数学知识点全国初中数学竞赛历年竞赛试题及参考答案(8)-总结
历年初中数学竞赛试题精选(含解答)
初三数学竞赛试题 4、某商店经销一批衬衣,进价为每件m元,零售价比进价高a%,后因市场的变化,该店把零售价调整为原来零售价的b%出售,那么调价后每件衬衣的零售价是()A. m(1+a%)(1-b%)元B. m?a%(1-b%)元C. m(1+a%)b%元D. m(1+a%b%)元解:选C。
设全天下雨a天,上午晴下午雨b天,上午雨下午晴c天,全天晴d天。
由题可得关系式a=0①,b+d=6②,c+d=5③,a+b+c=7④,②+③-④得2d-a=4,即d=2,故b=4,c=3,于是x=a+b+c+d=9。
解:出发1小时后,①、②、③号艇与④号艇的距离分别为各艇追上④号艇的时间为对>>>有,即①号艇追上④号艇用的时间最小,①号是冠军。
解:设开始抽水时满池水的量为,泉水每小时涌出的水量为,水泵每小时抽水量为,2小时抽干满池水需n台水泵,则由①②得,代入③得:∴,故n的最小整数值为23。
答:要在2小时内抽干满池水,至少需要水泵23台解:设第一层有客房间,则第二层有间,由题可得由①得:,即由②得:,即∴原不等式组的解集为∴整数的值为。
答:一层有客房10间。
解:设劳动竞赛前每人一天做个零件由题意解得∵是整数∴=16(16+37)÷16≈3.3故改进技术后的生产效率是劳动竞赛前的3.3倍。
初中数学竞赛专项训练(2)(方程应用)一、选择题:答:D。
解:设甲的速度为千米/时,乙的速度为千米/时,根据题意知,从出发地点到A的路程为千米,到B的路程为千米,从而有方程:,化简得,解得不合题意舍去)。
应选D。
答:C。
解:第k档次产品比最低档次产品提高了(k-1)个档次,所以每天利润为所以,生产第9档次产品获利润最大,每天获利864元。
答:C。
解:若这商品原来进价为每件a元,提价后的利润率为,则解这个方程组,得,即提价后的利润率为16%。
答:B。
解:设甲乙合作用天完成。
由题意:,解得。
故选B。
答:A。
解:A与B比赛时,A胜2场,B胜0场,A与B的比为2∶0。
全国初中数学竞赛试题及答案(完整资料).doc
【最新整理,下载后即可编辑】中国教育学会中学数学教学专业委员会全国初中数学竞赛试题一、选择题(共5小题,每小题6分,共30分.)1(甲).如果实数a,b,c在数轴上的位置如图所示,那么代数式22||()||a abc a b c++-+可以化简为().(A)2c a-(B)22a b-(C)a-(D)a1(乙).如果22a=-+11123a+++的值为().(A)2-(B2(C)2 (D)22(甲).如果正比例函数y = ax(a ≠ 0)与反比例函数y =xb(b ≠0 )的图象有两个交点,其中一个交点的坐标为(-3,-2),那么另一个交点的坐标为().(A)(2,3)(B)(3,-2)(C)(-2,3)(D)(3,2)2(乙).在平面直角坐标系xOy中,满足不等式x2+y2≤2x+2y的整数点坐标(x,y)的个数为().(A)10 (B)9 (C)7 (D)5 3(甲).如果a b,为给定的实数,且1a b<<,那么1121a ab a b++++,,,这四个数据的平均数与中位数之差的绝对值是().(A )1 (B )214a - (C )12(D )143(乙).如图,四边形ABCD 中,AC ,BD 是对角线,△ABC 是等边三角形.30ADC ∠=︒,AD = 3,BD= 5,则CD 的长为( ). (A )23 (B )4 (C )52(D )4.54(甲).小倩和小玲每人都有若干面值为整数元的人民币.小倩对小玲说:“你若给我2元,我的钱数将是你的n 倍”;小玲对小倩说:“你若给我n 元,我的钱数将是你的2倍”,其中n 为正整数,则n 的可能值的个数是( ).(A )1 (B )2 (C )3 (D )4 4(乙).如果关于x 的方程20x px q p q --=(,是正整数)的正根小于3,那么这样的方程的个数是( ).(A ) 5 (B ) 6 (C ) 7 (D ) 8 5(甲).一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,3,4,5,6.掷两次骰子,设其朝上的面上的两个数字之和除以4的余数分别是0,1,2,3的概率为0123p p p p ,,,,则0123p p p p ,,,中最大的是( ).OAB CED(A )0p (B )1p (C )2p (D )3p5(乙).黑板上写有111123100, , ,, 共100个数字.每次操作先从黑板上的数中选取2个数a b ,,然后删去a b ,,并在黑板上写上数a b ab ++,则经过99次操作后,黑板上剩下的数是( ).(A )2012 (B )101 (C )100 (D )99 二、填空题(共5小题,每小题6分,共30分) 6(甲).按如图的程序进行操作,规定:程序运行从“输入一个值x ”到“结果是否>487?”为一次操作.如果操作进行四次才停止,那么x 的取值范围是 .6(乙).如果a ,b ,c 是正数,且满足9a b c ++=,111109a b b c c a ++=+++,那么a b cb c c a a b+++++的值为 .7(甲).如图,正方形ABCD 的边长为215,E ,F 分别是AB ,BC 的中点,AF 与DE ,DB分别交于点M ,N ,则△DMN 的面积是 .7(乙).如图所示,点A 在半径为20的圆O上,以OA 为一条对角线作矩形OBAC ,设直线BC 交圆O 于D 、E 两点,若12OC =,则线段CE 、BD 的长度差是 。
全国初中数学竞赛真题及答案大全
2007年全国初中数学竞赛(海南赛区)初赛试卷(本试卷共6页,满分120分,考试时间:3月18日8:30——10:30)一、选择题(本大题满分50分,每小题5分)在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母代号填写在下表相应题号下的方格内1. 若m 为实数,则代数式m的值一定是A.正数 B.0 C.负数 D.非负数2.如图1所示,是两架处在平衡状态的天平,那么,对于a、b、c三种物体的重量,下列判断正确的是A.c>a B.a<b C.a<cD. b<c3. 如图2,点C是∠的平分线上一点,点B、B′分别在边、上,如果再添加一个条件,即可推出′,那么该条件不可以是A. ′⊥B. ′C. ∠∠′ D. ∠′C图图4.图3是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形,如果大正方形的面积是13,小正方形的面积是1,直角三角形的两条直角边长分别为a 、b ,则()2的值是A .13B .19C .25D .169 图35.已知m 是方程01x -x 2=+2006的一个根,则代数式3+1++22m 20062005m -m 的值等于 A.2005 B.2006 C.2007D.20086.将一段72长的绳子,从一端开始每3作一记号,每4也作一记号,然后从有记号的地方剪断,则这段绳子共被剪成的段数为A .37B .36C .35D .347. 某旅游团92人在快餐店就餐,该店备有9种菜,每份菜单单价分别为1、2、3、4、5、6、7、8、9(元),旅游团领队交代:每人可选不同的菜,但金额都须正好10元,且每一种菜最多只能买一份,这样,该团成员在购菜完全符合要求的所有方案中,至少有一个方案的人数不少于A .9人B .10人C .11人D .12人8.如图4是由几块相同的小正方体搭成的立体图形的三视图,则这立体图形中小正方体共有( )块A .9B .10C .11D .129.如图5,将△沿着它的中位线折叠后,点A 落到点A ′,若∠120 ,∠26 ,则∠A ′的度数是A .120B .112C .110D .10810. 方程x x -x 22=2的正根的个数是 A .0个 B .1个 C .2个D .3个二、填空题(本大题共8小题,每小题5分,满分40分)11.若[]x 表示不超过x 的最大整数,如[][][]0==3=2.30.7-43.7-,,等,则[][]=3+5π-12.在直径为4的⊙O 中,长度为32的弦所对的圆周角的度数为 .13.如图6,电路图上有四个开关A、B、C、D和一个小灯泡,闭合开关D或同时闭合开关A、B、C都可以使小灯泡放光,那么随机闭合其中两个开关,能使小灯泡发光的概率为°.14.如图7,在△中,53为的中点,2,则∠ .15.若干个装卸一批货物,每个工人的装卸速度相同,如果这些工人同时工作,则需10小时装卸完毕;现改变装卸方式,开始一个人干,以后每隔t(整数)小时增加一个人干,每个参加装卸的人都一直干到装卸完毕,且最后参加的一个人装卸的时1,则按改变的方式装卸,自始至终共需时间间是第一个人的4小时.16.在一次自行车越野赛中,甲、乙两名选手所走的路程y (千米)随时间x(分钟)变化的图象(全程)分别用图8中的实线(O→A→B→C)与虚线()表示,那么,在本次比赛过程中,乙领先甲时的x的取值范围是 .17.已知a<3,b>3,且1-k+,3,ba=则k的最小整数值是.18.若503=+,,且x、y、z均为非负数,则x=++z-yx30yz4=的最大值为.++zy5xM2三、解答题(本大题共2小题,每小题15分,满分30分)19. 已知在△中,∠90 ,4,现将一块边长足够大的直角三角板的直角顶点置于的中点O,两直角边分别经过点B、C,然后将三角板绕点O按顺时针方向旋转一个角度 0(α<α<90 ),旋转后,直角三角板的直角边分别与、相交于点K、H,四边形是旋转过程中三角板与△的重叠部分(如图所示)。
全国初中数学竞赛历年竞赛试题及参考答案
初中数学竞赛试题答题时注意:1.用圆珠笔或钢笔作答; 2.解答书写时不要超过装订线; 3.草稿纸不上交.一、选择题(共5小题,每小题7分,共35分. 每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是准确的. 请将准确选项的代号填入题后的括号里,不填、多填或错填都得0分)1.设1a =,则代数式32312612a a a +--的值为( ).(A )24 (B )25 (C )10 (D )12 2.对于任意实数a b c d ,,,,定义有序实数对a b (,)与c d (,)之间的运算“△”为:(a b ,)△(c d ,)=(ac bd ad bc ++,).如果对于任意实数u v ,, 都有(u v ,)△(x y ,)=(u v ,),那么(x y ,)为( ).(A )(0,1) (B )(1,0) (C )(﹣1,0) (D )(0,-1)3.若1x >,0y >,且满足3y y xxy x x y==,,则x y +的值为( ).(A )1 (B )2 (C )92(D )1124.点D E ,分别在△ABC 的边AB AC ,上,BE CD ,相交于点F ,设1234BDF BCF CEF EADF S S S S S S S S ∆∆∆====四边形,,,,则13S S 与24S S 的大小关系为( ).(A )1324S S S S < (B )1324S S S S = (C )1324S S S S > (D )不能确定 5.设3333111112399S =++++,则4S 的整数部分等于( ).(A )4 (B )5 (C )6 (D )7二、填空题(共5小题,每小题7分,共35分)6.若关于x 的方程2(2)(4)0x x x m --+=有三个根,且这三个根恰好可 以作为一个三角形的三条边的长,则m的取值范围是 .7.一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,2,3,3,4;另一枚质地均匀的正方体骰子的六个面上的数字分别是1,3,4,5,6,8. 同时掷这两枚骰子,则其朝上的面两数字之和为奇数的概率是 .8.如图,点A B ,为直线y x =上的两点,过A B ,两点分别作y 轴的平行线交双曲线1y x=(x >0)于C D ,两点. 若2BD AC =,则224OC OD - 的值为 .9.若112y x x =-+-的最大值为a ,最小值为b ,则22a b +的值为 .10.如图,在Rt △ABC 中,斜边AB 的长为35,正方形CDEF 内接于△ABC ,且其边长为12,则△ABC 的周长为 .三、解答题(共4题,每题20分,共80分)11.已知关于x 的一元二次方程20x cx a ++=的两个整数根恰好比方程20x ax b ++=的两个根都大1,求a b c ++的值.12.如图,点H 为△ABC 的垂心,以AB 为直径的⊙(第8题)(第10题)1O 和△BCH 的外接圆⊙2O 相交于点D ,延长AD 交CH 于点P ,求证:点P 为CH 的中点.13.如图,点A 为y 轴正半轴上一点,A B ,两点关于x 轴对称,过点A 任作直线交抛物线223y x=于P ,Q 两点. (1)求证:∠ABP =∠ABQ ;(2)若点A 的坐标为(0,1),且∠PBQ =60º,试求所有满足条件的直线PQ 的函数解析式.14.如图,△ABC 中,60BAC ∠=︒,2AB AC =.点P 在△ABC 内,且352PA PB PC ===,,,求△ABC 的面积.(第13题)(第12题)(第14题)初中数学竞赛试题参考答案一、选择题 1.A解:因为71a =-, 17a +=, 262a a =-, 所以322312612362126261261260662126024.a a a a a a a a a a a +--=-+---=--+=---+=()()()2.B解:依定义的运算法则,有ux vy u vx uy v +=⎧⎨+=⎩,,即(1)0(1)0u x vy v x uy -+=⎧⎨-+=⎩,对任何实数u v ,都成立. 因为实数u v ,的任意性,得(x y ,)=(1,0).3.C解:由题设可知1y y x -=,于是341y y x yx x -==,所以 411y -=, 故12y =,从而4x =.于是92x y +=.4.C解:如图,连接DE ,设1DEFS S ∆'=,则1423S S EF S BF S '==,从而有1324S S S S '=.因为11S S '>,所以1324S S S S >.5.A解:当2 3 99k =,,,时,因为()()()32111112111k k k k k k k ⎡⎤<=-⎢⎥-+-⎣⎦, 所以 3331111115111239922991004S ⎛⎫<=++++<+-< ⎪⨯⎝⎭. (第4题)于是有445S <<,故4S 的整数部分等于4.二、填空题 6.3<m ≤4解:易知2x =是方程的一个根,设方程的另外两个根为12 x x ,,则124x x +=,12x x m =.显然1242x x +=>,所以122x x -<, 164m ∆=-≥0,即()2121242x x x x +-<,164m ∆=-≥0,所以1642m -<, 164m ∆=-≥0,解之得 3<m ≤4.7.19解: 在36对可能出现的结果中,有4对:(1,4),(2,3),(2,3),(4,1)的和为5,所以朝上的面两数字之和为5的概率是41369=. 8.6解:如图,设点C 的坐标为a b (,),点D 的坐标为c d (,),则点A 的坐标为a a (,),点B 的坐标为.c c (,) 因为点C D ,在双曲线1y x=上,所以11ab cd ==,. 因为AC a b =-,BD c d =-, 又因为2BD AC =,于是22222242c d a b c cd d a ab b -=--+=-+,(),所以 22224826a b c d ab cd +-+=-=()(),即224OC OD -=6.9.32解:由1x -≥0,且12x -≥0,得12≤x ≤1.22213113122()2222416y x x x =+-+-=+--+. 因为13124<<,所以当34x =时,2y 取到最大值1,故1a =. (第8题)当12x =或1时,2y 取到最小值12,故2b =.所以,2232a b +=. 10.84解:如图,设BC =a ,AC =b ,则22235a b +==1225. ①又Rt △AFE ∽Rt △ACB ,所以FE AFCB AC=,即1212b a b-=,故 12()a b ab +=. ② 由①②得2222122524a b a b ab a b +=++=++()(), 解得a +b =49(另一个解-25舍去),所以493584a b c ++=+=.三、解答题11.解:设方程20x ax b ++=的两个根为αβ,,其中αβ,为整数,且α≤β,则方程20x cx a ++=的两根为11αβ++,,由题意得()()11a a αβαβ+=-++=,,两式相加得 2210αβαβ+++=, 即 (2)(2)3αβ++=,所以 2123αβ+=⎧⎨+=⎩,; 或232 1.αβ+=-⎧⎨+=-⎩,解得 11αβ=-⎧⎨=⎩,; 或53.αβ=-⎧⎨=-⎩,又因为[11]a b c αβαβαβ=-+==-+++(),,()(),所以 012a b c ==-=-,,;或者8156a b c ===,,,(第10题)故3a b c ++=-,或29.12.证明:如图,延长AP 交⊙2O 于点Q , 连接 AH BD QB QC QH ,,,,.因为AB 为⊙1O 的直径, 所以∠ADB =∠BDQ =90°, 故BQ 为⊙2O 的直径. 于是CQ BC BH HQ ⊥⊥,.又因为点H 为△ABC 的垂心,所以.AH BC BH AC ⊥⊥,所以AH ∥CQ ,AC ∥HQ ,四边形ACQH 为平行四边形. 所以点P 为CH 的中点.13.解:(1)如图,分别过点P Q , 作y 轴的垂线,垂足分别为C D , . 设点A 的坐标为(0,t ),则点B 的坐标为(0,-t ). 设直线PQ 的函数解析式为y kx t =+,并设P Q ,的坐标分别为 P P x y (,),Q Q x y (,).由223y kx t y x =+⎧⎪⎨=⎪⎩,, 得 2203x kx t --=, 于是 32P Q x x t =-,即 23P Q t x x =-.于是222323P P Q Qx t y t BC BD y t x t ++==++22222()333.222()333P P Q P P Q P Q Q P Q Q Q P x x x x x x x x x x x x x x --===--- 又因为P Q x PC QD x =-,所以BC PCBD QD=. 因为∠BCP =∠90BDQ =︒,所以△BCP ∽△BDQ ,(第12题)(第13题)故∠ABP =∠ABQ .(2)解法一 设PC a =,DQ b =,不妨设a ≥b >0,由(1)可知∠ABP =∠30ABQ =︒,BC ,BD ,所以 AC 2-,AD =2.因为PC ∥DQ ,所以△ACP ∽△ADQ .于是PC ACDQ AD=,即a b ,所以a b +=.由(1)中32P Q x x t =-,即32ab -=-,所以322ab a b =+=,于是可求得2a b ==将2b =代入223y x =,得到点Q ,12).再将点Q 的坐标代入1y kx =+,求得3k =-所以直线PQ 的函数解析式为1y =+.根据对称性知,所求直线PQ 的函数解析式为1y =+,或1y +. 解法二 设直线PQ 的函数解析式为y kx t =+,其中1t =. 由(1)可知,∠ABP =∠30ABQ =︒,所以2BQ DQ =.故 2Q x =.将223Q Q y x =代入上式,平方并整理得 4241590Q Q x x -+=,即22(43)(3)0Q Q x x --=.所以 2Q x =又由 (1)得3322P Q x x t =-=-,32P Q x x k +=. 若3Q x =,代入上式得 3P x =-, 从而 23()3P Q k x x =+=-.同理,若3Q x =, 可得32P x =-, 从而 23()3P Q k x x =+=.所以,直线PQ 的函数解析式为31y x =-+,或31y x =+. 14.解:如图,作△ABQ ,使得QAB PAC ABQ ACP ∠=∠∠=∠,,则△ABQ ∽△ACP . 因为2AB AC =,所以相似比为2. 于是22324AQ AP BQ CP ====,.60QAP QAB BAP PAC BAP BAC ∠=∠+∠=∠+∠=∠=︒.由:2:1AQ AP =知,90APQ ∠=︒,于是33PQ AP ==.所以 22225BP BQ PQ ==+,从而90BQP ∠=︒. 于是222()2883AB PQ AP BQ =++=+ .故 213673sin 60282ABC S AB AC AB ∆+=⋅︒==.(第14题)。
初二数学竞赛试题及参考答案
八年级数学竞赛试题及参考答案一、选择题(每小题5分,共30分) 1.已知2220082008,2ca b a b c k k +=-==++=,且那么的值为( ). A .4 B .14 C .-4 D .14- 2.若方程组312433x y k x y k x y x y +=+⎧<<-⎨+=⎩的解为,,且,则的取值范围是( ). A .102x y <-<B .01x y <-<C .31x y -<-<-D .11x y -<-< 3.计算:2399100155555++++++=( ). A .10151- B .10051- C .101514- D .100514- 4.如图,已知四边形ABCD 的四边都相等,等边△AEF 的顶点E 、F 分别在BC 、CD 上,且AE=AB ,则∠C=( ). A .100° B .105° C .110° D .120°5.已知5544332222335566a b c d a b c d ====,,,,则、、、的大小关系是( ).A .a b c d >>>B .a b d c >>>C .b a c d >>>D .a d b c >>>6.如果把分数97的分子、分母分别加上正整数913a b 、,结果等于,那么a b +的最小(第4题图)DCB值是( ).A .26B .28C .30D .32 二、填空题:(每小题5分,共30分)7.方程组200820092007200720062008x y x y -=⎧⎨-=⎩的解是 .8.如图,已知AB 、CD 、EF 相交于点O ,EF ⊥AB ,OG 为∠COF 的平分线,OH 为∠DOG 的平分线,若∠AOC :∠COG=4:7,则∠GOH= .9.小张和小李分别从A 、B 两地同时出发,相向而行,第一次在距A 地5千米处相遇,继续往前走到各地(B 、A )后又立即返回,第二次在距B 地4千米处两人再次相遇,则A 、B 两地的距离是 千米.10.在△ABC 中,∠A 是最小角,∠B 是最大角,且2∠B=5∠A ,若∠B 的最大值为m °,最小值为n °,则m °+n °= .11.已知21()()()04b cb c a b c a a a+-=--≠=,且,则 .12.设p q ,均为正整数,且7111015p q <<,当q 最小时,pq 的值为 .以下三、四、五题要求写出解题过程. 三、(本题满分20分)13.在一次抗击雪灾而募捐的演出中,晨光中学有A 、B 、C 、D 四个班的同学参加演出,已知A 、B 两个班共16名演员,B 、C 两个班共20名演员,C 、D 两个班共34名演员,且各班演员的人数正好按A 、B 、C 、D 次序从小到大排列,求各班演员的人数.G(第8题图)HOFEDCBA(第15题图)EDCBA四、(本题满分20分)14.已知2211x x y y x y =+=+≠,,且. ⑴ 求证:1x y +=. ⑵ 求55x y +的值. 五、(本题满分20分)15.如图,在△ABC 中AC >BC ,E 、D 分别是AC 、BC 上的点,且∠BAD=∠ABE ,AE=BD . 求证:∠BAD=12∠C .参考答案一、选择题1.A 2.B 3.C 4.A 5.A 6.B二、填空题: 7、21x y =⎧⎨=⎩ 8、72.5° 9、11 10、175° 11、2 12、68213、解:依题意得:A+B=16,B+C=20,C+D=34∵A <B <C <D ,∴A <8,B >8,B <10,C >10,C <17,D >17 由8<B <10且B 只能取整数得,B=9 ∴C=11,D=23,A=7答:A 、B 、C 、D 各班演员人数分别是7人、9人、11人、23人。
历年全国初中数学竞赛试卷及答案解析
历年全国初中数学竞赛试卷及答案解析目录1998年全国初中数学竞赛试卷及答案解析 (3)1999年全国初中数学竞赛试卷及答案解析 (10)2000年全国初中数学竞赛试卷及答案解析 (17)2001年全国初中数学竞赛试卷及答案解析 (24)2002年全国初中数学竞赛试卷及答案解析 (31)2003年全国初中数学竞赛试卷及答案解析 (39)2004年全国初中数学竞赛试卷及答案解析 (49)2005年全国初中数学竞赛试卷及答案解析 (57)2006年全国初中数学竞赛试卷及答案解析 (64)2007年全国初中数学竞赛试卷及答案解析 (72)2008年全国初中数学竞赛试卷及答案解析 (84)2009年全国初中数学竞赛试卷及答案解析 (91)2010年全国初中数学竞赛试卷及答案解析 (99)2011年全国初中数学竞赛试卷及答案解析 (107)2012年全国初中数学竞赛试卷及答案解析 (115)2013年全国初中数学竞赛试卷及答案解析 (129)2014年全国初中数学竞赛预赛试题及参考答案 (137)1998年全国初中数学竞赛试卷及答案解析一、选择题(本大题共5小题,每小题6分,共30分).1、已知c b a ,,都是实数,并且c b a >>,那么下列式子中正确的是(B ).A. ;bc ab >B. ;c b b a +>+C. ;c b b a ->-D..cbc a > 【解析】B.根据不等式的基本性质.2、如果方程()0012>=++p px x 的两根之差是1,那么p 的值为(D ).A. 2;B. 4;C. ;3D. .5【解析】D..514)(14)()(.1.200422212212212121212=⇒⨯--=⇒-+=-∴⎩⎨⎧=-=+>⇒⎭⎬⎫>>-=∆p p x x x x x x x x px x x x p p p 为方程的两根,那么有、设由3、在△ABC 中,已知BD 和CE 分别是两边上的中线,并且64==⊥CE BD CE BD ,,,那么△ABC的面积等于(C ). A. 12; B. 14; C. 16; D. 18.【解析】C..16123434.4141.12642121=⨯==∴=-⇒=⇒∆=⨯⨯=⋅⋅=⇒⊥∆∆∆∆∆BCDE ABC ABC BCDE ABC ABC AED BCDE S S S S S S S ABC DE CE BD S CE BD DE 四边形四边形四边形的中位线是,则如图所示,连接 DACBE4、已知0≠abc ,并且p bac a c b c b a =+=+=+,那么直线p px y +=一定通过第()象限.(B ) A. 一、二; B. 二、三; C. 三、四; D. 一、四.【解析】B...11222.12.10.02)()(2一定通过第二、三象限直线过第二、三、四象限时,直线当过第一、二、三象限;时,直线当或或p px y x y p x y p p p ccc b a p c b a c b a p c b a p c b a pba c pa cb pcb a p b ac a c b c b a +=∴--=-=+==-==∴-=-=+=⇒=++=++=⇒++=++⇒⎪⎩⎪⎨⎧=+=+=+⇒=+=+=+ 5、如果不等式组⎩⎨⎧<-≥-0809b x a x 的整数解仅为1,2,3,那么适合这个不等式组的整数a 、b 的有序数对(a 、b )共有(C ). A. 17个; B. 64个; C. 72个; D. 81个.【解析】C..7298)(.832313029282726259987654321.322490483190.89个有,满足条件的整数有序对个,共,,,,,,,个;,共,,,,,,,,则依题意,知由原不等式组可得=⨯∴==∴⎩⎨⎧≤<≤<⇒⎪⎩⎪⎨⎧≤<≤<<≤b a b a b a b a b x a二、填空题(本大题共5小题,每小题6分,共30分).6、在矩形ABCD中,已知两邻边AD=12,AB=5,P是AD边上任意一点,PE⊥BD,PF⊥AC,E、F分别是垂足,那么PE+PF=_____.【解析】.1360.136013560135.1355125sin135605125)12(sin.12)120(2222=-+=+∴=+⋅=∠⋅=-=+⨯-=∠⋅=∴-=<<=xxPFPExxPAFAPPFxxPDEDPPExDPxxAP;,则如图所示,设FEA DCBP7、已知直线32+-=xy与抛物线2xy=相交于A、B两点,O为坐标原点,那么△OAB的面积等于_____.【解析】6..639211121)31()91(21'.''').93()11(32''''2=⨯⨯-⨯⨯-+⨯+⨯=--=-=+-=∆∆∆OBBOAABBAAOABSSSSBAxBBAABAxyxy梯形则,轴,垂足分别为分别垂直于,作,,,的交点为与抛物线如图所示,直线8、已知圆环内直径为cma,外直径为cmb,将50个这样的圆环一个接一个环套地连成一条锁链,那么这条锁链拉直后的长度为_____cm.【解析】49a+b..49)150(225050242332222baabbbaabbbaabb+=-⨯--⋯⋯+=⨯--+=⨯--个时,链长为当圆环为;个时,链长为当圆环为;个时,链长为如图所示,当圆环为9、已知方程())(15132832222是非负整数其中aaaxaaxa=+-+--,至少有一个整数根,那么a=_____.【解析】1,3或5..53151322)2()83(2)15132(4)83()83(21222222222,或,可取故,a ax a x a a a a a a a a a a a a a x -=-=∴+±-=+---±-= 10、B 船在A 船的西偏北o 45处,两船相距km 210,若A 船向西航行,B 船同时向南航行,且B 船的速度为A 船速度的2倍,那么A 、B 两船的最近距离是_____km .【解析】52..52''620)6-(5)210()10(''''./.''.102221045sin 102221045cos 22222o o 取得最小值时,当则船的速度为并设处,船分别航行到船、小时后,设经过,如图所示,B A xt xt xt xt C B C A B A h km x A B A B A t AB BC AB AC =+=-+-=+==⨯=⋅==⨯=⋅=三、解答题(本大题共3小题,每小题20分,共60分).11、如图,在等腰ABC ∆中,o 901=∠=A AB ,,点E 为腰AC 中点,点F 在底边BC 上,且FE ⊥BE ,求△CEF 的面积.AB CEF【解】解法一:.24161212121612214522122∽9090.o o o =⨯⨯=⋅⋅=∴=⇒=-∴=⇒=∠-=-=∴=⇒==∴=⇒∆∆∴∠=∠⇒⎭⎬⎫=∠+∠=∠+∠⊥∆GF CE S GF GF GF GF CG C GFGE CE CG GF GE AEABGF GE GEABGF AE GEF Rt ABE Rt GEF ABE AEB GEF AEB ABE G CE FG CEF 于如图所示,作GFEACB解法二:241)21()(∽9090.22o o ==∴====∴∆∆∴∠=∠⇒⎭⎬⎫=∠+∠=∠+∠⊥∆∆AEABCH CE CE AB CH AE AB CE S S CEH Rt ABE Rt CEH ABE AEB CEH AEB ABE H EF CE CH C ABE CEH ,的延长线交于,与作如图所示,过 HFEACB.2412112141324132322.45o =⨯⨯⨯⨯=⨯==∴==∴⇒∠⇒=∠=∠∆∆∆∆∆ABE CHE CEF CHF CEF S S S CH CE S S CE CH F HCE CF HCF ECF 的距离相等、到的角平分线是12、设抛物线452)12(2++++=a x a x y 的图象与x 轴只有一个交点.(1)求a 的值; (2)求618323-+a a 的值. 【解】.5796)138(323)15972584(3231381011)1(310113)2)(53(1115344)1(44)2()1(1212)1(12)1()1(11101159725846101597)1(9876101597987)1)(610987(610987169546)1(441169546441)1321()(1321412)1(94129)23()(2312)1(12)1()(101)1()2(.251010)452(4)12(.0452)12(.452)12()1(618224622224222222216182228162224822224222222=+-++=+∴+-=+-+=+-=+-+-=⋅=+-=+-+=+-=+-==+-=+-+=+-=-==-=∴=--+=+++=++=++=⋅=+=+++=++=+==+=+++=++=+==+=+++=++=+==+=∴=--±=∴=+-=+-+=∆∴=++++∴++++=-a a a a a a a a a a a aa a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a x a x x a x a x y 又知,由,即有两个相等的实根一元二次方程轴只有一个交点的图像与抛物线13、A 市、B 市和C 市有某种机器10台、10台、8台,现在决定把这些机器支援给D 市18台,E 市10台.已知:从A 市调运一台机器到D 市、E 市的运费为200元和800元;从B 市调运一台机器到D 市、E 市的运费为300元和700元;从C 市调运一台机器到D 市、E 市的运费为400元和500元.(1)设从A 市、B 市各调x 台到D 市,当28台机器调运完毕后,求总运费W (元)关于x (台)的函数关系式,并求W 的最大值和最小值.(2)设从A 市调x 台到D 市,B 市调y 台到D 市,当28台机器调运完毕后,用x 、y 表示总运费W (元),并求W 的最大值和最小值. 【解】.1420014200100142001720010300020017200)(300200.98009800810980017200183001020017200)(300200.1810100100172003005001810100100818010010017200300500)10(500)10(700)10(800)18(400300200.101010182.132005100009958218010017200800)102(500)10(700)10(800)218(400300200.10210102181元的最大值是,故时,,即当;又元的最小值是,故时,,即当是整数,,,且又于是台,,机器台数分别为市的台,发往,,市的机器台数分别为市发往市、市、)由题设知,(元取到最大值时,元;当取到最小值时,所以,当又于是台,,机器台数分别为市的台,发往,,市的机器台数分别为市发往市、市、)由题设知,(W W y x y x x W W W y x y x x W y x y x y x y x W y x y x y x y x y x y x y x y x y x W y x y x E y x y x D C B A W x W x x x x x x x x x x x W x x x E x x x D C B A ====+⨯-⨯-≤++--=====+⨯-⨯-≥++--=∴⎪⎩⎪⎨⎧≤+≤≤≤≤≤+--=∴⎪⎩⎪⎨⎧≤+≤≤≤≤≤⇒⎪⎩⎪⎨⎧≤--≤≤≤≤≤+--=-++-+-+--++=-+----==≤≤⇒⎩⎨⎧≤-≤≤≤+-=-+-+-+-++=----1999年全国初中数学竞赛试卷及答案解析一、选择题(本大题共6小题,每小题5分,共30分).14、一个凸n 边形的内角和小于1999°,那么n 的最大值是(C ).A. 11;B. 12;C. 13;D. 14.【解析】C.18019131999)2(180o o <⇒<-n n .15、某城市按以下规定收取每月煤气费:用煤气如果不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费.已知某用户4月份的煤气费平均每立方米0.88元,那么4月份该用户应交煤气费(B ). A. 60元; B. 66元; C. 75元; D. 78元.【解析】B.设4月份用户使用煤气x (x >60)立方米.则 60×0.8+1.2×(x -60)=0.88x .解得x =75. 故4月份该用户应交煤气费0.88×75=66元.16、已知11=-a a,那么代数式a a +1的值为(D ).A.;25B. ;25-C. ;5-D. .5【解析】D..1111110②52321)1(113111110①2222222此时无解时,当;时,当-=+⇒=+⇒=-<=+=++=+=+⇒+∴=+⇒=-⇒=->a aa a a a a a a a a a a a a a aa a a a a 17、在ABC ∆中,D 是边BC 上的一点,已知51065====CD BD AD AC ,,,,那么ABC ∆的面积是(B ). A. 30; B. 36; C. 72; D. 125.【解析】B..36524)510(212152454621214353621215.2222=⨯+⨯=⋅⋅=∴=⨯=⋅=⇒⋅⋅=⋅⋅=∴=-=-=∴=⨯==⇒⊥==⊥⊥∆∆AF BC S CD CE AD AF AF CD CE AD S AE AC CE AD AE AD CE CD AC F BC AF E AD CE ABC ADC ,则于,于如图所示,作FEACD B18、如果抛物线1)1(2----=k x k x y 与x 轴的交点为A ,B ,顶点为C ,那么△ABC 的面积的最小值是(A ). A. 1; B. 2; C. 3; D. 4.【解析】A.().1 184)1(452522145221214524)]1([)1(444212)1(252)1(4)1(4)(11.1)1(32222212222221221212121212取得最小值时,当,,则,的两实根为设一元二次方程ABCCABCSkkkkkkkkxxyABSkkkkabackkabkkkkxxxxxxkxxkxxxxkxkx∆∆-=++=++⋅++⋅=++⋅-⋅=⋅⋅=∴++-=-----=--=---=-++=----=-+=-∴--=-=+=----19、在正五边形ABCDE所在的平面内能找到点P,使得△PCD与△BCD的面积相等,并且△ABP为等腰三角形,这样的不同的点P的个数为(D).A.2;B.3;C.4;D.5.【解析】D..③②①.31452PPBABPBABPPABAPABAPPPABPBPAPABPCDCDBPBCDPCD,为半径的圆上,此时有为圆心,必在以时,点当;为半径的圆上,此时有为圆心,必在以时,点当;,的中垂线上,此时有必在线段时,点当是等腰三角形,则要使的对称直线上的直线或此直线关于且平行于一定在过点的面积相等,则点与如图所示,要使===∆∆∆二、填空题(本大题共6小题,每小题5分,共30分).20、已知231231-=+=yx,,那么22yx+的值为_____.【解析】10..10)23)(23(2)]23()23[(2)(23232312312222=+--++-=-+=+∴+=-=⇒-=+=xyyxyxyxyx,,21、如图,正方形ABCD的边长为10cm,点E在边CB的延长线上,且EB=10cm,点P在边DC上运动,EP与AB的交点为F.设DP=xcm,△EFB与四边形AFPD的面积和为ycm2,那么,y与x之间的函数关系式是_____(0<x<10).【解析】y=5x+50.50510)]215([2110)215(21)(2121215)215(10215)10(21)(212121101010∽+=⨯++⨯+⨯-⨯=⋅+⋅+⋅⋅=+=∴+=--=-=∴-=-=-==⇒=+==⇒∆∆∆x x x x AD AF DP BE BF S S y xx BF AB AF x x DP DC CP BF EC EB CP BF ECP EBF AFPD EFB 四边形 22、已知02022=-+≠b ab a ab ,,那么ba ba +-22的值为_____. 【解析】3135或.35)2(2)2(22231222220)2)((0222=+-⨯--⨯=+-=+-=+-∴-==⇒=+-⇒=-+b b b b b a b a b b b b b a b a b a b a b a b a b ab a 或或23、如图,已知边长为1的正方形OABC 在直角坐标系中,A 、B 两点在第Ⅰ象限内,OA 与x 轴的夹角为30°,那么点B 的坐标是_____.【解析】)213213(+-,.212321232323130cos 2121130sin 2323130cos 2121130sin .o o o o +=+=+=-=-=-=∴=⨯=⋅==⨯=⋅==⨯=⋅==⨯=⋅=⊥⊥⊥AE BF FD BF BD AF OE DE OE OD AB BF AB AF OA OE OA AE F BD AF D x BD E x AE ,,,则于,轴于,轴于如图所示,作F EDCBOxyA24、设有一个边长为1的正三角形,记作A 1(如图3),将A 1的每条边三等分,在中间的线段上向形外作正三角形,去掉中间的线段后所得到的图形记作A 2(如图4);将A 2的每条边三等分,并重复上述过程,所得到的图形记作A 3(如图5);再将A 3的每条边三等分,并重复上述过程,所得到的图形记作A 4,那么A 4的周长_____.【解析】964..964])31(1)[43(316])31(1)[43(4)311()43(313.31433422321=⨯⨯=⨯⨯=⨯⨯⨯=⨯的周长是,的周长是,的周长是,的周长是为原来的条边,每条线段长度变把一条边变成变化规律为:每次变化A A A A25、江堤边一洼地发生了管涌,江水不断地涌出,假定每分钟涌出的水量相等.如果用2台抽水机抽水,40分钟可抽完;如果用4台抽水机抽水,16分钟可抽完.如果要在10分钟内抽完水,那么至少需要抽水机_____台.【解析】6..6103210316010103231601641640240台故至少需要抽水机,则水,每台抽水机每分钟抽,每分钟涌出的江水是涌出的江水是设使用抽水机抽水前已=⨯+=+⎪⎩⎪⎨⎧==⇒⎩⎨⎧⨯=+⨯=+ccc c b a c b ca cb ac b a c b a三、解答题(本大题共3小题,每小题20分,共60分).26、设实数t s ,分别满足0199901991922=++=++t t s s ,,并且1≠st ,求ts st 14++的值. 【解】.519141991419199191991.01999111019199)1(0199190222-=++--=++∴⎩⎨⎧=--=⇒⎪⎩⎪⎨⎧=⋅-=+∴=++∴≠⇒≠=+⋅+⇒=++∴≠ss s t s st s t s st t st s x x t s st st ss s s s 的两个不等实根是一元二次方程, 27、如图,已知四边形ABCD 内接于直径为3的圆O ,对角线AC 是直径,对角线AC 和BD 的交点是P ,AB =BD ,且PC =0.6,求四边形ABCD 的周长.【解】如图所示,连接BO 并延长交AD 于H ,连接OD .则HDP O CA B.632213)6(36)2123()2221()()21(221316.0236.023∽∥909022222222222222o o +++∴=-=-==++⨯=++=+==-=-==-⨯=⋅=∴=⇒∆∆∴∠=∠⇒∴=∠⇒∠=∠=∠⇒≅∆∴∠=∠⇒∆≅∆⇒=的周长为四边形上的圆周角是直径ABCD AB AC BC OH BO AD BH AH AB CD AC AD OP CP OB CD CPOPCD OB CPD OPB CDP OBP CD BH ADC AC ADC DHB AHB DBH ABH DBO ABO DOB AOB BD AB28、有人编了一个程序:从1开始,交错地做加法或乘法(第一次可以是加法,也可以是乘法),每次加法,将上次的运算结果加2或加3;每次乘法,将上次的运算结果乘2或乘3.例如,30可以这样得到:30108413223−→−−→−−→−−→−⨯+⨯+.(1)证明:可以得到22; (2)证明:可以得到22297100-+.【解析】(1)倒过来考虑:①22假设是通过乘法得到,则必是×2; A ,11假设是通过+2得到;9必是×3得到. 3必是+2得到.(*) B ,11假设是通过+3得到. 8必是×2得到. (A)4是+2得到; 2必是×2得到.(*) (B)4是+3得到.(*) ②22假设是通过加法得到. A ,假设是+2得到; 20必是×2得到. (A)10假设是+2得到; 8必是×2得到. a ,4是+2得到; 2必是×2得到.(*) b ,4是+3得到.(*) (B)10假设是+3得到. 7不能通过乘法得到,不满足. B ,假设是+3得到.19不能通过乘法得到,不满足. 故所有方法有148102022124810202214811221248112213911223-22-22-22-22-22-3-23-222-23-22-32-2−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−÷÷÷÷÷÷÷÷÷÷÷÷(2)倒过来考虑:148423)2293(423223423123322122222③)(2471416222)23247(222422122222②)(247222)2296(222422222①3-222-2952-952963-96396992-969929710023-22-1423-29598296993-969929710023-0322-96992971002-97100−→−−→−=-⨯→-÷−→−−→−⋯-⨯−→−-⨯−→−-⨯−→−-⨯−→−-+−→−-+−→−-+−→−−→−−→−−→−=-+→÷-÷−→−−→−−→−⋯-+−→−-+−→−-+−→−-+−→−−→−=-+→÷-−→−−→−⋯-+−→−-+−→−-+÷÷÷÷÷÷÷÷÷÷÷÷÷÷,次不满足,,次不满足,次【解】证明:(1)22119312232−→−−→−−→−−→−⨯+⨯+.或222010841222010842122118412211842122223222222232323222−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−+⨯+⨯++⨯+⨯+⨯⨯+⨯+⨯+⨯+⨯证明:(2)222229129329123423)2292(423223423223423223197100972962963963962242323222223-+=-⨯−→−-⨯−→−-⨯−→−-⨯−→−-⨯→⨯+−→−−→−⋯-⨯−→−-⨯−→−-⨯−→−-⨯−→−-⨯−→−-⨯−→−⨯+⨯+⨯+⨯+⨯+⨯+,次2000年全国初中数学竞赛试卷及答案解析一、选择题(本大题共6小题,每小题5分,共30分).29、设a ,b ,c 的平均数为M ,a ,b 的平均数为N ,N ,c 的平均数为P ,若c b a >>,则M 与P 的大小关系是(B ). A. ;P M = B. ;P M > C. ;P M < D. 不确定.【解析】B..01221221224234222223P M cc c c b a P M cb a cb ac b a c b a P M c b a cba c N Pb a Nc b a M >⇒=-+>-+=-∴>>-+=++-++=-∴++=++=+=+=++= ,,30、某人骑车沿直线旅行,先前进了a 千米,休息了一段时间,又原路返回b 千米(b ﹤a ),再前进c千米,则此人离起点的距离S 与时间t 的关系示意图是(C ).【解析】C.图(A)中没有反映休息所消耗的时间;图(B)虽表明折返后S 的变化,但没有表示消耗的时间;图(D)中没有反映沿原始返回的一段路程,唯图(C)正确地表述了题意.31、甲是乙现在的年龄时,乙10岁;乙是甲现在的年龄时,甲25岁,那么(A ).A. 甲比乙大5岁;B. 甲比乙大10岁;C. 乙比甲大10岁;D. 乙比甲大5岁.【解析】A.设甲、乙的年龄差是x 岁.则乙现在(10+x )岁,甲现在(25-x )岁,年龄差为[(25-x )-(10+x )]=15-2x 岁. 故15-2x =x ,即x =5.32、一个一次函数图象与直线49545+=x y 平行,与x 轴、y 轴的交点分别为A 、B ,并且过点(-1,-25),则在线段AB 上(包括端点A 、B ),横、纵坐标都是整数的点有(B ). A. 4个; B. 5个; C. 6个; D. 7个.【解析】B..5012340419419)(419190)()4950()019().19(4549545)251(4954500000个点故共有,,,,是整数点,则上横纵坐标都是整数的是线段,设,,,则的一次函数的解析式是,平行,且过与直线----=⇒≤-=≤-⇒⎩⎨⎧=-≤≤∴--=-=--+=t x t t tx x AB y x B A x x y x y 33、设a ,b ,c 分别是△ABC 的三边的长,且cb a ba b a +++=,则它的内角∠A 、∠B 的关系是(B ). A. ∠B >2∠A ; B. ∠B =2∠A ; C. ∠B <2∠A ; D. 不确定.【解析】B.BACD BAD D ABC DBAD D BAC DAC ABC DCACAC BC C C DAC ABC c a CD AB BD D CB c a b b a c b a b b a a b a c b a b a b a c b a b a b a ∠=∠=∠+∠=∠∴∠=∠∠=∠⇒∆∆∴=∠=∠∆∆+==+=⇒+++-++-=--⇒+++=--⇒+++=22∽.)()( ,中,和在,于是,使到如图所示,延长ca b cDC B A34、已知ABC ∆的三边长分别为c b a ,,,面积为S ,111C B A ∆的三边长分别为111c b a ,,,面积为S 1,且111c c b b a a >>>,,,则S 与S 1的大小关系一定是(D ).A. ;1S S >B. ;1S S <C. ;1S S =D. 不确定.【解析】D..2121214121..2.2.11111111111111111`111S S h CB S S h CB S S h CB h AB S CB AB S c c b b a a ABc b a h AB C B A AB c ABAB b a l C AB l AB B >>==<<⋅=⋅⋅=>>>===∆==>=时,;当时,;当时,当,而,,显然满足,则为为边的等边三角形,高是以,则上任一点为的中垂线,是的中点,是如图所示,二、填空题(本大题共6小题,每小题5分,共30分).35、已知:333124++=a ,那么=++32133aa a _____. 【解析】1..11)]12(1[1)11(1)1(113313313312111)2()124)(12()12(12433333323323233333333333=--+=-+=-+=-+++=++=++∴-=⇒=-=++-=-⇒++=aa a a a a a a a a a a a aa a36、在梯形ABCD 中,o o 12045268∥=∠=∠==BAD BCD BC AB DC AB ,,,,,则梯形ABCD 的面积等于_____.【解析】3666+..36666)]3214(8[21)(21321468323223630tan 30120.62264526.o o o o +=⨯++=⋅+=∴+=++=++=∴=⨯=⋅=⇒=∠⇒=∠====⇒=∠=AE CD AB S FC EF DE DC AE DE DAE BAD CF BF AE BCD BC F E DC BF AE ABCD 梯形,、于垂直、如图所示,作37、已知关于x 的方程012)1(2=--+-a x x a 的根都是整数,那么符合条件的整数有_____个.【解析】5..5①②.32121112111②11①.0)]1()1)[(1(12)1(212个有知,符合条件的整数结合,,,,即,是整数知,,由,时,当;时,当aaaxaxxaxaaxaxaxxa-=±±=----==≠===++--⇒=--+-38、如图,工地上竖立着两根电线杆AB、CD,它们相距15米,分别自两杆上高出地面4米、6米的A、C处,向两侧地面上的E、D;B、F点处,用钢丝绳拉紧,以固定电线杆.那么钢丝绳AD与BC 的交点P离地面的高度为_____米.【解析】2.4..4.24.21561541515615∽415∽.米离地面的高度是即点则于如图所示,作PPQPQPQBQQDPQCDBDPQBQBDBQCDPQBCDBPQPQABBDPQQDBDQDABPQDABDPQQBDPQ=⇒=+∴=+=⋅=⇒=⇒∆∆=⋅=⇒=⇒∆∆⊥39、如图,在直角坐标系中,矩形OABC的顶点B的坐标为(15,6),直线bxy+=31恰好将矩形OABC 分成面积相等的两部分,那么b=_____.【解析】0.5..211)515()0(===-==+bBQOPSSbBQbOPbQbPOPQABQPC,即,则要使,,知,,,由梯形梯形40、某商场经销一种商品,由于进货时价格比原进价降低了6.4%,使得利润率增加了8个百分点,那么经销这种商品原来的利润率是_____.)进价进价销售价(注:利润率%100⨯-=【解析】17%.%17%10017.117.1%8%100%100%)4.61(%)4.61(%.100%)4.61(%)4.61(%4.6%.100=⨯-==⨯--⨯---⨯---⨯-xxx xy x xy x x y xxy xxy y x 率为故这种商品原来的利润解得,依题意得,为后,在销售时的利润率原进价降低的利润率为元,那么按原进价销售元,销售价为设原进价为三、解答题(本大题共3小题,每小题20分,共60分).41、设m 是不小于-1的实数,使得关于x 的方程033)2(222=+-+-+m m x m x 有两个不相等的实数根21x x ,.(1)若62221=+x x ,求m 的值; (2)求22212111x mx x mx -+-的最大值. 【解】.1011.101.11)11(25)23(2)13(2)13(2)1()13)(1(2)2882(1)42()33()]42)(33()10102[(1)()]([)1)(1()]1()1([11)2(.217511217561010210102)33(2)]2(2[2)()1(.1110)33(4)]2(2[.033)2(222212122222232222121212122212112222122212122222122122212222的最大值是故取得最大值时,当上是单调递减的在设根据题设,有有两个不相等的实数根方程x mx x mx y m m y m m m m y m m m m m m m m mm m m m m m m m m m m m m m x x x x x x x x x x m x x x x x x m x mx x mx m m m m m m m m m m x x x x x x m m m m m m m x m x -+--=∴<≤-<≤---=+-=+-=-+--=--+-=+-++--+-++-=++-+-+=---+-=-+--=∴<≤-±=⇒=+-∴+-=+----=-+=+<≤-<⇒>+---=∆∴=+-+-+42、如图,已知四边形ABCD 外接圆O 的半径为2,对角线AC 与BD 的交点为E ,322===BD AE AB EC AE ,且,,求四边形ABCD 的面积.ECOBAD【解】由题设,得ADAB ADB ABE ACBADB ACB ABE ACB ABE BACEAB AB AE AC AB AC AE AB EC AE AE AB AE AB =⇒∠=∠∴∠=∠∠=∠⇒∆∆∴∠=∠=⇒⋅=⇒⎭⎬⎫==⇒= ∽2222232333.313221211121)3(233221212222=+=+=∴==∴=⨯⨯=⋅⋅=∴=-=-==-=-=∴=⨯===⇒∆≅∆∴∠=∠⇒∆≅∆∆∆∆∆∆ABD CBD ABCD ABD CBD ABD S S S S S AC E AH BD S OH OA AH BH OB OH BD DH BH ADH ABH DAO BAO ADO ABO H BD AO DO BO AO 四边形的中点是,,则于交,、、如图所示,连接 HECO BAD43、一幢33层的大楼有一部电梯停在第一层,它一次最多能容纳32人,而且只能在第2层至第33层中的某一层停一次.对于每个人来说,他往下走一层楼梯感到1分不满意,往上走一层楼梯感到3分不满意.现在有32个人在第一层,并且他们分别住在第2至第33层的每一层,问:电梯停在哪一层,可以使得这32个人不满意的总分达到最小?最小值是多少?(有些人可以不乘电梯而直接从楼梯上楼)【解】易知,这32个人恰好是第2至第33层各住1人.先证明:要使不满意的总分达到最小,则对于每个乘电梯上、下楼的人,他所住的层数一定大于直接走楼梯上楼的人所住的层数.证明:设乘电梯上、下楼和直接走楼梯上楼的2个人分别住第s 和第t 层. 并设电梯停在第x 层.①当x ≤s 时,这两者不满意总分为3(s -x )+3(t -1)=3s +3t -3x -3.与t ,s 的大小关系无关;②当x >s 时,这两者不满意总分为(x -s )+3(t -1)=3t +x -s -3,要使总分最小,则t <s . 故s <t ,即乘电梯上、下楼的人,他所住的层数大于直接走楼梯上楼的人所住的层数. 今设电梯停在第x 层,并设住在第2层到第a (a <x )层的人直接走楼梯上楼. 那么不满意总分为:.31672774101316)7(815)4101(216832)101(22)33)(34(32)1)((2)1(32)33)](33(1[32)1)](1(1[2)1)](1(1[3)]33(21[3)]1(21[)]1(21[32222取得最小值时,当S a x a a x a a x a a x a x x x a x a x a a x x a x a x a a x a x a S ⎩⎨⎧==⇒⎪⎩⎪⎨⎧=+=+-++-=+-++-=--+---+-=--+⨯+----++--+⨯=-+⋯+++--+⋯+++-+⋯++= 所以,当电梯停在第27层时,这32个人不满意的总分达到最小,最小值为316分.2001年全国初中数学竞赛试卷及答案解析一、选择题(本大题共6小题,每小题5分,共30分).44、化简)2(2)2(2234++-n n n ,得(C ). A. ;8121-+nB. ;12+-nC. ;87D. .47 【解析】C.872122)12(2222)2(2)2(223343141434=-=-=-=-+++++++n n n n n n n n .45、如果c b a ,,是三个任意整数,那么222ac c b b a +++,,(C ). A. 都不是整数; B. 至少有两个整数; C. 至少有一个整数; D. 都是整数.【解析】C.①若a ,b ,c 中有0个奇数,则3个数都是整数; ②若a ,b ,c 中有1个奇数,则只有1个数是整数; ③若a ,b ,c 中有2个奇数,则只有1个数是整数; ④若a ,b ,c 中有3个奇数,则3个数都是整数.46、如果b a ,是质数,且01301322=+-=+-m b b m a a ,,那么baa b +的值为(B ). A.;22123B.;或222125C.;22125D..222123或 【解析】B.①当a =b 时,2=+=+aa a ab a a b ;②当a ≠b 时,a ,b 是一元二次方程x 2-13x +m =0的两实根.故a +b =13. 又a ,b 是质数,故a =2,b =11或a =11,b =2. 故22125112211=+=+ba ab .47、如图,若将正方形分成k 个全等的矩形,其中上、下各横排两个,中间竖排若干个,则k 的值为(B ).A. 6;B. 8;C. 10;D. 12.【解析】B.设正方形的边长为a ,则分成的矩形的长为a /2.宽为(a -a /2)/2=a /4,故中间竖排有4个.所以,正方形分成8个全等的矩形.48、如图,若P A =PB ,∠APB =2∠ACB ,AC 与PB 交于点D ,且PB =4,PD =3,则AD ·DC 等于(B ).CDBPAA. 6;B. 7;C. 12;D. 16.【解析】B.如图所示,以P 为圆心,以PA =PB 为半径作圆,延长BD 交圆于M .MCDBPA则由∠APB =2∠ACB ,知点C 必在⊙P 上.故根据相交弦定理,有AD •DC =BD •DM =(PB -PD )(PM +PD )=(4-3)×(4+3)=7.49、若b a ,是正数,且满足)111)(111(12345b a -+=,则b a 和之间的大小关系是(A ).A. ;b a >B. ;b a =C. ;b a <D. 不能确定.【解析】A.由12345=(111+a )(111-b ),得111(a -b )-ab =24>0,故a >b .二、填空题(本大题共6小题,每小题5分,共30分).50、已知:23232323-+=+-=y x ,.那么=+22y x x y _____. 【解析】970.9701101310)()(3)(110625625232323232323223322=⨯⨯-=+-+=+=+∴⎩⎨⎧==+⇒⎩⎨⎧+=-=⇒⎪⎪⎩⎪⎪⎨⎧-+=+-=xy y x xy y x y x y x y x xy xy y x y x y x .51、若281422=++=++x xy y y xy x ,,则y x +的值为_____.【解析】6或-7.两式相加,得(x +y )2+(x +y )-42=0,即[(x +y )-6][(x +y )+7]=0,故x +y =6或-7.52、用长为1,4,4,5的线段为边作梯形,那么这个梯形的面积等于_____.【解析】1036或. ①若1,4为底.如图所示,延长DA ,CB 相交于G ,并设AG =x ,BG =y ,则4514GBCDA35345414==⇒+==+⇒==y x y y x x GC GB DC AB GD GA ,. 在△GAB 中,GA 2+AB 2=GB 2,故△GAB 是直角三角形,即∠D =∠GAB =90o . 于是,S =(AB +DC )·AD /2=(1+4)·4/2=10. ②若1,5为底.如图所示,作AE 、BF 垂直DC 于E 、F .则4145FE ACDBDE =CF =(5-1)/2=2,32242222=-=-=DE AD AE . 于是,3632)51(21)(21=⨯+=⋅+=AE DC AB S .③若4,4为底.应为平行四边形,但不满足.④若4,5为底.则1,4为腰,由于1+4=5,故不满足.53、销售某种商品,如果单价上涨%m ,则售出的数量就将减少150m.为了使该商品的销售总金额最大,那么m 的值应该确定为_____.【解析】25.设这种商品的原单价为A ,原销售量为B ,销售总额为W ,则)1500050(15000150150100100)1501(%)1(2---=-⋅+⋅=-⋅+=m m AB m m AB m B m A W 当25250=--=m 时,W 取得最大值.54、在直角坐标系xOy 中,x 轴上的动点)0(,x M 到定点)12()55(,、,Q P 的距离分别为MP 和MQ ,那么当MP +MQ 取最小值时,点M 的横坐标=x _____.【解析】25.如图所示,作P 关于x 轴的对称点P’.则H I M P'(5,-5)'Q (2,1)P (5,5)M'MP +MQ =MP’+MQ ,故当Q 、M 、P’三点共线时,MP +MQ 最小.过P’,Q 分别作x 轴的垂线,垂足分别为I ,H . 于是255251'=⇒--=⇒=x x x IM HM I P QH .55、已知实数b a ,满足22221b a ab t b ab a --==++,且,那么t 的取值范围是_____.【解析】313-≤≤-t .31)1(2123113121210)(211310)(231122222222222222-=--⨯≥-=--=-=-⨯≤-=--=∴-≥⇒≥+=++=+⇒++=≤⇒≥-=+-=-⇒++=ab b a ab t ab b a ab t ab b a b ab a ab b ab a ab b a b ab a ab b ab a .三、解答题(本大题共3小题,每小题20分,共60分).56、某个学生参加军训,进行打靶训练,必须射击10次.在第6、第7、第8、第9次射击中,分别得了9.0环、8.4环、8.1环、9.3环.他的前9次射击所得的平均环数高于前5次射击所得的平均环数.如果他要使10次射击的平均环数超过8.8环.那么他在第10次射击中至少要得多少环?(每次射击所得环数都精确到0.1环)【解】设前5次射击的平均环数为x ,则前9次射击的平均环数为98.34593.91.84.80.95+=++++x x . 由题设知,x x >+98.345,即7.8<x . 故前9次的总环数至多为8.7×9-0.1=78.2.所以,第10次射击至少得8.8×10+0.1-78.2=9.9(环).57、如图,已知点P 是⊙O 外一点,PS 、PT 是⊙O 的两条切线,过点P 作⊙O 的割线P AB ,交⊙O 于A ,B 两点,并交ST 于点C .求证:)11(211PBPA PC +=.ACPOSTB【解】如图所示,作OE ⊥AB 于E ,连接OP 交ST 于F ,连接OT .PBPA PB PA PB PA PC PB PA PC PB PA PE PC PB PA PE PC PB PA PBPA PT PAB PT POPF PT POPTPT PF PTO PFT PEPC PO PF PE PFPO PC POE PCF BEAE ST OP 112)(222.∽∽22+=⋅+=∴+⋅=⋅⇒⋅=⋅⇒⋅=⋅∴⋅=⇒⋅=⇒=⇒∆∆⋅=⋅⇒=⇒∆∆∴=⊥∴是割线是切线,, F E CA POS TB58、已知:关于x 的方程01)1)(72()1)(1(22=+-+---x x a x x a 有实根. (1)求a 取值范围;(2)若原方程的两个实数根为21x x ,,且113112211=-+-x x x x ,求a 的值. 【解】(1)令1-=x xt ,得)1(1≠-=t t t x . 原方程转化为关于t 的方程01)72()1(22=++--t a t a 有不为1的实数根. ①当a 2-1=0时,符合题意; ②当a 2-1≠0时,28530)1(4)]72([22-≥⇒≥--+-=∆a a a . 若t =1,则22101)72()1(2±=⇒=++--a a a . 故a 的取值范围是2212853±≠-≥a a 且. (2))(3810113172113111721)72(112122211222211舍去,-==⇒=-+∴=-+--+=-+--=-+-a a a a x x x x a a a a x x x x.所以,a 的值为10.2002年全国初中数学竞赛试卷及答案解析一、选择题(本大题共6小题,每小题5分,共30分).59、设ab b a b a 4022=+<<,,则ba ba -+的值为(A ). A. ;3 B. ;6 C. 2; D. 3.【解析】A ..3242422)()()(0002222222=-+=-+++=-+=-+=-+∴>-+⇒⎩⎨⎧<+<-⇒<<abab abab ab b a ab b a b a b a b a b a b a b a b a b a b a b a b a60、已知200219992001199920001999+=+=+=x c x b x a ,,,则多项式ca bc ab c b a ---++222的值为(D ). A. 0; B. 1; C. 2; D. 3.【解析】D..3]2)1()1[(21])()()[(21222222222=+-+-=-+-+-=---++a c c b b a ca bc ab c b a61、如图,点E 、F 分别是矩形ABCD 的边AB 、BC 的中点,连AF 、CE 交于点G ,则ABCDAGCDS S 矩形四边形等于(D ).GFEDABCA. ;65B. ;54C. ;43D. .32 【解析】D..32612)(261412412....=⨯-=+-=∴=+⇒⎪⎩⎪⎨⎧=+==+=∴====∴=∆∆∆∆∆∆a aa S y x S S S ay x a y x S a y x S y S S x S S BC AB ABCD F E BG a S ABCDABCD ABCDAGCD ABF CBE AGE BGE BGF CGF ABCD 矩形矩形矩形四边形矩形,的中点、的边是矩形、如图所示,连接设 GFEDABC62、设c b a 、、为实数,323232222πππ+-=+-=+-=a c z c b y b a x ,,,则z y x 、、中至少有一个值(A ). A. 大于0; B. 等于0; C. 不大于0; D. 小于0.【解析】A. .00)3()1()1()1(222323232222222222中至少有一个大于、、,,z y x c b a c b a c b a z y x a c z c b y b a x ∴>-+-+-+-=+---++=++∴+-=+-=+-=πππππ63、设关于x 的方程09)2(2=+++a x a ax 有两个不等的实数根21211x x x x <<,且,,那么a 的取值范围是(D ). A. ;5272<<-aB. ;52>aC. ;72-<aD. .0112<<-a 【解析】D..0112102012901)(0)1)(1(121212121<<-⇒-<+⇒<+++∴<++-⇒<--⇒<<a a a a a x x x x x x x x64、9321A A A A ⋯是一个正九边形,b A A a A A ==3121,,则51A A 等于(D ).A. ;22b a +B. ;22b ab a ++C. ;)(21b a + D. .b a +【解析】D.ba A A A A P A A A P A A A A PA A PA A PA A PA A A A A A A A A A A PA A PA A A A Ab A A A A A A P A A A A +=+=+==∴∆∆∴=+=∠=∠∴=-=∠=∠∆=-=∠=∠∴=-⨯⋯==42212211515142oo o 2442ooo243423432o o o 3432o o 93213142424521.602040202140180.40140180.1409)29(180..是等边三角形是等边三角形,中,在的每个内角都为正九边形则,连接相交于点,如图所示,延长 ab PA 9A 8A 7A 6A 5A 4A 3A 2A 1二、填空题(本大题共6小题,每小题5分,共30分).65、设21x x 、是关于x 的一元二次方程22=++a ax x 的两个实数根,则)2)(2(1221x x x x --的最大值为_____.【解析】863-..863863)49(21892)2(9)(29)(25]2)[(25)(2)2)(2(.04)2()2(4222212212121221212221122122-≤---=-+-=-+-⨯-=++-=+-+-=++-=-->+-=--=∆a a a a a x x x x x x x x x x x x x x x x x x a a a a 为一切实数知,由。
初中数学竞赛试题及解析
初中数学竞赛试题及解析本文将提供一系列针对初中数学竞赛的试题,并为每道题给出解析过程。
希望通过这些题目和解析,能帮助读者更好地理解和掌握初中数学知识。
一、选择题1. 下列哪个数是无理数?A) 3.14 B) √2 C) 0.5 D) 5答案:B) √2解析:无理数是不能被表达为两个整数的比值的实数。
√2是一个无理数,因为它无法化简为整数的比值。
2. 若a + b = 5,a - b = 3,则a的值为多少?A) 7 B) 4 C) 8 D) 2答案:D) 2解析:通过解方程组可以求得a的值。
将两个方程相加得2a = 8,所以a = 4/2 = 2。
3. 二次函数y = 2x^2 + 3x - 1的顶点坐标为(-1, 0),则该二次函数的对称轴方程为:A) x = -1 B) x = 1 C) y = -1 D) y = 1答案:A) x = -1解析:二次函数的对称轴方程为x = -b/2a。
根据y = 2x^2 + 3x - 1的系数,代入公式算得对称轴方程为x = -1。
二、填空题1. 已知等差数列的首项为5,公差为3,若该数列的第10项为________。
答案:31解析:等差数列的通项公式为an = a1 + (n - 1)d,其中an表示第n 项,a1为首项,d为公差。
代入已知条件计算得a10 = 5 + (10 - 1) × 3 = 5 + 27 = 31。
2. 若正方形的边长为x,则其对角线长为________。
答案:x√2解析:对角线是两个相邻顶点之间的线段,根据勾股定理可知对角线长的平方等于两条边长的平方和。
所以对角线长为x√2。
三、解答题1. 在平行四边形ABCD中,AB = 6cm,BC = 8cm,且∠ABC = 120°。
求平行四边形的面积。
解析:首先绘制出平行四边形ABCD的示意图。
然后使用正弦公式求出∠BAC的大小,再利用正弦定理计算出AD的长度。
历年全国初中数学竞赛试卷及答案解析
历年全国初中数学竞赛试卷及答案解析历年全国初中数学竞赛试卷及答案解析目录1998年全国初中数学竞赛试卷及答案解析 (3)1999年全国初中数学竞赛试卷及答案解析 (10)2000年全国初中数学竞赛试卷及答案解析 (19)2001年全国初中数学竞赛试卷及答案解析 (26)2002年全国初中数学竞赛试卷及答案解析 (34)2003年全国初中数学竞赛试卷及答案解析 (42)2004年全国初中数学竞赛试卷及答案解析 (53)2005年全国初中数学竞赛试卷及答案解析 (61)2006年全国初中数学竞赛试卷及答案解析 (69)2007年全国初中数学竞赛试卷及答案解析 (78)2008年全国初中数学竞赛试卷及答案解析 (91)2009年全国初中数学竞赛试卷及答案解析 (100)2010年全国初中数学竞赛试卷及答案解析 (110)2011年全国初中数学竞赛试卷及答案解析 (119)2012年全国初中数学竞赛试卷及答案解析 (128)2013年全国初中数学竞赛试卷及答案解析 (144)2014年全国初中数学竞赛预赛试题及参考答案 (153)1998年全国初中数学竞赛试卷及答案解析一、选择题(本大题共5小题,每小题6分,共30分).1、已知c b a ,,都是实数,并且c b a >>,那么下列式子中正确的是(B ).A. ;bc ab >B. ;c b b a +>+C. ;c b b a ->-D..cbc a > 【解析】B.根据不等式的基本性质.2、如果方程()0012>=++p px x 的两根之差是1,那么p 的值为(D ).A. 2;B. 4;C. ;3D. .5【解析】D..514)(14)()(.1.200422212212212121212=⇒⨯--=⇒-+=-∴⎩⎨⎧=-=+>⇒⎭⎬⎫>>-=∆p p x x x x x x x x px x x x p p p 为方程的两根,那么有、设由3、在△ABC 中,已知BD 和CE 分别是两边上的中线,并且64==⊥CE BD CE BD ,,,那么△ABC的面积等于(C ). A. 12; B. 14;C. 16;D. 18.【解析】C..16123434.4141.12642121=⨯==∴=-⇒=⇒∆=⨯⨯=⋅⋅=⇒⊥∆∆∆∆∆BCDE ABC ABC BCDE ABC ABC AED BCDE S S S S S S S ABC DE CE BD S CE BD DE 四边形四边形四边形的中位线是,则如图所示,连接Θ4、已知0≠abc ,并且p bac a c b c b a =+=+=+,那么直线p px y +=一定通过第()象限.(B ) A. 一、二; B. 二、三; C. 三、四; D. 一、四.【解析】B...11222.12.10.02)()(2一定通过第二、三象限直线过第二、三、四象限时,直线当过第一、二、三象限;时,直线当或或p px y x y p x y p p p cc c b a p c b a c b a p c b a p c b a pba c pa cb pcb a p b ac a c b c b a +=∴--=-=+==-==∴-=-=+=⇒=++=++=⇒++=++⇒⎪⎩⎪⎨⎧=+=+=+⇒=+=+=+ΘΘ5、如果不等式组⎩⎨⎧<-≥-0809b x a x 的整数解仅为1,2,3,那么适合这个不等式组的整数a 、b 的有序数对(a 、b )共有(C ). A. 17个; B. 64个; C. 72个; D. 81个.【解析】C..7298)(.832313029282726259987654321.322490483190.89个有,满足条件的整数有序对个,共,,,,,,,个;,共,,,,,,,,则依题意,知由原不等式组可得=⨯∴==∴⎩⎨⎧≤<≤<⇒⎪⎩⎪⎨⎧≤<≤<<≤b a b a b a b a b x a二、填空题(本大题共5小题,每小题6分,共30分).6、在矩形ABCD 中,已知两邻边AD =12,AB =5,P 是AD 边上任意一点,PE ⊥BD ,PF ⊥AC ,E 、F 分别是垂足,那么PE +PF =_____.【解析】.1360 .136013560135.1355125sin 135605125)12(sin .12)120(2222=-+=+∴=+⋅=∠⋅=-=+⨯-=∠⋅=∴-=<<=x x PF PE xx PAF AP PF xx PDE DP PE x DP x x AP ;,则如图所示,设FEADCBP7、已知直线32+-=x y 与抛物线2x y =相交于A 、B 两点,O 为坐标原点,那么△OAB 的面积等于_____.【解析】6..639211121)31()91(21'.''').93()11(32''''2=⨯⨯-⨯⨯-+⨯+⨯=--=-=+-=∆∆∆O BB O AA B B AA OAB S S S S B A x BB AA B A x y x y 梯形则,轴,垂足分别为分别垂直于,作,,,的交点为与抛物线如图所示,直线8、已知圆环内直径为cm a ,外直径为cm b ,将50个这样的圆环一个接一个环套地连成一条锁链,那么这条锁链拉直后的长度为_____cm .【解析】49a+b..49)150(225050242332222b a ab b b a ab b b a ab b +=-⨯--⋯⋯+=⨯--+=⨯--个时,链长为当圆环为;个时,链长为当圆环为;个时,链长为如图所示,当圆环为9、已知方程())(015132832222是非负整数其中a a a x a a x a =+-+--,至少有一个整数根,那么a =_____.【解析】1,3或5..53151322)2()83(2)15132(4)83()83(21222222222,或,可取故,a ax a x a a a a a a a a a a a a a x -=-=∴+±-=+---±-=Θ10、B 船在A 船的西偏北o 45处,两船相距km 210,若A 船向西航行,B 船同时向南航行,且B 船的速度为A 船速度的2倍,那么A 、B 两船的最近距离是_____km .【解析】52..52''620)6-(5)210()10(''''./.''.102221045sin 102221045cos 22222o o 取得最小值时,当则船的速度为并设处,船分别航行到船、小时后,设经过,如图所示,B A xt xt xt xt C B C A B A h km x A B A B A t AB BC AB AC =+=-+-=+==⨯=⋅==⨯=⋅=三、解答题(本大题共3小题,每小题20分,共60分).11、如图,在等腰ABC ∆中,o 901=∠=A AB ,,点E 为腰AC 中点,点F 在底边BC 上,且FE ⊥BE ,求△CEF 的面积.AB CEF【解】解法一:.24161212121612214522122∽9090.o o o =⨯⨯=⋅⋅=∴=⇒=-∴=⇒=∠-=-=∴=⇒==∴=⇒∆∆∴∠=∠⇒⎭⎬⎫=∠+∠=∠+∠⊥∆GF CE S GF GF GF GF CG C GFGE CE CG GF GE AEABGF GE GEABGF AE GEF Rt ABE Rt GEF ABE AEB GEF AEB ABE G CE FG CEF ΘΘ于如图所示,作解法二:241)21()(∽9090.22o o ==∴====∴∆∆∴∠=∠⇒⎭⎬⎫=∠+∠=∠+∠⊥∆∆AEABCH CE CE AB CH AE AB CE S S CEH Rt ABE Rt CEH ABE AEB CEH AEB ABE H EF CE CH C ABE CEH ,的延长线交于,与作如图所示,过Θ.2412112141324132322.45o =⨯⨯⨯⨯=⨯==∴==∴⇒∠⇒=∠=∠∆∆∆∆∆ABE CHE CEF CHF CEF S S S CH CE S S CE CH F HCE CF HCF ECF 的距离相等、到的角平分线是Θ12、设抛物线452)12(2++++=a x a x y 的图象与x 轴只有一个交点.(1)求a 的值; (2)求618323-+a a 的值. 【解】.5796)138(323)15972584(3231381011)1(310113)2)(53(1115344)1(44)2()1(1212)1(12)1()1(11101159725846101597)1(9876101597987)1)(610987(610987169546)1(441169546441)1321()(1321412)1(94129)23()(2312)1(12)1()(101)1()2(.251010)452(4)12(.0452)12(.452)12()1(618224622224222222216182228162224822224222222=+-++=+∴+-=+-+=+-=+-+-=⋅=+-=+-+=+-=+-==+-=+-+=+-=-==-=∴=--+=+++=++=++=⋅=+=+++=++=+==+=+++=++=+==+=+++=++=+==+=∴=--±=∴=+-=+-+=∆∴=++++∴++++=-a a a a a a a a a a a aa a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a x a x x a x a x y 又知,由,即有两个相等的实根一元二次方程轴只有一个交点的图像与抛物线ΘΘ13、A 市、B 市和C 市有某种机器10台、10台、8台,现在决定把这些机器支援给D 市18台,E 市10台.已知:从A 市调运一台机器到D 市、E 市的运费为200元和800元;从B 市调运一台机器到D 市、E 市的运费为300元和700元;从C 市调运一台机器到D 市、E 市的运费为400元和500元.(1)设从A 市、B 市各调x 台到D 市,当28台机器调运完毕后,求总运费W (元)关于x (台)的函数关系式,并求W 的最大值和最小值.(2)设从A 市调x 台到D 市,B 市调y 台到D 市,当28台机器调运完毕后,用x 、y 表示总运费W (元),并求W 的最大值和最小值. 【解】.1420014200100142001720010300020017200)(300200.98009800810980017200183001020017200)(300200.1810100100172003005001810100100818010010017200300500)10(500)10(700)10(800)18(400300200.101010182.132005100009958218010017200800)102(500)10(700)10(800)218(400300200.10210102181元的最大值是,故时,,即当;又元的最小值是,故时,,即当是整数,,,且又于是台,,机器台数分别为市的台,发往,,市的机器台数分别为市发往市、市、)由题设知,(元取到最大值时,元;当取到最小值时,所以,当又于是台,,机器台数分别为市的台,发往,,市的机器台数分别为市发往市、市、)由题设知,(W W y x y x x W W W y x y x x W y x y x y x y x W y x y x y x y x y x y x y x y x y x W y x y x E y x y x D C B A W x W x x x x x x x x x x x W x x x E x x x D C B A ====+⨯-⨯-≤++--=====+⨯-⨯-≥++--=∴⎪⎩⎪⎨⎧≤+≤≤≤≤≤+--=∴⎪⎩⎪⎨⎧≤+≤≤≤≤≤⇒⎪⎩⎪⎨⎧≤--≤≤≤≤≤+--=-++-+-+--++=-+----==≤≤⇒⎩⎨⎧≤-≤≤≤+-=-+-+-+-++=----1999年全国初中数学竞赛试卷及答案解析一、选择题(本大题共6小题,每小题5分,共30分).14、一个凸n 边形的内角和小于1999°,那么n 的最大值是(C ).A. 11;B. 12;C. 13;D. 14.【解析】C.18019131999)2(180o o <⇒<-n n .15、某城市按以下规定收取每月煤气费:用煤气如果不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费.已知某用户4月份的煤气费平均每立方米0.88元,那么4月份该用户应交煤气费(B ). A. 60元; B. 66元; C. 75元; D. 78元.【解析】B.设4月份用户使用煤气x (x >60)立方米.则 60×0.8+1.2×(x -60)=0.88x .解得x =75. 故4月份该用户应交煤气费0.88×75=66元.16、已知11=-a a,那么代数式a a +1的值为(D ).A.;25 B. ;25-C. ;5-D. .5【解析】D..1111110②52321)1(113111110①2222222此时无解时,当;时,当-=+⇒=+⇒=-<=+=++=+=+⇒+∴=+⇒=-⇒=->a aa a a a a a aa a a a a a a aa a a a a17、在ABC ∆中,D 是边BC 上的一点,已知51065====CD BD AD AC ,,,,那么ABC ∆的面积是(B ). A. 30; B. 36; C. 72; D. 125.【解析】B..36524)510(212152454621214353621215.2222=⨯+⨯=⋅⋅=∴=⨯=⋅=⇒⋅⋅=⋅⋅=∴=-=-=∴=⨯==⇒⊥==⊥⊥∆∆AF BC S CD CE AD AF AF CD CE AD S AE AC CE AD AE AD CE CD AC F BC AF E AD CE ABC ADC ,则于,于如图所示,作18、如果抛物线1)1(2----=k x k x y 与x 轴的交点为A ,B ,顶点为C ,那么△ABC 的面积的最小值是(A ). A. 1; B. 2;C. 3;D. 4.【解析】A.().1184)1(452522145221214524)]1([)1(444212)1(252)1(4)1(4)(11.01)1(32222212222221221212121212取得最小值时,当,,则,的两实根为设一元二次方程ABC C ABC S k k k kk k k k x x y AB S k k k k a b ac k k a b k k k k x x x x x x k x x k x x x x k x k x ∆∆-=++=++⋅++⋅=++⋅-⋅=⋅⋅=∴++-=-----=--=---=-++=----=-+=-∴--=-=+=----19、在正五边形ABCDE 所在的平面内能找到点P ,使得△PCD 与△BCD 的面积相等,并且△ABP 为等腰三角形,这样的不同的点P 的个数为(D ). A. 2; B. 3; C. 4; D. 5.【解析】D..③②①.31452P P BA B P BA BP P AB A P AB AP P P AB P BP AP ABP CD CD B P BCD PCD ,为半径的圆上,此时有为圆心,必在以时,点当;为半径的圆上,此时有为圆心,必在以时,点当;,的中垂线上,此时有必在线段时,点当是等腰三角形,则要使的对称直线上的直线或此直线关于且平行于一定在过点的面积相等,则点与如图所示,要使===∆∆∆二、填空题(本大题共6小题,每小题5分,共30分).20、已知231231-=+=y x ,,那么22y x +的值为_____. 【解析】10..10)23)(23(2)]23()23[(2)(23232312312222=+--++-=-+=+∴+=-=⇒-=+=xy y x y x y x y x ,,Θ21、如图,正方形ABCD 的边长为10cm ,点E 在边CB 的延长线上,且EB =10cm ,点P 在边DC 上运动,EP 与AB 的交点为F .设DP =xcm ,△EFB 与四边形AFPD的面积和为ycm 2,那么,y 与x 之间的函数关系式是_____(0<x <10).【解析】y=5x+50.50510)]215([2110)215(21)(2121215)215(10215)10(21)(212121101010∽+=⨯++⨯+⨯-⨯=⋅+⋅+⋅⋅=+=∴+=--=-=∴-=-=-==⇒=+==⇒∆∆∆x x x x AD AF DP BE BF S S y xx BF AB AF x x DP DC CP BF EC EB CP BF ECP EBF AFPD EFB 四边形Θ22、已知02022=-+≠b ab a ab ,,那么ba ba +-22的值为_____. 【解析】3135或. 35)2(2)2(22231222220)2)((0222=+-⨯--⨯=+-=+-=+-∴-==⇒=+-⇒=-+b b b b b a b a b b b b b a b a b a b a b a b a b ab a 或或Θ23、如图,已知边长为1的正方形OABC 在直角坐标系中,A 、B 两点在第Ⅰ象限内,OA 与x 轴的夹角为30°,那么点B 的坐标是_____.【解析】)213213(+-,.212321232323130cos 2121130sin 2323130cos 2121130sin .o o o o +=+=+=-=-=-=∴=⨯=⋅==⨯=⋅==⨯=⋅==⨯=⋅=⊥⊥⊥AE BF FD BF BD AF OE DE OE OD AB BF AB AF OA OE OA AE F BD AF D x BD E x AE ,,,则于,轴于,轴于如图所示,作F EDCBOxyA24、设有一个边长为1的正三角形,记作A1(如图3),将A1的每条边三等分,在中间的线段上向形外作正三角形,去掉中间的线段后所得到的图形记作A2(如图4);将A2的每条边三等分,并重复上述过程,所得到的图形记作A3(如图5);再将A3的每条边三等分,并重复上述过程,所得到的图形记作A4,那么A4的周长_____.【解析】964..964])31(1)[43(316])31(1)[43(4)311()43(313.31433422321=⨯⨯=⨯⨯=⨯⨯⨯=⨯的周长是,的周长是,的周长是,的周长是为原来的条边,每条线段长度变把一条边变成变化规律为:每次变化AAAA25、江堤边一洼地发生了管涌,江水不断地涌出,假定每分钟涌出的水量相等.如果用2台抽水机抽水,40分钟可抽完;如果用4台抽水机抽水,16分钟可抽完.如果要在10分钟内抽完水,那么至少需要抽水机_____台.【解析】6..6103210316010103231601641640240台故至少需要抽水机,则水,每台抽水机每分钟抽,每分钟涌出的江水是涌出的江水是设使用抽水机抽水前已=⨯+=+⎪⎩⎪⎨⎧==⇒⎩⎨⎧⨯=+⨯=+ccccbacbcacbacbacba三、解答题(本大题共3小题,每小题20分,共60分).26、设实数ts,分别满足019991991922=++=++ttss,,并且1≠st,求tsst14++的值.【解】.519141991419199191991.199911119199)1(19919222-=++--=++∴⎩⎨⎧=--=⇒⎪⎩⎪⎨⎧=⋅-=+∴=++∴≠⇒≠=+⋅+⇒=++∴ssstsststssttstsxxtsststssss的两个不等实根是一元二次方程,Θ27、如图,已知四边形ABCD内接于直径为3的圆O,对角线AC是直径,对角线AC和BD的交点是P,AB=BD,且PC=0.6,求四边形ABCD的周长.【解】如图所示,连接BO并延长交AD于H,连接OD.则HDPOAB.632213)6(36)2123()2221()()21(221316.0236.023∽∥909022222222222222o o +++∴=-=-==++⨯=++=+==-=-==-⨯=⋅=∴=⇒∆∆∴∠=∠⇒∴=∠⇒∠=∠=∠⇒≅∆∴的周长为四边形上的圆周角是直径ABCD AB AC BC OH BO AD BH AH AB CD AC AD OP CP OB CD CPOPCD OB CPD OPB CDP OBP CD BH ADC AC ADC DHB AHB DBH ABH Θ28、有人编了一个程序:从1开始,交错地做加法或乘法(第一次可以是加法,也可以是乘法),每次加法,将上次的运算结果加2或加3;每次乘法,将上次的运算结果乘2或乘3.例如,30可以这样得到:30108413223−→−−→−−→−−→−⨯+⨯+.(1)证明:可以得到22; (2)证明:可以得到22297100-+.【解析】(1)倒过来考虑:①22假设是通过乘法得到,则必是×2; A ,11假设是通过+2得到; 9必是×3得到. 3必是+2得到.(*) B ,11假设是通过+3得到. 8必是×2得到. (A)4是+2得到; 2必是×2得到.(*) (B)4是+3得到.(*) ②22假设是通过加法得到.A ,假设是+2得到; 20必是×2得到. (A)10假设是+2得到; 8必是×2得到. a ,4是+2得到; 2必是×2得到.(*) b ,4是+3得到.(*) (B)10假设是+3得到. 7不能通过乘法得到,不满足.B ,假设是+3得到.19不能通过乘法得到,不满足. 故所有方法有148102022124810202214811221248112213911223-22-22-22-22-22-3-23-222-23-22-32-2−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−÷÷÷÷÷÷÷÷÷÷÷÷(2)倒过来考虑:148423)2293(423223423123322122222③)(2471416222)23247(222422122222②)(247222)2296(222422222①3-222-2952-952963-96396992-969929710023-22-1423-29598296993-969929710023-0322-96992971002-97100−→−−→−=-⨯→-÷−→−−→−⋯-⨯−→−-⨯−→−-⨯−→−-⨯−→−-+−→−-+−→−-+−→−−→−−→−−→−=-+→÷-÷−→−−→−−→−⋯-+−→−-+−→−-+−→−-+−→−−→−=-+→÷-−→−−→−⋯-+−→−-+−→−-+÷÷÷÷÷÷÷÷÷÷÷÷÷÷,次不满足,,次不满足,次【解】证明:(1)22119312232−→−−→−−→−−→−⨯+⨯+. 或222010841222010842122118412211842122223222222232323222−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−+⨯+⨯++⨯+⨯+⨯⨯+⨯+⨯+⨯+⨯证明:(2)222229129329123423)2292(423223423223423223197100972962963963962242323222223-+=-⨯−→−-⨯−→−-⨯−→−-⨯−→−-⨯→⨯+−→−−→−⋯-⨯−→−-⨯−→−-⨯−→−-⨯−→−-⨯−→−-⨯−→−⨯+⨯+⨯+⨯+⨯+⨯+,次2000年全国初中数学竞赛试卷及答案解析一、选择题(本大题共6小题,每小题5分,共30分).29、设a,b,c的平均数为M,a,b的平均数为N,N,c的平均数为P,若cba>>,则M与P的大小关系是(B).A.;PM=B.;PM>C.;PM<D.不确定.【解析】B..1221221224234222223PMccccbaPMcbacbacbacbaPMcbacbacNPbaNcbaM>⇒=-+>-+=-∴>>-+=++-++=-∴++=++=+=+=++=ΘΘ,,30、某人骑车沿直线旅行,先前进了a千米,休息了一段时间,又原路返回b千米(b﹤a),再前进c千米,则此人离起点的距离S与时间t的关系示意图是(C).【解析】C.图(A)中没有反映休息所消耗的时间;图(B)虽表明折返后S 的变化,但没有表示消耗的时间;图(D)中没有反映沿原始返回的一段路程,唯图(C)正确地表述了题意.31、甲是乙现在的年龄时,乙10岁;乙是甲现在的年龄时,甲25岁,那么(A).A. 甲比乙大5岁;B. 甲比乙大10岁;C. 乙比甲大10岁;D. 乙比甲大5岁.【解析】A.设甲、乙的年龄差是x 岁.则乙现在(10+x )岁,甲现在(25-x )岁,年龄差为[(25-x )-(10+x )]=15-2x 岁. 故15-2x =x ,即x =5.32、一个一次函数图象与直线49545+=x y 平行,与x 轴、y 轴的交点分别为A 、B ,并且过点(-1,-25),则在线段AB 上(包括端点A 、B ),横、纵坐标都是整数的点有(B ). A. 4个; B. 5个; C. 6个; D. 7个.【解析】B..5012340419419)(419190)()4950()019().19(4549545)251(4954500000个点故共有,,,,是整数点,则上横纵坐标都是整数的是线段,设,,,则的一次函数的解析式是,平行,且过与直线----=⇒≤-=≤-⇒⎩⎨⎧=-≤≤∴--=-=--+=t x t t tx x AB y x B A x x y x y33、设a ,b ,c 分别是△ABC 的三边的长,且cb a ba b a +++=,则它的内角∠A 、∠B 的关系是(B ). A. ∠B >2∠A ; B. ∠B =2∠A ; C. ∠B <2∠A ;D. 不确定.【解析】B.BACD BAD D ABC DBAD D BAC DAC ABC DCACAC BC C C DAC ABC c a CD AB BD D CB c a b b a c b a b b a a b a c b a b a b a c b a b a b a ∠=∠=∠+∠=∠∴∠=∠∠=∠⇒∆∆∴=∠=∠∆∆+==+=⇒+++-++-=--⇒+++=--⇒+++=22∽.)()(Θ,中,和在,于是,使到如图所示,延长ca bcDC B A34、已知ABC ∆的三边长分别为c b a ,,,面积为S ,111C B A ∆的三边长分别为111c b a ,,,面积为S 1,且111c c b b a a >>>,,,则S 与S 1的大小关系一定是(D ). A. ;1S S > B. ;1S S < C. ;1S S = D. 不确定.【解析】D..2121214121..2.2.11111111111111111`111S S h CB S S h CB S S h CB h AB S CB AB S c c b b a a ABc b a h AB C B A AB c ABAB b a l C AB l AB B >>==<<⋅=⋅⋅=>>>===∆==>=时,;当时,;当时,当,而,,显然满足,则为为边的等边三角形,高是以,则上任一点为的中垂线,是的中点,是如图所示,二、填空题(本大题共6小题,每小题5分,共30分).35、已知:333124++=a ,那么=++32133aa a _____. 【解析】1..11)]12(1[1)11(1)1(113313313312111)2()124)(12()12(12433333323323233333333333=--+=-+=-+=-+++=++=++∴-=⇒=-=++-=-⇒++=aa a a a a a a a a a a a aa a Θ36、在梯形ABCD 中,o o 12045268∥=∠=∠==BAD BCD BC AB DC AB ,,,,,则梯形ABCD 的面积等于_____.【解析】3666+..36666)]3214(8[21)(21321468323223630tan30120.62264526.oooo+=⨯++=⋅+=∴+=++=++=∴=⨯=⋅=⇒=∠⇒=∠====⇒=∠=AECDABSFCEFDEDCAEDEDAEBADCFBFAEBCDBCFEDCBFAEABCD梯形,、于垂直、如图所示,作37、已知关于x的方程012)1(2=--+-axxa的根都是整数,那么符合条件的整数有_____个.【解析】5..5①②.32121112111②11①.0)]1()1)[(1(12)1(212个有知,符合条件的整数结合,,,,即,是整数知,,由,时,当;时,当aaaxaxxaxaaxaxaxxa-=±±=----==≠===++--⇒=--+-38、如图,工地上竖立着两根电线杆AB、CD,它们相距15米,分别自两杆上高出地面4米、6米的A、C处,向两侧地面上的E、D;B、F点处,用钢丝绳拉紧,以固定电线杆.那么钢丝绳AD与BC的交点P离地面的高度为_____米.【解析】2.4..4.24.21561541515615∽415∽.米离地面的高度是即点则于如图所示,作PPQPQPQBQQDPQCDBDPQBQBDBQCDPQBCDBPQPQABBDPQQDBDQDABPQDABDPQQBDPQ=⇒=+∴=+=⋅=⇒=⇒∆∆=⋅=⇒=⇒∆∆⊥Θ39、如图,在直角坐标系中,矩形OABC的顶点B的坐标为(15,6),直线bxy+=31恰好将矩形OABC 分成面积相等的两部分,那么b=_____.【解析】0.5..211)515()0(===-==+b BQ OP S S b BQ b OP b Q b P OPQA BQPC,即,则要使,,知,,,由梯形梯形40、某商场经销一种商品,由于进货时价格比原进价降低了6.4%,使得利润率增加了8个百分点,那么经销这种商品原来的利润率是_____.)进价进价销售价(注:利润率%100⨯-=【解析】17%.%17%10017.117.1%8%100%100%)4.61(%)4.61(%.100%)4.61(%)4.61(%4.6%.100=⨯-==⨯--⨯---⨯---⨯-xxx xy x x y x x y xxy xxy y x 率为故这种商品原来的利润解得,依题意得,为后,在销售时的利润率原进价降低的利润率为元,那么按原进价销售元,销售价为设原进价为三、解答题(本大题共3小题,每小题20分,共60分).41、设m 是不小于-1的实数,使得关于x 的方程033)2(222=+-+-+m m x m x 有两个不相等的实数根21x x ,.(1)若62221=+x x ,求m 的值; (2)求22212111x mx x mx -+-的最大值. 【解】.1011.101.11)11(25)23(2)13(2)13(2)1()13)(1(2)2882(1)42()33()]42)(33()10102[(1)()]([)1)(1()]1()1([11)2(.217511217561010210102)33(2)]2(2[2)()1(.1110)33(4)]2(2[.033)2(222212122222232222121212122212112222122212122222122122212222的最大值是故取得最大值时,当上是单调递减的在设根据题设,有有两个不相等的实数根方程x mx x mx y m m y m m m m y m m m m m m m m mm m m m m m m m m m m m m m x x x x x x x x x x m x x x x x x m x mx x mx m m m m m m m m m m x x x x x x m m m m m m m x m x -+--=∴<≤-<≤---=+-=+-=-+--=--+-=+-++--+-++-=++-+-+=---+-=-+--=∴<≤-±=⇒=+-∴+-=+----=-+=+<≤-<⇒>+---=∆∴=+-+-+ΘΘΘΘ42、如图,已知四边形ABCD 外接圆O 的半径为2,对角线AC 与BD 的交点为E ,322===BD AE AB EC AE ,且,,求四边形ABCD 的面积.【解】由题设,得ADAB ADB ABE ACBADB ACB ABE ACB ABE BACEAB AB AE AC AB AC AE AB EC AE AE AB AE AB =⇒∠=∠∴∠=∠∠=∠⇒∆∆∴∠=∠=⇒⋅=⇒⎭⎬⎫==⇒=ΘΘ∽2222232333.313221211121)3(233221212222=+=+=∴==∴=⨯⨯=⋅⋅=∴=-=-==-=-=∴=⨯===⇒∆≅∆∴∠=∠⇒∆≅∆∆∆∆∆∆ABD CBD ABCD ABD CBD ABD S S S S S AC E AH BD S OH OA AH BH OB OH BD DH BH ADH ABH DAO BAO ADO ABO H BD AO DO BO AO 四边形的中点是,,则于交,、、如图所示,连接Θ43、一幢33层的大楼有一部电梯停在第一层,它一次最多能容纳32人,而且只能在第2层至第33层中的某一层停一次.对于每个人来说,他往下走一层楼梯感到1分不满意,往上走一层楼梯感到3分不满意.现在有32个人在第一层,并且他们分别住在第2至第33层的每一层,问:电梯停在哪一层,可以使得这32个人不满意的总分达到最小?最小值是多少?(有些人可以不乘电梯而直接从楼梯上楼)【解】易知,这32个人恰好是第2至第33层各住1人.先证明:要使不满意的总分达到最小,则对于每个乘电梯上、下楼的人,他所住的层数一定大于直接走楼梯上楼的人所住的层数.证明:设乘电梯上、下楼和直接走楼梯上楼的2个人分别住第s 和第t 层. 并设电梯停在第x 层.①当x ≤s 时,这两者不满意总分为3(s -x )+3(t -1)=3s +3t -3x -3.与t ,s 的大小关系无关; ②当x >s 时,这两者不满意总分为(x -s )+3(t -1)=3t +x -s -3,要使总分最小,则t <s . 故s <t ,即乘电梯上、下楼的人,他所住的层数大于直接走楼梯上楼的人所住的层数. 今设电梯停在第x 层,并设住在第2层到第a (a <x )层的人直接走楼梯上楼. 那么不满意总分为:.31672774101316)7(815)4101(216832)101(22)33)(34(32)1)((2)1(32)33)](33(1[32)1)](1(1[2)1)](1(1[3)]33(21[3)]1(21[)]1(21[32222取得最小值时,当S a x a a x a a x a a x a x x x a x a x a a x x a x a x a a x a x a S ⎩⎨⎧==⇒⎪⎩⎪⎨⎧=+=+-++-=+-++-=--+---+-=--+⨯+----++--+⨯=-+⋯+++--+⋯+++-+⋯++= 所以,当电梯停在第27层时,这32个人不满意的总分达到最小,最小值为316分.2001年全国初中数学竞赛试卷及答案解析一、选择题(本大题共6小题,每小题5分,共30分).44、化简)2(2)2(2234++-n n n ,得(C ). A. ;8121-+nB. ;12+-nC. ;87 D. .47【解析】C.872122)12(2222)2(2)2(223343141434=-=-=-=-+++++++n n n n n n n n .45、如果c b a ,,是三个任意整数,那么222ac c b b a +++,,(C ). A. 都不是整数; B. 至少有两个整数; C. 至少有一个整数; D. 都是整数.【解析】C.①若a ,b ,c 中有0个奇数,则3个数都是整数; ②若a ,b ,c 中有1个奇数,则只有1个数是整数; ③若a ,b ,c 中有2个奇数,则只有1个数是整数; ④若a ,b ,c 中有3个奇数,则3个数都是整数.46、如果b a ,是质数,且01301322=+-=+-m b b m a a ,,那么baa b +的值为(B ). A.;22123B.;或222125C.;22125D..222123或 【解析】B.①当a =b 时,2=+=+aa a ab a a b ; ②当a ≠b 时,a ,b 是一元二次方程x 2-13x +m =0的两实根.故a +b =13. 又a ,b 是质数,故a =2,b =11或a =11,b =2.故22125112211=+=+b a a b . 47、如图,若将正方形分成k 个全等的矩形,其中上、下各横排两个,中间竖排若干个,则k 的值为(B ).A. 6;B. 8;C. 10;D. 12.【解析】B.设正方形的边长为a ,则分成的矩形的长为a /2.宽为(a -a /2)/2=a /4,故中间竖排有4个.所以,正方形分成8个全等的矩形.48、如图,若PA =PB ,∠APB =2∠ACB ,AC 与PB 交于点D ,且PB =4,PD =3,则AD ·DC 等于(B ).A. 6;B. 7;C. 12;D. 16.【解析】B.如图所示,以P 为圆心,以PA =PB 为半径作圆,延长BD 交圆于M .则由∠APB =2∠ACB ,知点C 必在⊙P 上.故根据相交弦定理,有AD •DC =BD •DM =(PB -PD )(PM +PD )=(4-3)×(4+3)=7.49、若b a ,是正数,且满足)111)(111(12345b a -+=,则b a 和之间的大小关系是(A ).A. ;b a >C. ;b a <D. 不能确定.【解析】A.由12345=(111+a )(111-b ),得111(a -b )-ab =24>0,故a >b .二、填空题(本大题共6小题,每小题5分,共30分).50、已知:23232323-+=+-=y x ,.那么=+22y x x y _____. 【解析】970.9701101310)()(3)(110625625232323232323223322=⨯⨯-=+-+=+=+∴⎩⎨⎧==+⇒⎩⎨⎧+=-=⇒⎪⎪⎩⎪⎪⎨⎧-+=+-=xy y x xy y x y x y x y x xy xy y x y x y x Θ.51、若281422=++=++x xy y y xy x ,,则y x +的值为_____.【解析】6或-7.两式相加,得(x +y )2+(x +y )-42=0,即[(x +y )-6][(x +y )+7]=0,故x +y =6或-7.52、用长为1,4,4,5的线段为边作梯形,那么这个梯形的面积等于_____.【解析】1036或.①若1,4为底.如图所示,延长DA ,CB 相交于G ,并设AG =x ,BG =y ,则35345414==⇒+==+⇒==y x y y x x GC GB DC AB GD GA ,.在△GAB 中,GA 2+AB 2=GB 2,故△GAB 是直角三角形,即∠D =∠GAB =90o .于是,S =(AB +DC )·AD /2=(1+4)·4/2=10. ②若1,5为底.如图所示,作AE 、BF 垂直DC 于E 、F .则DE =CF =(5-1)/2=2,32242222=-=-=DE AD AE .于是,3632)51(21)(21=⨯+=⋅+=AE DC AB S .③若4,4为底.应为平行四边形,但不满足.④若4,5为底.则1,4为腰,由于1+4=5,故不满足.53、销售某种商品,如果单价上涨%m ,则售出的数量就将减少150m.为了使该商品的销售总金额最大,那么m 的值应该确定为_____.【解析】25.设这种商品的原单价为A ,原销售量为B ,销售总额为W ,则)1500050(15000150150100100)1501(%)1(2---=-⋅+⋅=-⋅+=m m AB m m AB m B m A W当25250=--=m 时,W 取得最大值.54、在直角坐标系xOy 中,x 轴上的动点)0(,x M 到定点)12()55(,、,Q P 的距离分别为MP 和MQ ,那么当MP +MQ 取最小值时,点M 的横坐标=x _____.【解析】25.如图所示,作P 关于x 轴的对称点P’.则MP +MQ =MP’+MQ ,故当Q 、M 、P’三点共线时,MP +MQ最小.过P’,Q 分别作x 轴的垂线,垂足分别为I ,H .于是255251'=⇒--=⇒=x x x IM HM I P QH . 55、已知实数b a ,满足22221b a ab t b ab a --==++,且,那么t 的取值范围是_____.【解析】313-≤≤-t . 31)1(2123113121210)(211310)(231122222222222222-=--⨯≥-=--=-=-⨯≤-=--=∴-≥⇒≥+=++=+⇒++=≤⇒≥-=+-=-⇒++=ab b a ab t ab b a ab t ab b a b ab a ab b ab a ab b a b ab a ab b ab a Θ.三、解答题(本大题共3小题,每小题20分,共60分).56、某个学生参加军训,进行打靶训练,必须射击10次.在第6、第7、第8、第9次射击中,分别得了9.0环、8.4环、8.1环、9.3环.他的前9次射击所得的平均环数高于前5次射击所得的平均环数.如果他要使10次射击的平均环数超过8.8环.那么他在第10次射击中至少要得多少环?(每次射击所得环数都精确到0.1环)【解】设前5次射击的平均环数为x ,则前9次射击的平均环数为98.34593.91.84.80.95+=++++x x . 由题设知,x x >+98.345,即7.8<x . 故前9次的总环数至多为8.7×9-0.1=78.2.所以,第10次射击至少得8.8×10+0.1-78.2=9.9(环).57、如图,已知点P 是⊙O 外一点,PS 、PT 是⊙O 的两条切线,过点P 作⊙O 的割线PAB ,交⊙O 于A ,B 两点,并交ST 于点C .求证:)11(211PBPA PC +=.【解】如图所示,作OE ⊥AB 于E ,连接OP 交ST 于F ,连接OT .PBPA PB PA PB PA PC PB PA PC PB PA PE PC PB PA PE PC PB PA PBPA PT PAB PT POPF PT POPTPT PF PTO PFT PEPC PO PF PE PFPO PC POE PCF BEAE ST OP 112)(222.∽∽22+=⋅+=∴+⋅=⋅⇒⋅=⋅⇒⋅=⋅∴⋅=⇒⋅=⇒=⇒∆∆⋅=⋅⇒=⇒∆∆∴=⊥∴是割线是切线,,ΘΘ58、已知:关于x 的方程01)1)(72()1)(1(22=+-+---x x a x x a 有实根. (1)求a 取值范围;(2)若原方程的两个实数根为21x x ,,且113112211=-+-x x x x ,求a 的值.【解】(1)令1-=x xt ,得)1(1≠-=t t t x . 原方程转化为关于t 的方程01)72()1(22=++--t a t a 有不为1的实数根. ①当a 2-1=0时,符合题意; ②当a 2-1≠0时,28530)1(4)]72([22-≥⇒≥--+-=∆a a a . 若t =1,则22101)72()1(2±=⇒=++--a a a . 故a 的取值范围是2212853±≠-≥a a 且. (2))(3810113172113111721)72(112122211222211舍去,-==⇒=-+∴=-+--+=-+--=-+-a a a a x x x x a a a a x x x x Θ.所以,a 的值为10.2002年全国初中数学竞赛试卷及答案解析一、选择题(本大题共6小题,每小题5分,共30分).59、设ab b a b a 4022=+<<,,则ba ba -+的值为(A ). A. ;3 B. ;6 C. 2; D. 3.【解析】A ..3242422)()()(0002222222=-+=-+++=-+=-+=-+∴>-+⇒⎩⎨⎧<+<-⇒<<abab abab ab b a ab b a b a b a b a b a b a b a b a b a b a b a b a Θ60、已知200219992001199920001999+=+=+=x c x b x a ,,,则多项式ca bc ab c b a ---++222的值为(D ). A. 0; B. 1; C. 2; D. 3.【解析】D..3]2)1()1[(21])()()[(21222222222=+-+-=-+-+-=---++a c c b b a ca bc ab c b a61、如图,点E 、F 分别是矩形ABCD 的边AB 、BC 的中点,连AF 、CE 交于点G ,则ABCDAGCDS S 矩形四边形等于(D ).A. ;65B. ;54 C. ;43 D. .32【解析】D..32612)(261412412....=⨯-=+-=∴=+⇒⎪⎩⎪⎨⎧=+==+=∴====∴=∆∆∆∆∆∆a a a S y x S S S ay x a y x S a y x S y S S x S S BC AB ABCD F E BG a S ABCD ABCD ABCDAGCD ABF CBE AGE BGE BGF CGF ABCD 矩形矩形矩形四边形矩形,的中点、的边是矩形、如图所示,连接设Θ62、设c b a 、、为实数,323232222πππ+-=+-=+-=a c z c b y b a x ,,,则z y x 、、中至少有一个值(A ). A. 大于0; B. 等于0; C. 不大于0; D. 小于0.【解析】A..00)3()1()1()1(222323232222222222中至少有一个大于、、,,z y x c b a c b a c b a z y x a c z c b y b a x ∴>-+-+-+-=+---++=++∴+-=+-=+-=ππΘ63、设关于x 的方程09)2(2=+++a x a ax 有两个不等的实数根21211x x x x <<,且,,那么a 的取值范围是(D ). A. ;5272<<-a B. ;52>aC. ;72-<aD. .0112<<-a 【解析】D..0112102012901)(0)1)(1(121212121<<-⇒-<+⇒<+++∴<++-⇒<--⇒<<a a a a a x x x x x x x x Θ64、9321A A A A ⋯是一个正九边形,b A A a A A ==3121,,则51A A 等于(D ).A. ;22b a +B. ;22b ab a ++C. ;)(21b a + D. .b a +【解析】D.ba A A A A P A A A P A A A A PA A PA A PA A PA A A A A A A A A A A PA A PA A A A Ab A A A A A A P A A A A +=+=+==∴∆∆∴=+=∠=∠∴=-=∠=∠∆=-=∠=∠∴=-⨯⋯==42212211515142oo o 2442ooo243423432oo o 3432o o 93213142424521.602040202140180.40140180.1409)29(180..是等边三角形是等边三角形,中,在的每个内角都为正九边形则,连接相交于点,如图所示,延长Θ6A二、填空题(本大题共6小题,每小题5分,共30分).65、设21x x 、是关于x 的一元二次方程22=++a ax x 的两个实数根,则)2)(2(1221x x x x --的最大值为_____.【解析】863-. .863863)49(21892)2(9)(29)(25]2)[(25)(2)2)(2(.04)2()2(4222212212121221212221122122-≤---=-+-=-+-⨯-=++-=+-+-=++-=-->+-=--=∆a a a a a x x x x x x x x x x x x x x x x x x a a a a 为一切实数知,由66、已知b a 、为抛物线2))((----=d c x c x y 与x 轴交点的横坐标,b a <,则b c c a -+-的值为_____.【解析】b-a...))((a b c b a c b c c a b c a x d c x c x y d c c -=-+-=-+-∴<<---=+则轴的交点与是抛物线,如图所示,67、如图,在△ABC 中,∠ABC =60o ,点P 是△ABC 内的一点,使得∠APB =∠BPC =∠CPA ,且PA =8,PC =6,则PB=_____.【解析】34..3468∽6060120o o o =⨯=⋅=∴=∴∆∆∴∠=∠∴=∠+∠=∠+∠∴=∠=∠⇒∠=∠=∠PC PA PB PBPAPC PB PBCPAB PBC PAB PBC PBA PBA PAB BPC APB CPA BPC APB ΘΘ68、如图,大圆O 的直径cm a AB =,分别以OA 、OB 为直径作⊙O 1、⊙O 2,并在⊙O 与⊙O 1和⊙O 2的空隙间作两个等圆⊙O 3和⊙O 4,这些圆互相内切或外切,则四边形O 1O 2O 3O 4的面积为_____cm 2.【解析】261a ..61322212132)62(22.6)4()4()2(244⊙24321343222331134321a a a O O O O S aa a OO O O a x x a a x a xa OO x a O O a OO x O O O O O =⨯⨯=⋅⋅=∴=-⨯==∴=⇒+=+-∴-=+==菱形,,,则的半径为设69、满足1)1(22=--+n n n 的整数n 有_____个.【解析】4.201211211021)1(2222,,,是偶数或或--=⇒⎩⎨⎧-=--+=--=+⇒=--+n n n n n n n n n n70、某商品的标价比成本高%p ,当该商品降价出售时,为了不亏本,售价的折扣(即降价的百分数)不得超过%d ,则d 可以用p 表示为_____.【解析】ppd +=100100. .100100%)1%)(1(ppd a d p a a +=⇒=-+,则设成本为三、解答题(本大题共3小题,每小题20分,共60分).。
全国初中数学竞赛试题参考答案.doc
6. D解:由 可得2011年全国初中数学竞赛试题参考答案一、选择题1. A解:因为 61=山, Q + 1 = J7, a 2 =6-2a ,所以3a ,+ 12tz — 6a — 12 = 3a(6 — 2a) +12(6 — 2a) — 6a — 12=—6a" — 12a + 60= -6(6-2a)-12a+ 60 = 24.2. B解:(略)3. D解:(略)4. C解:由已知得%2 + 3x +1 = 0,于是x(x + l)(x + 2)(x + 3) - (x 2 + 3x)(x 2 + 3x + 2)=(y+3x+i )2—1=—i.5. Bux + vy = u, fu(x-l) + vy = 0, 解:依定义的运算法则,有 , 即,n , 八对任何实数 xa + uy = v, |^v(x-l) + wy =0",V 都成立.由于实数”,V 的任意性,得(X, y ) = (1, 0).x + 2y-5z - 3, x — 2y - z = —5,x = 3z~ 1,< y = z + 2. 于是 x 2 + y 2 + z 2 = 1 lz 2 - 2z + 5 .因此,当z=#时,x 2 + /+?的最小值为普.7. C解:由题设可知y = 于是所以所以4y —1 = 1, 1 9故从而x = 4.于是工+》=@.8. CQ解:两式相加,得3t2 +5t = 8 ,解得£ = 1,或7 =—(舍去).3当『=1时,A = 45。
,3 = 30。
满足等式,故f = l.所以,实数,的所有可能值的和为1.9. C解:如图,连接庞,设S&DEF=S;,则F夺=*'」从而有S;S3 = S2S4 .因为S[>S;,所以S.S. > S2S4. B 匕二10. A解:当k = 2,3,…,2011,因为] 1 _ 1F ______ 1______ 1-2k(k+\)]< S = 1 H—— + • • • H----- <1 — -------------------- <—23 332011321 2 2011x2012 J 4于是有4<4S<5,故4S的整数部分等于4.二、填空题11.3V〃?W4解:易知x = 2是方程的一个根,设方程的另外两个根为叫,可,则叫+易=4, x t x2 = m .显然x, + x2 = 4 > 2 ,所以国-引<2, △ = 16-4〃z30,即 +扬)2 -4.%工2 < 2 , △ = 16-4/77 30,所以J16 —4”? < 2 , A = 16 — 4/77 ^0,解之得3V〃?W4.12.解:在36对可能出现的结果中,有4对:(1, 4), (2, 3), (2, 3), (4, 1)的和为5,所以朝上的面两数字之和为5的概率是生=4 36 913. 6 解:如图,设点C 的坐标为(a, b ),点。
最新全国初中数学竞赛试题及答案
全国初中数学竞赛试题及参考答案一.选择题(5×7'=35')1.对正整数n ,记n !=1×2×...×n,则1!+2!+3!+...+10!的末位数是( ).A .0B .1C .3D .5【分析】5≥n 时,n !的个位数均为0,只考虑前4个数的个位数之和即可,1+2+6+4=13,故式子的个位数是3. 本题选C .2.已知关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧<-+->-+x t x x x 235352恰好有5个整数解,则t 的取值范围是( ). 2116.-<<-t A 2116.-<≤-t B 2116.-≤<-t C 2116.-≤≤-t D 【分析】2023235352<<-⇒⎪⎪⎩⎪⎪⎨⎧<-+->-+x t x t x x x ,则5个整数解是15,16,17,18,19=x .注意到15=x 时,只有4个整数解.所以2116152314-≤<-⇒<-≤t t ,本题选C 3.已知关于x 的方程xx x a x x x x 22222--=-+-恰好有一个实根,则实数a 的值有( )个. A .1 B .2 C .3 D .4【分析】422222222+-=⇒--=-+-x x a xx x a x x x x ,下面先考虑增根: ⅰ)令0=x ,则4=a ,当4=a 时,0,1,022212===-x x x x (舍);ⅱ)令2=x ,则8=a ,当8=a 时,2,1,0422212=-==--x x x x (舍);再考虑等根:ⅲ)对04222=-+-a x x ,270)4(84=→=--=∆a a ,当21,272,1==x a . 故27,8,4=a ,21,1,1-=x 共3个.本题选C .4.如图,已知△ABC 的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且BC=4CF ,DCFE 是平行四边形,则图中阴影部分的面积为( ).A .3B .4C .5D .6【分析】设ABC ∆底边BC 上的高为h ,则DE CF CF BC h 121244848====,)(2121212121h h DE h DE h DE S S BDE ADE +⋅⋅=⋅⋅+⋅⋅=+∆∆本题选D .6122121=⋅⋅=⋅⋅=DE DE h DE5.在分别标有号码2,3,4,...,10的9个球中,随机取出两个球,记下它们的标号,则较大标号被较小标号整除的概率是( ).41.A 92.B 185.C 367.D 【分析】9236811291214==+++=C C C P 本题选B .二.填空题(5×7'=35')6.设33=a ,b 是a 2的小数部分,则3)2+b (的值为 . 【分析】考虑到33=a ,则33333332292,29,327982,93=+-==<<===b b a 则9)9()2333==+b (7.一个质地均匀的正方体的六个面上分别标有数1、2、3、4、5、6.掷这个正方体三次,则其朝上的面的数的和为3的倍数的概率是 .【分析】对第一次向上面为1时,后面两次所得数字与1的和是3的倍数有111,114,123,126,132,135,141,144,153,156,162,165共12种;对于首次掷得向上的面是2,3,4,5,6的,后面两次与首次的和为3的倍数是轮换对称的,故和为3的倍数共有612⨯,而总次数是666⨯⨯次,则其概率为31666612=⨯⨯⨯=P .8.已知正整数a 、b 、c 满足a +b 2-2c -2=0,3a 2-8b +c=0,则abc 的最大值为 .【分析】先消去c ,再配方估算.24166)8()121(621662222+=-++⇒=-++b a b b a a 观察易知上式中3≤a ,故3,2,1=a ,经试算,2,1=a 时,b 均不是整数;当3=a 时,11,5=b ,于是有)61,11,3(),13,5,3(),,(=c b a ,故201361113m ax =⨯⨯=abc .9. 实数a 、b 、c 、d 满足:一元二次方程x 2+cx +d=0的两根为a 、b ,一元二次方程x 2+ax +b=0的两根为c 、d ,则所有满足条件的数组(a 、b 、c 、d )为 .【分析】由根与系数关系知b cd d ab d b a d c c b a ===⇒=++=++,,0,然后可得 (a 、b 、c 、d )=(1,-2,1,-2)本题在化简过程中,总感觉还有,此处仅给出一组,好像不严谨,期待官方答案.10.小明某天在文具店做志愿者卖笔,铅笔每支售4元,园珠笔每支售7元,开始时他有铅笔和圆珠笔共350支,当天虽然没有全部卖完,但是他的销售收入恰好是2013元,则他至少卖出了 支圆珠笔.【分析】设4元的卖x 支,7元的卖y 支,则350,201374<+=+y x y x4125031820124201374++-=⇒++-=⇒=+y y x y y x y x 令1441-=⇒=+k y k y ,则k k k x 7505)14(2503-=+--=,又350≤+y x ,即523151350147505≥−−→−≥⇒≤-+-∈k k k k N k ,207152414=-⨯≥-=k y 即他至少卖了207支圆珠笔.三.解答题(4×20'=80')11.如图,抛物线y =ax 2+bx -3,顶点为E ,该抛物线与x 轴交于A 、B 两点,与y 轴交于点C ,且OB=OC=3OA .直线131+-=x y 与y 轴交于点D ,求∠DBC -∠CBE .【分析】易知4)1(3222--=--=x x x y ,)4,1()3,0()0,3(),0,1(---D C B A ,,,作EF ⊥C O 于F ,连CE ,易知△OBC 、△CEF 都是等腰直角三角形,则△CBE 是直角三角形.分别在Rt△OBD 、Rt △BCE 中运用正切定义,即有31232tan 31tan =====BC CE ,OB OD βα,则βα= 从而可得∠DBC -∠CBE=45º.12.如图,已知AB 为圆O 的直径,C 为圆周上一点,D为线段OB 内一点(不是端点),满足CD ⊥AB ,DE ⊥CO ,E 为垂足,若CE =10,且AD 与DB 的长均为正整数,求线段AD 的长.【分析】设圆O 半径为r ,则由相似或三角函数或射影定理可知,)10(1022-=⇒⋅=r DE OE CE DE ,又r r DE CE CD 10)10(10102222=-+=+=由相交弦定理(考虑垂径时)或连AC 、BC 用相似或三角函数,易知r CD BD AD 102==⋅①,而r BD AD 2=+②令y BD x AD ==,,①/②即155210-=⇒==+y x y r r y x xy ,显然有x y <<0,则10<<x y ,即1051150<<⇒<-<y y ,y 为正整数,故9,8,7,6=y ,又x 也为正整数,经逐一试算,仅当30,6==x y 这一组是正整数,故30=AD .13.设a 、b 、c 是素数,记c b a z b a c y a c b x -+=-+=-+=,,,当2,2=-=y x y z 时,a 、b 、c 能否构成三角形的三边长?证明你的结论. 【分析】281102222a z a z z y z a z y c b a z b a c y +±-=⇒=-+−−−→−==+⇒⎩⎨⎧-+=-+=a 、b 、c 是素数,则z c b a =-+为整数,则1281+=+k a ,k 为正整数.化简整理后,有a k k 2)1(=+⎩⎨⎧=+==+==⇒=+==+=⇒3121,2(121121,1a k k )a a k k 非质数 2,332811-=−−→−=+±-=z a a z ⅰ)112,2529,9,3=⇒=-=⇒=-==b b z x x x y z ,c b a b =<=+=+=1720173,17不能围成三角形;ⅱ)是合数9,16,4,2====b x y z综上所述,以a 、b 、c 不能围成三角形.14.如果将正整数M 放在正整数m 左侧,所得到的新数可被7整除,那么称M 为m 的“魔术数”(例如,把86放在415的左侧,得到的数86415能被7整除,所以称86为415的魔术数) .求正整数n 的最小值,使得存在互不相同的正整数a 1,a 2,...,a n ,满足对任意一个正整数m ,在a 1,a 2,...,a n 中都至少有一个为m 的“魔术数”.【分析】考虑到魔术数均为7的倍数,又a 1,a 2,...,a n 互不相等,不妨设n a a a <<<...21,余数必为1、2、3、4、5、6,0,设t k a i i +=7,(6,5,4,3,2,1,0;,...,3,2,1==t n i ),至少有一个为m 的“魔术数”.因为m a k i +⋅10(k 是m 的位数),是7的倍数,当6≤i 时,而k i a 10⋅除以7的余数都是0,1,2,3,4,5,6中的6个;当7=i 时,而ki a 10⋅除以7的余数都是0,1,2,3,4,5,6这7个数字循环出现,当7=i 时,依抽屉原理,k i a 10⋅与m 二者余数的和至少有一个是7,此时m a k i +⋅10被7整除,即n =7.。
全国初中数学竞赛试题集锦(附解答)
全国初中数学竞赛试卷一、选择题:(每小题6分,共30分)1、已知a 、b 、c 都是实数,并且c b a >>,那么下列式子中正确的是( ) (A)bc ab >(B)c b b a +>+(C)c b b a ->-(D)cbc a > 2、如果方程()0012>=++p px x 的两根之差是1,那么p 的值为( ) (A)2(B)4(C)3(D)53、在△ABC 中,已知BD 和CE 分别是两边上的中线,并且BD ⊥CE ,BD=4,CE=6,那么△ABC 的面积等于( )(A)12(B)14(C)16(D)18 4、已知0≠abc ,并且p bac a c b c b a =+=+=+,那么直线p px y +=一定通过第( )象限(A)一、二(B)二、三(C)三、四(D)一、四 5、如果不等式组⎩⎨⎧<-≥-0809b x a x 的整数解仅为1,2,3,那么适合这个不等式组的整数a 、b 的有序数对(a 、b )共有( )(A)17个(B)64个(C)72个(D)81个 二、填空题:(每小题6分,共30分)6、在矩形ABCD 中,已知两邻边AD=12,AB=5,P 是AD 边上任意一点,PE ⊥BD ,PF ⊥AC ,E 、F 分别是垂足,那么PE+PF=___________。
7、已知直线32+-=x y 与抛物线2x y =相交于A 、B 两点,O 为坐标原点,那么△OAB 的面积等于___________。
8、已知圆环内直径为a cm ,外直径为b cm ,将50个这样的圆环一个接一个环套地连成一条锁链,那么这条锁链拉直后的长度为___________cm 。
9、已知方程()015132832222=+-+--a a x a a x a (其中a 是非负整数),至少有一个整数根,那么a =___________。
10、B 船在A 船的西偏北450处,两船相距210km ,若A 船向西航行,B 船同时向南航行,且B 船的速度为A 船速度的2倍,那么A 、B 两船的最近距离是___________km 。
八年级初二数学竞赛试习题及参考答案
欢迎阅读八年级数学竞赛试题及参考答案八年级数学竞赛试题(一)一、选择题(每小题5分,共30分) 1.已知2220082008,ca b a b c k k +=-==++=,且那么的值为( ). A .2A .0x <C .3-<35++A .1015- C .10154E 、F 分别在A .100C .1105.已知5544332222335566a b c d a b c d ====,,,,则、、、的大小关系是( ). A .a b c d >>> B .a b d c >>> C .b a c d >>> D .a d b c >>> 6.如果把分数97的分子、分母分别加上正整数913a b 、,结果等于,那么a b +的最小 值是( ).A .26B .28C .30D .32 二、填空题:(每小题5分,共30分) 7.方程组2008200200720062008x y x y -=⎧⎨-=⎩的解8:79n 13.在一次抗击雪灾而募捐的演出中,晨光中学有A 、B 、C 、D 四个班的同学参加演出,已知A 、B 两个班共16名演员,B 、C 两个班共20名演员,C 、D 两个班共34名演员,且各班演员的人数正好按A 、B 、C 、D 次序从小到大排列,求各班演员的人数. 四、(本题满分20分)14.已知2211x x y y x y =+=+≠,,且.⑴ 求证:1x y +=. ⑵ 求55x y +的值. 五、(本题满分20分)15.如图,在△ABC 中AC >BC ,E 、D 分别是AC 、BC 上的点,且∠BAD=∠ABE ,AE=BD .1314、⑴ ⑵ ∴554343322322x y x x y y x x x x y y y y +=+++=+++++++ 15、证明:作∠OBF=∠OAE 交AD 于F∵∠BAD=∠ABE ∴OA=OB又∠AOE=∠BOF∴△AOE ≌△BOF (ASA ) ∴AE=BF ∵AE=BD∴BF=BD ∴∠BDF=∠BFD1、。
2020年全国初中数学竞赛历年竞赛试题以及参考答案:八
2020年全国初中数学竞赛试题八答题时注意:1.用圆珠笔或钢笔作答; 2.解答书写时不要超过装订线; 3.草稿纸不上交.一、选择题(共5小题,每小题7分,共35分. 每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1.设1a =,则代数式32312612a a a +--的值为( ).(A )24 (B )25 (C )10 (D )12 2.对于任意实数a b c d ,,,,定义有序实数对a b (,)与c d (,)之间的运算“△”为:(a b ,)△(c d ,)=(ac bd ad bc ++,).如果对于任意实数u v ,, 都有(u v ,)△(x y ,)=(u v ,),那么(x y ,)为( ).(A )(0,1) (B )(1,0) (C )(﹣1,0) (D )(0,-1)3.若1x >,0y >,且满足3y y xxy x x y==,,则x y +的值为( ).(A )1 (B )2 (C )92 (D )1124.点D E ,分别在△ABC 的边AB AC ,上,BE CD ,相交于点F ,设1234BDF BCF CEF EADF S S S S S S S S ∆∆∆====四边形,,,,则13S S 与24S S 的大小关系为( ).(A )1324S S S S < (B )1324S S S S = (C )1324S S S S > (D )不能确定 5.设3333111112399S =++++,则4S 的整数部分等于( ). (A )4 (B )5 (C )6 (D )7二、填空题(共5小题,每小题7分,共35分)6.若关于x 的方程2(2)(4)0x x x m --+=有三个根,且这三个根恰好可 以作为一个三角形的三条边的长,则m 的取值范围是 .7.一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,2,3,3,4;另一枚质地均匀的正方体骰子的六个面上的数字分别是1,3,4,5,6,8. 同时掷这两枚骰子,则其朝上的面两数字之和为奇数的概率是 .8.如图,点A B ,为直线y x =上的两点,过A B ,两点分别作y 轴的平行线交双曲线1y x=(x >0)于C D ,两点. 若2BD AC =,则224OC OD - 的值为 .9.若112y x x =-+-的最大值为a ,最小值为b ,则22a b +的值为 .10.如图,在Rt △ABC 中,斜边AB 的长为35,正方形CDEF 内接于△ABC ,且其边长为12,则△ABC 的周长为 .三、解答题(共4题,每题20分,共80分)11.已知关于x 的一元二次方程20x cx a ++=的两个整数根恰好比方程(第8题)(第10题)20x ax b ++=的两个根都大1,求a b c ++的值.12.如图,点H 为△ABC 的垂心,以AB 为直径的⊙1O 和△BCH 的外接圆⊙2O 相交于点D ,延长AD 交CH 于点P ,求证:点P 为CH 的中点.13.如图,点A 为y 轴正半轴上一点,A B ,两点关于x 轴对称,过点A 任作直线交抛物线223yx =于P ,Q 两点. (1)求证:∠ABP =∠ABQ ;(2)若点A 的坐标为(0,1),且∠PBQ =60º,试求所有满足条件的直线PQ 的函数解析式.14.如图,△ABC 中,60BAC ∠=︒,2AB AC =.点P 在△ABC 内,且352PA PB PC ===,,,求△ABC 的面积.(第13题)(第12题)。
初二数学竞赛试题及参考答案
初二数学竞赛试题及参考答案一、选择题(每题3分,共15分)1. 下列哪个数是无理数?A. 3.14159B. πC. 0.33333D. √22. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 83. 一个数的平方根是它本身,这个数是:A. 0B. 1C. -1D. 44. 以下哪个表达式等于0?A. 2 + 3B. 2 - 2C. 2 × 3D. 2 ÷ 25. 如果一个圆的半径为5,那么它的面积是多少?A. 25πB. 50πC. 100πD. 125π二、填空题(每题2分,共10分)6. 一个数的立方根是它本身,这个数可以是______。
7. 一个数的绝对值是它本身,这个数可以是______。
8. 一个数的相反数是它本身,这个数是______。
9. 一个数的倒数是它本身,这个数是______。
10. 如果一个数的平方是16,那么这个数可以是______。
三、简答题(每题5分,共20分)11. 解释什么是勾股定理,并给出一个例子。
12. 解释什么是有理数和无理数,并给出一个例子。
13. 解释什么是因式分解,并给出一个例子。
14. 解释什么是二次方程,并给出一个例子。
四、解答题(每题10分,共30分)15. 一个长方体的长、宽、高分别是10厘米、8厘米和6厘米,求它的体积。
16. 一个等腰三角形的底边长为8厘米,两腰边长为5厘米,求它的面积。
17. 一个二次方程 \( ax^2 + bx + c = 0 \) 的系数 a、b、c 分别为 2、-7 和 3,求它的根。
五、附加题(每题5分,共5分)18. 一个数列的前三项是 1, 1, 2,从第四项开始,每一项都是前三项的和。
求这个数列的前10项。
参考答案一、选择题1. D2. A3. A4. B5. B二、填空题6. 0, 1, -1, 17. 非负数8. 09. ±110. ±4三、简答题11. 勾股定理是指在一个直角三角形中,直角边的平方和等于斜边的平方。
(2020年整理)全国初中数学竞赛试题及答案.doc
中国教育学会中学数学教学专业委员会全国初中数学竞赛试题一、选择题(共5小题,每小题6分,共30分.)1(甲).如果实数a,b,c22||()||a abc a b c-++-+可以化简为().(A)2c a-(B)22a b-(C)a-(D)a1(乙).如果22a=-11123a+++的值为().(A)2-(B2(C)2 (D)22(甲).如果正比例函数y = ax(a ≠ 0)与反比例函数y =xb(b ≠0 )的图象有两个交点,其中一个交点的坐标为(-3,-2),那么另一个交点的坐标为().(A)(2,3)(B)(3,-2)(C)(-2,3)(D)(3,2)2(乙).在平面直角坐标系xOy中,满足不等式x2+y2≤2x+2y的整数点坐标(x,y)的个数为().(A)10 (B)9 (C)7 (D)53(甲).如果a b,为给定的实数,且1a b<<,那么1121a ab a b++++,,,这四个数据的平均数与中位数之差的绝对值是().(A)1 (B)214a-(C)12(D)143(乙).如图,四边形ABCD中,AC,BD是对角线,△ABC是等边三角形.30ADC∠=︒,AD = 3,BD = 5,则CD的长为().(A)23(B)4(C)52(D)4.54(甲).小倩和小玲每人都有若干面值为整数元的人民币.小倩对小玲说:“你若给我2元,我的钱数将是你的n倍”;小玲对小倩说:“你若给我n元,我的钱数将是你的2倍”,其中n为正整数,则n的可能值的个数是().OAB CED(A )1 (B )2 (C )3 (D )44(乙).如果关于x 的方程 20x px q p q --=(,是正整数)的正根小于3, 那么这样的方程的个数是( ).(A ) 5 (B ) 6 (C ) 7 (D ) 85(甲).一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,3,4,5,6.掷两次骰子,设其朝上的面上的两个数字之和除以4的余数分别是0,1,2,3的概率为0123p p p p ,,,,则0123p p p p ,,,中最大的是( ).(A )0p (B )1p (C )2p (D )3p5(乙).黑板上写有111123100L , , ,, 共100个数字.每次操作先从黑板上的数中选取2个数a b ,,然后删去a b ,,并在黑板上写上数a b ab ++,则经过99次操作后,黑板上剩下的数是( ).(A )XXXX (B )101 (C )100 (D )99二、填空题(共5小题,每小题6分,共30分)6(甲).按如图的程序进行操作,规定:程序运行从“输入一个值x ”到“结果是否>487?”为一次操作. 如果操作进行四次才停止,那么x 的取值范围是 .6(乙).如果a ,b ,c 是正数,且满足9a b c ++=,111109a b b c c a ++=+++,那么a b cb c c a a b+++++的值为 .7(甲).如图,正方形ABCD 的边长为215, E ,F 分别是AB ,BC 的中点,AF 与DE ,DB 分别交于点M ,N ,则△DMN 的面积是 . 7(乙).如图所示,点A 在半径为20的圆O 上,以OA 为一条对角线作矩形OBAC ,设直线BC 交圆O 于D 、E 两点,若12OC =,则线段CE 、BD 的长度差是 。
8全国初中数学竞赛试题及参考答案
“《数学周报》杯”2008 年全国初中数学比赛试卷参照答案及评分标准一、选择题(共 5 小题,每题 6 分,满分30 分.每题均给出了代号为A,B,C, D 的四个选项,此中有且只有一个选项是正确的.请将正确选项的代号填入题后的括号里 . 不填、多填或错填都得0 分)( 1)已知实数x,y知足423, y4y 2 3 ,则4y4的值为(A).x4x2x4( A)7(B)113(C)713(D)5 22解:因为 x20, y2≥0,由已知条件得1 2 4 4 4 3 1 13 ,y2 1 143 1 13,x28422所以4y 422226 7.x4x2 3 3 y x2y( 2)把一枚六个面编号分别为1,2, 3, 4, 5, 6 的质地平均的正方体骰子先后投掷 2 次,若两个正面向上的编号分别为m, n ,则二次函数y x2mx n 的图象与x 轴有两个不一样交点的概率是( C ).(A)5(B)4(C)17(D)1 129362解:基本领件总数有6×6= 36,即能够获得36 个二次函数 .由题意知= m24n >0,即 m2> 4n .经过列举知,知足条件的m,n 有17对.17故 P.36( 3)有两个齐心圆,大圆周上有4 个不一样的点,小圆周上有 2 个不一样的点,则这6个点能够确立的不一样直线最罕有(B) .(A)6 条(B)8条(C)10 条(D)12 条解:如图,大圆周上有 4 个不一样的点A,B,C,D,两两连线能够确立6条不一样的直线;小圆周上的两个点E,AC与 BD的交点,则它与A, B, C, D的连线中,起码有两条不一样于A,B, C, D 的两两连线.从而这 6 个点能够确立的直线许多于8 条.当这 6 个点以下图搁置时,恰巧可以确立 8 条直线.所以,知足条件的 6 个点能够确立的直线最罕有8 条.( 4)已知AB是半径为 1 的圆O的一条弦,且AB a 1.以 AB 为一边在圆 O 内作正△ABC,点 D为圆 O 上不一样于点A的一点,且 DB AB a , DC的延伸线交圆 O 于点 E ,则 AE 的长为(B).( A) 5 a(B) 12( C)3( D)a2解:如图,连结OE, OA, OB.设D,则ECA120EAC .又因为111802120,ABO ABD6022所以△ ACE ≌△ ABO ,于是 AE OA1.(5)将 1, 2, 3, 4, 5 这五个数字排成一排,最后一个数是奇数,且使得此中任意连续三个数之和都能被这三个数中的第一个数整除,那么知足要求的排法有(D ).( A)2 种(B)3种(C)4种(D)5种解:设 a1,a2,a3, a4, a5是1,2,3,4,5的一个知足要求的摆列.第一,对于 a1,a2,a3,a4,不可以有连续的两个都是偶数,不然,这两个以后都是偶数,与已知条件矛盾.又假如 a i(1≤i≤3)是偶数, a i 1是奇数,则 a i 2是奇数,这说明一个偶数后边必定要接两个或两个以上的奇数,除非接的这个奇数是最后一个数.所以 a1,a2, a3,a4, a5只好是:偶,奇,奇,偶,奇,有以下 5 种情况知足条件:2 ,1,3,4,5;2,3,5,4,1; 2, 5,1, 4, 3;4, 3, 1, 2, 5;4,5, 3, 2, 1.二、填空题(共 5 小题,每题 6 分,满分30 分)( 6)对于实数 u , v ,定义一种运算“* ”为: u v uv v .若对于 x 的方程x (a x)1a 的取值范围是.有两个不一样的实数根,则知足条件的实数4【答】 a 0 ,或 a1 .解:由x ( a x)1,得 ( a 1)x 2(a 1)x1 0 ,44a 1 ,依题意有解得, a 0 ,或 a 1 .(a 1)2(a1) ,( 7)小王沿街匀速行走,发现每隔6 分钟从背后驶过一辆 18 路公交车 ,每隔 3分钟从迎面驶来一辆18 路公交车.假定每辆 18 路公交车行驶速度同样,并且18 路公交车总站每隔固准时间发一辆车,那么发车间隔的时间是分钟.【答】 4.解: 设 18 路公交车的速度是x M/分,小王行走的速度是y M/分,同向行驶的相邻两车的间距为s M .每隔 6 分钟从背后开过一辆 18 路公交车,则每隔 3 分钟从迎面驶来一辆18 路公交车,则6x 6 y s . ① 3x3 y s . ②由①,②可得s 4 .s 4x ,所以x即 18 路公交车总站发车间隔的时间是4 分钟.(8)如图,在△ ABC 中, AB =7, AC =11,点 M 是 BC 的中点, AD 是∠ BAC 的均分 线, MF ∥ AD ,则 FC 的长为.【答】 9.解: 如图,设点 N 是 AC 的中点,连结 MN , 则 MN ∥ AB .又 MF // AD , 所以FMNBAD DACMFN ,所以 FN MN 1AB .2 所以 FCFNNC1AB1AC9.22( 9)△ ABC 中, AB = 7, BC = 8, CA =9,过△ ABC 的内切圆圆心 I 作 DE ∥ BC ,分别与 AB , AC 订交于点 D ,E ,则 DE 的长为.【答】16.3解:如图,设△ ABC的三边长为a, b, c,内切圆I的半径为r , BC 边上的高为h a,则1ah a S△ABC1(a b c)r ,22r a.所以h a a b c因为△ ADE∽△ ABC,所以它们对应线段成比例,所以ha r DE ,h a BC所以 DE h a ra(1r)a(1a a(b c),h a h a a b)acca b故 DE8 (79) 16.8793( 10)对于x,y的方程 x2y2208( x y) 的全部正整数解为.x 48, x160,【答】y 32, y32.解:因为 208是 4的倍数,偶数的平方数除以4所得的余数为0,奇数的平方数除以 4 所得的余数为1,所以x,y都是偶数.设 x2a, y2b,则a2b2104(a b) ,同上可知, a, b 都是偶数.设a2c, b2d ,则c2 d 252( c d ) ,所以, c,d 都是偶数.设c2s, d 2t ,则s2t 226( s t ) ,于是(s13)2(t13)2=2 132,此中s,t都是偶数.所以 (s13)22132(t13)2≤2132152112.s 132为,,,,,所以可能为1, 3, 5,7, 9,从而(t13)3373293132892572s , s,故 只 能 是 (t289,从而s 13 = 7 . 有62013)=t;t, 故4 4x ,x,48160y, y32.32三、解答题(共 4 题,每题 15 分,满分 60 分)( 11)在直角坐标系xOy 中,一次函数y kx b ( k 0)的图象与 x 轴、 y 轴的正半轴分别交于 A , B 两点,且使得△ OAB 的面积值等于OAOB 3 .(Ⅰ)用 b 表示 k ;(Ⅱ)求△ OAB 面积的最小值.解:(Ⅰ)令 x0 ,得 yb , b 0 ;令 y 0 ,得 xb 0, k 0 .k所以 A , B 两点的坐标分别为A (b 0) (0 ) ,, ,B ,bk于是,△ OAB 的面积为 S1 b (b) .2k由题意,有 1b( b ) b b 3,2kk2bb 22 .5 分解得 k, b2(b 3)(Ⅱ)由(Ⅰ)知S1b ( b ) b(b3) (b 2) 2 7( b 2)102 k b2b 2b 210 7 ( b 210 ) 2 7 2 10≥7 2 10,b 2b 2当且仅当 b210 时,有 S 7+2 10 ,b 2即当 b 2 10 , k1时,不等式中的等号建立.所以,△ OAB 面积的最小值72 10 .15 分( 12)已知一次函数y 1 2x ,二次函数 yx 21 .能否存在二次函数2y 3 axbx c,其图象经过点(- 5 2x 的同一个值,这三个2, ),且对于随意实数函数所对应的函数值y 1 , y 2 , y 3 ,都有 y 1 ≤ y 3 ≤ y 2 建立?若存在,求出函数y 3 的解读式;若不存在,请说明原因.解:存在知足条件的二次函数.因为y 1 y 22x (x 2 1)x 2 2x 1 ( x 1)2 ≤ 0,所以,当自变量x 取随意实数时, y ≤ y 均建立.12由已知,二次函数 y 3 ax 2 bx c 的图象经过点(-5, 2),得 25a 5b c2 .①当 x1 时,有 y 1 y2 2 , y3 a b c .因为对于自变量 x 取随意实数时, y 1 ≤ y 3 ≤ y 2 均建立,所以有 2 ≤ ab c ≤ 2,故 ab c 2 . ②由①,②,得 b 4a , c2 5a ,所以 y 3ax 2 4ax (2 5a) . 5 分当 y 1 ≤ y 3 时,有 2x ≤ ax 2 4ax (2 5a) ,即 ax 2(4a 2)x (2 5a) ≥ 0,所以二次函数y ax 2 (4a2)x (2 5a) 对于一确实数 x ,函数值大于或等于零,a,a,1即所以 a10 分故22.(4a 2)4a(2 5a). (3a0,31)当 y 3 ≤ y 2 时, 有 ax 2 4ax (2 5a) ≤ x 2 1,即 (1 a) x 2 4ax (5a 1) ≥ 0,所以二次函数y (1 a) x 2 4ax (5a 1) 对于一确实数x ,函数值大于或等于零,1 a,a ,1即 1所以 a.故223( 4a) 4(1 a)(5a 1) .(3a 1) 0,综上, a1, b 4a4, c2 5a1 .333所以,存在二次函数y 3 1 x 2 4 x 1 ,在实数范围内,对于x 的同一个3 3 3值,都有 y 1 ≤ y 3 ≤ y 2 建立.15 分( 13)能否存在质数, ,使得对于x 的一元二次方程px 2qx p 0p q有有理数根?解:设方程有有理数根,则鉴别式为平方数.令q 24 p 2 n 2 ,此中 n 是一个非负整数.则 ( q n)( q n)4 p 2 .5 分因为 1≤ qn ≤ q +n ,且 q n 与 q n 同奇偶,故同为偶数.所以,有以下几种可能情况:q n,q n,,,2q n p ,q n p q n 2 pq n 2 p 2, qn p 2, qn 4p , q n2 p , q n 4.消去 n ,解得 qp21, q 2p 2 , q 5 p , q 2 p , q 2p 2 . 22210 分对于第 1, 3 种情况, p 2 ,从而 q =5;对于第 2, 5 种情况, p2 ,从而 q =4(不合题意,舍去);对于第 4 种情况, q 是合数(不合题意,舍去).又当 p2 , q = 5 时,方程为 2x25x2 0 ,它的根为 x 11,x 2 2 ,它们2都是有理数.综上所述,存在知足题设的质数. 15 分( 14)如图,△ ABC 的三边长BC a ,CAb , ABc , a , b , c 都是整数,且 a, b 的最大条约数为2 .点 G 和点 I 分别为△ ABC 的重心和心里,且GIC 90 .求△ ABC 的周长.解:如图,延伸 GI ,与边 BC, CA 分别交于 P,Q .设重心 G 在边 BC, CA 上的投影分别为 E, F ,△ ABC 的内切圆的半径为r ,BC,CA边上的高的长分别为h a,h b,易知CP= CQ,由S△PQC S△GPC S△GQC,可得 2r GE GF1h a h b,32S△ABC12S△ABC2S△ABC,即 2b c3a ba从而可得a b c 6ab. 10 分a b因为△ ABC 的重心G和心里 I 不重合,所以,△ ABC 不是正三角形,且b a ,不然, a b 2 ,可得 c 2 ,矛盾.不如假定 a b ,因为a,b 2 ,设 a2a1, b2b1,a1,b1 1,于是,有6ab12a1b1 为整数,a b a1 b1所以有(a1b1 ) 12 ,即 ( a b)24 .于是只有 a14, b 10 时,可得 c11,知足条件.所以有 a b c35 .所以,△ ABC 的周长为35.15 分8 / 9。
历年初中数学竞赛真题库(含答案)
历年初中数学竞赛真题库(含答案)1991年全国初中数学联合竞赛决赛试题第⼀试⼀、选择题本题共有8个⼩题,每⼩题都给出了(A )、(B )(C )、(D )四个答案结论,其中只有⼀个是正确的.请把正确结论的代表字母写在题后的圆括号内..设等式y a a x a y a a x a ---=-+-)()(在实数范围内成⽴,其中a ,x ,y 是两两不同的实数,则22223y xy x y xy x +--+的值是(A )3 ;(B )31;(C )2;(D )35.答().如图,AB ‖EF ‖CD ,已知AB =20,CD =80,BC =100,那么EF 的值是(A ) 10;(B )12;(C ) 16;(D )18.答().⽅程012=--x x 的解是(A )251±;(B )251±-;(C )251±或251±-;(D )251±-±.答().已知:)19911991(2111n n x --=(n 是⾃然数).那么nx x )1(2+-,的值是(A)11991-;(B)11991--;(C)1991)1(n -;(D)11991)1(--n .答().若M n1210099321= ,其中M为⾃然数,n 为使得等式成⽴的最⼤的⾃然数,则M(A)能被2整除,但不能被3整除;(B)能被3整除,但不能被2整除;(C)能被4整除,但不能被3整除;(D)不能被3整除,也不能被2整除.答().若a ,c ,d 是整数,b 是正整数,且满⾜c b a =+,d c b =+,a d c =+,那么 d c b a +++的最⼤值是(A)1-;(B)5-;(C)0;(D)1.答().如图,正⽅形OPQR 内接于ΔABC .已知ΔAOR 、ΔBOP 和ΔCRQ 的⾯积分别是11=S ,32=S 和13=S ,那么,正⽅形OPQR 的边长是(A)2;(B)3;(C)2 ;(D)3.答()11=S.在锐⾓ΔABC 中,1=AC ,c AB =,60=∠A,ΔABC 的外接圆半径R ≤1,则(A)21< c < 2 ;(B)0< c ≤21;答()(C )c > 2;(D )c = 2.答()⼆、填空题1.E是平⾏四边形ABCD 中BC 边的中点,AE 交对⾓线BD 于G ,如果ΔBEG 的⾯积是1,则平⾏四边形ABCD 的⾯积是.2.已知关于x 的⼀元⼆次⽅程02=++c bx ax 没有实数解.甲由于看错了⼆次项系数,误求得两根为2和4;⼄由于看错了某⼀项系数的符号,误求得两根为-1和4,那么,=+a cb 32 .3.设m ,n ,p ,q 为⾮负数,且对⼀切x >0,q pnm x x x x )1(1)1(+=-+恒成⽴,则 =++q p n m 22)2( .4.四边形ABCD 中,∠ ABC 135=,∠BCD120=,AB 6=,BC 35-=,CD = 6,则AD = .第⼆试x + y , x - y , x y , y x四个数中的三个⼜相同的数值,求出所有具有这样性质的数对(x , y ).⼆、ΔABC 中,AB <AC <BC ,D 点在BC 上,E 点在BA 的延长线上,且 BD =BE =AC ,ΔBDE 的外接圆与ΔABC 的外接圆交于F 点(如图).求证:BF =AF +CF三、将正⽅形ABCD 分割为 2n 个相等的⼩⽅格(n 是⾃然数),把相对的顶点A ,C 染成红⾊,把B ,D 染成蓝⾊,其他交点任意染成红、蓝两⾊中的⼀种颜⾊.证明:恰有三个顶点同⾊的⼩⽅格的数⽬必是偶数.120 1351992年全国初中数学联合竞赛决赛试题第⼀试⼀.选择题本题共有8个题,每⼩题都给出了(A), (B), (C), (D)四个结论,其中只有⼀个是正确的.请把正确结论的代表字母写在题后的圆括号内.1.满⾜1=+-ab b a 的⾮负整数),(b a 的个数是 (A)1; (B)2; (C)3; (D)4.2.若0x 是⼀元⼆次⽅程)0(02≠=++a c bx ax 的根,则判别式ac b 42-=?与平⽅式20)2(b ax M +=的关系是(A)?>M (B)?=M (C)?>M ; (D)不确定.3.若01132=+-x x ,则44-+x x 的个位数字是 (A)1; (B)3; (C)5; (D)7. 答( )4.在半径为1的圆中有⼀内接多边形,若它的边长皆⼤于1且⼩于2,则这个多边形的边数必为(A)7; (B)6; (C)5; (D)4. 答( )5.如图,正⽐例函数)0(>==a ax y x y 和的图像与反⽐例函数)0(>=k x ky 的图像分别相交于A 点和C 点.若AOB Rt ?和COD ?的⾯积分别为S 1和S 2,则S 1与S 2的关系是(A)21S S > (B)21S S = (C)21S S < (D)不确定答( )6.在⼀个由88?个⽅格组成的边长为8的正⽅形棋盘内放⼀个半径为4的圆,若把圆周经过的所有⼩⽅格的圆内部分的⾯积之和记为1S ,把圆周经过的所有⼩⽅格的圆内部分的⾯积之和记为2S ,则21S S 的整数部分是(A)0; (B)1; (C)2; (D)3. 答( )=∠60A ,⼜E 7.如图,在等腰梯形ABCD 中, AB //CD , AB=2CD ,是底边AB 上⼀点,且FE=FB=AC , FA=AB .则AE :EB 等于 (A)1:2 (B)1:3 (C)2:5 (D)3:10 答( )8.设9321,,,,x x x x 均为正整数,且 921x x x9x x -的最⼩值是(A)8; (B)9; (C)10; (D)11. 答( ) ⼆.填空题1.若⼀等腰三⾓形的底边上的⾼等于18cm ,腰上的中线等15cm ,则这个等腰三⾓形的⾯积等于________________.2.若0≠x ,则x x x x 44211+-++的最⼤值是__________. 3.在ABC ?中,B AC ∠∠=∠和,90的平分线相交于P 点,⼜AB PE ⊥于E 点,若3,2==AC BC ,则=?EB AE .4.若b a ,都是正实数,且0111=+--b a b a ,则=+33)()(b a a b .第⼆试⼀、设等腰三⾓形的⼀腰与底边的长分别是⽅程062=+-a x x 的两根,当这样的三⾓形只有⼀个时,求a 的取值范围.⼆、如图,在ABC ?中,D AC AB ,=是底边BC 上⼀点,E 是线段AD 上⼀点,且A CED BED ∠=∠=∠2.求证:CD BD 2=.三、某个信封上的两个邮政编码M 和N 均由0,1,2,3,5,6这六个不同数字组成,现有四个编码如下:A :320651B :105263C :612305D :316250已知编码A 、B 、C 、D 各恰有两个数字的位置与M 和N 相同.D 恰有三个数字的位置与M和N 相同.试求:M 和N.1993年全国初中数学联合竞赛决赛试题第⼀试⼀.选择题本题共有8个⼩题,每⼩题都给出了(A), (B), (C), (D)四个结论,其中只有⼀个是正确的.请把正确结论的代表字母写在题后的圆括号内.1.多项式1612+-x x 除以12-x 的余式是 (A)1; (B)-1; (C)1-x ; (D)1+x ;2.对于命题Ⅰ.内⾓相等的圆内接五边形是正五边形.Ⅱ.内⾓相等的圆内接四边形是正四边形,以下四个结论中正确的是 (A )Ⅰ,Ⅱ都对 (B )Ⅰ对,Ⅱ错 (C )Ⅰ错,Ⅱ对. (D )Ⅰ,Ⅱ都错.3.设x 是实数,11++-=x x y .下列四个结论: Ⅰ.y 没有最⼩值;Ⅱ.只有⼀个x 使y 取到最⼩值;Ⅲ.有有限多个x (不⽌⼀个)使y 取到最⼤值; Ⅳ.有⽆穷多个x 使y 取到最⼩值. 其中正确的是(A )Ⅰ (B )Ⅱ (C )Ⅲ (D )Ⅳ4.实数54321,,,,xx x x x 满⾜⽅程组=++=++=++=++=++.;;;;52154154354324321321a x x x a x x x a x x x a x x x a x x x其中54321,,,,a a a a a 是实常数,且54321a a a a a >>>>,则54321,,,,x x x x x 的⼤⼩顺序是(A)54321x x x x x >>>>; (B )53124x x x x x >>>>;(C )52413x x x x x >>>>; (D )24135x x x x x >>>>.5.不等式73)1(12+<-<-x x x 的整数解的个解 (A )等于4 (B )⼩于4 (C )⼤于5 (D )等于56.在ABC ?中,BC AO O A =∠,,是垂⼼是钝⾓, 则)cos(OCB OBC ∠+∠的值是(A)22-(B)22(C)23 (D)21-. 答( )7.锐⾓三⾓ABC 的三边是a , b , c ,它的外⼼到三边的距离分别为m , n , p ,那么m :n :p 等于(A)c b a 1:1:1; (B)c b a ::(C)C B A cos :cos :cos (D)C B A sin :sin :sin . 答( )8.13333)919294(3-+-可以化简成 (A))12(333+; (B))12(333- (C)123- (D)123+ 答( ) ⼆.填空题1. 当x 变化时,分式15632212++++x x x x 的最⼩值是___________.2.放有⼩球的1993个盒⼦从左到右排成⼀⾏,如果最左⾯的盒⾥有7个⼩球,且每四个相邻的盒⾥共有30个⼩球,那么最右⾯的盒⾥有__________个⼩球.3.若⽅程k x x =--)4)(1(22有四个⾮零实根,且它们在数轴上对应的四个点等距排列,则k =____________.4.锐⾓三⾓形ABC 中,?=∠30A .以BC 边为直径作圆,与AB , AC 分别交于D , E ,连接DE , 把三⾓形ABC 分成三⾓形ADE 与四边形BDEC ,设它们的⾯积分别为S 1, S 2,则S 1:S 2=___________.第⼆试⼀.设H 是等腰三⾓形ABC 垂⼼,在底边BC 保持不变的情况下让顶点A ⾄底边BC 的距离变⼩,这时乘积HBC ABC SS 的值变⼩,变⼤,还是不变?证明你的结论.⼆.ABC ?中, BC =5, AC =12, AB =13, 在边AB ,AC 上分别取点D ,E , 使线段DE 将ABC ?分成⾯积相等的两部分.试求这样的线段DE 的最⼩长度.三.已知⽅程0022=++=++b cx x c bx x 及分别各有两个整数根21,x x 及21,x x '',且,021>x x 021>''x x . (1)求证:;0,0,0,02121<'<'<(3)求c b ,所有可能的值.1994年全国初中数学联赛试题第⼀试(4⽉3⽇上午8:30—9:30)考⽣注意:本试共两道⼤题,满分80分.⼀、选择题(本题满分48分,每⼩题6分)本题共有8个⼩题都给出了A,B、C,D,四个结论,其中只有⼀个是正确的,请把你认为正确结论的代表字母写在题后答案中的圆括号内,每⼩题选对得6分;不选、选错或选出的代表字母超过⼀个(不论是否写在圆括号内),⼀律得0分.〔答〕( )2.设a,b,c是不全相等的任意实数,若x=a2-bc,y=b2-ca,z=c2-ab,则x,y,zA.都不⼩于0B.都不⼤于0C.⾄少有⼀个⼩0于D.⾄少有⼀个⼤于0〔答〕( )3.如图1所⽰,半圆O的直径在梯形ABCD的底边AB上,且与其余三边BC,CD,DA 相切,若BC=2,DA=3,则AB的长A.等于4B.等于5C.等于6D.不能确定〔答〕( )A.1 B.-1 C.22001D.-22001〔答〕( )5.若平⾏直线EF,MN与相交直线AB,CD相交成如图2所⽰的图形,则共得同旁内⾓A.4对B.8对C.12对D.16对〔答〕( )〔答〕( )7.设锐⾓三⾓形ABC的三条⾼AD,BE,CF相交于H。
全国初中数学竞赛试题及答案大全
全国初中数学竞赛试题及答案大全试题一:代数基础题目:若\( a \), \( b \), \( c \)为实数,且满足\( a + b + c = 3 \),\( ab + ac + bc = 1 \),求\( a^2 + b^2 + c^2 \)的值。
解答:根据已知条件,我们可以使用配方法来求解。
首先,我们知道\( (a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + ac + bc) \)。
将已知条件代入,得到\( 3^2 = a^2 + b^2 + c^2 + 2 \times 1 \)。
简化后,我们得到\( a^2 + b^2 + c^2 = 9 - 2 = 7 \)。
试题二:几何问题题目:在直角三角形ABC中,∠A=90°,AB=6,AC=8,求斜边BC的长度。
解答:根据勾股定理,直角三角形的斜边BC的平方等于两直角边的平方和,即\( BC^2 = AB^2 + AC^2 \)。
代入已知数值,得到\( BC^2 = 6^2 + 8^2 = 36 + 64 = 100 \)。
因此,\( BC = \sqrt{100} = 10 \)。
试题三:数列问题题目:一个等差数列的首项是2,公差是3,求第10项的值。
解答:等差数列的第n项可以通过公式\( a_n = a_1 + (n - 1)d \)来计算,其中\( a_1 \)是首项,d是公差,n是项数。
将已知条件代入公式,得到\( a_{10} = 2 + (10 - 1) \times 3 = 2 + 9 \times 3 = 29 \)。
试题四:概率问题题目:一个袋子里有5个红球和3个蓝球,随机取出2个球,求取出的两个球颜色相同的概率。
解答:首先计算总的可能情况,即从8个球中取2个球的组合数,用组合公式C(8,2)计算。
然后计算取出两个红球或两个蓝球的情况。
两个红球的情况有C(5,2)种,两个蓝球的情况有C(3,2)种。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“ 《数学周报》杯”2008年全国初中数学竞赛试题参考答案及评分标准一、选择题(共5小题,每小题6分,满分30分.每小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号填入题后的括号里. 不填、多填或错填都得0分)(1)已知实数x y ,满足42424233y y x x -=+=,,则444y x +的值为( A ). (A )7 (B )12 (C )72+ (D )5解:因为20x >,2y ≥0,由已知条件得21x ==,2y ==, 所以444y x +=22233y x ++-2226y x=-+=7. (2)把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为n m ,,则二次函数2y x mx n =++的图象与x 轴有两个不同交点的概率是( C ).(A )512 (B )49 (C )1736(D )12 解:基本事件总数有6×6=36,即可以得到36个二次函数.由题意知∆=24m n ->0,即2m >4n . 通过枚举知,满足条件的m n ,有17对. 故1736P =. (3)有两个同心圆,大圆周上有4个不同的点,小圆周上有2个不同的点,则这6个点可以确定的不同直线最少有( B ).(A )6条 (B ) 8条 (C )10条 (D )12条解:如图,大圆周上有4个不同的点A ,B ,C ,D ,两两连线可以确定6条不同的直线;小圆周上的两个点E ,F 中,至少有一个不是四边形ABCD 的对角线AC 与BD 的交点,则它与A ,B ,C ,D 的连线中,至少有两条不同于A ,B ,C ,D 的两两连线.从而这6个点可以确定的直线不少于8条.当这6个点如图所示放置时,恰好可以确定8条直线.所以,满足条件的6个点可以确定的直线最少有8条.(4)已知AB 是半径为1的圆O 的一条弦,且1AB a =<.以AB 为一边在圆O 内作正△ABC ,点D 为圆O 上不同于点A 的一点,且DB AB a ==,DC 的 延长线交圆O 于点E ,则AE 的长为( B ).(A(B )1 (C (D )a解:如图,连接OE ,OA ,OB . 设D α∠=,则120ECA EAC α∠=︒-=∠.又因为()1160180222ABO ABD α∠=∠=︒+︒-120α=︒-,所以ACE △≌ABO △,于是1AE OA ==.(5)将1,2,3,4,5这五个数字排成一排,最后一个数是奇数,且使得其中任意连续三个数之和都能被这三个数中的第一个数整除,那么满足要求的排法有( D ).(A )2种 (B )3种 (C )4种 (D )5种解:设12345a a a a a ,,,,是1,2,3,4,5的一个满足要求的排列.首先,对于1234a a a a ,,,,不能有连续的两个都是偶数, 否则,这两个之后都是偶数,与已知条件矛盾.又如果i a (1≤i ≤3)是偶数,1i a +是奇数,则2i a +是奇数,这说明一个偶数后面一定要接两个或两个以上的奇数, 除非接的这个奇数是最后一个数.所以12345a a a a a ,,,,只能是:偶,奇,奇,偶,奇,有如下5种情形满足条件: 2,1,3,4,5; 2,3,5,4,1; 2,5,1,4,3; 4,3,1,2,5; 4,5,3,2,1.二、填空题(共5小题,每小题6分,满分30分)(6)对于实数u ,v ,定义一种运算“*”为:u v uv v *=+.若关于x 的方程1()4x a x **=-有两个不同的实数根,则满足条件的实数a 的取值范围是 .【答】0a >,或1a <-.解:由1()4x a x **=-,得21(1)(1)04a x a x ++++=,依题意有 210(1)(1)0a a a +≠⎧⎨∆=+-+>⎩,,解得,0a >,或1a <-. (7)小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是 分钟.【答】4.解:设18路公交车的速度是x 米/分,小王行走的速度是y 米/分,同向行驶的相邻两车的间距为s 米.每隔6分钟从背后开过一辆18路公交车,则s y x =-66. ①每隔3分钟从迎面驶来一辆18路公交车,则s y x =+33. ② 由①,②可得 x s 4=,所以4=xs. 即18路公交车总站发车间隔的时间是4分钟.(8)如图,在△ABC 中,AB =7,AC =11,点M 是BC 的中点, AD 是∠BAC 的平分线,MF ∥AD ,则FC 的长为 . 【答】9.解:如图,设点N 是AC 的中点,连接MN , 则MN ∥AB .又//MF AD ,所以 FMN BAD DAC MFN ∠=∠=∠=∠,所以 12FN MN AB ==. 因此 1122FC FN NC AB AC =+=+=9.(9)△ABC 中,AB =7,BC =8,CA =9,过△ABC 的内切圆圆心I 作DE ∥BC ,分别与AB ,AC相交于点D ,E ,则DE 的长为 .【答】163.解:如图,设△ABC 的三边长为a ,b ,c ,内切圆I 的半径为r ,BC 边上的高为a h ,则11()22a ABC ah S a b c r ==++△, 所以 a r a h a b c=++. 因为△ADE ∽△ABC ,所以它们对应线段成比例, 因此 a a h r DEh BC-=, 所以(1)(1)a a a h r r aDE a a a h h a b c-=⋅=-=-++()a b c a b c +=++, 故879168793DE ⨯+==++(). (10)关于x ,y 的方程22208()x y x y +=-的所有正整数解为 .【答】481603232.x x y y ==⎧⎧⎨⎨==⎩⎩,,, 解:因为208是4的倍数,偶数的平方数除以4所得的余数为0,奇数的平方数除以4所得的余数为1,所以x ,y 都是偶数.设2,2x a y b ==,则22104()a b a b +=-,同上可知,b a ,都是偶数.设2,2a c b d ==,则2252()c d c d +=-,所以,c ,d 都是偶数.设2,2c s d t ==,则2226()s t s t +=-,于是22(13)(13)s t -++=2213⨯,其中s ,t 都是偶数.所以222(13)213(13)s t -=⨯-+≤2222131511⨯-<.所以13s -可能为1,3,5,7,9,进而2(13)t +为337,329,313,289,257,故只能是2(13)t +=289,从而13s -=7.有62044s s t t ==⎧⎧⎨⎨==⎩⎩,,;,故 481603232.x x y y ==⎧⎧⎨⎨==⎩⎩,,, 三、解答题(共4题,每题15分,满分60分)(11)在直角坐标系xOy 中,一次函数b kx y +=0k ≠()的图象与x 轴、y 轴的正半轴分别交于A ,B 两点,且使得△OAB 的面积值等于3OA OB ++.(Ⅰ)用b 表示k ;(Ⅱ)求△OAB 面积的最小值.解:(Ⅰ)令0=x ,得0y b b =>,;令0=y ,得00bx k k=-><,. 所以A ,B 两点的坐标分别为0)(0)b AB b k -(,,,, 于是,△OAB 的面积为)(21k bb S -⋅=.由题意,有 3)(21++-=-⋅b k bk b b , 解得 )3(222+-=b b b k ,2b >. …………………… 5分(Ⅱ)由(Ⅰ)知21(3)(2)7(2)10()222b b b b b S b k b b +-+-+=⋅-==--21027)72b b =-++=++-1027+,当且仅当1022b b -=-时,有S =即当102+=b ,1-=k 时,不等式中的等号成立.所以,△OAB 面积的最小值1027+. ……………… 15分(12)已知一次函数12y x =,二次函数221y x =+. 是否存在二次函数23y ax bx c =++,其图象经过点(-5,2),且对于任意实数x 的同一个值,这三个函数所对应的函数值1y ,2y ,3y ,都有1y ≤3y ≤2y 成立?若存在,求出函数3y 的解析式;若不存在,请说明理由.解:存在满足条件的二次函数.因为2122(1)y y x x -=-+221x x =-+-2(1)x =--≤0,所以,当自变量x 取任意实数时,1y ≤2y 均成立.由已知,二次函数23y ax bx c =++的图象经过点(-5,2),得2552a b c -+=. ① 当1x =时,有122y y ==,3y a b c =++.由于对于自变量x 取任意实数时,1y ≤3y ≤2y 均成立, 所以有2 ≤a b c ++≤2,故2a b c ++=. ② 由①,②,得 4b a =,25c a =-,所以234(25)y ax ax a =++-.……… 5分当1y ≤3y 时,有 2x ≤24(25)axax a ++-,即 2(42)(25)ax a x a +-+-≥0,所以二次函数2(42)(25)y ax a x a =+-+-对于一切实数x ,函数值大于或等于零, 故20(42)4(25)0a a a a >⎧⎨---≤⎩,. 即20(31)0,a a >⎧⎨-≤⎩,所以13a =.……………… 10分 当3y ≤2y 时, 有 24(25)ax ax a ++-≤21x +,即2(1)4(51)a xax a --+-≥0,所以二次函数2(1)4(51)y a x ax a =--+-对于一切实数x ,函数值大于或等于零, 故210(4)4(1)(51)0a a a a ->⎧⎨----≤⎩,. 即21(31)0,a a <⎧⎨-≤⎩, 所以 13a =. 综上,13a =,443b a ==, 1253c a =-=.所以,存在二次函数23141333y x x =++,在实数范围内,对于x 的同一个值,都有1y ≤3y ≤2y 成立. ……………… 15分(13)是否存在质数p ,q ,使得关于x 的一元二次方程20px qx p -+= 有有理数根?解:设方程有有理数根,则判别式为平方数.令2224qp n ∆=-=,其中n 是一个非负整数.则2()()4q n q n p -+=. ……………… 5分 由于1≤q n -≤q +n ,且q n -与q n +同奇偶,故同为偶数. 因此,有如下几种可能情形:222q n q n p -=⎧⎨+=⎩,, 24q n q n p -=⎧⎨+=⎩,, 4q n p q n p -=⎧⎨+=⎩,, 22q n p q n p -=⎧⎨+=⎩,, 24.q n p q n ⎧-=⎨+=⎩, 消去n ,解得22251222222p p p q p q q q p q =+=+===+, , , , .……………… 10分对于第1,3种情形,2p =,从而q =5;对于第2,5种情形,2p =,从而q =4(不合题意,舍去); 对于第4种情形,q 是合数(不合题意,舍去).又当2p =,q =5时,方程为22520x x -+=,它的根为12122x x ==,,它们都是有理数.综上所述,存在满足题设的质数. ……………… 15分(14)如图,△ABC 的三边长BC a CA b AB c ===,,,a b c ,,都是整数,且a b , 的最大公约数为2.点G 和点I 分别为△ABC 的重心和内心,且90GIC ∠=︒.求△ABC 的周长.解:如图,延长GI ,与边BC CA ,分 别交于P Q ,.设重心G 在边BC CA ,上的投影分别 为E F ,,△ABC 的内切圆的半径为r ,BC CA ,边上的高的长分别为a b h h ,,易知CP =CQ ,由PQCGPC GQC S S S =+△△△,可得()123a b r GE GF h h =+=+, 即 222123ABC ABC ABCS S S a b c a b ⎛⎫⨯=⨯+⎪++⎝⎭△△△,从而可得 6aba b c a b++=+. ……………… 10分因为△ABC 的重心G 和内心I 不重合,所以,△ABC 不是正三角形,且b a ≠,否则,2a b ==,可得2c =,矛盾. 不妨假设a b >,由于()2a b =,,设()1111221a a b b a b ===,,,,于是,有1111126a b ab a b a b =++为整数, 所以有11()12a b +,即()24a b +.于是只有1410a b ==,时,可得11c =,满足条件. 因此有35a b c ++=.所以,△ABC 的周长为35. ……………… 15分。