水力学总复习
水力学期末综合复习题
⽔⼒学期末综合复习题《⽔⼒学》期末综合复习题⼀、填空题(每⼩题4分,共16分)1.有⼀明渠均匀流,通过流量s553=,底坡0004Q/mi,则其流量模数K= .=.02.⽔泵进⼝真空计的读数为2p k=,则该处的相对压强⽔头为 mKN5.24m/3.矩形断⾯渠道,⽔深h=1m,单宽流量s=,则该⽔流的佛汝德数Fr= 。
13q/m4.宽顶堰的总⽔头H0=2m, 下游⽔位超过堰顶的⾼度h s=1.4m,此时堰流为出流。
5.渗流杜⽐公式表明,在渐变渗流中过⽔断⾯的流速分布为。
6.已知谢才系数s=,则沿程阻⼒系数λ= 。
1002/1mC/⼆、单项选择题(每⼩题3分,共30分)1.静⽔中若某点的真空压强是20kP a,则其相对压强是()(A)118 kP a (B)78 kP a (C)-20 kP a(D)-78 kP a2.⽔⼒最佳断⾯是()(A)湿周⼀定,⾯积最⼩的断⾯,(B)⾯积⼀定,通过流量最⼤的断⾯,(C)最低造价的断⾯,(D)最⼩糙率的断⾯3.紊流中粘滞底层厚度δ⽐绝对粗糙度?⼤得多的壁⾯称为()(A)光滑⾯(B)过渡粗糙⾯(C)粗糙⾯(D)以上答案均不对4.当⽔流的沿程⽔头损失系数λ只与边界粗糙度有关,可判断该⽔流属于()(A)层流区(B)紊流光滑区(C)紊流过渡区(D)紊流粗糙区5.明渠中发⽣a1型⽔⾯曲线,则⽔流属于()(A)急流(B)缓流(C)均匀流(D)层流6.过堰⽔流的流量Q与堰顶⽔头H的()(A) 1/2次⽅成正⽐(B) 3/2次⽅成正⽐(C) 2次⽅成正⽐(D) 1次⽅成正⽐7.静⽌液体中同⼀点各⽅向的压强()(A)数值相等(B)数值不等 (C)仅⽔平⽅向数值相等 (D)铅直⽅向数值最⼤8.在平衡液体中,质量⼒与等压⾯()(A)重合 (B)平⾏ (C)斜交 (D)正交9.液体只受重⼒作⽤,则静⽌液体中的等压⾯是()(A)任意曲⾯;(B)⽔平⾯(C)斜平⾯(D)旋转抛物⾯10.液体中某点的绝对压强为88kN/m2,则该点的相对压强为()(A)10 kN/m2(B)-10kN/m2(C)12 kN/m2(D)-12 kN/m211.过⽔断⾯是指()(A)与流线平⾏的断⾯(B)与流线正交的横断⾯(C)与流线斜交的横断⾯(D)与迹线正交的横断⾯12.⽔⼒学中的⼀维流动是指()(A)恒定流动(B)均匀流动(C)层流运动(D)运动要素只与⼀个坐标有关的流动。
水力学复习资料
呈单一的降落曲线。 实用堰流:th 宽顶堰流: 水流在重力作用下自由跌落。 h䁥 h䁥h由于堰坎加厚,水舌下缘与堰顶呈面接触,水舌受到堰顶的约束和顶托。
向的约束,过水断面减小,流速增大,由于动能增加,势能剑侠,再加上水流进入堰顶时的局部损失, 所以进口出出现跌落。
缓流:水流断面平均流速小于微波相对速度,Fr 小于 1,水深大于临界水深。 临界流:干扰波恰不能向上传播,Fr 等于 1,水深等于临界水深。 判断方法①当 v<vw,水流为缓流,干扰波能向上游传播 当 v=vw,水流为临界流,干扰波恰不能向上游传播 当 v>vw,水流为急流,干扰波不能向上游传播 ②当 Fr<1,水流为缓流 当 Fr=1,水流为临界流 当 Fr>1,水流为急流 ③当 dh > ,水流为缓流
第三章 液体运动的流束理论
1. 2. 3. 4. 5. 6. 7. 恒定流:如果在流场中任何空间点上所有的运动要素都不随时间而改变,这种水流称为恒定流。 非恒定流: 如果流场中任何空间点上有任何一个运动要素是随时间而变化的, 这种水流称为恒定流。 流线:某一瞬时在流场中绘出的一条曲线,在该曲线上所有各点的速度向量都与该曲线相切。 迹线:某一液体质点在运动过程中,不同时刻所流经的空间点所连成的线称为迹线。 恒定流时流线的形状和位置不随时间改变;恒定流时液体质点运动的迹线与流线相重合。 均匀流:当水流的流线为相互平行 的直线 时,该水流称为均匀流。 .... .. 非均匀流:若水流的流线不是相互平行的直线该水流称为非均匀流。 均匀流特性:①过水断面的形状和尺寸沿程不变②断面平均流速相等③均匀流过水断面上的动水压强 分布规律与静水压强分布规律相同,即在同一断面上各点测压管水头为一常数。 渐变流:水流的流线的曲率半径很大,过水断面上动水压强的分布规律可近似看作与静水压强分布规 律相同。 急变流:若水流的流线之间夹角很大或者流线的曲率半径很小,这种水流称为急变流。
水力学复习重点
1 绪论1、作用也液体上力的分类:表面力、质量力(包括哪些力?)2、流体的粘性:牛顿内摩擦定律(公式及其含义,粘滞力与其它因素的关系),粘滞系数(运动、动力)3、什么是理想液体?4、什么是牛顿液体?1.与牛顿内摩擦定律直接有关的因素是((2))。
(1)切应力和压强(2)切应力和剪切变形速度(3)切应力和剪切变形2.液体的粘性是液体具有抵抗剪切变形的能力。
( √)3.作用于液体上的力可以分为__质量力________和__表面力________两类。
惯性力属于___质量______力。
4.液体流层之间的内摩擦力与液体所承受的压力有关。
( ×)(1)粘度为常数(2)无粘性(3)不可压缩(4)符合RT=pρ5.凡符合牛顿内摩擦定律的液体均为牛顿液体。
( √)6.自然界中存在着一种不具有粘性的液体,即为理想液体。
( ×)2 流体静力学2.2 欧拉平衡微分方程1、液体平衡微分方程的表达式及其理解2、等压面概念,静止液体形成等压面的条件;质量力与等压面正交3、重力作用下流体压强分布规律;静止液体压强基本方程及其应用;4、测压管水头概念及其理解1.在重力作用下静止液体中,等压面是水平面的条件是(1)。
(1)同一种液体,相互连通(2)相互连通(3)不连通(4)同一种液体2.等压面不一定和单位质量力相互垂直。
( ×)3.在重力作用下平衡的液体中,各点的单位势能相等。
( √)4.静止液体中某一点的测压管水头是((3))。
(1)测压管的液柱高度(2)测压管液面到测点的高差(3)测压管液面到基准面的高差(4)点的位置与基准面的高差5.一密闭容器内下部为水,上部为空气,液面下4.2 米处的测压管高度为2.2m,则容器内液面的相对压强为-2m 水柱。
5.液体平衡微分方程为_____x p X ∂∂=ρ1, ypY ∂∂=ρ1 ,z p Z ∂∂=ρ1 ____。
2.3 液体压强的测量1、绝对压强、相对压强、真空度2、金属测压计和真空计的区别1.某点的真空度为65000Pa ,当地大气压为0.1Mpa ,该点的绝对压强为 35000 Pa 。
水力学总复习
pv pa p
14
测压管水头 任一点的相对压强高度(测压管高度)与该 点在基准面以上的位置之和称为测压管水头。
1点的测压管水头为
p1
•1
p2
z1
p1
O
z1
2•
z2
15
由重力作用下水静力学基本方程
z p 常数
可知:静止液体中,测压管水头不变。
16
作用在平面上。
10℃时水的体积弹性系数K=2×109Pa,即每增加一个工程
大气压,水的体积相对压缩值约为二万分之一,因此,对 一般水利工程来说,可认为水是不可压缩的。
8
作用在液体上的力
按力的作用方式分:表面力和质量力。
9
第2章 主要内容回顾
10
静水压强
静水压力 把静止液体作用在与之接触的表面上的压力称为静水压力。
反映不同液体对内摩擦力的影响系数。 量纲:[M·-1· -1],国际单位为:N· m-2 或Pa· T L s· s。 4
液体的粘性还可以用动力粘性系数与液体密度的 比值来表示,称为运动粘性系数。
量纲:L2T-1,国际单位:m2/s。
5
液体的 或 值随压力变化甚微,随温度变化较为敏感。 水的运动粘性系数可用下列经验公式计算:
以没有空气的绝对真空为基准得到的压强为绝对压强 (p′)。 以当地大气压为基准计算的压强,称相对压强(p)。 绝对压强与相对压强,它们之间相差一个当地大气压 (pa)值。
p p pa
绝对压强(p′)总是正值,而相对压强(p)可正可负。 当液体中某点的绝对压强p′小于当地大气压强pa时,即 相对压强为负值,则该点存在真空,真空的大小以真 空值pv或pv/γ真空度表示。
水力学总复习题 答案
三、绘图计算题
1.绘出图中曲面上的的压力体图,并标出水压力铅直分力的方向。
4
2.
图示一倒 U 形差压计,左边管内为水,右边管内为相对密度(即比重) s 1 0.9 的油。
倒 U 形管顶部为相对密度 s 2 0.8 的油。已知左管内 A 点的压强 p A 98KN / m 2 ,试求右边 管内 B 点的压强。 3. 有 一 盛 水 的 开 口 容 器 以 的 加 速 度 3.6m/s2 沿 与水 平 面 成 夹 角 的 斜面 向 上 运 动, 试 求 容 器中 水 面 的 倾 角.
30o
4.矩形平板闸门 AB 如图所示,A 处设有转轴。已知闸门长 l=3m,宽 b=2m,形心 点水深 hc=3m,倾角 α=45°,忽略闸门自重及门轴摩擦力。试求开启闸门所需 拉力 FT。
5
hc A B α
5. 一曲面的形状为 3/4 个圆柱面,半径 R=0.8 m,宽度(垂直于纸面)为 1 m。圆心位于
(
) D. -43.3
21.图示的容器 a 中盛有重度为 1 的液体,容器 b 中盛有密度为 1 和2 的两种液体, 则两个容器中曲面 AB 上 压力体及压力应为 ( ) (1) 压力体相同,且压力相等; (2) 压力体相同,但压力不相等; (3) 压力体不同,压力不相等; (4) 压力体不同,但压力相等。
第1章 一、选择题 1.按连续介质的概念,流体质点是指( A .流体的分子;
绪
论
)
B. 流体内的固体颗粒; C . 无大小的几何点; D. 几何尺寸同流动
空间相比是极小量,又含有大量分子的微元体。 2.作用在流体的质量力包括( )
A. 压力; B. 摩擦力; C. 重力; D. 惯性力。 3.单位质量力的国际单位是:( )
水力学重点
复习总结(标红或划线的需记住)0 绪论一、概念1、水力学:用实验和分析的方法,研究液体机械运动(平衡和运动)规律及其实际应用的一门科学。
2、密度和容重:ρ=V M γ=V Mgγ=ρg 纯净水1个标准大气压下,1atm 4℃时密度最大 ρ水=1000kg /m 3 γ水=9.80kN/m 3ρ水银=13.6×103 kg /m 3(1atm20℃) 1N=1kg m/s 2容重γ的概念一般新教材中多已不引用,但工程中仍采用,本教案中仍采用,3、粘滞性:液体质点抵抗相对运动的性质。
粘滞性是液体内摩擦力存在的表现,是液体运动中能量产生损失的根本原因。
4、理想液体:不考虑粘滞性、压缩性、热涨性、表面张力性质的液体称为理想液体。
τ=ηdydu 或T=ηAdyduη动粘 [ML -1T -1] Pa.s (帕.秒) 1 Pa=1N/m 2 1N=1kg ²m/s 2ν运粘 [L 2T -1] m 2/sν=η/ρ水的经验公式:ν=2000221.00337.0101775.0tt ++公式中ν单位为cm 2/s ,t 为水温℃。
5、连续介质模型:假定液体质点毫无空隙地充满所占空间,描述液体运动物理量(质量、速度、压力等)是时间和空间的连续函数,因而可用连续函数的分析方法来研究,这种假定对解决一般工程实际问题是有足够的精度的。
6、压缩性 一般不考虑热膨胀性 流动性二、 问题1、 牛顿内摩擦定律简单应用;2、 作用于液体上的力:质量力、表面力;3、 水力学研究方法:理论分析、科学试验、数值模拟4、 水力学应用(水利工程):1)确定水力荷载2)确定水工建筑物过水能力(管、渠、闸、堰 ) 3)分析水流流动形态4)确定水流能量消耗和利用 5)水工建筑物水力设计1 水静力学一、概念1、静水压强:p =AP A ∆∆→∆0lim=dAdP2、等压面:均质连通液体中,压强各点相等的点构成的面称为等压面。
水力学总复习一 - 副本
液体:不能保持固定的形状,能保持固定的体积 易流动变形,不易膨胀,不易压缩 不能承受拉、压、剪力
气体:不能保持固定的形状和体积, 易膨胀和易压缩 不能承受拉、压、剪力
2
4.量纲: 又叫做因次,物理的属性
(1)基本量纲:国际单位制中7个基本量纲 长度(L),质量(M),时间(T),电流(I), 温度(Θ),物质的量(N),发光强度(J);
13. 重力和惯性力同时作用下的液体平衡
等加速直线运动
等角速旋转器皿中液体的相对平衡
fx ?, f y ?, fz ?
dp fxdx fydy fzdz
自由液面位置坐标x、y、z
dp 0
直接积分,代入已知自由 液面压强p0和位置坐标
自由液面方程
液体内部静压分布 24
不同的。( ) • 4. 在平衡液体中,等压面即是等势面。() • 5. 在连续介质假设条件下,液体中各物理量的变
化是连续的。( )
36
• 判断
• 1.相对压强必为正值。( ×) • 2. 静止液体中存在压应力和切应力。( ×) • 3.液体表面压强Po,对液体内部不同点的影响是
不同的。( ×) • 4. 在平衡液体中,等压面即是等势面。(√) • 5. 在连续介质假设条件下,液体中各物理量的变
理论分析 科学试验 数值计算
12
二、水静力学
1.静水压力 静止(或相对平衡)液体作用在与之接触的
表面上的水压力,常以字母P(或Fp)表示。
2.静水压强★ 作用在单位面积上的静水压力。 p lim Fp A0 A
静水压力P的单位:牛顿(N); 静水压强p的单位:牛顿/米2(N/m2)、帕斯卡(Pa) 工程单位制中,压强常用Kgf/cm2(公斤力/cm2)
水力学总复习
1
2 v2
α
P1 v1
D
α
Rx
1
d3
y
1
v3
3
3
x
o
3
P3
33
解:(1)运用能量方程计算断面2—2和3—3上的动水压强。
p1 1v2 p2 2v2 g 2g g 2g
v1
Q A1
4Q
d12
43 3.14 1.22
2.65 m / s
v12
2.652
0.359m
2g 19.6
v2
Q A2
32
例5:如图所示,一个水平放置的三通管,主管的直径
D=120cm,两根支管的直径为d = 85cm,分叉角α=45°, 主管过水断面1-1处的动水压强水头p1/γ=100m(水柱), 通过的流量Q=3m3/s,两根支管各通过二分之一的流量。假 设不计损失,求水流对三通管的作用力。
2
2 P2
1
d
2
反映了液流与边界 液流对边界的冲击力, 方程本身
上作用力之间的关 或边界对液流的反作 不涉及能
系
用力、已知全部作用 量损失
力,求平均流速或流
量等
21
关于“三选”与“三步”中的有关问题
应用能量方程时,应首先作好“三选”(选 断面、选代表点、选基准面);
应用动量方程时,应首先作好“三步”(作脱 离体、作计算简图、取坐标系)。
10
例4:试绘制图中abc曲面上的压力体。
a
d d/2
b
水
水 c
解:因abc曲面左右两侧均有水的作用,故应分别考虑。
11
考虑左侧水的作用
a
a
a
水力学复习资料
1、水力学中的一元流动是指( )。
(2.0)A、恒定流动B、均匀流动C、层流运动D、运动要素只与一个坐标有关的流动正确答案: D2、选择下列正确的等压面()(2.0)A、 A − AB、 B − BC、 C − CD、 D − D正确答案: C3、某点压强与受压面的关系是( )(2.0)A、垂直指向受压面B、垂直背向受压面C、平行于受压面D、倾斜指向受压面正确答案: A4、液体中某点发生真空时,该点的()(2.0)A、绝对压强为负值B、相对压强为负值C、绝对压强小于相对压强D、绝对压强大于大气压强正确答案: B5、关于动量方程,以下表达不正确的是()(2.0)A、动量方程的左端,是输入动量减去输出动量B、控制体可任意选取,一般横向边界可取为过水断面C、动量方程是矢量式,流速和作用力都是有方向的D、作用力方向未知时可暂时假定正确答案: A6、分布在各管件()位置上的水头损失称为局部水头损失(2.0)A、局部B、几何形状C、大小D、重量正确答案: A7、明渠流动为急流时( )(2.0)A、 Fr>1B、 h>hc (hc为临界水深)C、 v<cD、 de/dh>0正确答案: A8、水泵的扬程是指()(2.0)A、水泵提水高度B、水泵提水高度+吸水管的水头损失C、水泵提水高度+吸水管与压水管的水头损失正确答案: B9、下列有关圆柱形外管嘴的长度L与直径d之间的关系,正确的是( )(2.0)A、 L=2~5dB、 L=2~4dC、 L=3~4dD、 L=3~5d正确答案: C10、下面四个容器内的水深均为H,容器底静水压强最大的为?()(2.0)A、(A)B、(B)C、(C)D、(D)正确答案: C11、用明渠底坡与临界底坡比较来判别缓流和急流的方法适用于()(2.0)A、均匀流B、渐变流C、急变流D、均匀流和非均匀流正确答案: A12、影响水的运动粘度的主要因素为()(2.0)A、水的温度B、水的容重C、当地气压D、水的流速正确答案: A13、变直径管的直径d1=320mm,d2=160mm,流速v1=1.5m,v2为()。
水力学考试重点总结
水力学考试重点总结(总9页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除水力学考试重点总结水力学考试重点总结篇一:水力学课程总结1,水力学基础知识(液体的基本特征及其物理力学性质,量纲分析法。
a,液体只承拉不受压;b,牛顿内摩擦定律;c,作用于液体上的力为表面力和质量力。
d,p定理法)2,水静力学(静水压强的基本性质、量测以及压强分布,静水总压力的计算。
a,静水压强的指向性和各向等值性;b,相对压强、绝对压强概念;c,图解法、解析法求解静水总压力。
)3,水动力学基本方程(液体运动的基本概念与分类,恒定总流的连续方程、能量方程以及动量方程。
a,描述液体运动的方法拉格朗日法、欧拉法;b,流管、元流、总流的概念;c,恒定流与非恒定流、均匀流与非均匀流;d,恒定总流能量方程。
)4,液流型态与水头损失(水头损失的分类:局部、沿程;均匀流沿程水流损失;雷诺试验确定水流型态:层流、紊流;层流水流特性及沿程水头损失计算;紊流水流特性及沿程水流损失计算;实际工程中沿程水头损失计算的经验公式:舍齐公式;局部水头损失的成因及计算。
)5,有压管道流动(有压管流的特点及分类:长管、短管;简单管道恒定流的水力计算分自由出流与淹没出流;复杂管道恒定流的水力计算:管道串联与并联。
有压管中的非恒定流:水击现象的分类、消弱和水击压强计算。
)6,恒定明渠水流(明渠水流概念、水力要素的定义与计算;渠道的允许流速、水力最佳断面的计算;明渠水流的流态及其判别:缓流、临界流以及急流;断面比能以及最小断面比能对应的临界水深与临界低坡计算;水跌现象以及水跃现象的水力计算:共轭水深、水跃长度计算;棱柱体明渠恒定流非均匀渐变流水面曲线的分析:12种水面曲线;明渠恒定非均匀渐变流的水面曲线计算:分段求和法。
)7,过流建筑物的水力计算(堰闸出流的特点与区别:堰流、闸孔出流;堰流的类型及水力计算:薄壁堰、宽顶堰、WES堰的过流能力计算;闸孔出流水力计算;泄水建筑唔下游水流衔接与消能:底流消能与调流消能。
《水力学》复习资料
附件1《水力学》复习资料1.什么是粘性?答:流体运动时,具有抵抗剪切变形的能力的性质,称粘性。
2.什么是绝对压强,什么是相对压强?答:绝对压强是以绝对真空为基准的压强,相对压强是以当地大气压强为基准的压强。
3. 试述流体静力学的基本方程z p gC +=ρ及其各项的物理意义。
答:物理意义:z:单位重量液体具有的相对于基准面的重力势能,简称位能。
g pρ:单位重量液体具有的压强势能,简称压能。
Z+p g ρ:单位重量液体具有的总势能。
Z+pg ρ=C :静止液体中各点单位重量液体具有的总势能相等。
4.说明实际总流的伯努利方程的物理意义和几何意义。
答:物理意义:总流各过流断面上单位重量流体所具有的势能平均值和动能平均值之和,亦即机械能的平均值沿流程减小,部分机械能转化为热能等而消失;同时,也表示了各项能量之间可以相互转化的关系。
几何意义:总流各过流断面上平均总水头沿流程减小,所减小的高度即为两过流断面间的平均水头损失;同时,也表示了各项水头之间可以相互转化的关系。
5.什么是恒定流?什么是非恒定流?答:流场中液体质点通过任一空间位置时,各点运动要素(速度、压强等)都不随时间而变化的流动运动称为恒定流。
流场中液体质点通过任一空间位置时,只要有任何一个运动要素是随时间而改变的,就称非恒定流。
6.什么是均匀流?什么是非均匀流?答:在给定的某一时刻,各点运动要素(主要是速度)都不随位置而变化的流体运动,称为均匀流。
在给定的某一时刻,各点运动要素(主要是速度)有随位置而变化的流体运动,称为均匀流。
7.什么是渐变流?什么是急变流?答:在实际液流中,如果流线之间夹角很小、近似于平行,或流线虽略有弯曲,但曲率很小,这样沿流的流速大小或方向的变化很缓慢,这种流动称为渐变流。
若流线之间夹角较大、流线曲率较大,此时称为急变流。
8.什么是沿程阻力和沿程损失?答:粘性流体在管道中流动时,流体与管壁面以及流体之间存在摩擦力,所以沿着流动路程,流体流动时总是受到摩擦力的阻滞,这种沿流程的摩擦阻力,称为沿程阻力。
水力学复习资料汇总
水力学复习资料汇总第零章绪论0.1水力学的任务与研究对象(了解)水力学的任务是研究液体(只要是水)的平衡和机械运动的规律及其实际应用.水力学研究的基本规律有两大主要组成部分:一是关于液体平衡的规律.它研究液体处于静止或相对平衡状态时,作用于液体上各种力之间的关系,这一部分称为水静力学;二是关于液体运动的规律,它研究液体在运动状态时,作用于液体上的力与运动要素之间的关系,以及液体的运动特性与能量转换等,这部分称为水动力学.0.2液体的粘滞性(理想液体与实际液体最大的差别)粘滞性当液体处于运动状态时,若液体质点之间发生相对运动,则质点间会产生内摩擦力来阻碍其相对运动,液体的这种性质就称为粘滞性,产生的内摩擦力叫做粘滞力.0.3牛顿内摩擦定律当液体做层流运动时,相邻液层之间在单位面积上作用的内摩擦力(或粘滞力)的大小与速度梯度成正比,同时和液体的性质有关.即 .0.4牛顿内摩擦定律的另一种表述(了解)P70.5运动粘度系数它是动力黏度系数与液体密度的比值,是表征液体粘滞性大小的物理量.其值是随温度的变化而变化的,即温度越高,其值越小(液体的流动性是随温度的升高而增强的)0.6牛顿内摩擦定律只适用于牛顿流体(符合牛顿内摩擦定律的液体,其特点是温度不变,动力黏度系数就不变P8图0.3)0.7体积压缩率液体体积的相对缩小值与压强的增大值之比.(水的压缩性很小,一般不考虑)0.8表面张力表面张力是指液体自由表面上液体分子由于两侧引力不平衡,使其受到及其微小的拉力(表面张力仅存在于液体表面,液体内部不存在,其值表示为自由面单位长度受到拉力的大小,并且随液体种类和温度的变化而变化,怎样变化)0.9毛细现象在水力学实验中,经常使用盛有水或水银细玻璃管做测压计,由于表面张力的影响使玻璃管中液面和与之向连通容器中的液面不在同一水平面上.这就是物理学中所讲的毛细现象.0.10由实验得知,管的内经越小,毛细管升高值越大,所以实验用的测压管内径不宜太小.P10图0.4,0,50.11连续介质在水力学中,把液体当作连续介质看待,即假设液体是一种连续充满其所占据空间毫无空隙的连续体.(水力学所研究的液体运动是连续介质的连续流动,但实际上,从微观角度来看,液体分子与分子之间是存在空隙的,但水力学研究的是液体的宏观运动,故将液体看作连续接介质)0.12把液体看作连续介质的意义如果我们把液体看作连续介质,则液流中的一切物理量都可以视为空间坐标和时间坐标的连续函数,这样,在研究液体的运动规律时,就可以运用连续函数的分析方法.0.13理想液体所谓理想液体,就是把液体看作绝对不可压缩,不能膨胀,没有粘滞性,没有表面张力的连续介质.0.14表面力和质量力表面力表面力是作用于液体的表面,并于受作用的的表面面积成比例的力.质量力质量力是指通过所研究液体的每一部分质量而作用与液体的,其大小和液体的质量成比例的力(质量力又称体积力)课后习题0.2第一章水静力学1.1液体在平衡状态下.没有内摩擦力的存在,因此理想液体和实际液体都是一样的,故在静水中没有区分的必要.1.2静水压力静止(或处于平衡状态)的液体作用在与之接触的表面上的水压力称为静水压力,常以表示.1.3静水压强取微小面积,令作用在上的静水压力为,则面上单位面积上所受的平均静水压力为称为面上的平均静水压强,当无限趋近与一点时,比值的极限值定义为该点的静水压强.1.4静水压强的两个重要特性⑴静水压强的方向与受压面垂直并指向受压面(若不垂直,则必存在一个与液面平行的分力,这样必会破坏液体的平衡状态;静水压强若不指向受压面而是背向受压面,则必会受到拉力,同样不能保持平衡状态)⑵作用在同一点上的静水压强相等(推导过程:在平衡液体内分割出一块无限小的四面体,倾斜面的方向任意选取,为简单起见,建立如图所示的坐标系,让四面体的三个棱边与坐标轴平行,并让轴与重力方向平行,各棱边长为,四面体四个表面上受有周围液体的静水压力,因四个作用面的方向各不相同,如果能够证明微小四面体无限缩小至一点时,四个作用面上的静水压强都相等即可.令为作用在面上的静水压力, 令为作用在面上的静水压力, 令为作用在面上的静水压力, 令为作用在面上的静水压力.又假定作用在四面体上单位质量力在三个坐标方向的投影为,则总质量力在三个坐标方向的投影分别为…因为液体处于平衡状态,由力的平衡条件得:+若…以分别表示四面体四个面的面积,则…将上式都除以,并且有化简可得,上式中分别表示面上的平均静水压强, ,如果微小四面体无限缩小至一点时,均趋近于0,对上式取极限有,同理可证,故作用在同一点上的静水压强相等)1.5等压面在平衡液体中可以找到这样一些点,他们具有相同的静水压力,这些点连成的面称为等压面(对于静止的液体其等压面是水平面,对于处于相对平衡的液体,其等压面与自由液面平行,例如称有液体的圆柱形容器绕桶轴做等角速度旋转,其等压面就是抛物面)1.6等压面的两个性质⑴在平衡液体中等压面即为等势面.⑵等压面与质量力正交.1.7绝对压强和相对压强绝对压强以设想没有大气存在的绝对真空状态作为零点计量的压强,称为绝对压强.相对压强把当地大气压作为零点剂量的压强,称为相对压强.1.8P29图1.11中各字母表示的含义1.9真空及真空度真空当液体中某点的绝对压强小于当地大气压强,即相对压强为负值时,就称该点存在真空.真空度真空度是指该点绝对压强小于当地大气压强的数值.(例题1.4 1.5 .16) 1.10压强的液柱表示法1.11水头与单位势能1.12液体的平衡微分方程式(欧拉平衡微分方程式)的推导过程P20,以及重力作用下静水压强的基本公式的推导过程P24.1.13压强的测量(各种压差计的计算)计算中找等压面须注意:①若为连续液体,高度相等的面即为等压面.②若为不连续液体(如液体被阀门隔开或者一个水平面穿过了不同介质,则高度相等的面不是等压面③两种液体的接触面是等压面.1.14作用于矩形平面上的静水总压力,为压强分布图面积.(压力中心的位置:当压强为三角形分布时, 压力中心离底部距离为当压强分布为梯形分布时,压力中心离底部距离为)1.15作用于曲面上的静水总压力分为水平方向和竖直方向计算,水平方向方法同作用于矩形平面上的静水总压力(将曲面投影在方向的图形即为矩形,则=为形心点处的压强),竖直方向需画出压力体(压力体包括六个面:曲面本身,自由液面或者其延长面,曲面四个边延长至自由液面的四个面.这里注意自由液面必须是只受到大气压强作用的液面),则,其中为压力体的体积.1.16几种质量力同时作用下的液体平衡1.17作用于物体上的静水总压力,潜体与浮力的平衡及其稳定性第二章液体运动的流束理论2.1描述液体运动的两种方法(拉格朗日法和欧拉法)P632.2流线和迹线迹线某一液体质点在运动过程中,不同时刻所流经的空间点所连成的线称为迹线,即迹线就是液体质点运动时所走过的轨迹线流线它是某一瞬时在流场中绘出的一条曲线,在该曲线上所有点的速度向量都与该曲线相切,所以流线表示除了瞬间的流动方向.流线的基本特性P672.3恒定流与非恒定流恒定流如果在流场中所有的运动要素都不随时间而改变,这种水流称为恒定流(也就是说,在恒定流的情况下,任一空间点上,无论哪个液体质点通过,其运动要素都是不变的.运动要素仅仅是空间坐标的函数,而与时间无关)非恒定流如果在流场中所有的运动要素都是随时间而改变的这种水流称为非恒定流.注:本章只研究恒定流.2.4流管在水流中任意取一微分面积,通过该面积周界上的每一给点,均可以作一根直线,这样就构成了一个封闭的管状曲面,称为流管.2.5微小流束充满以流管为边界的一束液流称为微小流束(按照流线不能相交的特性,微小流束内的液体不会穿过流管的管壁向外流动,流管外的液体也不会穿过流管的管壁向流束内流动,当水流为恒定流时,微小流束的形状和位置不会随时间而改变,在非恒定流中,微小流束的形状和位置将随时间而改变.微小流束的很横断面积是很小的,一般在其横断面上各点的流速或动水压强可看作是相等的)2.6总流任何一个实际水流都具有一定规模的边界,这种有一定大小尺寸的实际水流称为总流(总流可以看作由无限多个微小流束所组成)2.7过水断面与微小流束或总流的流线成正交的横断面称为过水断面.2.8流量2.9均匀流与非均匀流均匀流当水流的流线为相互平行的直线时,该水流称为均匀流(直径不变的管道中的水流就是均匀流的典型例子)非均匀流若水流的流线不是相互平行的直线时,该水流称为非均匀流.如果流线虽然相互平行但不是直线(如管径不变的弯管中的水流)或者流线虽直线但不相互平行(如管径沿程缓慢均匀扩散或收缩的渐变管中的水流)都属于非均匀流.2.10均匀流的特性⑴均匀流的过水断面为平面,且过水断面的形状和尺寸沿程不变⑵均匀流中,同一流线上不同点的流速相等⑶均匀流过水断面上的动水压强分布规律与静水压分布规律相同2.11均匀流过水断面上的动水压强分布规律与静水压分布规律相同的推导过程2.12渐变流和急变流渐变流当水流的流线虽然不是相互平行的直线,但几乎近于平行直线称为渐变流急变流若水流的流线之间夹角很大或者流线的曲率半径很小,这话水流称为急变流.2.13恒定总流连续性方程的推导P712.14理想液体恒定流微小流束能量方程的推导P722.15实际液体恒定总流的能量方程的推导P782.15恒定总流动量方程的推导P94第三章液流形态及水头损失3.1沿程水头损失和局部水头损失沿程水头损失在固体边界平直且无障碍物的水道中,单位重量的液体自一断面流至另一断面所损失的机械能叫做沿程水头损失,常用表示.局部水头损失当固体边界发生改变或液体遇到障碍物时,由于边界或障碍物的作用使液体质点相对运动加强,内摩擦增加,产生较大的能量损失,这种发生在局部范围之内的能量损失叫做局部水头损失,常用表示.(就液体内部的物理作用来说,水头损失不论其产生的外因如何,都是因为液体内部质点之间有相对运动,因粘滞性的作用产生切应力的结果) 当固体边界发生改变或液体遇到障碍物时,为什么会产生局部水头损失(了解)P1203.2影响水头损失的液流边界条件3.2.1横向条件(过水段面积,湿周和水力半径)湿周液流过水断面与固体边界接触的周界线叫做湿周,常用表示.(当过水段面积相等时,周长不一定相等,水与固体边界的接触要长些,故湿周对水损会产生影响,同样,当湿周相等时, 过水段面积不一定相等,通过同样大小的流量水损也不一定相等,故用水力半径来表征过水断面的水力特征) 水力半径过水段面积与湿周的比值称为水力半径,即 .3.2.2纵向条件P1233.3均匀流时无局部水头损失,非均匀渐变流时局部水头损失可以忽略不计,非均匀急变流时两种水头损失均有(知道).3.4均匀流沿程水头损失与切应力的关系,以及半径为r处的(圆管中)切应力计算公式的推导P1323.5计算均匀流沿程水头损失的基本公式——达西公式对圆管来说,水力半径 ,故达西公式也可以写做达西公式的推导过程应该不会考3.6层流和紊流层流当留速较小时,各流层的液体质点是有条不紊的运动,互不混杂,这种形态的流动叫层流.紊流当流速较大时,各流层的液体质点形成涡体,在流动过程中,相互混杂,这种形态的流动叫紊流.3.7雷诺试验雷诺试验数据图形(两点三段.两点即上临界流速—水流从层流刚刚进入到紊流状态的速度和下临界流速—水流从紊流刚刚进入到层流状态的速度.三段即层流,过渡区,紊流所对应的曲线段.)P1293.8根据雷诺实验的结果,层流时雷诺试验图形为一条直线,即沿程水损v呈线性的一次方关系,但是由达西公式知与v是平方关系,试解释其原因.P1323.9雷诺数的物理意义(为什么雷诺数可以判别液流形态)P1313.10为什么采用下临界雷诺数而不采用上临界雷诺数来判断水流的型态这是因为经大量试验证明,圆管中下临界雷诺数是一个比较稳定的数值,其值一般维持在2000左右,但上临界雷诺数是一个不稳定数值(一般在12000-2000),在个别情况下也有高达40000-50000.这要看液体的平静程度和来流有扰动而定,凡雷诺数大于下临界雷诺数的,即使液流原为层流,只要有任何微小的扰动就可以是层流变为紊流.在实际工程中扰动总是存在的,所以上下临界雷诺数之间的液流是极不稳定的,都可以看作紊流,因此判别液流型态以下临界雷诺数为标准:实际雷诺数大于下临界雷诺数的是紊流,小于下临界雷诺数的是层流.3.11雷诺实验虽然都是以圆管液流为研究对象,但其结论对其他边界条件下的液流也是适用的.只是边界条件不同,下临界雷诺数的数值不同而已.例如明渠的雷诺数,其中R为水力半径(知道).3.12紊流的特征P133(4点,后两个特点很重要)3.13粘性底层在紊流中并不是整个液流都是紊流,在紧靠固体边界表面有一层极薄的层流存在该层流层叫粘性底层.3.14沿程阻力系数的变化规律⑴即液体处于层流状态,只与雷诺数有关,而与相对光滑度无关,且⑵即液体处于从层流进入紊流的过渡区,只与雷诺数有关,而与相对光滑度无关.因其范围很窄,实际意义不大.⑶即液流进入紊流状态,这时决定于粘性底层厚度和绝对粗糙度的关系:①当较小时粘性底层较厚,可以淹没,抵消管壁粗糙度对水流的影响,从而只与雷诺数有关,而与相对光滑度无关.②继续增大, 粘性底层厚度相应减薄,一直不能完全淹没, 管壁粗糙度对水流产生影响, 从而既与雷诺数有关,又与相对光滑度有关.③当增大到一定程度时, 粘性底层厚度已经变得很薄,已经不能再抵消管壁粗糙度对水流的影响,这时管壁粗糙度对起主要作用,从而只与相对光滑度有关,而与雷诺数无关.(因这时与v是平方关系,故该区又叫做阻力平方区)3.15谢齐公式和曼宁公式谢齐公式 ,其中J为水力坡度,/l ,R水力半径.曼宁公式 ,其中n为粗糙系数,简称糙率.第四章有压管中的恒定流4.1简单管道简单管道管道直径不变且无分支的管道.4.2自由出流和淹没出流自由出流管道出口水流流入大气,水股四周都受大气压强的作用,称为自由出流淹没出流管道出口如果淹没在水下,则称为淹没出流4.3短管和长管短管管道中若存在较大的局部水头损失,它在总水损中占的比重较大,不能忽略不计的管道称为短管.长管若管道较长,局部水损和流速水头可以忽略不计,这样的管道叫做长管. 4.4简单管道的水力计算(以下均属于连续性方程和能量方程的具体应用)总原则首先确定按长管还是短管计算.若按短管计算,则沿程损失,局损和流速水头都要计算;若按长管计算,只需计算沿程损失, 局部水损和流速水头可以忽略不计;在没有把握估计局损的影响程度时,均按短管计算.(先按短管计算,求出具体的沿程损失和局损数值,比较后可确定到底如何计算,若无法确定具体数值一般的,给水管道按长管计算,虹吸管按短管计算,水泵吸水管按短管计算,压水管根据情况而定.4.4.1自由出流和淹没出流的水力计算自由出流上游存在行近流速,即有一个行近水头,列能量方程需计算在内(但其值一般很小,在计算结果以忽略不计,即公式中的).淹没出流上游存在行近流速,即有一个行近水头,列能量方程需计算在内(但其值一般很小,在计算结果时可以忽略不计,即公式中的). 下游也存在一个流速水头,但由于管道的过水断面积很小,而下游过水断面积很大,水流速度在下游已经变得很小,可以忽略,不需计入能量方程.4.4.2几种基本类型4.4.3虹吸管和水泵装置的水力计算4.4.4串联管道整个管道的水头损失等于各支管水损之和.4.4.5并联管道并联管道一般按长管计算,各支管的水损相等(各支管的水损相等,只表明通过每一并联支管的单位重量液体的机械能损失相等;但各支管的长度,直径及粗糙系数可能不同,因此其流量也不同,股通过各并联支管的总机械能损失是不相等的)4.4.6分叉管道在分叉处分为若干个串联管道进行计算.4.5沿程均匀泄流的水力计算本章的水力计算题均是围绕这能量方程来设计的,所以熟练掌握能量方程的应用,加上对各个类型的管道特点的了解,不用背繁琐的公式也可以解决本章的计算题,当然背下来更好第五章明渠恒定均匀流5.1明渠恒定均匀流(知道)明渠恒定均匀流当明渠水流的运动要素不随时间而变化时,称为明渠恒定流.否则称为明渠非恒定流.明渠恒定流中,如果流线是一簇相互平行的直线,则水深,断面平均流速和流速分布沿程不变,称为明渠恒定均流,否则称为明渠恒定非均匀流.(明渠均匀流中,摩阻力与重力沿水流方向的分力相平衡)5.2矩形,梯形横断面水力要素的计算梯形中,为梯形与水平面的夹角.5.3底坡明渠渠底的纵向倾斜程度称为明渠的底坡, 以符号表示.且,其中为渠底线与水平面的夹角.5.4顺坡,水平和逆坡明渠当明渠渠底沿程降低时,称为顺坡明渠;沿程不变时称为水平明渠;沿程升高时称为逆坡明渠.(在水平明渠中,由于故在其流动过程中,只存在摩阻力;在逆坡明渠中,摩阻力与重力沿水流方向的分力方向一致,因此这两种情况都不可能产生明渠均匀流;只有在顺坡渠道中才可能产生明渠均匀流)5.5明渠恒定均匀流的特性及其产生条件5.6明渠均匀流的计算公式(连续性方程和谢齐公式, 谢齐系数采用曼宁公式) 5.7矩形和梯形水力最佳断面的推导过程5.8允许流速不冲允许流速能够避免渠道遭受冲刷的流速.不於流速能够保证水中悬浮的泥沙不淤积在渠槽的流速.5.9明渠均匀流的水力计算第六章明渠恒定非均匀流6.1明渠非均匀渐变流和明渠非均匀急变流(知道)在明渠非均匀流中,若流线是接近于相互平行的直线,或流线间的夹角很小,流线的曲率半径很大,这种水流称为明渠非均匀渐变流.反之为明渠非均匀急变流.(本章着重研究明渠非均匀渐变流的基本特性及其水力要素沿程变化的规律) 6.2正常水深(知道)因明渠非均匀流的水深沿流程是变化的,为了不致引起混乱,把明渠均匀流的水深称为正常水深.并以表示.6.3明渠水流的三种形态一般明渠水流有三种形态,即缓流,临界流和急流.6.4明渠水流三种形态的判别方法(5种:微波波速法,比能曲线法,Fr 法,临界水深法,临界底坡法)6.4.1微波波速法微波波速的描述(了解)P216当 v<,水流为缓流,干扰波能向上游传播;v=,水流为临界流,干扰波恰不能向上游传播;v>,水流为急流,干扰波不能向上游传播.要判别流态,必须首先确定微波传播的相对速度,相对速度的推导过程(了解)P217(如图6.3,对平静断面1-1和波峰所在断面2-2列连续性方程和能量方程.1-1断面流速为,2-2断面流速为,最后令即可得出=,这就是矩形明渠静水中微波传播的相对速度公式.如果明渠为任意形状时,则有=.式中为断面平均水深,A为断面面积,B为水面宽度.在实际工程中水流都是流动的,设水流断面平均流速为v,则微波传播的绝对速度应是静水中的相对波速与水流速度的代数和,即,正号为顺水方向,负号为逆水方向)6.4.2 Fr法当 Fr<1,水流为缓流;Fr=1,水流为临界流;Fr>1,水流为急流.对临界流来说,断面平均流速恰好等于微波相对波速,即,该式可改写为,其中称为弗劳德数,用符号Fr表示.弗劳德数的两个物理意义P2186.4.3比能曲线法断面比能把基准面选在渠底,所计算的单位液体所具有的能量称为断面比能,并以表示.则,在实际应用上,因一般坡底较小,,故常采用 .比能曲线当流量Q和过水断面的形状及尺寸一定时, 断面比能仅仅是水深的函数,按照此函数可以绘出断面比能随水深变化的关系曲线,该曲线称为比能曲线.比能曲线上存在可以使断面比能取最小值的K点.K点把曲线分成上下两支,上支即为缓流所对应的曲线,下支即为急流所对应的曲线.(比能曲线见P220图6.5)比能曲线与弗劳德数的联系()及其推导过程(了解)P2216.4.4临界水深法临界水深相应于断面比能最小值的水深称为临界水深,以表示.当 h> ,Fr<1,水流为缓流;h= ,Fr=1,水流为临界流;h< ,Fr>1,水流为急流.临界水深的计算在矩形断面明渠中,临界流的流速水头是临界水深的1/2,而临界水深则是最小断面比能的2/3.(原题)P221(将.对水深h求导,并令其等于0.得,规定对应于临界水深的水利要素以脚标K,则.对于矩形断面明渠, ,代入得 ,即临界流的流速水头是临界水深的1/2.再代入 ,得,即临界水深是最小断面比能的2/3.断面为任意形状时,临界水深的计算(了解)见P222(试算法和图解法)重要例题:例题6.16.4.5临界底坡法(只适用于均匀流)第七章水跃7.1水跃当明渠中的水流又急流状态过渡到缓流状态时,会产生一种水面突然跃起的特殊局部水力现象,即在较短的渠道内水深从小于临界水深急剧的跃到大于临界水深.这种特殊的局部水力现象称为水跃.跃高跃后水深与跃前水深之差跃长跃前断面至跃后断面的水平距离完全水跃有表面旋滚的水跃发生完全水跃的条件Fr≥1.77.2棱柱体水平明渠的水跃方程及其推导过程(由于水跃过程中能量损失无法计算,,故无法使用能量方程.对跃前断面1-1和跃后断面2-2应用动量方程得 .然后作三点假设:⑴设水跃前后断面处的水流为渐变流,其动水压强分布规律和静水压强同,。
《水力学》课程复习提纲汇总
《水力学》课程复习提纲2010-2•第1章绪论考核知识点:1.液体运动的基本特征,连续介质和理想液体的概念;2.液体主要物理性质:惯性、万有引力特性(重力)、粘滞性、可压缩性和表面力特性;3.物理量量纲的概念和单位;4.作用在液体上的两种力:质量力、表面力。
考核要求:1.了解液体的基本特征,理解连续介质与理想液体的概念和在水力学研究中的作用;2.理解液体5个主要物理性质及其特征值和度量单位,重点掌握液体粘滞性及粘滞系数、牛顿内摩擦定律及其适用条件。
了解什么情况下需要考虑液体的可压缩性和表面张力特性;3.了解量纲的概念,并且能表示各种物理量的量纲和单位;4.了解质量力、表面力的定义,理解单位表面力(压强、切应力)和单位质量力的物理意义。
• 第2章静力学考核知识点:1.静水压强及其两个特性,等压面概念;2.静水压强基本公式及其物理意义;3.静水压强的表示方法、单位和水头的概念;4.静水压强的量测和计算;5.作用于平面上静水总压力的计算;6.作用在曲面上静水总压力的计算。
1.理解静水压强的两个特性和等压面的概念和性质;2.掌握静水压强基本公式,理解公式的物理意义;3.理解静水压强三种表示方法(绝对压强,相对压强,真空度)及它们间的相互关系,注意真空度的概念,理解表示压强的单位和位置水头、压强水头、测压管水头的概念;4.了解静水压强量测原理和方法,掌握静水压强的计算;5.掌握绘制静水压强分布图和计算作用在平面上静水总压力的图解法和解析法。
6.掌握压力体剖面图的绘制和计算作用在曲面上的静水总压力水平分力和铅垂分力的方法。
•第3章液体运动的基本理论考核知识点:1.描述液体运动的两种方法:拉格朗日法和欧拉法;2.液体运动的分类和基本概念;3.恒定总流连续性方程及其应用;4.恒定总流能量方程及其应用;5.有势流动和有涡流动的概念。
考核要求:1.了解描述液体运动的拉格朗日方法和欧拉法;2.理解液体流动的分类和基本概念(恒定流与非恒定流,均匀流与非均匀流,渐变流与急变流;流线与迹线,元流,总流,过水断面,流量与断面平均流速,一维流动、二维流动和三维流动等),并能在分析水流运动时进行正确判断和应用;3.掌握恒定总流连续性方程的不同形式和应用;4.掌握恒定总流能量方程的形式、应用条件和注意事项,理解能量方程的物理意义、水头线绘制方法和水力坡度的概念,能熟练应用恒定总流能量方程进行计算;5.掌握恒定总流投影形式的动量方程、应用条件和注意事项,正确分析作用在控制体上的作用力和确定作用力及流速投影分量的正负号,能熟练应用恒定总流动量方程、能量方程和连续方程求解实际工程中的水力学问题;6.了解有势流动和有涡流动的概念及特点。
水力学复习
静水力学基本方程式
p = p 0 + γh
z+
p
γ
=c
绝对压强,相对压强, 绝对压强,相对压强,真空度
p abs = p a + p
p = p abs − p a
pV =| pabs − pa |=| p |
静止流体对平面的作用力
P = pc A
压强分布图
总压力的作用点
Ic y D = yc + A yc
1
重力——G=mg
连续介质 ρ=ρ(x,y,z)
惯性力——F=ma 单位质量的质量力: fx=X=ax,fy=Y=ay, fz=Z= a
p=p(x,y,z)
u=u(x,y,z)
ρ水=1000 kg/m3
T = µA du dy
γ = ρg = 9800 N / m3 = 9.8 kN / m3
du τ =µ dy
实际液体:惯性、重力……,水流运动复杂; 理想液体:实际液体的简化——即ρ=const, 不膨胀,无粘性,无表面张力。
2
静止流体的压力强度 称为流体的静压强。 流体的静压强。 流体的静压强 衡量静压强的大小常用单位面积 的压力来表示。
特性一 静止液体压强垂直指向作用面。
特性二 静止液体中任意点的压强值 大小与作用面的方位无关。
α '1 Fx = ρQ(β'22υ2x − β1υ1x) α ∑
∑F ∑F
y
= ρQ(α'22υ2y −α '11υ1y) β β
= ρQ(β'22υ2z − β1υ1z) α '1 α z
方程的适用条件: 1.恒定流; 2.不可压缩的液体; 3.缓变流断面;4.符合连续性方程。
总复习水力学
第一章1.1水的重度3kN/m 71.9=γ,动力粘滞系数2-3s/m N 10.5990⋅⨯=μ,求其密度和运动粘滞系数υ。
空气的重度3N/m 5.11=空气γ,运动粘滞系数/s .167cm 02=ν,求其动力粘滞系数μ。
解:(1) 求水的运动粘滞系数ρμν/=,g /γρ=对于水,g /γρ==9.710/9.8=0.99082(kN/m 3)/(m/s 2)=990.82N·s 2/m 4 因为2s /m kg 11N ⋅=,所以=ρ990.82kg/m 3/s m 1005.6)/m N (82.990)s/m N (10599.0274223--⨯=⋅⋅⨯==s ρμν (2) 求空气的动力粘滞系数νγρνμ)/(g ==252223m /s N 1096.1s /m )100/1(167.0)s /m (8.9)m /N (5.11⋅⨯=⨯==-νγμg 1.2水的体积弹性系数K =Pa 10962.19⨯,问压强改变多少时,它的体积相对压缩1%?这个压强相当于多少个工程大气压?解:液体的压缩性大小一般用体积压缩系数β来表示,即dpV dV /-=β在工程上常用体积弹性系数来表示压缩性VdV dp K /1-==β已知K =Pa 10962.19⨯,100/1/=V dVPa 10962.1100/110962.1/79⨯=⨯⨯=⨯=V dV K dp因为 )at (1002.1)at (1000/0102.01Pa 5-⨯==所以 )at (124.2001002.110962.1Pa 10962.1577=⨯⨯⨯=⨯=-dp 1.3容积为4m 3的水,温度不变,当压强增加4.905×105Pa 时,容积减小1000cm 3,求该水的体积压缩系数β和弹性系数K ,若采用工程单位,其值又如何? 解:已知:255N/m 10905.4Pa 10905.4⨯=⨯=dp ,33m 1000/1cm 1000==dV ,3m 4=V ,/N m 101.510905.44/)1000/1(/2105-⨯=⨯=-=dp V dV β 2910N/m 101.962)101.5/(1/1⨯=⨯==-βK若用工程单位,1N=1/9.8kgf ,2829kgf/m 102kgf/m 8.9/110962.1⨯=⨯⨯=Kkgf/m 105)102/(1/12-98⨯=⨯==K β1.4一平板在油面上作水平运动,已知运动的速度为m/s 0.1=u ,板与固定边界的距离mm 1=δ,油的粘滞系数2s/m N 15.1⋅=μ,由平板带动的油层的运动速度呈直线分布,如图所示。
水力学复习知识点
第一章绪论 1.水力学的研究方法:理论分析方法、实验方法,数值计算法。
2.实验方法:原型观测、模型试验。
3.液体的主要物理性质:①质量和密度②重量和重度③易流动性与粘滞性④压缩性⑤气化特性和表面张力。
4.理想液体:没有粘滞性的液体(μ=0)。
5.实际液体:存在粘滞性的液体(μ≠0)。
6.牛顿液体:τ与du/dy呈过原点的正比例关系的液体。
7.非牛顿液体:与牛顿内摩擦定律不相符的液体。
8.作用在液体上的力:即作用在隔离体上的外力。
9.按物理性质区分:粘性力、重力、惯性力、弹性力、表面张力。
10.按力的作用特点区分:质量力和表面力两类。
11.质量力:作用在液体每一质点上,其大小与受作用液体质量成正比例的力。
12.表面力:作用于液体隔离体表面上的力。
第二章水静力学 1.静水压强特性:①垂直指向作用面②同一点处,静水压强各向等值。
2.静水压强分布的微分方程:dp=ρ(Xdx+ Ydy+ Zdz),它表明静水压强分布取决于液体所受的单位质量力。
3.等压面:液体压强相等各点所构成的曲面。
等压面概念的应用应注意,它必须是相连通的同种液体。
4.压强的单位可有三种表示方法:①用单位面积上的力表示:应力单位Pa,kN/m2②用液柱高度表示:m(液柱),如p=98kN/m2,则有p/γ=98/9.8=10m(水柱)③用工程大气压Pa的倍数表示:1p a=98kP a。
5.绝对压强p abs:以绝对真空作起算零点的压强(是液体的实际压强,≥0)p abs=p o+γh6.相对压强pγ:以工程大气压p a作起算零点的压强,pγ=p abs-p a= (p o+γh)-p a 真空:绝对压强小于大气压强时的水力现象。
真空值p v:大气压强与绝对压强的差值。
7.帕斯卡原理:在静止液体中任一点压强的增减,必将引起其他各点压强的等值增减。
应用:水压机、水力起重机及液压传动装置等。
8.压强分布图的绘制与应用要点:①压强分布图中各点压强方向恒垂直指向作用面,两受压面交点处的压强具有各向等值性。
水力学复习知识点
水力学复习知识点水力学是研究液体的运动和行为的学科,主要研究液体在管道中的流动、流体的力学性质以及与流体运动相关的现象。
下面将介绍水力学的一些重要知识点。
1.流体的性质:-流体的密度:单位体积流体的质量,通常用ρ表示。
-流体的粘度:流体阻止流动的性质,通常用μ表示。
-流体的压力:单位面积上流体对物体施加的作用力,通常用P表示。
2.流体静力学:- 流体压力:与深度有关,可以通过P = ρgh计算,其中ρ为液体密度,g为重力加速度,h为液体的高度。
-流体静力学定律:流体静力学定律包括帕斯卡定律、阿基米德原理和斯托克斯定律。
3.流体动力学:-流体的运动:流体可以分为层流和湍流。
层流是指流体的分子按照规则的、平行的和层层叠加的方式运动。
湍流是指流体的分子按照混乱无序的方式运动。
-流速:指流体在单位时间内通过其中一截面的体积,通常用v表示。
-流量:指流体在单位时间内通过其中一截面的质量,通常用Q表示,流量Q=Av,其中A为截面积。
-连续性方程:流体质量守恒定律,即当流体连续流动时,进出流体质量需要保持一致,表达式为A1v1=A2v2,其中A为截面积,v为流速。
- 能量守恒方程:描述了流体的能量转化和损失,表达式为P1 +0.5ρv1^2 + ρgh1 = P2 + 0.5ρv2^2 + ρgh2,其中P为压力,ρ为密度,v为流速,h为高度。
-流体动力学定律:主要包括伯努利定律、托利少定律和勒让德定律。
伯努利定律描述了流体在不同压力下的流动,托利少定律描述了流体在曲线壁面上的流动,勒让德定律描述了固体颗粒在流体中的运动。
4.管道流动:-管道流动类型:包括层流和湍流两种。
-管道流动速度分布:在层流中,流速沿半径方向呈线性分布;在湍流中,流速分布更复杂,通常是非线性的。
-管道流量与压力损失:管道流量与压力损失之间存在一定的关系,通常可以通过流体动力学定律来计算。
-管道流动的实际应用:管道流动广泛应用于供水、排水、油气输送管道等领域,对于基础设施建设和工程设计具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、考试范例
1、计算题 如图所示,两水池间的隔板处有一个圆柱体闸门, 已知:圆柱体直径D=1m,垂直于图面长L=1m;左池敞 口,水深H=6m;右池密闭,h=1m,且装有U形水银测压 管,测压管读数Δh=368mm。求:作用在圆柱体闸门上 的静水总压力。
H1
H2 d l
4、计算题 图示管路系统,已知: d1=300mm,S01=1.025s2/m6,l1=400m; d2=200mm,S02=9.029s2/m6,l2=300m; d3=250mm,S03=2.752s2/m6,l3=500m。 通过A、B两点的总流量Q=0.3m3/s,A、B两点高程相 同,B点压强水头为10m高水柱。求A点压强水头。 l2 d2 Q2 A C B l3 d3 Q3
l1 d1 Q1
5、计题
已知一长直梯形断面渠道,其流量Q=6m3/s,断面 平均流速v=1.5m/s,边坡系数m=1.5,粗糙系数n=0.025, 求梯形水力最优断面尺寸及渠道底坡i
6、计算题
在厚度为t=6m的自流含水层中,开凿一个半径为 r0=200mm的自流完全井,在未抽水前,测得地下水的天然 总水头H=10m。当抽水至恒定水位时,测得井中水深h0=4m。 若已知该井的影响半径R=500m,含水层土壤的渗流系数 k=0.01cm/s。试求该井抽水量。 地下水 天然测压管水头线 测压管水头线
s2 H
t
i=0
h0 r0 R
总复习
一.题型 选择题、填空题、作图题、名词解释,计 算题
二、范围
水静力学(求静水总压力及水平和竖向分力,画水平压 强分布图,压力体图)、 水动力学(连续性方程、伯诺里方程、动量方程)、 短管(画测压管水头线和总水头线)、 长管(流量模数、比阻抗)、 明渠均匀流、 地下水渗流(均匀流和渐变渗流计算、浸润线方程并画 浸润线、流量、集水廊道、井、井群计算) , 阻力系数和水头损失(记管道进口、出口、突然扩大、
H h
Δh
2、计算题
图示泄水闸门,已知上游水深H=2m,下游水深h=1m,
闸门宽度为b=2m,闸门局部水头损失
2 v2 hj 4 , 2g
求水流对闸门的冲击力。
A H
v1
B
h
v2
3、计算题
图示输水系统,左、右水池的水位保持不变,H1=5m, H2=2m; 管道的直径d=200mm,长度l=40m, 沿程阻力系数λ=0.02;阀门的 局部阻力系数ξ阀=3.0。 (1)试求通过管道的流量; (2)绘制总水头线和测压管水头线。