一定是拉力B. 一定是推力\C.—定等于OD.可能是拉力,可能是推力,也可能等于O2.如图所示为一皮带传动装置,右轮的半径为r, a是它边缘上的一点,左侧是一轮轴,大轮半径为小轮半径2r, b点在小轮上,到小轮中心距离为「C点和d点分别位于小轮和人轮的边缘上。

若在传动过程中皮带不打滑,则(A・a点与b点速度大小相等E・JI点与C点角速度大小相等C・JI点与d点向心加速度犬小相等D. a、b、c、d四点,加速度最小的是b点3.地球卜.,赤道附近的物体A和北京附近的物体B.随地球的自转而做匀速圆周运动.∏J 以判断()A.物体A与物体B的向心力都指向地心B物体A的线速度的大小小于物体B的线速度的人小C・物体A的角速度的大小小于物体E的角速度的犬小D.物体A的向心加速度的人小人于物体B的向心加速度的人小4.一辆卡车在丘陵地匀速行驶,地形如图所示,由干轮胎太旧,途中爆胎,爆胎可能性最大的地段应是()A.a处B. b处C・c处 D. d处5.如图为A、B两物体做匀速圆周运动时向心加速度随半径r变化的图线,由图可知()A.A物体的线速度人小不变B. A物体的角速度不变C. B物体的线速度人小不变D. B物体的角速度与半径成正比6.Ih上海飞往美国洛杉矶的飞机在飞越太平洋上空的过程中,如果保持飞行速度的大小和距离海面的高度均不变,则以下说法正确的是()A.飞机做的是匀速直线运动B.飞机上的乘客对座椅压力略人于地球对乘客的引力C.飞机上的乘客对座椅的压力略小于地球对乘客的引力D・飞机上的乘客对座椅的压力为零7.有一种大型游戏器械,它是一个圆筒形大容器,筒壁竖直,游客进人容器后靠筒壁站立, 当圆筒开始转动后,转速加快到一定程度时,突然地板塌落,游客发现自己没有落下去,这是因为()A.游客受到的筒壁的作用力垂直于筒壁B.游客处于失重状态C.游客受到的摩擦力等于垂力D游客随肴转速的增大有沿壁向匕滑动的趙势8. 如图所示是一种娱乐设施“魔盘S 而且画面反映的是魔盘旋转转速较人时,盘中人的情景.甲、乙、丙三位同学看了图后发生争论,甲说:“图画错了,做圆周运动的物体受到向心力的作用,魔盘上的人应该向中心靠拢”.乙说:“画画 得对•因为旋转的魔盘给人离心力.所以人向盘边缘靠拢丙说:“图画得对,当盘对人的摩擦力不能满足人做圆周运动的向心力时,人会逐渐远离圆心”•该三位同学的 说法应是()时,两小球刚好能与杆保持无相对滑动,如图所示,此时两小球到转轴的距离 n 与C 之比为()A.1: 1 E. 1: √2 C. 2: 1 D. 1: 2 10・如图所示,在匀速转动的水平盘上,沿半径方向放着用细线相连的质量相等的两个物体 A 和B.它们与盘间的动摩擦因数相同.当圆盘转速加快到两物体刚好还未发生滑动时,烧断细线,则两个物体的运动情况是()A. 两物体均沿切线方向滑动B. 两物全均沿半径方向滑动,离圆盘圆心越来越远C 两物体仍随圆盘一起做匀速圆周运动,不会发生滑动D. 物体E 仍随圆盘一起做匀速圆周运动,物体A 发生滑 11. 司机为了能够控制驾驶的汽车,汽车对地面的压力一定要大于0.在高速公路上所建的 高架桥的顶部口J ■看作是一个圆弧,若高速公路匕汽车设计时速为40m∕s,则高架桥顶部的閱弧半径至少应为 _____ (g 取IOinZs 2)解析设当汽车行驶到弧顶时,对地面压力刚好为零的圆12. AB 是竖直平面内的四分Z —圆弧轨道,在卞端B 与水平直轨道柑切,如图所示,一小 球自A 点起由静止开始沿轨道下滑,已知圆轨道半径为R∙小球的质量为Ub 不计齐处摩 擦•求:(1) 小球运动到E 点时的动能;(2) 小球卜滑到距水平轨道的高度为R/2时速度的人小和方向:(3) 小球经过圆弧轨道的B 点和水平轨道的c 点时,所受轨道 支持力NB NC 各是多大?13、用钳子夹住一块质m=50kg 的混凝土砌块起用(如图所示)•己知钳子与砌块间的动 A.甲正确 B.乙正确 C.丙正确 D.无法判断9.在光滑杆上穿着两上小球m 2t 且m ι=2m 2,用细线把两球连起來•当盘架匀速转动 动,摩擦因数40. 4.砌块雨心至上端间距L=4m∙在钳子沿水平方向以速度v=4m∕ S匀速行驶中突然停止,为不使砌块从钳子Il滑卜•,对砌块上端施加的压力至少为多犬?(g=10m∕sJ圆周运动B能力提升1∙半径为R的光滑半圆球固定在水平面上(如图),顶部有一小物体A∙今给它一个水平初速Vo=J^,,则物体将OA.沿球面下滑至M点E.沿球面下滑至某一点N,便离开球面做斜下抛运动C.按半径大于R的新的圆弧轨道作圆周运动D.立即离开半圆球做平抛运动2.如图所示,固定在竖Jl平面内的光滑圆形轨道ABCDQ点为轨道最高点,DB为竖直直径,AE为过圆心的水平面,今使小球自A点正上方某处由静止释放,且从A点内侧进人圆轨道运动,只要适当调节释放点的高度,总能保证小球最终通过最高点D,则小球在通过D点后(不计空气阻力)()T「D :A、一定会落在水平面AE上E、一定会再次落到圆轨道上厂C、可能会落到水平面AED、可能会再次落到圆轨道上。

(完整版)圆周运动基础练习题(含答案)

(完整版)圆周运动基础练习题(含答案)

圆周运动练习题1.下列关于做匀速圆周运动的物体所受的向心力的说法中,正确的是 (选C )A .物体除其他的力外还要受到—个向心力的作用 C .向心力是一个恒力B .物体所受的合外力提供向心力 D .向心力的大小—直在变化2.关于匀速圆周运动的角速度与线速度,下列说法中正确的是(选BC )A .半径一定,角速度与线速度成反比B .半径一定,角速度与线速度成正比C .线速度一定,角速度与半径成反比D .角速度一定,线速度与半径成正比3.正常走动的钟表,其时针和分针都在做匀速转动,下列关系中正确的是 (选B)A .时针和分针的角速度相同B .分针角速度是时针角速度的12倍C .时针和分针的周期相同D .分针的周期是时针周期的12倍4.A 、B 两个质点,分别做匀速圆周运动,在相同的时间内它们通过的路程之比s A ∶s B =2∶3,转过的角度之比ϕA ∶ϕB =3∶2,则下列说法正确的是(选BC )A .它们的半径之比R A ∶RB =2∶3 B .它们的半径之比R A ∶R B =4∶9C .它们的周期之比T A ∶T B =2∶3D .它们的周期之比T A ∶T B =3∶25. 如图所示的圆锥摆中,摆球A 在水平面上作匀速圆周运动,关于A 的受力情况,下列说法中正确的是(选C )A .摆球A 受重力、拉力和向心力的作用;B .摆球A 受拉力和向心力的作用;C .摆球A 受拉力和重力的作用;D .摆球A 受重力和向心力的作用。

6.汽车甲和汽车乙质量相等,以相等速度率沿同一水平弯道做匀速圆周运动,甲车在乙车的外侧.两车沿半径方向受到的摩擦力分别为F f 甲和F f 乙,以下说法正确的是(选A )A . F f 甲小于F f 乙B . F f 甲等于F f 乙C . F f 甲大于F f 乙D . F f 甲和F f 乙大小均与汽车速率无关7.一辆卡车在丘陵地匀速行驶,地形如图所示,由于轮胎太旧,途中爆胎,爆胎可能性最大的地段应是(选D )A .a 处B .b 处C .c 处D .d 处8.游客乘坐过山车,在圆弧轨道最低点处获得的向心加速度达到20 m/s 2,g 取10 m/s 2,那么在此位置座椅对游客的作用力相当于游客重力的 (选C )A .1倍B .2 倍C .3倍D .4倍9.一汽车通过拱形桥顶点时速度为10 m/s ,车对桥顶的压力为车重的43,如果要使汽车在桥顶对桥面没有压力,车速至少为(选B )A .15 m/sB .20 m/sC .25 m/sD .30 m/s 10.如图所示,轻杆的一端有一个小球,另一端有光滑的固定轴O ,现给球一初速度,使球和杆一起绕O 轴在竖直面内转动,不计空气阻力,用F 表示球到达最高点时杆对小球的作用力,则F (选D ) A.一定是拉力 B.一定是推力 C.一定等于零D.可能是拉力,可能是推力,也可能等于零 (第5题)(第15题)11.飞机在飞越太平洋上空的过程中,如果保持飞行速度的大小和距离海平面的高度不变,则以下说法中正确的是(选C)A.飞机做的是匀速直线运动B.飞机上的乘客对座椅的压力略大于地球对乘客的引力C.飞机上的乘客对座椅的压力略小于地球对乘客的引力D.飞机上的乘客对座椅的压力为零12.一滑雪者连同他的滑雪板质量为70kg ,他滑到凹形的坡底时的速度是20m/s ,坡底的圆弧半径是50m ,则在坡底时雪地对滑雪板的支持力是多少?1260N13.质量为m 的小球,用一条绳子系在竖直平面内做圆周运动,小球到达最高点时的速度为v ,到达最低点时的速变为24v gR ,则两位置处绳子所受的张力之差是多少?6mg14.汽车沿半径为R = 100m 的圆跑道行驶,设跑道的路面是水平的,路面作用于车的最大静摩擦力是车重的101,要使汽车不致冲出圆跑道,车速最大不能超过多少?10s m /。

圆周运动专题训练(含答案)

圆周运动专题训练(含答案)

圆周运动专题训练(含答案)部门: xxx时间: xxx整理范文,仅供参考,可下载自行编辑圆周运动专题训练<含答案)(时间:45分钟,满分:100分>一、单项选择题(本题共6小题,每小题7分,共计42分,每小题只有一个选项符合题意>1.发射人造卫星是将卫星以一定的速度送入预定轨道.发射场一般选择在尽可能靠近赤道的地方,如图1所示.这样选址的优点是,在赤道附近(>b5E2RGbCAPA.地球的引力较大B.地球自转线速度较大图1C.重力加速度较大D.地球自转角速度较大解读:为了节省能量,而沿自转方向发射,卫星绕地球自转而具有的动能在赤道附近最大,因而使发射更节能.故选B.p1EanqFDPw答案:B2.某同学设想驾驶一辆由火箭作动力的陆地太空两用汽车,沿赤道行驶并且汽车相对于地球速度可以任意增加,不计空气阻力,当汽车速度增加到某一值时,汽车将离开地球成为绕地球做圆周运动的“航天汽车”,对此下列说法正确的是(R=6400 km,取g=10 m/s2>(>DXDiTa9E3dA.汽车在地面上速度增加时,它对地面的压力增大B.当汽车离开地球的瞬间速度达到28 440 km/hC.此“航天汽车”环绕地球做圆周运动的最小周期为1 hD.在此“航天汽车”上弹簧测力计无法测量力的大小解读:汽车受到的万有引力提供向心力和重力,在速度增加时,向心力增大,则重力减小,对地面的压力则减小,选项A错误.若要使汽车离开地球,必须使汽车的速度达到第一宇宙速度7.9 km/s=28 440 km/h,选项B正确.此时汽车的最小周期为T=2π错误!=2π错误!=2π错误!=5 024 s=83.7 min,选项C错误.在此“航天汽车”上弹簧产生形变仍然产生弹力,选项D错误.RTCrpUDGiT答案:B3.(2018·上海高考>月球绕地球做匀速圆周运动的向心加速度大小为a.设月球表面的重力加速度大小为g1,在月球绕地球运行的轨道处由地球引力产生的加速度大小为g2,则5PCzVD7HxA(> A.g1=aB.g2=aC.g1+g2=aD.g2-g1=a解读:月球因受地球引力的作用而绕地球做匀速圆周运动.由牛顿第二定律可知地球对月球引力产生的加速度g2就是向心加速度a,故B选项正确.jLBHrnAILg答案:B4.某星球的质量约为地球质量的9倍,半径约为地球半径的一半,若从地球表面高h处平抛一物体,射程为60 m,则在该星球上,从同样高度以同样的初速度平抛同一物体,射程应为(>xHAQX74J0XA.10 mB.15 mC.90 mD.360 m解读:由平抛运动公式可知,射程x=v0t=v0错误!,即v0、h相同的条件下x∝错误!,又由g=错误!,可得错误!=错误!(错误!>2=错误!×(错误!>2=错误!,LDAYtRyKfE所以错误!=错误!=错误!,x星=10 m,选项A正确.Zzz6ZB2Ltk答案:A5.把地球绕太阳公转看做匀速圆周运动,轨道平均半径约为1.5×108 km,已知万有引力常量G=6.67×10-11 N·m2/kg2,则可估算出太阳的质量大约是(结果取一位有效数字>(>dvzfvkwMI1 A.2×1030 kgB.2×1031 kgC.3×1030 kgD.3×1031 kg解读:题干给出地球轨道半径r=1.5×108 km,虽没直接给出地球运转周期的数值,但日常知识告诉我们,地球绕太阳公转一周为365天,故周期rqyn14ZNXIT=365×24×3 600 s=3.2×107 s.万有引力提供向心力,即G错误!=m(错误!>2r,故太阳质量M=错误!=错误! kgEmxvxOtOco≈2×1030 kg.答案:A6.两颗靠得较近的天体叫双星,它们以两者重心连线上的某点为圆心做匀速圆周运动,因而不至于因引力作用而吸引在一起,以下关于双星的说法中正确的是(>SixE2yXPq5A.它们做圆周运动的角速度与其质量成反比B.它们做圆周运动的线速度与其质量成反比C.它们所受向心力与其质量成反比D.它们做圆周运动的半径与其质量成正比解读:双星的角速度相同,与质量无关,A不正确.不管双星质量大小关系如何,双星受到相互的吸引力总是大小相等的,分别等于它们做匀速圆周运动的向心力,C不正确.对于双星分别有G错误!=Mω2R,G错误!=mω2r,R∶r=m∶M,D不正确.线速度之比V∶v=m∶M,B正确.6ewMyirQFL答案:B二、多项选择题(本题共4小题,每小题7分,共计28分,每小题有多个选项符合题意,全部选对的得7分,选对但不全的得3分,错选或不答的得0分>kavU42VRUs7.(2018·淮安模拟>有一宇宙飞船到了某行星上(该行星没有自转运动>,以速度v接近行星表面匀速飞行,测出运动的周期为T,已知引力常量为G,则可得(>y6v3ALoS89A.该行星的半径为错误!B.该行星的平均密度为错误!C.无法测出该行星的质量D.该行星表面的重力加速度为错误!解读:由T=错误!可得:R=错误!,A正确;由错误!=m错误!可得:M=错误!,C错误;由M=错误!πR3·ρ得:ρ=错误!,B 正确;由错误!=mg得:g=错误!,D正确.M2ub6vSTnP 答案:ABD8.关于地球同步卫星下列判断正确的是(>A.运行速度大于7.9 km/sB.离地面高度一定,相对地面静止C.绕地球运行的角速度比月球绕地球运行的角速度大D.向心加速度与静止在赤道上物体的向心加速度大小相等解读:由万有引力提供向心力得:错误!=错误!,v=错误!,即线速度v随轨道半径r的增大而减小,v=7.9 km/s为第一宇宙速度即环绕地球表面运行的速度;因同步卫星轨道半径比地球半径大很多,因此其线速度应小于7.9 km/h,故A错,因同步卫星与地球自转同步,即T、ω相同,因此其相对地面静止,由公式错误!=m(R+h>ω2得:h=错误!-R,因G、M、ω、R均为定值,因此h 一定为定值,故B对;因同步卫星周期T同=24小时,月球绕地球转动周期T月=30天,即T同<T月,由公式ω=错误!得,ω同>ω月,故C对;同步卫星与静止在赤道上的物体具有共同的角速度,由公式an=rω2,可得:错误!=错误!,因轨道半径不同,故其向心加速度不同,D错误.0YujCfmUCw答案:BC9.如图2所示,a,b是两颗绕地球做匀速圆周运动的人造卫星,它们距地面的高度分别是R和2R(R为地球半径>.下列说法中正确的是(>eUts8ZQVRdA.a、b的线速大小之比是错误!∶1B.a、b的周期之比是1∶2错误!图2C.a、b的角速度大小之比是3错误!∶4D.a、b的向心加速度大小之比是9∶4解读:两卫星均做匀速圆周运动,F万=F向,向心力选不同的表达形式分别分析,由错误!=m错误!得错误!=错误!=错误!=错误!,A错误;由错误!=mr(错误!>2得错误!=错误!=错误!错误!,B错误;由错误!=mrω2得错误!=错误!=错误!,C正确;由错误!=ma得错误!=错误!=错误!,D正确.sQsAEJkW5T 答案:CD10.我国未来将建立月球基地,并在绕月轨道上建造空间站.如图3所示,关闭动力的航天飞机在月球引力作用下向月球靠近,并将与空间站在B处对接,已知空间站绕月轨道半径为r,周期为T,万有引力常量为G,下列说法中正确的是(>GMsIasNXkAA.图中航天飞机正加速飞向B处B.航天飞机在B处由椭圆轨道进入空间站轨道必须点火减速图3C.根据题中条件可以算出月球质量D.根据题中条件可以算出空间站受到月球引力的大小解读:关闭动力的航天飞机在月球引力作用下向月球靠近,引力做正功,航天飞机的动能增加,即速度增加,所以A正确;航天飞机在B处进入圆轨道,必须减小速度,所以B正确;由G错误!=m错误!r可求出月球质量M=错误!,所以C正确;由于空间站自身的质量未知,因此没法算出空间站受到月球引力的大小,所以D不正确.TIrRGchYzg答案:ABC三、计算题(本题共2小题,共计30分,解答时请写出必要的文字说明、方程式和演算步骤.只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位.>7EqZcWLZNX11.(13分>(2018·江阴模拟>如图4所示,阴影区域是质量为M、半径为R的球体挖去一个小圆球后的剩余部分.所挖去的小圆球的球心O′和大球体球心间的距离是错误!.求球体剩余部分对球体外离球心O距离为2R、质量为m的质点P的引力.图4lzq7IGf02E 解读:将挖去的球补上,则完整的大球对球外质点P的引力F1=错误!=错误!zvpgeqJ1hk半径为错误!的小球的质量M′=错误!π(错误!>3·ρ=错误!π(错误!>3·错误!=错误! MNrpoJac3v1补上的小球对质点P的引力F2=G错误!=G错误!=错误!1nowfTG4KI因而挖去小球的剩余部分对P质点的引力F=F1-F2=错误!-错误!=错误!.fjnFLDa5Zo答案:错误!12.(17分>1990年5月,中国紫金山天文台将1965年9月20日发现的第2752号小行星命名为吴健雄星,其直径为32 km.若该行星的密度和地球的密度相同,则对该小行星而言,第一宇宙速度为多少?(已知地球半径R1=6 400 km,地球的第一宇宙速度v1≈8 km/s>tfnNhnE6e5解读:设小行星的第一宇宙速度为v2,其质量为M2;地球的第一宇宙速度为v1,其质量为M1,则有G错误!=m错误!G错误!=m错误!且M1=ρ错误!πR13M2=ρ错误!πR23得错误!=错误!所以v2=错误!v1=错误!×8 km/s=20 m/s.HbmVN777sL答案:20 m/s申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。

高一物理下册 圆周运动单元复习练习(Word版 含答案)(1)

高一物理下册 圆周运动单元复习练习(Word版 含答案)(1)

一、第六章 圆周运动易错题培优(难)1.如图所示,水平圆盘可绕竖直轴转动,圆盘上放有小物体A 、B 、C ,质量分别为m 、2m 、3m ,A 叠放在B 上,C 、B 离圆心O 距离分别为2r 、3r 。

C 、B 之间用细线相连,圆盘静止时细线刚好伸直无张力。

已知C 、B 与圆盘间动摩擦因数为μ,A 、B 间摩擦因数为3μ,设最大静摩擦力等于滑动摩擦力,重力加速度为g ,现让圆盘从静止缓慢加速,则( )A .当23grμω=时,A 、B 即将开始滑动 B .当2grμω=32mgμ C .当grμω=C 受到圆盘的摩擦力为0D .当25grμω=C 将做离心运动 【答案】BC 【解析】 【详解】A. 当A 开始滑动时有:2033A f mg m r μω==⋅⋅解得:0grμω=当23ggrrμμω=<AB 未发生相对滑动,选项A 错误;B. 当2ggrrμμω=<时,以AB 为整体,根据2F mr ω向=可知 29332F m r mg ωμ⋅⋅=向= B 与转盘之间的最大静摩擦力为:23Bm f m m g mg μμ=+=()所以有:Bm F f >向此时细线有张力,设细线的拉力为T , 对AB 有:2333mg T m r μω+=⋅⋅对C 有:232C f T m r ω+=⋅⋅解得32mg T μ=,32C mgf μ= 选项B 正确;C. 当ω=时,AB 需要的向心力为:2339AB Bm F m r mg T f ωμ'⋅⋅=+==解得此时细线的拉力96Bm T mg f mg μμ'-== C 需要的向心力为:2326C F m r mg ωμ⋅⋅==C 受到细线的拉力恰好等于需要的向心力,所以圆盘对C 的摩擦力一定等于0,选项C 正确;D. 当ω=C 有: 212325C f T m r mg ωμ+=⋅⋅=剪断细线,则1235C Cm f mg f mg μμ=<= 所以C 与转盘之间的静摩擦力大于需要的向心力,则C 仍然做匀速圆周运动。

(word完整版)匀速圆周运动经典练习题

(word完整版)匀速圆周运动经典练习题

匀速圆周运动综合练习题11.对于匀速圆周运动的物体,下列说法中错误的是( )。

(A)线速度不变 (B)角速度不变 (C )周期不变(D )转速不变2.关于向心加速度的物理意义,下列说法中正确的是( )。

(B)它描述的是线速度大小变化的快慢 (C )它描述的是向心力变化的快慢 (D)它描述的是角速度变化的快慢3.如图所示,甲、乙两球作匀速圆周运动,向心加速度随半径变化。

由图像可以知道( ).(A )甲球运动时,线速度大小保持不变 (B)甲球运动时,角速度大小保持不变 (C)乙球运动时,线速度大小保持不变 (D )乙球运动时,角速度大小保持不变4。

如图所示,小物体A 与圆柱保持相对静止,跟着圆盘一起作匀速圆周运动,则A 受力情况是受( )。

(A )重力、支持力 (B)重力、向心力(C )重力、支持力和指向圆心的摩擦力 (D )重力、支持力、向心力和摩擦力5。

质量为m 的小球,用长为l 的线悬挂在O 点,在O 点正下方2l处有一光滑的钉子O′,把小球拉到与O′在同一水平面的位置,摆线被钉子拦住,如图所示.将小球从静止释放.当球第一次通过最低点P 时,( ).(A )小球速率突然减小 (B )小球加速度突然减小 (C)小球的向心加速度突然减小 (D )摆线上的张力突然减小6。

一轻杆一端固定质量为m 的小球,以另一端O 为圆心,使小球在竖直平面内作半径为R 的圆周运动,如图所示,则()。

(A)小球过最高点时,杆所受弹力可以为零 (B )小球过最高点时的最小速度是gR(C)小球过最高点时,杆对球的作用力可以与球所受重力方向相反,此时重力一定大于杆对球的作用力(D)小球过最高点时,杆对球的作用力一定跟小球所受重力的方向相反7.质量为m的小球在竖直平面内的圆形轨道的内侧运动,经过最高点而不脱离轨道的最小速度是v,则当小球以2v的速度经过最高点时,对轨道压力的大小是()。

(A)0 (B)mg (C)3mg (D)5mg8.火车轨道在转弯处外轨高于内轨,其高度差由转弯半径与火车速度确定.若在某转弯处规定行驶的速度为v,则下列说法中正确的是( ).①当火车以v的速度通过此弯路时,火车所受重力与轨道面支持力的合力提供向心力②当火车以v的速度通过此弯路时,火车所受重力、轨道面支持力和外轨对轮缘弹力的合力提供向心力③当火车速度大于v时,轮缘挤压外轨④当火车速度小于v时,轮缘挤压外轨(A)①③(B)①④(C)②③(D)②④9。

人教版高一下册物理 圆周运动单元复习练习(Word版 含答案)

人教版高一下册物理 圆周运动单元复习练习(Word版 含答案)

一、第六章 圆周运动易错题培优(难)1.如图所示,有一可绕竖直中心轴转动的水平足够大圆盘,上面放置劲度系数为k 的弹簧,弹簧的一端固定于轴O 上,另一端连接质量为m 的小物块A (可视为质点),物块与圆盘间的动摩擦因数为μ,开始时弹簧未发生形变,长度为L ,若最大静摩擦力与滑动摩擦力大小相等,重力加速度为g ,物块A 始终与圆盘一起转动。

则( )A .当圆盘角速度缓慢地增加,物块受到摩擦力有可能背离圆心B .当圆盘角速度增加到足够大,弹簧将伸长C gLμ D .当弹簧的伸长量为x mg kxmLμ+【答案】BC 【解析】 【分析】 【详解】AB .开始时弹簧未发生形变,物块受到指向圆心的静摩擦力提供圆周运动的向心力;随着圆盘角速度缓慢地增加,当角速度增加到足够大时,物块将做离心运动,受到摩擦力为指向圆心的滑动摩擦力,弹簧将伸长。

在物块与圆盘没有发生滑动的过程中,物块只能有背离圆心的趋势,摩擦力不可能背离圆心,选项A 错误,B 正确;C .设圆盘的角速度为ω0时,物块将开始滑动,此时由最大静摩擦力提供物体所需要的向心力,有20mg mL μω=解得0gLμω=选项C 正确;D .当弹簧的伸长量为x 时,物块受到的摩擦力和弹簧的弹力的合力提供向心力,则有2mg kx m x L μω+=+()解得mg kxm x L μω+=+()选项D 错误。

故选BC 。

2.如图所示,叠放在水平转台上的物体 A 、B 及物体 C 能随转台一起以角速度 ω 匀速转动,A ,B ,C 的质量分别为 3m ,2m ,m ,A 与 B 、B 和 C 与转台间的动摩擦因数都为 μ ,A 和B 、C 离转台中心的距离分别为 r 、1.5r 。

设最大静摩擦力等于 滑动摩擦力,下列说法正确的是(重力加速度为 g )( )A .B 对 A 的摩擦力一定为 3μmg B .B 对 A 的摩擦力一定为 3m ω2rC .转台的角速度需要满足grμωD .转台的角速度需要满足23grμω 【答案】BD 【解析】 【分析】 【详解】AB .对A 受力分析,受重力、支持力以及B 对A 的静摩擦力,静摩擦力提供向心力,有()()233f m r m g ωμ=故A 错误,B 正确;CD .由于A 、AB 整体、C 受到的静摩擦力均提供向心力,故对A 有()()233m r m g ωμ对AB 整体有()()23232m m r m m g ωμ++对物体C 有()21.52m r mg ωμ解得grμω故C 错误, D 正确。

圆周运动选择题专题(打印)

圆周运动选择题专题(打印)

30.我国的电视画面每隔 0.04 s 更迭一帧,当屏幕上 出现车轮匀速运动时,观众观察车轮匀速运动时,观众 观察车轮辐条往往产生奇怪感觉,如图所示.设车轮上 有八根对称分布的辐条,则( ). A.若 0.04 s 车轮恰转过 45°,观众 觉得车轮是不动的 B.若 0.04 s 车轮恰转过 360°,观 众觉得车轮是不动的 C.若 0.04 s 车轮恰 转过 365°,观 众觉得车轮是倒转的 D.若 0.04 s 车轮恰转过 365°,观众觉得车轮是正转 的 31.变速自行车靠变换齿轮组合来改变行驶速度.图 2 -1-12 是某一变速车齿轮转动结构示意图,图中 A 轮
有 48 齿,B 轮有 42 齿,C 轮有 18 齿,D 轮有 12 齿,则 ( ). A.该车可变换两种不同挡位 B.该车可变换四种不同挡位 C.当 A 轮与 D 轮组合时,两轮 的角速度之比 ω A∶ω D=1∶4 D.当 A 轮与 D 轮组合时,两轮 角速度之比 ω A∶ω D=4∶1 32. 如图所示, 两个小球固定在一根长为 l 的杆的两端, 绕杆上的 O 点做圆周运动.当小球 A 的速度为 vA 时,小 球 B 的速度为 vB, 则轴心 O 到小球 A 的距离是 ( ). A.vA(vA+vB)l B.
2.一小球沿半径为 2 m 的轨道做匀速圆周运动,若周 期为 π s,则 ( ). A.小球的线速度是 4 m/s
9.如图所示,皮带轮的半径 RA=2RB,A 轮半径上一点 c 和圆心距离为 1/2RA,a、b 分别为 A 轮和 B 轮边缘上 的点,当皮带轮工作时,皮带与轮不打滑,则 a、b、c 三点向心加速度之比 aa : ab : ac 为: ( )
s,小球的位移是 π m 4 C.经过 s,小球的位移是 2 2 m 4

(完整word版)圆周运动典型基础练习题大全,推荐文档

(完整word版)圆周运动典型基础练习题大全,推荐文档

1甲、乙两物体都做匀速圆周运动,其质量之比为1 : 2 ,转动半径之比为1 : 2 ,在相等时间里甲转过60°乙转过45°则它们所受外力的合力之比为()A. 1 : 4B. 2 : 3C. 4 : 92.如图所示,有一质量为M的大圆环,半径为R,被一轻杆固定后悬挂在两个质量为m的小环(可视为质点),同时从大环两侧的对称位置由静止滑下。

环同时滑到大环底部时,速度都为v,则此时大环对轻杆的拉力大小为(A.(2m+2M )gB. Mg —2mv2/R2 2C. 2m(g+v2/R+MgD. 2m(v2/R—g)+Mg3 .下列各种运动中,属于匀变速运动的有()A.匀速直线运动B.匀速圆周运动C.平抛运动D.竖直上抛运动4 •关于匀速圆周运动的向心力,下列说法正确的是()A.向心力是指向圆心方向的合力,是根据力的作用效果命名的B.向心力可以是多个力的合力,也可以是其中一个力或一个力的分力C.对稳定的圆周运动,向心力是一个恒力D.向心力的效果是改变质点的线速度大小5. 一物体在水平面内沿半径R = 20cm的圆形轨道做匀速圆周运动,线速度v = 0.2m/s ,那么,它的向心加速度为_______ m/s2,它的周期为 ________s。

6.在一段半径为R= 15m的圆孤形水平弯道上,已知弯道路面对汽车轮胎的最大静摩擦力等于车重的卩=0.70咅,则汽车拐弯时的最大速度是___________ m/s7.在如图所示的圆锥摆中,已知绳子长度为L,绳子转动过程中与竖直方向的夹角为0,试求小球做圆周运动的周期。

8如图所示,质量m= 1 kg的小球用细线拴住,线长1= 0.5 m,细线所受拉力达到F= 18 N时就会被拉断。

当小球从图示位置释放后摆到悬点的正下方时,细线恰好被拉断。

若此时小球距水平地面的高度h= 5 m,重力加速度g= 10 m/s2,求小球落地处到地面上P点的距离?求落地速度?(P点在悬点的正下方)21、 如图所示,将一质量为 m 的摆球用长为L 的细绳吊起,上端固定,使摆球在水平面内做匀速圆周运动,细绳就会沿圆锥面旋转,这样就构成了一个圆锥摆。

(word完整版)圆周运动经典练习(有问题详解)

(word完整版)圆周运动经典练习(有问题详解)

《圆周运动》练习题(一)1. 关于匀速圆周运动,下列说法正确的是( )A 。

线速度不变 B. 角速度不变 C 。

加速度为零 D 。

周期不变2. 如图所示,A 。

球AB. 球A C 。

球A D. 球A 3。

甲、乙两名滑冰运动员,kg M 80=甲,kg M 40=乙,面对面拉着弹簧秤做匀速圆周运动的滑冰表演,如图5所示,两人相距0.9m,弹簧秤的示数为9。

2N ,下列判断中正确的是( )A. B. C 。

D 。

4.A 。

B 。

C.D 。

5.如图1所示,把一个长为量为0。

50kg 的小球,A. 5.2cm B 。

6.A 。

mLgm M )(-μC.MLgm M )(+μ7。

如图3A. A 、B 两点的角速度相等 B. A 、B 两点的线速度相等 C. 若︒=30θ,则2:3:=B A v v D 。

以上答案都不对8。

一圆盘可绕圆盘中心O匀速圆周运动),如图4A. 木块AB。

木块AC. 木块AD. 木块A9。

如图5所示,质量为m高点时刚好不脱离圆环,A。

小球对圆环的压力大小等于mgB. 小球受到的向心力等于重力mgC. 小球的线速度大小等于gRD. 小球的向心加速度大小等于g10。

一辆质量为4t 桥面压力的0。

05倍。

通过桥的最高点时汽车牵引力是 N 。

(g=10m/s 2)11.则A 、B 12.如图所示,a 、b 在传动时,(1)B C ωω:13。

时求杆OA和AB段对球A的拉力之比。

14. 司机开着汽车在一宽阔的马路上匀速行驶突然发现前方有一堵墙,他是刹车好还是转弯好?(设转弯时汽车做匀速圆周运动,最大静摩擦力与滑动摩擦力相等。

)18。

如图4此时半径OB19。

是多大?20. 如图们与台面间相互作用的静摩擦力的最大值为其重力的0。

4倍,取2/10s m g =。

(1)当转台转动时,要使两物块都不发生相对于台面的滑动,求转台转动的角速度的范围; (2)要使两物块都对台面发生滑动,求转台转动角度速度应满足的条件。

圆周运动练习题(打印版)

圆周运动练习题(打印版)

圆周运动练习题(打印版)一、选择题1. 物体做匀速圆周运动时,下列哪个物理量是恒定不变的?- A. 线速度- B. 角速度- C. 向心加速度- D. 向心力2. 一个物体在水平面上做匀速圆周运动,下列哪个力是不做功的?- A. 重力- B. 支持力- C. 摩擦力- D. 向心力3. 一个物体在竖直平面内做匀速圆周运动,若物体的重力为mg,半径为r,那么物体的向心力大小为:- A. mg- B. 2mg- C. mg/r- D. 2mg/r二、填空题1. 物体做匀速圆周运动时,其向心加速度的大小为__________。

2. 物体做匀速圆周运动时,其角速度与周期的关系为__________。

3. 若物体在圆周运动中,半径为r,线速度为v,则其向心力的大小为__________。

三、计算题1. 一个质量为2kg的物体,以5m/s的线速度在半径为10m的圆周上做匀速圆周运动。

求物体的角速度、周期和向心加速度。

2. 一个物体在竖直平面内做匀速圆周运动,其质量为1.5kg,半径为2m。

若物体在最高点时,支持力为0,求物体的线速度。

四、简答题1. 解释为什么在圆周运动中,向心力总是指向圆心。

2. 描述物体在匀速圆周运动中,向心加速度的方向是如何变化的。

参考答案一、选择题1. B2. D3. C二、填空题1. \( \frac{v^2}{r} \)2. \( \omega = \frac{2\pi}{T} \)3. \( \frac{mv^2}{r} \)三、计算题1. 角速度 \( \omega = \frac{v}{r} = \frac{5}{10} \) rad/s = 0.5 rad/s周期 \( T = \frac{2\pi r}{v} = \frac{2\pi \times 10}{5} \) s = 4\( \pi \) s向心加速度 \( a_c = \frac{v^2}{r} = \frac{25}{10} \) m/s²= 2.5 m/s²2. 由于支持力为0,物体在最高点的向心力由重力提供,所以 \( mg = \frac{mv^2}{r} \)解得 \( v = \sqrt{gr} = \sqrt{9.8 \times 2} \) m/s ≈ 4.43 m/s四、简答题1. 向心力是物体在圆周运动中受到的力,它的作用是使物体保持在圆周路径上。

【单元练】承德市高中物理必修2第六章【圆周运动】经典练习(含答案)

【单元练】承德市高中物理必修2第六章【圆周运动】经典练习(含答案)

一、选择题1.如图所示为某种水轮机示意图,水平管中流出的水流垂直冲击在水轮机上的挡板上,水轮机圆盘稳定转动时的角速度为ω,圆盘的半径为R ,挡板长度远小于R ,某时刻冲击挡板时该挡板和圆盘圆心连线与水平方向夹角为30°,水流的速度是该挡板线速度的4倍,不计空气阻力,则水从管口流出速度的大小为( )A ./2R ωB .R ωC .2R ωD .4R ω C解析:C水平管中流出的水流垂直冲击在水轮机上的挡板上时,水的末速度等于挡板的线速度的4倍,即=44v v R ω=轮将水的速度分解如下可知水的初速度0sin 302v v R ω=︒=故选C 。

2.汽车在水平地面上转弯时,地面的摩擦力达到最大,当汽车速率增为原来的2倍时,则汽车拐弯的半径必须( ) A .减为原来的12倍 B .减为原来的14倍 C .增为原来的2倍 D .增为原来的4倍D解析:D汽车在水平路面转弯时,地面的摩擦力提供向心力,由于摩擦力已经最大,所以向心力不可能再变大,根据匀速圆周运动向心力的公式22(2)v v f m m r r'==可计算得'4r r =,也就是说半径要增为原来4倍。

故选D 。

3.如图所示,A 、B 两物块置于绕竖直轴匀速转动的水平圆盘上。

已知两物块的质量AB 2m m ,运动半径A B 2r r =,两物块动摩擦因数均为μ,重力加速度为g 。

则在两物块随圆盘转动过程中,下列说法正确的是( )A .两物块相对圆盘静止时线速度AB v v = B .两物块相对圆盘静止时向心力F A >F BC B g r 时A 物块开始相对圆盘滑动D Ag r 时A 物块开始相对圆盘滑动D解析:DA .两物块随圆盘一起做圆周运动,所以两物块的角速度相等,由圆周运动角速度与线速度关系可得v r ω=由题意可知A B 2r r =所以A B 2v v =所以选项A 错误;B .两物块相对圆盘静止时的向心力2A AA F m r2BBB F m r由题意可知AB 2m m联立以上各式可得A B F F =所以选项B 错误;CD .对物块A 进行受力分析可知,物块A 受到竖直向下的重力和指向圆心静摩擦力,所以静摩擦力提供向心力,物块A 相对圆盘发生滑动的临界条件为:物块A 受到的静摩擦力增大到最大静摩擦力时,若角速度继续增大,物块A 就要相对于圆盘发生滑动。

承德市高中物理必修二第六章《圆周运动》检测题(包含答案解析)

承德市高中物理必修二第六章《圆周运动》检测题(包含答案解析)

一、选择题1.如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面与水平面的夹角为15,盘面上离转轴距离为1m r =处有一质量1kg m =的小物体,小物体与圆盘始终保持相对静止,且小物体在最低点时受到的摩擦力大小为6.6N 。

若重力加速度g 取l0m/s 2,sin150.26=,则下列说法正确的是( )A .小物体做匀速圆周运动线速度的大小为2m/sB .小物体受到合力的大小始终为4NC .小物体在最高点受到摩擦力大小为0.4N ,方向沿盘面指向转轴D .小物体在最高点受到摩擦力大小为1.4N ,方向沿盘面背离转轴2.关于铁道转弯处内外轨道的高度关系,下列说法正确的是( )A .内外轨道一样高时,外轨对轮缘的弹力提供火车转弯的向心力B .因为列车转弯处有向内倾倒可能,故一般使内轨高于外轨C .外轨略低于内轨,这样可以使列车顺利转弯,减少车轮与铁轨的挤压D .铺设轨道时内外轨道的高度关系由具体地形决定,与行车安全无关3.如图是自行车传动结构的示意图,其中I 是半径为r 1的大齿轮,Ⅱ是半径为r 2的小齿轮,Ⅲ是半径为r 3的后轮。

假设脚踏板的转速为n (r/s ),则自行车前进的速度为( )A .231nr r r π B .132nr r r π C .2312nr r r π D .1322nr r r π 4.热衷于悬浮装置设计的国外创意设计公司Flyte ,又设计了一款悬浮钟。

这款悬浮时钟外观也十分现代简约,仅有一块圆形木板和悬浮的金属小球,指示时间时仅由小球显示时钟位置。

将悬浮钟挂在竖直墙面上,并启动秒针模式后,小球将以60秒为周期在悬浮钟表面做匀速圆周运动。

不计空气阻力的情况下,下列说法正确的是( )A .小球运动到最高点时,处于失重状态B .小球运动到最低点时,处于平衡状态C .悬浮钟对小球的作用力大于小球对悬浮钟的作用力D .小球受到的重力和悬浮钟对小球的作用力是一对平衡力5.如图所示,铁路在弯道处的内外轨道高低是不同的,已知内外轨组成的轨道平面与水平面的夹角为θ,弯道处的圆弧半径为R ,若质量为m 的火车以速度v 通过某弯道时,内外轨道均不受侧压力作用,下面分析正确的是( )A .sin v gR θ=B .若火车速度小于v 时,外轨将受到侧压力作用,其方向平行轨道平面向内C .若火车速度大于v 时,外轨将受到侧压力作用,其方向平行轨道平面向外D .无论火车以何种速度行驶,对内侧轨道都有压力6.如图所示,一圆盘绕过O 点的竖直轴在水平面内旋转,角速度为ω,半径R ,有人站在盘边缘P 点处面对O 随圆盘转动,他想用枪击中盘中心的目标O ,子弹发射速度为v ,则( )A .枪应瞄准O 点射击B .枪应向PO 左方偏过θ角射击,cos R v ωθ=C .枪应向PO 左方偏过θ角射击,tan R v ωθ=D .枪应向PO 左方偏过θ角射击,sin Rvωθ= 7.自行车的发明使人们能够以车代步,既省力又提高了速度。

圆周运动计算题专题练习

圆周运动计算题专题练习

圆周运动计算题专题练习(总6页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--1.如图质量为m=的小球固定在长为L=的轻杆一端,杆可绕O 点的水平转轴在竖直平面内转动,g=10m/s 2,求:(1)小球在最高点的速度v 1为多大时,球对杆的作用力为0 (2)当小球在最高点的速度v 2=6m/s 时,球对杆的作用力和方向。

(1)3m/s (2) 6N 方向竖直向下2.如图所示,让摆球从图中的A 位置由静止开始下摆,正好摆到最低点B 位置时线被拉断.设摆线长l = m ,悬点到地面的竖直高度为H = m ,不计空气阻力,求:(1)摆球落地时的速度大小。

(结果可用根号表示)(2)落地点D 到C 点的距离(g =10 m /s 2)。

(1)v D = m /s (2)4 m 。

3.如图所示,位于竖直平面内的1/4光滑圆弧轨道,半径为R ,轨道的最低点B 的切线沿水平方向,轨道上端A 距水平地面的高度为H 。

质量为m 的小球(可视为质点)从轨道最上端A 由静止释放,经轨道最下端B 点水平飞出,最后落在水平地面上的C 点处,若空气阻力可以忽略不计,重力加速度为g 。

求:(1)小球运动到了B 点时,轨道对它的支持力是多大 (2)小球落地点C 与B 点的水平距离x 为多少小球从A 点运动到B 点的过程中只有重力做功,所以小球的机械能守恒2B mv 21mgR = mgR 2mv 2B =――――(2分)(2在最低点轨道对小球的支持力和重力的合力提供小球通过最低点所需的向心力,所以:mg 3F Rmv mg F B 2BB =⇒=-―――――(2分)小球离开B 点后做平抛运动,根据:⎪⎩⎪⎨⎧=-=2B gt 21R H tv x ------(2分))R H (R 4g)R H (2gR 2x -=-⨯=――――――(2分) oL m v4.半径为R=的光滑半圆形轨道固定在水平地面上,与水平面相切于A 点,在距离A 点处有一可视为质点的小滑块,质量为m =,小滑块与水平面间的动摩擦因数为u =,施加一个大小为F =11N 的水平推力,运动到A 点撤去推力,滑块从圆轨道最低点A 处冲上竖直轨道。

河北省承德一中下册圆周运动单元测试卷(含答案解析)

河北省承德一中下册圆周运动单元测试卷(含答案解析)

一、第六章 圆周运动易错题培优(难)1.如图所示,有一可绕竖直中心轴转动的水平足够大圆盘,上面放置劲度系数为k 的弹簧,弹簧的一端固定于轴O 上,另一端连接质量为m 的小物块A (可视为质点),物块与圆盘间的动摩擦因数为μ,开始时弹簧未发生形变,长度为L ,若最大静摩擦力与滑动摩擦力大小相等,重力加速度为g ,物块A 始终与圆盘一起转动。

则( )A .当圆盘角速度缓慢地增加,物块受到摩擦力有可能背离圆心B .当圆盘角速度增加到足够大,弹簧将伸长C gLμ D .当弹簧的伸长量为x mg kxmLμ+【答案】BC 【解析】 【分析】 【详解】AB .开始时弹簧未发生形变,物块受到指向圆心的静摩擦力提供圆周运动的向心力;随着圆盘角速度缓慢地增加,当角速度增加到足够大时,物块将做离心运动,受到摩擦力为指向圆心的滑动摩擦力,弹簧将伸长。

在物块与圆盘没有发生滑动的过程中,物块只能有背离圆心的趋势,摩擦力不可能背离圆心,选项A 错误,B 正确;C .设圆盘的角速度为ω0时,物块将开始滑动,此时由最大静摩擦力提供物体所需要的向心力,有20mg mL μω=解得0gLμω=选项C 正确;D .当弹簧的伸长量为x 时,物块受到的摩擦力和弹簧的弹力的合力提供向心力,则有2mg kx m x L μω+=+()解得mg kxm x L μω+=+()选项D 错误。

故选BC 。

2.如图所示,在匀速转动的水平盘上,沿半径方向放着用细线相连的物体A 和B ,A 和B 质量都为m .它们分居在圆心两侧,与圆心距离分别为R A =r ,R B =2r ,A 、B 与盘间的动摩擦因数μ相同.若最大静摩擦力等于滑动摩擦力,当圆盘转速加快到两物体刚好还未发生滑动时,下列说法正确的是( )A .此时绳子张力为T =3mg μB .此时圆盘的角速度为ω2grμC .此时A 所受摩擦力方向沿半径指向圆外 D .此时烧断绳子物体A 、B 仍将随盘一块转动 【答案】ABC 【解析】 【分析】 【详解】C .A 、B 两物体相比,B 物体所需要的向心力较大,当转速增大时,B 先有滑动的趋势,此时B 所受的静摩擦力沿半径指向圆心,A 所受的静摩擦力沿半径背离圆心,故C 正确; AB .当刚要发生相对滑动时,以B 为研究对象,有22T mg mr μω+=以A 为研究对象,有2T mg mr μω-=联立可得3T mg μ=2grμω=故AB 正确;D .若烧断绳子,则A 、B 的向心力都不足,都将做离心运动,故D 错误. 故选ABC.3.如图所示,一个竖直放置半径为R 的光滑圆管,圆管内径很小,有一小球在圆管内做圆周运动,下列叙述中正确的是( )A.小球在最高点时速度v的最小值为gRB.小球在最高点时速度v由零逐渐增大,圆管壁对小球的弹力先逐渐减小,后逐渐增大C.当小球在水平直径上方运动时,小球对圆管内壁一定有压力D.当小球在水平直径下方运动时,小球对圆管外壁一定有压力【答案】BD【解析】【分析】【详解】A.小球恰好通过最高点时,小球在最高点的速度为零,选项A错误;<,轨道对小球的作用力方向向上,有B.在最高点时,若v gR2v-=mg N mR可知速度越大,管壁对球的作用力越小;>,轨道对小球的作用力方向向下,有若v gR2v+=N mg mR可知速度越大,管壁对球的弹力越大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、第六章 圆周运动易错题培优(难)1.如图所示,两个可视为质点的、相同的木块A 和B 放在转盘上,两者用长为L 的细绳连接,木块与转盘的最大静摩擦力均为各自重力的K 倍,A 放在距离转轴L 处,整个装置能绕通过转盘中心的转轴O 1O 2转动,开始时,绳恰好伸直但无弹力,现让该装置从静止开始转动,使角速度缓慢增大,以下说法正确的是( )A .当23KgLω>时,A 、B 相对于转盘会滑动 B 223Kg KgL Lω<C .ω在223Kg KgL L ω<<B 所受摩擦力变大 D .ω223Kg KgL Lω<A 所受摩擦力不变 【答案】AB 【解析】 【分析】 【详解】A .当A 所受的摩擦力达到最大静摩擦力时,A 、B 相对于转盘会滑动,对A 有21Kmg T m L ω-=对B 有212Kmg T m L ω+=⋅解得123KgLω=当23KgLω>时,A 、B 相对于转盘会滑动,故A 正确; B .当B 达到最大静摩擦力时,绳子开始出现弹力222Kmg m L ω=⋅解得22KgLω=当223Kg KgL Lω<<时,绳子具有弹力,故B 正确; C .当ω在02KgLω<<范围内增大时,B 所受的摩擦力变大;当2KgLω=时,B 受到的摩擦力达到最大;当ω在223Kg KgL Lω<<范围内增大时,B 所受摩擦力不变,故C 错误;D .当ω在203KgLω<<范围内增大时,A 所受摩擦力一直增大,故D 错误。

故选AB 。

2.高铁项目的建设加速了国民经济了发展,铁路转弯处的弯道半径r 是根据高速列车的速度决定的。

弯道处要求外轨比内轨高,其内外轨高度差h 的设计与r 和速率v 有关。

下列说法正确的是( )A .r 一定的情况下,预设列车速度越大,设计的内外轨高度差h 就应该越小B .h 一定的情况下,预设列车速度越大,设计的转弯半径r 就应该越大C .r 、h 一定,高速列车在弯道处行驶时,速度越小越安全D .高速列车在弯道处行驶时,速度太小或太大会对都会对轨道产生很大的侧向压力 【答案】BD 【解析】 【分析】 【详解】如图所示,两轨道间距离为L 恒定,外轨比内轨高h ,两轨道最高点连线与水平方向的夹角为θ。

当列车在轨道上行驶时,利用自身重力和轨道对列车的支持力的合力来提供向心力,有2=tan h v F mg mg m L rθ==向A . r 一定的情况下,预设列车速度越大,设计的内外轨高度差h 就应该越大,A 错误;B .h 一定的情况下,预设列车速度越大,设计的转弯半径r 就应该越大,B 正确;C .r 、h 一定,高速列车在弯道处行驶时,速度越小时,列车行驶需要的向心力过小,而为列车提供的合力过大,也会造成危险,C 错误;D .高速列车在弯道处行驶时,向心力刚好有列车自身重力和轨道的支持力提供时,列车对轨道无侧压力,速度太小内轨向外有侧压力,速度太大外轨向内有侧压力,D 正确。

故选BD 。

3.荡秋千是大家喜爱的一项体育活动。

某秋千的简化模型如图所示,长度均为L 的两根细绳下端拴一质量为m 的小球,上端拴在水平横杆上,小球静止时,细绳与竖直方向的夹角均为θ。

保持两绳处于伸直状态,将小球拉高H 后由静止释放,已知重力加速度为g ,忽略空气阻力及摩擦,以下判断正确的是( )A .小球释放瞬间处于平衡状态B .小球释放瞬间,每根细绳的拉力大小均为2cos 2cos L Hmg L θθ- C .小球摆到最低点时,每根细绳的拉力大小均为2cos θmgD .小球摆到最低点时,每根细绳的拉力大小均为2cos 2cos mgH mgL θθ+【答案】BD 【解析】 【分析】 【详解】AB .设每根绳的拉力大小为T ,小球释放瞬间,受力分析如图1,所受合力不为0 由于速度为0,则有2cos cos 0T mg θα-=如图2,由几何关系,有cos cos cos L HL θαθ-=联立得2cos 2cos L HT mg L θθ-=A 错误,B 正确;CD .小球摆到最低点时,图1中的0α=,此时速度满足2112mgH mv =由牛顿第二定律得212cos v T mg m Rθ'-=其中cos R L θ= 联立解得22cos 2cos mgH mgT L θθ'=+ C 错误,D 正确。

故选BD 。

4.如图所示,水平转台上有一个质量为m 的小物块,用长为L 的轻细绳将物块连接在通过转台中心的转轴上,细绳与竖直转轴的夹角为θ,系统静止时细绳绷直但张力为零.物块与转台间动摩擦因数为μ(<tan μθ),设最大静摩擦力等于滑动摩擦力.物块随转台由静止开始缓慢加速转动,在物块离开转台前( )A .物块对转台的压力大小等于物块的重力B .转台加速转动的过程中物块受转台的静摩擦力方向始终指向转轴C .绳中刚出现拉力时,sin gL μθD .物块能在转台上随转台一起转动的最大角速度为cos gL θ【答案】CD 【解析】 【详解】A .当转台达到一定转速后,物块竖直方向受到绳的拉力,重力和支持力,故A 错误;B .转台加速转动的过程中,物块做非匀速圆周运动,故摩擦力不指向圆心,B 错误;C .当绳中刚好要出现拉力时,2sin μmg m ωL θ=故sin gL μωθ=,C 正确;D .当物块和转台之间摩擦力为0时,物块开始离开转台,故2tan sin mg m L θωθ=角速度为cos gL θ,故D 正确;故选CD 。

5.一小球质量为m ,用长为L 的悬绳(不可伸长,质量不计)固定于O 点,在O 点正下方2L处钉有一颗钉子.如图所示,将悬线沿水平方向拉直无初速度释放后,当悬线碰到钉子后的瞬间,则( )A .小球的角速度突然增大B .小球的线速度突然减小到零C .小球的向心加速度突然增大D .小球的向心加速度不变 【答案】AC 【解析】 【分析】 【详解】由于悬线与钉子接触时小球在水平方向上不受力,故小球的线速度不能发生突变,由于做圆周运动的半径变为原来的一半,由v =ωr 知,角速度变为原来的两倍,A 正确,B 错误;由a =2Tπ知,小球的向心加速度变为原来的两倍,C 正确,D 错误.6.如图所示,一个边长满足3:4:5的斜面体沿半径方向固定在一水平转盘上,一木块静止在斜面上,斜面和木块之间的动摩擦系数μ=0.5。

若木块能保持在离转盘中心的水平距离为40cm 处相对转盘不动,g =10m/s 2,则转盘转动角速度ω的可能值为(设最大静摩擦力等于滑动摩擦力)( )A .2rad/sB .3rad/sC .4rad/sD .5rad/s【答案】BCD 【解析】 【分析】 【详解】根据题意可知斜面体的倾角满足3tan 0.54θμ=>= 即重力沿斜面的分力大于滑动摩擦力,所以角速度为0时,木块不能够静止在斜面上。

当转动的角速度较小时,木块所受的摩擦力沿斜面向上,则木块恰好向下滑动时cos sin N f mg θθ+=2sin cos N f mr θθω-=滑动摩擦力满足f N μ=解得522rad/s 11ω=当转动角速度变大,木块恰好向上滑动时cos sin N f mg θθ=+2sin cos N f mr θθω+='滑动摩擦力满足f N μ=解得52rad/s ω'=所以圆盘转动的角速度满足0522rad/s 2rad/s 52rad/s 7rad/s 11ω≈≤≤≈ A 错误,BCD 正确。

故选BCD 。

7.如图所示,足够大的水平圆台中央固定一光滑竖直细杆,原长为L 的轻质弹簧套在竖直杆上,质量均为m 的光滑小球A 、B 用长为L 的轻杆及光滑铰链相连,小球A 穿过竖直杆置于弹簧上。

让小球B 以不同的角速度ω绕竖直杆匀速转动,当转动的角速度为ω0时,小球B 刚好离开台面。

弹簧始终在弹性限度内,劲度系数为k ,重力加速度为g ,则A .小球均静止时,弹簧的长度为L -mgkB .角速度ω=ω0时,小球A 对弹簧的压力为mgC .角速度ω02kgkL mg-D .角速度从ω0继续增大的过程中,小球A 对弹簧的压力不变 【答案】ACD 【解析】 【详解】A .若两球静止时,均受力平衡,对B 球分析可知杆的弹力为零,B N mg =;设弹簧的压缩量为x ,再对A 球分析可得:1mg kx =,故弹簧的长度为:11mgL L x L k=-=-, 故A 项正确;BC .当转动的角速度为ω0时,小球B 刚好离开台面,即0BN '=,设杆与转盘的夹角为θ,由牛顿第二定律可知:20cos tan mg m L ωθθ=⋅⋅ sin F mg θ⋅=杆而对A 球依然处于平衡,有:2sin k F mg F kx θ+==杆而由几何关系:1sin L x Lθ-=联立四式解得:2k F mg =,02kgkL mgω=-则弹簧对A 球的弹力为2mg ,由牛顿第三定律可知A 球队弹簧的压力为2mg ,故B 错误,C 正确;D .当角速度从ω0继续增大,B 球将飘起来,杆与水平方向的夹角θ变小,对A 与B 的系统,在竖直方向始终处于平衡,有:2k F mg mg mg =+=则弹簧对A 球的弹力是2mg ,由牛顿第三定律可知A 球队弹簧的压力依然为2mg ,故D 正确; 故选ACD 。

8.如图,在竖直平面内固定半径为r 的光滑半圆轨道,小球以水平速度v 0从轨道外侧面的A 点出发沿圆轨道运动,至B 点时脱离轨道,最终落在水平面上的C 点,不计空气阻力、下列说法正确的是( )A .从A 到B 过程,小球沿圆切线方向加速度逐渐增大 B .从A 到B 过程,小球的向心力逐渐增大C .从B 到C 过程,小球做变加速曲线运动D .若从A 点静止下滑,小球能沿圆轨道滑到地面 【答案】AB 【解析】 【分析】 【详解】设重力mg 与半径的夹角为θ,对圆弧上的小球受力分析,如图所示A .建立沿径向和切向的直角坐标系,沿切向由牛顿第二定律有sin t mg ma θ=因夹角θ逐渐增大,sin θ增大,则小球沿圆切线方向加速度逐渐增大,故A 正确;B .从A 到B 过程小球加速运动,线速度逐渐增大,由向心力2n v F m r=可知,小球的向心力逐渐增大,故B 正确;C .从B 到C 过程已离开圆弧,在空中只受重力,则加速度恒为g ,做匀变速曲线运动(斜下抛运动),故C 错误;D .若从A 点静止下滑,当下滑到某一位置时斜面的支持力等于零,此时小球会离开圆弧做斜下抛运动而不会沿圆轨道滑到地面,故D 错误。

故选AB 。

9.如图所示,放于竖直面内的光滑金属细圆环半径为R ,质量为m 的带孔小球穿在环上,同时有一长为R 的细绳一端系于球上,另一端系于圆环最低点,绳上的最大拉力为2mg ,当圆环以角速度ω绕竖直直径转动,且细绳伸直时,则ω不可能...为( )A 2gRB .g RC 6g RD 7gR【答案】D 【解析】 【分析】 【详解】因为圆环光滑,所以小球受到重力、环对球的弹力、绳子的拉力等三个力。

相关文档
最新文档