2019年九年级数学上册21.2解一元二次方程21.2.1第1课时直接开平方法作业新人教版
人教版数学九年级上册21.2.1配方法第1课时直接开平方法教学设计
三、教学重难点和教学设想
(一)教学重难点
1.教学重点:
-直接开平方法的概念及其在一元二次方程中的应用。
-运用直接开平方法解决实际问题,如面积计算、路程求解等。
2.在思维能力方面,九年级学生正处于形象思维向抽象思维过渡的阶段,对于直接开平方法的理解和运用需要借助具体实例,逐步引导他们从形象思维向抽象思维转变。
3.在学习方法方面,学生已经具备了一定的自主学习能力,但仍需教师在教学过程中给予适当的引导和指导,帮助他们总结解题规律,提高解题效率。
4.在情感态度方面,部分学生对数学学习存在恐惧心理,对难度较大的题目容易产生畏难情绪。因此,在教学过程中,教师应关注学生的情感需求,鼓励他们克服困难,增强自信心。
1.基础巩固题:完成课本第21.2.1节后的练习题,包括直接开平方法的应用和简单实际问题的求解。通过这些题目,让学生熟悉直接开平方法的解题步骤,提高解题技能。
-题目1:求解方程x^2 - 10x + 25 = 0,并解释解题过程。
-题目2:计算一个边长为3cm的正方形的对角线长度。
2.提高拓展题:设计一些具有一定难度的题目,旨在培养学生对直接开平方法的理解深度和灵活运用能力。
1.教学内容设计:
-设计不同难度的练习题,让学生独立完成。
-练习题涵盖直接开平方法的各个知识点,以便学生巩固所学。
2.教学过程:
-学生独立完成练习题,教师巡回指导。
-对学生完成情况进行评价,给予鼓励和指导。
-针对共性问题,进行集体讲解和讨论。
(五)总结归纳
九年级数学上册-解一元二次方程21.2.1配方法第1课时直接开平方法教案新版新人教版
21.2 解一元二次方程21.2.1 配方法第1课时直接开平方法理解一元二次方程“降次”——转化的数学思想,并能应用它解决一些具体问题.提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程.重点运用开平方法解形如(x+m)2=n(n≥0)的方程,领会降次——转化的数学思想.难点通过根据平方根的意义解形如x2=n的方程,将知识迁移到根据平方根的意义解形如(x +m)2=n(n≥0)的方程.一、复习引入学生活动:请同学们完成下列各题.问题1:填空(1)x2-8x+________=(x-________)2;(2)9x2+12x+________=(3x+________)2;(3)x2+px+________=(x+________)2.解:根据完全平方公式可得:(1)16 4;(2)4 2;(3)(p2)2p2.问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程与一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?二、探索新知上面我们已经讲了x2=9,根据平方根的意义,直接开平方得x=±3,如果x换元为2t+1,即(2t+1)2=9,能否也用直接开平方的方法求解呢?(学生分组讨论)老师点评:回答是肯定的,把2t+1变为上面的x,那么2t+1=±3即2t+1=3,2t+1=-3方程的两根为t1=1,t2=-2例1 解方程:(1)x2+4x+4=1 (2)x2+6x+9=2分析:(1)x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.(2)由已知,得:(x+3)2=2直接开平方,得:x+3=± 2即x+3=2,x+3=- 2所以,方程的两根x1=-3+2,x2=-3- 2解:略.例2 市政府计划2年内将人均住房面积由现在的10 m2提高到14.4 m2,求每年人均住房面积增长率.分析:设每年人均住房面积增长率为x,一年后人均住房面积就应该是10+10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2解:设每年人均住房面积增长率为x,则:10(1+x)2=14.4(1+x)2=1.44直接开平方,得1+x=±1.2即1+x=1.2,1+x=-1.2所以,方程的两根是x1=0.2=20%,x2=-2.2因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去.所以,每年人均住房面积增长率应为20%.(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么?共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”.三、巩固练习教材第6页练习.四、课堂小结本节课应掌握:由应用直接开平方法解形如x2=p(p≥0)的方程,那么x=±p转化为应用直接开平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,达到降次转化之目的.若p<0则方程无解.五、作业布置教材第16页复习巩固1.。
九年级上册数学21.2 解一元二次方程 直接开平方法
21.2.1 配方法 第1课时 直接开平方法1.学会根据平方根的意义把一个一元二次方程“降次”,转化为两个一元一次方程.2.运用开平方法解形如(x +m )2=n 的方程.3.体验类比、转化、降次的数学思想方法,增强学习数学的兴趣.一、情境导入一个正方形花坛的面积为10,若设其边长为x ,根据正方形的面积可列出怎样的方程?用怎样的方法可以求出所列方程的解呢?二、合作探究探究点:直接开平方法 【类型一】用直接开平方法解一元二次方程运用开平方法解下列方程: (1)4x 2=9;(2)(x +3)2-2=0.解析:(1)先把方程化为x 2=a (a ≥0)的形式;(2)原方程可变形为(x +3)2=2,则x +3是2的平方根,从而可以运用开平方法求解.解:(1)由4x 2=9,得x 2=94,两边直接开平方,得x =±32,∴原方程的解是x 1=32,x 2=-32.(2)移项,得(x +3)2=2.两边直接开平方,得x +3=± 2.∴x +3=2或x +3=- 2.∴原方程的解是x 1=2-3,x 2=-2-3.方法总结:由上面的解法可以看出,一元二次方程是通过降次,把一元二次方程转化为一元一次方程求解的,这是解一元二次方程的基本思想;一般地,对于形如x 2=a (a ≥0)的方程,根据平方根的定义,可解得x 1=a ,x 2=-a .【类型二】直接开平方法的应用次方程ax 2=b (ab >0)的两个根分别是m +1与2m -4,则ba=________.解析:∵ax 2=b ,∴x =±ba,∴方程的两个根互为相反数,∴m +1+2m -4=0,解得m =1,∴一元二次方程ax 2=b (ab >0)的两个根分别是2与-2,∴b a =2,∴b a=4,故答案为4.【类型三】直接开平方法与方程的解的综合应用若一元二次方程(a +2)x 2-ax +a 2-4=0的一个根为0,则a =________.解析:∵一元二次方程(a +2)x 2-ax +a 2-4=0的一个根为0,∴a +2≠0且a 2-4=0,∴a=2.故答案为2.【类型四】直接开平方法的实际应用有一个边长为11cm的正方形和一个长为13cm,宽为8cm的矩形,要作一个面积为这两个图形的面积之和的正方形,边长应为多少厘米?分析:要求新正方形的边长,可先求出原正方形和矩形的面积之和,然后再用开平方计算.解:设新正方形的边长为x cm,根据题意得x2=112+13×8,即x2=225,解得x =±15.因为边长为正,所以x=-15不合题意,舍去,所以只取x=15.答:新正方形的边长应为15cm.方法总结:在解决与平方根有关的实际问题时,除了根据题意解题外,有时还要结合实际,把平方根中不符合实际情况的负值舍去.三、板书设计教学过程中,强调利用开平方法解一元二次方程的本质是求一个数的平方根的过程.同时体会到解一元二次方程过程就是一个“降次”的过程.。
人教版初中数学课标版九年级上册21.2解一元二次方程第1课时直接开平方法
人教版初中数学课标版九年级上册21.2解一元二次方程第1课时直接开平方法教学设计案例21.2 解一元二次方程第1课时直接开平方法一、内容和内容解析(1)内容:会用直接开平方法解形如x2=p或(x+n)2=p(p≥0)的一元二次方程(2)内容解析:一元二次方程是初中数学中最重要的数学模型之一,而一元二次方程的解法更是本章的重点内容。
本节课中,首先通过知识回顾环节的3个小题为本节课的学习做一铺垫。
然后再通过“探究新知”环节中“问题串”建立一个最简单的一元二次方程,并利用平方根的意义,通过直接开平方法得到方程的解;然后将它一般化为x2=p的形式,通过分类讨论得到其解的情况,从而完成解一元二次方程的奠基,并自然地引出“降次”的策略,归纳出形如(x+n)2=p(p≥0)的一元二次方程的解的情况,不仅为后面用配方法解比较复杂的一元二次方程的学习做好铺垫,而且也为我们后续学习二次函数等知识打下坚实的基础。
同时,这节课的内容还突出体现了化归、类比、分类讨论等数学思想方法。
基于以上分析,确定本节课的教学重点是:运用直接开平方法解形如x2=p或(x+n)2=p(p≥0)的一元二次方程,领会降次——转化的数学思想。
二、目标和目标解析1.目标:(1)理解一元二次方程降次的转化思想(2)会利用直接开平方法解形如x2=p或(x+n)2=p(p≥0)的一元二次方程.2.目标解析达成目标的标志是:如果方程能够转化符合为形如x2=p或(x+n)2=p(p≥0)的一元二次方程时,那么就能通过直接开平方法将一元二次方程转化为一次方程求解。
三、教学问题诊断分析在以前的学习中,学生不仅了解了平方根的意义、掌握了完全平方式的结构特征,而且还具备了一些方程的转化能力。
本节课首先复习平方根的相关知识,再从具体的实际问题中列出一元二次方程,并根据平方根的意义直接开平方求解方程,对于方程的解是否符合实际问题,进若x 2=a ,则x 叫做a 的平方根。
人教版数学九年级上册21.2.1.1直接开平方法解方程教案
最后,针对学生在课堂上的反馈,我认识到教学过程中要关注每个学生的个体差异。对于学习有困难的学生,我会在课后给予个别辅导,帮助他们巩固知识点。同时,对于学习较好的学生,我会提供一些拓展性的问题,激发他们的学习兴趣和潜能。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了直接开平方法的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论பைடு நூலகம்深了对直接开平方法的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“直接开平方法在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
其次,关于教学难点,我注意到在讲解直接开平方法时,系数a不为1的情况和负数开平方的问题对学生来说是个挑战。我尝试通过反复强调和举例来帮助学生克服这个难点,但效果并不理想。因此,我决定在接下来的课程中,增加一些针对性的练习和讲解,让学生在实际操作中逐渐掌握这些难点。
此外,课堂上的小组讨论和实践活动对于提高学生的参与度和积极性起到了很好的效果。学生们在讨论中能够主动提出问题,并尝试解决实际问题。但同时,我也发现有些小组在讨论过程中偏离了主题,导致讨论效果不佳。为了改善这一点,我打算在下次课堂上明确讨论的主题和目标,并在讨论过程中给予适当的引导和监督。
21.2.1.1直接开平方解一元二次方程
1.直接开平方法的理论根据是 平方根的定义
2.用直接开平方法可解形如χ2=a(a≥0)或 (χ-a)2=b(b≥0)类的一元二次方程。
3.方程χ2=a(a≥0)的解为:χ= a
方程(χ-a)2=b(b≥0)的解为:χ= a b
x 3.如果x2 64,则 = 8 。
(1). χ2=4
(2). χ2=0 (3). χ2+1=0
对于方程(1),可以这样想:
∵ χ2=4
根据平方根的定义可知:χ是4的( 平方根 ).
∴ χ= 4
即: χ=±2 这时,我们常用χ1、χ2来表示未知数为χ 的一元二次方程的两个根。
∴ 方程 χ2=4的两个根为 χ1=2,χ2=-2.
21.2.1 直接开平方法 解一元二次方程
回顾
1、一元二次方程定义:
等号两边都是整式,只含 有一个未知数(一元),并且未 知数的最高次数是2 (二次)的 方程,叫做一元二次方程。
a x 1.如果 x2 a(a 0) ,则 就叫做 的 平方根 。
2.如果 x2 a(a 0) , 则x = a 。
方程无实数根.
利用平方根的定义直接开平方求一元二
次方程的解的方法叫直接开平方法。
自主学习
第1,2题
对照以上方法,你认为怎样解方程(χ+1)2=4
解:直接开平方,得 x+1=±2
∴ χ1+1=2,χ2+1=-2 ∴ χ1+1=2,χ2+1=-2 ∴ χ1=1,χ2=-3
思考:
如何解以下方程
(1)χ2+6x+9=4 (2) 3(2-χ)2-27=0
如果我们把χ2=4, χ2=0, χ2+1=0变形 为χ2=p呢?
九年级数学上册第二十一章一元二次方程21.2解一元二次方程21.2.1配方法(第一课时直接开平方法)课件人教版
∴ x3 5 或 x3- 5 .
∴ x1= 5-3 ,x2 = - 5-3 .
解一元二次方程的基本思路是:
把一个一元二次方程“ 降次 ”,转化 为两个一元一次方程.
由应用直接开平方法解形如:
x2=p(p≥0),那么x=± p
由应用直接开平方法解形如:
(mx+n)2=p(p≥0),则mx+n=____p_ .
问题:一桶油漆可刷的面积为1500 dm2 , 李林用这桶油漆恰好刷完10个同样的正方体 形状的盒子的全部外表面,你能算出盒子的 棱长吗?
提示
可以根据正方体表面积 S=6a2求解. 同时要注意 所得的结果要符合实际
意义.
解:设正方体的棱长为x dm,则一个正方 体的表面积为__6_x_2_dm2 .根据一桶油漆可 刷面积列出方程 1_0_×_6_x_2_=_1_5_0_0____.
解下列方程:
(1)9x2 5 3;
解:移项,得 9x2 8.
系数化为1,得 x2 8 .
9
直接开平方,得
x
8. 9
x1
22 3
,x2
22 3
.
注意:二次根 式必须化为最 简二次根式。
(2)9x2 5 1.
解:先移项,得 9x2 4. 系数化为1,得 x2 4 0 9
1
x1
, 3
x2
1.
整理,得_x_2_=_2_5 , 根据平方根的意义得x=___±_5__. 即x1=___5___,x2=__-_5___. 因为_棱__长__不_能__为__负__值__,所以正方体的棱长 是_5_d_m__.
数学人教版九年级上册21.2.1直接开平方法解一元二次方程
§22.2.1配方法解一元二次方程(第一课时)
一、教学目标
1.知识与技能
(1)会用开平方法解形如x2=p或(mx+n)2=p(p≥0)的一元二次方程.
(2)能根据具体问题的实际意义检验结果是否合理,并对其进行取舍.
2.过程与方法
通过实例,使学生体会一元二次方程应用价值并意识到解一元二次方程的重要性,理解直接开平方法的数学依据,并能应用直接开平方法.让学生经历由简到繁过程,体现了数学转化思想,培养学生观察、分析、计算等思维能力及应用意识.
3.情感态度与价值观
通过学生对具体问题的思考、讨论、交流,最终得出结论的过程,培养学生的进取精神,让学生养成科学严谨的治学态度和应用所学知识解决问题的习惯.
二、教学重点、难点
1.重点:直接开平方法解一元二次方程的解题步骤.
2.难点与关键:不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.
三、教学过程
四、板书设计
五、教学反思
1.联系实际,注重知识的形成过程
本节课通过学生熟悉的生活背景材料,让学生列方程,然后让学生以小组为单位进行讨论,真正关注实际背景与形成过程,从而归纳得出新知,体现了以学生发展为本的原则.2.真正使学生成为学习的主人
无论是在新知的给出,还是知识点的落实,本节课都采用了交流的形式,留给学生思考的空间,最终引导学生自己归纳、概括.使知识落到实处.真正让学生主动思维,培养学生的数学素养.
整个教学中注意体现以教师为主导,学生为主体,探究为主线.使数学教学成为一种“过程教学”,让学生在数学活动中提升能力,力争取得良好的教学效果.。
人教版数学九年级上册21.2.1《直接开平方法》教学设计
人教版数学九年级上册21.2.1《直接开平方法》教学设计一. 教材分析人教版数学九年级上册21.2.1《直接开平方法》是初中数学的重要内容,主要介绍了实数的开平方运算。
这一节内容是在学生已经掌握了实数、有理数、无理数等相关知识的基础上进行讲解的,旨在让学生掌握开平方运算的方法,进一步理解无理数的概念。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和运算能力,对于实数、有理数、无理数等概念已经有了初步的认识。
但是,学生对于无理数的理解仍然存在一定的困难,尤其是对于无理数的运算,因此,在教学过程中,需要引导学生理解无理数的概念,并通过实例让学生感受无理数的存在。
三. 教学目标1.让学生掌握直接开平方法,能够正确进行开平方运算。
2.引导学生理解无理数的概念,能够正确识别无理数。
3.培养学生的运算能力,提高学生的数学素养。
四. 教学重难点1.重点:直接开平方法,无理数的概念。
2.难点:无理数的识别和运算。
五. 教学方法1.采用问题驱动法,引导学生通过解决问题来掌握开平方运算的方法。
2.采用实例教学法,通过具体的例子让学生理解无理数的概念。
3.采用小组合作学习法,让学生在小组内进行讨论和交流,提高学生的合作能力。
六. 教学准备1.准备相关的教学PPT,包括开平方运算的步骤和实例。
2.准备一些有关无理数的实际问题,用于课堂讨论。
3.准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用PPT展示一些实际问题,如测量物体长度、计算物体面积等,引导学生思考这些问题与开平方运算的关系。
2.呈现(15分钟)介绍直接开平方法的具体步骤,并通过PPT展示相关的实例,让学生理解开平方运算的方法。
3.操练(15分钟)让学生独立完成一些开平方运算的练习题,教师巡回指导,解答学生的问题。
4.巩固(10分钟)让学生分组讨论,总结开平方运算的规律和方法,并分享各自的经验和心得。
5.拓展(10分钟)介绍无理数的概念,并通过实例让学生识别无理数。
九年级数学上册21一元二次方程21.2解一元二次方程21.2.1配方法第一课时用直接开平方解一元二次
1.方程x2-64=0解是( D)
A.x=8
B.x=-8
C.x=4
D.x1=8 ,x2=-8
2.方程3x2+9=0根为( D)
A.3
B.-3
C.±3
D.无实数根
3.(滨州)以下方程中,一定有实数解是( B)
A.x2+1=0
B.(2x+1)2=0
C.(2x+1)2+3=0
D.( -a)2=a
4.方程(x+1)2=9解是( C)
∵一元二次方程(x-3)2=1两个解恰好分别是等腰△ABC底边长和腰长, ∴①当底边长和腰长分别为4和2时,4=2+2,此时不能组成三角形; ②当底边长和腰长分别是2和4时,4+4>2,此时能组成三角形, ∴△ABC周长为:2+4+4=10.
第8页
12.当m为何值时,方程
是关于x一元二次方程?
第9页
13.已知:x2+4x+y2-6y+13=0,求xx- 2+2yy2的值. 【解】 已知:x2+4x+y2-6y+13=0, 变形得:(x2+4x+4)+(y2-6y+9)=0, 即(x+2)2+(y-3)2=0, 所以x=-2,y=3.
第10页
21.2.1 配方法
第1课时 用直接开平方法解一元二次方程
1.利用直接开平方法解一元二次方程,其依据是__平__方__根__意义,即:假 如x2=p(p>0),则x1=____,x2=_____.
2.形如(ax+m)2=n(n>0)一元二次方程,也可利用直接开平方法求
解,即:先利用平方根意义把原方程转化为两个_____一__元__一__次__方ax程+m=
A.x=1或x=-1
B.x=3或Байду номын сангаас=-3
C.x1=2或x2=-4
21.2.1第1课时用直接开平方法解一元二次方程课件
第1课时 用直接开平方法解 一元二次方程
一、教学目标
1.会利用开平方法解形如x2=p(p≥0)的方程. 2.初步了解形如(x+n)2=p(p≥0)方程的解法. 3.能根据具体问题的实际意义检验结果的合理性.
二、教学重难点
重点 运用直接开平方法解形如(mx+n)2=p(p≥0)的一元二次 方程.
∴原方程的根为 x1=1+2 5,x2=1-2 5;
(2)原方程可化为(y-2)2=8,直接开平方得 y-2=±2 2, ∴原方程的根为 y1=2+2 2,y2=2-2 2; (3)原方程可化为 4(3x-1)2=9(3x+1)2,两边开平方得 2(3x -1)=±3(3x+1), ∴2(3x-1)=3(3x+1)或 2(3x-1)=-3(3x+1),
∴x1=-53,x2=-115.
例3 已知方程(x-3)2=k2+5的一个根是x=6,求k的 值和另一个根. 解:∵方程(x-3)2=k2+5的一个根是x=6,
∴(6-3)2=k2+5,解得k=±2, ∴原方程为(x-3)2=9, ∴另一个根为x=0.
练习
1.教材P6 练习. 2.若x2-2xy+y2=4,则x-y的值为( C )
提出问题: (1)一个正方体有几个面?若一个正方体的棱长为x dm ,则这个正方体的表面积是多少? (2)本题中的等量关系是什么?请概括该等量关系,列 出方程; (3)你能根据平方根的意义解方程 x2=25吗?本题中负 值为什么要舍去?
探究
对照上面解方Biblioteka (1)的过程,你认为应怎样解方程(x+3)²=5?
(1)一元二次方程与一元一次方程有什么不同?二次是 如何转化为一次的?
(2)请谈谈如何降次.