2021初三数学上册知识点
(2021年整理)初中数学知识点大全(完整版)
初中数学知识点大全(完整版)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(初中数学知识点大全(完整版))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为初中数学知识点大全(完整版)的全部内容。
第一册第一章有理数1。
1正数和负数以前学过的0以外的数前面加上负号“-"的书叫做负数.以前学过的0以外的数叫做正数。
数0既不是正数也不是负数,0是正数与负数的分界。
在同一个问题中,分别用正数和负数表示的量具有相反的意义1。
2有理数1。
2.1有理数正整数、0、负整数统称整数,正分数和负分数统称分数。
整数和分数统称有理数。
1.2。
2数轴规定了原点、正方向、单位长度的直线叫做数轴。
数轴的作用:所有的有理数都可以用数轴上的点来表达。
注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。
⑵同一根数轴,单位长度不能改变。
一般地,设是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a 个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度.1.2。
3相反数只有符号不同的两个数叫做互为相反数。
数轴上表示相反数的两个点关于原点对称。
在任意一个数前面添上“-”号,新的数就表示原数的相反数.一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。
一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0。
在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。
比较有理数的大小:⑴正数大于0,0大于负数,正数大于负数。
⑵两个负数,绝对值大的反而小。
1.3有理数的加减法1。
3.1有理数的加法有理数的加法法则:⑴同号两数相加,取相同的符号,并把绝对值相加.⑵绝对值不相等的饿异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0。
2020-2021年九年级数学上册单元复习一遍过:第一章 图形的相似【知识梳理】
初中上册单元复习一遍过Unit 1 of junior high school精品资源·备战中考第一章《图形的相似》(知识梳理)【思维导图】【知识清单】知识点一:比和比例的有关概念(一)比和比例1.表示两个比相等的式子叫作比例式,简称比例.2.第四比例项:若a cb d=或a:b=c:d ,那么d 叫作a 、b 、c 的第四比例项.3.比例中项:若a b b c =或a:b=b:c ,b 叫作a ,c 的比例中项.4.黄金分割:把一条线段(AB )分割成两条线段,使其中较长线段(AC )是原线段AB 与较短线段(BC )的比例线段,就叫作把这条线段黄金分割.即AC2=AB·BC ,0.618AB AB ≈;一条线段的黄金分割点有两个.(二)成比例线段:对于四条线段a 、b 、c 、d ,如果其中两条线段的比与另两条线段的比相等,如a :b =c :d ,我们就说这四条线段是成比例线段,简称比例线段.(三)比例的基本性质及定理1.a c ad bcb d=→=2.a c a b c d b d b d±±=→=3.(b d n 0)a c m a c m a b d n b d n b +++===+++≠→=+++ (四)平行线分线段成比例定理(1)三条平行线截两条直线,所得的对应线段成比例.(2)平行于三角形一边截其他两边(或两边的延长线),所得的对应线段成比例;(3)如果一条直线截三角形的两边(或两边的延长线),所得的对应线段成比例,那么这条直线平行于三角形的第三边;(4)平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形三边对应成比例.知识点二:相似图形(一)相似图形:在数学上,我们把形状相同的图形称为相似图形.(二)相似多边形:若两个边数相同的多边形,它们的对应角相等、对应边成比例,则这两个多边形叫做相似多边形。
2021年九年级数学上册第二十一章《一元二次方程》知识点(答案解析)(1)
一、选择题1.方程()224(2)0m x x m y -+--=是关于x ,y 的二元一次方程,则m 的值为( ) A .2±B .2-C .2D .4B 解析:B【分析】含有两个未知数,并且含有未知数的项的次数都是1的整式方程是二元一次方程,根据定义解答.【详解】∵()224(2)0m x x m y -+--=是关于x ,y 的二元一次方程,∴240,20m m -=-≠,∴m=-2,故选:B .【点睛】此题考查二元一次方程的定义,熟记定义是解题的关键.2.据网络统计,某品牌手机2020年一月份销售量为400万部,二月份、三月份销售量连续增长,三月份销售量达到900万部,求二月份、三月份销售量的月平均增长率?若设月平均增长率为x ,根据题意列方程为( ).A .()40012900x +=B .()40021900x ⨯+=C .()24001900x +=D .()()240040014001900x x ++++=C 解析:C【分析】设月平均增长率为x ,根据三月及五月的销售量,即可得出关于x 的一元二次方程,此题得解.【详解】解:设月平均增长率为x ,根据题意得:400(1+x )2=900.故选:C .【点睛】本题考查了一元二次方程中增长率的知识.增长前的量×(1+年平均增长率)年数=增长后的量.3.用配方法解方程x 2﹣4x ﹣7=0,可变形为( )A .(x+2)2=3B .(x+2)2=11C .(x ﹣2)2=3D .(x ﹣2)2=11D 解析:D【分析】方程常数项移到右边,两边加上4变形得到结果即可.【详解】解:x 2﹣4x ﹣7=0,移项得:247x x -=配方得:24474x x -+=+ ,即2()211x -=故答案为:D .【点睛】本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解题的关键.4.用直接开平方的方法解方程22(31)(25)x x +=-,做法正确的是( )A .3125x x +=-B .31(25)x x +=--C .31(25)x x +=±-D .3125x x +=±-C解析:C【分析】一元二次方程22(31)(25)x x +=-,表示两个式子的平方相等,因而这两个数相等或互为相反数,据此即可把方程转化为两个一元一次方程,即可求解.【详解】解:22(31)(25)x x +=-开方得31(25)x x +=±-,故选:C .【点睛】本题考查了解一元二次方程-直接开平方法,关键是将方程右侧看做一个非负已知数,根据法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”来求解.5.关于x 的一元二次方程2210kx x +-=有两个不相等的实数根,则k 的取值范围是( )A .1k >-B .1k ≥-C .0k ≠D .1k >-且0k ≠D 解析:D【分析】根据一元二次方程根的判别式得到关于k 的不等式,然后求解不等式即可.【详解】是一元二次方程, 0k ∴≠.有两个不相等的实数根,则Δ0>,2Δ24(1)0k =-⨯-⨯>,解得1k >-.1k ∴>-且0k ≠.故选D【点睛】本题考查一元二次方程ax 2+bx +c =0(a ≠0)根的判别式:(1)当△=b 2﹣4ac >0时,方程有两个不相等的实数根;(2)当△=b 2﹣4ac =0时,方程有有两个相等的实数根;(3)当△=b 2﹣4ac <0时,方程没有实数根.6.设m 、n 是一元二次方程2430x x -+=的两个根,则23m m n -+=( ) A .1-B .1C .17-D .17B 解析:B【分析】根据一元二次方程的根的定义、根与系数的关系即可得.【详解】由一元二次方程的根的定义得:2430m m -+=,即243m m -=-, 由一元二次方程的根与系数的关系得:441m n -+=-=, 则2234m m n m m m n -+=-++, ()()24m m m n =-++,34=-+,1=,故选:B .【点睛】本题考查了一元二次方程的根的定义、根与系数的关系,熟练掌握一元二次方程的根与系数的关系是解题关键.7.关于x 的一元二次方程(m-2)x 2+3x-1=0有实数根,那么m 的取值范围是( ) A .m≤14 B .m≥14-且m≠2 C .m≤14-且m≠﹣2 D .m≥14-B 解析:B 【分析】关于x 的一元二次方程(m-2)x 2+3x-1=0有实数根,由于二次项系数有字母,要考虑二次项系数不为0,再由一元二次方程(m-2)x 2+3x-1=0有实数根,满足△≥0,取它们的公共部分即可.【详解】关于x 的一元二次方程(m-2)x 2+3x-1=0有实数根,m-2≠0,m≠2,△=9-4×(-1)×(m-2)≥0, m 1-4≥,关于x的一元二次方程(m-2)x2+3x-1=0有实数根,m的取值范围是m1-4≥且m≠2.故选:B.【点睛】本题考查关于x的一元二次方程(m-2)x2+3x-1=0有实数根的问题,关键掌握方程的定义,二次项系数不为0,含x的最高次项的次数为2,而且是整式的方程,注意判别式使用条件,前提是一元二次方程,还要求一般形式.8.下列方程中,有两个不相等的实数根的是()A.x2=0 B.x﹣3=0 C.x2﹣5=0 D.x2+2=0C解析:C【分析】利用直接开平方法分别求解可得.【详解】解:A.由x2=0得x1=x2=0,不符合题意;B.由x﹣3=0得x=3,不符合题意;C.由x2﹣5=0得x1=x2=,符合题意;D.x2+2=0无实数根,不符合题意;故选:C.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.9.已知一元二次方程x2﹣6x+c=0有一个根为2,则另一根及c的值分别为()A.2,8 B.3,4 C.4,3 D.4,8D解析:D【分析】设方程的另一个根为t,根据根与系数的关系得到t+2=6,2t=c,然后先求出t,再计算c 的值.【详解】解:设方程的另一个根为t,根据题意得t+2=6,2t=c,解得t=4,c=8.故选:D.【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-ba,x1x2=ca.10.已知方程2202030x x+-=的根分别为a和b,则代数式2a a2020ab++的值为()A .0B .2020C .1D .-2020A解析:A【分析】 将a 代入方程,可得2202030a a +-=,即220302a a =-,代入要求的式子,即可得到3+ab ,而a 、b 是方程的两个根,根据韦达定理,可求出ab 的值,即可求出答案.【详解】解:∵方程2202030x x +-=的根分别为a 和b∴2202030a a +-=,即220302a a =-∴2a a 2020a b ++=32020a -+ab+2020a=3+ab∵ab=-3∴2a a 2020a b ++=32020a -+ab+2020a=3+ab=3-3=0故选:A .【点睛】本题主要考查一元二次方程的解以及韦达定理,熟练解代入方程以及观察式子特点,抵消部分式子是解决本题的关键.二、填空题11.已知x a =是方程2350x x --=的根,则代数式234a a -++的值为________.-1【分析】利用x=a 是方程x2-3x-5=0的根得到a2-3a=5然后利用整体代入的方法计算代数式的值【详解】解:∵x=a 是方程x2-3x-5=0的根∴a2-3a-5=0∴a2-3a=5∴故答案为解析:-1【分析】利用x=a 是方程x 2-3x-5=0的根得到a 2-3a=5,然后利用整体代入的方法计算代数式的值.【详解】解:∵x=a 是方程x 2-3x-5=0的根,∴a 2-3a-5=0,∴a 2-3a=5,∴()223434541a a a a -++=--+=-+=-.故答案为-1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.12.方程2(3)30x x -+=的二次项系数为________,一次项系数为________,常数项为________.该方程判别式的值为_________,由此可以判断它的根的情况为___________.2-6312有两个不相等的实数根【分析】先将方程化为一般形式再计算出判别式的值根据结果判断根的情况【详解】解:化简可得:二次项系数为2一次项系数为-6常数项为3该方程判别式的值为由此可以判断它的根的解析:2 -6 3 12 有两个不相等的实数根【分析】先将方程化为一般形式,再计算出判别式的值,根据结果判断根的情况.【详解】解:化简可得:22630x x -+=,二次项系数为2,一次项系数为-6,常数项为3, 该方程判别式的值为()2642312--⨯⨯=,由此可以判断它的根的情况为:有两个不相等的实数根,故答案为:2;-6;3;12;有两个不相等的实数根.【点睛】本题考查了一元二次方程,解题的关键是掌握定义和根的判别式.13.关于x 的一元二次方程2210kx x +-=有两个不相等的实数根,则k 的取值范围是________.且【分析】根据根的判别式及一元二次方程的定义解题即可【详解】∵关于x 的一元二次方程有两个不相等的实数根解得又∵该方程为一元二次方程且故答案为:且【点睛】本题主要考查根的判别式及一元二次方程的定义属于解析:1k ->且0k ≠.【分析】根据根的判别式及一元二次方程的定义解题即可.【详解】∵关于x 的一元二次方程有两个不相等的实数根,()224241440b ac k k ∴∆=-=-⨯-=+>,解得1k >-.又∵该方程为一元二次方程,0k ∴≠,1k ∴>-且0k ≠.故答案为:1k >-且0k ≠.【点睛】本题主要考查根的判别式及一元二次方程的定义,属于基础题,掌握根的判别式及一元二次方程的定义是解题的关键.14.写出有一个根为1的一元二次方程是______.(答案不唯一)【分析】有一个根是1的一元二次方程有无数个只要含有因式x1的一元二次方程都有一个根是1【详解】可以用因式分解法写出原始方程然后化为一般形式即可如化为一般形式为:故答案为:【点睛】本题考解析:20x x -=(答案不唯一)【分析】有一个根是1的一元二次方程有无数个,只要含有因式x -1的一元二次方程都有一个根是1.可以用因式分解法写出原始方程,然后化为一般形式即可,x x-=,如()10化为一般形式为:20-=x x故答案为:20-=.x x【点睛】本题考查的是一元二次方程的根,有一个根是1的一元二次方程有无数个,写出一个方程就行.15.一元二次方程x2-10x+25=2(x﹣5)的解为____________.x1=5x2=7【分析】移项后分解因式即可得出两个一元一次方程求出方程的解即可;【详解】解:∵(x﹣5)2﹣2(x﹣5)=0∴(x﹣5)(x﹣7)=0则x﹣5=0或x﹣7=0解得x1=5x2=7故答解析:x1=5,x2=7【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可;【详解】解:∵(x﹣5)2﹣2(x﹣5)=0,∴(x﹣5)(x﹣7)=0,则x﹣5=0或x﹣7=0,解得x1=5,x2=7,故答案为:x1=5,x2=7.【点睛】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.16.对于任意实数a、b,定义:a◆b=a2+ab+b2.若方程(x◆2)﹣5=0的两根记为m、n,则(m+2)(n+2)=_____.-1【分析】根据新定义可得出mn为方程x2+2x−1=0的两个根利用根与系数的关系可得出m+n=−2mn=−1变形(m+2)(n +2)得到mn+2(m+n)+4然后利用整体代入得方法进行计算【详解】解析:-1【分析】根据新定义可得出m、n为方程x2+2x−1=0的两个根,利用根与系数的关系可得出m+n =−2、mn=−1,变形(m+2)(n+2)得到mn+2(m+n)+4然后利用整体代入得方法进行计算.【详解】解:∵(x◆2)﹣5=x2+2x+4﹣5,∴m、n为方程x2+2x﹣1=0的两个根,∴m+n=﹣2,mn=﹣1,∴(m+2)(n+2)=mn+2(m+n)+4=﹣1+2×(﹣2)+4=﹣1.故答案为﹣1.本题考查了一元二次方程ax 2+bx +c =0(a≠0)的根与系数的关系:若方程两根为x 1,x 2,则x 1+x 2=b a -,x 1•x 2=c a. 17.已知函数2y mx m m =++为正比例函数,则常数m 的值为______.-1【分析】根据正比例函数的概念可直接进行列式求解【详解】解:∵函数为正比例函数∴且解得:;故答案为-1【点睛】本题主要考查正比例函数的概念及一元二次方程的解法熟练掌握正比例函数的概念及一元二次方程解析:-1【分析】根据正比例函数的概念可直接进行列式求解.【详解】解:∵函数2y mx m m =++为正比例函数,∴20m m +=,且0m ≠,解得:1m =-;故答案为-1.【点睛】本题主要考查正比例函数的概念及一元二次方程的解法,熟练掌握正比例函数的概念及一元二次方程的解法是解题的关键.18.一件商品原价300元,连续两次降价后,现售价是243元,若每次降价的百分率相同,那么这个百分率为______.10【分析】设这个百分率为x 然后根据题意列出一元二次方程最后求解即可【详解】解:设这个百分率为x 由题意得:300(1-x )2=243解得x=10或x=190(舍)故答案为10【点睛】本题主要考查了一 解析:10%【分析】设这个百分率为x%,然后根据题意列出一元二次方程,最后求解即可.【详解】解:设这个百分率为x%,由题意得:300(1-x%)2=243,解得x=10或x=190(舍).故答案为10%.【点睛】本题主要考查了一元二次方程的应用—百分率问题,弄清题意、设出未知数、列出一元二次方程成为解答本题的关键.19.当m ______时,关于x 的一元二次方程2350mx x -+=有两个不相等的实数根.m <且m≠0【分析】根据一元二次方程的定义及判别式的意义得出m≠0且△=(-3)2-4m×5=9-20m >0解不等式组确定m 的取值范围【详解】解:∵关于x 的一元二次方程mx2-3x+5=0有两个不相解析:m <920且m≠0. 【分析】 根据一元二次方程的定义及判别式的意义得出m≠0,且△=(-3)2-4m×5=9-20m >0,解不等式组,确定m 的取值范围.【详解】解:∵关于x 的一元二次方程mx 2-3x+5=0有两个不相等的实数根,∴m≠0,且△=(-3)2-4m×5=9-20m >0,解得m <920且m≠0, 故当m <920且m≠0时,关于x 的一元二次方程mx 2-3x+5=0有两个不相等的实数根. 故答案是:m <920且m≠0. 【点睛】本题考查了根的判别式,一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系: (1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.20.若关于x 的一元二次方程x 2+2x ﹣m 2﹣m =0(m >0),当m =1、2、3、…2020时,相应的一元二次方程的两个根分别记为α1、β1,α2、β2,…,α2020、β2020,则112220202020111111αβαβαβ++++++的值为_____.【分析】由一元二次方程根与系数的关系解题即【详解】解:∵x2+2x ﹣m2﹣m =0m =123…2020∴由根与系数的关系得:α1+β1=﹣2α1β1=﹣1×2;α2+β2=﹣2α2β2=﹣2×3;…α解析:40402021【分析】由一元二次方程根与系数的关系解题,即+=-b c a aαβαβ=,. 【详解】解:∵x 2+2x ﹣m 2﹣m =0,m =1,2,3, (2020)∴由根与系数的关系得:α1+β1=﹣2,α1β1=﹣1×2;α2+β2=﹣2,α2β2=﹣2×3;…α2020+β2020=﹣2,α2020β2021=﹣2020×2021; ∴原式=3320202020112211223320202020++++++++αβαβαβαβαβαβαβαβ 2222=++++12233420202021⨯⨯⨯⨯ 1111111=2(1)2233420202021⨯-+-+-++-1=2(1)2021⨯-4040=2021 故答案为:40402021. 【点睛】 本题考查一元二次方程根与系数的关系,是重要考点,难度较易,掌握相关知识是解题关键.三、解答题21.某校园有一块正方形的空地,若从这块空地上划出部分区域栽种鲜花(如图阴影部分为花带),横向花带宽为2m ,纵向花带宽为1m ,栽种鲜花后剩余空地面积为42m 2,求原正方形空地的边长.解析:原正方形空地的边长为8m .【分析】观察图形得到阴影面积=正方形的面积-空白图形的面积,列方程解决问题.【详解】解:设正方形空地的边长为xm ,由题意得()()2142x x --=, 化简得23400x x --=,解得1285x x ==-,,因为0x >,故8x =,答:原正方形空地的边长为8m .【点睛】此题考查一元二次方程的实际应用—图形面积类问题,观察图形得到阴影面积=正方形的面积-空白图形的面积,由此列方程解决问题的思路是解题的关键.22.已知关于x 的方程x 2﹣8x ﹣k 2+4k +12=0.(1)求证:无论k 取何值,这个方程总有两个实数根;(2)若△ABC 的两边AB ,AC 的长是这个方程的两个实数根,第三边BC 的长为5,当△ABC 是等腰三角形时,求k 的值.解析:(1)证明见解析;(2)k 的值为2或1或3.【分析】(1)先计算出△=4(k ﹣2)2,然后根据判别式的意义即可得到结论;(2)先利用因式分解法求出方程的解为x 1=﹣k +6,x 2=k +2,然后分类讨论:当AB =AC 或AB =BC 或AC =BC 时△ABC 为等腰三角形,然后求出k 的值.【详解】解:(1)证明:∵△=(﹣8)2﹣4(﹣k 2+4k +12)=4(k ﹣2)2≥0,∴无论k 取何值,这个方程总有两个实数根;(2)解:x 2﹣8x ﹣k 2+4k +12=0,(x +k ﹣6)(x ﹣k ﹣2)=0,解得:x 1=﹣k +6,x 2=k +2,当AB =AC 时,﹣k +6=k +2,则k =2;当AB =BC 时,﹣k +6=5,则k =1;当AC =BC 时,则k +2=5,解得k =3,综合上述,k 的值为2或1或3.【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了三角形三边的关系以及等腰三角形的性质.23.解方程:(1)x 2+10x +9=0;(2)x 2=14.解析:(1)121,9x x =-=-;(2)12x x ==【分析】(1)运用因式分解法求解即可(2)运用公式法求解即可.【详解】解:(1)∵x 2+10x +9=0,∴(x +1)(x +9)=0,则x +1=0或x +9=0,解得x 1=﹣1,x 2=﹣9;(2)x 2=14整理,得:x 2﹣14=0, ∵a =1,b c =﹣14,∴△2﹣4×1×(﹣14)=4>0, 则x=2b a-±, 即x 1,x 2【点睛】此题考查了一元二次方程的解法,熟练掌握一元二次方程的解法是解答此题的关键. 24.回答下列问题.(1(2|1-. (3)计算:102(1)-++. (4)解方程:2(1)90x +-=.解析:(13;(21+;(3)44)12x =,24x =-. 【分析】 (1)利用用二次根式的性质化成最简二次根式,再合并同类二次根式即可;(2)根据二次根式的乘除法则以及绝对值的性质计算,再合并同类二次根式即可; (3)根据零指数幂,负整数指数幂以及完全平方公式计算,再合并同类二次根式即可; (4)移项,利用直接开平方法即可求解.【详解】(13=+3=; (2|11)=-1=12=+; (3)102(1)-++121=+-4=-(4)2(1)90x +-=,移项得:2(1)9x +=,∴13x +=或13x +=-, 12x =,24x =-.【点睛】本题考查了解一元二次方程-直接开平方法,二次根式的混合运算,掌握运算法则是解答本题的关键.25.解方程:(1)23620x x -+=(2)222(3)9x x -=-解析:(1)13x =,233x =;(2)x=3或x=9. 【分析】 (1)根据公式法即可求出答案;(2)根据因式分解法即可求出答案.【详解】解:(1)∵3x 2-6x+2=0,∴a=3,b=-6,c=2,∴△=36-24=12,∴x ==∴1x =2x = (2)∵2(x-3)2=x 2-9,∴2(x-3)2=(x-3)(x+3),∴(x-3)[(2(x-3)-(x+3)]=0,∴(x-3)(x-9)=0∴x-3=0,x-9=0∴x=3或x=9.【点睛】本题考查解一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.26.手工课上,小明打算用一张周长为40cm 的长方形白纸做一张贺卡,白纸内的四周涂上宽为2cm 的彩色花边,小明想让中间白色部分的面积大于彩色花边的面积,但又不能确定能否办到.请同学们帮助小明判断他是否能办到,并说明理由.解析:不能办到,见解析【分析】设中间部分的面积为:S 求出S 与x 的关系式,即关于中间部分的面积公式,并求出该二次函数的最大值,即中间部分的最大值,与花边部分的面积相比较,若大于则能做到,小于则做不到.【详解】答:不能办到.理由:设纸的一边长为cm x则另一边为(20)cm x -.依题意得:彩色花边面积为:2222(204)64x x ⨯⨯+⨯⨯--=中间白色部分面积为:22(4)(16)2064(10)36S x x x x x =--=-+-=--+ 416x <<,当10x =时,白色部分面积最大为36.3664<,∴小明不能办到.【点睛】本题主要考查一元二次方程的应用,关键在于理解清楚题意找出等量关系,即:花边部分的面积=总面积-中间部分的面积;已知花边部分的面积,而中间部分的面积又不定,只需求出中间部分面积的最值与其比较即可.27.解方程:22350x x --= (请用两种方法解方程) 解析:152x =,21x =- 【分析】采用公式法和因式分解法求解即可.【详解】解:方法1:∵a =2,b =-3,c =-5,∴2449b ac ∆=-=,∴34x ±=, ∴152x =,21x =-; 方法2:()()2510x x -+=∴ 152x =,21x =-. 【点睛】 本题考查解一元二次方程,根据方程的特点选择合适的求解方法是解题的关键.28.(12. (2)解一元二次方程:x 2﹣4x ﹣5=0.解析:(1)2;(2)125, 1.x x ==-【分析】(1)根据二次根式的混合运算法则计算即可;(2)根据因式分解的方法解方程即可.【详解】解:(1|2|3+23=2 (2)x 2﹣4x ﹣5=0,(x ﹣5)(x +1)=0,∴x ﹣5=0或x +1=0,∴x 1=5,x 2=﹣1.【点睛】本题考查二次根式的混合运算以及解一元二次方程的方法,属于基础题 。
2021年九年级数学上册第二十一章《一元二次方程》知识点总结(提高培优)(1)
一、选择题1.已知三角形的两边长分别为4和6,第三边是方程217700x x -+=的根,则此三角形的周长是( )A .10B .17C .20D .17或20B 解析:B【分析】根据第三边是方程x 2﹣17x +70=0的根,首先求出方程的根,再利用三角形三边关系求出即可.【详解】解:∵217700x x -+=,∴(10)(7)0x x --=,∴110x =,27x =,∵4610+=,无法构成三角形,∴此三角形的周长是:46717++=.故选B .【点睛】此题主要考查了因式分解法解一元二次方程以及三角形的三边关系,正确利用因式分解法解一元二次方程可以大大降低计算量.2.关于x 的一元二次方程()2230x a a x a +-+=的两个实数根互为倒数,则a 的值为( )A .-3B .0C .1D .-3或0C 解析:C【分析】根据方程两个实数根互为倒数,得到两根之积为1,利用根与系数的关系求出a 的值即可.【详解】解:∵关于x 的一元二次方程x 2+(a 2-3a )x+a=0的两个实数根互为倒数,∴x 1•x 2=a=1.故选:C .【点睛】本题考查了根与系数的关系,能熟记根与系数的关系的内容是解此题的关键,注意:已知一元二次方程ax 2+bx+c=0(a 、b 、c 为常数,a≠0,b 2-4ac≥0)的两根是x 1,x 2,那么x 1+x 2=-b a ,x 1•x 2=c a. 3.如图,若将上图正方形剪成四块,恰能拼成下图的矩形,设1a =,则b =( )A 51-B 51+C 53+D 21B 解析:B【分析】根据上图可知正方形的边长为a+b ,下图长方形的长为a+b+b ,宽为b ,并且它们的面积相等,由此可列出(a+b )2=b(a+b+b),解方程即可求得结论.【详解】解:根据题意得:正方形的边长为a+b ,长方形的长为a+b+b ,宽为b ,则(a+b )2=b(a+b+b),即a 2﹣b 2+ab=0, ∴2)10a a b b +-=(, 解得:15a b -±=, ∵a b >0, ∴15a b -+=, ∴当a=1时,51251b ==-, 故选:B .【点睛】 本题考查了图形的拼接、解一元二次方程、正方形的面积、长方形的面积,正确理解题意,找到隐含的数量关系列出方程是解答的关键.4.一元二次方程2610x x +-=配方后可变形为( )A .()2310x +=B .()238x +=C .()2310x -=D .()238x -=A 解析:A【分析】方程常数项移到右边,两边加上一次项系数一半的平方即可得到结果.【详解】解:∵x 2+6x-1=0,∴x 2+6x=1,∴x 2+6x+9=10,∴(x+3)²=10,故选:A .【点睛】本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解题的关键.5.方程22x x =的解是( )A .0x =B .2x =C .10x =,22x = D .10x =,2x = 解析:C【分析】移项并因式分解,得到两个关于x 的一元一次方程,即可求解.【详解】解:移项,得220x x -=,因式分解,得()20x x -=,∴0x =或20x -=,解得10x =,22x =,故选:C .【点睛】本题考查解一元二次方程,掌握因式分解法是解题的关键.6.方程29180x x -+=的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为( )A .12B .15C .12或15D .18B 解析:B【分析】首先求出方程的根,再根据三角形三边关系定理列出不等式,确定是否符合题意.【详解】解:解方程x 2-9x+18=0,得x 1=3,x 2=6,当3为腰,6为底时,不能构成等腰三角形;当6为腰,3为底时,能构成等腰三角形,周长为6+6+3=15.故选:B .【点睛】本题考查了解一元二次方程,从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.7.某商品经过连续两次降价,售价由原来的每件100元降到每件64元,则平均每次降价的百分率为( )A .15%B .40%C .25%D .20%D解析:D【分析】设平均每次降价的百分率为x ,根据该商品的原价及经过两次降价后的价格,即可得出关于x 的一元二次方程,解之即可得出结论.【详解】解:设平均每次降价的百分率为x ,依题意,得:100(1-x )2=64,解得:x 1=0.2=20%,x 2=1.8(不合题意,舍去).故选:D .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 8.若关于x 的一元二次方程2(1)210m x x +--=有实数根,则m 的取值范围是( ) A .2m >- B .2m ≥- C .2m >-且1m ≠- D .2m ≥-且1m ≠-D解析:D【分析】根据一元二次方程的定义和判别式的意义得到10m +≠且240b ac =-≥,然后求写出两不等式的公共部分即可.【详解】根据题意得10m +≠且()()224(2)4110b ac m =-=--+⨯-≥, 解得1m ≠-且2m ≥-.故选:D .【点睛】本题考查了根的判别式:一元二次方程20ax bx c ++=(0a ≠)的根与24b ac =-有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.9.已知a 、b 、m 、n 为互不相等的实数,且(a +m )( a +n )=2,(b +m )( b +n )=2,则ab ﹣mn 的值为( )A .4B .1C .﹣2D .﹣1C解析:C【分析】先把已知条件变形得到a 2+ (m +n ) a +mn ﹣2=0,b 2+( m +n ) b +mn ﹣2=0,则可把a 、b 看作方程x 2+( m +n ) x +mn ﹣2=0的两实数根,利用根与系数的关系得到ab =mn ﹣2,从而得到ab ﹣mn 的值.【详解】解:∵(a +m )( a +n )=2,(b +m )( b +n )=2,∴a 2+( m +n )a +mn ﹣2=0,b 2+( m +n )b +mn ﹣2=0,而a 、b 、m 、n 为互不相等的实数,∴可以把a 、b 看作方程x 2+(m +n )x +mn ﹣2=0的两个实数根,∴ab =mn ﹣2,∴ab ﹣mn =﹣2.故选:C .【点睛】本题考查一元二次方程根与系数的关系及整式的乘法,理解代数思想,把“a 、b 看作方程x 2+(m +n )x +mn ﹣2=0的两实数根”是解题关键.10.一元二次方程x 2=4x 的解是( )A .x=4B .x=0C .x=0或-4D .x=0或4第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案D解析:D【分析】先移项,利用因式分解法解一元二次方程.【详解】解:x 2=4xx 2-4x=0x (x-4)=0x=0或x=4,故选:D.【点睛】此题考查解一元二次方程,直接开平方法,配方法,公式法,因式分解法,根据一元二次方程的特点选择恰当的解法是解题的关键.二、填空题11.关于x 的一元二次方程2210kx x +-=有两个不相等的实数根,则k 的取值范围是________.且【分析】根据根的判别式及一元二次方程的定义解题即可【详解】∵关于x 的一元二次方程有两个不相等的实数根解得又∵该方程为一元二次方程且故答案为:且【点睛】本题主要考查根的判别式及一元二次方程的定义属于解析:1k ->且0k ≠.【分析】根据根的判别式及一元二次方程的定义解题即可.【详解】∵关于x 的一元二次方程有两个不相等的实数根,()224241440b ac k k ∴∆=-=-⨯-=+>,解得1k >-.又∵该方程为一元二次方程,0k ∴≠,1k ∴>-且0k ≠.故答案为:1k >-且0k ≠.【点睛】本题主要考查根的判别式及一元二次方程的定义,属于基础题,掌握根的判别式及一元二次方程的定义是解题的关键.12.将一元二次方程(32)(1)83x x x -+=-化成一般形式是_____.【分析】先计算多项式乘以多项式并移项再合并同类项即可【详解】故答案为:【点睛】此题考查一元二次方程的一般形式掌握多项式乘以多项式合并同类项计算法则是解题的关键解析:23710x x -+=【分析】先计算多项式乘以多项式,并移项,再合并同类项即可.【详解】(32)(1)83x x x -+=-23322830x x x x +---+=23710x x -+=故答案为:23710x x -+=.【点睛】此题考查一元二次方程的一般形式,掌握多项式乘以多项式,合并同类项计算法则是解题的关键.13.方程230x -=的解为___________.【分析】先移项然后利用数的开方直接求出即可【详解】移项得解得:故答案为:【点睛】此题主要考查了直接开平方法解一元二次方程用直接开方法求一元二次方程的解要仔细观察方程的特点解析:x =【分析】先移项,然后利用数的开方直接求出即可.【详解】移项得,23x =,解得:x =故答案为:x =【点睛】此题主要考查了直接开平方法解一元二次方程,用直接开方法求一元二次方程的解,要仔细观察方程的特点.14.有一人患了流感,经过两轮传染后共有81人患了流感,若每轮传染中平均每个人传染的人数相同,那么第三轮过后,共有______人患有流感.729【分析】设每轮传染中平均每人传染了x 人根据经过两轮传染后共有81人患了流感可求出x 进而求出第三轮过后共有多少人感染【详解】设每轮传染中平均每个人传染的人数为x 人由题意可列得解得(舍去)即每轮传解析:729【分析】设每轮传染中平均每人传染了x 人,根据经过两轮传染后共有81人患了流感,可求出x ,进而求出第三轮过后,共有多少人感染.【详解】设每轮传染中平均每个人传染的人数为x 人,由题意可列得,()1181x x x +++=,解得18x =,210x =-(舍去),即每轮传染中平均每个人传染的人数为8人,经过三轮传染后患上流感的人数为:81881729+⨯=(人).故答案为:729.【点睛】本题考查理解题意的能力,先求出每轮传染中平均每人传染了多少人,然后求出三轮过后,共有多少人患病.15.已知x =1是一元二次方程(m -2)x 2+4x -m 2=0的一个根,则m 的值是_____.-1【分析】一元二次方程的根就是一元二次方程的解就是能够使方程左右两边相等的未知数的值即把x=1代入方程求解可得m 的值【详解】把x=1代入方程(m-2)x2+4x-m2=0得到(m-2)+4-m2=解析:-1【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即把x =1代入方程求解可得m 的值.【详解】把x =1代入方程(m -2)x 2+4x -m 2=0得到(m -2)+4-m 2=0,整理得:220m m --=,因式分解得:()()120m m +-=,解得:m =-1或m =2,∵m -2≠0∴m =-1,故答案为:-1.【点睛】本题考查了一元二次方程的解的定义以及因式分解法解一元二次方程,解题的关键是正确的代入求解.注意:二次项系数不为0的条件.16.若a 是方程210x x ++=的根,则代数式22020a a --的值是________.2021【分析】把x=a 代入已知方程并求得a2+a=-1然后将其整体代入所求的代数式进行求值即可【详解】解:把x=a 代入x2+x+1=0得a2+a+1=0解得a2+a=-1所以2020-a2-a=2解析:2021【分析】把x=a 代入已知方程,并求得a 2+a=-1,然后将其整体代入所求的代数式进行求值即可【详解】解:把x=a 代入x 2+x+1=0,得a 2+a+1=0,解得a 2+a=-1,所以2020-a 2-a=2020+1=2021.故答案是:2021.【点睛】本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.17.函数()2835m y m x -=+-是一次函数,则m =______.3;【分析】根据一次函数的定义得到m2-8=1且m+3≠0据此求得m 的值【详解】解:依题意得:m2-8=1且m+3≠0 解得m=3 故答案是:3【点睛】本题考查了一次函数的定义一般地形如y=kx+b解析:3;【分析】根据一次函数的定义得到m 2-8=1且m+3≠0,据此求得m 的值.【详解】解:依题意得:m 2-8=1且m+3≠0,解得m=3.故答案是:3.【点睛】本题考查了一次函数的定义.一般地,形如y=kx+b (k≠0,k 、b 是常数)的函数,叫做一次函数.会利用x 的指数构造方程,会解方程,会利用k 限定字母的值是解题关键 18.已知1x ,2x 是方程2250x x --=的两个实数根,则2212123x x x x ++=__________.—1【分析】根据根与系数之间的关系解题即可【详解】∵是方程的两个实数根∴∴故答案为:-1【点睛】本题考查了一元二次方程根与系数之间的关系解题的关键是根据公式正确计算解析:—1【分析】根据根与系数之间的关系解题即可.【详解】∵1x ,2x 是方程2250x x --=的两个实数根,∴122x x +=,125x x =,∴()()2222112*********x x x x x x x x ++++=+-=-=, 故答案为:-1【点睛】本题考查了一元二次方程根与系数之间的关系,解题的关键是根据公式正确计算. 19.已知2x =是关于x 的方程220x x m ++=的一个根,则m =_________.-8【分析】利用方程的根的性质把x=2代入方程得到关于m 的方程解这个方程即可【详解】已知是关于x 的方程的一个根故答案为:-8【点睛】本题考查一元二次方程的根问题掌握方程的根的性质会用方程的解代入构造解析:-8【分析】利用方程的根的性质把x=2代入方程得到关于m 的方程,解这个方程即可【详解】已知2x =是关于x 的方程220x x m ++=的一个根,22220m +⨯+=8m =-故答案为:-8【点睛】本题考查一元二次方程的根问题,掌握方程的根的性质,会用方程的解代入构造参数方程是解题关键20.已知a 2+1=3a ,b 2+1=3b ,且a ≠b ,则11a b+=_____.【分析】根据一元二次方程根的定义得到ab 是一元二次方程的两根得到a 和b 的和与积再把两根和与两根积求出代入所求的式子中即可求出结果【详解】解:∵a2+1=3ab2+1=3b 且a≠b ∴ab 是一元二次方程解析:3【分析】根据一元二次方程根的定义得到a 、b 是一元二次方程的两根,得到a 和b 的和与积,再把两根和与两根积求出,代入所求的式子中即可求出结果.【详解】解:∵a 2+1=3a ,b 2+1=3b ,且a ≠b∴a ,b 是一元二次方程x 2﹣3x +1=0的两个根,∴由韦达定理得:a +b =3,ab =1, ∴113a b a b ab++==. 故答案为:3.【点睛】 本题考查一元二次方程根与系数关系、一元二次方程根的定义、分式的通分,对一元二次方程根的定义的理解是解题的关键.三、解答题21.解方程.(1)2560x x -+=.(2)23(21)(21)x x -=-.(3)23139x x x -=--. 解析:(1)12x =,23x =;(2)112x =,22x =;(3)2x =- 【分析】 (1)利用因式分解法解方程,即可得到答案;(2)先移项,然后利用因式分解法解方程,即可得到答案;(3)先把分式方程化为整式方程,然后解方程即可得到答案.【详解】解:(1)2560x x -+=,(2)(3)0x x --=,∴12x =,23x =,∴原方程的解为:12x =,23x =.(2)23(21)(21)x x -=-,∴2(21)3(21)0x x ---=,∴(21)(213)0x x ---=,∴(21)(24)0x x --=, ∴112x =,22x =. ∴原方程的解为:112x =,22x =. (3)23139x x x -=--, ∴2(3)39x x x +-=-,∴22339x x x +-=-,∴36x =-,∴2x =-,经检验:2x =-为原方程的解,∴原方程的解为2x =-.【点睛】本题考查了解一元二次方程,解分式方程,解题的关键是熟练掌握解方程的方法,注意解分式方程时组要检验.22.某精准扶贫办对某地甲、乙两个猕猴桃品种进行种植对比实验研究.去年甲、乙两个品种各种植了100亩.收获后甲、乙两个品种的售价均为6元/kg ,且乙的平均亩产量比甲的平均亩产量高500kg ,甲、乙两个品种全部售出后总收入为1500000元. (1)请求出甲、乙两个品种去年平均亩产量分别是多少?(2)今年,精准扶贫办加大了对猕猴桃培育的力度,在甲、乙种植亩数不变的情况下,预计甲、乙两个品种平均亩产量将在去年的基础上分别增加%a 和2%a .由于乙品种深受市场的欢迎,预计每千克价格将在去年的基础上上涨%a ,而甲品种的售价不变,甲、乙两个品种全部售出后总收入将在去年的基础上增加58%25a .求a 的值. 解析:(1)甲、乙两个品种去年平均亩产量分别是1000千克和1500千克;(2)a 的值为10.【分析】(1)设 甲、乙两个品种去年平均亩产量分别是 x 千克和 y 千克,根据乙的平均亩产量比甲的平均亩产量高 500kg ,甲、乙两个品种全部售出后总收入为1500000元,列二元一次方程组,即可解得;(2)分别用含a%的式子表示甲,乙的收入,根据销售总收入=甲的收入+乙的收入,可以列一元一次方程,从而解出a 的值.【详解】解:(1)设甲、乙两个品种去年平均亩产量分别是x 千克和y 千克;根据题意得,()50010061500000y x x y -=⎧⎨⨯+=⎩解得:10001500x y =⎧⎨=⎩ 答:甲、乙两个品种去年平均亩产量分别是1000千克和1500千克;(2)甲的收入:6×1000×100(1+a%)乙的收入:6×1500×100(1+2a%)(1+a%)()()()58610001001%6150010012%1%15000001%25a a a a ⎛⎫⨯⨯++⨯⨯++=+ ⎪⎝⎭, 解得:10a =(不合题意,舍去),210a =,答:a 的值为10.【点睛】本题考查了一元一次方程和二元一次方程组,一元二次方程的实际应用,解题的关键是正确假设未知数,找准等量关系,列方程求解.23.解方程:(1)x 2+10x +9=0;(2)x 2=14.解析:(1)121,9x x =-=-;(2)1222,22x x == 【分析】(1)运用因式分解法求解即可(2)运用公式法求解即可.【详解】解:(1)∵x 2+10x +9=0,∴(x +1)(x +9)=0,则x +1=0或x +9=0,解得x 1=﹣1,x 2=﹣9;(2)x 2=14整理,得:x 2﹣14=0, ∵a=1,b c =﹣14, ∴△2﹣4×1×(﹣14)=4>0,则x ,即x 1,x 2 【点睛】此题考查了一元二次方程的解法,熟练掌握一元二次方程的解法是解答此题的关键. 24.阿里巴巴电商扶贫对某贫困地区一种特色农产品进行网上销售,按原价每件200元出售,一个月可卖出100件,通过市场调查发现,售价每件每降低1元,月销售件数就增加2件.(1)已知该农产品的成本是每件100元,在保持月利润不变的情况下,尽快销售完毕,则售价应定为多少元;(2)小红发现在附近线下超市也有该农产品销售,并且标价为每件200元,买五送一,在(1)的条件下,小红想要用最优惠的价格购买38件该农产品,应选择在线上购买还是线下超市购买?解析:(1)售价应定为150元;(2)选择在线上购买更优惠【分析】(1)设售价应定为x 元,则每件的利润为()100-x 元,月销售量为(5002)-x 件,列出方程计算即可;(2)分别算出线上购买和线下购买的费用,再进行比较即可;【详解】解:(1)当售价为200元时月利润为()2001001001000-⨯=(元).设售价应定为x 元,则每件的利润为()100-x 元,月销售量为2001002(5002)1x x -+⨯=-件, 依题意,得:()()100500210000x x --=,整理,得:2350300000--=x x ,解得:1150x =,2200x =(舍去).答:售价应定为150元.(2)线上购买所需费用为150385700⨯=(元);∵线下购买,买五送一,∴线下超市购买只需付32件的费用,∴线下购买所需费用为200326400⨯=(元).57006400<.答:选择在线上购买更优惠.【点睛】本题主要考查了一元二次方程的应用,准确列方程计算是解题的关键.25.(1)解方程290x (直接开平方法)(2)若关于x 的一元二次方程()221534m x x m m +++-=的常数项为0,求m 的值.解析:(1)13x =,23x =-;(2)4【分析】(1)利用直接开平方法求解可得答案;(2)根据常数项为0得出关于m 的方程,解之求出m 的值,结合一元二次方程的定义可得答案.【详解】(1)解:290x (直接开平方法)29x =,∴3x =±,∴13x =,23x =-.(2)解:∵关于x 的一元二次方程()221534m x x m m +++-=的常数项为0, ∴210340m m m +≠⎧⎨--=⎩,解得4m =,1m =-(舍去),∴m 的值为4.【点睛】本题主要考查解一元二次方程的能力,也考查了一元二次方程的定义,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.26.某地区2018年投入教育经费2000万元,2020年投入教育经费2420万元(1)求2018年至2020年该地区投入教育经费的年平均增长率;(2)按照义务教育法规定,教育经费的投入不低于国民生产总值的百分之四,结合该地区国民生产总值的增长情况,该地区到2022年需投入教育经费2900万元,如果按(1)中教育经费投入的增长率,到2022年该地区投入的教育经费是否能达到2900万元?请说明理由.解析:(1)10%;(2)可以,理由见解析【分析】(1)设年平均增长率是x ,列式()2200012420x +=,求出结果;(2)利用(1)中算出的增长率算出2022年的教育经费,看是否超过2900万元.【详解】解:(1)设年平均增长率是x , ()2200012420x +=1 1.1x +=±10.1x =,2 2.1x =-(舍去),答:年平均增长率是10%;(2)2022年的教育经费是()2242010.12928.2⨯+=(万元), 2928.22900>,答:教育经费可以达到2900万元.【点睛】本题考查一元二次方程的应用,解题的关键是掌握增长率问题的列式方法.27.我们知道20x ≥,2()0a b ±≥,这一性质在数学中有着广泛的应用,比如,探究多项式2245x x +-的最小值时,我们可以这样处理:解:原式()2225x x =+- ()22222115x x =++-- 222(1)15x ⎡⎤=+--⎣⎦22(1)25x =+--22(1)7x =+-因为()210x +≥,所以()221707x +-≥-,即()22177x +-≥-所以()2217x +-的最小值是7-,即224 5x x +-的最小值是7-.请根据上面的探究思路,解答下列问题:(1)多项式()2531x -+的最小值是_________;(2)求多项式24163x x -+的最小值(写过程).解析:(1)1;(2)13-.【分析】(1)根据偶次方的非负性得到2(3)0x -,得到答案;(2)根据完全平方公式把原式变形,根据偶次方的非负性解答.【详解】解:(1)∵2(3)0x -≥, ∴25(3)11x -+≥,∴多项式25(3)1x -+的最小值是1.故答案为:1;(2)24163x x -+()2443x x =-+ ()22244223x x =-+-+ 24(2)43x ⎡⎤=--+⎣⎦24(2)163x =--+24(2)13x =--∵2(2)0x -≥,∴24(2)1313x --≥-,∴多项式24163x x -+的最小值为13-.【点睛】本题考查的是配方法的应用,掌握完全平方公式、偶次方的非负性是解题的关键. 28.解方程.(1)230x x +-=. (2)4(21)12x x x -=-.解析:(1)12x x ==.(2)1211,24x x ==-. 【分析】(1)用配方法解即可;(2)先移项然后提取公因式,即可求解.【详解】(1)23+=x x , ∴211344x x ++=+, ∴211324x ⎛⎫+= ⎪⎝⎭,∴122x +=±.12x x ∴== (2)移项,得4(21)(21)0x x x -+-=, 提取公因式,得(21)(41)0x x -+=, 210x ∴-=或410x +=,1211,24x x ∴==-. 【点睛】本题考查了一元二次方程的解法,掌握基本解法并熟练进行解题是关键.。
第2课 圆心角与圆周角、圆内接四边形=2021年人教版新九年级数学上册 第二十四章 圆
C .圆心角与圆周角、圆内接四边形学生/课程 年级 学科 数学授课教师日期时段核心内容圆心角与圆周角、圆内接四边形课型一对一/一对N教学目标 1.理解并掌握圆心角、弦、弧之间的关系,能够运用他们的关系分析解决相关的几何问题 2.理解并掌握圆周角的概念以及圆周角定理和推论.并熟练运用解决实际问题。
重、难点1、圆心角与圆周角关系的转换,以及圆周角的推论的运用。
课首沟通1.学校的上课进度如何?你在学习这些内容的过程中都遇到什么问题? 2.上次的作业给我看看,完成了没有?还有不会的题吗?知识导图课首小测1.[单选题] 如图,已知点A (0,1),B (0,﹣1),以点A 为圆心,AB 为半径作圆,交x 轴于点C 和点D ,则DC 的长为( )A .2B .4D .22.[单选题] 已知⊙O的直径AB=10cm ,弦CD=8cm ,AB⊥CD,那么圆心O 到CD 的距离是()A.1cm B.2cm C.3cm D.4cm 3.如图,将半径为的圆形纸片折叠后,圆弧恰好经过圆心,则折痕的长为4.如图,矩形ABCD与圆心在AB上的圆O交于点G、B、F、E,GB=10,EF=8,那么AD=5.⊙O的半径为13 cm,弦AB∥CD,AB=24cm,CD=10cm,那么AB和CD的距离是Cm6.如图,已知AB是⊙O的弦,点C在线段AB上,OC=AC=4,CB=8.求⊙O的半径.导学一:圆心角知识点讲解1:弧、弦、圆心角1.圆心角:顶点在圆心的角叫做圆心角2.定理:(1)在同圆或者等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
(2)在同圆或者等圆中,相等的两条弧所对的圆心角相等,所对的弦也相等。
(3)在同圆或者等圆中,相等的两条弦所对的弧相等,所对的圆心角也相等。
特别注意:只有圆心角与弧存在倍数关系。
与弦不存在倍数关系。
例1. [单选题] 在下图中,下列各角是圆心角的是()A.∠ODC B.∠OCD C.∠AOB D.∠BDC例2. 指出下列哪些是∠AOB所对应的弦和弧?例3. 如图,将圆心角∠AOB绕圆心O旋转到∠A/OB/的位置你能发现哪些等量关系?为什么?完成下面的填空题。
2021-2022九年级数学上册《一元二次方程》重难点题型
专题21.1 一元二次方程-重难点题型【人教版】【题型1 判断一元二次方程的个数】【例1】(2020秋•昭阳区期末)下列方程中,一元二次方程共有()①3x2+x=20;②2x2﹣3xy+4=0;③x2−1x=4;④x2﹣3x=4;⑤x2−x3+3=0.A.2个B.3个C.4个D.5个【变式1-1】(2020秋•扬州期末)下列方程中,一元二次方程共有()个.①x2﹣2x﹣1=0;②ax2+bx+c=0;③2x2+3x﹣5=0;④﹣x2=0;⑤(x﹣1)2+y2=2;⑥(x﹣1)(x﹣3)=x2.A.1B.2C.3D.4【变式1-2】(2021春•仓山区校级月考)下列关于x的方程:①ax2+bx+c=0;②x2+2x−4=0;③2x2﹣3x+1=0;④x2﹣2+x3=0.其中是一元二次方程的个数是()A.1B.2C.3D.4【变式1-3】(2020秋•茌平区期末)下面关于x的方程中:①ax2+bx+c=0;②3(x﹣9)2﹣(x+1)2=1;③x2+1x+5=0;④x2+5x3﹣6=0;⑤3x2=3(x﹣2)2;⑥12x﹣10=0.是一元二次方程个数是()A.1B.2C.3D.4【题型2 利用一元二次方程的概念求字母的值】【例2】(2020秋•昌图县期末)已知(m﹣1)x|m+1|+2mx+4=0是关于x的一元二次方程,则m的值是.【变式2-1】(2020秋•铁锋区期末)若关于x的方程(a﹣1)x a2+1−7x+3=0是一元二次方程,则a=.【变式2-2】(2020秋•扬州期末)已知关于x的方程(a−3)x2+√a−1x=3为一元二次方程,则a的取值范围是【变式2-3】(2020秋•新都区校级月考)关于x的方程(m2﹣4)x2+(m﹣2)x﹣2=0,当m满足时,方程为一元二次方程,当m满足时,方程为一元一次方程.做常数项.【题型3 一元二次方程的一般形式】【例3】(2021春•拱墅区校级期中)方程(3x+2)(2x﹣3)=5化为一般形式是;其中二次项系数是.【变式3-1】(2020秋•乌苏市月考)将一元二次方程13x(x﹣2)=5化为二次项系数为“1”的一般形式是,其中二次项系数是,一次项系数是,常数项是.【变式3-2】(2020秋•渝北区校级月考)若关于x的一元二次方程(a+12)x2﹣(4a2﹣1)x+1=0的一次项系数为0,则a的值为.【变式3-3】(2020秋•南岗区校级月考)阅读理解:定义:如果关于x的方程a1x2+b1x+c1=0(a1≠0,a1、b1、c1是常数)与a2x2+b2x+c2=0(a2≠0,a2、b2、c2是常数),其中方程中的二次项系数、一次项系数、常数项分别满足a1+a2=0,b1=b2,c1+c2=0,则这两个方程互为“对称方程”.比如:求方程2x2﹣3x+1=0的“对称方程”,这样思考:由方程2x2﹣3x+1=0可知,a1=2,b1=﹣3,c1=1,根据a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2就能确定这个方程的“对称方程”.请用以上方法解决下面问题:(1)填空:写出方程x2﹣4x+3=0的“对称方程”是.(2)若关于x的方程5x2+(m﹣1)x﹣n=0与﹣5x2﹣x=1互为“对称方程”,求(m+n)2的值.方程的.【题型4 利用一元二次方程的解求字母的值】【例4】(2021春•黄冈月考)关于x的方程3x2﹣2(3m﹣1)x+2m=15有一个根为﹣2,则m的值等于()A.2B.−12C.﹣2D.12【变式4-1】(2020秋•兰州期末)若2+√3是方程x2﹣4x+c=0的一个根,c的值是()A.2−√3B.2+√3C.﹣1D.1【变式4-2】(2021春•东城区期中)若关于x的一元二次方程(a﹣2)x2+2x+a2﹣4=0有一个根为0,则a的值为()A.﹣2B.2C.±2D.±√2【变式4-3】(2021春•柯桥区月考)若t是方程ax2+2x+c=0(a≠0)的一个根,设P=1﹣ac,Q=(at+1)2,则P与Q的大小关系正确的是()A.P<Q B.P=Q C.P>Q D.不确定【题型5 利用一元二次方程的解求代数式的值】【例5】(2021春•招远市期中)已知m是方程x2﹣3x﹣2=0的根,则代数式1+6m﹣2m2的值为()A.5B.﹣5C.3D.﹣3【变式5-1】(2021春•阜阳月考)若a是一元二次方程x2﹣3x+1=0的一个根,则代数式2−1a−a的值为()A.﹣2B.﹣1C.1D.5【变式5-2】(2020秋•平邑县期末)若a是方程x2﹣x﹣1=0的一个根,则﹣a3+2a+2020的值为()A.2020B.﹣2020C.2019D.﹣2019【变式5-3】(2020秋•麦积区期末)已知a是方程x2﹣2020x+1=0的一个根,则a2−2019a+2020a2+1的值为()A.2017B.2018C.2019D.2020【题型6 赋值法求一元二次方程的定根】【例6】(2021春•余杭区月考)若a﹣b+c=0,则一元二次方程ax2﹣bx+c=0(a≠0)必有一根是()A.0B.1C.﹣1D.无法确定【变式6-1】(2021春•唐山月考)关于x的一元二次方程ax2﹣bx﹣2020=0满足a+b=2020,则方程必有一根为()A.1B.﹣1C.±1D.无法确定【变式6-2】(2021春•萧山区期中)若关于x的一元二次方程ax2+bx+2=0(a≠0)有一根为x=2021,则一元二次方程a(x﹣1)2+bx﹣b=﹣2必有一根为()A.2019B.2020C.2021D.2022【变式6-3】(2021春•瑶海区期中)若方程ax2+bx+c=0(a≠0),满足3a﹣b+13c=0,则方程必有一根为.【题型7 根据面积问题列一元二次方程】【例7】(2020秋•官渡区期末)《生物多样性公约》第十五次缔约方大会(COP15)将于2021年5月17日至30日在云南省昆明市举办、昆明某景观园林公司为迎接大会召开,计划在一个长为32m,宽为20m 的矩形场地ABCD(如图所示)上修建三条同样宽的道路,使其中两条与AB平行、另一条与AD平行,其余部分种草坪,若使每一块草坪的面积为95m2,求道路的宽度、若设道路的宽度为xm,则x满足的方程为()A.(32﹣x)(20﹣x)=95B.(32﹣2x)(20﹣x)=95C.(32﹣x)(20﹣x)=95×6D.(32﹣2x)(20﹣x)=95×6【变式7-1】(2021春•鹿城区校级期中)在长为30m,宽为20m的长方形田地中开辟三条入口宽度相等的道路,已知剩余田地的面积为468m2,求道路的宽度设道路的宽度为x(m),则可列方程()A.(30﹣2x)(20﹣x)=468B.(20﹣2x)(30﹣x)=468C.30×20﹣2•30x﹣20x=468D.(30﹣x)(20﹣x)=468【变式7-2】(2021春•瓯海区期中)如图,在一块长方形草地上修建两条互相垂直且宽度相同的平行四边形通道,其中∠KHB=60°,已知AB=20米,BC=30米,四块草地总面积为503m2,设GH为x米,则可列方程为()A.(20﹣x)(30﹣x)=503B.(20−√32x)(30−√32x)=503C.20x+30x﹣x2=97D.20x+30x−34x2=97【变式7-3】(2021春•蜀山区校级期中)如图,将边长为12的正方形纸片,沿两边各剪去一个一边长为x的长方形,剩余的部分面积为64,则根据题意可列出方程为.(方程化为一般式)【题型8 根据实际问题列一元二次方程】【例8】(2021春•瓯海区期中)某市大力推进义务教育均衡发展,加强学校标准化建设,计划用三年时间对全市学校的设施和设备进行全面改造,2019年投入10亿元,若每年的增长率相同,预计2021年投资14.4亿元,设年平均增长率为x,则由题意可列方程.【变式8-1】(2021春•长兴县月考)2021年元旦,某班同学之间为了相互鼓励,每两人之间进行一次击掌,共击掌595次.设全班有x名同学,则可列方程为.【变式8-2】(2021春•西湖区校级期中)某快递公司今年一月份完成投递的快递总件数为10万件,二月份、三月份每月投递的件数逐月增加,第一季度总投递件数为33.1万件,问:二、三月份平均每月的增长率是多少?设平均每月增长的百分率为x,根据题意得方程()A.10(1+x)2=33.1B.10(1+x)+10(1+x)2=33.1C.10+10(1+x)2=33.1D.10+10(1+x)+10(1+x)2=33.1【变式8-3】(2021春•海淀区校级期中)《九章算术》内容丰富,与实际生活联系紧密,在书上讲述了这样一个问题“今有垣高一丈.倚木于垣,上与垣齐.引木却行一尺,其木至地.问木长几何?”其内容可以表述为:“有一面墙,高1丈.将一根木杆斜靠在墙上,使木杆的上端与墙的上端对齐,下端落在地面上.如果使木杆下端从此时的位置向远离墙的方向移动1尺,则木杆上端恰好沿着墙滑落到地面上.问木杆长多少尺?”(说明:1丈=10尺)设木杆长x尺,依题意,下列方程正确的是()A.102+(x﹣1)2=x2B.(x+1)2=x2+102C.x2=(x﹣1)2+12D.(x+1)2=x2+12。
小学、初中、高中数学内容知识点()
集合与常用逻辑用语
高中必修一:集合的概念,表示,关系,运算
选修1-1:命题,充分条件,充要条件,逻辑联接词(或、 且、非),量词(全称量词、存在量词) 选修2-1:命题,充分条件,充要条件,逻辑联接词,量词 (全称量词、存在量词)
2021/5/27
20
函数及导数
高中必修一:映射,函数概念,分段函数,函数的性质(奇偶 性、单调性),指数函数,对数函数,幂函数,反函数,函数 的零点和方程的根和函数图像与X轴的交点关系
高中必修四:弧度制,任意角的三角函数,三角函数的诱导公 式,三角函数的图像,性质,三角恒等变换
高中必修五:正弦定理,余弦定理,两个特殊函数:等差数列、 等比数列
选修1-1:变化率,导数的计算,导数在函数中的应用,生活中 的优化问题
选修2-2:变化率,导数的计算,导数在函数中的应用,生活中 的优化问题,定积分概念,微积分基本定理
2021/5/27
26
2021/5/27
7
方程
一到四年级:用实际物品代表未知数; 五年级上册 : 简易方程 用字母表示数、公式、运算定律;等式的性质; 方程、解方程;列方程解决简单问题。 五年级下册 :列方程解应用题 六年级上册 :列方程解应用题 六年级上册 :列方程解应用题
2021/5/27
8
统计与概率
一年级下册:简单数据的收集与整理;在简单统计图表中表示数据 二年级上册 :根据统计图回答问题、提问题;简单统计全过程 二年级下册 :用统计图表来表示在某个区间内的数据;复式统计表 三年级上册 :可能性 三年级下册 :非均匀分布的统计图;根据统计数据进行分析 四年级上册 :纵向(横向)复式条形统计图;运用数据进行推理 四年级下册 :单式折线统计图;根据数据变化进行合理推测 五年级上册 :等可能性事件及游戏规则的公平性;中位数的求法 五年级下册 :选择适当的统计量表示数据的不同特征;复式折线统 计图;众数的求法 六年级上册 :扇形统计图 六年级上册 :统计图的科学选择和使用
(2021年整理)初中数学知识点整理表格版
(完整版)初中数学知识点整理表格版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)初中数学知识点整理表格版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)初中数学知识点整理表格版的全部内容。
(完整版)初中数学知识点整理表格版编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望(完整版)初中数学知识点整理表格版这篇文档能够给您的工作和学习带来便利.同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为〈(完整版)初中数学知识点整理表格版〉这篇文档的全部内容。
初中数学教材知识梳理·系统复习第一单元数与式第1讲实数(1)概念:只有符号不同的两个数(2)代数意义:a、b互为相反数 a+b=0(3)几何意义:数轴上表示互为相反数的两个点到(1)概念:乘积为1的两个数互为倒数。
a的倒数为1/a(a≠0)(2)代数意义:ab=1a,b互为倒数(1)数轴比较法:数轴上的两个数,右边的数总比左边的数大。
(2)性质比较法:正数>0>负数;两个负数比较大小,绝对值大的反而小.(3)作差比较法:a—b>0a>b;a-b=0a=b;a-b <0a<b。
(4)平方法:a>b≥0a2>b2.第2讲整式与因式分解第3讲分式第4讲二次根式第二单元方程(组)与不等式(组)第5讲一次方程(组)第6讲一元二次方程第7讲分式方程第8讲一元一次不等式(组)知识点一:不等式及其基本性质关键点拨及对应举例1.不等式的相关概念(1)不等式:用不等号(>,≥,<,≤或≠)表示不等关系的式子。
实际问题与一元二次方程知识点讲解2021-2022学年人教版数学九年级上册
21.3实际问题与一元二次方程知识点一 列一元二次方程解应用题的一般步骤:与列一元一次方程解应用题的步骤类似,列一元二次方程方程解实际问题的一般步骤也可归纳为:“审、找、设、列、解、验、答”七个步骤。
(1)设:设未知数,有直接和间接两种设法,因题而异;(2)找:找出等量关系;(3)列:列出一元二次方程;(4)解:求出所列方程的解;(5)验:检验方程的解是否正确,是否符合题意;(6)答:作答。
知识点二 实际问题中的数量关系一、传播问题设基数为a ,每次由一个个体传播给x 个个体,则一轮传播后有)(ax a +,也就是)1(x a +个个体;二轮传播后共有)1()1(x ax x a +++,也就是2)1(x a +个个体……依次类推,n 轮传播后共有n x a )1(+个个体。
例题有一个人患了流感,经过两轮传染后共有196人患了流感,每轮传染中平均一个人传染了几个人?如果按照这样的传染速度,三轮传染后有多少人患流感?变式练习1.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出多少小分支?2.有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?二、增长率(下降率)问题设基数为a ,平均增长(下降)率为x ,则一次增长(下降)后的值为()x a a ±,二次增长(下降)后的值为()2x a a ±……依次类推,n 次增长(下降)后的值为()nx a a ±。
例题1.某厂去年3月份的产值为50万元,5月份上升到72万元,这两个月平均每月增长的百分率是多少?2.两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?(精确到0.001)变式练习1. 青山村种的水稻2001年平均每公顷产7200,2003年平均每公顷产8460,求水稻每公顷产量的年平均增长率.kg kg2.某银行经过最近的两次降息,使一年期存款的年利率由2.25%降至1.96%,平均每次降息的百分率是多少?(结果精确到0.01﹪)3.某市为了加快廉租房的建设力度,去年市政府共投资2亿人民币建设了廉租房8万平方米,预计明年年底,三年累计投资9.5亿元人民币建设廉租房,若在这两年内内年投资的增长率相同。
2021年中考必考数学知识点归纳
中考数学知识点总结第一章 实数考点一、实数概念及分类 (3分)1、实数分类 正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数 2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类: (1)开方开不尽数,如32,7等;(2)有特定意义数,如圆周率π,或化简后具有π数,如3π+8等; (3)有特定构造数,如0.…等; (4)某些三角函数,如sin60o 等考点二、实数倒数、相反数和绝对值 (3分)1、相反数实数与它相反数时一对数(只有符号不同两个数叫做互为相反数,零相反数是零),从数轴上看,互为相反数两个数所相应点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值一种数绝对值就是表达这个数点与原点距离,|a|≥0。
零绝对值时它自身,也可当作它相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
正数不不大于零,负数不大于零,正数不不大于一切负数,两个负数,绝对值大反而小。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于自身数是1和-1。
零没有倒数。
考点三、平方根、算数平方根和立方根 (3—10分)1、平方根如果一种数平方等于a ,那么这个数就叫做a 平方根(或二次方跟)。
一种数有两个平方根,她们互为相反数;零平方根是零;负数没有平方根。
正数a 平方根记做“a ±”。
2、算术平方根正数a 正平方根叫做a 算术平方根,记作“a ”。
正数和零算术平方根都只有一种,零算术平方根是零。
a (a ≥0) 0≥a==a a 2 ;注意a 双重非负性:-a (a <0) a ≥03、立方根如果一种数立方等于a ,那么这个数就叫做a 立方根(或a 三次方根)。
一种正数有一种正立方根;一种负数有一种负立方根;零立方根是零。
注意:33a a -=-,这阐明三次根号内负号可以移到根号外面。
2021年九年级数学上册第二十二章《二次函数》知识点(答案解析)
一、选择题1.设函数()()24310y kx k x k =+++<,若当x m <时,y 随着x 的增大而增大,则m 的值可以是( )A .1B .0C .1-D .2-D 解析:D【分析】当k <0时,抛物线对称轴为直线432k x k +=-,在对称轴左侧,y 随x 的增大而增大,根据题意,得m≤-432k k +,而当k <0时,-432k k +=-2-32k >-2,可确定m 的范围, 【详解】对称轴:直线433222k x k k+=-=--, 0k <, 3222k∴-->-, x m <时,y 随x 的增大而增大,322m k ∴≤--, 2m ∴≤-,∴m 的值可以是-2,故选D .【点睛】本题考查了二次函数的性质,根据题意得出二次函数图象的对称轴是解题的关键. 2.在同一直角坐标系中,一次函数y=ax+c 和二次函数y=ax 2+c 的图象大致为( ) A . B . C . D .D 解析:D【分析】根据二次函数的开口方向,与y 轴的交点;一次函数经过的象限,与y 轴的交点可得相关图象.【详解】解:∵一次函数和二次函数都经过y 轴上的(0,c ),∴两个函数图象交于y 轴上的同一点,故B 选项错误;当a >0,c <0时,二次函数开口向上,一次函数经过一、三、四象限,故C 选项错误;当a <0,c >0时,二次函数开口向下,一次函数经过一、二、四象限,故A 选项错误,D 选项正确;故选:D .【点睛】本题考查二次函数及一次函数的图象的性质;用到的知识点为:二次函数和一次函数的常数项是图象与y 轴交点的纵坐标;一次函数的一次项系数大于0,图象经过一、三象限;小于0,经过二、四象限;二次函数的二次项系数大于0,图象开口向上;二次项系数小于0,图象开口向下.3.若整数a 使得关于x 的分式方程12322ax x x x -+=--有整数解,且使得二次函数y =(a ﹣2)x 2+2(a ﹣1)x +a +1的值恒为非负数,则所有满足条件的整数a 的值之和是( ) A .12B .15C .17D .20B解析:B【分析】由抛物线的性质得到20a ->,2=4(1)4(2)(1)0a a a ∆---+≤然后通过解分式方程求得a 的取值,然后求和.【详解】解:∵二次函数y =(a -2)x 2+2(a -1)x +a +1的值恒为非负数,∴20a ->,2=4(1)4(2)(1)0a a a ∆---+≤解得3a ≥ 解分式方程12322ax x x x -+=--解得:62x a =- 由x ≠2得,a ≠5,由于a 、x 是整数,所以a =3,x =6,a =4,x =3,a =8,x =1,同理符合a ≥3的a 值共有3,4,8,故所有满足条件的整数a 的值之和=3+4+8=15,故选:B .【点睛】 本题考查的是抛物线和x 轴交点,涉及到解分式方程,正确理解二次函数的值恒为非负数是解题的关键.4.二次函数2y x bx =+的图象如图,对称轴为直线1x =.若关于x 的一元二次方程20x bx t +-=(t 为实数)在23x -<<的范围内有解,则t 的取值范围是( )A .1t ≥-B .13t -≤<C .18t -≤<D .38t <<C解析:C【分析】 根据对称轴求出b 的值,从而得到23x -<<时的函数值的取值范围,再根据一元二次方程x 2+bx-t=0(t 为实数)在-1<x <4的范围内有解相当于y=x 2+bx 与y=t 在x 的范围内有交点解答.【详解】解:对称轴为直线x=-21b ⨯=1, 解得b=-2,所以二次函数解析式为y=x 2-2x ,y=(x-1)2-1,x=1时,y=-1,x=-2时,y=4-2×(-2)=8,∵x 2+bx-t=0的解相当于y=x 2+bx 与直线y=t 的交点的横坐标,∴当-1≤t <8时,在-1<x <4的范围内有解.故选:C .【点睛】本题考查了二次函数与不等式,把方程的解转化为两个函数图象的交点的问题求解是解题的关键.5.如图为二次函数2y ax bx c =++的图象,此图象与x 轴的交点坐标分别为(-1,0)、(3,0).下列说法:0abc >;方程20ax bx c ++=的根为11x =-,23x =;当1x >时,y 随着x 的增大而增大;420a b c ++<.正确的个数是( )A .1B .2C .4D .3C【分析】①由抛物线的开口方向、与y 轴的交点判定a 、c 的符号,根据对称轴确定b 的符号; ②根据二次函数图象与x 轴的交点解答;③利用对称轴和二次函数的图象的性质作出判断;④将x=2代入函数关系式,结合图象判定y 的符号.【详解】解:①∵抛物线的开口向上,对称轴在y 轴的右边,与y 轴的交点在y 的负半轴上, ∴a >0,-b 2a >0,c <0, 即b <0,∴abc >0,正确;②二次函数y=ax 2+bx+c 的图象与x 轴的交点是(-1,0)、(3,0),∴方程ax 2+bx+c=0的根为x 1=-1,x 2=3故本选项正确;③函数对称轴是直线x=1,根据图象当x >1时,y 随x 的增大而增大;④根据图象可知抛物线与x 轴的交点坐标是(-1,0),(3,0),∴当x=2时,y <0∴当x=1时4a+2b+c <0,正确.共有四个正确的,故选:C .【点睛】本题考查了二次函数与系数的关系的应用,主要考查学生对二次函数的图象与系数的关系的理解和运用,同时也考查了学生观察图象的能力,本题是一道比较典型的题目,具有一定的代表性,还是一道比较容易出错的题目.6.如图,抛物线2y ax bx c =++与x 轴交于点(1,0)A -,顶点坐标为(1,)n 与y 轴的交点在(0,2)、(0,3) 之间(包含端点).有下列结论:①24ac b <;②30a b +>;③420a b c ++>;④当0y >时,x 的取值范围为13x ;⑤当0x >时,y 随着x 的增大而减小;⑥若抛物线经过点()12,y -、23,2y ⎛⎫ ⎪⎝⎭、()33,y ,则312y y y <<.其中正确的有( )A .②③⑤B .①③④C .①③⑥D .②③⑥B解析:B根据二次函数图像可知1x =为抛物线的对称轴,可以求出与x 轴正半轴交点坐标,可解④⑤,开口朝下,与y 轴交于正半轴,可知:0a <,23c ≤≤,根据对称轴公式可得:0b >,可解①②③,根据图像可解⑥.【详解】∵抛物线开口朝下,∴0a <,∵与y 轴的交点在(0,2)、(0,3) 之间(包含端点),∴23c ≤≤,∴4ac <0,∴24ac b <,∴①正确;∵1x =为抛物线的对称轴, ∴12b a-=, ∴0b >,12a b =-, ∴313202a b b b b +=-+=-<, ∴②不正确;∵1x =-时,0a b c -+=, ∴32c b =, ∴1424202a b c b b c c ⎛⎫++=⨯-++= ⎪⎝⎭> ∴③正确; ∵1x =为抛物线的对称轴,(1,0)A -,∴B 点坐标为(3,0),∴当0y >时,x 的取值范围为13x∴④正确;∵1x =为抛物线的对称轴,∴1x >时,y 随着x 的增大而减小,∴⑤不正确;由图像可知:213000y y y =<,>,,∴132y y y <<,∴⑥不正确;故选:B .【点睛】本题主要考查的是二次函数图像的性质以及二次函数对称轴,数量掌握二次函数图像的性质是解决本题的关键.7.如图所示的抛物线形构件为某工业园区的新厂房骨架,为了牢固起见,构件需要每隔0.4m 加设一根不锈钢的支柱,构件的最高点距底部0.5m ,则该抛物线形构件所需不锈钢支柱的总长度为( )A .0.8mB .1.6mC .2mD .2.2m B解析:B【分析】根据题意建立平面直角坐标系,得出B 、C 的坐标,然后根据待定系数法求出抛物线解析式,然后求出当当0.2x =和0.6x =时y 的值,然后即可求解.【详解】如图,由题意得()0,0.5B ,()1,0C .设抛物线的解析式为2y ax c =+, 代入得12a =-,12c =, ∴抛物线的解析式为21122y x =-+. 当0.2x =时,0.48y =,当0.6x =时,0.32y =.∴()1122334420.480.32 1.6BC B C B C B C m +++=⨯+=,故选B .【点睛】本题考查了二次函数的拱桥问题,关键是要根据题意作出平面直角坐标系,并根据所建立的平面直角坐标系求出函数解析式.8.如图所示,一段抛物线:()233044y x x x =-+≤≤记为1C ,它与x 轴交于两点O ,1A ;将1C 绕1A 旋转180°得到2C ,交x 轴于2A ;将2C 绕2A 旋转180°得到3C ,交x 轴于3A ;⋅⋅⋅如此进行下去,直至得到506C ,则抛物线506C 的顶点坐标是( )A .()2020,3B .()2020,3-C .()2022,3D .()2022,3-D 解析:D【分析】 解方程2334x x -+=0得A 1(4,0),再利用旋转的性质得A 2(4×2,0),A 3(4×3,0),依此规律得到A 505(4×505,0),A 506(4×506,0),且抛物线C 506的开口向上,利用交点式,设抛物线C 506的解析式为y =34(x−2020)(x−2024),然后确定此抛物线顶点坐标即可.【详解】当y =0时,2334x x -+=0,解得x 1=0,x 2=4, ∴A 1(4,0), ∵将C 1绕A 1旋转180°得到C 2,交x 轴于A 2,将C 2绕A 2旋转180得到C 3,∴A 2(4×2,0),A 3(4×3,0),∴A 505(4×505,0),A 506(4×506,0),即A 505(2020,0),A 506(2024,0), ∵抛物线C 506的开口向上,∴抛物线C 506的解析式为y =34(x−2020)(x−2024), ∵抛物线的对称轴为直线x =2022, 当x =2022时,y =34(2022−2020)(2022−2024)=−3, ∴抛物线C 506的顶点坐标是(2022,−3).故选:D .【点睛】 本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的几何变换和二次函数的性质.9.表格对应值: x 1 2 3 4判断关于的方程2ax bx c ++=的一个解的范围是( )A .01x <<B .12x <<C .23x <<D .34x <<B 解析:B【分析】利用x =1和x =2所对应的函数值可判断抛物线y=ax 2+bx +c 与x 轴的一个交点在(1,0)和(2,0)之间,则根据抛物线于x 轴的交点问题可判断关于x 的方程ax 2+bx +c =0(a≠0)的一个解x 的范围.【详解】解:∵x =2时,y =5,即ax 2+bx +c >0;x =1时,y =-0.5,即ax 2+bx +c <0,∴抛物线y=ax 2+bx +c 与x 轴的一个交点在(1,0)和(2,0)之间,∴关于x 的方程ax 2+bx +c =0(a ≠0)的一个解x 的范围是1<x <2.故选:B .【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.10.已知点1(1,)y -,(,)23y ,31(,)2y 在函数22y x x m =++的图象上,则1y ,2y ,3y 的大小关系是( )A .123y y y >>B .213y y y >>C .231y y y >>D .312y y y >>C解析:C【分析】由抛物线222(1)1y x x m x m =++=++-,可知抛物线对称轴为x =-1,开口向上,然后根据各点到对称轴的结论可判断y 1,y 2,y 3的大小.【详解】∵222(1)1y x x m x m =++=++-,∴抛物线对称轴为x =-1,开口向上,又∵点((,)23y 离对称轴最远,点1(1,)y -在对称轴上,∴231y y y >>.故选:C .【点睛】本题考查了二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键. 二、填空题11.已知二次函数2y ax bx c =++的图象过点(1,2)A ,(3,2)B ,(5,7)C .若点1(2,)M y ,2(1,)N y -,3(8,)K y 也在二次函数2y ax bx c =++的图象上,则1y ,2y ,2y的从小到大的关系是___.【分析】根据点ABC 的坐标可得二次函数的对称轴和增减性由此即可得【详解】点在二次函数的图象上此二次函数的对称轴为点BC 的横坐标大小关系为纵坐标大小关系为当时y 随x 的增大而增大;当时y 随x 的增大而减小解析:123y y y <<【分析】根据点A 、B 、C 的坐标可得二次函数的对称轴和增减性,由此即可得.【详解】点(1,2)A ,(3,2)B ,(5,7)C 在二次函数2y ax bx c =++的图象上, ∴此二次函数的对称轴为1322+=, 点B 、C 的横坐标大小关系为532>>,纵坐标大小关系为72,∴当2x ≥时,y 随x 的增大而增大;当2x <时,y 随x 的增大而减小,由二次函数的对称性得:1x =-时的函数值与5x =时的函数值相等,即为27y =, 又点1(2,)M y ,3(8,)K y 在二次函数2y ax bx c =++的图象上,且258, 137y y ,即123y y y <<,故答案为:123y y y <<.【点睛】本题考查了二次函数的图象与性质(对称性、增减性),熟练掌握二次函数的图象与性质是解题关键.12.对于抛物线243y x x =-+,当712x -<<时,关于x 的一元二次方程2430x x t -+-=有解,则t 的取值范围是 ______.﹣1≤t <8【分析】结合直角坐标系将一元二次方程转化成二次函数与一次函数图象相交的问题确定二次函数在上的取值范围即可求解【详解】解:当时关于x 的一元二次方程有解∴即在图象上和在相交∵当x=2时有最小解析:﹣1≤t <8【分析】结合直角坐标系,将一元二次方程转化成二次函数与一次函数图象相交的问题,确定二次函数 21=43y x x -+在712x -<<上的取值范围即可求解. 【详解】 解:当712x -<<时,关于x 的一元二次方程2430x x t -+-=有解, ∴243x x t -+=即在图象上21=43y x x -+和2=y t 在712x -<<相交, ∵()21=21y x -- 当x=2时,1y 有最小值﹣1当x =﹣1是,1y 有最大值8 即当712x -<<是,﹣1≤y 1<8 ∴﹣1≤t <8故答案为:﹣1≤t <8【点睛】本题主要考查二次函数与一次函数交点的问题,解题的关键是正确理解题意,将方程转化为二次函数与一次函数相交的问题.13.已知点A (4,y 1),B (2,y 2),C (-2,y 3)都在二次函数()22y x m =--的图象上,则y 1,y 2,y 3的大小关系是_______.y2<y1<y3【分析】根据二次函数的对称性增减性可以得解【详解】解:由二次函数的解析式可得x=2时y 取得最小值∴最小又由二次函数图象的对称性质可知x=0与x=4的函数值相等∴令x=0时函数值为y 则解析:y 2<y 1<y 3【分析】根据二次函数的对称性、增减性可以得解.【详解】解:由二次函数的解析式可得x=2时y 取得最小值,∴2y 最小,又由二次函数图象的对称性质可知x=0与x=4的函数值相等,∴令x=0时函数值为y ,则1y y =,再由二次函数的增减性质可知x<2时,y 随着x 的增大反而减小,所以由于0>-2,因此x=0时的函数值小于x=-2时的函数值,即3y y <,∴13y y <,∴213y y y <<,故答案为213y y y <<.【点睛】本题考查二次函数的应用,熟练掌握二次函数图象的对称性、增减性及最大最小值的求法是解题关键.14.已知二次函数y=x 2+x+m ,当x 取任意实数时,都有y >0,则m 的取值范围是________.>【分析】二次函数开口向上当x 取任意实数时都有y >0则−4ac <0据此即可列不等式求解【详解】解:−4ac =1−4m <0解得:m >故答案为:>【点睛】本题考查了抛物线与x 轴交点个数个数由−4ac 的符解析:m >14【分析】二次函数开口向上,当x 取任意实数时,都有y >0,则2b −4ac <0,据此即可列不等式求解. 【详解】解:2b −4ac =1−4m <0, 解得:m >14. 故答案为:m >14. 【点睛】本题考查了抛物线与x 轴交点个数,个数由2b −4ac 的符号确定,当△=2b −4ac >0时,抛物线与x 轴有2个交点;△=2b −4ac =0时,抛物线与x 轴有1个交点;△=2b −4ac <0时,抛物线与x 轴没有交点.15.抛物线2(3)y a x m =-+与x 轴的一个交点为(1,0),则关于x 的一元二次方程2(3)0a x m -+=的根为__________.【分析】先根据二次函数的对称性求出抛物线与x 轴的另一个交点坐标再根据二次函数与一元二次方程的联系即可得【详解】抛物线的对称轴为此抛物线与x 轴的一个交点为它与x 轴的另一个交点为即则关于x 的一元二次方程 解析:121,5x x ==【分析】先根据二次函数的对称性求出抛物线与x 轴的另一个交点坐标,再根据二次函数与一元二次方程的联系即可得. 【详解】抛物线2(3)y a x m =-+的对称轴为3x =, 此抛物线与x 轴的一个交点为(1,0),∴它与x 轴的另一个交点为(231,0)⨯-,即(5,0),则关于x 的一元二次方程2(3)0a x m -+=的根为121,5x x ==,故答案为:121,5x x ==. 【点睛】本题考查了二次函数与x 轴的交点问题、二次函数与一元二次方程的联系,熟练掌握二次函数的图象和性质是解题关键.16.关于x 的一元二次方程220x x k -++=的一个解是13x =,则抛物线22y x x k =-++与x 轴的交点坐标是____.(30)(-10)【分析】设一元二次方程的另一个根为利用根与系数的关系即可求得进而得到对应的函数与轴的交点坐标【详解】设一元二次方程的另一个根为∵即解得:∴抛物线与轴的交点坐标为(30)(-10)故解析:(3,0),(-1,0) 【分析】设一元二次方程220x x k -++=的另一个根为2x ,利用根与系数的关系即可求得2x ,进而得到对应的函数22y x x k =-++与x 轴的交点坐标.【详解】设一元二次方程220x x k -++=的另一个根为2x , ∵12bx x a+=-,即232x +=, 解得:21x =-,∴抛物线22y x x k =-++与x 轴的交点坐标为(3,0),(-1,0), 故答案为:(3,0),(-1,0). 【点睛】本题考查了一元二次方程根与系数的关系,抛物线与x 轴交点的坐标.解题时,注意二次函数22y x x k =-++与一元二次方程22y x x k =-++间的转化关系.17.如图,在平面直角坐标系中,菱形ABCD 的顶点A 的坐标为(5,0),顶点B 在y 轴正半轴上,顶点D 在x 轴负半轴上.若抛物线y =-x 2-13x +c 经过点B 、C ,则菱形ABCD 的面积为________.156【分析】由题意可得:结合已知条件求解再求解的坐标再代入抛物线的解析式求解即可得到答案【详解】解:在抛物线上菱形ABCD >故答案为:【点睛】本题考查的是抛物线的性质菱形的性质勾股定理的应用掌握以解析:156 【分析】由题意可得:()0B c ,,结合已知条件求解225,AB c =+ 再求解C 的坐标,再代入抛物线的解析式求解c 即可得到答案. 【详解】 解:B 在抛物线上,()0B c ∴,()5,0A ,225,AB c ∴=+菱形ABCD ,225,BC AB c ∴==+()225,C c c ∴-+ ()()2225+1325,c c c c ∴=-+++22251325,c c ∴+=+2250,c +≠ 22513,c ∴+=2144,c ∴= c >0,12,c ∴=1312=156.ABCD S ∴=⨯菱形故答案为:156. 【点睛】本题考查的是抛物线的性质,菱形的性质,勾股定理的应用,掌握以上知识是解题的关键.18.如图,平面直角坐标系中,桥孔抛物线对应的二次函数关系式是y =﹣13x 2,桥下的水面宽AB 为6m ,当水位上涨2m 时,水面宽CD 为_____m (结果保留根号).2【分析】首先求出B 点纵坐标进而得出D 点纵坐标即可求出D 点横坐标进而得出CD 的长【详解】解:由题意可得:当AB =6m 则B 点横坐标为3故此时y =﹣×32=﹣3当水位上涨2m 时此时D 点纵坐标为:﹣3+2解析:3【分析】首先求出B 点纵坐标,进而得出D 点纵坐标,即可求出D 点横坐标,进而得出CD 的长. 【详解】解:由题意可得:当AB =6m ,则B 点横坐标为3, 故此时y =﹣13×32=﹣3, 当水位上涨2m 时,此时D 点纵坐标为:﹣3+2=﹣1, 则﹣1=﹣13x 2,解得:x =故当水位上涨2m 时,水面宽CD 为.故答案为:【点睛】此题主要考查了二次函数的应用,求出D 点横坐标是解题关键.19.已知点()1,A a m y -、()2,B a n y -、()3,C a b y +都在二次函数221y x ax =-+的图象上,若0m b n <<<,则1y 、2y 、3y 的大小关系是_________.【分析】先根据二次函数解析式找出开口方向与对称轴再根据ABC 点与对称轴的距离判断y 值得大小即可【详解】∵二次函数∴对称轴方程为且抛物线开口向上∴横坐标离对称轴x=a 越远y 越大a-m 离x=a 有m 个单位 解析:231y y y >>【分析】先根据二次函数解析式找出开口方向与对称轴,再根据A 、B 、C 点与对称轴的距离判断y 值得大小即可. 【详解】∵二次函数221y x ax =-+∴对称轴方程为22ax a -=-=,且抛物线开口向上, ∴横坐标离对称轴x=a 越远,y 越大, a-m 离x=a 有m 个单位长度, a-n 离x=a 有n 个单位长度, a+b 离x=a 有b 个单位长度, 又∵0m b n <<<,∴231y y y >>, 故答案为:231y y y >>. 【点睛】本题考查二次函数的对称性和增减性,根据二次函数解析式确定函数图像的对称轴是解答本题的关键 .20.设A (-3,y 1),B (-2,y 2),C (12,y 3)是抛物线y =(x+1)2-m 上的三点,则y 1,y 2,y 3的大小关系为_______.(用“>”连接)【分析】根据题目中的函数解析式和二次函数图像性质即可得到答案【详解】解:∵二次函数的解析式为∴抛物线的对称轴是直线∴当时随的增大而减小;当时随的增大而增大∵是抛物线上的三个点∴∴∴故答案是:【点睛】 解析:132y y y >>【分析】根据题目中的函数解析式和二次函数图像性质即可得到答案. 【详解】解:∵二次函数的解析式为()21y x m =+- ∴抛物线的对称轴是直线1x =- ,10a =>∴当1x <-时,y 随x 的增大而减小;当1x >-时,y 随x 的增大而增大 ∵()13,A y -、()22,B y -、31,2C y ⎛⎫⎪⎝⎭是抛物线()21y x m =+-上的三个点 ∴()132---=,()121---=,()13122--= ∴3212>> ∴132y y y >>. 故答案是:132y y y >> 【点睛】本题考查了二次函数图像与系数的关系、二次函数图像上点的坐标特征,解答本题的关键是明确题意,能利用图像的增减性进行解答.三、解答题21.某超市进了一款新型玩具,预计平均每天售出20个,每个玩具盈利25元.为了增加盈利,超市老板决定采取降价措施.销售价格每降低1元,超市平均每天多售出2个玩具.(1)若超市卖玩具平均每天盈利600元,每个玩具售价应降低多少元? (2)若使超市卖玩具平均每天的盈利最多,每个玩具售价应降低多少元?解析:(1)若超市卖玩具平均每天盈利600元,每个玩具应降低5元或10元;(2)若使超市卖玩具平均每天盈利最多,每个玩具售价应降低7.5元 【分析】(1)设若超市卖玩具平均每天盈利600元,每个玩具应降低x 元,根据题意列出方程()()20225600x x +-=,求解即可;(2)设超市卖玩具平均每天盈利y 元,每个玩具售价降低x 元,则()()20225y x x =+-,利用二次函数的性质即可求解.【详解】解:(1)设若超市卖玩具平均每天盈利600元,每个玩具应降低x 元 根据题意得,()()20225600x x +-= 解这个方程得,1x 5=,210x =答:若超市卖玩具平均每天盈利600元,每个玩具应降低5元或10元 (2)设超市卖玩具平均每天盈利y 元,每个玩具售价降低x 元 根据题意得,()()20225y x x =+- ∴()227.5612.5y x =--+∵20-<∴若使超市卖玩具平均每天盈利最多,每个玩具售价应降低7.5元. 【点睛】本题考查一元二次方程的实际应用、二次函数的应用,理解题意并列出方程是解题的关键.22.已知二次函数21122y x kx k =++-. (1)求证:不论k 为任何实数,该二次函数的图象与x 轴总有公共点;(2)若该二次函数的图象与x 轴有两个公共点A ,B ,且A 点坐标为()3,0,求B 点坐标.解析:(1)见解析;(2)B (1-,0) 【分析】(1)令y=0得到关于x 的一元二次方程,再用k 表示出该方程的判别式,可判断出其根的情况,可证得结论;(2)把A 点坐标代入可求得抛物线的解析式,再令0y =,可求得方程的解,可得出B 点坐标. 【详解】(1)证明:令0y =可得:211022x kx k ++-=, ∵12a =,b k =,12c k =-, ∵22114422b ac k k ⎛⎫=-=-⨯⨯- ⎪⎝⎭ 221k k =-+()210k =-≥,∴不论k 为任何实数,方程211022x kx k ++-=,二次函数21122y x kx k =++-的图象与x 轴总有公共点; (2)解:∵A (3,0)在抛物线21122y x kx k =++-上, ∴21133022k k ⨯++-=,解得1k =-, ∴二次函数的解析式为21322y x x =--, 令0y =,即213022x x --=, 解得3x =或1x =-, ∴B 点坐标为(1-,0). 【点睛】本题主要考查了二次函数与方程的关系,掌握二次函数图象与x 轴的交点横坐标为对应一元二次方程的两根是解题的关键. 23.已知二次函数y =﹣x 2+4x .(1)下表是y 与x 的部分对应值,请补充完整; x … 0 1 2 3 4 … y……(2)根据上表的数据,在如图所示的平面直角坐标系中描点,并画出该函数图象;(3)根据图象,写出当y <0时,x 的取值范围. 解析:(1)3,4,3;(2)见解析;(3)x <0或x >4. 【分析】(1)把x =1,x =2,x =3分别代入函数解析式,求出y 的值即可; (2)在坐标系内描出各点,再顺次连接即可; (3)根据函数图象即可得出结论. 【详解】解:(1)∵当x =1时,y =﹣1+4×1=3; 当x =2时,y =﹣4+4×2=4;当x=3时,y=﹣9+4×3=3.故答案为:3,4,3;(2)如图所示;(3)如图所示,当y<0时,x的取值范围是x<0或x>4.【点睛】本题考查了二次函数的图象,函数与方程、不等式的关系,熟知画二次函数图象的一般步骤列表、描点、连线,理解函数与方程、不等式的关系是解题关键.24.某车间生产以甲、乙两种水果为原料的某种罐头,在一次进货中得知,花费1.8万元购进的甲种水果与2.4万元购进的乙种水果质量相同,乙种水果每千克比甲种水果多2元.(1)求甲、乙两种水果的单价;(2)车间将水果制成罐头投入市场进行售卖,已知一听罐头需要甲乙水果各0.5千克,而每听罐头的成本除了水果成本之外,其他所有成本是水果成本的57还要多3元.调查发现,以28元的定价进行销售,每天只能卖出3000听,超市对它进行促销,每降低1元,平均每天可多卖出1000听,当售价为多少元时,利润最大?最大利润为多少?(3)若想使得该种罐头的销售利润每天达到6万元,并且保证降价的幅度不超过定价的15%,每听罐头的价钱应为多少钱?解析:(1)甲、乙两种水果的单价分别为6元/千克、8元/千克;(2)售价为23元时,利润最大,最大利润为64000元;(3)每听罐头的价钱应为25元【分析】(1)设甲种水果的单价为x元/千克,乙种水果的单价为()2x+元/千克,列出分式方程进行求解;(2)先根据(1)中的结果算出水果成本,然后设降价m元,表示出销量和单个利润,列出总利润的表达式,最后求出最值;(3)令(2)中的利润为6万元,列式求出m的值,取范围内的值求出罐头价钱.【详解】解:(1)设甲种水果的单价为x元/千克,乙种水果的单价为()2x+元/千克,根据题意得,18000240002x x =+, 解得:6x =,经检验,6x =是方程的根,28x ∴+=,答:甲、乙两种水果的单价分别为6元/千克、8元/千克; (2)由(1)知每听罐头的水果成本为:60.580.57⨯+⨯=元, 每听罐头的总成本为:5773157+⨯+=元, 设降价m 元,则利润()()22815300010001000W m m m =--+=-+()210000390001000564000m m +=--+,10000-<,∴当5m =时,W 有最大值为64000,∴当售价为23元时,利润最大,最大利润为64000元;(3)由(2)知,()2100056400060000W m =--+=, 解得:7m =或3m =,但是降价的幅度不超过定价的15%, 3m ∴=,∴售价为28325-=(元),答:每听罐头的价钱应为25元. 【点睛】本题考查分式方程的应用和二次函数的应用,解题的关键是根据题意列出方程或者函数表达式进行求解.25.某超市经销一种商品,每千克成本为40元,经试销发现,该种商品的每天销售量y (千克)与销售单价x (元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如下表所示:(2)为了尽可能提高销量且保证某天获得600元的销售利润,则该天的销售单价应定为多少?(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少? 解析:(1)2160y x =-+;(2)50元;(3)定价60元,最大利润800元. 【分析】(1)利用待定系数法来求一次函数的解析式即可;(2)依题意可列出关于销售单价x 的方程,然后解一元二次方程组,得出解后根据x 求出对应的y ,即可求解;(3)利用每件的利润乘以销售量可得总利润,然后根据二次函数的性质来进行计算即可. 【详解】(1)设y 与x 之间的函数表达式为y kx b =+(0k ≠),将表中数据(45,70)、(50,60)代入得:45705060k b k b +=⎧⎨+=⎩, 解得:2160k b =-⎧⎨=⎩,∴y 与x 之间的函数表达式为2160y x =-+; (2)由题意得:()()402160600x x --+=, 整理得212035000x x -+=, 解得125070x x ==,,∵要求尽可能提高销量,当150x =时,销量为70千克,当270x =时,销量为20千克 ∴270x =不合题意,舍去答:为保证某天获得600元的销售利润,则该天的销售单价应定为50元/千克; (3)设当天的销售利润为w 元,则:()()402160w x x =--+22(60)800x =--+,∵﹣2<0∴当60x =时,w 最大值=800.答:当销售单价定为60元/千克时,才能使当天的销售利润最大,最大利润是800元. 【点睛】本题考查了待定系数法求一次函数的解析式、一元二次方程和二次函数在实际问题中的应用,理清题中的数量关系是解题的关键.26.已知抛物线2221y x x m =--+,直线2y x =-与x 轴交于点M ,与y 轴交于点N . (1)求证:抛物线与x 轴必有公共点;(2)若抛物线与x 轴交于A 、B 两点,且抛物线的顶点C 落在此直线上,求ABC 的面积;(3)若线段MN 与抛物线有且只有一个公共点,求m 的取值范围.解析:(1)见解析;(2)1;(3)2m =±或13m <或31m <-【分析】(1)根据根的判别式2=4∆-b ac 的正负性,即可求证;(2)利用顶点的特点,求得点C 的坐标,将点C 坐标代入抛物线即可求得抛物线解析式,继而可得抛物线与x 的交点A 、B 坐标,继而根据三角形面积公式即可求解;(3)先求出点M 、N 的坐标,再分两种情况讨论即可:【详解】解:(1)∵()222(2)4140m m ∆=---+=≥∴抛物线与x 轴必有公共点.(2)∵2221y x x m =--+ ∴其定点C 的横坐标为1212--⨯= 又∵定点C 在直线2y x =-上,所以定点C 的坐标为(1,1)- 把点(1,1)-代入抛物线2221y x x m =--+中,解得21m =∴抛物线方程为22(2)y x x x x =-=-∴抛物线与x 轴的交点分别为(0,0)和(2,0)∴2AB = ∴1121122ABC C S AB y =⋅=⨯⨯= (3)当0x =时,2y =-,则N 为(0,2)- 当0y =时,20x -=,即M 为(2,0)∵拋物线的对称轴为1x =∴分两种情况:①由22221y x y x x m =-⎧⎨=--+⎩,得22330x x m --+= ∴()22(3)410m ∆=---+=,解得32m =±时, 线段MN 与抛物线有且只有一个公共点;②当2210m --+<,解得13m <或31m -<-时,线段MN 与抛物线有且只有一个公共点.综上所述,m 的取值范围是32m =±或13m <或31m -<-.【点睛】本题考查二次函数与一次函数的综合问题,涉及到根的判别式,解题的关键是综合运用所学知识,特别是二次函数的性质,有一定的难度.27.如图,抛物线22y ax bx =++经过点(1,0),(4,0)A B -,交y 轴于点C .(1)求抛物线的解析式(用一般式表示);(2)若点E 在抛物线上,且BCE 是以BC 为底的等腰三角形,求点E 的横坐标. 解析:(1)213222y x x =-++;(2)122-+或122-- 【分析】(1)由A 、B 的坐标,利用待定系数法可求得抛物线解析式;(2)根据等腰三角形性质,然后列方程求解.【详解】解:(1)∵抛物线22y ax bx =++经过点(1,0),(4,0)A B -, ∴2016420a b a b -+=⎧⎨++=⎩,解得1232a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴抛物线解析式为213222y x x =-++; (2)设点E 为213,222⎛⎫-++ ⎪⎝⎭m m m 依题意得,EC EB = ∴22EC EB =,即2222221313(4)22222m m m m m m ⎛⎫⎛⎫+-+=-+-++ ⎪ ⎪⎝⎭⎝⎭化简得,2100m m +-=解得:1122m =-+2122m =-- ∴点E的横坐标为122-+或122--. 【点睛】本题为二次函数的综合应用,涉及待定系数法、等腰三角形等,根据等腰三角形性质列方程式解题的关键.28.某超市销售一款洗手液,这款洗手液成本价为每瓶16元,当销售单价定为每瓶20元时,每天可售出60瓶.市场调查反应:销售单价每上涨1元,则每天少售出5瓶.若设这款洗手液的销售单价上涨x 元,每天的销售量利润为y 元.(1)每天的销售量为___瓶,每瓶洗手液的利润是___元;(用含x 的代数式表示) (2)若这款洗手液的日销售利润y 达到300元,则销售单价应上涨多少元?(3)当销售单价上涨多少元时,这款洗手液每天的销售利润y 最大,最大利润为多少元? 解析:(1)()605x -,()4x +;(2)应上涨2元或6元;(3)当销售单价上涨4元时,这款洗手液每天的销售利润y 最大,最大利润为320元.【分析】(1)根据销售单价上涨x 元,每天销售量减少5x 瓶即可得,再根据“每瓶的利润=售价-。
2021年初三上册最新数学知识点归纳
初三上册最新数学知识点归纳想要学好数学的同学们,如果做好了知识点的归纳,会让你们有所收获呦。
初三上册数学知识点归纳(一)不等式的概念1、不等式:用不等号表示不等关系的式子,叫做不等式。
2、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。
3、对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。
4、求不等式的解集的过程,叫做解不等式。
5、用数轴表示不等式的方法。
不等式基本性质1、不等式两边都加上或减去同一个数或同一个整式,不等号的方向不变。
2、不等式两边都乘以或除以同一个正数,不等号的方向不变。
3、不等式两边都乘以或除以同一个负数,不等号的方向改变。
4、说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。
②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立。
一元一次不等式1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。
2、解一元一次不等式的一般步骤:1去分母2去括号3移项4合并同类项5将x项的系数化为1.一元一次不等式组1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。
3、求不等式组的解集的过程,叫做解不等式组。
4、当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。
5、一元一次不等式组的解法1分别求出不等式组中各个不等式的解集。
2利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。
6、不等式与不等式组不等式:①用符号〉,=,〈号连接的式子叫不等式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021初三数学上册知识点
(2021最新版)
作者:______
编写日期:2021年__月__日
【第一章特殊平行四边形】
1.1菱形的性质与判定
菱形的定义:一组邻边相等的平行四边形叫做菱形。
※菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。
菱形是轴对称图形,每条对角线所在的直线都是对称轴。
※菱形的判别方法:一组邻边相等的平行四边形是菱形。
对角线互相垂直的平行四边形是菱形。
四条边都相等的四边形是菱形。
1.2矩形的性质与判定
※矩形的定义:有一个角是直角的平行四边形叫矩形。
矩形是特殊的平行四边形。
※矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。
(矩形是轴对称图形,有两条对称轴)
※矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义)。
对角线相等的平行四边形是矩形。
四个角都相等的四边形是矩形。
※推论:直角三角形斜边上的中线等于斜边的一半。
1.3正方形的性质与判定
正方形的定义:一组邻边相等的矩形叫做正方形。
※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。
(正方形是轴对称图形,有两条对称轴)
※正方形常用的判定:有一个内角是直角的菱形是正方形;
邻边相等的矩形是正方形;
对角线相等的菱形是正方形;
对角线互相垂直的矩形是正方形。
正方形、矩形、菱形和平行边形四者之间的关系(如图3所示):
※梯形定义:一组对边平行且另一组对边不平行的四边形叫做梯
形。
※两条腰相等的梯形叫做等腰梯形。
※一条腰和底垂直的梯形叫做直角梯形。
※等腰梯形的性质:等腰梯形同一底上的两个内角相等,对角线相等。
同一底上的两个内角相等的梯形是等腰梯形。
※三角形的中位线平行于第三边,并且等于第三边的一半。
※夹在两条平行线间的平行线段相等。
※在直角三角形中,斜边上的中线等于斜边的一半
【第二章一元二次方程】
2.1认识一元二次方程
2.2用配方法求解一元二次方程
2.3用公式法求解一元二次方程
2.4用因式分解法求解一元二次方程
2.5一元二次方程的跟与系数的关系
2.6应用一元二次方程
※只含有一个未知数的整式方程,且都可以化为(a、b、c为
常数,a≠0)的形式,这样的方程叫一元二次方程。
※把(a、b、c为常数,a≠0)称为一元二次方程的一般形式,a为二次项系数;b为一次项系数;c为常数项。
※解一元二次方程的方法:①配方法
②公式法(注意在找abc时须先把方程化为一般形式)
③分解因式法把方程的一边变成0,另一边变成两个一次因式的乘积来求解。
(主要包括“提公因式”和“十字相乘”)
※配方法解一元二次方程的基本步骤:①把方程化成一元二次方程的一般形式;
②将二次项系数化成1;
③把常数项移到方程的右边;
④两边加上一次项系数的一半的平方;
⑤把方程转化成的形式;
⑥两边开方求其根。
※根与系数的关系:当b2-4ac>0时,方程有两个不等的实数根;
当b2-4ac=0时,方程有两个相等的实数根;
当b2-4ac。
(通常第二种方法更适用)
※反比例函数的图象由两条曲线组成,叫做双曲线
※反比例函数的画法的注意事项:①反比例函数的图象不是直线,所“两点法”是不能画的;
②选取的点越多画的图越准确;
③画图注意其美观性(对称性、延伸特征)。
※反比例函数性质:
①当k>0时,双曲线的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;
②当k<0时,双曲线的两支分别位于二、四象限;在每个象限内,y随x的增大而增大;
③双曲线的两支会无限接近坐标轴(x轴和y轴),但不会与坐标轴相交。
※反比例函数图象的几何特征:(如图4所示)
点P(x,y)在双曲线上都有。