《切线长定理》教案新部编本
初中数学切线长定理教案
初中数学切线长定理教案教学目标:1. 理解切线长的概念,掌握切线长定理。
2. 通过对例题的分析,培养学生分析总结问题的习惯,提高学生综合运用知识解题的能力,培养数形结合的思想。
3. 通过对定理的猜想和证明,激发学生的学习兴趣,调动学生的学习积极性,树立科学的学习态度。
教学重点:理解并掌握切线长定理。
教学难点:应用切线长定理解决问题。
教学准备:多媒体计算机、黑板、粉笔。
教学过程:一、导入(5分钟)1. 引导学生回顾圆的性质,如圆的轴对称性、圆的切线与半径的关系等。
2. 提问:从圆外一点可以引几条切线?它们的性质是什么?二、新课讲解(15分钟)1. 介绍切线长的概念:圆外一点引出的两条切线,它们的切线长相等。
2. 引导学生观察图形,猜想切线长定理。
3. 引导学生通过几何画图和度量,验证猜想。
4. 引导学生运用代数方法证明切线长定理。
三、例题分析(15分钟)1. 给出一个应用切线长定理的例题,引导学生分析解题思路。
2. 引导学生一起解答例题,注意引导学生运用切线长定理。
3. 总结解题方法,强调切线长定理在解题中的应用。
四、课堂练习(15分钟)1. 给出几道练习题,让学生独立完成。
2. 引导学生相互讨论,解答练习题。
3. 选取部分学生的作业进行点评,讲解正确解题思路。
五、课堂小结(5分钟)1. 回顾本节课所学内容,让学生总结切线长定理的性质和应用。
2. 强调切线长定理在几何解题中的重要性。
六、课后作业(课后自主完成)1. 深化理解切线长定理,尝试解决更复杂的几何问题。
2. 撰写一篇关于切线长定理的学习心得,分享自己的学习体会。
教学反思:本节课通过引导学生观察、猜想、证明和应用,使学生掌握了切线长定理。
在教学过程中,注意调动学生的学习积极性,培养学生的几何思维和代数解题能力。
通过例题分析和课堂练习,让学生更好地理解和运用切线长定理。
在今后的教学中,要继续关注学生的学习情况,针对不同学生制定合适的教学策略,提高教学效果。
《切线长定理》教案
《切线长定理》教案一、教材分析:本课内容选自九年数学上学期的切线长定理。
切线问题,首先条数由一条、两条再到三条,前置作业先让学生动手操作画一条切线,两条切线问题,从而发现切线长定理,然后进行三条切线问题的研究——即三角形的内切圆。
通过前置作业和课堂新授课让学生经历了从画到探到计算的全过程,使学生领略了“山穷水尽疑无路,柳暗花明又一村”的意境,领悟了“化多为少,化难为易,化新为旧”的研究问题的一般思路。
重点分析:切线长定理及其应用.因切线长定理再次体现了圆的轴对称性,它为证明线段相等、角相等、弧相等、垂直关系等提供了理论依据,它属于工具知识,经常应用,因此它是本节的重点.难点分析:与切线长定理有关的证明和计算问题.不仅应用切线长定理,还用到方程的知识,是代数与几何的综合题,学生往往不能很好的把知识连贯起来.二、教学目标:(1)、知识技能目标:了解切线长的定义,掌握切线长定理,并利用它进行有关的计算;在运用切线长定理的解题过程中,进一步渗透方程的思想,熟悉用代数的方法解几何题。
(2)、数学思考目标:经历画图、度量、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,培养学生有条理地、清晰地阐述自己的观点的能力。
(3)、解决问题目标:初步学会从数学的角度提出问题、理解问题,并能运用所学的知识和技能解决问题,发展应用意识。
在解题中形成解决问题的基本策略,体验问题策略的多样性,发展实践能力与创新精神。
(4)、情感与态度目标:了解数学的价值,对数学有好奇心与求知欲,在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心。
三、教学重点:理解切线长定理四、教学难点:应用切线长定理解决问题五、教学实施过程:活动一 :切线长定义1、板书定义:在经过圆外一点的切线上,这一点和切点之间的线段的长叫做这点到圆的切线长.2、剖析定义:(1)找出中心词,把定义进行缩句。
(线段的长叫做切线长)(2)定义中的“线段”具有什么特征?①在圆的切线上;②两个端点一个是切点,一个是圆外已知点。
切线长定理教案(优秀教案)-(含多款)
切线长定理教案(优秀教案)-(含多款)教案切线长定理教案一、教学目标1.让学生理解切线长定理的概念和意义,掌握切线长定理的证明和应用方法。
2.培养学生的几何思维能力,提高学生的空间想象力和逻辑推理能力。
3.培养学生运用切线长定理解决实际问题的能力,增强学生的数学应用意识。
二、教学内容1.切线长定理的概念和意义2.切线长定理的证明方法3.切线长定理的应用三、教学重点与难点1.教学重点:切线长定理的概念、证明和应用。
2.教学难点:切线长定理的证明过程,以及如何运用切线长定理解决实际问题。
四、教学方法1.采用启发式教学方法,引导学生自主探究切线长定理的证明和应用。
2.利用多媒体教学手段,展示切线长定理的直观图形,帮助学生理解定理。
3.设计丰富的例题和练习题,让学生在实践操作中掌握切线长定理的应用。
五、教学过程1.导入新课通过生活中的实例,如圆规作图等,引出切线长定理的概念,激发学生的学习兴趣。
2.讲解切线长定理的概念和意义(1)切线的定义:与圆相切,且与圆的半径垂直的直线。
(2)切线长定理:从圆外一点引圆的两条切线,切线长相等。
3.证明切线长定理(1)构造图形,连接圆心与切点,利用圆的半径相等,证明切线长相等。
(2)通过几何画板演示证明过程,让学生直观感受定理的正确性。
4.切线长定理的应用(1)讲解切线长定理在几何作图中的应用,如求圆的切线、等分弦等。
(2)讲解切线长定理在解决实际问题中的应用,如求圆的直径、周长等。
5.课堂练习设计不同难度的练习题,让学生独立完成,巩固切线长定理的应用。
6.总结与拓展(1)总结切线长定理的概念、证明和应用方法。
(2)拓展切线长定理的相关知识,如圆的切线方程、切线长定理的推广等。
7.课后作业布置适量的课后作业,让学生巩固所学知识,提高解题能力。
六、教学评价1.课堂参与度:观察学生在课堂上的发言和讨论情况,了解学生的学习兴趣和积极性。
2.作业完成情况:检查学生的作业,了解学生对切线长定理的掌握程度。
《24.2.2 第3课时 切线长定理》教案、导学案、同步练习
《第3课时 切线长定理》教案【教学目标】1.掌握切线长定理,初步学会运用切线长定理进行计算与证明.2.了解有关三角形的内切圆和三角形的内心的概念.3.学会利用方程思想解决几何问题,体验数形结合思想.【教学过程】一、情境导入新农村建设中,张村计划在一个三角形中建一个最大面积的圆形花园,请你设计一个建筑方案.二、合作探究探究点一:切线长定理 【类型一】利用切线长定理求三角形的周长如图,PA 、PB 分别与⊙O 相切于点A 、B ,⊙O 的切线EF 分别交PA 、PB于点E 、F ,切点C 在AB ︵上.若PA 长为2,则△PEF 的周长是________.解析:因为PA 、PB 分别与⊙O 相切于点A 、B ,所以PA =PB ,因为⊙O 的切线EF 分别交PA 、PB 于点E 、F ,切点为C ,所以EA =EC ,CF =BF ,所以△PEF 的周长PE +EF +PF =PE +EC +CF +PF =(PE +EC )+(CF +PF )=PA +PB =2+2=4. 【类型二】利用切线长定理求角的大小如图,PA 、PB 是⊙O 的切线,切点分别为A 、B ,点C 在⊙O 上,如果∠ACB =70°,那么∠OPA 的度数是________度.解析:如图所示,连接OA、OB.∵PA、PB是⊙O的切线,切点分别为A、B,∴OA⊥PA,OB⊥PB,∴∠OAP=∠OBP=90°.又∵∠AOB=2∠ACB=140°,∴∠APB =360°-∠PAO-∠AOB-∠OBP=360°-90°-140°-90°=40°.又易证△POA≌△POB,∴∠OPA=12∠APB=20°.故答案为20.方法总结:由公共点引出的两条切线,可以运用切线长定理得到等腰三角形.另外根据全等的判定,可得到PO平分∠APB.【类型三】切线长定理的实际应用为了测量一个圆形铁环的半径,某同学采用了如下办法:将铁环平放在水平桌面上,用一个锐角为30°的三角板和一把刻度尺,按如图所示的方法得到相关数据,进而可求得铁环的半径.若测得PA=5cm,则铁环的半径长是多少?说一说你是如何判断的.解:过O作OQ⊥AB于Q,设铁环的圆心为O,连接OP、OA.∵AP、AQ为⊙O 的切线,∴AO为∠PAQ的平分线,即∠PAO=∠QAO.又∠BAC=60°,∠PAO+∠QAO +∠BAC=180°,∴∠PAO=∠QAO=60°.在Rt△OPA中,PA=5,∠POA=30°,∴OP=55(cm),即铁环的半径为55cm.探究点二:三角形的内切圆【类型一】求三角形的内切圆的半径如图,⊙O是边长为2的等边△ABC的内切圆,则⊙O的半径为________.解析:如图,连接OD .由等边三角形的内心即为中线,底边高,角平分线的交点.所以∠OCD =30°,OD ⊥BC ,所以CD =12BC ,OC =2OD .又由BC =2,则CD =1.在Rt △OCD 中,根据勾股定理得OD 2+CD 2=OC 2,所以OD 2+12=(2OD )2,所以OD =33.即⊙O 的半径为33. 方法总结:等边三角形的内心为等边三角形中线,底边高,角平分线的交点,它到三边的距离相等. 【类型二】求三角形的周长如图,Rt △ABC 的内切圆⊙O 与两直角边AB ,BC 分别相切于点D 、E ,过劣弧DE ︵(不包括端点D 、E )上任一点P 作⊙O 的切线MN 与AB 、BC 分别交于点M 、N .若⊙O 的半径为r ,则Rt △MBN 的周长为( )A .r B.32r C .2r D.52r 解析:连接OD ,OE ,∵⊙O 是Rt △ABC 的内切圆,∴OD ⊥AB ,OE ⊥BC .又∵MD ,MP 都是⊙O 的切线,且D 、P 是切点,∴MD =MP ,同理可得NP =NE ,∴C Rt △MBN =MB +BN +NM =MB +BN +NP +PM =MB +MD +BN +NE =BD +BE =2r ,故选C. 三、板书设计【教学反思】教学过程中,强调用切线长定理可解决有关求角度、周长的问题.明确三角形内切圆的圆心是三角形三条角平分线的交点,到三边的距离相等.《第3课时切线长定理》教案【教学目标】:1、了解切线长定义,掌握切线长定理,并利用它进行有关计算。
教案《切线长定理》
教案《切线长定理》教案《切线长定理》教案《切线长定理》1、教材分析(1)知识结构(2)重点、难点分析重点:切线长定理及其应用.因切线长定理再次体现了圆的轴对称性,它为证明线段相等、角相等、弧相等、垂直关系等提供了理论依据,它属于工具知识,经常应用,因此它是本节的重点.难点:与切线长定理有关的证明和计算问题.如120页练习题中第3题,它不仅应用切线长定理,还用到解方程组的知识,是代数与几何的综合题,学生往往不能很好的把知识连贯起来.2、教法建议本节内容需要一个课时.(1)在教学中,组织学生自主观察、猜想、证明,并深刻剖析切线长定理的基本图形;对重要的结论及时总结;(2)在教学中,以“观察——猜想——证明——剖析——应用——归纳”为主线,开展在教师组织下,以学生为主体,活动式教学.教学目标1.理解切线长的概念,掌握切线长定理;2.通过对例题的分析,培养学生分析总结问题的习惯,提高学生综合运用知识解题的能力,培养数形结合的思想.3.通过对定理的猜想和证明,激发学生的学习兴趣,调动学生的学习积极性,树立科学的学习态度.教学重点:切线长定理是教学重点教学难点:切线长定理的灵活运用是教学难点教学过程设计:(一)观察、猜想、证明,形成定理1、切线长的概念.如图,P是⊙O外一点,PA,PB是⊙O的两条切线,我们把线段PA,PB叫做点P到⊙O的切线长.引导学生理解:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.2、观察利用电脑变动点P 的位置,观察图形的特征和各量之间的关系.3、猜想引导学生直观判断,猜想图中PA是否等于PB. PA=PB.4、证明猜想,形成定理.猜想是否正确,数学教案-切线长定理。
需要证明.组织学生分析证明方法.关键是作出辅助线OA,OB,要证明PA =PB.想一想:根据图形,你还可以得到什么结论?∠OPA=∠OPB(如图)等.切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.5、归纳:把前面所学的切线的5条性质与切线长定理一起归纳切线的性质6、切线长定理的基本图形研究如图,PA,PB是⊙O的两条切线,A,B为切点.直线OP交⊙O 于点D,E,交AP于C(1)写出图中所有的垂直关系;(2)写出图中所有的全等三角形;(3)写出图中所有的相似三角形;(4)写出图中所有的等腰三角形.说明:对基本图形的深刻研究和认识是在学习几何中关键,它是灵活应用知识的基础.(二)应用、归纳、反思例1、已知:如图,P为⊙O外一点,PA,PB为⊙O的切线,A和B是切点,BC是直径.求证:AC∥OP.分析:从条件想,由P是⊙O外一点,PA、PB为⊙O的切线,A,B是切点可得PA=PB,∠APO=∠BPO,又由条件BC是直径,可得OB=OC,由此联想到与直径有关的.定理“垂径定理”和“直径所对的圆周角是直角”等.于是想到可能作辅助线AB.从结论想,要证AC∥OP,如果连结AB交OP于O,转化为证CA⊥AB,OP ⊥AB,或从OD为△ABC的中位线来考虑.也可考虑通过平行线的判定定理来证,可获得多种证法.证法一.如图.连结AB.PA,PB分别切⊙O于A,B∴PA=PB∠APO=∠BPO∴ OP ⊥AB又∵BC为⊙O直径∴AC⊥AB∴AC∥OP (学生板书)证法二.连结AB,交OP于DPA,PB分别切⊙O于A、B∴PA=PB∠APO=∠BPO∴AD=BD又∵BO=DO∴OD是△ABC的中位线∴AC∥OP证法三.连结AB,设OP与AB弧交于点EPA,PB分别切⊙O于A、B∴PA=PB∴ OP ⊥AB∴ =∴∠C=∠POB∴AC∥OP反思:教师引导学生比较以上证法,激发学生的学习兴趣,培养学生灵活应用知识的能力.例2、圆的外切四边形的两组对边的和相等.(分析和解题略)反思:(1)例3事实上是圆外切四边形的一个重要性质,请学生记住结论.(2)圆内接四边形的性质:对角互补.P120练习:练习1 填空如图,已知⊙O的半径为3厘米,PO=6厘米,PA,PB分别切⊙O 于A,B,则PA=_______,∠APB=________练习2 已知:在△ABC中,BC=14厘米,AC=9厘米,AB=13厘米,它的内切圆分别和BC,AC,AB切于点D,E,F,求AF,AD 和CE的长.分析:设各切线长AF,BD和CE分别为x厘米,y厘米,z厘米.后列出关于x , y,z的方程组,解方程组便可求出结果.(解略)反思:解这个题时,除了要用三角形内切圆的概念和切线长定理之外,还要用到解方程组的知识,是一道综合性较强的计算题.通过对本题的研究培养学生的综合应用知识的能力.(三)小结1、提出问题学生归纳(1)这节课学习的具体内容;(2)学习用的数学思想方法;(3)应注意哪些概念之间的区别?2、归纳基本图形的结论3、学习了用代数方法解决几何问题的思想方法.(四)作业教材P131习题7.4A组1.(1),2,3,4.B组1题.探究活动图中找错你能找出(图1)与(图2)的错误所在吗?在图2中,P1A为⊙O1和⊙O3的切线、P1B为⊙O1和⊙O2的切线、P2C为⊙O2和⊙O3的切线.提示:在图1中,连结PC、PD,则PC、PD都是圆的直径,从圆上一点只能作一条直径,所以此图是一张错图,点O应在圆上.在图2中,设P1A=P1B=a,P2B=P2C=b,P3A=P3C=c,则有a=P1A=P1P3+P3A=P1P3+ c ①c=P3C=P2P3+P3A=P2P3+ b ②a=P1B=P1P2+P2B=P1P2+ b ③将②代人①式得a =P1P3+(P2P3+ b)=P1P3+P2P3+ b,∴a-b=P1P3+P2P3由③得a-b=P1P2得∴P1P2=P2P3+ P1P3∴P1、P 2 、P3应重合,故图2是错误的.数学教案-切线长定理。
切线长定理教育教学设计
切线长定理教育教学设计【教学设计】课程名称:数学教学内容:切线长定理教学目标:1.知识目标:了解切线长定理的概念,掌握切线长度的计算方法;2.能力目标:能够灵活运用切线长定理解决相关问题;3.情感目标:培养学生的数学兴趣,激发学生对数学的好奇心和探究欲望。
重点难点:切线长度的计算方法、如何灵活运用切线长定理解决问题。
教学准备:教材、黑板、粉笔、实物模型。
教学过程:Step 1 导入新知(5分钟)1.引入话题:通过提问引入,例如“你知道什么是切线吗?”“切线和弦有什么区别?”2.提出问题:什么是切线长定理?3.小组讨论:让学生在小组内讨论并回答问题。
Step 2 理论探究(30分钟)1.讲解切线长定理的概念和表达方式:使用黑板,让学生用自己的语言解释切线长定理,并将解释内容记录在黑板上。
2.演示切线长度计算方法:在黑板上画出一个圆,并标出切点和切线,然后演示如何根据切线长度计算方法计算切线长度。
3.学生练习:让学生自己动手计算给定的切线长度,并与搭桥的方法进行对比。
Step 3 整合运用(30分钟)1.分组讨论:将学生分为几个小组,每个小组选择一个实际场景,例如自行车轮胎的修理、建筑中的圆台等,并结合切线长定理进行讨论。
2.小组展示:让每个小组展示他们的讨论结果,包括场景描述和切线长度的计算过程。
Step 4 拓展应用(30分钟)1.知识运用:设计一些练习题,让学生运用切线长定理解决相关问题,并给予适当的指导。
2.拓展应用:设计一些拓展题,让学生通过切线长定理解决更复杂的问题,激发学生的思维能力。
Step 5 课堂小结(5分钟)1.总结切线长定理的概念和计算方法;2.强调切线长定理的重要性;3.激发学生对数学的兴趣和好奇心。
Step 6 课后作业(5分钟)1.布置课后作业:让学生完成相关的练习题,巩固所学知识;2.提出思考题:例如“还有哪些几何图形中可以运用切线长定理解决问题?”教学反思:本节课通过引入切线长定理的概念,讲解切线长度的计算方法,并将其应用于实际场景和拓展应用中,旨在提高学生对数学概念的理解和运用能力。
切线长定理教案(优秀教案)
《切线长定理》教案课题:§6.10 切线长定理1 、教学目标:(1))、知识目标:了解切线长的定义,掌握切线长定理,并利用它进行有关的计算;在运用切线长定理的解题过程中,进一步渗透方程的思想,熟悉用代数的方法解几何题。
(2))、能力目标:经历画图、度量、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,培养学生有条理地、清晰地阐述自己的观点的能力。
(3))、素质目标:初步学会从数学的角度提出问题、理解问题,并能运用所学的知识和技能解决问题,发展应用意识。
在解题中形成解决问题的基本策略,体验问题策略的多样性,发展实践能力与创新精神。
(4))、情感与态度目标:了解数学的价值,对数学有好奇心与求知欲,在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心。
2 、教学重点:理解切线长定理3 、教学难点:应用切线长定理解决问题4 、教学方法:教学方法采用引导发现法,辅之以讨论法。
利用“问题情境——建立数学模型——解释、应用、拓展”的模式进行教学。
本节课是概念、定理、解题的教学,因此,要利用概念模式元、定理教学模式元、解题教学模式元的有机组合,完成本节课的教学。
5、课型:综合课6 、教具:多媒体计算机、自制圆半径测量仪、悠悠球7 、学具:刻度尺 2 把、量角器、圆规、水杯、强力胶8、教学实施过程:教学教学内容师生相互交往设计意图过程同学们,请看这是什么玩具?(悠悠球)对,这是大家非常喜爱的一种玩具。
(教师演示一次)可是,大家在玩悠悠球时是否想到过它的转动过程中还包含教师出示同学们熟悉并且喜爱的玩具之后着数学知识呢?是什么知识呢?我们来看一下它的构连续几问转入正题。
一、造。
(拆开球,出示球的剖面)这是悠悠球在转动的一学生看到玩具眼睛吸引学瞬间的剖面,从中你能抽象出什么样的数学图形?(球一亮,注意力被吸引,生的注意激发的整体和中心轴可分别抽象成圆形,被拉直的线绳可想到老师为什么会在课力,激发学情趣抽象成线段。
切线长定理教案
切线长定理教案
教学目标:
1. 理解切线长定理的概念和含义。
2. 掌握切线长定理的推导和运用方法。
3. 能够在实际问题中灵活应用切线长定理。
教学准备:
1. 教案课件或黑板。
2. 切线长定理的相关练习题。
3. 学生计算器和直尺。
教学过程:
引入:
1. 师生互动:提问学生,你们知道什么是切线吗?切线与圆有什么关系?
2. 引出切线长定理:通过师生互动的方式,引出切线长定理的概念和含义。
讲解切线长定理:
1. 在黑板上或课件上展示切线长定理的公式:对于一个圆和它的切线,这条切线的长度是圆心到切点的距离的平方根乘以2。
2. 讲解切线长定理的推导过程:通过几何分析说明切线长定理的原理和推导过程。
示范应用:
1. 黑板上或课件上展示几个切线长定理的应用例题,并逐步解
题。
2. 学生独立解答几个切线长定理的练习题,教师逐个检查并指导。
拓展应用:
1. 提供更多的切线问题,让学生自行思考并解决。
2. 引导学生思考切线长定理在实际生活和工作中的应用,如航海导航、建筑测量等。
总结:
1. 让学生总结切线长定理的概念和公式。
2. 强调切线长定理的重要性和应用价值。
3. 鼓励学生多做切线长定理的练习题,加强对该定理的理解和掌握。
应用练习:
布置相关的练习题,让学生在课后进行巩固和拓展。
- 结束 -。
切线长定理的教学设计
切线长定理的教学设计教学设计:切线长定理一、教学目标:1.理解切线长定理的概念和公式。
2.掌握应用切线长定理计算相关问题的方法。
3.培养学生的思维逻辑能力和数学推理能力。
二、教学准备:1.教师准备黑板、粉笔、投影仪等教学工具。
2.学生准备纸笔等学习工具。
三、教学过程:第一部分:导入新知1. 教师用一道具体问题引入切线长定理的概念,如:请思考,一个半径为5cm的圆,有一条线段与圆相切,线段长度为8cm,那么这条线段是圆的什么部分?学生思考后回答切线。
教师引导学生思考切线与圆的关系。
2.教师用黑板上的图形向学生展示切线的定义,并引导学生回答切线与圆的关系。
然后,教师引入切线长定理,并对定理进行介绍与解释。
3.教师向学生展示定理的证明过程,以加深学生对定理的理解。
第二部分:切线长定理的公式推导1.教师向学生讲解切线长定理的公式推导过程。
教师用黑板或投影仪展示推导过程,并引导学生一起完成。
2.学生逐步推导切线长定理的公式,教师进行指导和纠正。
3.学生站起来,互相核对答案,并与教师进行讨论。
第三部分:切线长定理的应用1. 教师通过实例向学生展示切线长定理的应用。
例如,给出一个半径为6cm的圆,线段与圆相切,线段长为10cm,让学生计算切线长。
2.学生用纸和笔在课本或练习册上计算问题。
教师巡视教室,指导学生解决问题。
3.学生互相核对答案并与教师讨论。
第四部分:练习与拓展1.教师提供一些练习题,学生在纸上进行计算。
2.教师引导学生思考一些拓展问题,如:当线段与圆相交、两个圆相切等情况下,如何应用切线长定理。
3.学生讨论解决拓展问题。
教师对解决方法进行总结和点评,引导学生发现问题的普遍解法。
第五部分:课堂小结1.教师对切线长定理进行小结,强调定理的重要性和应用范围。
2.教师提醒学生预习下一课时的内容。
四、教学反思:切线长定理是中学数学中的一个重要定理,教师在课堂上需要通过一道具体问题引入切线的概念,并引导学生之间的互动与讨论,以培养学生的思维能力和数学推理能力。
切线长定理教案范文
切线长定理教案范文教学目标:1.理解切线长定理的概念和原理;2.能够运用切线长定理解决相关问题;3.发展学生的逻辑思维和分析问题的能力。
教学准备:1.教师准备黑板、白板或PPT等教学工具;2.准备学生练习的题目和答案;3.预先了解学生对切线长定理的基本知识。
教学步骤:引入(10分钟)1.通过引导学生回顾圆的基本知识,例如:圆心、直径、半径等;2.提问学生在绘制两条切线的过程中遇到的问题或困惑;3.引出本课的主题,切线长定理,并激发学生的学习兴趣。
探究(30分钟)1.通过幻灯片或板书等方式向学生简要介绍切线长定理的概念和原理;2.示意图:绘制一个圆,画出圆上的一条切线,并在切点处引出垂线;3.说明如何推导出切线长定理,即证明切线长度平方等于切点至圆心线段与切点至切线上特定点线段的乘积;4.通过几个基本的习题帮助学生理解和掌握切线长定理的应用,例如求切线长度、求圆心角度数等。
拓展(15分钟)1.利用白板或幻灯片向学生展示一些应用切线长定理解决问题的例子,例如圆与正方形的关系、切线定理与余弦定理的关系等;2.引导学生分析这些例子中如何运用切线长定理,并思考如何将切线长定理应用到其他几何问题中。
讲解(20分钟)1.通过多个几何例子详细讲解切线长定理的应用方法;2.针对学生容易出现的错误和疑惑,进行解答和澄清;3.鼓励学生积极思考,提出问题并与教师和同学进行讨论。
总结(5分钟)1.回顾本课的学习内容,强调切线长定理的重要性和应用价值;2.鼓励学生总结切线长定理的特点和应用方法;3.帮助学生解决最后的疑惑,激发学生对几何学习的兴趣。
作业布置:1.布置一些与切线长定理相关的题目,并要求学生在规定时间内完成,并准备下节课进行讲解和讨论;2.鼓励学生用自己的语言总结切线长定理的应用方法和特点。
教学反思:1.教师应在每个环节中引导学生主动思考和参与讨论,建立学生的自主学习意识;2.注意针对学生的理解程度进行差异化教学,帮助弱势学生理解掌握切线长定理;3.合理利用教学工具和资源,创设合作学习和探究式学习的环境,提高学生的学习兴趣和参与度。
《24.2.2 第3课时 切线长定理》教案、导学案、同步练习
《第3课时 切线长定理》教案【教学目标】1.掌握切线长定理,初步学会运用切线长定理进行计算与证明.2.了解有关三角形的内切圆和三角形的内心的概念.3.学会利用方程思想解决几何问题,体验数形结合思想.【教学过程】一、情境导入新农村建设中,张村计划在一个三角形中建一个最大面积的圆形花园,请你设计一个建筑方案.二、合作探究探究点一:切线长定理 【类型一】利用切线长定理求三角形的周长如图,PA 、PB 分别与⊙O 相切于点A 、B ,⊙O 的切线EF 分别交PA 、PB于点E 、F ,切点C 在AB ︵上.若PA 长为2,则△PEF 的周长是________.解析:因为PA 、PB 分别与⊙O 相切于点A 、B ,所以PA =PB ,因为⊙O 的切线EF 分别交PA 、PB 于点E 、F ,切点为C ,所以EA =EC ,CF =BF ,所以△PEF 的周长PE +EF +PF =PE +EC +CF +PF =(PE +EC )+(CF +PF )=PA +PB =2+2=4. 【类型二】利用切线长定理求角的大小如图,PA 、PB 是⊙O 的切线,切点分别为A 、B ,点C 在⊙O 上,如果∠ACB =70°,那么∠OPA 的度数是________度.解析:如图所示,连接OA、OB.∵PA、PB是⊙O的切线,切点分别为A、B,∴OA⊥PA,OB⊥PB,∴∠OAP=∠OBP=90°.又∵∠AOB=2∠ACB=140°,∴∠APB =360°-∠PAO-∠AOB-∠OBP=360°-90°-140°-90°=40°.又易证△POA≌△POB,∴∠OPA=12∠APB=20°.故答案为20.方法总结:由公共点引出的两条切线,可以运用切线长定理得到等腰三角形.另外根据全等的判定,可得到PO平分∠APB.【类型三】切线长定理的实际应用为了测量一个圆形铁环的半径,某同学采用了如下办法:将铁环平放在水平桌面上,用一个锐角为30°的三角板和一把刻度尺,按如图所示的方法得到相关数据,进而可求得铁环的半径.若测得PA=5cm,则铁环的半径长是多少?说一说你是如何判断的.解:过O作OQ⊥AB于Q,设铁环的圆心为O,连接OP、OA.∵AP、AQ为⊙O 的切线,∴AO为∠PAQ的平分线,即∠PAO=∠QAO.又∠BAC=60°,∠PAO+∠QAO +∠BAC=180°,∴∠PAO=∠QAO=60°.在Rt△OPA中,PA=5,∠POA=30°,∴OP=55(cm),即铁环的半径为55cm.探究点二:三角形的内切圆【类型一】求三角形的内切圆的半径如图,⊙O是边长为2的等边△ABC的内切圆,则⊙O的半径为________.解析:如图,连接OD .由等边三角形的内心即为中线,底边高,角平分线的交点.所以∠OCD =30°,OD ⊥BC ,所以CD =12BC ,OC =2OD .又由BC =2,则CD =1.在Rt △OCD 中,根据勾股定理得OD 2+CD 2=OC 2,所以OD 2+12=(2OD )2,所以OD =33.即⊙O 的半径为33. 方法总结:等边三角形的内心为等边三角形中线,底边高,角平分线的交点,它到三边的距离相等. 【类型二】求三角形的周长如图,Rt △ABC 的内切圆⊙O 与两直角边AB ,BC 分别相切于点D 、E ,过劣弧DE ︵(不包括端点D 、E )上任一点P 作⊙O 的切线MN 与AB 、BC 分别交于点M 、N .若⊙O 的半径为r ,则Rt △MBN 的周长为( )A .r B.32r C .2r D.52r 解析:连接OD ,OE ,∵⊙O 是Rt △ABC 的内切圆,∴OD ⊥AB ,OE ⊥BC .又∵MD ,MP 都是⊙O 的切线,且D 、P 是切点,∴MD =MP ,同理可得NP =NE ,∴C Rt △MBN =MB +BN +NM =MB +BN +NP +PM =MB +MD +BN +NE =BD +BE =2r ,故选C. 三、板书设计【教学反思】教学过程中,强调用切线长定理可解决有关求角度、周长的问题.明确三角形内切圆的圆心是三角形三条角平分线的交点,到三边的距离相等.《第3课时切线长定理》教案【教学目标】:1、了解切线长定义,掌握切线长定理,并利用它进行有关计算。
《切线长定理》教学设计
《切线长定理》教学设计教学设计:《切线长定理》一、教学目标:1.理解《切线长定理》的概念和性质;2.掌握求解圆内切、圆外切问题的方法;3.能够灵活运用《切线长定理》解决相关的几何问题。
二、学情导入:1.复习圆的性质,包括圆心角、弧长、互弦垂直、半径垂直等;2.提出一个问题,如何判断一个点在圆内部还是外部?请同学们讨论。
三、新课内容展示:1.引入《切线长定理》的概念:什么是切线?什么是弦?切线是与圆相切于圆的一条直线,与半径垂直;弦是圆上两点之间的线段。
2.学习《切线长定理》的表述及证明:表述:两条切线长度相等,或两条切线中较近的切线的长等于切点到圆心的距离。
证明:构造圆心角相等的两个弧,再利用弧长等于圆心角的定理。
四、示例讲解:1.举例解释圆内切问题的求解方法:将一张纸折成U形,底边是个较长的直线段,底端固定不动,然后将纸折成圆弧,使圆弧与底边相切,这样底边上的两端的端点就是圆内切问题的切点。
2.举例解释圆外切问题的求解方法:将两段不同长度的线段放在一张已知圆的上方,固定一端,另一端在圆上移动,当两线段相切时,两线段长度相等。
五、知识巩固:1.教师请同学们进行一些练习题,包括圆内切和圆外切的问题,并提醒他们运用《切线长定理》;2.教师在黑板上列出几道练习题,请同学们自己思考并解答,并让其中表现出色的同学上台讲解解题过程。
六、拓展应用:1.教师引导同学们根据已学知识,自己设计一个切线长的问题,并提出解决思路;2.教师组织同学们进行小组讨论,并让每个小组派代表上台分享他们的问题和解决思路。
七、归纳总结:1.让同学们回顾本节课所学内容,总结《切线长定理》的应用;2.教师帮助同学们归纳总结,将重要的知识点和解题方法写在黑板上。
八、作业布置:1.布置一道拓展题作为课后作业;2.要求同学们再次巩固《切线长定理》的应用,自主设计一个题目,并提供解题思路。
九、教学反思:本节课采用了以问题为导向的教学法,让同学们自己思考并解决问题,既培养了他们的思考能力和独立解决问题的能力,又能够拓展他们的应用思维。
切线长定理教案
切线长定理教案一、教学目标1. 让学生掌握切线长定理,并能利用该定理进行简单的证明和计算。
2. 通过教学,让学生感受数学之美,培养学生对数学的兴趣。
3. 培养学生的逻辑推理能力和解决问题的能力。
二、教学重难点重点:切线长定理的推导和应用。
难点:切线长定理的理解和应用。
三、教具准备黑板、粉笔、圆规、直尺、多媒体课件等。
四、教学过程1. 导入新课(1)回顾旧知:复习圆的切线性质,为引入切线长定理打下基础。
(2)创设情境:通过生活中的实例,引出切线长定理。
2. 探究新知(1)让学生观察、思考,尝试自己推导切线长定理。
(2)教师引导学生进行逻辑推理,得出结论。
(3)教师讲解切线长定理的证明过程,强调定理的适用条件。
(4)学生思考:切线长定理与圆的切线性质有什么联系和区别?(5)教师总结:切线长定理是圆的切线性质的延伸和拓展,为说明线段相等提供了新的方法。
3. 巩固练习(1)判断题:检验学生对切线长定理的理解情况。
(2)填空题:运用切线长定理进行计算。
(3) 解答题:运用切线长定理进行证明。
4. 课堂小结(1)回顾本节课的主要内容,强调切线长定理的重要性和应用方法。
(2)鼓励学生提出问题和疑惑,进行互动交流。
(3)布置课后作业:运用切线长定理进行证明和计算。
五、教学反思本节课通过创设情境、引导探究、讲解证明和运用巩固等环节,让学生掌握了切线长定理,并能利用该定理进行简单的证明和计算。
在教学过程中,注重培养学生的逻辑推理能力和解决问题的能力,让学生通过思考、探究和交流来掌握知识,提高能力。
同时,也注重培养学生的数学兴趣和审美能力,让学生感受数学之美,培养学生对数学的热爱之情。
数学切线长定理的教学案例设计与探究
一、教学目标1.了解数学切线长定理的定义和公式2.掌握如何求取函数图像上一点的切线长度3.培养学生分析问题和解决问题的能力二、教学重难点1.切线长定理的定义和公式理解2.切线长度的计算方法掌握三、教学内容及布置1.初步探究作为引子,让学生通过观察函数图像来猜测切线长度,比如在 y= x²+1 的图像中,当 x=2 时,能否猜测出该点切线的长度?2.切线长定理的讲解讲解切线长定理的概念和公式,用具体的例子和图像来帮助学生理解。
切线长定理:函数 f(x) 在点 x0 处的切线长度为 L =|f'(x0)|√(1+f'(x0)²)其中 f'(x0) 表示函数 f(x) 在点 x0 处的导数。
在讲解之后,让学生通过画出函数图像和计算导数来寻找潜在的切线点。
3.切线长度的计算带领学生通过具体例子计算切线长度,引导他们找到函数图像上的切线,计算导数,并代入公式进行计算。
比如:y= x³+3x²-2x+3 在点 x=1 的切线长度为多少?4.练习针对学生的不同水平分配题目练习,让他们自己寻找切线点并计算切线长度。
5.延伸与拓展介绍更多函数的性质和应用场景,让学生继续探究切线长定理的相关知识。
四、教学方法1.课堂教学结合示范实验,让学生动手操作体验。
2.激发学生求知欲和创造力,促进学生的交流互动。
3.运用归纳法,将教学知识系统化和归纳整理,以促进学生对知识的掌握和应用。
五、教学效果评价1.观察学生的课堂表现和思维活跃程度。
2.课后布置作业,考察学生对相关知识的掌握和应用能力。
3.定期进行小测验或考试,检查学生对知识的掌握和应用。
六、教学心得数学切线长定理在数学中起到了极其重要的作用,运用它不仅可以提高我们对函数图像的认识,还可以在一定程度上解决实际问题。
在教学中要注重培养学生的分析和解决问题的能力,让学生能够将知识应用到实际中。
《切线长定理》教案
《切线长定理》教案一、教学内容本节课的教学内容选自人教版小学数学教材五年级下册第五单元《几何图形》的第97页。
教材主要介绍了切线长定理的内容,并通过实例让学生理解并掌握切线长定理及其应用。
内容包括:1. 定义:圆的切线与半径垂直,且切点到圆心的距离等于切线长。
2. 切线长定理:圆的切线长等于半径的长度。
3. 应用:利用切线长定理解决实际问题,如计算切线长、求解几何图形面积等。
二、教学目标1. 学生能够理解并掌握切线长定理的内容及其应用。
2. 学生能够通过实例运用切线长定理解决问题,提高解决问题的能力。
3. 学生能够培养观察、思考、交流的能力,提高团队协作意识。
三、教学难点与重点重点:切线长定理的理解和应用。
难点:如何引导学生运用切线长定理解决实际问题。
四、教具与学具准备教具:黑板、粉笔、直尺、圆规、剪刀、彩纸。
学具:每人一份教材、一份练习纸、一把剪刀、一些彩纸。
五、教学过程1. 实践情景引入:教师展示一个圆形物体,如圆形蛋糕,提问:“如果你要切这个蛋糕,你会怎么切?”学生回答后,教师引导学生思考:切线与圆的关系是什么?2. 讲解切线长定理:教师利用黑板、粉笔演示切线长定理的证明过程,引导学生观察、思考。
讲解切线与半径垂直、切点到圆心的距离等于切线长的概念。
3. 实例讲解:教师出示一个实例,如计算一个圆的切线长,引导学生运用切线长定理解决问题。
讲解步骤,让学生跟随教师一起动手操作。
4. 随堂练习:教师给出几道练习题,让学生独立完成。
题目包括计算切线长、求解几何图形面积等。
教师挑选几份答案进行讲解、评价。
5. 小组讨论:教师引导学生分组讨论,分享各自解决问题的方法。
让学生互相学习、交流,提高团队协作意识。
6. 作业布置:教师布置作业,包括课后练习题和实际问题解决。
要求学生在课后巩固所学知识,并能应用于实际问题。
六、板书设计切线长定理:1. 圆的切线与半径垂直。
2. 切点到圆心的距离等于切线长。
七、作业设计1. 课后练习题:(1)判断题:圆的切线与半径垂直。
3.1《切线长定理》教案
2.发展学生的逻辑推理能力:在证明和应用切线长定理的过程中,训练学生运用严密的逻辑推理,学会用几何语言表达几何关系,提高几何证明能力。
3.增强学生的数学建模意识:引导学生将切线长定理应用于解决实际问题,培养数学建模意识,提高解决实际问题的能力。
实践活动环节,分组讨论和实验操作进行得相当顺利。学生们在讨论中积极思考,互相交流,展示环节也能看出他们对于切线长定理的理解和应用。但我也注意到,有些小组在解决问题时,思路不够开阔,容易陷入定式思维。因此,我需要在今后的教学中,多设计一些开放性问题,引导学生从多角度思考问题。
学生小组讨论环节,大家围绕切线长定理在实际生活中的应用展开了热烈的讨论。在这个过程中,我发现有些学生能够提出很有见地的观点,但也有一些同学发言不够积极。为了提高全体同学的参与度,我考虑在下次课中采用一些激励措施,如表扬积极发言的学生,以提高他们的积极性。
-与相似三角形知识的综合应用:如何将切线长定理与相似三角形的性质相结合,解决更复杂的几何问题,是学生学习的难点。
举例解释:
-在讲解切线长定理的证明时,引导学生从圆的半径、弦、切线等基本概念出发,运用几何图形和逻辑推理进行证明。
-在解决实际问题时,教师应引导学生分析问题,找出关键信息,并运用切线长定理进行求解。
3.1《切线长定理》教案
一、教学内容
本节课选自教材九年级下册第3章第1节《切线长定理》。教学内容主要包括以下几部分:
1.探索并理解切线长定理:通过直观演示和实际操作,引导学生发现并理解切线长定理,即从圆外一点引两条切线,切线长相等。
2.掌握切线长定理的应用:学会运用切线长定理解决相关问题,如求线段长度、证明线段相等等。
切线长定理的教案
切线长定理的教案教案标题:切线长定理的教案教学目标:1. 理解切线长定理的概念和原理2. 掌握利用切线长定理解决相关数学问题的方法3. 提高学生的数学推理和解决问题的能力教学内容:1. 切线长定理的定义和相关概念2. 切线长定理的证明和推导过程3. 切线长定理在实际问题中的应用教学重点和难点:1. 切线长定理的概念和原理是本节课的重点,需要学生理解和掌握2. 切线长定理的证明和推导过程可能是本节课的难点,需要引导学生进行逻辑推理和思维训练教学过程:1. 导入:通过一个简单的实际问题引入切线长定理的概念,激发学生的学习兴趣2. 讲解:介绍切线长定理的定义、原理和相关性质,引导学生理解和掌握3. 演示:通过具体的数学例题演示如何利用切线长定理解决相关问题,帮助学生掌握解题方法4. 练习:布置一些练习题,让学生独立或合作完成,巩固所学知识5. 总结:对本节课的内容进行总结,强调切线长定理的重要性和应用价值教学手段:1. 板书:清晰地呈现切线长定理的定义、原理和相关性质2. 多媒体:利用多媒体展示相关图形和例题,直观地展示切线长定理的应用3. 互动讨论:通过提问和回答、小组讨论等方式,激发学生的思维,促进学习效果教学评价:1. 课堂练习:观察学生在课堂练习中的表现,及时发现问题并进行指导2. 作业批改:对学生的作业进行批改,及时纠正错误,鼓励正确的解题方法3. 小测验:布置小测验检验学生对切线长定理的掌握程度,及时发现问题并进行针对性辅导教学反思:1. 总结本节课的教学效果,分析学生的学习情况,及时调整教学策略2. 探讨教学中存在的问题和不足,寻求改进和提高的方法通过以上教学设计,可以有效地帮助学生理解和掌握切线长定理的相关知识,提高他们的数学推理和解决问题的能力。
切线长定理教学设计新部编版
教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校《切线长定理》教学设计神木县尔林兔中学马明明【教材内容】北师大版九年级数学下册第三章第7节一、设计思路1、指导思想:本节课突出体现基础性、普及性、发展性,使教学面向全体学生。
学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。
教学过程是师生交往互动的过程,在这一过程中,教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在动手实践、自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,使学生的学习过程生动活泼、主动而且富有个性。
2、教材分析本节课是在学习了切线的性质和判定的基础之上,继续对切线的性质的研究,是在垂径定理之后对圆的对称性又一次的认识。
体现了图形的认识、图形的变换、图形的证明的有机结合。
在习题和内切圆的计算中体现了把复杂问题转化为简单问题后解决问题,从而渗透转化思想和方程思想,提高应用意识。
3、学情分析学生在七、八年级已经学习了轴对称图形、三角形全等的判定与性质、正方形的判定与性质、勾股定理,在本章《圆》前面已经学习了切线的定义、判定与性质、圆的对称性。
因此学生对前面圆的相关知识都有一定的认识,这对本节课的学习有一定的帮助,学习过程不会很困难,理解也不吃力,但书写过程有一定的难度。
在相关知识的学习过程中,学生已经经历了利用轴对称图形的性质证明垂径定理的经验,和尺规作图等动手操作能力,经历了对数学问题进行观察、实验、猜测、计算、推理、验证等活动过程,同时在以前的数学学习中已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的动手实践、自主探索与合作交流的能力。
4、教学任务分析切线长定理的探究,通过设计让学生经历观察、猜想、验证、最后归纳得出切线长定理,使学生的直观操作与逻辑推理有机的整合到一起,让学生在探究的过程中体验数学活动充满着探索性和创造性,感受证明的必要性,证明过程的严谨性及结论的正确性。
切线长定教案
《切线长定理》教案教学目标:1 知识目标:理解切线长定义掌握切线长定理。
2 能力目标:运用定理进行简单的证明,进一步培养学生的动手操作能力和创新意识.3 情感目标:通过分析问题、解决问题的过程,激发学生学学的兴趣,使学生积极参与、体验成功.学教重点:切线长定理教学难点:切线长定理的探索及应用教学过程:一引入新课;动手做一做,拿准备好的图片进行折叠,然后观察,回答问题:这个图形是轴对称图形吗?如果是,它的对称轴是什么?概念:过圆外一点画圆的切线,这点和切点之间的线段长叫做这点到圆的切线长。
切线和切线长:切线是直线,切线长是线段的长二探索新知猜想证明:根据刚才的折叠,猜想图中PA是否等于PB?那么怎样证明呢?同学讨论交流,教师给出证明过程:证明:∵PA、PB是⊙o的两条切线,∴∠PAO= ∠PBO=90,又OA=OB,OP=OP ,∴Rt△AOP≌Rt△BOP(HL)∴PA=PB切线长定理:过圆外一点所画的圆的两条切线长相等。
随堂练习(1)已知:⊙O的半径为3厘米,点P和圆心O的距离为6厘米,经过点P 和⊙O的两条切线,求这两条切线的切线长.OPB∟∟M ⌒⌒12 (2)李师傅在一家木料厂上班,工作之余想对厂里的三角形废料进行加工:裁下一块圆形用料,且使圆的面积最大。
下图是他的几种设计,请同学们帮他确定一下。
圆的外切四边形的性质如图,四边形ABCD 的四条边都与圆O 相切,图中的线段之间有哪些相等说出你的发现。
结论:圆的外切四边形的两组对边的和相等.三 例题讲解:例题1:已知如图,Rt △ABC 的两条直角边AC=10,BC=24,⊙O 是△ABC 的内切圆,切点分别为D,E,F ,求⊙O 的半径 图9ODCBA A教师分析讲解,学生思考交流,鼓励学生写出证明过程。
变式1:如图5,△ABC 的内切圆⊙O 与BC ,CA,AB 分别相切于点 D ,E ,F ,且AB=9cm,BC=14cm,CA=13cm,求AF,BD,CE 的长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品教学教案设计| Excellent teaching plan
教师学科教案
[20 -20学年度第—学期]
任教学科:_________________ 任教年级:_________________ 任教老师:_________________
xx市实验学校
r \・
《切线长定理》教案
教学目标
知识与技能
掌握切线长定理及其运用
过程与方法
通过对圆的切线长及切线长定理的学习,培养学生分析,归纳及解决问题的能力
情感态度
通过学生自己的实践发现定理,培养学生学习的积极性和主动性
教学重点
切线长定理及运用
教学难点
切线长定理的推导
教学过程
一、情境导入,初步认识
活动1:如图,过O O外一点P作O O的切线,回答问题:
(1) 可作几条切线?
(2) 作切线的依据是什么?学生回答,教师归纳展示作法:
(1)①连0P.
②以0P为直径作圆,交O 0于点A、B.③作直线PA, PB.即直线PA、
PB为所求作的圆的两条直线
(2)由0P为直径,可得0A丄PA, 0B丄PB,由切线判定定理知:PA、PB为O 0的两条切
【教学说明】该活动中作圆的切线实际上是个难点,教师展示后应放手让学生自己再动手作一次,让学生体会运用知识的成功感
二、思考探究,获取新知
1. 切线长定理
(1)切线长定义:从圆外一点作圆的切线,这点和切点之间的线段长叫做这点到圆的切线
(2)如图,PA、PB分别与O 0相切于点A、B.求证:FA=PB,/ AP0 =/
BP0.
学生完成:由此得出切线的定理•
切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这一点和圆心的连线平
分两条切线的夹角•
2. 切线长定理的运用
例1如图,AD 是O 0的直径,点C 为O O 外一点,CA 和CB 是O 0的切
线,
A 和
B 是切点,连接BD.
求证:CO // BD.
【分析】连接AB ,因为AD 为直径,那么/ ABD=90°,即卩BD 丄AB.因此要证CO / BD. 只要证CO 丄AB 即可.
证明:连接AB. •/ CA , CB 是O O 的切线,点A , B 为切点,
••• CA=CB ,Z ACO = Z BCO ,
•••CO 丄AB. v AD 是O O 的直径,
•••/ ABD=90°,即卩 BD 丄 AB ,「. CO / BD.
例2如图,FA 、PB 、CD 分别切O O 于点A 、B 、E ,已知FA=6,求
△ PCD 的周长.
【教学说明】图中有三个分别从点 P 、C 、D 出发的切线基本图形,
因此可以用切线长定理实现线段的等量转化 .
解:v CA 、CE 与O O 分别相切于点A 、E ,
••• CA=CE.
v DE 、DB 与O O 分另肪目切于点 E 、B ,「. DE=DB.
v PA 、PB 与O O 分别相切于点A 、B ,
••• PA=PB.
• △ PCD 的周长 C A PCD =PC+CD+PD=PC+CE+DE + PD=PC+CA+DB+PD=PA+PB
=2PA=12.
四、运用新知,深化理解
1. ________________________________________________________________________ 如图,PA PB 是O O 的切线,AC 是O O 的直径,/ P=40°,则/ BAC 的度数是 _________________
2. 如图,从O O 外一点P 引O O 的两条切线FA 、PB ,切点分别为A 、B ,如果/ APB=60°,
第1题
图 第2题图
FA=8,那么弦AB的长是______ .
3. 如图,PA, PB是O O的两条切线,A, B为切点,直线OP交O O于点D, E,交BC于C, 图中互相垂直的直线共有_____ 对.
A 精品教学教案设计| Exc plan
第4题图
4. ________________________________ 如图,AD , DC , BC 都与O 0相切,且 AD // BC ,则/ DOC= __ 【答案】1.20 ° 2.8 3. 3 4.90°
练习题:1、如课本图,已知半圆 0与四边形ABCD 的边AD ,AB ,BC , 为D ,E ,C.设半圆0的半径为2,AB 为5,求四边形ABCD 的周长.
2、如课本图,已知PA ,PB 是圆O 的两条切线,点A ,B 为切点,若 / AOB 的度数.
四、师生互动,课堂小结
1. 在本课你学到了什么?还有哪些疑惑?
2. 师生共同回顾切线长的定义及切线的定理 .
课后作业
1. 教材P 75第5题,P 76第11题.
2. 完成同步练习册中本课时的练习
丿;
相切,切点分别 *,PA= 2,3,求 第3题
图。