七年级数学 平行线的性质与判定的证明 练习题及答案
(完整版)平行线及其判定与性质练习题
平行线及其判定1、基础知识(1)在同一平面内,______的两条直线叫做平行线.若直线a与直线b 平行,则记作______.(2)在同一平面内,两条直线的位置关系只有______、______.(3)平行公理是:.(4)平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a、b、c,若a∥b,b∥c,则______.(5)两条直线平行的条件(除平行线定义和平行公理推论外):①两条直线被第三条直线所截,如果______,那么这两条直线平行,这个判定方法1可简述为:______,两直线平行.②两条直线被第三条直线所截,如果__ _,那么,这个判定方法2可简述为: ______,______.③两条直线被第三条直线所截,如果_ _____那么______,这个判定方法3可简述为:2、已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么_____.(_______,_______)(2)如果∠2=∠5,那么________。
(______,________)(3)如果∠2+∠1=180°,那么_____。
(________,______)(4)如果∠5=∠3,那么_______。
(_______,________)(5)如果∠4+∠6=180°,那么______.(_______,_____)(6)如果∠6=∠3,那么________。
(________,_________)3、已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______。
(______,______)(2)∵∠1=∠D(已知),∴______∥______.(______,______)(3)∵∠2=∠A(已知),∴______∥______.(______,______)(4)∵∠B+∠BCE=180°(已知),∴______∥______。
平行线的判定和性质证明题基础+提高(含答案)
∴∠APC=∠APE+∠CPE=50°+60°=110°
(1) ;过点P作 ,
又因为 ,所以 ,
则 , ,
所以 ;
(2)情况1:如图所示,当点P在B、O两点之间时,
∵AB∥CD
∴PM∥CD
∴∠2+∠PFD=180°
∵∠PFD=130°
∴∠2=180°﹣130°=50°
∴∠1+∠2=40°+50°=90°
即∠EPF=90°
[探究]如图②AB∥CD,∠AEP=50°,∠PFC=120°,求∠EPF的度数.
[应用]如图③所示,在[探究]的条件下,∠PEA的平分线和∠PFC的平分线交于点G,则∠G的度数是°
(3)如图3,若MR平分∠BMN,则MR与NP有怎样的位置关系?请说明理由.
参考答案(基础)
1. ∠ABC;角平分线的定义; ∠BCD;∠ABC+∠BCD;180°;两直线平行,同旁内角互补.
2. ,同旁内角互补,两直线平行,∠1,两直线平行,内错角相等,∠CBG,同位角相等,两直线平行。
3.证明:∵∠E=∠F∴AE∥CF∴∠A=∠ABF∵∠A=∠C∴∠ABF=∠C∴AB∥CD.
∴∠EPF=∠MPF﹣∠MPE=120°﹣50°=70°
如图③所示,
∵EG是∠PEA的平分线,FG是∠PFC的平分线
∴∠AEG= AEP=25°,∠GFC= PFC=60°
过点G作GM∥AB∴∠MGE=∠AEG=25°∵AB∥CD(已知)∴GM∥CD∴∠GFC=∠MGF=60°∴∠G=∠MGF﹣∠MGE=60°﹣25°=35°
2022—2023学年人教版数学七年级下册专题训练二——平行线的性质和判定的应用
专题训练二平行线的性质和判定的应用1.如图,∠MCN=45°,且AB∥CD,AC∥BD,BE⊥CN于点E.求∠DBE的度数.2.已知:如图,AD⊥BC,FG⊥BC,垂足分别为D,G,且∠ADE=∠CFG.求证:DE∥AC.3.【2022·南宁三中模拟】如图,AE∥CF,∠A=∠C.(1)若∠1=35°,求∠2的度数;(2)判断BC与AD的位置关系,并说明理由;(3)若DA平分∠BDF,求证:BC平分∠DBE.4.已知AB∥CD,点E为AB、CD之外任意一点.(1)如图①,探究∠BED与∠B、∠D的数量关系,并说明理由;(2)如图②,探究∠CDE与∠B、∠E的数量关系,并说明理由5.如图,已知l1∥l2,直线l3和直线l1、l2分别交于点C和点D,P为直线l3上一点,A、B分别是直线l1、l2上的定点.(1)若P点在线段CD(C、D两点除外)上运动时,问∠1、∠2、∠3之间的关系是什么?这种关系是否发生变化?(2)若P点在线段CD之外时,∠1、∠2、∠3之间的关系又怎样?说明理由.6.如图①所示,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.小明的思路是:过点P作PE∥AB,通过平行线性质来求∠APC.(1)按小明的思路,易求得∠APC的度数为;(2)如图②所示,AB∥CD,点P在射线OM上运动,记作∠PAB=∠α,∠DCP=∠β.当点P在B、D两点之间运动时,∠APC与∠α、∠β之间有何数量关系?请说明理由;(3)在(2)的条件下,如果点P在B、D两点外侧运动时(点P与点O、B、D三点不重合),请你直接写出∠APC、∠α、∠β间的数量关系.7.如图,已知AB∥CD,点E是直线AB,CD之间的任意一点,锐角∠DCE和钝角∠ABE的平分线所在直线相交于点F,CD与FB交于点N.(1)当∠ECD=60°和∠ABE=100°时,求∠CFN的度数;(2)若BF∥CE,∠F=α,求∠ABE的度数(用含α的式子表示).参考答案1.如图,∠MCN =45°,且AB ∥CD ,AC ∥BD ,BE ⊥CN 于点E .求∠DBE 的度数.解:∵AB ∥CD ,∴∠MAB =∠MCN ,∠ABE =∠BEN .∵∠MCN =45°,BE ⊥CN ,∴∠MAB =45°,∠ABE =90°.∵AC ∥BD ,∴∠ABD =∠MAB .∴∠ABD =45°.∴∠DBE =∠ABE -∠ABD =45°.2.已知:如图,AD ⊥BC ,FG ⊥BC ,垂足分别为D ,G ,且∠ADE =∠CFG .求证:DE ∥AC .证明:∵AD ⊥BC ,FG ⊥BC ,∴∠C +∠CFG =90°,∠BDE +∠ADE =90°.∵∠ADE =∠CFG ,∴∠BDE =∠C .∴DE ∥AC .3.【2022·南宁三中模拟】如图,AE ∥CF ,∠A =∠C .(1)若∠1=35°,求∠2的度数;解:∵AE ∥CF ,∴∠CDB =∠1=35°.∴∠2=180°-∠CDB =145°.(2)判断BC 与AD 的位置关系,并说明理由;解:BC ∥AD .理由如下:∵AE ∥CF ,∴∠A +∠ADC =180°.又∵∠A =∠C ,∴∠C +∠ADC =180°.∴BC ∥AD .(3)若DA 平分∠BDF ,求证:BC 平分∠DBE .证明:∵AE ∥CF ,∴∠BDF =∠DBE .∵AD ∥BC ,∴∠ADB =∠DBC .∵DA 平分∠BDF ,∴∠ADB =12∠BDF . ∴∠DBC =12∠DBE .∴BC平分∠DBE.【点方法】几何推理的方法主要有两种:一种是综合法,即由“因”导“果”,由已知条件逐步推导出结论;另一种是分析法,即执“果”索“因”,根据要推出的结论,必须找到什么样的条件,一步一步反向找到条件.解答问题时一般用综合法,分析问题时一般用分析法,有时也可以两种方法综合应用.4.已知AB∥CD,点E为AB、CD之外任意一点.(1)如图①,探究∠BED与∠B、∠D的数量关系,并说明理由;(2)如图②,探究∠CDE与∠B、∠E的数量关系,并说明理由解:(1)∠B=∠BDE+∠D.理由如下:过点E作EF∥AB.又∵AB∥CD,∴EF∥AB∥CD.∴∠BEF=∠B,∠D=∠DEF.∵∠BEF=∠BED+∠DEF,∴∠B=∠BED+∠D;(2)∠CDE=∠B+∠BED.理由如下:过点E作EF∥AB. 又∵AB∥CD,∴EF∥AB∥CD.∴∠B+∠BEF =180°,∠CDE+∠DEF=180°.又∵∠DEF=∠BEF-∠BED,∴∠CDE+∠BEF-∠BED=∠B+∠BEF,即∠CDE=∠B+∠BED.5.如图,已知l1∥l2,直线l3和直线l1、l2分别交于点C和点D,P为直线l3上一点,A、B分别是直线l1、l2上的定点.(1)若P点在线段CD(C、D两点除外)上运动时,问∠1、∠2、∠3之间的关系是什么?这种关系是否发生变化?(2)若P点在线段CD之外时,∠1、∠2、∠3之间的关系又怎样?说明理由.解:(1)∠2=∠1+∠3.不变化;(2)当点P在线段DC的延长线上时,∠2=∠3-∠1.理由:过点P作PF∥l1,∠FPA=∠1.∵l1∥l2,∴PF∥l2,∴∠FPB=∠3,∴∠2=∠FPB-∠FPA=∠3-∠1;同理,当点P在线段CD的延长线上时,∠2=∠1-∠3.6.如图①所示,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.小明的思路是:过点P作PE∥AB,通过平行线性质来求∠APC.(1)按小明的思路,易求得∠APC的度数为;(2)如图②所示,AB∥CD,点P在射线OM上运动,记作∠PAB=∠α,∠DCP=∠β.当点P在B、D两点之间运动时,∠APC与∠α、∠β之间有何数量关系?请说明理由;(3)在(2)的条件下,如果点P 在B 、D 两点外侧运动时(点P 与点O 、B 、D 三点不重合),请你直接写出∠APC 、∠α、∠β间的数量关系.解:(1)110°;(2)∠APC =∠α+∠β.理由如下:过P 作PE ∥AB 交AC 于E ,∵AB ∥CD ,∴AB ∥PE ∥CD ,∴∠α=∠APE ,∠β=∠CPE.∴∠APC =∠APE +∠CPE =∠α+∠β;(3)当P 在BD 延长线上时,∠CPA =∠α-∠β.当P 在DB 延长线上时,∠CPA =∠β-∠α.7.如图,已知AB ∥CD ,点E 是直线AB ,CD 之间的任意一点,锐角∠DCE 和钝角∠ABE 的平分线所在直线相交于点F ,CD 与FB 交于点N .(1)当∠ECD =60°和∠ABE =100°时,求∠CFN 的度数;解:(1)如图,过点F 作FH ∥CD .∵AB ∥CD ,∴FH ∥AB .∵CM 平分∠ECD ,∠ECD =60°,∴∠ECM =∠DCM =12∠ECD =30°. ∵BN 平分∠ABE ,∠ABE =100°,∴∠ABN =∠EBN =12∠ABE =50°. ∵FH ∥AB ,FH ∥CD ,∴∠HFB =∠ABN =50°,∠HFC =∠DCM =30°.∴∠CFN =∠HFB -∠HFC =20°.(2)若BF ∥CE ,∠F =α,求∠ABE 的度数(用含α的式子表示).∵BF ∥CE ,∴∠ECM =∠BFM =α.∵CM 平分∠ECD ,∴∠DCE =2∠ECM =2α.∵BF ∥CE ,∴∠BNC =∠ECD =2α.∵AB ∥CD ,∴∠ABN =∠BNC =2α.∵BN 平分∠ABE ,∴∠ABE =2∠ABN =4α.。
平行线的性质及判定典型例题
1.如图,CD平分∠ECF,∠B=∠ACB,求证:AB∥CE.证明:∵CD平分∠ECF,∴∠ECD=∠DCF,∵∠ACB=∠DCF,∴∠ECD=∠ACB,又∵∠B=∠ACB,∴∠B=∠ECD,∴AB∥CE.2.如图,已知AC⊥AE,BD⊥BF,∠1=15°,∠2=15°,AE与BF平行吗?为什么?解:AE∥BF.理由如下:因为AC⊥AE,BD⊥BF(已知),所以∠EAC=∠FBD=90°(垂直的定义).因为∠1=∠2(已知),所以∠EAC+∠1=∠FBD+∠2(等式的性质),即∠EAB=∠FBG,所以AE∥BF(同位角相等,两直线平行).3.如图,已知∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,F是BC延长线上一点,且∠DBC=∠F,求证:EC∥DF.证明:∵∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∴∠DBC=∠ABC,∠ECB=∠ACB,∴∠DBC=∠ECB.∵∠DBC=∠F,∴∠ECB=∠F,∴EC∥DF.4.如图,∠ABC=∠ADC,BF,DE分别是∠ABC,∠ADC的角平分线,∠1=∠2,求证:DC∥AB.证明:∵DE、BF分别是∠ABC,∠ADC的角平分线,∴∠3=∠ADC,∠2=∠ABC,∵∠ABC=∠ADC,∴∠3=∠2,∵∠1=∠2,∴∠1=∠3,∴DC∥AB.5.如图所示,∠B=25°,∠D=42°,∠BCD=67°,试判断AB和ED的位置关系,并说明理由.解:AB∥ED,理由:如图,过C作CF∥AB,∵∠B=25°,∴∠BCF=∠B=25°,∴∠DCF=∠BCD﹣∠BCF=42°,又∵∠D=42°,∴∠DCF=∠D,∴CF∥ED,∴AB∥ED.6.如图,DE平分∠ADC,CE平分∠BCD,且∠1+∠2=90°.试判断AD与BC的位置关系,并说明理由.解:BC∥AD.理由如下:∵DE平分∠ADC,CE平分∠BCD,∴∠ADC=2∠1,∠BCD=2∠2,∵∠1+∠2=90°,∴∠ADC+∠BCD=2(∠1+∠2)=180°,∴AD∥BC.7.已知:如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2.求证:EF∥CD.证明:∵DG⊥BC,AC⊥BC,∴∠DGB=∠ACB=90°(垂直定义),∴DG∥AC(同位角相等,两直线平行),∴∠2=∠ACD(两直线平行,错角相等),∵∠1=∠2,∴∠1=∠DCA,∴EF∥CD(同位角相等,两直线平行).8.将一副三角板中的两块直角三角板的直角顶点C按如图方式叠放在一起,友情提示:∠A=60°,∠D=30°,∠E=∠B=45°.(1)①若∠DCB=45°,则∠ACB的度数为135°.②若∠ACB=140°,则∠DCE的度数为40°.(2)由(1)猜想∠ACB与∠DCE的数量关系,并说明理由.(3)当∠ACE<90°且点E在直线AC的上方时,当这两块三角尺有一组边互相平行时,请直接写出∠ACE角度所有可能的值(不必说明理由).解:(1)①∵∠DCE=45°,∠ACD=90°∴∠ACE=45°∵∠BCE=90°∴∠ACB=90°+45°=135°故答案为:135°;②∵∠ACB=140°,∠ECB=90°∴∠ACE=140°﹣90°=50°∴∠DCE=90°﹣∠ACE=90°﹣50°=40°故答案为:40°;(2)猜想:∠ACB+∠DCE=180°理由如下:∵∠ACE=90°﹣∠DCE又∵∠ACB=∠ACE+90°∴∠ACB=90°﹣∠DCE+90°=180°﹣∠DCE即∠ACB+∠DCE=180°;(3)30°、45°.理由:当CB∥AD时,∠ACE=30°;当EB∥AC时,∠ACE=45°.9.已知:DE⊥AO于E,BO⊥AO,∠CFB=∠EDO,证明:CF∥DO.证明:∵DE⊥AO,BO⊥AO,∴∠AED=∠AOB=90°,∴DE∥BO(同位角相等,两条直线平行),∴∠EDO=∠BOD(两直线平行,错角相等),∵∠EDO=∠CFB,∴∠BOD=∠CFB,∴CF∥DO(同位角相等,两条直线平行).10.如图,已知∠A=∠C,∠E=∠F,试说明:AD∥BC.证明:∵∠E=∠F,∴AE∥CF,∴∠A=∠ADF,∵∠A=∠C,∴∠ADF=∠C,∴AD∥BC.11.已知:如图,EG∥FH,∠1=∠2.求证:∠BEF+∠DFE=180°.解:∵EG∥HF∴∠OEG=∠OFH,∵∠1=∠2∴∠AEF=∠DFE∴AB∥CD,∴∠BEF+∠DFE=180°.12.如图,AB∥CD,∠B=70°,∠BCE=20°,∠CEF=130°,请判断AB与EF的位置关系,并说明理由.解:AB∥EF,理由如下:∵AB∥CD,∴∠B=∠BCD,(两直线平行,错角相等)∵∠B=70°,∴∠BCD=70°,(等量代换)∵∠BCE=20°,∴∠ECD=50°,∵CEF=130°,∴∠E+∠DCE=180°,∴EF∥CD,(同旁角互补,两直线平行)∴AB∥EF.(平行于同一直线的两条直线互相平行)13.如图,AD∥BC,∠DAC=120°,∠ACF=20°,∠EFC=140°.求证:EF∥AD.证明:∵AD∥BC,∴∠DAC+∠ACB=180°,∵∠DAC=120°,∴∠ACB=60°,又∵∠ACF=20°,∴∠BCF=∠ACB﹣∠ACF=40°,又∵∠EFC=140°,∴∠BCF+∠EFC=180°,∴EF∥BC,∵AD∥BC,∴EF∥AD.14.完成下列推理过程:已知:如图,∠1+∠2=180°,∠3=∠B求证:∠EDG+∠DGC=180°证明:∵∠1+∠2=180°(已知)∠1+∠DFE=180°(邻补角定义)∴∠2=∠DFE(同角的补角相等)∴EF∥AB(错角相等,两直线平行)∴∠3=∠ADE(两直线平行,错角相等)又∵∠3=∠B(已知)∴∠B=∠ADE(等量代换)∴DE∥BC(同位角相等,两直线平行)∴∠EDG+∠DGC=180°(两直线平行,同旁角互补)15.已知:如图,BE∥GF,∠1=∠3,∠DBC=70°,求∠EDB的大小.阅读下面的解答过程,并填空(理由或数学式)解:∵BE∥GF(已知)∴∠2=∠3(两直线平行同位角相等)∵∠1=∠3(已知)∴∠1=(∠2 )(等量代换)∴DE∥(BC)(错角相等两直线平行)∴∠EDB+∠DBC=180°(两直线平行同旁角互补)∴∠EDB=180°﹣∠DBC(等式性质)∵∠DBC=(70°)(已知)∴∠EDB=180°﹣70°=110°16.如图,已知:E、F分别是AB和CD上的点,DE、AF分别交BC于点G、H,AB∥CD,∠A=∠D,试说明:(1)AF∥ED;(2)∠BED=∠A;(3)∠1=∠2(1)证明:∵AB∥CD,∴∠A=∠AFC,∵∠A=∠D,∴∠AFC=∠D,∴AF∥ED;(2)证明:∵AF∥ED,∴∠BED=∠A;(3)证明:∵AF∥ED,∴∠1=∠CGD,又∵∠2=∠CGD,∴∠1=∠2.17.阅读理解,补全证明过程及推理依据.已知:如图,点E在直线DF上,点B在直线AC上,∠1=∠2,∠3=∠4.求证∠A=∠F证明:∵∠1=∠2(已知)∠2=∠DGF(对顶角相等)∴∠1=∠DGF(等量代换)∴BD∥CE(同位角相等,两直线平行)∴∠3+∠C=180°(两直线平行,同旁角互补)又∵∠3=∠4(已知)∴∠4+∠C=180°(等量代换)∴AC∥DF(同旁角互补,两直线平行)∴∠A=∠F(两直线平行,错角相等)18.如图,∠α和∠β的度数满足方程组,且CD∥EF,AC⊥AE.(1)求∠α和∠β的度数.(2)求∠C的度数.解:(1)解方程组,得.(2)∵∠α+∠β=55°+125°=180°,∴AB∥CD,∴∠C+∠CAB=180°,∵AC⊥AE,∴∠CAE=90°,∴∠C=180°﹣90°﹣55°=35°.19.如图,直线a∥b,∠1=45°,∠2=30°,求∠P的度数.解:过P作PM∥直线a,∵直线a∥b,∴直线a∥b∥PM,∵∠1=45°,∠2=30°,∴∠EPM=∠2=30°,∠FPM=∠1=45°,∴∠EPF=∠EPM+∠FPM=30°+45°=75°,20.如图,AB∥CD,∠A=60°,∠C=∠E,求∠E.解:∵AB∥CD,∠A=60°,∴∠DOE=∠A=60°,又∵∠C=∠E,∠DOE=∠C+∠E,∴∠E=∠DOE=30°.21.如图,已知∠1+∠2=180°,∠B=∠3,∠BAC与∠DCA相等吗?为什么?解:∠BAC=∠DCA,理由:∵∠CFE=∠2,∠2+∠1=180°,∴∠CFE+∠1=180°,∴DE∥BC,∴∠AED=∠B,∵∠B=∠3,∴∠3=∠AEF,∴AB∥CD,∴∠BAC=∠DCA.22.如图,已知EF⊥BC,∠1=∠C,∠2+∠3=180°.试说明直线AD与BC垂直.(请在下面的解答过程的空格填空或在括号填写理由).理由:∵∠1=∠C,(已知)∴GD∥AC,(同位角相等,两直线平行)∴∠2=∠DAC.(两直线平行,错角相等)又∵∠2+∠3=180°,(已知)∴∠3+∠DAC=180°.(等量代换)∴AD∥EF,(同旁角互补,两直线平行)∴∠ADC=∠EFC.(两直线平行,同位角相等)∵EF⊥BC,(已知)∴∠EFC=90°,∴∠ADC=90°,∴AD⊥BC.23.如图1,BC⊥AF于点C,∠A+∠1=90°.(1)求证:AB∥DE;(2)如图2,点P从点A出发,沿线段AF运动到点F停止,连接PB,PE.则∠ABP,∠DEP,∠BPE三个角之间具有怎样的数量关系(不考虑点P与点A,D,C重合的情况)?并说明理由.解:(1)如图1,∵BC⊥AF于点C,∴∠A+∠B=90°,又∵∠A+∠1=90°,∴∠B=∠1,∴AB∥DE.(2)如图2,当点P在A,D之间时,过P作PG∥AB,∵AB∥DE,∴PG∥DE,∴∠ABP=∠GPB,∠DEP=∠GPE,∴∠BPE=∠BPG+∠EPG=∠ABP+∠DEP;如图所示,当点P在C,D之间时,过P作PG∥AB,∵AB∥DE,∴PG∥DE,∴∠ABP=∠GPB,∠DEP=∠GPE,∴∠BPE=∠BPG﹣∠EPG=∠ABP﹣∠DEP;如图所示,当点P在C,F之间时,过P作PG∥AB,∵AB∥DE,∴PG∥DE,∴∠ABP=∠GPB,∠DEP=∠GPE,∴∠BPE=∠EPG﹣∠BPG=∠DEP﹣∠ABP.24.已知:如图,FE∥OC,AC和BD相交于点O,E是CD上一点,F是OD上一点,且∠1=∠A.(1)求证:AB∥DC;(2)若∠B=30°,∠1=65°,求∠OFE的度数.(1)证明:∵FE∥OC,∴∠1=∠C,∵∠1=∠A,∴∠A=∠C,∴AB∥DC;(2)解:∵AB∥DC,∴∠D=∠B,∵∠B=30°∴∠D=30°,∵∠OFE是△DEF的外角,∴∠OFE=∠D+∠1,∵∠1=65°,∴∠OFE=30°+65°=95°.25.(2018秋•牡丹区期末)如图,AB∥DG,∠1+∠2=180°,(1)求证:AD∥EF;(2)若DG是∠ADC的平分线,∠2=150°,求∠B的度数.证明:(1)∵AB∥DG,∴∠BAD=∠1,∵∠1+∠2=180°,∴∠2+∠BAD=180°,∴AD∥EF;(2)∵∠1+∠2=180°,∠2=150°,∴∠1=30°,∵DG是∠ADC的平分线,∴∠GDC=∠1=30°,∵AB∥DG,∴∠B=∠GDC=30°.26.如图,AD⊥BC于点D,EG⊥BC于点G,∠E=∠3.请问:AD平分∠BAC吗?若平分,请说明理由.平分.证明:∵AD⊥BC于D,EG⊥BC于G,(已知)∴∠ADC=∠EGC=90°,(垂直的定义)∴AD∥EG,(同位角相等,两直线平行)∴∠2=∠3,(两直线平行,错角相等)∠E=∠1,(两直线平行,同位角相等)又∵∠E=∠3(已知)∴∠1=∠2(等量代换)∴AD平分∠BAC(角平分线的定义).27.如图,EF∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°.(1)问直线CD与AB有怎样的位置关系?并说明理由;(2)若∠CEF=70°,求∠ACB的度数.解:(1)CD和AB的关系为平行关系.理由如下:∵EF∥AB,∠EFB=130°,∴∠ABF=180°﹣130°=50°,又∵∠CBF=20°,∴∠ABC=70°,∵∠DCB=70°,∴∠DCB=∠ABC,∴CD∥AB;(2)∵EF∥AB,CD∥AB,∴EF∥CD,∵∠CEF=70°,∴∠ECD=110°,∵∠DCB=70°,∴∠ACB=∠ECD﹣∠DCB,∴∠ACB=40°.28.如图,BD是∠ABC的平分线,ED∥BC,∠4=∠5,则EF也是∠AED的平分线.完成下列推理过程:证明:∵BD是∠ABC的平分线(已知)∴∠1=∠2(角平分线定义)∵ED∥BC(已知)∴∠5=∠2(两直线平行,错角相等)∴∠1=∠5(等量代换)∵∠4=∠5(已知)∴EF∥BD(错角相等,两直线平行)∴∠3=∠1(两直线平行,同位角相等)∴∠3=∠4(等量代换)∴EF是∠AED的平分线(角平分线定义)。
平行线的判定及性质 例题及练习
平行线的判定及性质一、【基础知识精讲】1、平行线的判定(1)平行公理:经过直线外一点,有且只有一条直线与已知直线平行. (2)平行公理的推论:平行于同一条直线的两条直线. (3)在同一平面内,垂直于同一条直线的两条直线. (4)同位角相等,两直线平行. (5)内错角相等,两直线平行.(6)同旁内角互补,两直线平行.3、平行线的性质(1)两直线平行,同位角相等. (2)两直线平行,内错角相等.(3)两直线平行,同旁内角互补.二、【例题精讲】专题一:余角、补角、对顶角与三线八角例题1:∠A的余角与∠A的补角互为补角,那么2∠A是()A.直角 B.锐角 C.钝角 D.以上三种都有可能【活学活用1】如图2-79中,下列判断正确的是()A.4对同位角,2对内错角,4对同旁内角B.4对同位角,2对内错角,2对同旁内角C.6对同位角,4对内错角,4对同旁内角D.6对同位角,4对内错角,2对同旁内角【活学活用2】如图2-82,下列说法中错误的是( )A.∠3和∠5是同位角B.∠4和∠5是同旁内角C.∠2和∠4是对顶角D.∠1和∠2是同位角【活学活用3】如图,直线AB与CD交于点O,OE⊥AB于O,图中∠1与∠2的关系是()A.对顶角B.互余C.互补D相等例题2:如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角分别是_______.【活学活用4】如图,∠AOC +∠DOE +∠BOF = .专题二:平行线的判定例题3:如图,已知∠EFB+∠ADC=180°,且∠1=∠2,试说明DG ∥AB.1 2A BCDF E G【活学活用】1、长方体的每一对棱相互平行,那么这样的平行棱共有 ( )A .9对B .16对 C.18对 D .以上答案都不对2、已知:如图2-96,DE ⊥AO 于E,BO ⊥AO,FC ⊥AB 于C ,∠1=∠2,求证:DO ⊥AB.3、如图2-97,已知:∠1=∠2=,∠3=∠4,∠5=∠6.求证:AD ∥BC.4、如图2—101,若要能使AB ∥ED ,∠B 、∠C 、∠D 应满足什么条件?ABCDOE F5、同一平面内有四条直线a 、b 、c 、d ,若a ∥b ,a ⊥c ,b ⊥d ,则c 、d 的位置关系为( ) A.互相垂直 B .互相平行 C.相交 D .没有确定关系专题三:平行线的性质1、如图,110,ABC ACB BO ∠+∠=、CO 分别平分ABC ∠和,ACB EF ∠过点O 与BC 平行,则BOC ∠= . 2、如图,AB //CD ,BC //DE ,则∠B+∠D = .3、如图,直线AB 与CD 相交于点O ,OB 平分∠DOE .若60DOE ∠=,则∠AOC 的度数是 .4、 如图,175,2120,375∠=∠=∠=,则4∠= .13 425、如图,//AB CD ,直线EF 分别交AB 、CD 于E 、F ,ED 平分BEF ∠,若172∠=,则2∠= .【例题讲解】例1:如图,已知:AD ∥BC, ∠AEF=∠B,求证:AD ∥EF 。
数学七年级下册平行线的判定和性质练习题
数学七年级下册平行线的判定和性质练习题(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--数学七年级下册平行线的判定和性质练习题一、填空1.如图1,若∠A=∠3,则 ∥ ; 若∠2=∠E ,则 ∥ ; 若∠ +∠ = 180°,则 ∥ .2.若a⊥c ,b⊥c ,则a b .3.如图2,写出一个能判定直线l 1∥l 2的条件: . 4.在四边形ABCD 中,∠A +∠B = 180°,则 ∥ ( ). 5.如图3,若∠1 +∠2 = 180°,则 ∥ 。
6.如图4,∠1、∠2、∠3、∠4、∠5中, 同位角有 ; 内错角有 ;同旁内角有 . 7.如图5,填空并在括号中填理由:(1)由∠ABD =∠CDB 得 ∥ ( ); (2)由∠CAD =∠ACB 得 ∥ ( ); (3)由∠CBA +∠BAD = 180°得 ∥ ( )8.如图6,尽可能多地写出直线l 1∥l 2的条件: . 9.如图7,尽可能地写出能判定AB∥CD 的条件来: . 10.如图8,推理填空:(1)∵∠A =∠ (已知),A C B4 1 235图4a b c d 1 2 3 图3 A B C E D 1 2 3 图1 图2 4 3 2 1 5 a b 1 2 3 AF CDB E图8A DCB O图5 图65 1 243l 1 l 2图7 5 4 32 1 ADCB∴AC∥ED ( ); (2)∵∠2 =∠ (已知),∴AC∥ED ( );(3)∵∠A +∠ = 180°(已知), ∴AB∥FD ( ); (4)∵∠2 +∠ = 180°(已知), ∴AC∥ED ( ) 二、解答下列各题11.如图9,∠D =∠A ,∠B =∠FCB ,求证:ED∥CF .12.如图10,∠1∶∠2∶∠3 = 2∶3∶4, ∠AFE = 60°,∠BDE =120°,写出图中平行的直线,并说明理由.13.如图11,直线AB 、CD 被EF 所截,∠1 =∠2,∠CNF =∠BME 。
北师大版七年级数学下册《平行线性质与判定的综合》基础训练(含答案)
《平行线性质与判定的综合》基础训练知识点1 综合运用平行线的性质与判定进行计算或说理1.如图,已知a∥b,∠1=58°,则∠2的大小是()A.122°B.85°C.58°D.32°2.如图,直线EB∥FD,直线c分别交EB、FD于点A、C,∠BAC的平分线交直线FD于点G,若∠2=50°,则∠1的度数是()A.50°B.60°C.80°D.100°3.如图,一块含有30°角的直角三角板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是()A.14°B.15°C.16°D.17°4.如图,直线,,,a b c d ,已知,c a c b ⊥⊥,直线,,b c d 交于一点.若150︒∠=,则2∠等于( )A.60︒B.50︒C.40︒D.30︒5.如图,直线,a b 被直线,c d 所截.若12,3125︒∠=∠∠=,则4∠的度数是()A.65︒B.60︒C.55︒D.75︒6.如图,若180A ABC ︒∠+∠=,则下列结论正确的是( )A.12∠=∠B.23∠=∠C.13∠=∠D.24∠=∠7.如图,12,60A ︒∠=∠∠=,则ADC ∠=____________.8.如图,//,180BC DE E B ︒∠+∠=,则AB 和EF 的位置关系为____________.9.如图所示,//,,AB DC ABC ADC BF ∠=∠和DE 分别平分ABC ∠和ADC ∠.试说明://ED BF .解:因为BF 和DE 分别平分ABC ∠和ADC ∠(已知),所以EDC ∠=____________,ADC FBA ∠∠=_________ABC ∠(角平分线的定义). 又因为ADC ABC ∠=∠(已知),所以∠___________FBA =∠(等量代换). 因为//AB DC (已知),所以AED EDC ∠=∠(______________).所以∠______=∠_______(等量代换).所以//ED BF (______________).10.如图,已知180,B BCD B D ︒∠+∠=∠=∠.请你观察图形,写出E ∠和DFE ∠满足什么数量关系?并说明理由.知识点2 利用平行线的性质与判定解决实际问題11.如图所示,要在一条公路的两侧铺设平行管道,已知一侧铺设的角度为120,为使管道对接,另一侧铺设的角度大小应为()A.120︒B.100︒C.80︒D.60︒12.如图,在,A B两地挖一条笔直的水渠,从A地测得水渠的走向是北偏西42,,A B 两地同时开工,B地所挖水渠走向应为南偏东_________.13.一条建设中的高速公路要穿过一山体开挖一条隧道,甲、乙两工程队分别从山体两侧的,A B两点同时开工,现甲队从A点测得道路的走向是北偏东55,为了不浪费人力、物力,问乙队在B点处应该按β∠等于多少度开挖,才能够保证隧道准确接通?14.如图,B处在A处的南偏西45°方向,C处在B处的北偏东80°方向.(1)求∠ABC的度数;(2)要使CD∥AB,D处应在C处的什么方向?15.如图,已知CD⊥AB,GF⊥AB,∠B=∠ADE,试说明∠1=∠2.16.如图,已知AB∥CD,∠1=∠2,∠3=∠4,求证:(1)∠4=∠DAC;(2)AD∥BE.参考答案1、B 2.C 3.D4.答案:C解析:∵a ∥b,∴∠1=∠2,∵∠1=58°,∴∠2=58°,故选C.5.答案:C解析:∵EB ∥FD,∴∠BAG=∠2=50°,∵AG 平分∠BAC,∴∠GAC=∠BAG=50°,∴∠1=180°-∠BAG-∠GAC=80°,故选C.6.答案:C解析:根据题意可知∠2+∠3=60°,因为∠2=44°,所以∠3=16°,再根据直尺的对边平行,可知∠1=∠3=16°.7.120 8.平行 9.12 12EDC 两直线平行,内错角相等 FBA AED 同位角相等,两直线平行10.解:E DFE ∠=∠.理由如下:因为180,B BCD B D ︒∠+∠=∠=∠,所以180D BCD ︒∠+∠=.所以//AD BE .所以E DFE ∠=∠.11.D 12.4213.解:因为指北方向平行,且,A B 两点走向形成一条直线,即//CA DB ,所以a ∠和β∠就构成了一对同旁内角.所以180a β︒∠+∠=,即18055125β︒︒︒∠=-=.因此,乙队在B 点处应该按125β︒∠=开挖.14.答案:见解析解析:(1)如图,由题意,得∠FAB=45°.因为AF ∥BE,所以∠FAB=∠ABE=45°,因为∠EBC=80°,所以∠ABC=35°.(2)D处在C处的南偏西45°方向.理由如下:如图,因为CG∥BE,所以∠GCB=∠EBC=80°.因为∠GCD=45°,所以∠BCD=35°,所以∠ABC=∠BCD=35°,所以CD∥AB.15.答案:见解析解析:证明:∵∠B=∠ADE(已知),∴DE∥BC(同位角相等,两直线平行),∴∠1=∠DCB(两直线平行,内错角相等).∵CD⊥AB,GF⊥AB,∴∠BDC=90°,∠BFG=90°, ∴CD∥FG(同位角相等,两直线平行),∴∠2=∠DCB(两直线平行,同位角相等).∴∠1=∠2(等量代换).16.答案:见解析解析:证明:(1)∵AB∥CD,∴∠4=∠BAF.∵∠1=∠2,∴∠BAF=∠1+∠CAF=∠2+∠CAF=∠DAC,∴∠4=∠DAC.(2)∵∠4=∠DAC,∠3=∠4,∴∠3=∠DAC,∴AD∥BE.。
平行线的判定练习题(有答案)
亲爱的朋友,很高兴能在此相遇!欢迎您阅读文档平行线的判定练习题(有答案),这篇文档是由我们精心收集整理的新文档。
相信您通过阅读这篇文档,一定会有所收获。
假若亲能将此文档收藏或者转发,将是我们莫大的荣幸,更是我们继续前行的动力。
平行线的判定练习题(有答案)篇一:(913)平行线的判定专项练习60题(有答案)ok平行线的判定专项练习60题(有答案)1.已知:如图,BE平分∠ABC,∠1=∠2.求证:BC∥DE.2.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.3.如图所示,AB⊥BC,BC⊥CD,BF和CE是射线,并且∠1=∠2,试说明BF∥CE.4.如图,AB⊥BC,∠1+∠2=90°,∠2=∠3,求证:BE∥DF.5.如图,OP平分∠MON,A、B分别在OP、OM上,∠BOA=∠BAO,那么AB平行于ON吗?若平行,请写出证明过程;若不平行,请说明理由.6.已知:如图,∠1=∠2,∠A=∠C.求证:AE∥BC.平行线的判定---第1页共1页7.已知,如图B、D、A在一直线上,且∠D=∠E,∠ABE=∠D+∠E,BC是∠ABE的平分线,求证:DE∥BC.8.如图,已知∠AEC=∠A+∠C,试说明:AB∥CD.9.如图,已知AC∥ED,EB平分∠AED,∠1=∠2,求证:AE∥BD.10.如图,直线AB、CD与直线EF相交于E、F,已知:∠1=105°,∠2=75°,求证:AB∥CD.11.如图,∠D=∠A,∠B=∠FCB,求证:ED∥CF.12.如图,已知AB⊥BC,CD⊥BC,∠1=∠2,求证:EB∥FC.平行线的判定---第2页共2页13.如图所示所示,已知BE是∠B的平分线,交AC于E,其中∠1=∠2,那么DE∥BC吗?为什么?14.如图,已知∠C=∠D,DB∥EC.AC与DF平行吗?试说明你的理由.15.如图,AC⊥AE,BD⊥BF,∠1=35°,∠2=35°,求证:AE∥BF.16.如图,已知AB∥CD,∠1=∠2,求证:BE∥CF.17.已知∠BAD=∠DCB,∠1=∠3,求证:AD∥BC.18.如图,AD是三角形ABC的角平分线,DE∥CA,并且交AB 与点E,∠1=∠2,DF与AB是否平行?为什么?平行线的判定---第3页共3页19.如图,已知:∠C=∠DAE,∠B=∠D,那么AB平行于DF 吗?请说明理由.20.如图,已知点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗?说明理由.21.已知∠1的度数是它补角的3倍,∠2等于45°,那么AB∥CD吗?为什么?22.已知:如图,BDE是一条直线,∠ABD=∠CDE,BF平分∠ABD,DG平分∠CDE,求证:BF∥DG.23.如图,四边形ABCD中,∠A=∠C=90°,BF、DE分别平分∠ABC、∠ADC.判断DE、BF是否平行,并说明理由.24.如图,若∠CAB=∠CED+∠CDE,求证:AB∥CD.25.如图,CD⊥AB,GF⊥AB,∠1=∠2.试说明DE∥BC.平行线的判定---第4页共4页26.如图所示,∠CAD=∠ACB,∠D=90°,EF⊥CD.试说明:∠AEF=∠B.27.已知:如图所示,C,P,D三点在同一条直线上,∠BAP+∠APD=180°,∠E=∠F,求证:∠1=∠2.28.如图,∠D=∠1,∠E=∠2,DC⊥EC.求证:AD∥BE.29.如图,在四边形ABCD中,∠A=∠C,BE平分∠ABC,DF平分∠ADC,试说明BE∥DF.30.已知:如图,∠1=∠2,∠A=∠F,则∠C与∠D相等吗?试说明理由.31.如图,在四边形ABCD中,∠A=∠C=90°,∠1=∠2,∠3=∠4,求证:BE∥DF.平行线的判定---第5页共5页篇二:七年级平行线的判定与性质练习题带答案平行线测试题姓名:一、选择题1.下列命题中,不正确的是____[]A.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行B.两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行C.两条直线被第三条直线所截,那么这两条直线平行D.如果两条直线都和第三条直线平行,那么这两条直线也互相平行2.如图,可以得到DE∥BC的条件是______[](2题)(5题)(3题)(7题)(8题)A.∠ACB=∠BACB.∠ABC+∠BAE=180°C.∠ACB+∠BAD=180°D.∠ACB=∠BAD3.如图,直线a、b被直线c所截,现给出下列四个条件:(1)∠1=∠2(2)∠3=∠6(3)∠4+∠7=180°(4)∠5+∠8=180°,其中能判定a∥b的条件是_________[]A.(1)(3)B.(2)(4)C.(1)(3)(4)D.(1)(2)(3)(4) 4.一辆汽车在笔直的公路上行驶,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是________[]A.第一次向右拐40°,第二次向左拐40°B.第一次向右拐50°,第二次向左拐130°C.第一次向右拐50°,第二次向右拐130°D.第一次向左拐50°,第二次向左拐130°5.如图,如果∠1=∠2,那么下面结论正确的是_________.[] A.AD∥BCB.AB∥CDC.∠3=∠4D.∠A=∠C6.同一平面内有四条直线a、b、c、d,若a∥b,a⊥c,b⊥d,则直线c、d的位置关系为()A.互相垂直B.互相平行C.相交D.无法确定7.如图,在平行四边形ABCD中,下列各式不一定正确的是()A.∠1+∠2=180°B.∠2+∠3=180°C.∠3+∠4=180°D.∠2+∠4=180°8.如图,AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC的度数为()A.30°B.60°C.90°D.120°二、填空题9.如图,由下列条件可判定哪两条直线平行,并说明根据.(1)∠1=∠2,.(2)∠A=∠3,.(3)∠ABC+∠C=180°.10.如果两条直线被第三条直线所截,一组同旁内角的度数之比为3∶2,差为36°,那么这两条直线的位置关系是________.11.同垂直于一条直线的两条直线_______.同一平面内,不重合的两直线的位置关系是。
七年级数学下册《平行线的性质》练习题及答案解析
七年级数学下册《平行线的性质》练习题及答案解析一、选择题(共20小题)1. 如图,若l1∥l2,l3∥l4,则图中与∠1互补的角有( )A. 1个B. 2个C. 3个D. 4个2. 如图,AB∥CD,∠B=75∘,∠E=27∘,则∠D的度数为( )A. 45∘B. 48∘C. 50∘D. 58∘3. 如图,直线DE经过点A,DE∥BC,∠B=60∘,下列结论一定成立的是( )A. ∠C=60∘B. ∠DAB=60∘C. ∠EAC=60∘D. ∠BAC=60∘4. 如图,已知AD∥BC,下列结论不一定正确的是( )A. ∠A+∠ABC=180∘B. ∠1=∠2C. ∠A=∠3D. ∠C=∠35. 如图,直线a∥b,直线c分别与a,b相交,∠1=50∘,则∠2的度数为( )A. 130∘B. 150∘C. 50∘D. 100∘6. 如果∠A和∠B的两边分别平行,那么∠A和∠B的关系是( )A. 相等B. 互余或互补C. 互补D. 相等或互补7. 如图,已知a∥b,直角三角板的直角顶点在直线b上,若∠1=60∘,则下列结论错误的是( )A. ∠2=60∘B. ∠3=60∘C. ∠4=120∘D. ∠5=40∘8. 如图,直线a,b被直线c所截,a∥b,∠1=50∘,则∠2的度数为( )A. 40∘B. 50∘C. 130∘D. 150∘9. 如图,已知AB∥CD,∠1=100∘,∠2=145∘,那么∠F=( )A. 55∘B. 65∘C. 75∘D. 85∘10. 将等腰直角三角形纸片和矩形纸片按如图方式叠放在起,若∠1=30∘,则∠2的度数为( )A. 10∘B. 15∘C. 20∘D. 30∘11. 如图,将三角板的直角顶点放在直尺的一边上,如果∠1=25∘,那么∠2的度数为( )A. 25∘B. 30∘C. 45∘D. 65∘12. 如图,两直线a,b被直线c所截,已知a∥b,∠1=65∘,则∠2的度数为( )A. 65∘B. 105∘C. 115∘D. 125∘13. 如图,直线AD∥BC,若∠1=74∘,∠BAC=56∘,则∠2的度数为( )A. 70∘B. 60∘C. 50∘D. 40∘14. 如图所示,小明课间把老师的三角板的直角顶点放在黑板的两条平行线a,b上,已知∠1=55∘,则∠2的度数为( )A. 45∘B. 125∘C. 55∘D. 35∘15. 如图,已知AB∥CD,∠1=100∘,∠2=145∘,那么∠F=( )A. 55∘B. 65∘C. 75∘D. 85∘16. 如图,直线AB∥CD,AE平分∠CAB.AE与CD相交于点E,∠ACD=40∘,则∠BAE的度数是( )A. 40∘B. 70∘C. 80∘D. 140∘17. 如图,直线a∥b,直线c分别与直线a,b相交于点A,B,且AC垂直直线c于点A,若∠1=40∘,则∠2的度数为( )A. 140∘B. 90∘C. 50∘D. 40∘18. 一个多边形的内角和比它的外角和的3倍少180∘,这个多边形的边数是( )A. 5B. 6C. 7D. 819. 经过点P(−4,3)垂直于x轴的直线可以表示为( )A. 直线x=3B. 直线y=−4C. 直线x=−4D. 直线y=320. 如图,AB∥EF,CD⊥EF于点D,若∠ABC=40∘,则∠BCD的度数是( )A. 140∘B. 130∘C. 120∘D. 110∘二、填空题(共8小题)21. 如图,已知直线AB∥CD,∠1=50∘,则∠2=.22. 如图所示,一条公路两次拐弯后和原来的方向相同,即拐弯前、后的两条路平行,若第—次拐角是150∘,则第二次拐角大小为度.23. 如图,l1∥l2,∠1=120∘,∠2=100∘,则∠3=.24. 将两张矩形纸片如图所示摆放,使其中一张矩形纸片的一个顶点恰好落在另一张矩形纸片的一条边上,则∠1+∠2=.25. 如图,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=a∘.则下列结论:(180−a)∘;①∠BOE=12②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正确结论(填编号).26. 小明到工厂进行社会实践活动时,发现工人师傅生产了一种如图所示的零件,工人师傅告诉他:AB∥CD,∠A=40∘,∠1=70∘,小明马上运用已学的数学知识得出了∠C 的度数,聪明的你一定知道∠C=.27. 如图,AD∥CE,∠ABC=100∘,则∠2−∠1的度数是.28. 如图,AB∥CD,直线EF分别交AB,CD于M,N两点,将一个含有45∘角的直角三角尺按如图所示的方式摆放,若∠EMB=75∘,则∠PNM等于度.三、解答题(共6小题)29. 如图,已知:点P在直线CD上,∠BAP+∠APD=180∘,∠1=∠2.求证:∠E=∠F.30. 已知AB∥CD,E为AB,CD同侧上一点.(1)如图1,过点E作EF∥AB.求证:∠CEA=∠EAB−∠ECD.(2)如图2,E,B,D三点在一条直线上,EA平分∠CED,若∠C=50∘,∠EAB=80∘,求∠CED的度数;(3)如图3,CH,AH交于点H,∠BAH=2∠EAH,∠DCH=40∘,∠DCE=60∘,求∠H的值.∠E31. 如图,∠AOB=120∘,射线OC在∠AOB内,且∠AOC=30∘,OD平分∠BOC,OE平分∠AOD.(1)依题意补全图形;(2)求∠EOC的度数.32. 复杂的数学问题我们常会把它分解为基本问题来研究,化繁为简,化整为零,这是一种常见的数学解题思想.(1)如图①,直线l1,l2被直线l3所截,在这个基本图形中,形成了对同旁内角;(2)如图②,平面内三条直线l1,l2,l3两两相交,交点分别为A,B,C,图中一共有对同旁内角;(3)平面内四条直线两两相交,最多可以形成对同旁内角;(4)平面内n条直线两两相交,最多可以形成对同旁内角.33. 如图,直线AB,CD被m,n所截,已知:∠1=110∘,∠2=70∘.(1)试判断AB,CD的位置关系,并说明理由.(2)已知AD平分∠BAC,若∠3=120∘,求∠BAD的度数.34. 如图,直线AB∥CD,DE∥BC.(1)判断∠B与∠D的数量关系,并说明理由.(2)设∠B=(2x+15)∘,∠D=(65−3x)∘,求∠1的度数.参考答案与解析1. D2. B【解析】∵AB∥CD,∴∠B=∠1,∵∠1=∠D+∠E,∴∠D=∠B−∠E=75∘−27∘=48∘.3. B4. D5. A6. D7. D8. B 【解析】∵a∥b,∴∠2=∠1=50∘.9. B【解析】如图:∵AB∥CD,∠1=100∘,∠2=145∘,∴∠3=∠1=100∘,∠4=180∘−∠2=35∘,∵∠F+∠4=∠3,∴∠F=∠3−∠4=100∘−35∘=65∘.故选:B.10. B【解析】因为AB∥CD,所以∠1=∠ADC=30∘,又因为等腰直角三角形ADE中,∠ADE=45∘,所以∠1=45∘−30∘=15∘.11. D12. C 【解析】∵a∥b,∴∠1=∠3,∵∠1=65∘,∴∠3=65∘,∵∠2+∠3=180∘,∴∠2=115∘.13. C14. D15. B【解析】如图:∵AB∥CD,∠1=100∘,∠2=145∘,∴∠3=∠1=100∘,∠4=180∘−∠2=35∘.∵∠F+∠4=∠3,∴∠F=∠3−∠4=100∘−35∘=65∘.16. B【解析】因为AB∥CD,所以∠ACD+∠BAC=180∘,因为∠ACD=40∘,所以∠BAC=180∘−40∘=140∘,因为AE平分∠CAB,×140∘=70∘.所以∠BAE=∠BAC=1217. C【解析】如图所示:∵直线a∥b,∠1=40∘,∴∠3=∠1=40∘.∵AC⊥AB,∴∠BAC=90∘,∴∠2=90∘−∠1=90∘−40∘=50∘.故选C.18. C【解析】设这个多边形的边数为n,则(n−2)⋅180∘=360∘×3−180∘,解得n=7.19. C【解析】经过点P(−4,3)且垂直于x轴的直线可以表示为直线x=−4.故选:C.20. B【解析】如图,过点C作CG∥AB,由题意可得AB∥EF∥CG,故∠B=∠BCG,∠GCD+∠CDF=180∘.∵CD⊥EF,∴∠CDF=90∘.∴∠GCD=90∘.则∠BCD=40∘+90∘=130∘.21. 50∘22. 15023. 40∘24. 90∘25. ①②③【解析】①∵AB∥CD,∴∠BOD=∠ABO=a∘,∴∠COB=180∘−a∘=(180−a)∘,又∵OE平分∠BOC,∴∠BOE=12∠COB=12(180−a)∘.故①正确;②∵OF⊥OE,∴∠EOF=90∘,∴∠BOF=90∘−12(180−a)∘=12a∘,∴∠BOF=12∠BOD,∴OF平分∠BOD,∴②正确;③∵OP⊥CD,∴∠COP=90∘,∴∠POE=90∘−∠EOC=12a∘,∴∠POE=∠BOF;∴③正确;∴∠POB=90∘−a∘,而∠DOF=12a∘,∴④错误.26. 30∘27. 80∘【解析】作BF∥AD,∵AD∥CE,∴AD∥BF∥EC,∴∠1=∠3,∠4+∠2=180∘,∵∠ABC=100∘,∴∠3+∠4=100∘,∴∠1+∠4=100∘,∴∠2−∠1=80∘.28. 30【解析】因为AB∥CD,所以∠DNM=∠BME=75∘.因为∠PND=45∘,所以∠PNM=∠DNM−∠DNP=30∘.29. ∵∠BAP+∠APD=180∘,∴AB∥CD,∴∠BAP=∠APC.又∵∠1=∠2,∴∠BAP−∠1=∠APC−∠2,即∠EAP=∠APF,∴AE∥FP,∴∠E=∠F.30. (1)∵AB∥CD,EF∥AB,∴CD∥EF∥AB,∴∠FEA=∠EAB,∠FEC=∠ECD,∴∠CEA=∠FEA−∠FEC=∠EAB−∠ECD;(2)由(1)知∠CEA=∠EAB−∠ECD=30∘,∵EA平分∠CED,∴∠CED=2∠CEA=60∘;(3)设∠EAH=x,∠BAH=2x,由(1)可知∠E=∠EAB−∠ECD=3x−60∘,∠H=∠HAB−∠HCD=2x−40∘,∴∠H∠E =2x−40∘3x−60∘=23.31. (1)补全图形如图所示:(2)∵∠AOB=120∘,∠AOC=30∘,∴∠COB=∠AOB−∠AOC=90∘.∵OD平分∠BOC,∴∠DOC=12∠BOC=45∘.∴∠DOA=∠AOC+∠DOC=75∘.∵OE平分∠AOD,∴∠DOE=12∠AOD=37.5∘.∴∠EOC=∠DOC−∠DOE=45∘−37.5∘=7.5∘.32. (1)2(2)6(3)24(4)n(n−1)(n−2)33. (1)AB∥CD.理由如下:∵∠1=110∘,∵∠2=70∘,∴∠2=∠4,∴AB∥CD.(2)∵∠3=120∘,∴∠5=60∘,∴AB∥CD,∴∠BAC=∠5=60∘,∵AD平分∠BAC,∠BAC=30∘.∴∠BAD=1234. (1)∠B=∠D.∵AB∥CD,∴∠B=∠1 .∵DE∥BC,∴∠1=∠D .∴∠B=∠D .(2)由2x+15=65−3x,解得x=10,所以∠B=35∘ .。
七年级数学(下)第五章《平行线的性质与判定》综合练习含答案
七年级数学(下)第五章《平行线的性质与判定》综合练习1.如图,要判定AB∥CD,需要哪些条件?根据是什么?2.填写推理理由:如图,CD∥EF,∠1=∠2.求证:∠3=∠ACB.解:∵CD∥EF,∴∠DCB=∠2(____________________).∵∠1=∠2,∴∠DCB=∠1(____________________).∴GD∥CB(____________________).∴∠3=∠ACB(____________________).3.如图,已知AD∥BE,∠A=∠E,求证:∠1=∠2.4.已知:如图,AD∥EF,∠1=∠2.求证:AB∥DG.5.已知:如图,直线EF分别交AB,CD于点E,F,且∠AEF=66°,∠BEF的平分线与∠DFE的平分线相交于点P.(1)求∠PEF的度数;(2)若已知直线AB∥CD,求∠P的度数.6.如图,∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∠DBF=∠F.求证:EC∥DF.7.如图,把一张长方形ABCD的纸片,沿EF折叠后,ED与BC的交点为G,点D,C分别落在D′,C′的位置上,若∠EFG=55°,求∠1,∠2的度数.8.如图,CE平分∠BCD,∠1=∠2=70°,∠3=40°,AB和CD是否平行?为什么?9.如图,已知AB∥CD,∠1∶∠2∶∠3=1∶2∶3,那么BA是否平分∠EBF,试说明理由.10.如图所示,已知∠ABC=80°,∠BCD=40°,∠CDE=140°,试确定AB与DE的位置关系,并说明理由.11.如图,直线l1、l2均被直线l3、l4所截,且l3与l4相交,给定以下三个条件:①l1⊥l3;②∠1=∠2;③∠2+∠3=90°.请从这三个条件中选择两个作为条件,另一个作为结论组成一个真命题,并进行证明.12.如图1,CE∥AB,所以∠ACE=∠A,∠DCE=∠B,所以∠ACD=∠ACE+∠DCE=∠A+∠B.这是一个有用的结论,借用这个结论,在图2所示的四边形ABCD内,引一条和边平行的直线,求∠A+∠B+∠C+∠D的度数.参考答案1.略2.两直线平行,同位角相等等量代换内错角相等,两直线平行两直线平行,同位角相等3.证明:∵AD∥BE,∴∠A=∠3.∵∠A=∠E,∴∠3=∠E.∴DE∥AB.∴∠1=∠2.4.证明:∵AD∥EF,∴∠1=∠BAD.∵∠1=∠2,∴∠BAD=∠2.∴AB∥DG.5.(1)∵∠AEF=66°,∴∠BEF=180°-∠AEF=114°.又PE平分∠BEF,∴∠PEB=12∠BEF=57°.(2)∵AB∥CD,∴∠EFD=∠AEF=66°. ∵PF平分∠EFD,∴∠PFD=12∠EFD=33°.过点P作PQ∥AB,∵∠EPQ=∠PEB=57°,又AB∥CD,∴PQ∥CD.∴∠FPQ=∠PFD=33°.∴∠EPF=∠EPQ+∠FPQ=57°+33°=90°.6.证明:∵BD平分∠ABC,CE平分∠ACB,∴∠DBF=12∠ABC,∠ECB=12∠ACB.∵∠ABC=∠ACB,∴∠DBF=∠ECB.∵∠DBF=∠F,∴∠ECB=∠F.∴EC∥DF.7.∵AD∥BC,∠EFG=55°,∴∠2=∠GED,∠DEF=∠EFG=55°.由折叠知∠GEF=∠DEF=55°.∴∠GED=110°.∴∠1=180°-∠GED=70°.∴∠2=110°.8.平行.理由:∵CE平分∠BCD,∴∠1=∠4.∵∠1=∠2=70°,∴∠1=∠2=∠4=70°.∴AD∥BC.∴∠D=180°-∠BCD=180°-∠1-∠4=40°.∵∠3=40°,∴∠D=∠3.∴AB∥CD.9.BA平分∠EBF.理由如下:∵AB∥CD,∴∠2+∠3=180°.∵∠2∶∠3=2∶3,∴∠2=180°×25=72°.∵∠1∶∠2=1∶2,∴∠1=36°.∴∠EBA=72°=∠2,即BA平分∠EBF.10.AB∥DE.理由:图略,过点C作FG∥AB,∴∠BCG=∠ABC=80°.又∠BCD=40°,∴∠DCG=∠BCG-∠BCD=40°.∵∠CDE=140°,∴∠CDE+∠DCG=180°.∴DE∥FG.∴AB∥DE.11.已知:l1⊥l3,∠1=∠2.求证:∠2+∠3=90°.证明:∵∠1=∠2,∴l1∥l2.∵l1⊥l3,∴l2⊥l3.∴∠3+∠4=90°.∵∠4=∠2,∴∠2+∠3=90°.12.过D作DE∥AB.则由阅读得到的结论,有∠BED=∠C+∠CDE.又∠ABE+∠BED=180°,∠A+∠ADE=180°(两直线平行,同旁内角互补).两式相加,得∠ABE+∠BED+∠A+∠ADE=360°,即∠A+∠B+∠C+∠ADC=360°.。
5.2平行线及平行线的判定 习题(含答案)
B、根据内错角相等,两直线平行可得BD∥AC,故此选项错误;
C、根据同旁内角互补,两直线平行可得BD∥AC,故此选项错误;
D、根据内错角相等,两直线平行可得BD∥AC,故此选项错误;
故选:A.
【点睛】
此题主要考查了平行线的判定,解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.熟练掌握平行线的判定定理是解题关键.
14.如图,AB∥CD,∠BED=130°,BF平分∠ABE,DF平分∠CDE,则∠BFD=( )
A.135°B.120°C.115°D.110°
【答案】C
【解析】
【分析】
先过点E作EM∥AB,过点F作FN∥AB,由AB∥CD,即可得EM∥AB∥CD∥FN,然后根据两直线平行,同旁内角互补,由∠BED=130°,即可求得∠ABE+∠CDE=230°,又由BF平分∠ABE,DF平分∠CDE,根据角平分线的性质,即可求得∠ABF+∠CDF的度数,又由两只线平行,内错角相等,即可求得∠BFD的度数.
本题考查的是平行线的判定,熟记平行线的判定定理是解题关键.
7.直线a、b、c中,a∥b,b∥c,则直线a与直线c的关系是( )
A.相交B.平行C.垂直D.不确定
【答案】B
【解析】
【分析】
根据如果两条直线都和第三条直线平行,那么这两条直线也互相平行.
【详解】
解:由于直线a、b都与直线c平行,依据平行公理的推论,可推出a∥b.
【详解】
A.有公共顶点且两边分别互为反向延长线的两个角是对顶角,故本选项错误;
B.已知线段AB=BC,A、B、C三点不一定共线,所以,点B不一定是线段AC的中点,故本选项错误.
平行线的判定与性质(重点题专项讲练)(人教版)(解析版)
专题5.4 平行线的判定与性质【典例1】如图,已知点A在EF上,点P,Q在BC上,∠E=∠EMA,∠BQM=∠BMQ.(1)求证:EF∠BC;(2)若FP∠AC,∠2+∠C=90°,求证:∠1=∠B;(3)若∠3+∠4=180°,∠BAF=3∠F﹣20°,求∠B的度数.【思路点拨】E=∠EMA,∠BQM=∠BMQ,结合对顶角相等可得∠E=∠BQM,利用内错角相等两直线平行可证明结论;(2)根据垂直的定义可得∠PGC=90°,由两直线平行同旁内角互补可得∠EAC+∠C=180°,结合∠2+∠C=90°,可求得∠BAC=90°,利用同位角相等两直线平行可得AB∠FP,进而可证明结论;(3)根据同旁内角互补可判定AB∠FP,结合∠BAF=3∠F﹣20°可求解∠F的度数,根据平行线的性质可得∠B=∠F,即可求解.【解题过程】E=∠EMA,∠BQM=∠BMQ,∠EMA=∠BMQ,∠∠E=∠BQM,∠EF∠BC;(2)证明:∠FP∠AC,∠∠PGC=90°,∠EF∠BC,∠∠EAC+∠C=180°,∠∠2+∠C=90°,∠∠BAC=∠PGC=90°,∠AB∠FP,∠∠1=∠B;(3)解:∠∠3+∠4=180°,∠4=∠MNF,∠∠3+∠MNF=180°,∠AB∠FP,∠∠F+∠BAF=180°,∠∠BAF=3∠F﹣20°,∠∠F+3∠F﹣20°=180°,解得∠F=50°,∠AB∠FP,EF∠BC,∠∠B=∠1,∠1=∠F,∠∠B=∠F=50°.1.(2021•鞍山一模)如图,∠1=∠2=∠3=56°,则∠4的度数是()A.56°B.114°C.124°D.146°【思路点拨】根据对顶角相等得到∠2=∠5,结合∠1=∠2,得到∠1=∠5,即可判定l1∠l2,根据平行线的性质得出∠6=56°,再根据邻补角的定义求解即可.【解题过程】解:如图,∠∠1=∠2,∠2=∠5,∠∠1=∠5,∠l1∠l2,∠∠3=∠6,∠∠3=56°,∠∠6=56°,∠∠4+∠6=180°,∠∠4=180°﹣56°=124°,故选:C.2.(2021•雁塔区校级模拟)如图,在三角形ABC中,CD平分∠ACB,∠1=∠2=36°,则∠3=()A.36°B.52°C.72°D.80°【思路点拨】由平行线的判定定理可得AC∠DE,由平行线的性质可得∠ACB=∠3,由平分线的定义可得∠ACB=2∠1=72°,即得∠3的度数.【解题过程】解:∠∠1=∠2=36°,∠AC∠DE,∠∠ACB=∠3,∠CD平分∠ACB,∠∠ACB=2∠1=72°,∠∠3=72°.故选:C.3.(2021春•单县期末)如图,AB∠BC于点B,DC∠BC于点C,DE平分∠ADC交BC于点E,点F为线段CD延长线上一点,∠BAF=∠EDF,则下列结论正确的有()∠∠BAD+∠ADC=180°;∠AF∠DE;∠∠DAF=∠F.A.3个B.2个C.1个D.0个【思路点拨】∠证明AB∠CD,可做判断;∠根据平行线的判定和性质可做判断;∠根据AF∠ED得内错角相等和同位角相等,再由角平分线的定义得∠ADE=∠CDE,从而可做判断.【解题过程】解:∠∠AB∠BC,DC∠BC,∠AB∠CD,∠∠BAD+∠ADC=180°,故∠正确;∠∠AB∠CD,∠∠AFD+∠BAF=180°,∠∠BAF=∠EDF,∠∠AFD+∠EDF=180°,∠AF∠DE,故∠正确;∠∠AF∠ED,∠∠DAF=∠ADE,∠F=∠CDE,∠DE平分∠ADC,∠∠ADE=∠CDE,∠∠DAF=∠F,故∠正确;故选:A.4.(2021春•德宏州期末)如图所示,AC∠BC,DC∠EC,则下列结论:∠∠1=∠3;∠∠ACE+∠2=180°;∠若∠A=∠2,则有AB∠CE;∠若∠2=∠E,则有∠4=∠A.其中正确的有()A.∠∠∠B.∠∠∠C.∠∠D.∠∠∠∠【思路点拨】由已知可得∠1+∠2=90°,∠3+∠2=90°,等量代换即可得出∠结论;延长EC,如图1,由已知条件可得∠1+∠5=90°,∠1+∠2=90°,可得∠2=∠5,根据平角的性质可得∠ACE+∠5=180°,等量代换即可得出∠结论;由已知条件可得∠A=∠2,∠ACE+∠2=180°,等量代换可得∠A+∠ACE=180°,根据平行线的判定即可得出∠结论;由平行线的性质可得∠E=∠4,由已知条件∠2=∠E,∠2=∠A,等量代换可得∠4=∠A.即可得出∠结论.【解题过程】证明:∠AC∠BC,DC∠EC,∠∠1+∠2=90°,∠3+∠2=90°,∠∠1=∠3.故结论∠正确;延长EC,如图1,∠DC∠CE,AC∠BC,∠∠1+∠5=90°,∠1+∠2=90°,∠∠2=∠5,∠∠ACE+∠5=180°,∠∠ACE+∠2=180°.故结论∠正确;∠∠A=∠2,∠ACE+∠2=180°,∠∠A+∠ACE=180°,∠AB∠CE.故结论∠正确;∠AB∠CE,∠∠E=∠4,∠∠2=∠E,∠2=∠A,∠∠4=∠A.故结论∠正确.所以结论正确的有∠∠∠∠.故选:D.5.(2021春•汉川市期末)如图,AD∠BC,∠B=∠D,延长BA至点E,连接CE,∠EAD∠EAD+∠ECD;∠若和∠ECD的角平分线交于点P.下列三个结论:∠AB∠CD;∠∠AOC=12∠E=60°,∠APC=70°,则∠D=80°.其中结论正确的个数有()A.0B.1C.2D.3【思路点拨】∠EAD,∠E=∠根据平行线的性质与判定即可判断;∠∠AOC=∠EAP+∠E,而∠EAP==12∠ECD,即可判断;∠利用平行线的性质和角平分线定义即可判断.【解题过程】解:∠AD∠BC,∠∠BAD+∠B=180o,∠∠B=∠D,∠∠BAD+∠D=180o,∠AB∠CD,故∠正确;∠AB∠CD,∠∠ECD=∠E,∠AP平分∠EAD,∠EAD∠∠EAP=12∠∠AOC=∠EAP+∠E,∠∠AOC=1∠EAD+∠ECD,故∠正确;2∠∠ECD=∠E=60o,∠CP平分∠ECD,∠ECD=30°,∠∠ECP=12∠∠APC=70°,∠AOE=∠COP,∠∠EAP=40°,∠AP平分∠EAD,∠∠EAD=2∠EAP=80°,∠AB∠CD,∠∠D=∠EAD=80°,故∠正确;故选:D.6.(2021春•夏津县期末)如图,CB平分∠ACD,∠2=∠3,若∠4=60°,则∠5的度数是.【思路点拨】由∠2与∠3间关系,可得到AB与CD的位置关系,利用角平分线的性质和平行线的性质可求得∠5度数.【解题过程】解:∠CB平分∠ACD,∠ACD..∠∠1=∠2=12∠∠2=∠3,∠AB∠CD.∠∠5=∠2,∠4=∠ACD=60°.∠∠5=∠2=30°.故答案为:30°.7.(2021秋•嵩县期末)如图,AE∠CF,∠ACF的平分线交AE于点B,G是CF上的一点,∠GBE的平分线交CF于点D,且BD∠BC,下列结论:∠BC平分∠ABG;∠AC∠BG;∠与∠DBE互余的角有2个;∠若∠A=α,则∠BDF=180°−α.其中正确的是.(请把正确结论的序号都填上)8【思路点拨】根据平行线的性质得出∠A和∠ACB的关系,再根据角平分线的性质找出图中相等的角,由等角的余角相等即可得出结论.【解题过程】解:∠CBD=90°,∠∠ABC+∠EBD=90°,又∠∠DBG=∠EBD,∠∠ABC=∠CBG,∠BC平分∠ABG,∠∠正确,∠∠GBC=∠ABC=∠ACB,∠AC∠BG,∠∠正确,∠∠DBE=∠DBG,∠与∠DBE互余的角有∠ABC,∠GBC,∠ACB,∠GCB,有4个,∠∠错误,∠∠BDF=180°﹣∠BDG,∠BDG=90°﹣∠CBG=90°﹣∠ACB,又∠∠ACB=12×(180°﹣α)=90°−α2,∠∠BDF=180°﹣[90°﹣(90°−α2)]=180°−α2,∠∠错误,故答案为:∠∠.8.(2021春•凤山县期末)如图,已知∠1=∠2,∠C=∠F.请指出∠A与∠D的数量关系,并说明理由.【思路点拨】根据∠1=∠2,∠3=∠2,可得∠1=∠3,得BF∠CE,根据平行线的性质得∠ABF=∠C,由∠C =∠F,得∠ABF=∠F,即可得出AC∠DF,得∠A和∠D的数量关系是相等.【解题过程】解:∠A和∠D的数量关系是相等.理由是:如图,∠∠1=∠2,∠3=∠2,∠∠1=∠3,∠BF∠CE,∠∠ABF=∠C,∠∠C=∠F,∠∠ABF=∠F,∠AC∠DF,∠∠A=∠D.9.(2021春•陇县期末)如图,∠AEM+∠CDN=180°,EC平分∠AEF.若∠EFC=62°,求∠C的度数.【思路点拨】根据同角的补角相等可得出∠AEM=∠CDM,利用“同位角相等,两直线平行”可得出AB∠CD,由“两直线平行,同旁内角互补”及∠EFC=62°可求出∠AEF=118°,结合角平分线的定义可求出∠AEC的度数,再利用“两直线平行,内错角相等”即可求出∠C的度数.【解题过程】解:∠∠CDM+∠CDN=180°,又∠∠AEM+∠CDN=180°,∠∠AEM=∠CDM,∠AB∠CD,∠∠AEF+∠EFC=180°,∠∠EFC=62°,∠∠AEF=118°,∠EC平分∠AEF,∠∠AEC=59°,∠AB∠CD,∠∠C=∠AEC=59°.10.(2021春•江都区校级期中)已知:如图,CD∠AB,FG∠AB,垂足分别为D、G,点E 在AC上,且∠1=∠2.(1)那么DE与BC平行吗?为什么?(2)如果∠B=40°,且∠A比∠ACB小10°,求∠DEC的度数.【思路点拨】(1)根据CD∠AB,FG∠AB,可判定CD∠FG,利用平行线的性质可知∠2=∠BCD,已知∠1=∠2,等量代换得∠1=∠BCD,故可证DE与BC平行;(2)根据三角形内角和求出∠ACB=75°,再根据平行线的性质即可求解.【解题过程】解:(1)DE∠BC,理由如下:∠CD∠AB,FG∠AB,∠CD∠FG.∠∠2=∠BCD,又∠∠1=∠2,∠∠1=∠BCD,∠DE∠BC;(2)∠∠B=40°,∠ACB﹣10°=∠A,∠∠ACB+(∠ACB﹣10°)+40°=180°,∠∠ACB=75°,由(1)知,DE∠BC,∠∠DEC+∠ACB=180°,∠∠DEC=105°.11.(2021春•老河口市期末)如图,已知∠1=∠BDC,∠2+∠3=180°.(1)求证:AD∠CE;(2)若DA平分∠BDC,CE∠AE于E,∠F AB=55°,求∠1的度数.【思路点拨】(1)根据同位角相等,两直线平行可判定AB∠CD,得到∠2=∠ADC,等量代换得出∠ADC+∠3=180°,即可根据同旁内角互补,两直线平行得解;(2)由CE∠AE,AD∠CE得出∠DAF=∠CEF=90°,再根据平行线的性质即可求出∠ADC =∠2=35°,再根据角平分线的定义即可得解.【解题过程】(1)证明:∠∠1=∠BDC,∠AB∠CD,∠∠2=∠ADC,∠∠2+∠3=180°,∠∠ADC+∠3=180°,∠AD∠CE;(2)解:∠CE∠AE于E,∠∠CEF=90°,由(1)知AD∠CE,∠∠DAF=∠CEF=90°,∠∠ADC=∠2=∠DAF﹣∠F AB,∠∠F AB=55°,∠∠ADC=35°,∠DA平分∠BDC,∠1=∠BDC,∠∠1=∠BDC=2∠ADC=70°.12.(2021春•镇江期中)已知:如图所示,∠BAC和∠ACD的平分线交于E,AE交CD于点F,∠1+∠2=90°.(1)求证:AB∠CD;(2)试探究∠2与∠3的数量关系,并说明理由.【思路点拨】(1)根据角平分线定义得出∠BAC=2∠1,∠ACD=2∠2,根据∠1+∠2=90°得出∠BAC+∠ACD =180°,根据平行线的判定得出即可;(2)根据平行线的性质和角平分线定义得出∠1=∠3,即可求出答案.【解题过程】(1)证明:∠∠BAC和∠ACD的平分线交于E,∠∠BAC=2∠1,∠ACD=2∠2,∠∠1+∠2=90°,∠∠BAC+∠ACD=180°,∠AB∠CD;(2)解:∠2+∠3=90°,理由如下:∠AF平分∠BAC,∠∠BAF=∠1,∠AB∠CD,∠∠BAF=∠3,∠∠1=∠3,∠∠1+∠2=90°,∠∠2+∠3=90°.13.(2021秋•禅城区期末)已知:如图,点B、C在线段AD的异侧,点E、F分别是线段AB、CD上的点,∠AEG=∠AGE,∠C=∠DGC.(1)求证:AB∠CD;(2)若∠AGE+∠AHF=180°,求证:∠B=∠C;(3)在(2)的条件下,若∠BFC=4∠C,求∠D的度数.【思路点拨】(1)由对顶角相等可得∠AGE=∠DGC,从而可得∠AEG=∠C,则可判定AB∠CD;(2)由平角的定义可得∠AGE+∠EGH=180°,从而可求得∠EGH=∠AHF,则可判定EC∠BF,则有∠B=∠AEG,从而可求证;(3)由(2)得BF∠EC,则有∠C+∠BFC=180°,从而可求∠C的度数,利用三角形的内角和即可求∠D的度数.【解题过程】(1)证明:∠∠AEG=∠AGE,∠C=∠DGC,∠AGE=∠DGC,∠∠AEG=∠C,∠AB∠CD;(2)证明:∠∠AGE+∠EGH=180°,∠AGE+∠AHF=180°,∠∠EGH=∠AHF,∠EC∠BF,∠∠B=∠AEG,∠AB∠CD,∠∠C=∠AEG,∠∠B=∠C;(3)解:∠BF∠EC,∠∠C+∠BFC=180°,∠∠BFC=4∠C,∠∠C+4∠C=180°,解得∠C=36°,∠∠C=∠DGC,∠∠DGC=36°,∠∠D=180°﹣∠C﹣∠DGC=108°.14.(2021秋•南岗区期末)已知:在四边形ABCD中,∠B=∠D,点E在边BC的延长线上,连接AE交CD于点F,若∠BAF+∠AFC=180°.(1)如图1,求证:AD∠BC;(2)如图2,过点D作DG∠AE交BE的延长线于点C,若∠G=∠B,在不添加任何辅助线的情况下,请直接写出图2中除∠B以外的四个与∠G相等的角.【思路点拨】(1)由已知条件可得AB∠CD,从而有∠B=∠ECD,则可求得∠D=∠ECD,即可得AD∠BC;(2)利用平行线的性质进行求解即可.【解题过程】(1)证明:∠∠BAF+∠AFC=180°,∠AB∠CD,∠∠B=∠ECD,∠∠D=∠ECD,∠AD∠BC;(2)∠DG∠AE,∠∠G=∠AEB,由(1)得AD∠BC,∠∠AEB=∠DAE,∠ADC=∠DCG,∠∠G=∠DAE,∠∠B=∠ADC,∠G=∠B,∠∠G=∠ADC=∠DCG,综上所述,所∠G相等的角有:∠AEB,∠DAE,∠ADC,∠DCG.15.(2021秋•安居区期末)如图,∠ADE+∠BCF=180°,AF平分∠BAD,∠BAD=2∠F.(1)AD与BC平行吗?请说明理由.(2)AB与EF的位置关系如何?为什么?(3)若BE平分∠ABC.试说明:∠∠ABC=2∠E;∠∠E+∠F=90°.【思路点拨】(1)由∠ADE+∠BCF=180°结合邻补角互补,可得出∠BCF=∠ADC,再利用“同位角相等,两直线平行”可得出AD∠BC;(2)根据角平分线的定义及∠BAD=2∠F,可得出∠BAF=∠F,再利用“内错角相等,两直线平行”可得出AB∠EF;(3)∠由AB∠EF,利用“两直线平行,内错角相等”可得出∠ABE=∠E,结合角平分线的定义可得出∠ABC=2∠E;∠由AD∠BC,利用“两直线平行,同旁内角互补”可得出∠BAD+∠ABC=180°,再结合∠BAD =2∠F,∠ABC=2∠E可得出∠E+∠F=90°.【解题过程】解:(1)AD∠BC,理由如下:∠∠ADE+∠BCF=180°,∠ADE+∠ADC=180°,∠∠BCF=∠ADC,(2)AB∠EF,理由如下:∠AF平分∠BAD,∠BAD=2∠F,∠BAD=∠F,∠∠BAF=12∠AB∠EF.(3)∠∠ABC=2∠E,理由如下:∠AB∠EF,∠∠ABE=∠E.∠BE平分∠ABC,∠∠ABC=2∠ABE=2∠E.∠∠E+∠F=90°,理由如下:∠AD∠BC,∠∠BAD+∠ABC=180°.∠∠BAD=2∠F,∠ABC=2∠E,∠2∠E+2∠F=180°,∠∠E+∠F=90°.16.(2021春•铁西区期末)如图,直线MN分别与直线AC、DG交于点B、F,且∠1=∠2.∠ABF 的角平分线BE交直线DG于点E,∠BFG的角平分线FC交直线AC于点C.(1)请直接写出直线AC与DG的位置关系;(2)求证:BE∠CF;(3)若∠C=35°,求∠BED的度数.【思路点拨】(1)由对顶角相等可得∠ABF=∠1,从而有∠ABF=∠2,即可得AC∠DG;(2)求出∠1=∠BFG,根据平行线的判定得出AC∠DG,求出∠EBF=∠BFC,根据平行线的判定得出即可;(3)根据平行线的性质得出∠C=∠CFG=∠BEF=35°,再求出答案即可.【解题过程】解:(1)AC∠DG,理由如下:∠∠ABF=∠1,∠1=∠2,∠∠ABF=∠2,∠AC∠DG;(2)由(1)知AC∠DG,∠∠ABF=∠BFG,∠∠ABF的角平分线BE交直线DG于点E,∠BFG的角平分线FC交直线AC于点C,∠∠EBF=12∠ABF,∠CFB=12∠BFG,∠∠EBF=∠CFB,∠BE∠CF.(3)∠AC∠DG,∠C=35°,∠∠C=∠CFG=35°,∠BE∠CF,∠∠CFG=∠BEG=35°,∠∠BED=180°﹣∠BEG=145°.17.(2021春•广陵区校级期中)如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.(1)试判断直线AB与直线CD的位置关系,并说明理由;(2)如图2,∠AEF与∠EFC的角平分线交于点P,EP延长线与CD交于点G,点H是MN 上一点,且PF∠GH,试判断直GH与EG的位置关系,并说明理由.【思路点拨】(1)利用邻补角的定义及已知得出∠1=∠CFE,即可判定AB∠CD;(2)利用(1)中平行线的性质推知∠AEF+∠EFC=180°,然后根据角平分线的性质、三角形内角和定理证得∠EPF=90°,即EG∠PF,故结合已知条件PF∠GH,易证GH∠EG;【解题过程】解:(1)AB∠CD,理由如下:∠∠1与∠2互补,∠∠1+∠2=180°,又∠∠2+∠CFE=180°,∠∠1=∠CFE,∠AB∠CD;(2)GH∠EG,理由如下:由(1)知,AB∠CD,∠∠AEF+∠EFC=180°.又∠∠AEF与∠EFC的角平分线交于点P,∠∠FEP+∠EFP=1(∠BEF+∠EFD)=90°,2∠∠EPF=90°,即EG∠PF,∠PF∠GH,∠GH∠EG.18.(2021秋•嵩县期末)图1展示了光线反射定律:EF是镜面AB的垂线,一束光线m射到平面镜AB上,被AB反射后的光线为n,则入射光线m,反射光线n与垂线EF所夹的锐角θ1=θ2.(1)在图1中,证明:∠1=∠2.(2)图2中,AB,BC是平面镜,入射光线m经过两次反射后得到反射光线n,已知∠1=30°,∠4=60°,判断直线m与直线n的位置关系,并说明理由.(3)图3是潜望镜工作原理示意图,AB,CD是平行放置的两面平面镜.请解释进入潜望镜的光线m为什么和离开潜望镜的光线n是平行的?【思路点拨】(1)根据角的关系解答即可;(2)求出∠5+∠6=180°,根据平行线的判定得出即可;(3)根据平行线的性质和平均的定义得到∠5=∠6,根据平行线的判定得出即可.【解题过程】(1)证明:∠∠AFE=∠BFE=90°,∠θ1=θ2.(2)解:直线m∠直线n,理由:如图2,∠∠1=∠2=30°,∠3=∠4=60°,∠∠5=180°﹣∠1﹣∠2=120°,∠6=180°﹣∠3﹣∠4=60°,∠∠5+∠6=180°,∠直线m∠直线n;(3)解:∠AB∠CD,∠∠2=∠3,∠∠1=∠2,∠3=∠4,∠∠1=∠2=∠3=∠4,∠180°﹣∠1﹣∠2=180°﹣∠3﹣∠4,即:∠5=∠6,∠m∠n.19.(2021秋•上蔡县期末)已知:如图,AB∠CD∠GH,GH过点P.(1)如图1,若∠BAP=40°,∠DCP=30°,则∠APC=(直接写出结果);(2)如图2,直线MN分别交AB于点E,交CD于点F,点P在线段EF上,点Q在射线FC上.若∠MEB=110°,∠PQF=50°,求∠EPQ的度数;(3)如图3,点P在射线FN上,点Q在射线FD上,∠AEF的平分线交CD于点O.若∠PQF= 1∠MEB,试判断OE与PQ是否平行?并说明理由.2(1)依据平行线的性质,即可得到∠APG =∠BAP =40°,∠CPG =∠DCP =30,再根据∠APC =∠APG +∠CPG 进行计算即可;(2)利用邻补角的定义可得∠BEP =180°﹣110°=70°,利用(1)的结论即可得∠EPQ 的度数; (3)根据对顶角相等以及角平分线的定义可得∠PQF =12∠MEB =12∠AEF =∠AEO ,再根据平行线的性质∠AEO =∠EOF ,可得∠PQF =∠EOF ,根据内错角相等两直线平行即可得OE ∠PQ .【解题过程】解:(1)∠AB ∠CD ∠GH ,∠∠APG =∠BAP =40°,∠CPG =∠DCP =30,∠∠APC =∠APG +∠CPG =40°+30°=70°,故答案为:70°;(2)∠∠MEB =110°,∠∠BEP =180°﹣110°=70°,由(1)可得:∠EPQ =∠EPG +∠QPG =∠BEP +∠PQF =70°+50°=120°;(3)OE ∠PQ .理由:∠∠PQF =12∠MEB ,∠MEB =∠AEF ,∠∠PQF =12∠MEB =12∠AEF ,∠EO 平分∠AEF .∠∠PQF =12∠AEF =∠AEO , ∠AB ∠CD ,∠∠AEO =∠EOF ,∠∠PQF =∠EOF ,∠OE ∠PQ .20.(2021春•汉阳区期中)如图1,已知两条直线AB ,CD 被直线EF 所截,分别交于点E ,F ,EM 平分∠AEF 交CD 于点M ,且∠FEM =∠FME .(1)直线AB 与直线CD 的位置关系是 ;(2)如图2,点G 是射线FD 上一动点(不与点F 重合),EH 平分∠FEG 交CD 于点H ,过点H 作HN ∠EM 于点N ,设∠EHN =α,∠EGF =β.∠当点G 在运动过程中,若β=56°,求α的度数;∠当点G 在运动过程中,α和β之间有怎样的数量关系?请写出你的猜想,并加以证明.【思路点拨】(1)根据角平分线的性质可得∠AEM=∠FEM,由已知条件∠FEM=∠FME,等量代换可得∠AEM=∠FME,由平行线的判定即可得出答案;(2)由平行线的性质可得β=∠GEB,由平角的性质可得∠AED=180°﹣∠GEB,根据角平分线的性质可得∠CEF=12∠AEF,∠FEH=12∠FEG,由∠CEH=∠CEF+∠FEH可计算出度数,根据垂线的性质可得α+∠CEH=90°,代入计算即可得出答案;(3)证明方法同(2).【解题过程】证明:(1)∠EM平分∠AEF,∠∠AEM=∠FEM,∠∠FEM=∠FME,∠∠AEM=∠FME,∠AB∠CD.故答案为:AB∠CD;(2)∠∠AB∠CD,∠β=∠GEB=56°,∠∠AEG=180°﹣∠GEB=180°﹣56°=124°,∠EH平分∠FEG,EM平分∠AEF,∠∠CEF=12∠AEF,∠FEH=12∠FEG,∠∠CEH=∠CEF+∠FEH=12∠AEF+12∠FEG=12(∠AEF+∠FEG)=12∠AED=12×124°=62°,∠HN∠EM,∠α+∠CEH=90°,∠α=90°﹣∠CEH=90°﹣62°=28°;∠a=12β.理由如下:∠AB∠CD,∠β=∠GEB,∠∠AED=180°﹣∠GEB=180°﹣β,∠EH平分∠FEG,EM平分∠AEF,∠∠CEF=12∠AEF,∠FEH=12∠FEG,∠∠CEH=∠CEF+∠FEH=12∠AEF+12∠FEG=12(∠AEF+∠FEG)=12∠AEG=12(180°−β),∠HN∠EM,∠α+∠CEH=90°,∠α+12(180°−β)=90°,即a=12β.21.(2021秋•南岗区校级期中)已知,直线EF分别与直线AB、CD相交于点G、H,并且∠AGE+∠DHE=180°.(1)如图1,求证:AB∠CD.(2)如图2,点M在直线AB、CD之间,连接MG、HM,当∠AGM=32°,∠MHC=68°时,求∠GMH的度数.(3)只保持(2)中所求∠GMH的度数不变,如图3,GP是∠AGM的平分线,HQ是∠MHD 的平分线,作HN∠PG,则∠QHN的度数是否改变?若不发生改变,请求出它的度数.若发生改变,请说明理由.(本题中的角均为大于0°且小于180°的角)【思路点拨】(1)先由邻补角得到∠AGE+∠BGE=180°,然后结合∠AGE+∠DHE=180°得到∠BGE=∠DHE,最后得证AB∠CD;(2)先由AB∠CD得到∠AGH+∠CHG=180°,即∠AGM+∠MGH+∠MHG+∠MHC=180°,再结合∠MGH+∠MHG+∠GMH=180°得到∠GMH=∠AGM+∠MHC,最后结合已知条件得到∠GMH的大小;(3)先由(2)得到∠AGM+∠MHC=∠GMH=100°,∠MGH+∠MHG=80°,然后结合角平分线的定义得到∠MGP和∠MHQ,再结合HN∠PG得到∠GHN=∠PGH,最后由∠QHN=∠GHN﹣∠GHQ求得∠QHN的大小.【解题过程】(1)证明:∠∠AGE +∠BGE =180°,∠AGE +∠DHE =180°,∠∠BGE =∠DHE ,∠AB ∠CD .(2)解:∠AB ∠CD ,∠∠AGH +∠CHG =180°,即∠AGM +∠MGH +∠MHG +∠MHC =180°,∠∠MGH +∠MHG +∠GMH =180°,∠∠GMH =∠AGM +∠MHC ,∠∠AGM =32°,∠MHC =68°,∠∠GMH =100°.(3)解:∠QHN 的度数不发生改变,理由如下,由(2)得,∠AGM +∠MHC =∠GMH =100°,∠∠MGH +∠MHG =80°,∠GP 、HQ 分别平分∠MGA 和∠MHD ,∠∠MGP =12∠MGA ,∠MHQ =12∠MHD =12(180°﹣∠MHC )=90°−12∠MHC , ∠∠PGH =∠MGP +∠MGH =12∠MGA +∠MGH , ∠HN ∠PG , ∠∠GHN =∠PGH =12∠MGA +∠MGH ,∠∠QHN =∠GHN ﹣∠GHQ =(12∠MGA +∠MGH )﹣(∠MHQ ﹣∠MHG )=12∠MGA +∠MGH ﹣∠MHQ +∠MHG =12∠MGA +80°﹣∠MHQ ,∠∠QHN =12∠MGA +80°﹣(90°−12∠MHC )=﹣10°+12(∠MGA +∠MHC )=﹣10°+12×100°=40°.22.(2021秋•香坊区校级期中)点E 在射线DA 上,点F 、G 为射线BC 上两个动点,满足∠DBF =∠DEF ,∠BDG =∠BGD ,DG 平分∠BDE .(1)如图1,当点G 在F 右侧时,求证:BD ∠EF ;(2)如图2,当点G 在BF 左侧时,求证:∠DGE =∠BDG +∠FEG ;(3)如图3,在(2)的条件下,P 为BD 延长线上一点,DM 平分∠BDG ,交BC 于点M ,DN 平分∠PDM ,交EF 于点N ,连接NG ,若DG ∠NG ,∠B ﹣∠DNG =∠EDN ,求∠B 的度数.【思路点拨】(1)通过证明∠DBF=∠EFG,利用同位角相等,两直线平行即可得出结论;(2)过点E作GH∠BD,交AD于点H,利用(1)的结论和平行线的性质即可得出结论;(3)设∠BDM=∠MDG=α,则∠BDG=∠EDG=∠DGB=2α,∠PDE=180°﹣4α,∠PDM =180°﹣α;利用已知条件用含α的式子表示∠PDN,∠EDN,∠GDN,∠DNG,再利用∠B ﹣∠DNG=∠EDN,得到关于α的方程,解方程求得α的值,则∠B=180°﹣4α,结论可求.【解题过程】证明:(1)∠DG平分∠BDE,∠∠BDG=∠ADG.又∠∠BDG=∠BGD,∠∠ADG=∠DGB.∠AD∠BC.∠∠DEF=∠EFG.∠∠DBF=∠DEF,∠∠DBF=∠EFG.∠BD∠EF.(2)过点G作GH∠BD,交AD于点H,如图,∠BD∠EF,∠GH∠EF.∠∠BDG=∠DGH,∠GEF=∠HGE,∠∠DGE=∠DGH+∠HGE,∠∠DGE=∠BDG+∠FEG.(3)设∠BDM=∠MDG=α,则∠BDG=∠EDG=∠DGB=2α,∠PDE=180°﹣4α.∠∠PDM=180°﹣α.∠DN平分∠PDM∠∠PDN=∠MDN=90°−α2.∠∠EDN=∠PDN−∠PDE=90°−α2−(180°−4α)=72α−90°.∠∠GDN=∠MDN﹣∠MDG=90°−α2−α=90°−32α.∠DG∠ON,∠∠DNG=90°.∠∠DNG=90°−(90°−32α)=32α.∠DE∠BF,∠∠B=∠PDE=180°﹣4α.∠∠B﹣∠DNG=∠EDN,∠180°−4α−32α=72α−90°,解得:α=30°.∠∠B=180°﹣4α=60°.。
平行线的性质知识题(含答案解析)
2019年4月16日初中数学作业学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,AC∥BE,∠ABE=70°,则∠A的度数为()A.70∘B.65∘C.50∘D.140∘【答案】A【解析】【分析】根据平行线的性质进行判断即可,两直线平行,内错角相等.【详解】解:∵AC∥BE,∴∠A=∠ABE=70°,故选:A.【点睛】本题主要考查了平行的性质,解题时注意:两条平行线被第三条直线所截,内错角相等.2.如图在ΔABC中,已知∠1+∠2=180°,∠3=∠B=72°,∠AED=58°,则∠C=()A.32°B.58°C.72°D.108°【答案】B【解析】【分析】首先根据∠1+∠EFD=180°和∠1+∠2=180°可以证明∠EFD=∠2,再根据内错角相等,两直线平行可得AB∥EF,进而得到∠ADE=∠3,再结合条件∠3=∠B可得∠ADE=∠B,进而得到DE∥BC,再由平行线的性质可得∠AED=∠C.【详解】∵∠1+∠EFD=180°,∠1+∠2=180°,∴∠EFD=∠2,∴AB∥EF∴∠ADE=∠3,∵∠3=∠B,∴∠ADE=∠B,∴DE∥BC,∴∠AED=∠C,∵∠AED=58°,∴∠C=58°,故选B.【点睛】此题主要考查了平行线的判定与性质,关键是掌握平行线的判定定理和性质定理.3.如图,已知直线c与a、b分别交于点A、B,且∠1=120°,当∠2=()时,直线a∥b.A.60∘B.120∘C.30∘D.150∘【答案】B【解析】【分析】先根据对顶角相等求出∠3的度数,再由平行线的判定即可得出结论.【详解】解:∵∠1=120°,∠1与∠3是对顶角,∴∠1=∠3=120°,∵∠2=∠3=120°,∴直线a∥b,故选B.【点睛】本题考查的是平行线的判定,用到的知识点为:同位角相等,两直线平行.4.如图a∥b,∠1与∠2互余,∠3=115°,则∠4等于()A.115°B.155°C.135°D.125°【答案】B【解析】【分析】根据两直线平行同旁内角互补以及互余互补的定义可计算出∠4的值.【详解】如图,∵∠3与∠5是对顶角,∴∠5=∠3=115°,∵a∥b,∴∠2+∠4=180°,∠1+∠5=180°,∴∠1=180°-115°=65°,又∵∠1与∠2互余,∴∠2=90°-∠1=25°,∴∠4=180°-∠2=180°-25°=155°,故选B.【点睛】本题考查了平行线的性质以及余角和补角的知识,熟练掌握相关性质是解题的关键. 5.如图,给出如下推理:①∠1=∠3.∴AD∥BC;②∠A+∠1+∠2=180°,∴AB∥CD;③∠A+∠3+∠4=180°,∴AB∥CD;④∠2=∠4,∴AD∥BC其中正确的推理有()A.①②B.③④C.①③D.②④【答案】D【解析】【分析】根据平行线的性质与判定解答即可.【详解】∠1=∠3即内错角相等.∴CD//BA故①错误;∠A+∠1+∠2=180°即同旁内角互补.∴AB//CD故②正确;∠A+∠3+∠4=180°,即同旁内角互补∴AD//CB,故③错误;∠2=∠4,即内错角相等∴AD//BC故④正确,即②④正确,故选D.【点睛】此题主要考察平行线的性质与判定,正确理解条件与结论之间的关系是解题的关键. 6.如图AB∥CD,∠ABE=120°,∠ECD=25°,则∠E=()A.75°B.80°C.85°D.95°【答案】C【解析】【分析】过点E作EF∥CD,根据AB∥CD可得EF∥AB,利用两直线平行,同旁内角互补和内错角相等,分别求出∠BEF和∠FEC的度数,二者相加即可.【详解】过点E作EF∥CD,如图所示:∵AB∥CD,∴EF∥AB,∵∠ABE=120°,∴∠BEF=60°,∵EF∥CD,∠ECD=25°,∴∠FEC=∠ECD=25°,∴∠E=∠BEF+∠ECD=60°+25°=85°.故选:C.【点睛】考查了平行线性质,解答此题的关键是利用两直线平行,分别求出∠BEF和∠FEC的度数.7.如图,l1∥l2,∠1=50°,则∠2等于( )A.135°B.130°C.50°D.40°【答案】B【解析】【分析】两直线平行,同旁内角互补,据此进行解答.【详解】∵l1∥l2,∠1=50°,∴∠2=180°-∠1=180°-50°=130°,故选B.【点睛】本题应用的知识点为:两直线平行,同旁内角互补.8.如图,将三角形ABC沿AB方向平移后,到达三角形BDE的位置.若∠CAB=50°,∠ABC=100°,则∠1的度数为( )A.30°B.40°C.50°D.60°【答案】A【解析】【分析】根据平移的性质得出AC∥BE,以及∠CAB=∠EBD=50°,进而求出∠1的度数.【详解】∵将△ABC沿直线AB向右平移后到达△BDE的位置,∴AC∥BE,∴∠CAB=∠EBD=50°,∵∠ABC=100°,∴∠1的度数为:180°-50°-100°=30°.故选A.【点睛】此题主要考查了平移的性质,得出∠CAB=∠EBD=50°是解决问题的关键.二、填空题9.如果∠1两边与∠2的两边互相平行,且∠1=(3x+20)°,∠2=(8x−5)°,则∠1的度数为__.【答案】35°或55°【解析】【分析】根据:∠1两边与∠2的两边互相平行得出∠1=∠2或∠1+∠2=180°,代入求出x,即可得出答案.【详解】∵∠1两边与∠2的两边互相平行,∴∠1=∠2或∠1+∠2=180°,∵∠1=(3x+20)°,∠2=(8x-5)°,∴3x+20=8x-5或3x+20+8x-5=180,解得:x=5,或x=15,当x=5时,∠1=35°,当x=15时,∠1=65°,故答案为:35°或65°.【点睛】本题考查了平行线的性质的应用,能知道“如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补”是解此题的关键.10.如图,∠1=70°,a∥b,则∠2=_____________,【答案】110°【解析】【分析】如图,根据对顶角相等可得∠3=∠1=70°,再根据平行线的性质即可求得∠2的度数. 【详解】如图,∵∠1=70°,∴∠3=∠1=70°,∵a ∥b,∴∠2+∠3=180°,∴∠2=180°-70°=110°,故答案为:110°.【点睛】本题考查了平行线的性质、对顶角的性质,熟练掌握平行线的性质是解题的关键. 11.如图,a//b,∠1=110°,∠3=50°,则∠2的度数是_________.【答案】60【解析】【分析】如图,先利用邻补角求出∠4=70°,再根据a//b,得∠4+∠2+∠3=180°,即可求出∠2的度数.【详解】∵∠1=110°,∴∠4=180°-110°=70°,∵a//b,∴∠4+∠2+∠3=180°,则∠2=60°.故填60.【点睛】此题主要考察平行线的性质.12.如图,工程队铺设一公路,他们从点A处铺设到点B处时,由于水塘挡路,他们决定改变方向经过点C,再拐到点D,然后沿着与AB平行的DE方向继续铺设,如果∠ABC=120°,∠CDE=140°,则∠BCD的度数是________.【答案】80°.【解析】【分析】过C作MN∥AB,根据平行线的判定可得DE∥NM∥AB,再根据平行线的性质可得∠1和∠2的度数,进而可得∠BCD的度数.解:过C作MN∥AB,∵AB∥DE,∴MN∥DE,∴∠2+∠D=180°,∵∠CDE=140°,∴∠2=40°,∵MN∥AB,∴∠1+∠B=180°,∵∠ABC=120°,∴∠1=60°,∴∠BCD=180°-60°-40°=80°,故答案为:80°.【点睛】此题主要考查了平行线的判定和性质,关键是掌握两直线平行,同旁内角互补.13.如图,直线l1、l2分别与直线l3、l4相交,∠1与∠3互余,∠3余角与∠2互补,∠4=125°,则∠3=______.【答案】55°.【分析】求出∠5的度数,根据∠1与∠3互余和∠3的余角与∠2互补求出∠1+∠2=180°,根据平行线的判定得出l1∥l2,根据平行线的性质求出即可.【详解】解:∵∠4=125°,∴∠5=180°-125°=55°,∵∠1与∠3互余,∠3的余角与∠2互补,∴∠1+∠2=180°,∴l1∥l2,∴∠3=∠5=55°,故答案是:55°.【点睛】本题考查了平行线的性质和判定的应用,能求出l1∥l2是解此题的关键,注意:两直线平行,内错角相等.14.点D、E、F分别在AB、AC、BC上(1)∵∠C=_______ ∴DE//BC(2)∵∠C=________ ∴AC//DF(3)∵∠2=∠1∴____//___________(4)∵∠2=∠3∴____//___________【答案】(1)∠1;(2)∠3;(3)AC; DF(4)DE;BC.【分析】在解答此类问题时一定要对平行线的性质和判定定理有一个明确的认识和把握,在此基础上结合题设的相关要求和已知条件,就可以解答出正确的结论.【详解】(1)∵∠C=∠1,∴DE//BC(2)∵∠C=∠3, ∴AC//DF(3)∵∠2=∠1∴AC//DF(4)∵∠2=∠3∴DE//BC【点睛】本题考查的是平行线的性质和判定的相关知识,解题关键是熟记平行线的性质和判定定理.15.小明到工厂去进行社会实践活动时,发现工人师傅生产了一种如图所示的零件,工人师傅告诉它,∠A=400,且AB∥CD.小明马上运用已学的数学知识得出了∠C的度数,聪明的你一定知道∠C=_______.【答案】1400【解析】【分析】根据“两直线平行,同旁内角互补”即可解答.【详解】解:∠C=40°理由:∵AB∥CD.∴∠A+∠C=180°(两直线平行,同旁内角互补)∴∠C=180°-∠A=180°-40°=140°故答案为:140°.【点睛】本题考查平行线的性质.16.一条公路两次转弯后又回到原来的方向(即AB∥CD,如图所示),第一次转弯时的∠B=1400,那么∠C应是_______.【答案】140°【解析】【分析】根据两直线平行,内错角相等即可解答.【详解】解:∵AB∥CD,∴∠B=∠C=140°.【点睛】本题考查两直线平行,内错角相等.三、解答题17.如图,已知AB//CD,分别探讨下面的四个图形中∠APC、∠PAB和∠PCD的关系,并请你从所得的四个关系中任选一个,说明成立的理由.(1)图①的关系是_____________;(2)图②的关系是_____________;(3)图③的关系是_____________;(4)图④的关系是_____________;【答案】(1)∠APC+∠PAB+∠PCD=360°;(2)∠APC=∠PAB+∠PCD;(3)∠PCD=∠APC+∠PAB;(4)∠PAB=∠APC+∠PCD.【解析】【分析】(1)过点P作PE∥AB,则AB∥PE∥CD,再根据两直线平行同旁内角互补即可解答;(2)过点P作l∥AB,则AB∥CD∥l,再根据两直线内错角相等即可解答;(3)根据AB∥CD,可得出∠PEB=∠PCD,再根据三角形外角的性质进行解答;(4)根据AB∥CD,可得出∠PAB=∠PFD,再根据∠PFD是△CPF的外角,由三角形外角的性质进行解答;【详解】(1)过点P作PE∥AB,则AB∥PE∥CD,∴∠1+∠PAB=180°,∠2+∠PCD=180°,∴∠APC+∠PAB+∠PCD=360°;(2)过点P作直线l∥AB,∵AB∥CD,∴AB∥PE∥CD,∴∠PAB=∠3,∠PCD=∠4,∴∠APC=∠PAB+∠PCD;(3)∵AB∥CD,∴∠PEB=∠PCD,∵∠PEB是△APE的外角,∴∠PEB=∠PAB+∠APC,∴∠PCD=∠APC+∠PAB;(4)∵AB∥CD,∴∠PAB=∠PFD,∵∠PFD是△CPF的外角,∴∠PCD+∠APC=∠PFD,∴∠PAB=∠APC+∠PCD.【点睛】本题考查的是平行线的性质及三角形外角的性质,能根据题意作出辅助线,再利用平行线的性质进行解答是解答此题的关键.18.如图,已知AC∥ED,ED∥GF,∠BDF=90°.(1)若∠ABD=150°,求∠GFD的度数;(2)若∠ABD=θ,求∠GFD-∠CBD的度数.【答案】(1)∠G FD=120°;(2)∠GFD-∠CBD =90°.【解析】【分析】(1)根据平行线的性质可得∠ABD+∠BDE=180°,进而可得∠BDE=30°,然后再计算出∠EDF的度数,再根据平行线的性质可得∠EDF+∠F=180°,进而可得∠GFD的度数;(2)与(1)类似,表示出∠F的度数,再表示出∠CBD的度数,再求差即可.【详解】解:(1)∵AC∥ED,∴∠ABD+∠BDE=180°,∵∠ABD=150°,∴∠BDE=30°,∵∠BDF=90°,∴∠EDF=60°,∵ED∥GF,∴∠EDF+∠F=180°,∴∠F=120°;(2)∵AC∥ED,∴∠ABD+∠BDE=180°,∵∠ABD=θ,∴∠BDE=180°-θ,∵∠BDF=90°,∴∠EDF=90°-(180°-θ)=θ-90°,∵ED∥GF,∴∠EDF+∠F=180°,∴∠F=180°-(θ-90°)=270°-θ,∵∠ABD=θ,∴∠CBD=180°-θ,∴∠GFD-∠CBD=270°-θ-180°+θ=90°.【点睛】此题主要考查了平行线的性质,关键是掌握两直线平行,同旁内角互补.19.如图,已知∠1=∠2,∠GFA=40°,∠HAQ=15°,∠ACB=70°,AQ平分∠FAC,求证:BD∥GE∥AH.【答案】见解析;【解析】【分析】由同位角∠1=∠2,推知AH∥GE,再根据平行线的性质、角平分线的定义证得内错角∠HAC=55°+15°=70°=∠ACB,所以BD∥AH,最后由平行线的递进关系证得BD∥GE∥AH.【详解】证明:∵∠1=∠2,∴AH∥GE,∴∠GFA=∠FAH.∵∠GFA=40°,∴∠FAH=40°,∴∠FAQ=∠FAH+∠HAQ,∴∠FAQ=55°.又∵AQ平分∠FAC,∴∠QAC=∠FAQ=55°,∵∠HAC=∠QAC+∠HAQ,∴∠HAC=55°+15°=70°=∠ACB,∴BD∥AH,∴BD∥GE∥AH.【点睛】本题考查了平行线的判定与性质.解答此题的关键是注意平行线的性质和判定定理的综合运用.20.如图,AB∥CD∥EF,且∠ABE=70°,∠ECD=150°,求∠BEC的度数.【答案】∠BEC =40°.【解析】【分析】根据∠BEC=∠BEF-∠ECF,求出∠BEF,∠CEF即可解决问题.【详解】∵AB∥EF,∴∠ABE=∠BEF=70°,∵CD∥EF,∴∠ECD+∠CEF=180°,∵∠ECD=150°,∴∠CEF=30°,∴∠BEC=∠BEF-∠CEF=40°.【点睛】本题考查平行线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.21.已知:如图,直线EF与AB,CD分别相交于点E,F.(1)如图1,若∠1=120°,∠2=60°,则AB和CD的位置关系为;(2)在(1)的情况下,若点P是平面内的一个动点,连接PE,PF,探索∠EPF,∠PEB,∠PFD三个角之间的关系:①当点P在图2的位置时,可得∠EPF=∠PEB+∠PFD;请阅读下面的解答过程,并填空(理由或数学式):解:如图2,过点P作MN∥AB,则∠EPM=∠PEB(两直线平行,内错角相等).∵AB∥CD(已知),MN∥AB(作图),∴MN∥CD(平行于同一条直线的两条直线互相平行).∴∠MPF=∠PFD.∴∠EPM+∠MPF=∠PEB+∠PFD(等式的性质),即∠EPF=∠PEB+∠PFD;②当点P在图3的位置时,∠EPF,∠PEB,∠PFD三个角之间有何关系并证明;③当点P在图4的位置时,请直接写出∠EPF,∠PEB,∠PFD三个角之间的关系.【答案】(1)见解析;(2)①见详解;②∠PEB+∠EPF+∠PFD=360°,③∠EPF+∠PFD =∠PEB.【解析】【分析】(1)根据对顶角相等可得∠BEF的度数,根据同旁内角互补,两直线平行,即可得出结论;(2)①过点P作MN∥AB,根据平行线的性质得∠EPM=∠PEB,且有MN∥CD,所以∠MPF=∠PFD,然后利用等式性质易得∠EPF=∠PEB+∠PFD.②③的解题方法与①一样,分别过点P作MN∥AB,然后利用平行线的性质得到三个角之间的关系.【详解】(1)∵∠1=120°,∴∠BEF=120°,又∵∠2=60°,∴∠2+∠BEF=180°,∴AB∥CD;(2)①如图2,过点P作MN∥AB,则∠EPM=∠PEB(两直线平行,内错角相等).∵AB∥CD(已知),MN∥AB(作图),∴MN∥CD(平行于同一条直线的两条直线互相平行).∴∠MPF=∠PFD,∴∠EPM+∠FPM=∠PEB+∠PFD(等式的性质),即∠EPF=∠PEB+∠PFD,故答案为:两直线平行,内错角相等;平行于同一条直线的两条直线互相平行;∠EPM,∠MPF;②∠EPF+∠PEB+∠PFD=360°;证明:如图3,过作PM∥AB,∵AB∥CD,MP∥AB,∴MP∥CD,∴∠BEP+∠EPM=180°,∠DFP+∠FPM=180°,∴∠BEP+∠EPM+∠FPM+∠PFD=360°,即∠EPF+∠PEB+∠PFD=360°;③∠EPF+∠PFD=∠PEB.理由:如图4,过作PM∥AB,∵AB∥CD,MP∥AB,∴MP∥CD,∴∠PEB=∠MPE,∠PFD=∠MPF,∵∠EPF+∠FPM=∠MPE,∴∠EPF+∠PFD=∠PEB.【点睛】考查了平行线的判定与性质,解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系;平行线的性质是由平行关系来寻找角的数量关系.22.如图,已知直线a∥b且被直线l所截,∠2=85°,求∠1的度数.请在横线上补全求解的过程或依据.【答案】见解析.【解析】【分析】根据平行线的性质和对顶角相等的性质填空.【详解】解:∵a∥b(已知),∴∠1=∠3(两直线平行,同位角相等).∵∠2=∠3(对顶角相等),∠2=85°(已知),∴∠1=85°(等量代换).【点睛】考查了平行线的性质,学会书写证明过程是所要训练的重点.23.如图,点D、E在AB上,点F、G分别在BC、CA上,且DG∥BC,∠1=∠2.(1)求证:DC∥EF;(2)若EF⊥AB,∠1=55°,求∠ADG的度数.【答案】(1)见解析(2)35°【解析】【分析】(1)由DG//BC知∠1=∠DCF,则∠2=∠DCF,即可证明DC//EF;(2)由EF⊥AB得∠B=90°-∠2=35°,再根据(1)DC//EF可知∠ADG的度数. 【详解】∵DG//BC∴∠1=∠DCF,∵∠1=∠2,∴∠2=∠DCF,∴DC//EF;(2)∵EF⊥AB,∴∠BEF=90°,∠1=∠2=55°∴∠B=90°-∠2=35°,又∵DC//EF∴∠ADG=∠B=35°.【点睛】此题主要考察平行线的性质与判定.24.如图,AB∥DE,C为BD上一点,∠A=∠BCA,∠E=∠ECD,求证:CE⊥CA.【答案】详见解析.【解析】【分析】首先根据AB∥DE,判断出∠B+∠D=180°;然后判断出∠BCA+∠ECD=90°,即可推得CE⊥CA.【详解】证明∵AB∥DE,∴∠B+∠D=180°,∵∠A=∠BCA,∠E=∠ECD,∴∠B=180°-2∠BCA,∠D=180°-2∠ECD,∴(180°-2∠BCA)+(180°-2∠ECD)=180°,∴∠BCA+∠ECD=90°,∴∠ACE=90°,∴CE⊥CA.【点睛】此题主要考查了平行线的性质和应用,要熟练掌握平行线性质的3个定理.25.(1)完成下面的推理说明:已知:如图,BE∥CF,BE、CF分别平分∠ABC和∠BCD.求证:AB∥CD.(2)说出(1)的推理中运用了哪两个互逆的真命题.【答案】(1)详见解析;(2)两个互逆的真命题为:两直线平行,内错角相等;内错角相等,两直线平行. 【解析】 【分析】(1)根据平行线的性质,可得∠1=∠2,根据角平分线的定义,可得∠ABC=∠BCD ,再根据平行线的判定,即可得出AB ∥CD,(2)在两个命题中,如果一个命题的结论和题干是另一个命题的题干和结论,则称它们为互逆命题. 【详解】(1)∵BE 、CF 分别平分∠ABC 和∠BCD (已知), ∴∠1=12∠ABC ,∠2=12∠BCD (角平分线的定义),∵BE ∥CF (已知),∴∠1=∠2(两直线平行,内错角相等), ∴12∠ABC =12∠BCD (等量代换),∴∠ABC =∠BCD (等式的性质), ∴AB ∥CD (内错角相等,两直线平行).(2)两个互逆的真命题为:两直线平行,内错角相等;内错角相等,两直线平行. 【点睛】本题考查的是平行线的判定与性质的运用,解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系;平行线的性质是由平行关系来寻找角的数量关系.命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项. 26.如图,已知:AB//DE,∠1+∠3=180°,则BC 与EF 平行吗?为什么?【答案】平行【解析】【分析】根据平行线的性质和判定即可解答.【详解】解:BC//EF证明:∵AB∥DE,∴∠1=∠2,∵∠1+∠3=180°,∴∠2+∠3=180°,∴BC∥EF.故答案为:BC//EF【点睛】本题主要考查了平行线的性质和判定定理,熟练掌握平行线的性质和判定定理是解题的关键.27.如图,已知∠A=∠C,AD⊥BE于点F,BC⊥BE,点E,D,C在同一条直线上.(1)判断AB与CD的位置关系,并说明理由;(2)若∠ABC=120°,求∠BEC的度数.【答案】(1)AB∥CD;(2)∠E=30°.【解析】【分析】(1)先根据AD⊥BE,BC⊥BE,得出AD∥BC ,故可得出∠C=∠ADE ,再由∠A=∠C得出∠A=∠ADE ,故可得出结论;(2)由AB∥CD得出∠C的度数,再由直角三角形的性质可得出结论.【详解】(1)AB∥CD,∵AD⊥BE,BC⊥BE,∴AD∥BC,∴∠C=∠ADE.∵∠A=∠C,∴∠A=∠ADE,∴AB∥C D.(2)∵AB∥CD,∠ABC=120°,∴∠C=60°,∵∠CBE=90°,∴∠E=30°.【点睛】本题考查的是平行线的判定与性质,先根据题意得出AD∥BC是解答此题的关键. 28.如图,已知AD⊥BC于点D,EF⊥BC于点F,AD平分∠BAC.求证:∠E=∠1.【答案】见解析【解析】【分析】由AD垂直于BC,EF垂直于BC,得到一对同位角相等,利用同位角相等两直线平行得到AD与EF平行,利用两直线平行内错角相等得到一对角相等,再由AD为角平分线得到一对角相等,等量代换即可得证.【详解】证明:∵AD⊥BC,EF⊥BC(已知),∴∠ADC=∠EFC=90°(垂直的定义).∴AD∥EF(同位角相等,两直线平行).∴∠1=∠BAD(两直线平行,内错角相等),∠E=∠CAD(两直线平行,同位角相等).又∵AD平分∠BAC(已知),∴∠BAD=∠CAD.∴∠1=∠E(等量代换).【点睛】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.29.如图,根据图形填空:已知:∠DAF=∠F,∠B=∠D,AB与DC平行吗?解:∠DAF=∠F ()∴AD∥BF(),∴∠D=∠DCF()∵∠B=∠D ()∴∠B=∠DCF ()∴AB∥DC()【答案】见解析.【解析】【分析】首先根据已知,应用内错角相等,两直线平行,证得AD∥BF;利用两直线平行,内错角相等,证得∠D=∠DCF,又由已知,利用等量代换,证得∠B=∠DCF,根据同位角相等,两直线平行,证得AB∥DC.【详解】解:∠DAF=∠F (已知),∴AD∥BF(内错角相等,两直线平行),∴∠D=∠DCF(两直线平行,内错角相等),∵∠B=∠D (已知),∴∠B=∠DCF (等量代换),∴AB∥DC(同位角相等,两直线平行).【点睛】本题考查了平行线的性质与判定.解答本题的关键是注意平行线的性质和判定定理的综合运用.30.如图,已知∠4=∠B,∠1=∠3,求证:AC平分∠BAD._ 【答案】证明见解析.【解析】【分析】由∠4=∠B,推出CD∥AB,再由两直线平行,内错角相等,推出∠3=∠2,然后通过等量代换推出∠1=∠2,即可推出结论.【详解】解:∵∠4=∠B,∴CD∥AB,∴∠3=∠2,又∠1=∠3,∴∠1=∠2,∴AC平分∠BAD.【点睛】本题主要考查平行线的判定与性质、等量代换、角平分线的定义,关键在于熟练运用相关的性质定理推出AC平分∠BAD.。
第二节 平行线的性质和判定(含答案)...七年级数学 学而思
第二节 平行线的性质和判定1.平行线(1)定义:在同一平面内,不相交的两条直线叫做平行线,直线a 与直线b 互相平行,记作a∥b; 注:必须强调在同一平面内,否则无法说明平行.(2)平行公理:经过直线外一点,有且只有一条直线与已知直线平行,注:点必须在直线外,而不能在直线上; (3)平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也相互平行,即“平行于同一条直线的两直线平行”.2.两条直线的位置关系在同一平面内,两条直线的位置关系只有两种:(1)相交;(2)平行,注:判断同一平面内两条直线的位置关系时,可以根据它们的公共点的个数来确定:①有且只有一个公共点,两直线相交;②无公共点,两直线平行. 3.两直线平行的判定方法 (1)平行线的定义; (2)平行公理的推论;(3)同位角相等,两直线平行; (4)内错角相等,两直线平行; (5)同旁内角互补,两直线平行. 4.平行线的性质(1)两直线平行,同位角相等;(2)两直线平行,内错角相等;(3)两直线平行,同旁内角互补.1.平行的判定和证明:证明平行一般从寻找相等的同位角,内错角或互补的同旁内角 出发,而这些角关系的获得条件一般有: ①已知平行条件; ②三角形内角和; ③角平分线; ④垂直;⑤互余互补关系.例1.如图5-2-1所示,如果,//,//CD EF EF AB 请写出一个关于3,2,1∠∠∠的等量关系125-- 225-- 325--检测1.如图5-2-2所示,已知a ‖b,0701=∠,,402ο=∠则=∠3 例2.如图5-2-3所示,已知,9021ο=∠+∠,,//AG CD FC DE ⊥求证:.//FH AG检测2.如图5-2-4所示,直线a ,b 被直线c 所截,下列条件能使b a //的是;61∠=∠①;62∠=∠②;31∠=∠③;75∠=∠④+∠2⑤;1807ο=∠.71∠=∠⑥例3.(江西兴国县期末)学习了平行线后,小龙同学想出了“过已知直线m 外一点P 画这条直线的平行线的新方法”,他是通过折一张半透明的正方形纸得到的.525--观察图5-2-5所示,经两次折叠展开后折痕CD 所在的直线即为过点P 的已知直线m 的平行线.从图中可知,小明画平行线的依据有( )①两直线平行,同位角相等; ②两直线平行,内错角相等; ③同位角相等,两直线平行; ④内错角相等,两直线平行. A.①② B.②③ C .③④ D .①④425--检测3.如图5-2-6所示,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在C D ,的位置,若,60ο=∠EFB 则=∠AED例4.已知,,100,//ο=∠=∠A B OA BC 试回答下列问题:725-- 825-- 925--(1)如图5-2-7所示,求证:;//AC OB(2)如图5-2-8所示,若点E ,F 在线段BC 上,且满足,AOC FOC ∠=∠并且OE 平分.BOF ∠则EOC ∠的度数等于 (在横线上填上答案即可);(3)在(2)的条件下,若平行移动AC ,如图5-2-9,那么OFB OCB ∠∠:的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值; (4)在(3)的条件下,如果平行移动AC 的过程中,若使,OCA OEB ∠=∠此时OCA ∠度数等于 (在横线上填上答案即可).检测4.(广东澄海区期末)如图5 -2 -10所示,直线MN 与直线AB 、CD 分别交于点E 、F ,1∠与2∠互补.(1)试判断直线AB 与直线CD 的位置关系,并说明理由; (2)如图5-2 -11所示,BEF ∠与FFD ∠的角平分线交于点P ,EP 与CD 交于点G .点H 是MN 上一点,且GHlEG ,求证:;//GH PF(3)如图5-2 -12所示,在(2)的条件下,连接PH ,K 是GH 上一点使=∠PHK ,HPK ∠作PQ 平分EPK ∠问HPQ ∠的大小是否发生变化?若不变,请求出其值;若变化,说明理由,625---122-5-5--1110225-第二节平行线的性质和判定(建议用时 35分钟)实战演练1.(浙江绍兴期末)如图5-2-1所示,,//,////DB EG DC EF AB 则图中与1∠相等的角(1∠除外)共有( )6.A 个 5.B 个 4.C 个 3.D 个2.(浙江金华中考)以下四种沿AB 折叠的方法中,不一定能判定纸带两条边线以,6互相平行的是( )125-- 225-- 325-- 425-- 525--A .如图5-2-2所示,展开后测得21∠=∠B .如图5-2-3所示,展开后测得4321∠=∠∠=∠且C .如图5-2-4所示,测得21∠=∠D .如图5-2-5所示,展开后再沿CD 折叠,两条折痕的交点为0,测得,OB OA =OD =OC3.如图5-2-6所示是五条胡同的路线图,),(F F D C B A →--→→→经过测量得到C B ∠=∠,70ο=,110ο=∠=∠E D 则图中互相平行的线有( )A .1对B .2对C .3对D .4对625-- 725-- 825-- 925--4.(山东聊城中考)如图5-2-7所示,,//CD AB ,68ο=∠B ,20ο=∠E 则D ∠的度数为( )ο28.A o B 38. ο48.C ο88.D5.如图5-2-8所示,HG EF BC AD ,,//交于点HI P ,平分,GHF ∠PM 平分EPH ∠HI 交PM 的反向延长线于Q ,//PN,HI 下列结论:,GEP EGP ∠=∠①若则;//AD PM 2=∠GEP ②;MPN ∠,2Q FPN ∠=∠③其中正确的是( )①②③.A ①③.B ②③.C ①②.D6,(山东聊城模拟)如图5-2-9所示,在四边形ABCD 中,=∠B ,120ο,50oD =∠将C ∠向内折出一个,PRC ∆恰好使,//AB CP //CR ,AD 则C ∠的度数是( )ο80.A ο85.B ο95.C o D 110.7.如图5 -2 - 10所示,已知,AB GF ⊥,21∠=∠,B AGH ∠=∠则下列结论:;//BC GH ①;HGM D ∠=∠②;//FG DE ③,AB HE ⊥④其中正确的是( )①②⋅A ③ ②③④⋅B ①③④⋅C ①②③④⋅D1125-- 1225--8.(广西玉州区期末)如图5 -2 - 11所示,已知BAD CD AB ∠,//和BCD ∠的平分线交于点E .,1001ο=∠,m BAD =∠ο则EC A ∠的度数为9,如图5 -2 - 12所示,直线,//21l l 若,125ο=∠A ,85ο=∠B 则=∠+∠21 10.如图 5 -2 - 13所示,已知,180ο=∠+∠BCD B .D B ∠=∠求证:.DFE E ∠=∠证明:οΘ180=∠+∠BCD B ( )CD AB //∴( )=∠∴B (两直线平行,同位角相等), D B ∠=∠Θ(已知), D DCE ∠=∠∴(等量代换), BF AD //∴( )DFE E ∠=∠∴( )11.如图5 -2 - 14所示,直线AB ,CD 被EF 所截,,21∠=∠,BME CNF ∠=∠求证:AB ,//CD .//NQ MP12.(山东招远市期耒)如图5-2 -15所示,点D ,E 分别在ABC ∆的边AB ,AC 上,点F 在DC 上,且,18021ο=∠+∠.3B ∠=∠求证:.//BC DE1325--1425--1525--13.小明将一直角三角板(ο30=∠A )放在如图5 -2 - 16所示的位置,且.21C ∠=∠+∠ (1)证明:;//b a(2)经测量知,1A ∠=∠求;2∠(3)如图5-2 - 17所示,将三角板进行适当转动,直角顶点始终在两直线间,M 在线段CD 上,且CEH CEM ∠=∠给出下列结论:BDFMEG∠∠①的值不变:BDF MEG ∠-∠②的值不变,可以证明,其中只有一个是正确的,请你作出正确的选择并直接写出此值,1625-- 1725--14.如图5-2-18所示,.F D B E C A ∠+∠+∠=∠+∠+∠求证:.//CD AF15.问题情景:如图5-2 - 19所示,,//CD AB ,130oPAB =∠,120ο=∠PCD 求APC ∠的度数. (1)天天同学看过图形后立即口答出:,110oAPC =∠请你补全他的推理依据.如图5 -2 - 20所示,过点P 作,//AB PE,//CD AB ΘCD AB PE ////∴( .180ο=∠+∠∴APE Aο180=∠+∠CPE C ( ),120,130οΘ=∠=∠PCD PAB O.60.50ο=∠=∴⊥CPE APE o1825--ο110=∠+∠=∠∴CPE APE APC ( )问题迁移:(2)如图5-2- 21所示,,//BC AD 当点P 在A ,B 两点之间运动时,,α∠=∠ADP ,β∠=∠BCP 求βα∠∠∠,与CPD 之间有何数量关系?请说明理由.(3)在(2)的条件下,如果点P 在A ,B 两点外侧运动时(点P 与点A ,B ,0三点不重合),请你直接写出CPD ∠与βα∠∠,之间的数量关系.1925-- 2025-- 2125--拓展创新16.(辽宁鞍山期末)实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.(1)如图5 -2 - 22所示,一束光线m 射到平面镜a 上,被a 反射到平面镜b 上,又被b 反射.若被6反射出的光线n 与光线m 平行,且,381ο=∠则=∠2 ;=∠3(2)在(1)中,若ο551=∠则=∠3 ;若,401ο=∠则=∠3(3)由(1).(2)猜想:当两平面镜a ,b 的夹角=∠3 时,可以使任何射到平面镜a 上的光线m ,经过平面镜a ,b 的两次反射后,入射光线m 与反射光线n 平行.你能说明理由吗?拓展1.有一款灯,内有两面镜子AB ,BC ,当光线经过镜子反射时,入射角等于反射角,即图5 -2 - 23、图5-2 -24中的.43,21∠=∠∠=∠2225--2325-- 2425--(1)如图5 -2 - 23所示,当BC AB ⊥时,说明为什么进入灯内的光线EF 与离开灯的光线GH 互相平行; (2)如图5-2 - 24所示,若两面镜子的夹角为)900(οο<<αα时,进入灯内的光线与离开灯的光线的夹角为),900(οο<<ββ试探索α与β的数量关系;(3)若两面镜子的夹角为),18090(οο<<αα进入灯内的光线与离开灯的光线所在直线的夹角为).900(οο<<ββ直接写出α与β的数量关系.拓展2.(湖北武昌区期末)一个长方形台球桌面ABCD )90,//,//(ο=∠A BC AD DC AB 如图5 -2 - 25所示,已知台球在与台球桌边沿碰撞的过程中,撞击线路与桌边的夹角等于反射线路与桌边的夹角,即.21∠=∠(1)台球经过如图5 -2 - 26所示的两次反弹后,撞击线路EF ,第二次反弹线路GH , 求证:;//GH EF(2)台球经过如图5 -2 - 27所示的两次反弹后,撞击线路EF 和第二次反弹线路GH 是否仍然平行,给出你的结论并说明理由.2525-- 2625-- 2725--极限挑战17.平面上有100条直线,其中有20条是互相平行的,问这100条直线最多能将平面分成部分,课堂答案培优答案。
第5章《相交线与平行线》 大题专项提升训练:平行线的判定和性质(含答案)
人教版七年级下册第5章《相交线与平行线》大题专项提升训练平行线的判定和性质1.如图,AE平分∠BAD,DF平分∠CDA,且AE∥DF,求证:AB∥CD.2.如图,AD⊥CB于D,EF⊥CB于F,∠1=∠2,∠BAC=70°,求∠AGD的度数.3.如图,已知∠1+∠2=180°,∠3=108°.求∠4的度数.4.如图,已知AB=CD,∠1=∠2.求证:BC=DA.5.如图,∠1=∠2,∠C=∠D.求证:∠A=∠F.6.如图,已知∠1+∠2=180°,∠DEF=∠A,试判断∠ACB与∠DEB的大小关系,并对结论进行说明.7.已知:如图,C,D是直线AB上两点,∠1+∠2=180°,DE平分∠CDF,EF∥AB,(1)求证:CE∥DF;(2)若∠DCE=130°,求∠DEF的度数.8.如图,D,E分别是三角形ABC的边AB,BC上的点,DE∥AC,点F在DE的延长线上,且∠DFC=∠A.(1)求证:AB∥CF;(2)若∠ACF比∠BDE大40°,求∠BDE的度数.9.如图,在△ABC中,EF⊥AB,CD⊥AB.(1)求证:EF∥CD;(2)若点G在AC边上,∠1=∠2,求证:∠DGC+∠GCB=180°.10.如图,在三角形ABC中,AD⊥BC于点D,点E是AB上一点,EF⊥BC于点F,点G是AC上一点,连接DG,且∠1=∠2.求证:AB∥DG.11.如图,在三角形ABC中,AD⊥BC,EF⊥BC,垂足分别为D、F.G为AC上一点,E为AB上一点,∠1=∠2.求证:DG∥AB.12.如图,在三角形ABC中,EF⊥AB,∠ADG=∠B,若点G在AC边上,∠1=∠2,判断CD与AB的位置关系,并说明理由.13.如图,在三角形ABC中,∠1=∠2,点E,F,G分别在BC,AB,AC上,且EF⊥AB,GD∥BC交AB于点D.请判断CD与AB的位置关系,并说明理由.14.如图,在三角形ABC中,点D、F在边BC上,点E在边AB上,点G在边AC上,AD∥EF,∠1+∠FEA=180°.求证:∠CDG=∠B.15.如图,在三角形ABC中,CD⊥AB,垂足为点D,F为BC上的点,FG⊥AB,垂足为点G,点E在AC上,连接DE,若∠EDC=∠BFG.求证:∠B=∠ADE.16.如图,在三角形ABC中,点D、F在BC边上,点E在AB边上,点G在AC边上,EF与GD的延长线交于点H,∠CDG=∠B,∠1+∠FEA=180°.(1)EH与AD平行吗?请说明理由;(2)若∠BAD=30°,求∠H的度数.17.如图,在三角形ABC中,点D,F在边BC上,点E在边AB上,点G在边AC上,EF与GD的延长线交于点H,∠1=∠B,∠2+∠3=180°.(1)判断EH与AD的位置关系,并说明理由.(2)若∠DGC=58°,且∠H=∠4+10°,求∠H的度数.参考答案1.【解答】证明:∵AE平分∠BAD,DF平分∠CDA,∴∠DAE=∠BAD,∠ADF=∠CDA又∵AE∥DF,∴∠DAE=∠ADF,∴∠BAD=∠CDA,∴AB∥CD.2.【解答】解:∵EF∥AD(已知),∴∠2=∠3(两直线平行,同位角相等);∵∠1=∠2(已知),∴∠1=∠3(等量代换);∴DG∥AB(内错角相等,两直线平行).∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补).∵∠BAC=70°,∴∠AGD=110°.3.【解答】解:给图中各角标上序号,如图所示.∵∠1+∠2=180°,∠2+∠5=180°,∴∠1=∠5,∴AB∥CD,∴∠3=∠6.∵∠4+∠6=180°,∠3=108°,∴∠4=180°﹣108°=72°.4.【解答】证明:在△ABC与△CDA中,,∴△ABC≌△CDA(SAS),∴BC=DA.5.【解答】证明:∵∠1=∠2,∠2=∠3,∴∠1=∠3.∴BD∥CE.∴∠ABD=∠C.又∠C=∠D,∴∠D=∠ABD.∴DF∥AC.∴∠A=∠F.6.【解答】解:∠ACB与∠DEB相等,理由如下:证明:∵∠1+∠2=180°(已知),∠1+∠DFE=180°(邻补角定义),∴∠2=∠DFE(同角的补角相等),∴AB∥EF(内错角相等两直线平行),∴∠BDE=∠DEF(两直线平行,内错角相等),∵∠DEF=∠A(已知),∴∠BDE=∠A(等量代换),∴DE∥AC(同位角相等两直线平行),∴∠ACB=∠DEB(两直线平行,同位角相等).7.【解答】(1)证明:∵∠1+∠2=180°,C,D是直线AB上两点,∴∠1+∠DCE=180°,∴∠2=∠DCE,∴CE∥DF;(2)解:∵CE∥DF,∠DCE=130°,∴∠CDF=180°﹣∠DCE=180°﹣130°=50°,∵DE平分∠CDF,∴∠CDE=∠CDF=25°,∵EF∥AB,∴∠DEF=∠CDE=25°.8.【解答】(1)证明:∵DE∥AC,∴∠BDE=∠A,∵∠DFC=∠A,∴∠DFC=∠BDE,∴AB∥CF.(2)解:∵DE∥AC,∴∠ACF+∠DFC=180°,由(1)中已证∠DFC=∠BDE,∴∠ACF+∠BDE=180°,又∵∠ACF比∠BDE大40°,∴∠BDE+40°+∠BDE=180°,∴∠BDE=70°.9.【解答】证明:(1)∵EF⊥AB,CD⊥AB,∴∠BFE=∠CDB=90°,∴EF∥CD;(2)∵EF∥CD,∴∠2=∠BCD,∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC,∴∠DGC+∠GCB=180°.10.【解答】证明:∵EF⊥BC,AD⊥BC,∴EF∥AD,∴∠1=∠BAD,∵∠1=∠2,∴∠BAD=∠2,∴AB∥DG.11.【解答】证明:∵AD⊥BC,EF⊥BC,∴∠ADB=∠EFB=90°,∴AD∥EF,∴∠2=∠3,∵∠1=∠2,∴∠1=∠3,∴DG∥AB.12.【解答】解:CD⊥AB.理由如下:∵∠ADG=∠B,∴DG∥BC,∴∠1=∠DCB,∵∠1=∠2,∴∠2=∠DCB,∴CD∥EF,∴∠CDB=∠EFB,∵EF⊥AB,∴∠EFB=90°,∴∠CDB=90°,∴CD⊥AB.13.【解答】解:CD⊥AB.理由如下:∵DG∥BC,∴∠1=∠DCB.∵∠1=∠2,∴∠2=∠DCB.∴CD∥EF.∴∠CDB=∠EFB.∵EF⊥AB,∴∠EFB=90°.∴∠CDB=90°.∴CD⊥AB.14.【解答】证明:∵AD∥EF,(已知),∴∠2=∠3,(两直线平行,同位角相等),∵∠1+∠FEA=180°,∠2+∠FEA=180°,∴∠1=∠2(同角的补角相等),∴∠1=∠3(等量代换),∴DG∥AB(内错角相等,两直线平行),∴∠CDG=∠B.(两直线平行,同位角相等).15.【解答】证明:如图所示:∵FG⊥AB,CD⊥AB,∴∠FGB=∠CDB=90°,∴FG∥CD,∴∠BFG=∠BCD,又∵∠EDC=∠BFG,∴∠BCD=∠EDC,∴DE∥BC,∴∠B=∠ADE.16.【解答】解:(1)平行,理由如下:∵∠CDG=∠B,∴AB∥DG,∴∠BAD=∠1,∵∠1+∠FEA=180°,∴∠BAD+∠FEA=180°,∴EH//AD;(2)由(1)得EH//AD,∠1=∠BAD,∴∠H=∠1,∴∠BAD=∠H,∵∠BAD=30°,∴∠H=30°.17.【解答】解:(1)EH∥AD,理由如下:∵∠1=∠B,∴AB∥GD,∴∠2=∠BAD,∵∠2+∠3=180°,∴∠BAD+∠3=180°,∴EH∥AD;(2)由(1)得AB∥GD,∴∠2=∠BAD,∠DGC=∠BAC,∵∠DGC=58°,∴∠BAC=58°,∵EH∥AD,∴∠2=∠H,∴∠H=∠BAD,∴∠BAC=∠BAD+∠4=∠H+∠4=58°,∵∠H=∠4+10°,∴∠4+10°+∠4=58°,解得:∠4=24°,∴∠H=34°.。
人教版七年级下册数学平行线证明的判定及性质证明题专题训练
人教版七年级下册数学平行线证明的判定及性质证明题专题训练1.完成下面的证明,已知:如图,12∠=∠,CD 、EF 分别是ACB ∠、AED ∠的平分线. 求证:BC DE ∥.证明:∵12∠=∠(______________) ∵EF ∥______________(______________) ∵3∠=∠______________(______________)∵CD 、EF 分别是ACB ∠、AED ∠的平分线(______________) ∵23ACB ∠=∠,AED =∠______________(______________) ∵ACB AED ∠=∠(______________) ∵BC DE ∥(______________)2.如图,点F 在线段AB 上,点E 、G 在线段CD 上,AB //CD (1)若BC 平分ABD ∠,100D ∠=︒,求ABC ∠的度数; 解:∵AB //CD (已知), 180(ABD D ∴∠+∠=︒ ).100D ∠=︒(已知),ABD ∴∠= ︒.BC 平分ABD ∠,(已知),12ABC ABD ∴∠=∠= ︒(角平分线的定义). (2)若12∠=∠,求证:AE //FG .3.已知:如图,直线DE //AB .求证:∠B +∠D=∠BCD .4.根据解答过程填空(写出推理理由或数学式): 如图,已知∵DAF =∵F ,∵B =∵D ,试说明AB ∵DC . 证明:∵∵DAF =∵F (已知).∵∵D =∵DCF ( ). ∵∵B =∵D (已知),∵( )=∵DCF (等量代换), ∵AB ∵DC ( ).5.如图,∵AGB =∵EHF ,∵C =∵D . (1)求证:BD ∵CE ; (2)求证:∵A =∵F .6.补全下列推理过程:已知:如图,CE 平分∵BCD ,∵1=∵2=70°,∵3=40°,求证:AB ∵CD . 证明:∵CE 平分∵BCD (______) ∵∵1=_____(_______) ∵∵1=∵2=70°(已知)∵∵1=∵2=∵4=70°(________) ∵AD ∵BC (________)∵∵D =180°-_______=180°-∵1-∵4=40° ∵∵3=40°(已知) ∵______=∵3 ∵AB ∵CD (_______)7.已知ABC ∆中,∥DE BC ,50AED ∠=︒,CD 平分ACB ∠,求BCD ∠的度数.8.如图,MN∠BC ,BD ∵DC ,∵1=∵2=60°,DC 是∵NDE 的平分线 (1)AB 与DE 平行吗?请说明理由; (2)试说明∵ABC =∵C ;9.已知:如图,EF ∵CD ,12180∠+∠=︒. (1)判断GD 与CA 的位置关系,并说明理由.(2)若CD 平分ACB ∠,DG 平分CDB ∠,且40A ∠=︒,求ACB ∠的度数.10.如图,∵1=70º,∵2 =40º,∵B =70º. (1)求∵C 的度数;(2)如果DE 平分∵ADC ,那么DE 与AB 平行吗?请说明理由.11.如图,已知AGF ABC ∠=∠,12180∠+∠=︒. (1)试判断BF 与DE 的位置关系,并说明理由; (2)若BF AC ⊥,2140∠=︒,求AFG ∠的度数.12.如图,已知12∠=∠,34∠=∠,求证://BC EF .13.如图,已知∵DEB =100°,∵BAC =80°. (1)判断DF 与AC 的位置关系,并说明理由; (2)若∵ADF =∵C ,∵DAC =120°,求∵B 的度数.14.如图,直线MN 分别与直线AC 、DG 交于点B 、F ,且12∠=∠,ABF ∠的角平分线BE 交直线DG 于点E ,BFG ∠的角平分线FC 交直线AC 于点C .(1)求证://BE CF ;(2)若35C ∠=︒,求BED ∠的度数.15.如图,AD ∵BE ,AB ∵CD ,点C 在直线BE 上,连接AC 、AE ,∵3=∵4,求证:∵1=∵216.如图,AB ∵CD ,E 是CD 上一点,AE 交BC 于点F ,且∵ABE =∵DBC ,∵ABC =∵AEB . (1)试判断AE 与BD 的位置关系,并说明理由; (2)若BE 平分∵CBD ,∵AEB =40°,求∵D 的度数.17.请补全推理依据:如图,已知:12180∠+∠=︒,3A ∠=∠,求证:B C ∠=∠. 证明:∵12180∠+∠=︒(已知) ∵//AD EF ( ) ∵3D ∠=∠( ) 又∵3A ∠=∠(已知) ∵D A ∠=∠( ) ∵//AB CD ( ) ∵B C ∠=∠( )18.如图,点B 、C 在线段AD 的异侧,点E 、F 分别是线段AB 、CD 上的点,已知AEG AGE DCG DGC ∠=∠∠=∠,.(1)求证:AB //CD ;(2)若∵AGE +∵AHF =180°,求证:∵BFC +∵C =180°; (3)在(2)的条件下,若∵BFC-30°=2∵C ,求∵B 的度数.19.已知AE ∵B D .若∵1=∵2,∵3=∵4,求证:ED ∵A C .20.如图,已知△ABC 的面积为36,将△ABC 沿BC 平移到△A ′B ′C ′,使点B ′与点C 重合,连接AC ′交A ′C 于D . (1)求证:A ′D =CD ; (2)求△C ′DC 的面积.21.如图在三角形ABC 中,已知12180,3B ∠+∠=︒∠=∠,求证AED C ∠=∠.22.已知,AB ∵CD ,点E 为射线FG 上一点.(1)如图1,若∵EAF =42°,∵EDG =46°,求∵AED 的度数.(2)如图2,当点E 在FG 的延长线上时,此时CD 与AE 交于点H ,则∵AED ,∵EAF ,∵EDG 之间满足怎样的关系,请说明你的结论.参考答案:1. 【详解】证明:∵12∠=∠(已知)∵EF ∥DC (内错角相等,两直线平行) ∵3∠=∠4(两直线平行,同位角相等)∵CD 、EF 分别是ACB ∠、AED ∠的平分线(已知) ∵23ACB ∠=∠,AED =∠2∵4(角平分线的定义) ∵ACB AED ∠=∠(等量代换)∵BC DE ∥(同位角相等,两直线平行). 2. (1)AB //CD (已知),180ABD D ∴∠+∠=︒,(两直线平行,同旁内角互补),100D ∠=︒,(已知)80ABD ∴∠=︒,BC 平分ABD ∠(已知),1402ABC ABD ∴∠=∠=︒(角平分线的定义), 故答案为:两直线平行,同旁内角互补,80,40; (2) 证明:AB //CD ,1FGC ∴∠=∠,12∠=∠,2FGC ∴∠=∠,AE ∴//FG .3.证明:过点C 作CF ∵AB , ∵∵B =∵BCF , ∵DE //AB .CF ∵AB , ∵CF ∵DE , ∵∵D =∵DCF ,4.证明:∵∵DAF=∵F(已知).∵AD∠BF(内错角相等,两直线平行),∵∵D=∵DCF(两直线平行,内错角相等).∵∵B=∵D(已知),∵∵B=∵DCF(等量代换),∵AB∠DC(同位角相等,两直线平行).故答案为:内错角相等,两直线平行;两直线平行,内错角相等;∵B;同位角相等,两直线平行.5.证明:(1)∵∵AGB=∵1,∵AGB=∵EHF,∵∵1=∵EHF,∵BD∵CE;(2)∵BD∵CE,∵∵D=∵2,∵∵D=∵C,∵∵2=∵C,∵AC∵DF,∵∵A=∵F.证明:∵CE 平分∵BCD ( 已知 ), ∵∵1= ∵4 ( 角平分线定义 ), ∵∵1=∵2=70°已知,∵∵1=∵2=∵4=70°(等量代换), ∵AD ∵BC (内错角相等,两直线平行), ∵∵D =180°-∵BCD =180°-∵1-∵4=40°, ∵∵3=40°已知, ∵ ∵D =∵3,∵AB ∵CD (内错角相等,两直线平行).7.解:∵∥DE BC ,50AED ∠=︒ ∵=50ACB AED ∠=∠, ∵CD 平分ACB ∠,∵1==252ACD BCD ACB ∠=∠∠∵=25BCD ∠. 8.解:(1)AB ∥DE ,理由如下: ∵MN ∥BC ,( 已知 )∴∠ABC =∠1=60°.( 两直线平行,内错角相等 ) 又∵∠1=∠2,( 已知 ) ∴∠ABC =∠2.( 等量代换 )∴AB ∥DE .( 同位角相等,两直线平行 ); (2)∵MN ∥BC , ∴∠NDE +∠2=180°,∴∠NDE =180°﹣∠2=180°﹣60°=120°. ∵DC 是∠NDE 的平分线,∴∠EDC=∠NDC=1∠NDE=60°.2∵MN∥BC,∴∠C=∠NDC=60°.∴∠ABC=∠C.(3)∠ADC=180°﹣∠NDC=180°﹣60°=120°,∵BD⊥DC,∴∠BDC=90°.∴∠ADB=∠ADC﹣∠BDC=120°﹣90°=30°.∵MN∥BC,∴∠DBC=∠ADB=30°.∵∠ABC=∠C=60°.∴∠ABD=30°∠ABC.∴∠ABD=∠DBC=12∴BD是∠ABC的平分线.9.AC DG.解:(1)//EF CD,理由://∴∠+∠=,1180ACD又12180∠+∠=,∴∠=∠,ACD2∴;AC DG//AC DG,(2)//∴∠=∠=,40BDG A∠,DG平分CDB∴∠=∠=,BDG240∵240∠=∠=,ACDCD平分ACB∠,∴∠=∠=.280ACB ACD10.(1)∵∵1=70°∵B=70°∵AD∵BC∵∵C=∵2=40°(2)如果DE平分∵ADC,则AB∵DE 理由:∵DE平分∵ADC,∵2 =40º∵∵ADE=∵CDE=18022︒-∠=180402︒-︒=70°又∵∵1=70°∵∵ADE=∵1=70°∵DE∵AB.11.解:()1//BF DE,理由如下:AGF ABC∠=∠,//GF BC∴,13∴∠=∠,12180∠+∠=︒,32180∴∠+∠=︒,//BF DE∴;()2//BF DE,BF AC⊥,DE AC∴⊥,12180∠+∠=︒,2140∠=︒,140∴∠=︒,904050AFG∴∠=︒-︒=︒.12.解:证明:∵∵1=∵2(已知),∵AC∵DF(同位角相等,两直线平行),∵∵3=∵5(两直线平行,内错角相等),又∵∵3=∵4(已知),∵∵5=∵4(等量代换),∵BC∵EF(内错角相等,两直线平行).13.理由:∵∵DEB=100°,∵∵AEF=∵DEB=100°,∵∵BAC=80°,∵∵AEF+∵BAC=180°,∵DF∵AC;(2)∵DF∵AC,∵∵BFD=∵C,∵∵ADF=∵C,∵∵BFD=∵ADF,∵AD∵BC,∵∵B=∵BAD,∵∵DAC=120°,∵BAC=80°,∵∵BAD=∵DAC−∵BAC=120°−80°=40°,∵∵B=40°.14.解:(1)证明:∵∵1=∵2,∵2=∵BFG,∵∵1=∵BFG,∵AC∵DG,∵∵ABF=∵BFG,∵∵ABF的角平分线BE交直线DG于点E,∵BFG的角平分线FC交直线AC于点C,∵∵EBF=12∵ABF,∵CFB=12∵BFG,∵∵EBF=∵CFB,∵BE∵CF;(2)∵AC∵DG,BE∵CF,∵C=35°,∵∵C=∵CFG=35°,∵∵CFG=∵BEG=35°,∵∵BED=180°-∵BEG=145°.15.证明:∵AD∵BE,∵∵3=∵DAC,又∵AB∵CD,∵∵4=∵BAE,又∵∵3=∵4,∵∵DAC =∵BAE,∵∵DAC-∵5=∵BAE-∵5,∵∵1=∵2.16.AE BD,理由如下,(1)//∵ABE=∵DBC,∠+∠=∠+∠,即ABC CBE CBE EBD∴∠=∠,ABC EBD∵ABC=∵AEB,∴∠=∠,EBD AEB∴,AE BD//(2)BE平分∵CBD,∵AEB=40°,∴40EBD AEB∠=∠=︒,∴∠=∠=︒,280CBD EBD∠=∠,ABC EBD∴∠=∠+∠=︒+︒=︒,4080120 ABD ABC CBDAB∵CD,D ABD∴∠=︒-∠=︒-︒=︒.180********17.证明:∵∵1+∵2=180°(已知),∵AD∵EF(同旁内角互补,两直线平行),∵∵3=∵D(两直线平行,同位角相等),∵∵D =∵A (等量代换),,∵AB ∵CD (内错角相等,两直线平行),∵∵B =∵C (两直线平行,内错角相等).故答案为:同旁内角互补,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,内错角相等.18.(1)AEG AGE DCG DGC ∠=∠∠=∠,,又AGE DGC ∠=∠,∴AEG DCG ∠=∠,∴ AB //CD ;(2)AGE DGC ∠=∠,∵AGE +∵AHF =180°,180DGC AHF ∴∠+∠=︒,//EC BF ∴,∴∵BFC +∵C =180°;(3)∵BFC-30°=2∵C ,由(2)可知,∵BFC +∵C =180°,解得130BFC ∠=︒,50C ∠=︒,//AB CD ,180********B BFC ∴∠=︒-∠=︒-︒=︒.19.证明:∵AE //B D ,∵∵AEF =∵2,即∵3+∵BEF =∵2,∵∵3=∵4,∵∵4+∵BEF =∵2,即∵DEB =∵2,∵∵1=∵2,∵∵DEB =∵1,∵ED //A C .20.解:(1)证明:∵∵ABC 沿BC 平移到∵A ′B ′C ′,∵AC ∵A ′C ′,AC =A ′C ′,∵∵ACD =∵C ′A ′D ,∵∵ACD ∵∵C ′A ′D ,∵A ′D =CD ;(2)解:∵∵ABC 沿BC 平移到∵A ′B ′C ′, ∵∵ABC ∵∵A ′B ′C ′,∵∵ABC 与∵A ′B ′C ′的面积相等,等于36, 因为A ′D =CD ,所以∵C ′DC 与∵C ′A ′D 的面积相等,等于18. 21.证明:∵12180∠+∠=︒,1180EFD ∠+∠=︒, ∵2EFD ∠=∠,∵//AB EF ,∵3ADE ∠=∠.∵3B ∠=∠,∵ADE B ∠=∠,∵//DE BC ,∵AED C ∠=∠.22.解解:(1)过E 作EH ∵AB ,∵AB ∵CD ,∵EH ∵AB ∵CD ,∵∵EAF =∵AEH =42°,∵EDG =∵DEH =46°, ∵∵AED =∵AEH +∵DEH =88°;(2)∵EAF =∵AED +∵EDG .理由如下:过E 作EM ∵AB ,∵AB∵CD,∵EM∵CD,∵∵EAF+∵MEH=180°,∵EDG+∵AED+∵MEH=180°,∵∵EAF=180°-∵MEH,∵EDG+∵AED=180°-∵MEH,∵∵EAF=∵AED+∵EDG.。
平行线的性质与判定》综合测试题及答案
平行线的性质与判定》综合测试题及答案平行线的性质与判定》综合测试题一、选择题1.如图,已知直线a,b被直线c所截,a∥b,∠1=60°,则∠2的度数为()A。
30° B。
60° C。
120° D。
150°2.如图,直线l1、l2被直线l3、l4所截,下列条件中,不能判断直线l1∥l2的是()A。
∠1=∠3 B。
∠5=∠4 C。
∠5+∠3=180° D。
∠4+∠2=180°3.如图,已知AC∥BD,∠CAE=30°,∠DBE=45°,则∠AEB等于()A。
30° B。
45° C。
60° D。
75°4.如图,直线a,b被直线c所截,现给出下列四个条件:①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能说明a∥b的条件为()A。
①② B。
①③ C。
①④ D。
③④5.如图,∠1=72°,∠2=72°,∠3=70°,则∠4的度数为()A。
72° B。
70° C。
108° D。
110°6.如图,点B,C,D在同一条直线上,CE∥AB,∠ACB=90°,如果∠ECD=36°,那么∠A=__________。
7.已知:如图所示,AB∥CD,BC∥DE,那么∠B+∠D=__________度。
8.如图,直线a,b被直线c所截,若要a∥b,需增加条件____________________。
(填一个即可)9.如图,已知∠BCD=60°,∠ADB=30°,DC⊥BD,我们可以判定平行关系的是__________。
10.如图,若AD∥BE,且∠ACB=90°,∠CBE=30°,则∠CAD=__________。
11.如图所示,根据题意填空。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行线的性质与判定的证明
温故而知新:
1.平行线的性质
(1)两直线平行,同位角相等;
(2)两直线平行,内错角相等;
(3)两直线平行,同旁内角互补.
2.平行线的判定
(1)同位角相等,两直线平行;
(2)内错角相等,两直线平行;
(3)同旁内角互补,两直线平行互补.
例1 已知如图2-2,AB∥CD∥EF,点M,N,P分别在AB,CD,EF上,NQ平分∠MNP.(1)若∠AMN=60°,∠EPN=80°,分别求∠MNP,∠DNQ的度数;
(2)探求∠DNQ与∠AMN,∠EPN的数量关系.
解析:根据两直线平行,内错角相等及角平分线定义求解.
(标注∠MND=∠AMN,∠DNP=∠EPN)
答案:(标注∠MND=∠AMN=60°,
∠DNP=∠EPN=80°)
解:(1)∵AB∥CD∥EF,
∴∠MND=∠AMN=60°,
∠DNP=∠EPN=80°,
∴∠MNP=∠MND+∠DNP=60°+80°=140°,
又NQ平分∠MNP,
∴∠MNQ=1
2
∠MNP=
1
2
×140°=70°,
∴∠DNQ=∠MNQ-∠MND=70°-60°=10°,
∴∠MNP,∠DNQ的度数分别为140°,10°.(下一步) (2)(标注∠MND=∠AMN,∠DNP=∠EPN)
由(1)得∠MNP=∠MND+∠DNP=∠AMN+∠EPN,
∴∠MNQ=1
2
∠MNP=
1
2
(∠AMN+∠EPN),
∴∠DNQ=∠MNQ-∠MND
=1
2
(∠AMN+∠EPN)-∠AMN
=1
2
(∠EPN-∠AMN),
即2∠DNQ=∠EPN-∠AMN.
小结:
在我们完成涉及平行线性质的相关问题时,注意实现同位角、内错角、同旁内角之间的角度转换,即同位角相等,内错角相等,同旁内角互补.
例2 如图,∠AGD=∠ACB,CD⊥AB,EF⊥AB,证明:∠1=∠2.
解析:(标注:∠1=∠2=∠DCB,DG∥BC,CD∥EF)
答案:(标注:∠1=∠2=∠DCB)
证明:因为∠AGD=∠ACB,
所以DG∥BC,
所以∠1=∠DCB,
又因为CD⊥AB,EF⊥AB,
所以CD∥EF,
所以∠2=∠DCB,
所以∠1=∠2.
小结:
在完成证明的问题时,我们可以由角的关系可以得到直线之间的关系,由直线之间的关系也可得到角的关系.
例3 (1)已知:如图2-4①,直线AB∥ED,求证:∠ABC+∠CDE=∠BCD;
(2)当点C位于如图2-4②所示时,∠ABC,∠CDE与∠BCD存在什么等量关系?并证明.
(1)解析:动画过点C作CF∥AB
由平行线性质找到角的关系.(标注∠1=∠ABC,∠2=∠CDE)
答案:证明:如图,过点C作CF∥AB,
∵直线AB∥ED,
∴AB∥CF∥DE,
∴∠1=∠ABC,∠2=∠CDE.
∵∠BCD=∠1+∠2,
∴∠ABC+∠CDE=∠BCD;
(2)解析:动画过点C作CF∥AB,由平行线性质找到角的关系.
(标注∠ABC+∠1=180°,∠2+∠CDE=180°)
答案:∠ABC+∠BCD+∠CDE=360°.
证明:如图,过点C作CF∥AB,
∵直线AB∥ED,
∴AB∥CF∥DE,
∴∠ABC+∠1=180°,∠2+∠CDE=180°.
∵∠BCD=∠1+∠2,
∴∠ABC+∠BCD+∠CDE=360°.
小结:
在运用平行线性质时,有时需要作平行线,取到桥梁的作用,实现已知条件的转化.
例4 如图2-5,一条公路修到湖边时,需绕道,如果第一次拐的角∠A是120°,第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,那么∠C应为多少度?
解析:动画过点B作BD∥AE,
答案:
解:过点B作BD∥AE,∵AE∥CF,
∴AE∥BD∥CF,∴∠A=∠1,∠2+∠C=180°
∵∠A=120°,∠1+∠2=∠ABC=150°,
∴∠2=30°,
∴∠C=180°-30°=150°.
小结:
把关于角度的问题转化为平行线问题,利用平行线的性质与判定予以解答.
举一反三:
1.如图2-9,FG∥HI,则∠x的度数为()
A.60°
B. 72°
C. 90°
D. 100°
解析:∠AEG=180°-120°=60°,由外凸角和等于内凹角和有60°+30°+30°=x+48°,解得x=72°.
答案:B.
2.已知如图所示,AB∥EF∥CD,EG平分∠BEF,∠B+∠BED+∠D=192°,∠B-∠D=24°,求∠GEF的度数.
解析:
解:∵AB∥EF∥CD,
∴∠B=∠BEF,∠DEF=∠D.
∵∠B+∠BED+∠D=192°,
即∠B+∠BEF+∠DEF+∠D=192°,
∴2(∠B+∠D)=192°,
即∠B+∠D=96°.
∵∠B-∠D=24°,
∴∠B=60°,
即∠BEF=60°. ∵EG平分∠BEF,
∴∠GEF=1
2
∠BEF=30°.
3.已知:如图2-10,AB∥EF,BC∥ED,AB,DE交于点G.
求证:∠B=∠E.
解析:标注AB∥EF,BC∥ED
答案:证明:∵AB∥EF,
∴∠E=∠AGD.
∵BC∥ED,
∴∠B=∠AGD,
∴∠B=∠E.
例5如图2-6,已知AB∥CD,试再添上一个条件,使∠1=∠2成立,并说明理由.
解析:标注AB∥CD,∠1=∠2
答案:方法一:(标注CF∥BE)
解:需添加的条件为CF∥BE ,
理由:∵AB∥CD,
∴∠DCB=∠ABC.
∵CF∥BE,
∴∠FCB=∠EBC,
∴∠1=∠2;
方法二:(标注CF ,BE ,∠1=∠2=∠DCF=∠ABE )解:添加的条件为CF ,BE 分别为∠BCD ,∠CBA 的平分线. 理由:∵AB ∥CD , ∴∠DCB=∠ABC.
∵CF ,BE 分别为∠BCD ,∠CBA 的平分线, ∴∠1=∠2.
小结:
解决此类条件开放性问题需要从结果出发,找出结果成立所需要的条件,由果溯因.
例6 如图1-7,已知直线1l 2l ,且3l 和1l 、2l 分别交于A 、两点,点P 在AB 上,4l 和1l 、2l 分别
交于C 、D 两点,连接PC 、PD 。
(1) 试求出∠1、∠2、∠3之间的关系,并说明理由。
(2) 如果点P 在A 、B 两点之间运动时,问∠1、∠2、∠3之间的关系是否发生变化。
(3) 如果点P 在AB 两点的外侧运动时,试探究∠1、∠2、∠3之间的关系(点P 和A 、B 不
重合)
解:(1)解析:在题目中直接画出辅助线 ∠3=∠1+∠2。
理由:如图(1)所示
过点P 作PE ∥1l 交4l 于E ,则∠1=∠CPE , 又因为1l ∥2l ,所以PE ∥2l ,则∠EPD=∠2, 所以∠CPD=∠1+∠2,即∠3=∠1+∠2
(2)解析: 点P 在A 、B 两点之间运动时,∠3=∠1+∠2的关系不会发生改变。
(3)解析:如图(2)和(3)所以,当P 点在A 、B 两点外侧运动时,分两种情况:
4.如图2-11,CD 平分∠ACB ,DE ∥AC ,EF ∥CD ,EF 平分∠DEB 吗?请说明理由.
解析:标注CD 平分∠ACB ,DE ∥AC ,EF ∥CD 答案:标注∠CDE=∠ACD=∠DCE=∠DEF=∠BEF 解:EF 平分∠DEB .理由如下: ∵DE ∥AC ,EF ∥CD ,
∴∠CDE=∠ACD ,∠CDE=∠DEF , ∠BEF=∠DCE.
∵CD平分∠ACB,
∴∠DCE=∠ACD,
∴∠DEF=∠BEF,
即EF平分∠DEB.
5.如图1-12,CD∥EF, ∠1+∠2=∠ABC,
求证:AB∥GF
解析:如图,作CK∥FG,延长GF、CD交于H,则∠H+∠2+∠KCB=180°.因为CD∥EF,所以∠H=∠1,又因为∠1+∠2=∠ABC,所以∠ABC+∠KCB=180°,所以CK∥AB,所以AB∥FG.
6.如图2-13,已知AB∥CD,∠ECD=125°,∠BEC=20°,求∠ABE的度数.
解析:(过E点作EF∥CD)标注AB∥EF∥CD
答案:解:过E点作EF∥CD,
∴∠ECD+∠CEF=180°,
而∠ECD=125°,
∴∠CEF=180°-125°=55°,
∴∠BEF=∠BEC+∠CEF=20°+55°=75°. ∵AB∥CD,∴AB∥EF,
∴∠ABE=∠BEF=75°.。