高中数学必修2第一章空间几何体微训练
(完整版)高一数学必修2第一章空间几何体测试题(答案)
则四边形 EFGH 是
;
②若 AC BD , 则四边形 EFGH 是
.
三、解答题: 解答应写出文字说明、证明过程或演算步骤 (共 76 分 ).
15.( 12 分)将下列几何体按结构分类填空
①集装箱;②油罐;③排球;④羽毛球;⑤橄榄球;⑥氢原子;⑦魔方;
⑧金字塔;⑨三棱镜;⑩滤纸卷成的漏斗;○ 11 量筒;○12 量杯;○13 十字架.
( 1)具有棱柱结构特征的有
;( 2)具有棱锥结构特征的有
;
( 3)具有圆柱结构特征的有
;( 4)具有圆锥结构特征的有
;
( 5)具有棱台结构特征的有
;( 6)具有圆台结构特征的有
;
( 7)具有球结构特征的有
;( 8)是简单集合体的有
;
( 9)其它的有
.
16.( 12 分)已知: a ,b ,a b A, P b, PQ // a.求证: PQ ..
C.③④
3.棱台上下底面面积分别为 16 和 81,有一平行于底面的截面面积为
() D . ①②③④
36,则截面戴的两棱台高
的比为
()
A .1∶ 1
B. 1∶ 1
C. 2∶ 3
D .3∶4
4.若一个平行六面体的四个侧面都是正方形 ,则这个平行六面体是
()
A .正方体
B.正四棱锥
C.长方体
D .直平行六面体
2la
Q1 2 Q2 2
S侧 4al 2 Q12 Q2 2
19.解:设 A1B1C1D1 是棱台 ABCD -A2B2C2D 2 的中截面,延长各侧棱交于
P 点.
a
∵ BC=a ,B2C2=b ∴ B1C1=
高中数学必修二第一章《空间几何体》单元练习题(含答案)
高中数学必修二第一章《空间几何体》单元练习题(30分钟50分)一、选择题(每小题3分,共18分)1.斜四棱柱的侧面是矩形的面最多有( )A.0个B.1个C.2个D.3个2.所给三视图表示的简单组合体的结构特征是( )A.由圆柱和圆锥组成B.由圆柱和棱锥组成C.由棱柱和圆锥组成D.由圆台和圆锥组成3.一个四面体的三视图如图所示,则该四面体的表面积是( )A.1+B.2+C.1+2D.24.圆柱的轴截面是正方形,面积是S,则它的侧面积是( )A.SB.πSC.2πSD.4πS5.若圆台两底面周长的比是1∶4,过高的中点作平行于底面的平面,则圆台被分成两部分的体积比是 ( )A.B.C.1D.6.如图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为,则该几何体的俯视图可以是 ( )二、填空题(每小题4分,共12分)7.圆柱形容器内盛有高度为8 cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是 cm.8.在三棱柱ABC-A 1B 1C 1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设点M,N,P 分别是AB,BC,B 1C 1的中点,则三棱锥P-A 1MN 的体积是 .9.用一张4×8(cm 2)的矩形硬纸卷成圆柱的侧面,接头忽略不计,则轴截面面积是 cm 2.三、解答题(每小题10分,共20分)10.已知四棱锥P-ABCD,其三视图和直观图如图,求该四棱锥的体积.11.如图所示,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器厚度,则球的体积是多少?高中数学必修二第一章《空间几何体》单元练习题(30分钟50分)一、选择题(每小题3分,共18分)1.斜四棱柱的侧面是矩形的面最多有( )A.0个B.1个C.2个D.3个【解析】选C.根据棱柱的结构特征不可能有奇数个,因此最多2个.2.所给三视图表示的简单组合体的结构特征是( )A.由圆柱和圆锥组成B.由圆柱和棱锥组成C.由棱柱和圆锥组成D.由圆台和圆锥组成【解析】选A.由三视图可知此组合体的上方是圆柱,下方是圆锥,故选A.3.(2015·安徽高考)一个四面体的三视图如图所示,则该四面体的表面积是( )A.1+B.2+C.1+2D.2【解析】选B.由该四面体的三视图可知,该四面体的直观图如图所示:其中侧面PAC⊥底面ABC,且△PAC≌△BAC,由三视图中所给数据可知PA=PC=AB=BC=,取AC的中点O,连接PO,BO,则在Rt△POB中,PO=BO=1,可得PB=,所以S=2××2+×2×2=2+.4.(2015·西安高一检测)圆柱的轴截面是正方形,面积是S,则它的侧面积是( )A.SB.πSC.2πSD.4πS【解析】选B.设圆柱底面半径为r,则S=4r2,S侧=2πr·2r=4πr2=πS.5.若圆台两底面周长的比是1∶4,过高的中点作平行于底面的平面,则圆台被分成两部分的体积比是( )A. B. C.1 D.【解析】选D.设上、下底半径分别为r1,r2,过高中点的圆面半径为r0,由题意得r2=4r1,r0=r1,所以==.6.(2015·威海高一检测)如图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为,则该几何体的俯视图可以是( )【解析】选C.当俯视图为A中正方形时,几何体为棱长为1的正方体,体积为1;当俯视图为B中圆时,几何体为底面半径为,高为1的圆柱,体积为;当俯视图为C 中三角形时,几何体为三棱柱,且底面为直角边长为1的等腰直角三角形,高为1,体积为;当俯视图为D 中扇形时,几何体为圆柱的,且体积为. 二、填空题(每小题4分,共12分)7.圆柱形容器内盛有高度为8 cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是 cm.【解析】设球的半径为rcm,则πr 2×8+πr 3×3=πr 2×6r.解得r=4. 答案:48.(2015·四川高考)在三棱柱ABC-A 1B 1C 1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设点M,N,P 分别是AB,BC,B 1C 1的中点,则三棱锥P-A 1MN 的体积是 .【解析】V=××=.答案:9.用一张4×8(cm 2)的矩形硬纸卷成圆柱的侧面,接头忽略不计,则轴截面面积是 cm 2.【解析】以4为高卷起,则2πr=8,所以2r=,所以轴截面面积为cm 2;若以8为高卷起,则2πR=4,所以2R=,所以轴截面面积为cm 2.答案:三、解答题(每小题10分,共20分)10.已知四棱锥P-ABCD,其三视图和直观图如图,求该四棱锥的体积.【解析】由三视图知底面ABCD为矩形,AB=2,BC=4.顶点P在面ABCD内的射影为BC中点E,即棱锥的高为2,则体积V P-ABCD=S ABCD×PE=×2×4×2=.11.如图所示,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器厚度,则球的体积是多少?【解析】设球半径为Rcm,根据已知条件知正方体的上底面与球相交所得截面圆的半径为4cm,球心到截面的距离为(R-2)cm,所以由42+(R-2)2=R2,得R=5,所以球的体积V=πR3=π×53=(cm3).。
人教版高一数学必修二第一章空间几何体章末检测题 附答案解析
必修二 第一章 空间几何体章末检测题一、选择题1.右面的三视图所示的几何体是( ).A .六棱台B .六棱锥C .六棱柱D .六边形 (第1题)2.已知两个球的表面积之比为1∶9,则这两个球的半径之比为( ). A .1∶3B .1∶3C .1∶9D .1∶813.一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该几何体的俯视图为( ).4.A ,B 为球面上相异两点,则通过A ,B 两点可作球的大圆(圆心与球心重合的截面圆)有( ).A .一个B .无穷多个C .零个D .一个或无穷多个5.右图是一个几何体的三视图,则此几何体的直观图是( ). ).A B C D6.下图为长方体木块堆成的几何体的三视图,堆成这个几何体的木块共有( ). A .1块 B .2块 C .3块 D .4块正(主)视图侧(左)视图ABCD(第3题)正视图侧视图俯视图(第5题)正视图俯视图侧视图(第6题)7.关于斜二测画法画直观图说法不正确的是().A.在实物图中取坐标系不同,所得的直观图有可能不同B.平行于坐标轴的线段在直观图中仍然平行于坐标轴C.平行于坐标轴的线段长度在直观图中仍然保持不变D.斜二测坐标系取的角可能是135°8.如图,下列几何体各自的三视图中,有且仅有两个视图相同的是().①正方体②圆锥③三棱台④正四棱锥(第8题)A.①②B.①③C.①④D.②④9.一正方体的各顶点都在同一球面上,用过球心的平面去截这个组合体,截面图不能是().A B C D10.如果一个三角形的平行投影仍然是一个三角形,则下列结论正确的是().A.原三角形的内心的平行投影还是投影三角形的内心B.原三角形的重心的平行投影还是投影三角形的重心C.原三角形的垂心的平行投影还是投影三角形的垂心D.原三角形的外心的平行投影还是投影三角形的外心二、填空题11.一圆球形气球,体积是8 cm3,再打入一些空气后,气球仍然保持为球形,体积是27 cm3.则气球半径增加的百分率为.12.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的体对角线的长分别是9和15,则这个棱柱的侧面积是.13.右图是一多面体的展开图,每个面内都给了字母,请根据要求回答问题:①如果A 是多面体的下底面,那么上面的面是 ;②如果面F 在前面,从左边看是面B ,那么上面的面是 . 14.一个几何体的三视图如下图所示,则此几何体的体积是 .三、解答题15.圆柱内有一个四棱柱,四棱柱的底面是圆柱底面的内接正方形.已知圆柱表面积为6 ,且底面圆直径与母线长相等,求四棱柱的体积.16.下图是一个几何体的三视图(单位:cm ) (1)画出这个几何体的直观图(不要求写画 法);(2)求这个几何体的表面积及体积.题)侧视图俯视BBA C 正视BA侧视(第16题)17.如图,在四边形ABCD 中,∠DAB =90°,∠ADC =135°,AB =5,CD =22,AD =2,求四边形ABCD 绕直线AD 旋转一周所成几何体的表面积及体积.18.已知正方体、球、底面直径与母线相等的圆柱,它们的表面积相等,试比较它们的体积V 正方体,V 球,V 圆柱的大小.19.如图,一个圆锥形容器的高为a ,内装有一定量的水.如果将容器倒置,这时水所形成的圆锥的高恰为2a,求原来水面的高度.20.如图,四棱柱的底面是菱形,各侧面都是长方形.两个对角面也是长方形,面积分别为Q 1,Q 2.求四棱柱的侧面积.(第20题)(第19题)(第17题)参考答案一、选择题 1.B解析:由正视图和侧视图可知几何体为锥体,由俯视图可知几何体为六棱锥. 2.A解析:由设两个球的半径分别为r ,R ,则 4 r 2∶4πR 2=1∶9. ∴ r 2∶R 2=1∶9, 即r ∶R =1∶3.3.C解析:在根据得到三视图的投影关系,∵正视图中小长方形位于左侧,∴小长方形也位于俯视图的左侧;∵小长方形位于侧视图的右侧,∴小长方形一定位于俯视图的下侧, ∴ 图C 正确.4.D解析:A ,B 不在同一直径的两端点时,过A ,B 两点的大圆只有一个;A ,B 在同一直径的端点时大圆有无数个.5.D解析:由几何体的正视图和侧视图可知,几何体上部分为圆锥体,由三个视图可知几何体下部分为圆柱体,∴ 几何体是由圆锥和圆柱组成的组合体.6.D解析:由三视图可知几何体为右图所示,显然组成几何体的长方体木块有4块.7.C解析:由平行于x 轴和z 轴的线段长度在直观图中仍然保持不变,平行于y 轴的线段长度在直观图中是原来的一半,∴ C 不对.8.D解析:①的三个视图均相同;②的正视图和侧视图相同;③的三个视图均不相同;④的正视图和侧视图相同.∴有且仅有两个视图相同的是②④.9.A(第6题)解析:B 是经过正方体对角面的截面;C 是经过球心且平行于正方体侧面的截面;D 是经过一对平行的侧面的中心,但不是对角面的截面.10.B解析:在平行投影中线段中点在投影后仍为中点,故选B . 二、填空题 11.50%.解析:设最初球的半径为r ,则8=34πr 3;打入空气后的半径为R ,则27=34πR 3. ∴ R 3∶r 3=27∶8.∴ R ∶r =3∶2.∴气球半径增加的百分率为50%. 12.160.解析:依条件得菱形底面对角线的长分别是22515-=200和2259-=56. ∴菱形的边长为4256256220022=⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛= 8. ∴棱柱的侧面积是5×4×8=160. 13.F ,C .解析:将多面体看成长方体, A ,F 为相对侧面.如果A 是多面体的下底面,那么上面的面是F ;如果面F 在前面,从左边看是面B ,则右面看必是D ,于是根据展开图,上面的面应该是C .14.80.解析:由三视图可知,几何体是由棱长为4的正方体和底面边长为4,高为3的四棱锥组成,因此它的体积是V =43+31×42×3=64+16=80.三、解答题15.参考答案:设圆柱底面圆半径为r ,则母线长为2r . ∵圆柱表面积为6π,∴ 6π=2πr 2+4πr 2. ∴ r =1.∵ 四棱柱的底面是圆柱底面的内接正方形, ∴ 正方形边长为2. ∴ 四棱柱的体积V =(2)2×2=2×2=4. 16.(1)略.(2)解:这个几何体是三棱柱.由于底面△ABC 的BC 边上的高为1,BC =2,∴ AB =2. 故所求全面积S =2S △ABC +S BB ′C ′C +2S ABB ′A ′=8+62(cm 2). 几何体的体积V =S △ABC ·BB ′=21×2×1×3=3(cm 3). 17.解:S 表面=S 下底面+S 台侧面+S 锥侧面=π×52+π×(2+5)×5+π×2×22=(60+42)π.V =V 台-V 锥=31π(21r +r 1r 2+22r )h -31πr 2h 1=3148π.18.解:设正方体的边长为a ,球的半径为r ,圆柱的底面直径为2R , 则6a 2=4πr 2=6πR 2=S .∴ a 2=6S ,r 2=π4S,R 2=π6S . ∴(V 正方体)2=(a 3)2=(a 2)3=36⎪⎭⎫⎝⎛S =2163S ,(V 球)2=23π34⎪⎭⎫⎝⎛r =916π2(r 2)3=916π23π4⎪⎭⎫ ⎝⎛S ≈1083S ,(V 圆柱)2=(πR 2×2R )2=4π2(R 2)3=4π23π6⎪⎭⎫⎝⎛S ≈1623S .∴V 正方体<V 圆柱<V 球.19.解:设水形成的“圆台”的上下底面半径分别为r ,R ,高为h ,则R r =aha -. 则依条件得3π·h ·(r 2+rR +R 2)=3π·2a ·22⎪⎭⎫⎝⎛R ,化简得(h -a )3=-87a 3.解得h =a -873a .即h =⎪⎪⎭⎫ ⎝⎛-271a . 20.解:设底面边长为a ,侧棱长为l ,底面的两对角线长分别为c ,d .则⎪⎪⎩⎪⎪⎨⎧③ = 21 + 21② = ① = 22221a d c Q dl Q cl ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛33(第20题)由 ① 得c =l Q 1,由 ② 得d =l Q 2,代入 ③ 得212⎪⎭⎫ ⎝⎛l Q +222⎪⎭⎫⎝⎛l Q =a 2.∴21Q +22Q =4l 2a 2, ∴2la =2221+Q Q . 故S 侧=4al =22221+Q Q .。
高中数学必修2第一章空间几何体练习
高中数学必修2第一章空间几何体练习___班___号 姓名__________一、选择题(本大题共12小题,每小题5分,共60分)1.表面积为32的正八面体的各个顶点都在同一个球面上,则此球的体积为( ) A .π32 B .π31 C .π32 D .π322 2.如图所示是一个无盖的正方体盒子展开后的平面图,A 、B 、C 是展开图上的三点,则在正方体盒子中,∠ABC 为( )A .1800B .1200C .600D .4503.已知三棱锥S -ABC 的各顶点都在一个半径为r 的球面上,球心O 在AB 上,SO ⊥底面ABC ,r AC 2=,则球的体积与三棱锥体积之比是( )A .πB .π2C .π3D .π44.如图所示,一个空间几何体的正视图、侧视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为1,那么这个几何体的体积为( )A .1B .21C .31D .61 5.一平面截球得到直径是6cm 的圆面,球心到这个平面的距离是4cm ,则该球的体积是( )A .33100cm πB .33208cm πC .33500cm πD .33416cm π 6.半球内有一个内接正方体,则这个半球的体积与正方体的体积之比为( )A .6:5πB .2:6πC .2:πD .12:5π7.一个四棱锥和一个三棱锥恰好可以拼成一个三棱柱,这个四棱锥的底面为正方形,且底面边长与各侧棱长相等,这个三棱锥的底面边长与各侧棱长也都相等,设四棱锥、三棱锥、三棱柱的高分别为h 1、h 2、h 3,则h 1:h 2:h 3等于( )A .1:1:3B .2:2:3C .2:2:3D .3:2:38.如图所示的一个5×4×4的长方体,阴影所示为穿透的三个洞,那么剩下的部分的体积是( )A .50B .54C .56D .589.一个正三棱锥的四个顶是半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是( )A .123B .43C .33D .433 10.如图用□表示1个正方体,用□(浅黑)表示两个正方体叠加,用□(深黑)表示三个立方体叠加,那么右图是由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是( )11.如图所示,水平地面上有一个大球,现作如下方法测量球的大小:用一个锐角为600的三角板,斜边紧靠球面,一条直角边紧靠地面,并使三角板与地面垂直,P 为三角板与球的切点,如果测得PA =5,则球的表面积为( )A .π200B .π300C .π3200D .π330012.一个盛满水的三棱锥容器,不久发现三条侧棱上各有一个小洞D 、E 、F ;且知SD :DA =SE :EB =CF :FS =2:1,若仍用这个容器盛水,则最多可盛原来水的( )A .2923B .2723C .2719D .3531 二、填空题(本大题共4小题,每小题4分,共16分)13.若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为__________。
高中数学必修2第一章空间几何体试题(含答案)
高一数学必修2第一章测试题班别 姓名 考号 得分 一、选择题:(每小题5分,共50分)1. 下图中的几何体是由哪个平面图形旋转得到的( )A B C D2.若一个几何体的三视图都是等腰三角形,则这个几何体可能是( ) A .圆锥 B .正四棱锥 C .正三棱锥 D .正三棱台3.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为V 1和V 2,则V 1:V 2=( ) A. 1:3 B. 1:1 C. 2:1 D. 3:14.过圆锥的高的三等分点作平行于底面的截面,它们把圆锥侧面分成的三部分的面积之比为( )A.1:2:3B.1:3:5C.1:2:4D.1:3:9 5.棱长都是1的三棱锥的表面积为( ) A.3 B. 32 C. 33 D. 346.如果两个球的体积之比为8:27,那么两个球的表面积之比为( ) A.8:27 B. 2:3 C.4:9 D. 2:97.有一个几何体的三视图及其尺寸如下(单位cm ),则该几何体的表面积及体积为:( )俯视图 主视图 侧视图 A.24πcm 2,12πcm 3B.15πcm 2,12πcm3C.24πcm 2,36πcm 3D.以上都不正确 8.下列几种说法正确的个数是( )①相等的角在直观图中对应的角仍然相等 ②相等的线段在直观图中对应的线段仍然相等 ③平行的线段在直观图中对应的线段仍然平行 ④线段的中点在直观图中仍然是线段的中点 A .1 B .2 C .3 D .49.正方体的内切球和外接球的半径之比为( )A B 2 C .2310.将一圆形纸片沿半径剪开为两个扇形,其圆心角之比为3∶4. 再将它们卷成两个圆锥侧面,则两圆锥的高之比为( )A .3∶4B .9∶16C .27∶64D .都不对二、填空题:(每小题6分,共30分)11.一个棱柱至少有 _____个面,面数最少的一个棱锥有 ________个顶点,顶点最少的一个棱台有 ________条侧棱。
人教版高中数学必修2第一章空间几何体练习题及答案全
第一章空间几何体1.1 空间几何体的构造一、选择题1、以下各组几何体中是多面体的一组是〔〕A 三棱柱四棱台球圆锥B 三棱柱四棱台正方体圆台C 三棱柱四棱台正方体六棱锥D 圆锥圆台球半球2、以下说法正确的选项是〔〕A 有一个面是多边形,其余各面是三角形的多面体是棱锥B 有两个面相互平行,其余各面均为梯形的多面体是棱台C 有两个面相互平行,其余各面均为平行四边形的多面体是棱柱D 棱柱的两个底面相互平行,侧面均为平行四边形3、下面多面体是五面体的是〔〕A 三棱锥B 三棱柱C 四棱柱D 五棱锥4、以下说法错误的选项是〔〕A 一个三棱锥可以由一个三棱锥和一个四棱锥拼合而成B 一个圆台可以由两个圆台拼合而成C 一个圆锥可以由两个圆锥拼合而成D 一个四棱台可以由两个四棱台拼合而成5、下面多面体中有12条棱的是〔〕A 四棱柱B 四棱锥C 五棱锥D 五棱柱6、在三棱锥的四个面中,直角三角形最多可有几个〔〕A 1 个B 2 个C 3个D 4个二、填空题7、一个棱柱至少有————————个面,面数最少的棱柱有————————个顶点,有—————————个棱。
8、一个棱柱有10个顶点,全部侧棱长的和为60,那么每条侧棱长为————————————9、把等腰三角形绕底边上的高旋转1800,所得的几何体是——————10、程度放置的正方体分别用“前面、后面、上面、下面、左面、右面〞表示。
图中是一个正方体的平面绽开图,假设图中的“似〞表示正方体的前面,“锦〞表示右面,“程〞表示下面。
那么“祝〞“你〞“前〞分别表示正方体的—————三、解答题:祝你前程似锦11、长方体—A 1B 1C 1D 1中,=3,=2,1=1,由A 到C 1在长方体外表上的最短间隔 为多少?12、说出以下几何体的主要构造特征 〔1〕 〔2〕 〔3〕 一、选择题1、两条相交直线的平行投影是〔 〕A 两条相交直线B 一条直线C 一条折线D 两条相交直线或一条直线2、如图中甲、乙、丙所示,下面是三个几何体的三视图,相应的标号是〔 〕① 长方体 ② 圆锥 ③ 三棱锥 ④ 圆柱A ②①③B ①②③C ③②④D ④③②正视图侧视图俯视图 正视图 侧视图 俯视图 正视图侧视图 俯视图甲 乙 丙3、假如一个几何体的正视图和侧视图都是长方形,那么这个几何体可能是〔 〕A 长方体或圆柱B 正方体或圆柱C 长方体或圆台D 正方体或四棱锥A A 1B 1BC C 1D 1 D4、以下说法正确的选项是〔 〕A 程度放置的正方形的直观图可能是梯形B 两条相交直线的直观图可能是平行直线C 平行四边形的直观图仍旧是平行四边形D 相互垂直的两条直线的直观图仍旧相互垂直5、假设一个三角形,采纳斜二测画法作出其直观图,其直观图面积是原三角形面积的〔 〕 A 21倍 B 42倍 C 2倍 D 2倍6、如图〔1〕所示的一个几何体,,在图中是该几何体的俯视图的是〔 〕二、选择题7、当圆锥的三视图中的正视图是一个圆时,侧视图及俯视图是两个全等的———————三角形。
高中数学必修2__第一章《空间几何体》知识点总结与练习
高中数学必修2__第一章《空间几何体》知识点总结与练习第一节空间几何体的结构特征及三视图和直观图[知识能否忆起]一、多面体的结构特征多面体结构特征棱柱有两个面互相平行,其余各面都是四边形,并且每相邻两个面的交线都平行且相等棱锥有一个面是多边形,而其余各面都是有一个公共顶点的三角形棱台棱锥被平行于底面的平面所截,截面和底面之间的部分二、旋转体的形成几何体旋转图形旋转轴圆柱矩形任一边所在的直线圆锥直角三角形一条直角边所在的直线圆台直角梯形垂直于底边的腰所在的直线球半圆直径所在的直线三、简单组合体简单组合体的构成有两种基本形式:一种是由简单几何体拼接而成;一种是由简单几何体截去或挖去一部分而成,有多面体与多面体、多面体与旋转体、旋转体与旋转体的组合体.四、平行投影与直观图空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°(或135°),z′轴与x′轴和y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半.五、三视图几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.1.正棱柱与正棱锥(1)底面是正多边形的直棱柱,叫正棱柱,注意正棱柱中“正”字包含两层含义:①侧棱垂直于底面;②底面是正多边形.(2)底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫正棱锥,注意正棱锥中“正”字包含两层含义:①顶点在底面上的射影必需是底面正多边形的中心,②底面是正多边形,特别地,各棱均相等的正三棱锥叫正四面体.2.对三视图的认识及三视图画法(1)空间几何体的三视图是该几何体在三个两两垂直的平面上的正投影,并不是从三个方向看到的该几何体的侧面表示的图形.(2)在画三视图时,重叠的线只画一条,能看见的轮廓线和棱用实线表示,挡住的线要画成虚线.(3)三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体用平行投影画出的轮廓线.3.对斜二测画法的认识及直观图的画法(1)在斜二测画法中,要确定关键点及关键线段,“平行于x轴的线段平行性不变,长度不变;平行于y轴的线段平行性不变,长度减半.”(2)按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积有以下关系:S直观图=24S原图形,S原图形=22S直观图.空间几何体的结构特征典题导入[例1](2012·哈师大附中月考)下列结论正确的是()A.各个面都是三角形的几何体是三棱锥B.以三角形的一条边所在直线为旋转轴,其余两边绕旋转轴旋转形成的曲面所围成的几何体叫圆锥C.棱锥的侧棱长与底面多边形的边长都相等,则该棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线[自主解答]A错误,如图1是由两个相同的三棱锥叠放在一起构成的几何体,它的各个面都是三角形,但它不是三棱锥;B错误,如图2,若△ABC不是直角三角形,或△ABC是直角三角形但旋转轴不是直角边,所得的几何体都不是圆锥;图1图2C错误,若该棱锥是六棱锥,由题设知,它是正六棱锥.易证正六棱锥的侧棱长必大于底面边长,这与题设矛盾.[答案] D由题悟法解决此类题目要准确理解几何体的定义,把握几何体的结构特征,并会通过反例对概念进行辨析.举反例时可利用最熟悉的空间几何体如三棱柱、四棱柱、正方体、三棱锥、三棱台等,也可利用它们的组合体去判断.以题试法1.(2012·天津质检)如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下4个命题中,假命题是()A.等腰四棱锥的腰与底面所成的角都相等B.等腰四棱锥的侧面与底面所成的二面角都相等或互补C.等腰四棱锥的底面四边形必存在外接圆D.等腰四棱锥的各顶点必在同一球面上解析:选B如图,等腰四棱锥的侧棱均相等,其侧棱在底面的射影也相等,则其腰与底面所成角相等,即A正确;底面四边形必有一个外接圆,即C正确;在高线上可以找到一个点O,使得该点到四棱锥各个顶点的距离相等,这个点即为外接球的球心,即D正确;但四棱锥的侧面与底面所成角不一定相等或互补(若为正四棱锥则成立).故仅命题B为假命题.几何体的三视图典题导入[例2](2012·湖南高考)某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是()[自主解答]根据几何体的三视图知识求解.由于该几何体的正视图和侧视图相同,且上部分是一个矩形,矩形中间无实线和虚线,因此俯视图不可能是C.[答案] C由题悟法三视图的长度特征三视图中,正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽,即“长对正,宽相等,高平齐”.[注意]画三视图时,要注意虚、实线的区别.以题试法2.(1)(2012·莆田模拟)如图是底面为正方形、一条侧棱垂直于底面的四棱锥的三视图,那么该四棱锥的直观图是下列各图中的()解析:选D由俯视图排除B、C;由正视图、侧视图可排除A.(2)(2012·济南模拟)如图,正三棱柱ABC -A 1B 1C 1的各棱长均为2,其正视图如图所示,则此三棱柱侧视图的面积为( )A .22B .4 C. 3D .2 3解析:选D 依题意,得此三棱柱的左视图是边长分别为2,3的矩形,故其面积是2 3.几何体的直观图典题导入[例3] 已知△ABC 的直观图A ′B ′C ′是边长为a 的正三角形,求原△ABC 的面积. [自主解答]建立如图所示的坐标系xOy ′,△A ′B ′C ′的顶点C ′在y ′轴上,A ′B ′边在x 轴上,OC 为△ABC 的高.把y ′轴绕原点逆时针旋转45°得y 轴,则点C ′变为点C ,且OC =2OC ′,A ,B 点即为A ′,B ′点,长度不变. 已知A ′B ′=A ′C ′=a ,在△OA ′C ′中, 由正弦定理得OC ′sin ∠OA ′C ′=A ′C ′sin 45°,所以OC ′=sin 120°sin 45° a =62 a ,所以原三角形ABC 的高OC =6a .所以S △ABC =12×a ×6a =62a 2.由题悟法用斜二测画法画几何体的直观图时,要注意原图形与直观图中的“三变、三不变”. “三变”⎩⎪⎨⎪⎧坐标轴的夹角改变,与y 轴平行线段的长度改变,图形改变;“三不变”⎩⎪⎨⎪⎧平行性不变,与x 轴平行的线段长度不变,相对位置不变.以题试法3.如果一个水平放置的图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( )A .2+2 B.1+22C.2+22D .1+ 2解析:选A 恢复后的原图形为一直角梯形 S =12(1+2+1)×2=2+ 2.第二节空间几何体的表面积和体积[知识能否忆起]柱、锥、台和球的侧面积和体积面积 体积 圆柱 S 侧=2πrl V =Sh =πr 2h圆锥S 侧=πrlV =13Sh =13πr 2h =13πr 2l 2-r 2圆台 S 侧=π(r 1+r 2)lV =13(S 上+S 下+S 上·S 下)h=13π(r 21+r 22+r 1r 2)h 直棱柱 S 侧=Ch V =Sh 正棱锥 S 侧=12Ch ′V =13Sh正棱台 S 侧=12(C +C ′)h ′V =13(S 上+S 下+S 上·S 下)h球 S 球面=4πR 2V =43πR 31.几何体的侧面积和全面积:几何体侧面积是指(各个)侧面面积之和,而全面积是侧面积与所有底面积之和.对侧面积公式的记忆,最好结合几何体的侧面展开图来进行.2.求体积时应注意的几点:(1)求一些不规则几何体的体积常用割补的方法转化成已知体积公式的几何体进行解决.(2)与三视图有关的体积问题注意几何体还原的准确性及数据的准确性. 3.求组合体的表面积时注意几何体的衔接部分的处理.几何体的表面积典题导入[例1] (2012·安徽高考)某几何体的三视图如图所示,该几何体的表面积是________.[自主解答] 由几何体的三视图可知,该几何体是底面为直角梯形的直四棱柱(如图所示).在四边形ABCD 中,作DE ⊥AB ,垂足为E ,则DE =4,AE =3,则AD =5. 所以其表面积为2×12×(2+5)×4+2×4+4×5+4×5+4×4=92.[答案] 92由题悟法1.以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.2.多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理. 3.旋转体的表面积问题注意其侧面展开图的应用.以题试法1.(2012·河南模拟)如图是某宝石饰物的三视图,已知该饰物的正视图、侧视图都是面积为32,且一个内角为60°的菱形,俯视图为正方形,那么该饰物的表面积为( )A.3 B .2 3 C .43 D .4解析:选D 依题意得,该饰物是由两个完全相同的正四棱锥对接而成,正四棱锥的底面边长和侧面上的高均等于菱形的边长,因此该饰物的表面积为8×⎝⎛⎭⎫12×1×1=4.几何体的体积典题导入[例2] (1)(2012·广东高考)某几何体的三视图如图所示,它的体积为( )A .72πB .48πC .30πD .24π(2)(2012·山东高考)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 为线段B 1C 上的一点,则三棱锥A -DED 1的体积为________.[自主解答] (1)由三视图知,该几何体是由圆锥和半球组合而成的,直观图如图所示,圆锥的底面半径为3,高为4,半球的半径为3.V =V 半球+V 圆锥=12·43π·33+13·π·32·4=30π.(2)VA -DED 1=VE -ADD 1=13×S △ADD 1×CD =13×12×1=16.[答案] (1)C (2)16本例(1)中几何体的三视图若变为:其体积为________.解析:由三视图还原几何体知,该几何体为圆柱与圆锥的组合体,其体积V =V 圆柱-V圆锥=π×32×4-13π×32×4=24π. 答案:24π由题悟法1.计算柱、锥、台体的体积,关键是根据条件找出相应的底面面积和高,应注意充分利用多面体的截面和旋转体的轴截面,将空间问题转化为平面问题求解.2.注意求体积的一些特殊方法:分割法、补体法、转化法等,它们是解决一些不规则几何体体积计算常用的方法,应熟练掌握.3.等积变换法:利用三棱锥的任一个面可作为三棱锥的底面.①求体积时,可选择容易计算的方式来计算;②利用“等积法”可求“点到面的距离”.以题试法2.(1)(2012·长春调研)四棱锥P -ABCD 的底面ABCD 为正方形,且PD 垂直于底面ABCD ,N 为PB 中点,则三棱锥P -ANC 与四棱锥P -ABCD 的体积比为( )A .1∶2B .1∶3C .1∶4D .1∶8解析:选C 设正方形ABCD 面积为S ,PD =h ,则体积比为 13Sh -13·12S ·12h -13·12Sh 13Sh =14.(2012·浙江模拟)如图,是某几何体的三视图,则这个几何体的体积是( )A .32B .24C .8D.323解析:选B 此几何体是高为2的棱柱,底面四边形可切割成为一个边长为3的正方形和2个直角边分别为3,1的直角三角形,其底面积S =9+2×12×3×1=12,所以几何体体积V =12×2=24.与球有关的几何体的表面积与体积问题典题导入[例3] (2012·新课标全国卷)已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为( )A.26 B.36 C.23D.22[自主解答] 由于三棱锥S -ABC 与三棱锥O -ABC 底面都是△ABC ,O 是SC 的中点,因此三棱锥S -ABC 的高是三棱锥O -ABC 高的2倍,所以三棱锥S -ABC 的体积也是三棱锥O -ABC 体积的2倍. 在三棱锥O -ABC 中,其棱长都是1,如图所示, S △ABC =34×AB 2=34, 高OD =12-⎝⎛⎭⎫332=63, ∴V S -ABC =2V O -ABC =2×13×34×63=26.[答案] A由题悟法1.解决与球有关的“切”、“接”问题,一般要过球心及多面体中的特殊点或过线作截面,把空间问题转化为平面问题,从而寻找几何体各元素之间的关系.2.记住几个常用的结论:(1)正方体的棱长为a ,球的半径为R , ①正方体的外接球,则2R =3a ; ②正方体的内切球,则2R =a ; ③球与正方体的各棱相切,则2R =2a .(2)长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2. (3)正四面体的外接球与内切球的半径之比为1∶3.以题试法3.(1)(2012·琼州模拟)一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的外接球的表面积为( )A .23πB.8π3C .4 3D.16π3(2)(2012·潍坊模拟)如图所示,已知球O 的面上有四点A 、B 、C 、D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =2,则球O 的体积等于________.解析:(1)由三视图可知几何体的直观图如图所示. 其中侧面DBC ⊥底面ABC ,取BC 的中点O 1,连接AO 1,DO 1知DO 1⊥底面ABC 且DO 1=3,AO 1=1,BO 1=O 1C =1.在Rt △ABO 1和Rt △ACO 1中,AB =AC =2, 又∵BC =2,∴∠BAC =90°.∴BC 为底面ABC 外接圆的直径,O 1为圆心, 又∵DO 1⊥底面ABC ,∴球心在DO 1上, 即△BCD 的外接圆为球大圆,设球半径为R , 则(3-R )2+12=R 2,∴R =23. ∴S 球=4πR 2=4π×⎝⎛⎭⎫232=16π3.(2)如图,以DA ,AB ,BC 为棱长构造正方体,设正方体的外接球球O 的半径为R ,则正方体的体对角线长即为球O 的直径,所以|CD |=(2)2+(2)2+(2)2=2R ,所以R =62. 故球O 的体积V =4πR 33=6π.答案:(1)D (2)6π某些空间几何体是某一个几何体的一部分,在 解题时,把这个几何体通过“补形”补成完整的 几何体或置于一个更熟悉的几何体中,巧妙地破 解空间几何体的体积问题,这是一种重要的解题 策略——补形法.常见的补形法有对称补形、联系 补形与还原补形.对于还原补形,主要涉及台体中 “还台为锥”问题.1.对称补形[典例1] (2012·湖北高考)已知某几何体的三视图如图所示,则该几何体的体积为( )A.8π3 B .3π C.10π3D .6π[解析] 由三视图可知,此几何体是底面半径为1,高为4的圆柱被从母线的中点处截去了圆柱的14,根据对称性,可补全此圆柱如图,故体积V=34×π×12×4=3π. [答案] B[题后悟道] “对称”是数学中的一种重要关系,在解决空间几何体中的问题时善于发现对称关系对空间想象能力的提高很有帮助.2.联系补形(2012·辽宁高考)已知点P ,A ,B ,C ,D 是球O 表面上的点,P A ⊥平面ABCD ,四边形ABCD 是边长为23的正方形.若P A =26,则△OAB 的面积为________.[解析] 由P A ⊥底面ABCD ,且ABCD 为正方形,故可补形为长方体如图,知球心O 为PC 的中点,又P A =26,AB =BC =23, ∴AC =26,∴PC =43,∴OA =OB =23,即△AOB 为正三角形, ∴S =3 3. [答案] 3 3[题后悟道] 三条侧棱两两互相垂直,或一侧棱垂直于底面,底面为正方形或长方形,则此几何体可补形为正方体或长方体,使所解决的问题更直观易求.练习题1.(教材习题改编)以下关于几何体的三视图的论述中,正确的是()A.球的三视图总是三个全等的圆B.正方体的三视图总是三个全等的正方形C.水平放置的正四面体的三视图都是正三角形D.水平放置的圆台的俯视图是一个圆解析:选A B中正方体的放置方向不明,不正确.C中三视图不全是正三角形.D中俯视图是两个同心圆.2.(2012·杭州模拟)用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是()A.圆柱B.圆锥C.球体D.圆柱、圆锥、球体的组合体解析:选C当用过高线的平面截圆柱和圆锥时,截面分别为矩形和三角形,只有球满足任意截面都是圆面.3.下列三种叙述,其中正确的有()①用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;②两个底面平行且相似,其余各面都是梯形的多面体是棱台;③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.A.0个B.1个C.2个D.3个解析:选A①中的平面不一定平行于底面,故①错.②③可用下图反例检验,故②③不正确.4.(教材习题改编)利用斜二测画法得到的:①正方形的直观图一定是菱形;②菱形的直观图一定是菱形;③三角形的直观图一定是三角形.以上结论正确的是________.解析:①中其直观图是一般的平行四边形,②菱形的直观图不一定是菱形,③正确.答案:③5.一个长方体去掉一个小长方体,所得几何体的正视图与侧视图分别如图所示,则该几何体的俯视图为________.解析:由三视图中的正、侧视图得到几何体的直观图如图所示,所以该几何体的俯视图为③.答案:③1.(2012·青岛摸底)如图,在下列四个几何体中,其三视图(正视图、侧视图、俯视图)中有且仅有两个相同的是()A.②③④B.①②③C.①③④D.①②④解析:选A①的三个视图都是边长为1的正方形;②的俯视图是圆,正视图、侧视图都是边长为1的正方形;③的俯视图是一个圆及其圆心,正视图、侧视图是相同的等腰三角形;④的俯视图是边长为1的正方形,正视图、侧视图是相同的矩形.2.有下列四个命题:①底面是矩形的平行六面体是长方体;②棱长相等的直四棱柱是正方体;③有两条侧棱都垂直于底面一边的平行六面体是直平行六面体;④对角线相等的平行六面体是直平行六面体.其中真命题的个数是()A.1 B.2C.3 D.4解析:选A命题①不是真命题,因为底面是矩形,但侧棱不垂直于底面的平行六面体不是长方体;命题②不是真命题,因为底面是菱形(非正方形),底面边长与侧棱长相等的直四棱柱不是正方体;命题③也不是真命题,因为有两条侧棱都垂直于底面一边不能推出侧棱与底面垂直;命题④是真命题,由对角线相等,可知平行六面体的对角面是矩形,从而推得侧棱与底面垂直,故平行六面体是直平行六面体.3.一个锥体的正视图和侧视图如图所示,下面选项中,不可能是该锥体的俯视图的是()解析:选C C选项不符合三视图中“宽相等”的要求,故选C.4.如图是一几何体的直观图、正视图和俯视图.在正视图右侧,按照画三视图的要求画出的该几何体的侧视图是()解析:选B由直观图和正视图、俯视图可知,该几何体的侧视图应为面P AD,且EC 投影在面P AD上,故B正确.5.如图△A′B′C′是△ABC的直观图,那么△ABC是()A.等腰三角形B.直角三角形C .等腰直角三角形D .钝角三角形解析:选B 由斜二测画法知B 正确.6.(2012·东北三校一模)一个几何体的三视图如图所示,则侧视图的面积为( )A .2+ 3B .1+ 3C .2+2 3D .4+ 3解析:选D 依题意得,该几何体的侧视图的面积等于22+12×2×3=4+ 3.7.(2012·昆明一中二模)一个几何体的正视图和侧视图都是边长为1的正方形,且体积为12,则这个几何体的俯视图可能是下列图形中的________.(填入所有可能的图形前的编号) ①锐角三角形;②直角三角形;③四边形;④扇形;⑤圆.解析:如图1所示,直三棱柱ABE -A 1B 1E 1符合题设要求,此时俯视图△ABE 是锐角三角形;如图2所示,直三棱柱ABC -A 1B 1C 1符合题设要求,此时俯视图△ABC 是直角三角形;如图3所示,当直四棱柱的八个顶点分别是正方体上、下各边的中点时,所得直四棱柱ABCD -A 1B 1C 1D 1符合题设要求,此时俯视图(四边形ABCD )是正方形;若俯视图是扇形或圆,体积中会含有π,故排除④⑤.答案:①②③8.(2013·安徽名校模拟)一个几何体的三视图如图所示,则该几何体的体积为________.解析:结合三视图可知,该几何体为底面边长为2、高为2的正三棱柱除去上面的一个高为1的三棱锥后剩下的部分,其直观图如图所示,故该几何体的体积为12×2×2sin 60°×2-13×12×2×2sin 60°×1=533.答案:5339.正四棱锥的底面边长为2,侧棱长均为3,其正视图(主视图)和侧视图(左视图)是全等的等腰三角形,则正视图的周长为________.解析:由题意知,正视图就是如图所示的截面PEF ,其中E 、F 分别是AD 、BC 的中点,连接AO ,易得AO =2,而P A =3,于是解得PO =1,所以PE =2,故其正视图的周长为2+2 2.答案:2+2 210.已知:图1是截去一个角的长方体,试按图示的方向画出其三视图;图2是某几何体的三视图,试说明该几何体的构成.解:图1几何体的三视图为:图2所示的几何体是上面为正六棱柱,下面为倒立的正六棱锥的组合体.11.(2012·银川调研)正四棱锥的高为3,侧棱长为7,求棱锥的斜高(棱锥侧面三角形的高).解:如图所示,正四棱锥S -ABCD 中, 高OS =3,侧棱SA =SB =SC =SD =7, 在Rt △SOA 中, OA =SA 2-OS 2=2,∴AC =4.∴AB =BC =CD =DA =2 2. 作OE ⊥AB 于E ,则E 为AB 中点. 连接SE ,则SE 即为斜高,在Rt △SOE 中,∵OE =12BC =2,SO =3,∴SE =5,即棱锥的斜高为 5.12.(2012·四平模拟)已知正三棱锥V -ABC 的正视图、侧视图和俯视图如图所示.(1)画出该三棱锥的直观图; (2)求出侧视图的面积.解:(1)三棱锥的直观图如图所示. (2)根据三视图间的关系可得BC =23, ∴侧视图中 VA =42-⎝⎛⎭⎫23×32×232=12=23,∴S △VBC =12×23×23=6.1.(教材习题改编)侧面都是直角三角形的正三棱锥,底面边长为a 时,该三棱锥的全面积是( )A.3+34a 2B.34a 2C.3+32a 2D.6+34a 2解析:选A ∵侧面都是直角三角形,故侧棱长等于22a , ∴S 全=34a 2+3×12×⎝⎛⎭⎫22a 2=3+34a 2. 2.已知正四棱锥的侧棱与底面的边长都为32,则这个四棱锥的外接球的表面积为( )A .12πB .36πC .72πD .108π解析:选B 依题意得,该正四棱锥的底面对角线长为32×2=6,高为 (32)2-⎝⎛⎭⎫12×62=3,因此底面中心到各顶点的距离均等于3,所以该四棱锥的外接球的球心为底面正方形的中心,其外接球的半径为3,所以其外接球的表面积等于4π×32=36π.3.某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8,高为5的等腰三角形,侧视图是一个底边长为6,高为5的等腰三角形,则该几何体的体积为( )A .24B .80C .64D .240解析:选B 结合题意知该几何体是四棱锥,棱锥底面是长和宽分别为8和6的矩形,棱锥的高是5,可由锥体的体积公式得V =13×8×6×5=80.4.(教材习题改编)表面积为3π的圆锥,它的侧面展开图是一个半圆,则该圆锥的底面直径为________.解析:设圆锥的母线为l ,圆锥底面半径为r , 则πrl +πr 2=3π,πl =2πr . 解得r =1,即直径为2. 答案:25.某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,侧视图是半径为1的半圆,则该几何体的表面积是________.解析:由三视图可知此几何体的表面积分为两部分:底面积即俯视图的面积,为23;侧面积为一个完整的圆锥的侧面积,且圆锥的母线长为2,底面半径为1,所以侧面积为2π.两部分加起来即为几何体的表面积,为2(π+3).答案:2(π+3)1.(2012·北京西城模拟)某几何体的三视图如图所示,该几何体的体积是( )A .8 B.83 C .4D.43解析:选D 将三视图还原,直观图如图所示,可以看出,这是一个底面为正方形(对角线长为2),高为2的四棱锥,其体积V =13S 正方形ABCD ×P A =13×12×2×2×2=43. 2.(2012·山西模拟)已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且AB =3,BC =2,则棱锥O -ABCD 的体积为( )A.51 B .351 C .251D .651解析:选A 依题意得,球心O 在底面ABCD 上的射影是矩形ABCD 的中心,因此棱锥O -ABCD 的高等于42-⎝⎛⎭⎫1232+222=512,所以棱锥O -ABCD 的体积等于13×(3×2)×512=51. 3.(2012·马鞍山二模)如图是一个几何体的三视图,则它的表面积为( )A .4π B.154π C .5πD.174π 解析:选D 由三视图可知该几何体是半径为1的球被挖出了18部分得到的几何体,故表面积为78·4π·12+3·14·π·12=174π. 4.(2012·济南模拟)用若干个大小相同,棱长为1的正方体摆成一个立体模型,其三视图如图所示,则此立体模型的表面积为( )A .24B .23C .22D .21解析:选C 这个空间几何体是由两部分组成的,下半部分为四个小正方体,上半部分为一个小正方体,结合直观图可知,该立体模型的表面积为22.5. (2012·江西高考)若一个几何体的三视图如下图所示,则此几何体的体积为( )A.112 B .5 C.92D .4解析:选D 由三视图可知,所求几何体是一个底面为六边形,高为1的直棱柱,因此只需求出底面积即可.由俯视图和主视图可知,底面面积为1×2+2×12×2×1=4,所以该几何体的体积为4×1=4.6.如图,正方体ABCD -A ′B ′C ′D ′的棱长为4,动点E ,F 在棱AB 上,且EF =2,动点Q 在棱D ′C ′上,则三棱锥A ′-EFQ 的体积( )A .与点E ,F 位置有关B .与点Q 位置有关C .与点E ,F ,Q 位置都有关D .与点E ,F ,Q 位置均无关,是定值解析:选D 因为V A ′-EFQ =V Q -A ′EF =13×⎝⎛⎭⎫12×2×4×4=163,故三棱锥A ′-EFQ 的体积与点E ,F ,Q 的位置均无关,是定值.7.(2012·湖州模拟)如图所示,已知一个多面体的平面展开图由一个边长为1的正方形和4个边长为1的正三角形组成,则该多面体的体积是________.解析:由题知该多面体为正四棱锥,底面边长为1,侧棱长为1,斜高为32,连接顶点和底面中心即为高,可求得高为22,所以体积V =13×1×1×22=26. 答案:268.(2012·上海高考)若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为________.解析:因为半圆的面积为2π,所以半圆的半径为2,圆锥的母线长为2.底面圆的周长为2π,所以底面圆的半径为1,所以圆锥的高为3,体积为33π. 答案:33π 9.(2013·郑州模拟)在三棱锥A -BCD 中,AB =CD =6,AC =BD =AD =BC =5,则该三棱锥的外接球的表面积为________.解析:依题意得,该三棱锥的三组对棱分别相等,因此可将该三棱锥补形成一个长方体,设该长方体的长、宽、高分别为a 、b 、c ,且其外接球的半径为R ,则⎩⎪⎨⎪⎧a 2+b 2=62,b 2+c 2=52,c 2+a 2=52,得a 2+b 2+c 2=43,即(2R )2=a 2+b 2+c 2=43,易知R 即为该三棱锥的外接球的半径,所以该三棱锥的外接球的表面积为4πR 2=43π.答案:43π10.(2012·江西八校模拟)如图,把边长为2的正六边形ABCDEF 沿对角线BE 折起,使AC = 6.。
数学必修2第一章空间几何体练习
20.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上 的积雪之用),已建的仓库的底面直径为12 m,高4 m,养路处拟 建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一 是新建的仓库的底面直径比原来大4 m(高不变);二是高度增加4 m(底面直径不变). (1)分别计算按这两种方案所建的仓库的体积; (2)分别计算按这两种方案所建的仓库的表面积; (3) (3)哪个方案更经济些?
D
解析: 解析:从三视图看底面为圆,且为组合体,所以选D.
二、填空题 5 11.一个棱柱至少有______个面,面数最少的一个棱锥有
4 3 ________个顶点,顶点最少的一个棱台有________条侧 棱.
解析: 解析:符合条件的几何体分别是:三棱柱,三棱锥,三棱台.
12.若三个球的表面积之比是1∶2∶3,则它们的体积之比 是_____________.
平行四边形或线段
16.一个直径为32厘米的圆柱形水桶中放入一个铁球,球全部没 入水中后,水面升高9厘米则此球的半径为_________厘米.
三、解答题 17.有一个正四棱台形状的油槽,可以装油190 L,假如它的 两底面边长分别等于60 cm和40 cm,求它的深度.
18 *.已知半球内有一个内接正方体,求这个半球的体积与 正方体的体积之比.[提示:过正方体的对角面作截面]
第一章 空间几何体
一、选择题 A
解析: 解析:从俯视图来看,上、下底面都是正方形,但是大小不一样, 可以判断可能是棱台
A
A
B
C
解析: 解析:正方体的对角线是外接球的直径.来自DDD
9.下列关于用斜二测画法画直观图的说法中,错误的是 B ( ). A.用斜二测画法画出的直观图是在平行投影下画出的 空间图形 B.几何体的直观图的长、宽、高与其几何体的长、宽、 高的比例相同 C.水平放置的矩形的直观图是平行四边形 D.水平放置的圆的直观图是椭圆 解析: 解析:斜二测画法的规则中,已知图形中平行于 x 轴的线段, 在直观图中保持原长度不变; 平行于 y 轴的线段,长度为原来的一半.平行于 z 轴的线 段的平行性和长度都不变.
(word版)高中数学必修2第一章空间几何体试题(含答案),文档
高一数学必修2第一章复习题一、选择题:〔每题5分,共50分〕1.以下图中的几何体是由哪个平面图形旋转得到的〔〕A B C D2.假设一个几何体的三视图都是等腰三角形,那么这个几何体可能是〔〕A.圆锥 B.正四棱锥 C.正三棱锥 D.正三棱台3.圆柱与圆锥的底面积相等,高也相等,它们的体积分别为V1和V2,那么V1:V2=〔〕A.1:3B.1:1C. 2:1D.3:14.过圆锥的高的三等分点作平行于底面的截面,它们把圆锥侧面分成的三局部的面积之比为〔〕:2:3 :3:5 :2:4 :3:95.棱长都是1的三棱锥的外表积为〔〕A. 3B. 2 3 3 D. 4 36.如果两个球的体积之比为8:27,那么两个球的外表积之比为〔〕A.8:27B.2:3C.4:9D.2:97.有一个几何体的三视图及其尺寸如下〔单位cm〕,那么该几何体的外表积及体积为:〔〕56俯视图主视图侧视图πcm2,12πcm3πcm2,12πcm3πcm2,36πcm3 D.以上都不正确8.以下几种说法正确的个数是〔〕①相等的角在直观图中对应的角仍然相等②相等的线段在直观图中对应的线段仍然相等③平行的线段在直观图中对应的线段仍然平行-1-④线段的中点在直观图中仍然是线段的中点A.1B.2C.3D.49.正方体的内切球和外接球的半径之比为〔〕A.3:1B.3:2C.2:3D.3:310.将一圆形纸片沿半径剪开为两个扇形,其圆心角之比为3∶4.再将它们卷成两个圆锥侧面,那么两圆锥的高之比为〔〕A.3∶4B.9∶16C.27∶64D.都不对请将选择题的答案填入下表:题号12345678910答案二、填空题:〔每题6分,共30分〕11.一个棱柱至少有_____个面,面数最少的一个棱锥有________个顶点,顶点最少的一个棱台有________条侧棱。
12.图〔1〕为长方体积木块堆成的几何体的三视图,此几何体共由________块木块堆成;图〔2〕中的三视图表示的实物为_____________。
(数学必修2)第一章 空间几何体练习题
(数学必修2)第一章 空间几何体练习题一、选择题1.有一个几何体的三视图如下图所示,这个几何体应是一个( )A.棱台B.棱锥C.棱柱D.都不对2.下图是由哪个平面图形旋转得到的( )A B C D3.利用斜二测画法叙述准确的是( ).A.正三角形的直观图是正三角形B.平行四边形的直观图是平行四边形C.矩形的直观图是矩形D.圆的直观图一定是圆4.如果一个水平放置的图形的斜二测直观图是一个底面为045,腰和上底均为1的等腰梯形,那么原平面图形的面积是( )A . 22+B . 221+C . 222+ D . 21+ 5.棱长都是1的三棱锥的表面积为( )6.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( )A .25πB .50πC .125πD .都不对7.正方体的内切球和外接球的半径之比为( )A B 2 C .主视图 左视图 俯视图8.在△ABC 中,02, 1.5,120AB BC ABC ==∠=,若使绕直线BC 旋转一周,则所形成的几何体的体积是( ) A. 92π B. 72π C. 52π D. 32π 9.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( )A .130B .140C .150D .16010.半径为R 的半圆卷成一个圆锥,则它的体积为( )A .324R B .38R C .324R D .38R 11.一个正方体的顶点都在球面上,它的棱长为2cm ,则球的表面积是( ) A.28cm π B.212cm π C.216cm π D.220cm π12.过圆锥的高的三等分点作平行于底面的截面,它们把圆锥侧面分成的三部分的面积之比为( )A. 1:2:3B. 1:3:5C. 1:2:4D. 1:3:913.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方形,则截去8个三棱锥后 ,剩下的几何体的体积是( ) A. 23 B. 76 C. 45 D. 5614.如果两个球的体积之比为8:27,那么两个球的表面积之比为( )A. 8:27B. 2:3C. 4:9D. 2:915.在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图是( )二、填空题1.一个棱柱至少有 _____个面,面数最少的一个棱锥有 ________个顶点,顶点最少的一个棱台有 ________条侧棱。
高中数学必修二必修2习题:第1章空间几何体1.1.1Word版含解析
第一章 1.1 1.1.1一、选择题1.下面多面体中,是棱柱的有()A.1个B.2个C.3个D.4个[答案] D[解析]根据棱柱的定义进行判定知,这4个图都满足.2.下列说法正确的是()A.有2个面平行,其余各面都是梯形的几何体是棱台B.多面体至少有3个面C.各侧面都是正方形的四棱柱一定是正方体D.九棱柱有9条侧棱,9个侧面,侧面为平行四边形[答案] D[解析]选项A错误,反例如图1;一个多面体至少有4个面,如三棱锥有4个面,不存在有3个面的多面体,所以选项B错误;选项C错误,反例如图2,上、下底面是全等的菱形,各侧面是全等的正方形,它不是正方体;根据棱柱的定义,知选项D正确.3.下列说法中正确的是()A.所有的棱柱都有一个底面B.棱柱的顶点至少有6个C.棱柱的侧棱至少有4条D.棱柱的棱至少有4条[答案] B[解析]棱柱有两个底面,所以A项不正确;棱柱底面的边数至少是3,则在棱柱中,三棱柱的顶点数至少是6,三棱柱的侧棱数至少是3,三棱柱的棱数至少是9,所以C、D 项不正确,B项正确.4.下列图形经过折叠可以围成一个棱柱的是()[答案] D[解析]A、B、C中底面图形的边数与侧面的个数不一致,故不能围成棱柱.故选 D.5.观察如图所示的四个几何体,其中判断不正确的是()A.①是棱柱B.②不是棱锥C.③不是棱锥D.④是棱台[答案] B[解析]①是棱柱,②是棱锥,③不是棱锥,④是棱台,故选 B.6.用一个平面去截一个三棱锥,截面形状是()A.四边形B.三角形C.三角形或四边形D.不可能为四边形[答案] C[解析]按如图①所示用一个平面去截三棱锥,截面是三角形;按如图②所示用一个平面去截三棱锥,截面是四边形.二、填空题7.八棱锥的侧面个数是________.[答案]8[解析]八棱锥有8个侧面.8.下列说法正确的是________.①一个棱锥至少有四个面;②如果四棱锥的底面是正方形,那么这个四棱锥的四条侧棱都相等;③五棱锥只有五条棱;④用与底面平行的平面去截三棱锥,得到的截面三角形和底面三角形相似.[答案]①④[解析]①正确.②不正确.四棱锥的底面是正方形,它的侧棱可以相等.也可以不等.③不正确.五棱锥除了五条侧棱外,还有五条底边,故共10条棱.④正确.三、解答题9.判断如图所示的几何体是不是棱台?为什么?[解析]①②③都不是棱台,因为①和③都不是由棱锥所截得的,故①③都不是棱台,虽然②是由棱锥所截得的,但截面不和底面平行,故不是棱台,只有用平行于棱锥底面的平面去截棱锥,底面与截面之间的部分才是棱台.10.如图所示的几何体中,所有棱长都相等,分析此几何体的构成?有几个面、几个顶点、几条棱?[解析]这个几何体是由两个同底面的四棱锥组合而成的八面体,有8个面,都是全等的正三角形;有6个顶点;有12条棱.一、选择题1.(2016嘉峪关一中高一检测)下面说法正确的是()A.棱锥的侧面不一定是三角形B.棱柱的各侧棱长不一定相等C.棱台的各侧棱延长必交于一点D.用一个平面截棱锥,得到两个几何体,一个是棱锥,另一个是棱台[答案] C[解析]棱台的各侧棱延长后必交于一点,故选 C.2.以三棱台的顶点为三棱锥的顶点,这样可以把一个三棱台分成三棱锥的个数为() A.1 B.2C.3 D.4[答案] C[解析]如图所示,在三棱台ABC-A1B1C1中,分别连接A1B,A1C,BC1,则将三棱台分成3个三棱锥,即三棱锥A-A1BC,B1-A1BC1,C-A1BC1.3.(2016·日照高一检测)如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是()A.棱柱B.棱台C.棱柱与棱锥的组合体D.不能确定[答案] A[解析]倾斜后水槽中的水形成的几何体是棱柱.4.某同学制作了一个对面图案相同的正方体礼品盒(如图),则这个正方体礼品盒的表面展开图应该为()[答案] A[解析]两个☆不能并列相邻,B、D错误;两个不能并列相邻,C错误,故选 A.也可通过实物制作检验来判断.二、填空题5.五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱的对角线共有________条.[答案]10[解析]在上底面选一个顶点,同时在下底选一个顶点,且这两个顶点不在同一侧面上,这样上底面每个顶点对应两条对角线,所以共有10条.6.在正方体上任意选择4个顶点,它们可能是如下各种几何形体的4个顶点,这些几何形体是________(写出所有正确结论的编号).①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.[答案]①③④⑤[解析]在如图正方体ABCD-A1B1C1D1中,若所取四点共面,则只能是正方体的表面或对角面.即正方形或长方形,∴①正确,②错误.棱锥A-BDA1符合③,∴③正确;棱锥A1-BDC1符合④,∴④正确;棱锥A-A1B1C1符合⑤,∴⑤正确.三、解答题7.一个几何体的表面展开平面图如图.(1)该几何体是哪种几何体;(2)该几何体中与“祝”字面相对的是哪个面?与“你”字面相对的是哪个面?[解析](1)该几何体是四棱台;(2)与“祝”相对的面是“前”,与“你”相对的面是“程”.8.根据如图所示的几何体的表面展开图,画出立体图形.[解析]图1是以ABCD为底面,P为顶点的四棱锥.图2是以ABCD和A1B1C1D1为底面的棱柱.其图形如图所示.。
高中数学必修二第一章 空间几何体课后作业(含答案)
第一章 空间几何体 第1课时 多面体的结构特征一、基础过关1.下列说法中正确的是( )A .棱柱的侧面可以是三角形B .由6个大小一样的正方形所组成的图形是正方体的展开图C .正方体的各条棱长都相等D .棱柱的各条棱长都相等 2.棱台不具备的特点是( )A .两底面相似B .侧面都是梯形C .侧棱都相等D .侧棱延长后都交于一点3. 如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是( )A .棱柱B .棱台C .棱柱与棱锥的组合体D .不能确定4.若棱台上、下底面的对应边之比为1∶2,则上、下底面的面积之比是( )A .1∶2B .1∶4C .2∶1D .4∶15.一个棱柱有10个顶点,所有的侧棱长的和为60 cm ,则每条侧棱长为________cm. 6.在下面的四个平面图形中,哪几个是侧棱都相等的四面体的展开图________(填序号).7.如图所示为长方体ABCD —A ′B ′C ′D ′,当用平面BCFE 把这个长方体分成两部分后,各部分形成的多面体还是棱柱吗?如果不是,请说明理由;如果是,指出底面及侧棱.8.如图所示的是一个三棱台ABC —A 1B 1C 1,如何用两个平面把这个三棱台分成三部分,使每一部分都是一个三棱锥.二、能力提升9.下图中不可能围成正方体的是()10.在正方体上任意选择4个顶点,它们可能是如下各种几何体的4个顶点,这些几何体是________(写出所有正确结论的编号).①矩形; ②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体; ④每个面都是等边三角形的四面体; ⑤每个面都是直角三角形的四面体.11.根据下列对于几何体结构特征的描述,说出几何体的名称.(1)由八个面围成,其中两个面是互相平行且全等的正六边形,其它各面都是矩形; (2)由五个面围成,其中一个面是正方形,其它各面都是有一个公共顶点的全等三角形.三、探究与拓展12.正方体的截面可能是什么形状的图形?第二课时 旋转体与简单组合体的结构特征一、基础过关 1.下列说法正确的是( )A .直角三角形绕一边旋转得到的旋转体是圆锥B .夹在圆柱的两个截面间的几何体还是一个旋转体C .圆锥截去一个小圆锥后剩余部分是圆台D .通过圆台侧面上一点,有无数条母线 2.下列说法正确的是( )A .直线绕定直线旋转形成柱面B .半圆绕定直线旋转形成球体C .有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台D .圆柱的任意两条母线所在的直线是相互平行的3.如图所示的几何体是由一个圆柱挖去一个以圆柱上底面为底面,下底面圆心为顶点的圆锥而得到的组合体,现用一个竖直的平面去截这个组合体,则截面图形可能是()A .(1)(2)B .(1)(3)C .(1)(4)D .(1)(5) 4.观察如图所示的四个几何体,其中判断正确的是()A .a 是棱台B .b 是圆台C .c 是棱锥D .d 不是棱柱5.将等边三角形绕它的一条中线旋转180°,形成的几何体是________. 6.请描述下列几何体的结构特征,并说出它的名称.(1)由7个面围成,其中两个面是互相平行且全等的五边形,其它面都是全等 的矩形;(2)如右图,一个圆环面绕着过圆心的直线l 旋转180°.7. 如图所示,梯形ABCD 中,AD ∥BC ,且AD <BC ,当梯形ABCD 绕AD 所在直线旋转一周时,其他各边旋转围成了一个几何体,试描述该几何体的结构特征.二、能力提升8.下列说法正确的个数是( )①长方形绕一条直线旋转一周所形成的几何体是圆柱;②过圆锥侧面上一点有无数条母线;③圆锥的母线互相平行. A .0B .1C .2D .39.一个正方体内有一个内切球,作正方体的对角面,所得截面图形是下图中的()10.已知球O 是棱长为1的正方体ABCD —A 1B 1C 1D 1的内切球,则平面ACD 1截球O 所得的截面面积为________.11.以直角三角形的一条边所在的直线为旋转轴,其余两边旋转形成的面所围成的旋转体有哪些?三、探究与拓展12.如图所示,圆台母线AB 长为20 cm ,上、下底面半径分别为5 cm 和10 cm ,从母线AB 的中点M 拉一条绳子绕圆台侧面转到B 点,求这条绳长的最小值.§1.2 空间几何体的三视图和直观图1.2.1 中心投影与平行投影 1.2.2 空间几何体的三视图一、基础过关 1.下列命题正确的是( )A .矩形的平行投影一定是矩形B .梯形的平行投影一定是梯形C .两条相交直线的投影可能平行D .一条线段中点的平行投影仍是这条线段投影的中点 2.如图所示的一个几何体,哪一个是该几何体的俯视图()3.如图所示,下列几何体各自的三视图中,有且仅有两个视图相同的是()A .①②B .①③C .①④D .②④4.一个长方体去掉一个小长方体,所得几何体的正视图与侧视图分别如图所示,则该几何体的俯视图()5.根据如图所示俯视图,找出对应的物体.(1)对应________;(2)对应________;(3)对应________;(4)对应________;(5)对应________.6.若一个三棱柱的三视图如图所示,则这个三棱柱的高(两底面之间的距离)和底面边长分别是______和________.7.在下面图形中,图(b)是图(a)中实物画出的正视图和俯视图,你认为正确吗?如果不正确,请找出错误并改正,然后画出侧视图(尺寸不作严格要求).8.画出如图所示的四棱锥和三棱柱的三视图.二、能力提升9.一个长方体去掉一角的直观图如图所示,关于它的三视图,下列画法正确的是()10.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是()A.球B.三棱锥C.正方体D.圆柱11.用若干块相同的小正方体搭成一个几何体,该几何体的三视图如图所示,则搭成该几何体需要的小正方体的块数是________.12.如图,螺栓是棱柱和圆柱的组合体,画出它的三视图.三、探究与拓展13.用小立方体搭成一个几何体,使它的正视图和俯视图如图所示,搭建这样的几何体,最多要几个小立方体?最少要几个小立方体?1.2.3空间几何体的直观图一、基础过关1.下列结论:①角的水平放置的直观图一定是角;②相等的角在直观图中仍然相等;③相等的线段在直观图中仍然相等;④两条平行线段在直观图中对应的两条线段仍然平行.其中正确的有()A.①②B.①④C.③④D.①③④2.在用斜二测画法画水平放置的△ABC时,若∠A的两边分别平行于x轴、y轴,则在直观图中∠A′等于()A.45°B.135°C.90°D.45°或135°3.下面每个选项的2个边长为1的正△ABC的直观图不是全等三角形的一组是()4.如图甲所示为一个平面图形的直观图,则此平面图形可能是图乙中的()5.利用斜二测画法得到:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④菱形的直观图是菱形.以上结论中,正确的是______________.(填序号)6.水平放置的△ABC的斜二测直观图如图所示,已知A′C′=3,B′C′=2,则AB边上的中线的实际长度为____________.7.如图是一梯形OABC的直观图,其直观图面积为S.求梯形OABC的面积.8.如图所示,已知几何体的三视图,用斜二测画法画出它的直观图.二、能力提升9.如图,正方形O ′A ′B ′C ′的边长为1 cm ,它是水平放置的一个平面图形的直观图,则原图的周长是( )A .8 cmB .6 cmC .2(1+3) cmD .2(1+2) cm10.如图所示的是水平放置的△ABC 在直角坐标系的直观图,其中D ′是A ′C ′的中点,且∠A ′C ′B ′≠30°,则原图形中与线段BD 的长相等的线段有________条. 11.如图所示,为一个水平放置的正方形ABCO ,它在直角坐标系xOy 中,点B 的坐标为(2,2),则在用斜二测画法画出的正方形的直观图中,顶点B ′到x ′轴的距离为________.12.如图所示,梯形ABCD 中,AB ∥CD ,AB =4 cm ,CD =2 cm ,∠DAB =30°,AD =3 cm ,试画出它的直观图.三、探究与拓展13.在水平放置的平面α内有一个边长为1的正方形A ′B ′C ′D ′,如图,其中的对角线A ′C ′在水平位置,已知该正方形是某个四边形用斜二测画法画出的直观图,试画出该四边形的真实图形并求出其面积.§1.3 空间几何体的表面积与体积第一课时 柱体、锥体、台体的表面积一、基础过关1.用长为4、宽为2的矩形做侧面围成一个高为2的圆柱,此圆柱的轴截面面积为( )A .8B .8πC .4πD .2π2.一个圆柱的侧面展开图是一个正方形,则这个圆柱的表面积与侧面积的比为 ( )A .1+2π2πB .1+4π4πC .1+2ππD .1+4π2π3.若一个圆台的正视图如图所示,则其侧面积等于()A .6B .6πC .35πD .65π 4.三视图如图所示的几何体的全面积是()A .7+ 2B .112+2C .7+ 3D .325.如果圆锥的侧面展开图是半圆,那么这个圆锥的顶角(圆锥轴截面中两条母线的夹角)是________. 6.一简单组合体的三视图及尺寸如下图所示(单位:cm),则该组合体的表面积为________cm 2.7.表面积为3π的圆锥,它的侧面展开图是一个半圆,则该圆锥的底面直径为________.8.长方体ABCD —A 1B 1C 1D 1中,宽、长、高分别为3、4、5,现有一个小虫从A 出发沿长方体表面爬行到C 1来获取食物,求其路程的最小值.二、能力提升9.已知由半圆的四分之三截成的扇形的面积为B ,由这个扇形围成一个圆锥,若圆锥的全面积为A ,则A ∶B 等于( ) A .11∶8B .3∶8C .8∶3D .13∶8 10.一个几何体的三视图如图,该几何体的表面积为()A .372B .360C .292D .28011.一个几何体的三视图如图所示,则该几何体的表面积为________.12.有一根长为3π cm ,底面半径为1 cm 的圆柱形铁管,用一段铁丝在铁管上缠绕2圈,并使铁丝的两个端点落在圆柱的同一母线的两端,求铁丝的最短长度.三、探究与拓展13.有一塔形几何体由3个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点.已知最底层正方体的棱长为2,求该塔形的表面积(含最底层正方体的底面面积).第二课时 柱体、锥体、台体、球的体积与球的表面积一、基础过关1.一个三棱锥的高和底面边长都缩小为原来的12时,它的体积是原来的( )A .12B .14C .18D .242.两个球的半径之比为1∶3,那么两个球的表面积之比为 ( )A .1∶9B .1∶27C .1∶3D .1∶1 3.已知直角三角形的两直角边长为a 、b ,分别以这两条直角边所在直线为轴,旋转所形成的几何体的体积之比为( )A .a ∶bB .b ∶aC .a 2∶b 2D .b 2∶a 24.若球的体积与表面积相等,则球的半径是( )A .1B .2C .3D .45.将一钢球放入底面半径为3 cm 的圆柱形玻璃容器中,水面升高4 cm ,则钢球的半径是________ cm. 6.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =AD =3 cm ,AA 1=2 cm ,则四棱锥A -BB 1D 1D 的体积为______ cm 3.7.(1)表面积相等的正方体和球中,体积较大的几何体是______;(2)体积相等的正方体和球中,表面积较小的几何体是______.8.在球面上有四个点P 、A 、B 、C ,如果P A 、PB 、PC 两两垂直且P A =PB =PC =a ,求这个球的体积.二、能力提升9.有一个几何体的三视图及其尺寸如图(单位:cm),则该几何体的表面积和体积分别为( )A .24π cm 2,12π cm 3B .15π cm 2,12π cm 3C .24π cm 2,36π cm 3D .以上都不正确10.圆柱的底面半径为1,母线长为2,则它的体积和表面积分别为( )A .2π,6πB .3π,5πC .4π,6πD .2π,4π11.一个几何体的三视图如图所示(单位:m),则该几何体的体积为________ m 3.12.有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为r 的铁球,并注入水,使水面与球正好相切,然后将球取出,求这时容器中水的深度.三、探究与拓展13.有三个球,第一个球内切于正方体,第二个球与这个正方体各条棱相切,第三个球过这个正方体的各个顶点,求这三个球的表面积之比.章末检测一、选择题1.如图所示的长方体,将其左侧面作为上底面,右侧面作为下底面,水平放置,所得的几何体是 ( ) A .棱柱B .棱台C .棱柱与棱锥组合体D .无法确定1题图 2题图2.一个简单几何体的正视图、侧视图如图所示,则其俯视图不可能...为:①长方形;②正方形;③圆.其中正确的是()A.①②B.②③C.①③D.①②3.如图所示的正方体中,M、N分别是AA1、CC1的中点,作四边形D1MBN,则四边形D1MBN在正方体各个面上的正投影图形中,不可能出现的是()4.如图所示的是水平放置的三角形直观图,D′是△A′B′C′中B′C′边上的一点,且D′离C′比D′离B′近,又A′D′∥y′轴,那么原△ABC的AB、AD、AC三条线段中()A.最长的是AB,最短的是AC B.最长的是AC,最短的是ABC.最长的是AB,最短的是AD D.最长的是AD,最短的是AC4题图5题图5.具有如图所示直观图的平面图形ABCD是()A.等腰梯形B.直角梯形C.任意四边形 D.平行四边形6.如图是一个几何体的三视图,则在此几何体中,直角三角形的个数是()A.1 B.2 C.3 D.47.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6 B.9 C.12 D.188.平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为2,则此球的体积为()A.6πB.43πC.46πD.63π9.如图所示,则这个几何体的体积等于()A.4 B.6 C.8 D.1210.将正三棱柱截去三个角(如图1所示,A,B,C分别是△GHI三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图为选项图中的()11.圆锥的表面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角为()A.120°B.150°C.180°D.240°12.已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为()A.26B.36C.23D.22二、填空题13.一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的________(填入所有可能的几何体前的编号).①三棱锥②四棱锥③三棱柱④四棱柱⑤圆锥⑥圆柱14.已知某三棱锥的三视图(单位:cm)如图所示,则该三棱锥的体积等于________ cm3.15.已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是________.16.一个水平放置的圆柱形储油桶(如图所示),桶内有油部分所在圆弧占底面圆周长的14,则油桶直立时,油的高度与桶的高度的比值是________.三、解答题17.某个几何体的三视图如图所示(单位:m),(1)求该几何体的表面积(结果保留π);(2)求该几何体的体积(结果保留π).18.如图是一个空间几何体的三视图,其中正视图和侧视图都是边长为2的正三角形,俯视图如图.(1)在给定的直角坐标系中作出这个几何体的直观图(不写作法);(2)求这个几何体的体积.19.如图所示,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=22,AD=2,求四边形ABCD 绕AD旋转一周所成几何体的表面积及体积.20.如图所示,有一块扇形铁皮OAB,∠AOB=60°,OA=72 cm,要剪下来一个扇形环ABCD,作圆台形容器的侧面,并且余下的扇形OCD内剪下一块与其相切的圆形使它恰好作圆台形容器的下底面(大底面).试求:(1)AD的长;(2)容器的容积.第一章空间几何体参考答案第1课时多面体的结构特征参考答案1.C 2.C 3.A 4.B 5.12 6.①②7.解截面BCFE右侧部分是棱柱,因为它满足棱柱的定义.它是三棱柱BEB′—CFC′,其中△BEB′和△CFC′是底面.EF,B′C′,BC是侧棱,截面BCFE左侧部分也是棱柱.它是四棱柱ABEA′—DCFD′.其中四边形ABEA′和四边形DCFD′是底面.A′D′,EF,BC,AD为侧棱.8.解过A1、B、C三点作一个平面,再过A1、B、C1作一个平面,就把三棱台ABC—A1B1C1分成三部分,形成的三个三棱锥分别是A1—ABC,B—A1B1C1,A1—BCC1.9.D10.①③④⑤11.解(1)该几何体有两个面是互相平行且全等的正六边形,其他各面都是矩形,可满足每相邻两个面的公共边都相互平行,故该几何体是六棱柱.(2)该几何体的其中一个面是四边形,其余各面都是三角形,并且这些三角形有一个公共顶点,因此该几何体是四棱锥.12.解本问题可以有如下各种答案:①截面可以是三角形:等边三角形、等腰三角形、一般三角形;②截面三角形是锐角三角形;③截面可以是四边形:平行四边形、矩形、菱形、正方形、梯形、等腰梯形;截面为四边形时,这个四边形中至少有一组对边平行;④截面可以是五边形;⑤截面可以是六边形;⑥截面六边形可以是等角(均为120°)的六边形.特别地,可以是正六边形.截面图形举例第二课时旋转体与简单组合体的结构特征参考答案1.C 2.D 3.D 4.C 5.圆锥6.解(1)特征:具有棱柱的特征,且侧面都是全等的矩形,底面是正五边形.几何体为正五棱柱.(2)由两个同心的大球和小球,大球里去掉小球剩下的部分形成的几何体,即空心球.7.解如图所示,旋转所得的几何体是一个圆柱挖去两个圆锥后剩余部分构成的组合体.8.A9.B10.π611.解 假设直角三角形ABC 中,∠C =90°.以AC 边所在的直线为旋转轴,其余两边旋转形成的面所围成的旋转体如图(1)所示.当以BC 边所在的直线为旋转轴,其余两边旋转形成的面所围成的旋转体如图(2)所示. 当以AB 边所在的直线为旋转轴,其余两边旋转形成的面所围成的旋转体如图(3)所示.12.解 作出圆台的侧面展开图,如图所示,由其轴截面中Rt △OP A 与Rt △OQB 相似,得OA OA +AB =510,可Q 的周长相等,求得OA =20 cm.设∠BOB ′=α,由于扇形弧BB ′的长与底面圆而底面圆Q 的周长为2π×10 cm.扇形OBB ′的半径为OA +AB =20+20=40 cm ,扇度20π为所在圆形OBB ′所在圆的周长为2π×40=80π cm.所以扇形弧BB ′的长周长的14.所以OB ⊥OB ′.所以在Rt △B ′OM 中,B ′M 2=402+302,所以B ′M =50 cm ,即所求绳长的最小值为50 cm.1.2.1 中心投影与平行投影1.2.2 空间几何体的三视图参考答案1.D 2.C 3.D 4.C5.(1)D (2)A (3)E (4)C (5)B 6.2 47.解 图(a)是由两个长方体组合而成的,正视图正确,俯视图错误,俯视图应该画出不可见轮廓线(用虚线表示),侧视图轮廓是一个矩形,有一条可视的交线(用实线表示),正确画法如图所示.8.解 三视图如图所示:9.A 10.D 11.612.解 该物体是由一个正六棱柱和一个圆柱组合而成的,正视图反映正六棱柱的三个侧面和圆柱侧面,侧视图反映正六棱柱的两个侧面和圆柱侧面,俯视图反映该物体投影后是一个正六边形和一个圆(中心重合).它的三视图如图所示.13.解 由于正视图中每列的层数即是俯视图中该列的最大数字,因此,用的立方块数最多的情况是每个方框都用该列的最大数字,即如图①所示,此种情况共用小立方块17块.而搭建这样的几何体用方块数最少的情况是每列只要有一个最大的数字,其他方框内的数字可减少到最少的1,即如图②所示,这样的摆法只需小立方块11块.1.2.3 空间几何体的直观图参考答案1.B 2.D 3.C 4.C 5.①② 6.2.57.解 设O ′C ′=h ,则原梯形是一个直角梯形且高为2h .过C ′作C ′D ′⊥O ′A ′于D ′,则C ′D ′=22h . 由题意知12C ′D ′(C ′B ′+O ′A ′)=S .即24h (C ′B ′+O ′A ′)=S . 又原直角梯形面积为S ′=12·2h (C ′B ′+O ′A ′)=h (C ′B ′+O ′A ′)=4S2=22S .所以梯形OABC 的面积为22S .8.解 (1)作出长方体的直观图ABCD -A 1B 1C 1D 1,如图a 所示;(2)再以上底面A 1B 1C 1D 1的对角线交点为原点建立x ′,y ′,z ′轴,如图b 所示,在z ′上取点V ′,使得V ′O ′的长度为棱锥的高,连接V ′A 1,V ′B 1,V ′C 1,V ′D 1,得到四棱锥的直观图,如图b ; (3)擦去辅助线和坐标轴,遮住部分用虚线表示,得到几何体的直观图,如图c.9.A 10.2 11.2212.解 画法:步骤:(1)如图a 所示,在梯形ABCD 中, 以边AB 所在的直线为x 轴,点A 为原点, 建立平面直角坐标系xOy .如图b 所示,画出对应的x ′轴,y ′轴,使∠x ′O ′y ′=45°. (2)在图a 中,过D 点作DE ⊥x 轴,垂足为E .在图b 中, 在x ′轴上取A ′B ′=AB =4 cm ,A ′E ′=AE =323≈2.598 cm ;过点E ′作E ′D ′∥y ′轴,使E ′D ′=12ED =12×32=0.75 cm ,再过点D ′作D ′C ′∥x ′轴,且使D ′C ′=DC =2 cm.(3)连接A ′D ′、B ′C ′,并擦去x ′轴与y ′轴及其他一些辅助线,如图c 所示,则四边形A ′B ′C ′D ′就是所求作的直观图.13.解 四边形ABCD 的真实图形如图所示,∵A ′C ′在水平位置,A ′B ′C ′D ′为正方形, ∴∠D ′A ′C ′=∠A ′C ′B ′ =45°,∴在原四边形ABCD 中, DA ⊥AC ,AC ⊥BC , ∵DA =2D ′A ′=2, AC =A ′C ′=2,∴S 四边形ABCD =AC ·AD =2 2.第一课时 柱体、锥体、台体的表面积参考答案1.B 2.A 3.C 4.A 5.60° 6.12 800 7.28.解 把长方体含AC 1的面作展开图,有三种情形如图所示:利用勾股定理可得AC 1的长分别为90、74、80.由此可见图②是最短路线,其路程的最小值为74. 9.A 10.B 11.3812.解 把圆柱侧面及缠绕其上的铁丝展开,在平面上得到矩形ABCD (如图所示),由题意知BC =3π cm ,AB =4π cm ,点A 与点C 分别是铁丝的起、止位置,故线段AC 的长度即为铁丝的最短长度. AC =AB 2+BC 2=5π cm , 故铁丝的最短长度为5π cm.13.解 易知由下向上三个正方体的棱长依次为2,2,1.考虑该几何体在水平面的投影,可知其水平面的面积之和为下底面积最大正方体的底面面积的二倍. ∴S 表=2S 下+S 侧=2×22+4×[22+(2)2+12]=36. ∴该几何体的表面积为36.第二课时 柱体、锥体、台体、球的体积与球的表面积参考答案1.C 2.A 3.B 4.C 5.3 6.6 7.(1)球 (2)球8.解 ∵P A 、PB 、PC 两两垂直,P A =PB =PC =a .∴以P A 、PB 、PC 为相邻三条棱可以构造正方体. 又∵P 、A 、B 、C 四点是球面上四点,∴球是正方体的外接球,正方体的对角线是球的直径.∴2R =3a ,R =32a ,∴V =43πR 3=43π(32a )3=32πa 3.9.A 10.A 11.9π+1812.解 由题意知,圆锥的轴截面为正三角形,如图所示为圆锥的轴截面.根据切线性质知,当球在容器内时,水深为3r ,水面的半径为3r ,则容器内水的体积为V =V 圆锥-V球=13π·(3r )2·3r -43πr 3=53πr 3, 而将球取出后,设容器内水的深度为h ,则水面圆的半径为33h ,从而容器内水的体积是V ′=13π·(33h )2·h =19πh 3,由V =V ′,得h =315r . 即容器中水的深度为315r .13.解 设正方体的棱长为a .如图所示.(1)中正方体的内切球球心是正方体的中心,切点是正方体六个面的中心,经过四个切点及球心作截面, 所以有2r 1=a ,r 1=a 2,所以S 1=4πr21=πa 2.(2)中球与正方体的各棱的切点在每条棱的中点, 过球心作正方体的对角面得截面,2r 2=2a ,r 2=22a ,所以S 2=4πr 22=2πa 2.(3)中正方体的各个顶点在球面上, 过球心作正方体的对角面得截面,所以有2r 3=3a ,r 3=32a ,所以S 3=4πr 23=3πa 2.综上可得S 1∶S 2∶S 3=1∶2∶3.章末检测答案1.A 2.B 3.D 4.C 5.B 6.D 7.B 8.B 9.A 10.A 11.C 12.A 13.①②③⑤ 14.1 15.24π16.14-12π17.解 由三视图可知:该几何体的下半部分是棱长为2 m 的正方体,上半部分是半径为1 m 的半球.(1)几何体的表面积为S =12×4π×12+6×22-π×12=24+π(m 2).(2)几何体的体积为V =23+12×43×π×13=8+2π3(m 3).18.解 (1)直观图如图.(2)这个几何体是一个四棱锥. 它的底面边长为2,高为3,所以体积V =13×22×3=433.19.解 S 表面=S 圆台底面+S 圆台侧面+S 圆锥侧面=π×52+π×(2+5)×5+π×2×2 2 =(42+60)π.V =V 圆台-V 圆锥=13π(r 21+r 1r 2+r 22)h -13πr 21h ′ =13π(25+10+4)×4-13π×4×2 =1483π. 20.解 (1)设圆台上、下底面半径分别为r 、R ,AD =x ,则OD =72-x ,由题意得⎩⎪⎨⎪⎧2πR =60·π180×7272-x =3R,∴⎩⎪⎨⎪⎧R =12x =36.即AD 应取36 cm.(2)∵2πr =π3·OD =π3·36,∴r =6 cm ,圆台的高h =x 2-(R -r )2=362-(12-6)2=635. ∴V =13πh (R 2+Rr +r 2)=13π·635·(122+12×6+62)=50435π(cm 3).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学必修2第一章空间几何体——练习1
1、一个水平放置的圆柱形储油桶(如图所示),桶内有油部分所在圆弧占底面积周长的
41,
则油桶直立时,油的高度与油桶的高度的比值是( )
A 、
41 B 、π
2141- C 、81 D 、8121-π 2、如图的几何体是从一个圆柱中挖去一个圆柱的上底面为底面,
下底面圆心为顶点的圆锥而得到的,现用一个平面去截这个几何体,若这个平面垂直于圆柱底面所在的平面,那么所截得的图形可能是图中的 .(填序号)
3、已知某几何体的俯视图是如图所示的矩形,主视图是一个底边长为8、高为4的等腰三角形,侧视图是一个底面边长为6、高为4的等腰三角形.求:
(1)该几何体的体积V ;(2)该几何体的侧面面积S.
4、如图,在四边形ABCD 中,∠ADC=135°,∠DAB=90°,
AB=5,CD=22,AD=2,求四边形ABCD 绕AD 旋转一
周所成几何体的表面积及体积.
5、已知圆锥底面直径AB=2a ,母线SA=3a ,在母线SA 上任取一点C ,当C 在什么位置时,圆锥侧面上从A 到C 的距离最短?求这个最短距离.
答案:1、B ;2、(1)(5);3、(1)64;(2)40+2
2;4、60π+42π,3148π;5、当C 与S 的距离为1.5a 时,A 到C 的距离最短,最短距离为1.53a.。