2020版高考数学第八单元立体几何课时4空间中的平行关系教案文含解析新人教A版

合集下载

2020版高考数学一轮复习第八章立体几何第4讲直线、平面平行的判定及性质教案理(含解析)新人教A版

2020版高考数学一轮复习第八章立体几何第4讲直线、平面平行的判定及性质教案理(含解析)新人教A版

第4讲直线、平面平行的判定及性质基础知识整合1.直线与平面平行(1)判定定理(2)性质定理2.平面与平面平行(1)判定定理(2)性质定理1.垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β.2.垂直于同一个平面的两条直线平行,即若a⊥α,b⊥α,则a∥b.3.平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.1.已知直线l和平面α,若l∥α,P∈α,则过点P且平行于l的直线( ) A.只有一条,不在平面α内B.只有一条,且在平面α内C.有无数条,一定在平面α内D.有无数条,不一定在平面α内答案B解析过直线外一点作该直线的平行线有且只有一条,因为点P在平面α内,所以这条直线也应该在平面α内.2.(2019·吉林普通中学模拟)已知α,β表示两个不同的平面,直线m是α内一条直线,则“α∥β "是“m∥β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A解析由α∥β,m⊂α,可得m∥β;反过来,由m∥β,m⊂α,不能推出α∥β。

综上,“α∥β”是“m∥β”的充分不必要条件.3.若空间四边形ABCD的两条对角线AC,BD的长分别是8,12,过AB的中点E且平行于BD,AC的截面四边形的周长为()A.10 B.20C.8 D.4答案B解析设截面四边形为EFGH,F,G,H分别是BC,CD,DA的中点,∴EF=GH=4,FG=HE =6.∴周长为2×(4+6)=20.4.如图所示,P为矩形ABCD所在平面外一点,矩形对角线交点为O,M为PB的中点,给出下列五个结论:①PD∥平面AMC;②OM∥平面PCD;③OM∥平面PDA;④OM∥平面PBA;⑤OM∥平面PBC。

其中正确的个数是( )A.1 B.2C.3 D.4答案C解析矩形ABCD的对角线AC与BD交于点O,所以O为BD的中点.在△PBD中,M是PB的中点,所以OM是△PBD的中位线,OM∥PD,则PD∥平面AMC,OM∥平面PCD,且OM∥平面PDA.因为M∈PB,所以OM与平面PBA,平面PBC相交.5.(2019·南通模拟)如图,四棱锥P-ABCD的底面是一直角梯形,AB∥CD,BA⊥AD,CD=2AB,PA⊥底面ABCD,E为PC的中点,则BE与平面PAD的位置关系为________.答案平行解析取PD的中点F,连接EF,AF,在△PCD中,EF綊错误!CD。

高中数学_空间中的平行关系教学设计学情分析教材分析课后反思

高中数学_空间中的平行关系教学设计学情分析教材分析课后反思

教材分析空间中的平行关系是高中课程标准实验教科书数学(必修2)第二章第2节的内容。

空间直线与平面的平行关系和证明是立体几何的基本任务,理科同学通过空间向量的学习,使得学生对空间线面关系的判定变得更加轻松了。

但对于文科同学来说,用传统的办法来判定和证明还是一个重点内容。

很多学生对于简单的立体几何题目的平行关系的证明还是觉得比较简单的,但对于一些比较复杂的证明题目,很多同学还是有困难的。

通过本节课的学习,特别是采用了“执果索因”法以后,很多同学感觉找到了证明空间中平行关系的实质,空间想象能力也有了较大的提高课标分析(一)知识与技能1、理解直线和平面平行、两平面平行的判定定理2、理解并能证明直线与平面平行、两平面平行的性质定理(二)过程与方法1、通过知识梳理,让同学们对空间的平行关系的判定和性质有更清晰的感知;2、通过例题的学习和探索让学生明白如何判断空间的平行。

包括直线与平面的判定和平面与平面的判定。

(三)情感态度与价值观1、通过生活中的大量实例,鼓励学生积极思考,激发学生对知识的探究精神和严肃认真的科学态度,培养学生的类比、归纳的能力;2、通过学习小组的合作,培养了同学们的团队合作意识;学情分析教学对象是高三的学生,他们具有一定的分析问题和解决问题的能力,逻辑思维能力也初步形成。

思维尽管活跃,敏捷,但缺乏冷静、深刻,因此片面、不严谨。

从学生的思维特点看,通过前面有关章节的学习,学生认识了一些几何体的结构,对点线面有了一定的直观感知。

其空间想象能力,抽象概括能力,几何表达能力已经初步形成。

通过本节课的学习,增强学生思维的严谨性。

从学生的课堂参与度来看,整节课以学生的自主动手和合作讨论为主要的教学方法,这也符合学生的学习特点。

教学设计课前下发学案,请同学们完成知识梳理和预习检测部分。

知识梳理1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线 ,则该直线与此平面平行。

符号表示:,a b αα⊄⊂, ⇒a //α2、平面与平面平行的判定定理:一个平面内的两条 与另一个平面平行,则这两个平面平行。

2020版高考数学(文)新增分大一轮人教通用版讲义:第八章 立体几何8.5 含解析

2020版高考数学(文)新增分大一轮人教通用版讲义:第八章 立体几何8.5 含解析

§8.5 空间中的垂直关系1.直线与平面垂直2.平面与平面垂直 (1)平面与平面垂直的定义如果两个相交平面的交线与第三个平面垂直,又这两个平面与第三个平面相交所得的两条交线互相垂直,就称这两个平面互相垂直. (2)判定定理与性质定理概念方法微思考1.若两平行线中的一条垂直于一个平面,则另一条也垂直于这个平面吗?提示 垂直.若两平行线中的一条垂直于一个平面,那么在平面内可以找到两条相交直线与该直线垂直,根据异面直线所成的角,可以得出两平行直线中的另一条也与平面内的那两条直线成90°的角,即垂直于平面内的这两条相交直线,所以垂直于这个平面.2.两个相交平面同时垂直于第三个平面,它们的交线也垂直于第三个平面吗?提示 垂直.在两个相交平面内分别作与第三个平面交线垂直的直线,则这两条直线都垂直于第三个平面,那么这两条直线互相平行.由线面平行的性质定理可知,这两个相交平面的交线与这两条垂线平行,所以该交线垂直于第三个平面.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)直线l 与平面α内的无数条直线都垂直,则l ⊥α.( × ) (2)垂直于同一个平面的两平面平行.( × ) (3)直线a ⊥α,b ⊥α,则a ∥b .( √ ) (4)若α⊥β,a ⊥β,则a ∥α.( × )(5)若直线a ⊥平面α,直线b ∥α,则直线a 与b 垂直.( √ )(6)若平面α内的一条直线垂直于平面β内的无数条直线,则α⊥β.( × ) 题组二 教材改编2.下列命题中错误的是( )A .如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βB .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC .如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l ,那么l ⊥平面γD .如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β 答案 D解析 对于D ,若平面α⊥平面β,则平面α内的直线可能不垂直于平面β,即与平面β的关系还可以是斜交、平行或在平面β内,其他选项均是正确的.3.在三棱锥P-ABC中,点P在平面ABC中的射影为点O.(1)若P A=PB=PC,则点O是△ABC的________心;(2)若P A⊥PB,PB⊥PC,PC⊥P A,则点O是△ABC的________心.答案(1)外(2)垂解析(1)如图1,连接OA,OB,OC,OP,在Rt△POA,Rt△POB和Rt△POC中,P A=PC=PB,所以OA=OB=OC,即O为△ABC的外心.(2)如图2,延长AO,BO,CO分别交BC,AC,AB于点H,D,G.∵PC⊥P A,PB⊥PC,P A∩PB=P,P A,PB⊂平面P AB,∴PC⊥平面P AB,又AB⊂平面P AB,∴PC⊥AB,∵AB⊥PO,PO∩PC=P,PO,PC⊂平面PGC,∴AB⊥平面PGC,又CG⊂平面PGC,∴AB⊥CG,即CG为△ABC边AB上的高.同理可证BD,AH分别为△ABC边AC,BC上的高,即O为△ABC的垂心.题组三易错自纠4.若l,m为两条不同的直线,α为平面,且l⊥α,则“m∥α”是“m⊥l”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A解析由l⊥α且m∥α能推出m⊥l,充分性成立;若l⊥α且m⊥l,则m∥α或者m⊂α,必要性不成立,因此“m∥α”是“m⊥l”的充分不必要条件,故选A.5.如图所示,在正方体ABCD—A1B1C1D1中,点O,M,N分别是线段BD,DD1,D1C1的中点,则直线OM与AC,MN的位置关系是()A.与AC,MN均垂直B.与AC垂直,与MN不垂直C.与AC不垂直,与MN垂直D.与AC,MN均不垂直答案 A解析因为DD1⊥平面ABCD,所以AC⊥DD1,又因为AC⊥BD,DD1∩BD=D,所以AC⊥平面BDD1B1,因为OM⊂平面BDD1B1,所以OM⊥AC.设正方体的棱长为2,则OM=1+2=3,MN=1+1=2,ON=1+4=5,所以OM2+MN2=ON2,所以OM⊥MN.故选A.6.如图所示,AB是半圆O的直径,VA垂直于半圆O所在的平面,点C是圆周上不同于A,B的任意一点,M,N分别为VA,VC的中点,则下列结论正确的是()A.MN∥ABB.平面VAC⊥平面VBCC.MN与BC所成的角为45°D.OC⊥平面VAC答案 B解析由题意得BC⊥AC,因为VA⊥平面ABC,BC⊂平面ABC,所以VA⊥BC.因为AC∩VA=A,所以BC⊥平面VAC.因为BC⊂平面VBC,所以平面VAC⊥平面VBC.故选B.题型一直线与平面垂直的判定与性质例1 如图所示,在直三棱柱ABC-A1B1C1中,AB=AC=AA1=3,BC=2,D是BC的中点,F是CC1上一点.当CF=2时,证明:B1F⊥平面ADF.证明因为AB=AC,D是BC的中点,所以AD⊥BC.在直三棱柱ABC-A1B1C1中,因为BB1⊥底面ABC,AD⊂底面ABC,所以AD⊥B1B.因为BC∩B1B=B,BC,B1B⊂平面B1BCC1,所以AD⊥平面B1BCC1.因为B1F⊂平面B1BCC1,所以AD⊥B1F.方法一在矩形B1BCC1中,因为C1F=CD=1,B1C1=CF=2,所以Rt△DCF≌Rt△FC1B1,所以∠CFD=∠C1B1F,所以∠B1FD=90°,所以B1F⊥FD.因为AD∩FD=D,AD,FD⊂平面ADF,所以B1F⊥平面ADF.方法二在Rt△B1BD中,BD=CD=1,BB1=3,所以B1D=BD2+BB21=10.在Rt△B1C1F中,B1C1=2,C1F=1,所以B1F=B1C21+C1F2= 5.在Rt△DCF中,CF=2,CD=1,所以DF=CD2+CF2= 5.显然DF2+B1F2=B1D2,所以∠B1FD=90°.所以B1F⊥FD.因为AD∩FD=D,AD,FD⊂平面ADF,所以B1F⊥平面ADF.思维升华证明线面垂直的常用方法及关键(1)证明线面垂直的常用方法:①判定定理;②垂直于平面的传递性;③面面垂直的性质. (2)证明线面垂直的关键是证线线垂直,而证明线线垂直,则需借助线面垂直的性质.跟踪训练1如图,在三棱锥ABCD 中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E ,F (E 与A ,D 不重合)分别在棱AD ,BD 上,且EF ⊥AD .求证:(1)EF ∥平面ABC ; (2)AD ⊥AC .证明 (1)在平面ABD 内,因为AB ⊥AD ,EF ⊥AD , 则AB ∥EF .又因为EF ⊄平面ABC ,AB ⊂平面ABC , 所以EF ∥平面ABC .(2)因为平面ABD ⊥平面BCD ,平面ABD ∩平面BCD =BD ,BC ⊂平面BCD ,BC ⊥BD , 所以BC ⊥平面ABD .因为AD ⊂平面ABD ,所以BC ⊥AD . 又AB ⊥AD ,BC ∩AB =B ,AB ⊂平面ABC , BC ⊂平面ABC , 所以AD ⊥平面ABC .又因为AC ⊂平面ABC ,所以AD ⊥AC . 题型二 平面与平面垂直的判定与性质例2 (2018·全国Ⅰ)如图,在平行四边形ABCM 中,AB =AC =3,∠ACM =90°.以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB ⊥DA .(1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且BP =DQ =23DA ,求三棱锥Q -ABP 的体积.(1)证明 由已知可得,∠BAC =90°,即BA ⊥AC . 又BA ⊥AD ,AD ∩AC =A ,AD ,AC ⊂平面ACD , 所以AB ⊥平面ACD .又AB ⊂平面ABC , 所以平面ACD ⊥平面ABC .(2)解 由已知可得,DC =CM =AB =3,DA =3 2. 又BP =DQ =23DA ,所以BP =2 2.如图,过点Q 作QE ⊥AC ,垂足为E ,则QE ∥DC 且QE =13DC .由已知及(1)可得,DC ⊥平面ABC , 所以QE ⊥平面ABC ,QE =1. 因此,三棱锥Q -ABP 的体积为 V Q -ABP =13×S △ABP ×QE=13×12×3×22sin 45°×1=1. 思维升华 (1)判定面面垂直的方法 ①面面垂直的定义;②面面垂直的判定定理(a ⊥β,a ⊂α⇒α⊥β).(2)在已知平面垂直时,一般要用性质定理进行转化.在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直.跟踪训练2 (2018·锦州调研)如图,三棱锥P -ABC 中,底面ABC 是边长为2的正三角形,P A ⊥PC ,PB =2.(1)求证:平面P AC ⊥平面ABC ;(2)若P A =PC ,求三棱锥P -ABC 的体积. 证明 (1)如图,取AC 的中点O ,连接BO ,PO ,因为△ABC 是边长为2的正三角形, 所以BO ⊥AC ,BO = 3.因为P A ⊥PC ,所以PO =12AC =1.因为PB =2,所以OP 2+OB 2=PB 2, 所以PO ⊥OB .因为AC ∩OP =O ,AC ,OP ⊂平面P AC , 所以BO ⊥平面P AC . 又OB ⊂平面ABC , 所以平面P AC ⊥平面ABC .(2)解 因为P A =PC ,P A ⊥PC ,AC =2, 所以P A =PC = 2. 由(1)知BO ⊥平面P AC ,所以V P -ABC =V B -APC =13S △P AC ·BO =13×12×2×2×3=33.题型三 垂直关系的综合应用命题点1 直线与平面所成的角例3 如图,AB 是⊙O 的直径,P A 垂直于⊙O 所在的平面,C 是圆周上不同于A ,B 的一动点. (1)证明:△PBC 是直角三角形;(2)若P A =AB =2,且当直线PC 与平面ABC 所成角的正切值为 2 时,求直线AB 与平面PBC 所成角的正弦值.(1)证明 ∵AB 是⊙O 的直径,C 是圆周上不同于A ,B 的一动点. ∴BC ⊥AC ,∵P A ⊥平面ABC ,∴BC ⊥P A , 又P A ∩AC =A ,P A ,AC ⊂平面P AC , ∴BC ⊥平面P AC ,∴BC ⊥PC , ∴△BPC 是直角三角形.(2)解 如图,过A 作AH ⊥PC 于H ,∵BC ⊥平面P AC ,∴BC ⊥AH , 又PC ∩BC =C ,PC ,BC ⊂平面PBC , ∴AH ⊥平面PBC ,∴∠ABH 是直线AB 与平面PBC 所成的角, ∵P A ⊥平面ABC ,∴∠PCA 即是PC 与平面ABC 所成的角, ∵tan ∠PCA =P AAC =2,又P A =2,∴AC =2, ∴在Rt △P AC 中,AH =P A ·AC P A 2+AC 2=233,∴在Rt △ABH 中,sin ∠ABH =AH AB =2332=33,即直线AB 与平面PBC 所成角的正弦值为33. 命题点2 与垂直有关的探索性问题例4 如图,直三棱柱ABC -A 1B 1C 1中,D ,E 分别是棱BC ,AB 的中点,点F 在棱CC 1上,已知AB=AC ,AA 1=3,BC =CF =2.(1)求证:C 1E ∥平面ADF ;(2)设点M 在棱BB 1上,当BM 为何值时,平面CAM ⊥平面ADF . (1)证明 连接CE 交AD 于O ,连接OF .因为CE ,AD 为△ABC 的中线, 则O 为△ABC 的重心, 故CF CC 1=CO CE =23,故OF ∥C 1E , 因为OF ⊂平面ADF ,C 1E ⊄平面ADF ,所以C1E∥平面ADF.(2)解当BM=1时,平面CAM⊥平面ADF.证明如下:因为AB=AC,AD⊂平面ABC,故AD⊥BC.在直三棱柱ABC-A1B1C1中,BB1⊥平面ABC,BB1⊂平面B1BCC1,故平面B1BCC1⊥平面ABC.又平面B1BCC1∩平面ABC=BC,AD⊂平面ABC,所以AD⊥平面B1BCC1,又CM⊂平面B1BCC1,故AD⊥CM.又BM=1,BC=2,CD=1,FC=2,故Rt△CBM≌Rt△FCD.易证CM⊥DF,又DF∩AD=D,DF,AD⊂平面ADF,故CM⊥平面ADF.又CM⊂平面CAM,故平面CAM⊥平面ADF.思维升华对命题条件的探索的三种途径途径一:先猜后证.途径二:先通过命题成立的必要条件探索出命题成立的条件,再证明充分性.途径三:将几何问题转化为代数问题.跟踪训练3 如图所示的空间几何体ABCDEFG中,四边形ABCD是边长为2的正方形,AE⊥平面ABCD,EF∥AB,EG∥AD,EF=EG=1.(1)求证:平面CFG⊥平面ACE;(2)在AC上是否存在一点H,使得EH∥平面CFG?若存在,求出CH的长,若不存在,请说明理由.(1)证明连接BD交AC于点O,则BD⊥AC.设AB,AD的中点分别为M,N,连接MN,则MN∥BD,连接FM,GN,则FM∥GN,且FM=GN,所以四边形FMNG为平行四边形,所以MN∥FG,所以BD∥FG,所以FG⊥AC. 由于AE⊥平面ABCD,所以AE⊥BD.所以FG⊥AE,又因为AC∩AE=A,AC,AE⊂平面ACE,所以FG⊥平面ACE.又FG⊂平面CFG,所以平面CFG⊥平面ACE.(2)解存在.设平面ACE交FG于Q,则Q为FG的中点,连接EQ,CQ,取CO的中点H,连接EH,由已知易知,平面EFG∥平面ABCD,又平面ACE∩平面EFG=EQ,平面ACE∩平面ABCD=AC,所以CH∥EQ,又CH=EQ=2 2,所以四边形EQCH为平行四边形,所以EH∥CQ,又CQ⊂平面CFG,EH⊄平面CFG,所以EH∥平面CFG,所以在AC上存在一点H,使得EH∥平面CFG,且CH=2 2.1.已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则()A.m∥l B.m∥n C.n⊥l D.m⊥n答案 C解析因为α∩β=l,所以l⊂β,又n⊥β,所以n⊥l.2.(2019·通辽模拟)已知直线l,m与平面α,β,l⊂α,m⊂β,则下列命题中正确的是() A.若l∥m,则必有α∥βB.若l⊥m,则必有α⊥βC .若l ⊥β,则必有α⊥βD .若α⊥β,则必有m ⊥α 答案 C解析 对于选项A ,平面α和平面β还有可能相交,所以选项A 错误; 对于选项B ,平面α和平面β还有可能相交或平行,所以选项B 错误; 对于选项C ,因为l ⊂α,l ⊥β,所以α⊥β.所以选项C 正确; 对于选项D ,直线m 可能和平面α不垂直,所以选项D 错误.3.如图,在四面体D -ABC 中,若AB =CB ,AD =CD ,E 是AC 的中点,则下列结论正确的是( )A .平面ABC ⊥平面ABDB .平面ABD ⊥平面BDCC .平面ABC ⊥平面BDE ,且平面ADC ⊥平面BDED .平面ABC ⊥平面ADC ,且平面ADC ⊥平面BDE 答案 C解析 因为AB =CB ,且E 是AC 的中点,所以BE ⊥AC ,同理有DE ⊥AC ,于是AC ⊥平面BDE .因为AC 在平面ABC 内,所以平面ABC ⊥平面BDE .又由于AC ⊂平面ACD ,所以平面ACD ⊥平面BDE .4.(2019·大连适应性检测)在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是BC 1,CD 1的中点,则( ) A .MN ∥C 1D 1 B .MN ⊥BC 1 C .MN ⊥平面ACD 1 D .MN ⊥平面ACC 1答案 D解析 对于选项A ,因为M ,N 分别是BC 1,CD 1的中点,所以点N ∈平面CDD 1C 1,点M ∉平面CDD 1C 1,所以直线MN 是与平面CDD 1C 1相交的直线,又因为直线C 1D 1在平面CDD 1C 1内,故直线MN 与直线C 1D 1不可能平行,故选项A 错; 对于选项B ,正方体中易知NB ≠NC 1,因为点M 是BC 1的中点,所以直线MN 与直线BC 1不垂直,故选项B 不对;对于选项C ,假设MN ⊥平面ACD 1,可得MN ⊥CD 1,因为N 是CD 1的中点, 所以MC =MD 1,这与MC ≠MD 1矛盾,故假设不成立,所以选项C 不对; 对于选项D ,分别取B 1C 1,C 1D 1的中点P ,Q ,连接PM ,QN ,PQ . 因为点M 是BC 1的中点, 所以PM ∥CC 1且PM =12CC 1.同理QN ∥CC 1且QN =12CC 1.所以PM ∥QN 且PM =QN , 所以四边形PQNM 为平行四边形. 所以PQ ∥MN .在正方体中,CC 1⊥PQ ,PQ ⊥AC ,因为AC ∩CC 1=C ,AC ⊂平面ACC 1,CC 1⊂平面ACC 1, 所以PQ ⊥平面ACC 1.因为PQ ∥MN ,所以MN ⊥平面ACC 1. 故选项D 正确.5.已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,体积为94,底面是边长为3的正三角形,若P 为底面A 1B 1C 1的中心,则P A 与平面ABC 所成角的大小为( ) A.5π12 B.π3 C.π4 D.π6答案 B解析 如图,取正三角形ABC 的中心O ,连接OP , 则∠P AO 是P A 与平面ABC 所成的角. 因为底面边长为3, 所以AD =3×32=32,AO =23AD =23×32=1.三棱柱的体积为 34×(3)2AA 1=94, 解得AA 1=3, 即OP =AA 1=3, 所以tan ∠P AO =OPOA=3,因为直线与平面所成角的范围是⎣⎡⎦⎤0,π2, 所以∠P AO =π3.6.如图,已知P A ⊥平面ABC ,BC ⊥AC ,则图中直角三角形的个数为________.答案 4解析 ∵P A ⊥平面ABC ,AB ,AC ,BC ⊂平面ABC ,∴P A ⊥AB ,P A ⊥AC ,P A ⊥BC ,则△P AB ,△P AC 为直角三角形.由BC ⊥AC ,且AC ∩P A =A ,得BC ⊥平面P AC ,从而BC ⊥PC ,因此△ABC ,△PBC 也是直角三角形.7.如图,在斜三棱柱ABC -A 1B 1C 1中,∠BAC =90°,BC 1⊥AC ,则C 1在底面ABC 上的射影H 必在直线______上.答案 AB解析 ∵AC ⊥AB ,AC ⊥BC 1,AB ∩BC 1=B , ∴AC ⊥平面ABC 1.又∵AC ⊂平面ABC ,∴平面ABC 1⊥平面ABC . ∴C 1在平面ABC 上的射影H 必在两平面交线AB 上.8.如图所示,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,且底面各边都相等,M 是PC 上的一动点,当点M 满足_______时,平面MBD ⊥平面PCD .(只要填写一个你认为正确的条件即可)答案 DM ⊥PC (或BM ⊥PC 等)解析 ∵P A ⊥底面ABCD ,∴BD ⊥P A ,连接AC ,则BD ⊥AC ,且P A ∩AC =A ,∴BD ⊥平面P AC ,∴BD ⊥PC .∴当DM ⊥PC (或BM ⊥PC )时,即有PC ⊥平面MBD , 而PC ⊂平面PCD ,∴平面MBD ⊥平面PCD .9.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则AC 1与平面A 1B 1C 1D 1所成角的正弦值为________.答案 13解析 连接A 1C 1,则∠AC 1A 1为AC 1与平面A 1B 1C 1D 1所成的角.因为AB =BC =2,所以A 1C 1=AC =22, 又AA 1=1,所以AC 1=3, 所以sin ∠AC 1A 1=AA 1AC 1=13.10.如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 为BC 的中点,点P 在线段D 1E 上.点P 到直线CC 1的距离的最小值为________.答案255解析 点P 到直线CC 1的距离等于点P 在平面ABCD 上的射影到点C 的距离,设点P 在平面ABCD 上的射影为P ′,显然点P 到直线CC 1的距离的最小值为P ′C 的长度的最小值.当P ′C ⊥DE 时,P ′C 的长度最小,此时P ′C =2×122+12=255.11.如图,在四棱锥P -ABCD 中,底面ABCD 是矩形,点E 在棱PC 上(异于点P ,C ),平面ABE 与棱PD 交于点F .(1)求证:AB ∥EF ;(2)若AF ⊥EF ,求证:平面P AD ⊥平面ABCD . 证明 (1)因为四边形ABCD 是矩形, 所以AB ∥CD .又AB ⊄平面PDC ,CD ⊂平面PDC , 所以AB ∥平面PDC ,又因为AB ⊂平面ABE ,平面ABE ∩平面PDC =EF , 所以AB ∥EF .(2)因为四边形ABCD 是矩形, 所以AB ⊥AD .因为AF ⊥EF ,(1)中已证AB ∥EF ,所以AB ⊥AF . 又AB ⊥AD ,由点E 在棱PC 上(异于点C ),所以点F 异于点D , 所以AF ∩AD =A ,AF ,AD ⊂平面P AD , 所以AB ⊥平面P AD , 又AB ⊂平面ABCD , 所以平面P AD ⊥平面ABCD .12.如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,P A =AB =BC =3,AD =CD =1,∠ADC =120°,点M 是AC 与BD 的交点,点N 在线段PB 上,且PN =14PB .(1)证明:MN ∥平面PDC ;(2)求直线MN 与平面P AC 所成角的正弦值. (1)证明 因为AB =BC ,AD =CD , 所以BD 垂直平分线段AC . 又∠ADC =120°,所以MD =12AD =12,AM =32.所以AC = 3. 又AB =BC =3,所以△ABC 是等边三角形, 所以BM =32,所以BMMD =3,又因为PN =14PB ,所以BM MD =BN NP =3,所以MN ∥PD .又MN ⊄平面PDC ,PD ⊂平面PDC , 所以MN ∥平面PDC .(2)解 因为P A ⊥平面ABCD ,BD ⊂平面ABCD , 所以BD ⊥P A ,又BD ⊥AC ,P A ∩AC =A ,P A ,AC ⊂平面P AC , 所以BD ⊥平面P AC . 由(1)知MN ∥PD ,所以直线MN 与平面P AC 所成的角即直线PD 与平面P AC 所成的角, 故∠DPM 即为所求的角. 在Rt △P AD 中,PD =2, 所以sin ∠DPM =DM DP =122=14,所以直线MN 与平面P AC 所成角的正弦值为14.13.如图,在正方形ABCD 中,E ,F 分别是BC ,CD 的中点,G 是EF 的中点.现在沿AE ,AF 及EF 把这个正方形折成一个空间图形,使B ,C ,D 三点重合,重合后的点记为H .那么,在这个空间图形中必有()A .AG ⊥平面EFHB .AH ⊥平面EFHC .HF ⊥平面AEFD .HG ⊥平面AEF答案 B解析 根据折叠前、后AH ⊥HE ,AH ⊥HF 不变, ∴AH ⊥平面EFH ,B 正确;∵过A 只有一条直线与平面EFH 垂直,∴A 不正确; ∵AG ⊥EF ,EF ⊥GH ,AG ∩GH =G ,AG ,GH ⊂平面HAG , ∴EF ⊥平面HAG , 又EF ⊂平面AEF ,∴平面HAG ⊥平面AEF ,过点H 作直线垂直于平面AEF ,一定在平面HAG 内,∴C 不正确; 由条件证不出HG ⊥平面AEF ,∴D 不正确.故选B.14.(2018·全国Ⅰ)在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AC 1与平面BB 1C 1C 所成的角为30°,则该长方体的体积为( ) A .8 B .6 2 C .8 2 D .8 3 答案 C解析 如图,连接AC 1,BC 1,AC .∵AB ⊥平面BB 1C 1C ,∴∠AC 1B 为直线AC 1与平面BB 1C 1C 所成的角, ∴∠AC 1B =30°.又AB =BC =2,在Rt △ABC 1中, AC 1=2sin 30°=4,在Rt △ACC 1中,CC 1=AC 21-AC 2=42-(22+22)=22,∴V 长方体=AB ×BC ×CC 1=2×2×22=8 2. 故选C.15.如图,在直角梯形ABCD 中,BC ⊥DC ,AE ⊥DC ,且E 为CD 的中点,M ,N 分别是AD ,BE 的中点,将三角形ADE 沿AE 折起,则下列说法正确的是________.(写出所有正确说法的序号)①不论D 折至何位置(不在平面ABC 内),都有MN ∥平面DEC ; ②不论D 折至何位置(不在平面ABC 内),都有MN ⊥AE ; ③不论D 折至何位置(不在平面ABC 内),都有MN ∥AB ; ④在折起过程中,一定不会有EC ⊥AD . 答案 ①②解析 由已知,在未折叠的原梯形中, 易知四边形ABCE 为矩形, 所以AB =EC ,所以AB =DE , 又AB ∥DE ,所以四边形ABED 为平行四边形, 所以BE =AD ,折叠后如图所示.①过点M 作MP ∥DE ,交AE 于点P ,连接NP .因为M ,N 分别是AD ,BE 的中点, 所以点P 为AE 的中点,故NP ∥EC . 又MP ∩NP =P ,DE ∩CE =E , 所以平面MNP ∥平面DEC , 故MN ∥平面DEC ,①正确; ②由已知,AE ⊥ED ,AE ⊥EC , 所以AE ⊥MP ,AE ⊥NP ,又MP ∩NP =P ,所以AE ⊥平面MNP , 又MN ⊂平面MNP ,所以MN ⊥AE ,②正确; ③假设MN ∥AB ,则MN 与AB 确定平面MNBA , 从而BE ⊂平面MNBA ,AD ⊂平面MNBA , 与BE 和AD 是异面直线矛盾,③错误; ④当EC ⊥ED 时,EC ⊥AD .因为EC ⊥EA ,EC ⊥ED ,EA ∩ED =E , 所以EC ⊥平面AED ,AD ⊂平面AED , 所以EC ⊥AD ,④不正确.16.在如图所示的五面体ABCDEF 中,四边形ABCD 为菱形,且∠DAB =60°,EA =ED =AB =2EF =2,EF ∥AB ,M 为BC 的中点.(1)求证:FM ∥平面BDE ;(2)若平面ADE ⊥平面ABCD ,求点F 到平面BDE 的距离. (1)证明 取BD 的中点O ,连接OM ,OE ,因为O ,M 分别为BD ,BC 的中点, 所以OM ∥CD ,且OM =12CD .因为四边形ABCD 为菱形,所以CD ∥AB , 又EF ∥AB ,所以CD ∥EF , 又AB =CD =2EF , 所以EF =12CD ,所以OM ∥EF ,且OM =EF ,所以四边形OMFE 为平行四边形, 所以MF ∥OE .又OE ⊂平面BDE ,MF ⊄平面BDE , 所以MF ∥平面BDE .(2)解 由(1)得FM ∥平面BDE ,所以点F 到平面BDE 的距离等于点M 到平面BDE 的距离. 取AD 的中点H ,连接EH ,BH ,因为EA =ED ,四边形ABCD 为菱形,且∠DAB =60°, 所以EH ⊥AD ,BH ⊥AD . 因为平面ADE ⊥平面ABCD ,平面ADE ∩平面ABCD =AD ,EH ⊂平面ADE , 所以EH ⊥平面ABCD ,所以EH ⊥BH , 易得EH =BH =3,所以BE =6, 所以S △BDE =12×6×22-⎝⎛⎭⎫622=152.设点F 到平面BDE 的距离为h ,连接DM ,则S △BDM =12S △BCD =12×34×4=32,连接EM ,由V 三棱锥E -BDM =V 三棱锥M -BDE , 得13×3×32=13×h ×152, 解得h =155, 即点F 到平面BDE 的距离为155.。

空间里的平行关系数学教案

空间里的平行关系数学教案

空间里的平行关系数学教案第一章:引言1.1 教学目标让学生理解平面的基本概念引导学生观察和识别日常生活中的平行关系1.2 教学内容平面及其特性平行关系的定义与性质1.3 教学活动引入平面图形,引导学生观察和描述平面的特性通过实际生活中的例子,让学生识别和解释平行关系1.4 教学评估观察学生对平面概念的理解程度评估学生对平行关系识别和解释的能力第二章:平行线的性质2.1 教学目标让学生掌握平行线的定义和性质培养学生运用平行线解决实际问题的能力2.2 教学内容平行线的定义与判定平行线的性质与推论2.3 教学活动通过图形和实例,引导学生理解和记忆平行线的定义和性质让学生通过实际问题,运用平行线的性质解决问题2.4 教学评估检查学生对平行线定义和性质的理解程度评估学生运用平行线解决实际问题的能力第三章:平行公理3.1 教学目标让学生理解和掌握平行公理的概念培养学生运用平行公理解决几何问题的能力3.2 教学内容平行公理的定义与证明平行公理的应用与推论3.3 教学活动通过图形和实例,引导学生理解和记忆平行公理的概念和证明让学生通过实际问题,运用平行公理解决问题3.4 教学评估检查学生对平行公理的理解程度评估学生运用平行公理解决几何问题的能力第四章:平行线的判定4.1 教学目标让学生掌握平行线的判定方法培养学生运用平行线判定解决几何问题的能力4.2 教学内容平行线判定定理与推论平行线判定在实际问题中的应用4.3 教学活动通过图形和实例,引导学生理解和记忆平行线判定定理和方法让学生通过实际问题,运用平行线判定解决问题4.4 教学评估检查学生对平行线判定定理和方法的理解程度评估学生运用平行线判定解决几何问题的能力第五章:平行关系在实际问题中的应用5.1 教学目标让学生理解平行关系在实际问题中的应用培养学生运用平行关系解决实际问题的能力5.2 教学内容平行关系在实际问题中的例子平行关系在解决几何问题中的应用5.3 教学活动通过实际例子,引导学生理解和识别平行关系在实际问题中的应用让学生通过解决几何问题,运用平行关系解决问题5.4 教学评估检查学生对平行关系在实际问题中的应用的理解程度评估学生运用平行关系解决实际问题的能力第六章:平行四边形的性质6.1 教学目标让学生掌握平行四边形的定义和性质培养学生运用平行四边形性质解决几何问题的能力6.2 教学内容平行四边形的定义与判定平行四边形的性质与推论6.3 教学活动通过图形和实例,引导学生理解和记忆平行四边形的定义和性质让学生通过实际问题,运用平行四边形的性质解决问题6.4 教学评估检查学生对平行四边形定义和性质的理解程度评估学生运用平行四边形解决几何问题的能力第七章:平行四边形的判定7.1 教学目标让学生掌握平行四边形的判定方法培养学生运用平行四边形判定解决几何问题的能力7.2 教学内容平行四边形判定定理与推论平行四边形判定在实际问题中的应用7.3 教学活动通过图形和实例,引导学生理解和记忆平行四边形判定定理和方法让学生通过实际问题,运用平行四边形判定解决问题7.4 教学评估检查学生对平行四边形判定定理和方法的理解程度评估学生运用平行四边形判定解决几何问题的能力第八章:平行关系与坐标系8.1 教学目标让学生理解在坐标系中平行关系的表示和应用培养学生运用坐标系解决与平行关系相关的几何问题8.2 教学内容坐标系中平行线的表示和性质坐标系中平行公理和判定定理的应用8.3 教学活动通过坐标系图形和实例,引导学生理解和记忆平行线在坐标系中的表示和性质让学生通过实际问题,运用坐标系中平行关系解决问题8.4 教学评估检查学生对坐标系中平行关系表示和性质的理解程度评估学生运用坐标系解决与平行关系相关的几何问题的能力第九章:平行关系在几何证明中的应用9.1 教学目标让学生理解平行关系在几何证明中的应用培养学生运用平行关系进行几何证明的能力9.2 教学内容平行关系在几何证明中的重要性运用平行关系进行几何证明的步骤和方法9.3 教学活动通过几何证明实例,引导学生理解和识别平行关系在几何证明中的应用让学生通过解决几何证明问题,运用平行关系进行证明9.4 教学评估检查学生对平行关系在几何证明中应用的理解程度评估学生运用平行关系进行几何证明的能力10.1 教学目标培养学生运用平行关系解决更复杂几何问题的能力10.2 教学内容平行关系在更复杂几何问题中的应用10.3 教学活动让学生通过解决更复杂的几何问题,运用平行关系解决问题10.4 教学评估检查学生对平行关系知识的掌握程度和运用能力评估学生解决更复杂几何问题的能力重点和难点解析重点环节一:第一章引言中的平面概念理解和日常生活中的平行关系识别。

新教材高中数学第八章立体几何初步8.4.2空间点、直线、平面之间的位置关系课件新人教A版必修第二册

新教材高中数学第八章立体几何初步8.4.2空间点、直线、平面之间的位置关系课件新人教A版必修第二册

位置关系
直线 a 外
直线 a 与平
直线 a 与
面 α 相交
平面 α 平行
公共点
有且只有 _无__数___个__公共点 __一___个___公共点 _没__有___公共点
符号表示
a⊂α
a∩α=A
a∥α
图形表示
■名师点拨 一般地,直线 a 在平面 α 内时,应把直线 a 画在表示平面 α 的平行 四边形内;直线 a 与平面 α 相交时,应画成直线 a 与平面 α 有且只 有一个公共点,被平面 α 遮住的部分画成虚线或不画;直线 a 与平 面 α 平行时,应画成直线 a 与表示平面 α 的平行四边形的一条边平 行,并画在表示平面α 的平行四边形外.
【解析】 经探究可知直线 A1B 与直线 D1C 在平面 A1BCD1 中,且 没有交点,则两直线平行,所以①应该填“平行”;点 A1、B、B1 在平面 A1BB1 内,而 C 不在平面 A1BB1 内,则直线 A1B 与直线 B1C 异面.同理,直线 AB 与直线 B1C 异面.所以②④应该填“异面”; 直线 D1D 与直线 D1C 相交于 D1 点,所以③应该填“相交”. 【答案】 ①平行 ②异面 ③相交 ④异面
③若直线 a∥b,直线 b⊂α,则 a∥α;
④若直线 a∥b,b⊂α,那么直线 a 就平行于平面 α 内的无数条
直线.
其中真命题的个数为( )
A.1
B.2
C.3
D.4
【解析】 因为直线 l 虽与平面 α 内无数条直线平行,但 l 有可 能在平面 α 内,所以 l 不一定平行于 α,所以①是假命题. 因为直线 a 在平面 α 外包括两种情况:a∥α 和 a 与 α 相交,所 以 a 和 α 不一定平行,所以②是假命题. 因为直线 a∥b,b⊂α,则只能说明 a 和 b 无公共点,但 a 可能 在平面 α 内,所以 a 不一定平行于 α,所以③是假命题. 因为 a∥b,b⊂α,所以 a⊂α 或 a∥α,所以 a 可以与平面 α 内 的无数条直线平行,所以④是真命题. 综上,真命题的个数为 1. 【答案】 A

2020版高考数学一轮复习第八章立体几何第3讲空间点、直线、平面之间的位置关系教案理(含解析)新人教A版

2020版高考数学一轮复习第八章立体几何第3讲空间点、直线、平面之间的位置关系教案理(含解析)新人教A版

第3讲 空间点、直线、平面之间的位置关系基础知识整合1.平面的基本性质公理1:如果一条直线上的□01两点在一个平面内,那么这条直线就在此平面内. 公理2:经过□02不在同一直线上的三点,有且只有一个平面. 公理3:如果不重合的两个平面有一个公共点,那么它们有□03且只有一条过□04该点的公共直线.2.用集合语言描述点、线、面间的关系 (1)点与平面的位置关系:点A 在平面α内记作□05A ∈α,点A 不在平面α内记作□06A ∉α. (2)点与线的位置关系点A 在直线l 上记作□07A ∈l ,点A 不在直线l 上,记作□08A ∉l . (3)线面的位置关系:直线l 在平面α内记作□09l ⊂α,直线l 不在平面α内记作□10l ⊄α.(4)平面α与平面β相交于直线a ,记作□11α∩β=a . (5)直线l 与平面α相交于点A ,记作□12l ∩α=A . (6)直线a 与直线b 相交于点A ,记作□13a ∩b =A . 3.直线与直线的位置关系 (1)位置关系的分类⎩⎪⎨⎪⎧共面直线⎩⎨⎧□14平行.□15相交.异面直线:不同在□16任何一个平面内的两条直线.(2)异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间中任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的□17锐角或直角叫做异面直线a ,b 所成的角(或夹角). ②范围:□18⎝ ⎛⎦⎥⎤0,π2.1.公理2的三个推论推论1:经过一条直线和这条直线外一点有且只有一个平面; 推论2:经过两条相交直线有且只有一个平面; 推论3:经过两条平行直线有且只有一个平面. 2.异面直线判定的一个定理过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线.1.(2019·银川模拟)已知m,n是两条不同的直线,α,β是两个不同的平面,若m ⊥α,n⊥β,且β⊥α,则下列结论一定正确的是( )A.m⊥n B.m∥nC.m与n相交D.m与n异面答案 A解析若β⊥α,m⊥α,则直线m与平面β的位置关系有两种:m⊂β或m∥β.当m⊂β时,又n⊥β,所以m⊥n;当m∥β时,又n⊥β,所以m⊥n.故选A.2.(2019·福州质检)已知命题p:a,b为异面直线,命题q:直线a,b不相交,则p 是q的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案 A解析若直线a,b不相交,则a,b平行或异面,所以p是q的充分不必要条件,故选A.3.设A,B,C,D是空间四个不同的点,在下列命题中,不正确的是( )A.若AC与BD共面,则AD与BC共面B.若AC与BD是异面直线,则AD与BC是异面直线C.若AB=AC,DB=DC,则AD⊥BCD.若AB=AC,DB=DC,则AD=BC答案 D解析A,B,C,D构成的四边形可能为平面四边形,也可能为空间四边形,D不成立.4.已知异面直线a,b分别在平面α,β内,且α∩β=c,那么直线c一定( ) A.与a,b都相交B.只能与a,b中的一条相交C.至少与a,b中的一条相交D.与a,b都平行答案 C解析由题意易知,c与a,b都可相交,也可只与其中一条相交,故A,B均错误;若c与a,b都不相交,则c与a,b都平行,根据公理4,知a∥b,与a,b异面矛盾,D错误.故选C.5.设a,b,c是空间中的三条直线,下面给出四个命题:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a∥c;③若a与b相交,b与c相交,则a与c相交;④若a⊂平面α,b⊂平面β,则a,b一定是异面直线.上述命题中错误的是________(写出所有错误命题的序号).答案②③④解析由公理4知①正确;当a⊥b,b⊥c时,a与c可以相交、平行或异面,故②错误;当a与b相交,b与c相交时,a与c可以相交、平行,也可以异面,故③错误;a⊂α,b⊂β,并不能说明a与b“不同在任何一个平面内”,故④错误.故填②③④.6.(2019·河南南阳模拟)如图,在四棱锥P-ABCD中,O为CD上的动点,V P-OAB恒为定值,且△PDC是正三角形,则直线PD与直线AB所成角的大小是________.答案60°解析因为V P-OAB为定值,所以S△ABO为定值,即O到线AB的距离为定值.因为O为CD上的动点,所以CD∥AB.所以∠PDC即为异面直线PD与AB所成角.因为△PDC为等边三角形,所以∠PDC=60°.所以PD与AB所成角为60°.核心考向突破考向一平面基本性质的应用例1 如图所示,在正方体ABCD-A1B1C1D1中,E,F分别是AB和AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.证明(1)如图所示,连接EF,CD1,A1B.∵E,F分别是AB,AA1的中点,∴EF∥BA1.又A1B∥D1C,∴EF∥CD1.∴E,C,D1,F四点共面.(2)∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P.则由P∈CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈直线DA,∴CE,D1F,DA三线共点.触类旁通共面、共线、共点问题的证明方法(1)证明点或线共面,①首先由所给条件中的部分线(或点)确定一个平面,然后再证其余的线(或点)在这个平面内;②将所有条件分为两部分,然后分别确定平面,再证两平面重合.证明点共线,①先由两点确定一条直线,再证其他各点都在这条直线上;②直接证明这些点都在同一条特定的直线上.证明线共点,先证其中两条直线交于一点,再证其他直线经过该点.提醒:点共线、线共点等都是应用公理3,证明点为两平面的公共点,即证明点在交线上.即时训练 1. 如图,空间四边形ABCD中,E,F分别是AB,AD的中点,G,H分别在BC,CD上,且BG∶GC=DH∶HC=1∶2.(1)求证:E ,F ,G ,H 四点共面; (2)设EG 与FH 交于点P . 求证:P ,A ,C 三点共线.证明 (1)∵E ,F 分别为AB ,AD 的中点, ∴EF ∥BD . 在△BCD 中,BG GC =DH HC =12,∴GH ∥BD ,∴EF ∥GH ,∴E ,F ,G ,H 四点共面. (2)由(1)知EF 綊12BD ,GH 綊23BD .∴四边形FEGH 为梯形,∴GE 与HF 交于一点, 设EG ∩FH =P ,P ∈EG ,EG ⊂平面ABC , ∴P ∈平面ABC .同理P ∈平面ADC . ∴P 为平面ABC 与平面ADC 的公共点, 又平面ABC ∩平面ADC =AC , ∴P ∈AC ,∴P ,A ,C 三点共线. 考向二 空间两条直线的位置关系角度1 两条直线位置关系的判定例2 (1)若空间中四条两两不同的直线l 1,l 2,l 3,l 4,满足l 1⊥l 2,l 2⊥l 3,l 3⊥l 4,则下列结论一定正确的是( )A .l 1⊥l 4B .l 1∥l 4C .l 1与l 4即不垂直也不平行D .l 1与l 4的位置关系不确定 答案 D解析 构造如图所示的正方体ABCD -A 1B 1C 1D 1,取l 1为AD ,l 2为AA 1,l 3为A 1B 1,当取l 4为B 1C 1时,l 1∥l 4,当取l 4为BB 1时,l 1⊥l 4,故排除A ,B ,C ,选D.(2)(2019·贵州六盘水模拟)α是一个平面,m,n是两条直线,A是一个点,若m⊄α,n⊂α,且A∈m,A∈α,则m,n的位置关系不可能是( )A.垂直B.相交C.异面D.平行答案 D解析∵α是一个平面,m,n是两条直线,A是一个点,m⊄α,n⊂α,A∈m,A∈α,∴n在平面α内,m与平面α相交,A是m和平面α的交点,∴m和n异面或相交(垂直是相交的特殊情况),一定不平行.故选D.角度2异面直线的判定例3 (2019·许昌模拟)如下图,G,H,M,N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有________.答案②④解析①中HG∥MN;③中GM∥HN且GM≠HN,所以直线HG与MN必相交.触类旁通空间两条直线位置关系的判定方法即时训练 2.(2019·太原期末)已知平面α和直线l,则α内至少有一条直线与l( )A.平行B.相交C.垂直D.异面答案 C解析直线l与平面α斜交时,在平面α内不存在与l平行的直线,∴A错误;l⊂α时,在平面α内不存在与l异面的直线,∴D错误;l∥α时,在平面α内不存在与l 相交的直线,∴B错误.无论哪种情形在平面α内都有无数条直线与l垂直.故选C.3.如图所示,正方体ABCD-A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,有以下四个结论:①直线AM与CC1是相交直线;②直线AM与BN是平行直线;③直线BN与MB1是异面直线;④直线AM与DD1是异面直线.其中正确的结论为________(注:把你认为正确的结论序号都填上).答案③④解析 因为点A 在平面CDD 1C 1外,点M 在平面CDD 1C 1内,直线CC 1在平面CDD 1C 1内,CC 1不过点M ,所以AM 与CC 1是异面直线,故①错;取DD 1中点E ,连接AE ,则BN ∥AE ,但AE 与AM 相交,故②错;因为B 1与BN 都在平面BCC 1B 1内,M 在平面BCC 1B 1外,BN 不过点B 1,所以BN 与MB 1是异面直线,故③正确;同理④正确,故填③④.考向三 异面直线所成的角例4 (1)如图在底面为正方形,侧棱垂直于底面的四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =2,则异面直线A 1B 与AD 1所成角的余弦值为( )A.15B.25 C.35 D.45答案 D解析 连接BC 1,易证BC 1∥AD 1,则∠A 1BC 1或其补角即为异面直线A 1B 与AD 1所成的角.连接A 1C 1,由AB =1,AA 1=2,则A 1C 1=2,A 1B =BC 1=5,故cos ∠A 1BC 1=5+5-22×5×5=45.则异面直线A 1B 与AD 1所成角的余弦值为45.故选D.(2)正六棱柱ABCDEF -A 1B 1C 1D 1E 1F 1的底面边长为1,侧棱长为2,则这个棱柱的侧面对角线E 1D 与BC 1所成的角是________.答案 60°解析 如图所示,连接A 1B ,可知A 1B ∥E 1D ,∴∠A 1BC 1是异面直线E 1D 和BC 1所成的角.连接A 1C 1,可求得A 1C 1=C 1B =BA 1=3, ∴∠A 1BC 1=60°. 触类旁通用平移法求异面直线所成的角的三步法(1)一作:根据定义作平行线,作出异面直线所成的角.二证:证明作出的角是异面直线所成的角.三求:解三角形,求出作出的角.如果求出的角是锐角或直角,则它就是要求的角;如果求出的角是钝角,则它的补角才是要求的角.即时训练 4. 如图,在三棱锥D -ABC 中,AC =BD ,且AC ⊥BD ,E ,F 分别是棱DC ,AB 的中点,则EF 和AC 所成的角等于( )A .30°B .45°C .60°D .90°答案 B解析 如图所示,取BC 的中点G ,连接FG ,EG .∵E ,F 分别为CD ,AB 的中点, ∴FG ∥AC ,EG ∥BD , 且FG =12AC ,EG =12BD .∴∠EFG 为EF 与AC 所成的角. ∵AC =BD ,∴FG =EG . ∵AC ⊥BD ,∴FG ⊥EG , ∴∠FGE =90°,∴△EFG 为等腰直角三角形,∴∠EFG =45°,即EF 与AC 所成的角为45°.故选B.5.在三棱锥S -ACB 中,∠SAB =∠SAC =∠ACB =90°,AC =2,BC =13,SB =29,则SC 与AB 所成角的余弦值为________.答案1717解析 如图所示,取BC 的中点E ,分别在平面ABC 内作DE ∥AB ,在平面SBC 内作EF ∥SC ,则异面直线SC 与AB 所成的角为∠FED ,过F 作FG ⊥AB ,连接DG ,则△DFG 为直角三角形.由题知AC =2,BC =13,SB =29可得DE =172,EF =2,DF =52,在△DEF 中,由余弦定理可得cos ∠FED =DE 2+EF 2-DF 22DE ·EF =1717.(2017·全国卷Ⅱ)已知直三棱柱ABC -A 1B 1C 1中,∠ABC =120°,AB =2,BC =CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为( )A.32B.155C.105D.33答案 C解析 将直三棱柱ABC -A 1B 1C 1补形为直四棱柱ABCD -A 1B 1C 1D 1,如图所示,连接AD 1,B 1D 1,BD .由题意知∠ABC =120°,AB =2,BC =CC 1=1,所以AD 1=BC 1=2,AB 1=5,∠DAB =60°.在△ABD 中,由余弦定理知BD 2=22+12-2×2×1×cos60°=3,所以BD =3,所以B 1D 1= 3.又AB 1与AD 1所成的角即为AB 1与BC 1所成的角θ ,所以cos θ=AB 21+AD 21-B 1D 212×AB 1×AD 1=5+2-32×5×2=105.故选C. 答题启示(1)当异面直线所成的角不易作出或难于计算时,可考虑使用补形法.(2)补形法的目的是平移某一条直线,使之与另一条相交,常见的补形方法是对称补形. 对点训练(2019·银川模拟)如图所示,长方体ABCD -A 1B 1C 1D 1中,AB =12,BC =3,AA 1=4,N 在A 1B 1上,且B 1N =4,则异面直线BD 1与C 1N 所成角的余弦值为( )A.25 B.35 C.45 D .-35答案 B解析 补一个与原长方体相同的,并与原长方体有公共面BC 1的长方体B 1F , 如图所示.连接C 1E ,NE ,则C 1E ∥BD 1,于是∠NC 1E 即为异面直线BD 1与C 1N 所成角(或其补角).在△NC 1E 中,根据已知条件可求C 1N =5,C 1E =13,EN =E 1N 2+EE 21=417.由余弦定理,得cos ∠NC 1E =C 1N 2+C 1E 2-EN 22C 1N ×C 1E =-35.所以BD 1与C 1N 所成角的余弦值为35.。

高中必修2立体几何——空间中的平行关系(教案)

高中必修2立体几何——空间中的平行关系(教案)

空间中的平行关系【知识导图】知识讲解知识点1 线面平行于面面平行的判定定理ββ⎪⎪⎪⎭∥∥知识点2 线面平行与面面平行的性质bβ⎪=⎭例题解析类型一直线与平面平行的判定与性质【例题1】正方形ABCD与正方形ABEF所在平面相交于AB,在AE,BD上各有一点P,Q,且AP DQ=.求证:PQ∥平面BCE.【解析】方法一:如图所示aγaFC作PM AB ∥交BE 于M ,作QN AB ∥交BC 于N ,连接MN . 正方形ABCD 和正方形ABEF 有公共边AB ,AE BD ∴=. 又AP DQ =,PE QB ∴=. 又PM AB QN ∥∥,PM PE QB AB AE BD ∴==,QN BQ DC BD =,PM QNAB DC∴=. PM QN ∴∥=,即四边形PMNQ 为平行四边形,PQ MN ∴∥.又MN ⊂平面BCE ,PQ ⊄PQ ⊄平面BCE ,PQ ∴∥平面BCE . 方法二:如图,连接AQ ,并延长交BC 延长线于K ,连接EK .AE BD =,AP DQ =, PE BQ ∴=,AP DQ PE BQ∴=.FCKF又AD BK ∥,DQ AQ BQ QK ∴=,AP AQPE QK∴=,PQ EK ∴∥. 又PQ ⊄平面BCE ,EK ⊂平面BCE ,PQ ∴∥平面BCE .方法三:如图,在平面ABEF 内,过点P 作PM BE ∥,交AB 于点M ,连接QM .PM ∴∥平面BCE .又平面ABEF平面BCE BE =,PM BE ∴∥,AP AMPE MB∴=. 又AE BD =,AP DQ =,PE BQ ∴=.AP DQ PE BQ ∴=,AM DQMB QB∴=. MQ AD ∴∥.又AD BC ∥,MQ BC ∴∥,MQ ∴∥平面BCE .又PMMQ M =,∴平面PMQ ∥平面BCE .又PQ ⊂平面PMQ ,PQ ∴∥平面BCE .【例题2】如图,直四棱柱1111ABCDA B C D 的底面是菱形,14AA ,2AB ,60BAD ,,,E M N 分别是BC ,1BB ,1A D 的中点.(1)证明://MN 平面1C DE ;F【答案】 (1)证明见解析; 【解析】(1)证明:如图,取AD 中点F ,连接NF ,BF ∵在直四棱柱1111ABCD A B C D 中,底面是菱形,,,E M N 分别是BC ,1BB ,1A D 的中点∴111122NF AA BM AA BF DE ∥,∥,∥∴四边形BMNF 为平行四边形,四边形BFDE 为平行四边形 ∴MN ∥BF ∥DE∵MN 在平面C 1DE 外,DE 平面C 1DE ∴//MN 平面1C DE类型二 面面平行的判定与性质【例题1】如图所示,正方体1111ABCD A B C D -中,M 、N 、E 、F 分别是棱11A B 、11A D 、11B C 、11C D 的中点.求证:平面AMN ∥平面EFDB .【解析】连接MF ,M 、F 是11A B 、11C D 的中点,四边形1111A B C D 为正方形,11MF A D ∴∥=.又11A D AD ∥=,MF AD ∴∥=.∴四边形AMFD 是平行四边形.AM DF ∴∥.DF ⊂平面EFDB ,AM ⊄平面EFDB ,AM ∴∥平面EFDB ,同理AN ∥平面EFDB .又AM ⊂平面ANM ,AN ⊂平面ANM ,AMAN A =,∴平面AMN ∥平面EFDB .CA1A达标训练基础1.如果一条直线和一个平面平行,那么这条直线( )A .只和这个平面内的一条直线平行B .只和这个平面内的两相交直线不相交C .和这个平面内的任何一条直线都平行D .和这个平面内的任何一条直线都不相交 2.如果a b 、是异面直线,且a ∥平面α,那么b 与α的位置关系是( ) A .b α∥ B .b 与α相交 C .b α⊂ D .不确定3.已知αβ、是两个不同的平面,下列四个条件中能推出αβ∥的是( )①存在一条直线a ,a α⊥,a β⊥;②存在一个平面γ,γα⊥,γβ⊥;③存在两条平行直线a b 、,a α⊂,b β⊂,a β∥,b α∥;④存在两条异面直线a b 、,a α⊂,b β⊂,a β∥,b α∥.A .①③B .②④C .①④D .②③4.下图是长方体被一平面所截得的几何体,四边形EFGH 为截面,则四边形EFGH 的形状为 .5.如图,在下列四个正方体中,A 、B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 不平行的是A B C DACE答案与解析 1.【答案】D【解析】因为直线和平面平行,则直线和平面就没有交点,直线和平面内的直线就平行或异面. 2.【答案】D【解析】b 与α相交或b α⊂两种情况. 3.【答案】C【解析】对于①,垂直于同一直线的两个平面平行,故当a α⊥,a β⊥,αβ∥,故①正确;对于②,若γα⊥,γβ⊥,α与β可能平行,也可能相交(此时α,β的交线与γ垂直),故②不正确;对于③,若a α⊂,b β⊂,a β∥,b α∥,则α与β可能平行,也可能相交(此时a ,b 均与交线平行),故③不正确;对于④,存在两条异面直线a ,b ,a α⊂,b β⊂,a β∥,b α∥.可将α内的直线平移到β内的直线c ,则有相交直线b ,c 都与平面α平行,根据面面平行的判定定理,可得④正确.故选C . 4.【答案】平行四边形【解析】平面ABFE ∥平面CDHG , 又平面EFGH 平面=ABFE FE , 平面EFGH平面CDHG HG =,EF HG ∴∥.同理EH FG ∥,∴四边形EFGH 的形状是平行四边形.5.【答案】:A【解析】:B 中,AB //MQ ;C 中,AB //MQ ;D 中,AB //NQ .所以答案为A.巩固1.考查下列三个命题,在“ ”处都缺少同一个条件,补上这个条件使其构成真命题(其中l 、m 为直线,α、β为平面),则此条件为________. ①m l l m αα⊂⎫⇒⎬⎭∥∥; ②m l l m αα⎫⇒⎬⎭∥∥∥; ③l l αβαβ⊥⎫⇒⎬⊥⎭∥.2.P 是ABC △所在平面外一点,平面α∥平面ABC ,α交线段PA 、PB 、PC 于A ′、B ′、C ′,若:=2:3PA AA ′′,则:ABC A B C S S =△△′′′( ) A .2:25 B .4:25 C .2:5 D .4:53.已知直线a ,b ,平面α,且a b ∥,a α∥,a ,b 都在平面α外,求证:b α∥.4.如图,四棱锥P -ABCD 中,侧面P AD 为等边三角形且垂直于底面ABCD ,AB =BC =21AD , ∠BAD =∠ABC =90°,E 是PD 的中点。

人教A版【新教材】高中数学必修第二册第八章立体几何初步小结及复习教学设计

人教A版【新教材】高中数学必修第二册第八章立体几何初步小结及复习教学设计

《空间中平行关系证明》教学设计一、内容分析空间直线与平面的平行关系和证明是立体几何的基本任务,通过本节课对知识点的复习与梳理,为学生构建完整的知识体系。

特别是采用了“执果索因”法以后,让学生能更好的找到了证明空间中平行关系的实质即为线线平行,空间想象能力得到较大的提高。

二、学情分析1.由于这是复习课,学生已经系统学习了立体几何的知识,本节课就是让学生更深入地对空间中几何图形的平行位置和数量关系进行推理和计算;2.学生在学习过程中将会遇到一些问题:不能很好地使用直观图来表示立体图形、不能准确的做出辅助线、证明过程书写不规范等等。

三、教学目标1.认知目标:熟知空间中关于平行关系的公理定理,能流利运用自己的语言正确表述出线与面、面与面平行的相互转化。

2.能力目标:能从空间图形中正确识别出线与面的平行关系,并能依照相关公理定理进行证明。

3.情感、态度、价值观目标:通过相关题目训练,对数学公理、定理等相关科学结论的发现过程有所认识,学会数学证明的基本思想方法,进一步感受数学的逻辑美。

四、核心素养1.逻辑推理:归纳空间中平行关系判定定理和性质定理,线线、线面、面面之间的相互转化。

2.直观想象:空间中几何体的点、线、面的位置关系。

五、教学重难点重点:培养空间想象能力,明确证明空间中的平行关系的一般思想方法,并会应用。

难点:在证明的过程中做辅助线或辅助平面。

六、教学过程设计(一)复习引入(PK 游戏)1.平行于同一平面的两条直线平行。

( )2.若直线a 与平面α内无数条直线平行,则α//a 。

( )3.若平面βα,都与平面γ相交,且交线平行,则βα//。

( )4.如果一条直线和平面内一条直线平行,那么这条直线和这个平面平行。

( )(二)知识结构:(三)合作探究设计意图:使学生更明确本节课的主题----三个平行的关系;通过知识点的复习与梳理,为学生构建完整的知识体系。

(四)经典例题(课本P170,第11题)11、如图,在四面体A-BCD 中,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ=3QC 。

空间里的平行关系数学教案设计

空间里的平行关系数学教案设计

空间里的平行关系数学教案设计一、教学目标:1. 让学生理解平行线的概念,能够识别和判断空间中的平行关系。

2. 培养学生运用平行线的性质解决实际问题的能力。

3. 提高学生的空间想象力,培养学生的观察能力和思维能力。

二、教学内容:1. 平行线的定义:在同一平面内,永不相交的两条直线叫做平行线。

2. 平行线的性质:平行线上的任意一对对应角相等,同位角相等,内错角相等。

3. 平行线的判定:如果两条直线上的对应角相等,这两条直线平行。

4. 空间中的平行关系:判断空间中的直线是否平行,运用平行线的性质解决问题。

三、教学重点与难点:重点:平行线的定义、性质和判定。

难点:空间中的平行关系的判断。

四、教学方法:1. 采用问题驱动法,引导学生探究平行线的性质和判定。

2. 运用多媒体演示,帮助学生直观理解平行关系。

3. 采用小组合作学习,培养学生的团队协作能力。

五、教学过程:1. 导入:通过生活中的实例,引导学生认识平行关系,激发学生的学习兴趣。

2. 新课导入:介绍平行线的定义,引导学生理解平行线的概念。

3. 案例分析:分析实际问题,运用平行线的性质解决问题。

4. 课堂练习:布置练习题,让学生巩固平行线的性质和判定。

六、教学评价:1. 评价学生对平行线概念的理解程度。

2. 评价学生运用平行线性质解决实际问题的能力。

3. 评价学生的空间想象力和观察能力。

七、教学资源:1. 多媒体教学课件。

2. 练习题和答案。

3. 教学模型和教具。

八、教学进度安排:1. 第一课时:介绍平行线的定义和性质。

2. 第二课时:讲解平行线的判定和实际应用。

3. 第三课时:练习和巩固平行线的知识。

九、教学反馈:1. 课后收集学生的练习作业,了解学生的掌握情况。

2. 在下一节课开始时,进行简短的测验,检查学生对平行线知识的掌握。

3. 及时与学生沟通,了解他们在学习过程中的困难和问题,给予个别指导。

十、教学改进:1. 根据学生的反馈和教学评价,调整教学方法和内容,以提高教学效果。

高考数学第8章立体几何4第4讲直线平面平行的判定与性质教案理高三全册数学教案

高考数学第8章立体几何4第4讲直线平面平行的判定与性质教案理高三全册数学教案

第4讲直线、平面平行的判定与性质1.直线与平面平行的判定定理和性质定理文字语言图形语言符号语言判定定理平面外一条直线与这个平面内的一条直线平行,则该直线与此平面平行(线线平行⇒线面平行)因为l∥a,a⊂α,l⊄α,所以l∥α性质定理一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行(简记为“线面平行⇒线线平行”)因为l∥α,l⊂β,α∩β=b,所以l∥b2.平面与平面平行的判定定理和性质定理文字语言图形语言符号语言判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简记为“线面平行⇒面面平行”)因为a∥β,b∥β,a∩b=P,a⊂α,b⊂α,所以α∥β性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行因为α∥β,α∩γ=a,β∩γ=b,所以a∥b(1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β;(2)垂直于同一个平面的两条直线平行,即若a⊥α,b⊥α,则a ∥b;(3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.判断正误(正确的打“√”,错误的打“×”)(1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.( )(2)若一条直线平行于一个平面,则这条直线平行于这个平面内的任一条直线.( )(3)若直线a与平面α内无数条直线平行,则a∥α.( )(4)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.( )(5)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.( )答案:(1)×(2)×(3)×(4)×(5)√(教材习题改编)如果直线a∥平面α,那么直线a与平面α内的( )A.一条直线不相交B.两条直线不相交C.无数条直线不相交D.任意一条直线都不相交解析:选D.因为a∥平面α,直线a与平面α无公共点,因此a 和平面α内的任意一条直线都不相交,故选D.a、b、c为三条不重合的直线,α、β、γ为三个不重合的平面,现给出四个命题: ①⎭⎪⎬⎪⎫c ∥αc ∥β⇒α∥β ②⎭⎪⎬⎪⎫α∥γβ∥γ⇒α∥β③⎭⎪⎬⎪⎫c ∥αa ∥c ⇒a ∥α ④⎭⎪⎬⎪⎫a ∥γα∥γ⇒a ∥α其中正确的命题是________.解析:②正确.①错在α与β可能相交.③④错在a 可能在α内. 答案:②(教材习题改编)在正方体ABCD ­A 1B 1C 1D 1中,E 是DD 1的中点,则BD 1与平面ACE 的位置关系为________.解析:如图,连接AC ,BD 交于O 点,连接OE ,因为OE ∥BD 1,而OE ⊂平面ACE ,BD 1⊄平面ACE ,所以BD 1∥平面ACE .答案:平行线面平行的判定与性质(高频考点)平行关系是空间几何中的一种重要关系,包括线线平行、线面平行、面面平行,其中线面平行在高考试题中出现的频率很高,一般出现在解答题的某一问中.高考对线面平行的判定与性质的考查主要有以下三个命题角度: (1)线面位置关系的判断; (2)线面平行的证明; (3)线面平行性质的应用.[典例引领]角度一线面位置关系的判断设m,n表示不同直线,α,β表示不同平面,则下列结论中正确的是( )A.若m∥α,m∥n,则n∥αB.若m⊂α,n⊂β,m∥β,n∥α,则α∥βC.若α∥β,m∥α,m∥n,则n∥βD.若α∥β,m∥α,n∥m,n⊄β,则n∥β【解析】A错误,n有可能在平面α内;B错误,平面α有可能与平面β相交;C错误,n也有可能在平面β内;D正确,易知m∥β或m⊂β,若m⊂β,又n∥m,n⊄β,所以n∥β,若m∥β,过m作平面γ交平面β于直线l,则m∥l,又n∥m,所以n∥l,又n⊄β,l⊂β,所以n∥β.【答案】D角度二线面平行的证明在正方体ABCD­A1B1C1D1中,E,F,G,H分别是BC,CC1,C1D1,A1A的中点.求证:(1)BF∥HD1;(2)EG∥平面BB1D1D.【证明】(1)如图所示,取BB1的中点M,连接MH,MC1,易证四边形HMC1D1是平行四边形,所以HD1∥MC1.又因为在平面BCC 1B 1中,BM 綊FC 1, 所以四边形BMC 1F 为平行四边形, 所以MC 1∥BF , 所以BF ∥HD 1.(2)取BD 的中点O ,连接EO ,D 1O , 则OE ∥DC 且OE =12DC ,又D 1G ∥DC 且D 1G =12DC ,所以OE 綊D 1G ,所以四边形OEGD 1是平行四边形, 所以GE ∥D 1O .又D 1O ⊂平面BB 1D 1D ,GE ⊄平面BB 1D 1D , 所以EG ∥平面BB 1D 1D .角度三 线面平行性质的应用如图,在四棱柱ABCD ­A 1B 1C 1D 1中,E 为线段AD 上的任意一点(不包括A ,D 两点),平面CEC 1与平面BB 1D 交于FG .证明:FG ∥平面AA 1B 1B .【证明】 在四棱柱ABCD ­A 1B 1C 1D 1中,BB 1∥CC 1,BB 1⊂平面BB 1D ,CC 1⊄平面BB 1D ,所以CC 1∥平面BB 1D ,又CC 1⊂平面CEC 1,平面CEC 1与平面BB 1D 交于FG , 所以CC 1∥FG ,因为BB 1∥CC 1,所以BB1∥FG,而BB1⊂平面AA1B1B,FG⊄平面AA1B1B,所以FG∥平面AA1B1B.证明直线与平面平行的常用方法(1)定义法:证明直线与平面没有公共点,通常要借助于反证法来证明.(2)判定定理法:在利用判定定理时,关键是找到平面内与已知直线平行的直线,可先直观判断题中是否存在这样的直线,若不存在,则需作出直线,常考虑利用三角形的中位线、平行四边形的对边平行或过已知直线作一平面,找其交线进行证明.[通关练习]1.(2017·高考全国卷Ⅰ)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是( )解析:选A.对于选项B,如图所示,连接CD,因为AB∥CD,M,Q 分别是所在棱的中点,所以MQ∥CD,所以AB∥MQ,又AB⊄平面MNQ,MQ⊂平面MNQ,所以AB∥平面MNQ.同理可证选项C,D中均有AB∥平面MNQ.故选A.2.如图,四棱锥P­ABCD中,底面ABCD为矩形,F是AB的中点,E是PD的中点.(1)证明:PB∥平面AEC;(2)在PC上求一点G,使FG∥平面AEC,并证明你的结论.解:(1)证明:连接BD 与AC 交于点O ,连接EO . 因为四边形ABCD 为矩形, 所以O 为BD 的中点. 又E 为PD 的中点, 所以EO ∥PB .因为EO ⊂平面AEC ,PB ⊄平面AEC , 所以PB ∥平面AEC .(2)PC 的中点G 即为所求的点. 证明如下: 连接GE 、FG ,因为E 为PD 的中点, 所以GE 綊12CD .又F 为AB 的中点,且四边形ABCD 为矩形, 所以FA 綊12CD .所以FA 綊GE .所以四边形AFGE 为平行四边形,所以FG ∥AE .又FG ⊄平面AEC ,AE ⊂平面AEC , 所以FG ∥平面AEC .面面平行的判定与性质[典例引领]如图所示,在三棱柱ABC ­A 1B 1C 1中,E ,F ,G ,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EFA1∥平面BCHG.【证明】(1)因为G,H分别是A1B1,A1C1的中点,所以GH∥B1C1,又B1C1∥BC,所以GH∥BC,所以B,C,H,G四点共面.(2)在△ABC中,E,F分别为AB,AC的中点,所以EF∥BC,因为EF⊄平面BCHG,BC⊂平面BCHG,所以EF∥平面BCHG.又因为G,E分别为A1B1,AB的中点,所以A1G綊EB,所以四边形A1EBG是平行四边形,所以A1E∥GB.因为A1E⊄平面BCHG,GB⊂平面BCHG,所以A1E∥平面BCHG.又因为A1E∩EF=E,所以平面EFA1∥平面BCHG.1.在本例条件下,若D为BC1的中点,求证:HD∥平面A1B1BA.证明:如图所示,连接HD,A1B,因为D为BC1的中点,H为A1C1的中点,所以HD∥A1B,又HD⊄平面A1B1BA,A1B⊂平面A1B1BA,所以HD∥平面A1B1BA.2.在本例条件下,若D1,D分别为B1C1,BC的中点,求证:平面A1BD1∥平面AC1D.证明:如图所示,连接A1C交AC1于点M,因为四边形A1ACC1是平行四边形,所以M是A1C的中点,连接MD,因为D为BC的中点,所以A1B∥DM.因为A1B⊂平面A1BD1,DM⊄平面A1BD1,所以DM∥平面A1BD1.又由三棱柱的性质知,D1C1綊BD,所以四边形BDC1D1为平行四边形,所以DC1∥BD1.又DC1⊄平面A1BD1,BD1⊂平面A1BD1,所以DC1∥平面A1BD1,又因为DC1∩DM=D,DC1,DM⊂平面AC1D,所以平面A1BD1∥平面AC1D.如图,AB∥平面α∥平面β,过A,B的直线m,n分别交α,β于C,E和D,F,若AC=2,CE=3,BF=4,则BD的长为( )A.65 B.75 C.85D.95解析:选C.由AB ∥α∥β,易证 AC CE =BDDF .即AC AE =BD BF, 所以BD =AC ·BF AE =2×45=85.线、面平行中的探索性问题[典例引领]如图,四棱锥P ­ABCD 中,AB ∥CD ,AB =2CD ,E 为PB 的中点.(1)求证:CE ∥平面PAD ;(2)在线段AB 上是否存在一点F ,使得平面PAD ∥平面CEF ?若存在,证明你的结论,若不存在,请说明理由.【解】 (1)证明:如图所示,取PA 的中点H ,连接EH ,DH , 因为E 为PB 的中点, 所以EH ∥AB ,EH =12AB ,又AB ∥CD ,CD =12AB .所以EH ∥CD ,EH =CD ,因此四边形DCEH 是平行四边形, 所以CE ∥DH ,又DH ⊂平面PAD ,CE ⊄平面PAD , 所以CE ∥平面PAD .(2)如图所示,取AB 的中点F ,连接CF ,EF , 所以AF =12AB ,又CD =12AB ,所以AF =CD ,又AF ∥CD ,所以四边形AFCD 为平行四边形, 所以CF ∥AD , 又CF ⊄平面PAD , 所以CF ∥平面PAD , 由(1)可知CE ∥平面PAD , 又CE ∩CF =C ,故平面CEF ∥平面PAD ,故存在AB 的中点F 满足要求.解决探索性问题的方法(1)根据探索性问题的设问,假设其存在并探索出结论,然后在这个假设下进行推理论证,若得到合乎情理的结论就肯定假设,若得到矛盾就否定假设.(2)按类似于分析法的格式书写步骤:从结论出发“要使……成立”“只需使……成立”.如图,已知在直四棱柱ABCD­A1B1C1D1中,AD⊥DC,AB∥DC,DC=DD1=2AD=2AB=2.(1)求证:DB⊥平面B1BCC1;(2)设E是DC上一点,试确定E的位置,使得D1E∥平面A1BD,并说明理由.解:(1)证明:因为AB∥DC,AD⊥DC,所以AB⊥AD,在Rt△ABD中,AB=AD=1,所以BD=2,易求BC=2,因为CD=2,所以BD⊥BC.又BD⊥BB1,B1B∩BC=B,所以BD⊥平面B1BCC1.(2)DC的中点为E点.如图,连接BE,因为DE∥AB,DE=AB,所以四边形ABED是平行四边形.所以AD∥BE.又AD∥A1D1,所以BE∥A1D1,所以四边形A1D1EB是平行四边形,所以D1E∥A1B.因为D1E⊄平面A1BD,所以D1E∥平面A1BD.线线、线面、面面平行间的转化线线平行性质定理判定定理线面平行判定定理性质定理面面性质定理判定定理平行其中线面平行是核心,线线平行是基础,要注意它们之间的灵活转化.线面、面面平行的判定中所遵循的原则一般遵循从“低维”到“高维”的转化,即从“线线平行” 到“线面平行”,再到“面面平行”;而在应用性质定理时,其顺序恰好相反,但也要注意,转化的方向总是由题目的具体条件而定,不可过于“模式化”. 易错防范(1)直线与平面平行的判定中易忽视“线在面内”这一关键条件.(2)面面平行的判定中易忽视“面内两条相交线”这一条件. 1.在空间内,下列命题正确的是( ) A .平行直线的平行投影重合B .平行于同一直线的两个平面平行C .垂直于同一平面的两个平面平行D .垂直于同一平面的两条直线平行解析:选D.对于A ,平行直线的平行投影也可能互相平行,或为两个点,故A 错误;对于B ,平行于同一直线的两个平面也可能相交,故B 错误;对于C ,垂直于同一平面的两个平面也可能相交,故C 错误;而D 为直线和平面垂直的性质定理,正确.2.平面α∥平面β的一个充分条件是( )A.存在一条直线a,a∥α,a∥βB.存在一条直线a,a⊂α,a∥βC.存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥αD.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α解析:选D.若α∩β=l,a∥l,a⊄α,a⊄β,a∥α,a∥β,故排除 A.若α∩β=l,a⊂α,a∥l,则a∥β,故排除 B.若α∩β=l,a⊂α,a∥l,b⊂β,b∥l,则a∥β,b∥α,故排除C.3.已知m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中正确的是( )A.若α⊥γ,α⊥β,则γ∥βB.若m∥n,m⊂α,n⊂β,则α∥βC.若m∥n,m⊥α,n⊥β,则α∥βD.若m∥n,m∥α,则n∥α解析:选C.对于A,若α⊥γ,α⊥β,则γ∥β或γ与β相交;对于B,若m∥n,m⊂α,n⊂β,则α∥β或α与β相交;易知C正确;对于D,若m∥n,m∥α,则n∥α或n在平面α内.故选C.4.如图所示,在空间四边形ABCD中,E,F分别为边AB,AD上的点,且AE∶EB=AF∶FD=1∶4,又H,G分别为BC,CD的中点,则( )A .BD ∥平面EFGH ,且四边形EFGH 是矩形B .EF ∥平面BCD ,且四边形EFGH 是梯形C .HG ∥平面ABD ,且四边形EFGH 是菱形D .EH ∥平面ADC ,且四边形EFGH 是平行四边形解析:选B.由AE ∶EB =AF ∶FD =1∶4知EF 綊15BD ,又EF ⊄平面BCD ,所以EF ∥平面BCD .又H ,G 分别为BC ,CD 的中点,所以HG綊12BD ,所以EF ∥HG 且EF ≠HG .所以四边形EFGH 是梯形. 5.在三棱锥S ­ABC 中,△ABC 是边长为6的正三角形,SA =SB =SC =12,平面DEFH 分别与AB 、BC 、SC 、SA 交于D 、E 、F 、H ,且它们分别是AB 、BC 、SC 、SA 的中点,那么四边形DEFH 的面积为( )A .18B .18 3C .36D .363 解析:选 A.因为D 、E 、F 、H 分别是AB 、BC 、SC 、SA 的中点,所以DE ∥AC ,FH ∥AC ,DH ∥SB ,EF ∥SB ,则四边形DEFH 是平行四边形,且HD =12SB =6,DE =12AC =3.如图,取AC 的中点O ,连接OB 、SO ,因为SA=SC =12,AB =BC =6,所以AC ⊥SO ,AC ⊥OB ,又SO ∩OB =O ,所以AO ⊥平面SOB ,所以AO ⊥SB ,则HD ⊥DE ,即四边形DEFH 是矩形,所以四边形DEFH 的面积S =6×3=18,故选A.6.设m ,l 表示直线,α表示平面,若m ⊂α,则“l ∥α”是“l ∥m ”的________条件.(填“充分”“必要”“充要”“既不充分也不必要”)解析:m ⊂α,l ∥α不能推出l ∥m ;m ⊂α,l ∥m 也不能推出l ∥α,所以是既不充分也不必要条件.答案:既不充分也不必要7.如图,正方体ABCD ­A 1B 1C 1D 1中,AB =2,点E 为AD 的中点,点F 在CD 上.若EF ∥平面AB 1C ,则线段EF 的长度等于________.解析:因为EF ∥平面AB 1C ,EF ⊂平面ABCD ,平面ABCD ∩平面AB 1C =AC ,所以EF ∥AC ,所以F 为DC 的中点. 故EF =12AC = 2.答案:28.在棱长为2的正方体ABCD ­A 1B 1C 1D 1中,P 是A 1B 1的中点,过点A 1作与截面PBC 1平行的截面,所得截面的面积是________.解析:如图,取AB ,C 1D 1的中点E ,F ,连接A 1E ,A 1F ,EF ,则平面A 1EF ∥平面BPC 1.在△A 1EF 中,A 1F =A 1E =5,EF =22,S △A 1EF =12×22×(5)2-(2)2=6,从而所得截面面积为2S △A 1EF =2 6.答案:269.如图,在正方体ABCD­A1B1C1D1中,S是B1D1的中点,E、F、G分别是BC、DC、SC的中点,求证:(1)直线EG∥平面BDD1B1;(2)平面EFG∥平面BDD1B1.证明:(1)如图,连接SB,因为E、G分别是BC、SC的中点,所以EG∥SB.又因为SB⊂平面BDD1B1,EG⊄平面BDD1B1,所以直线EG∥平面BDD1B1.(2)连接SD,因为F、G分别是DC、SC的中点,所以FG∥SD.又因为SD⊂平面BDD1B1,FG⊄平面BDD1B1,所以FG∥平面BDD1B1,又EG⊂平面EFG,FG⊂平面EFG,EG∩FG=G,所以平面EFG∥平面BDD1B1.10.(2018·云南省11校跨区调研)如图所示,在四棱锥P­ABCD中,PA⊥底面ABCD,PA=2,∠ABC =90°,AB=3,BC=1,AD=23,∠ACD=60°,E为CD的中点.(1)求证:BC ∥平面PAE ; (2)求点A 到平面PCD 的距离.解:(1)证明:因为AB =3,BC =1,∠ABC =90°, 所以AC =2,∠BCA =60°.在△ACD 中,因为AD =23,AC =2,∠ACD =60°, 所以AD 2=AC 2+CD 2-2AC ·CD ·cos ∠ACD , 所以CD =4,所以AC 2+AD 2=CD 2, 所以△ACD 是直角三角形, 又E 为CD 中点, 所以AE =12CD =CE ,因为∠ACD =60°,所以△ACE 为等边三角形, 所以∠CAE =60°=∠BCA , 所以BC ∥AE ,又AE ⊂平面PAE ,BC ⊄平面PAE , 所以BC ∥平面PAE .(2)设点A 到平面PCD 的距离为d ,根据题意可得,PC =22,PD =CD =4,所以S △PCD =27, 因为V P ­ACD =V A ­PCD ,所以13·S △ACD ·PA =13·S △PCD ·d ,所以13×12×2×23×2=13×27d ,所以d =2217,所以点A 到平面PCD 的距离为2217.1.如图,透明塑料制成的长方体容器ABCD ­A 1B 1C 1D 1内灌进一些水,固定容器底面一边BC 于地面上,再将容器倾斜,随着倾斜度的不同,有下面四个命题: ①没有水的部分始终呈棱柱形;②水面EFGH 所在四边形的面积为定值; ③棱A 1D 1始终与水面所在平面平行;④当容器倾斜如图所示时,BE ·BF 是定值. 其中正确的个数是( ) A .1 B .2 C .3D .4解析:选C.由题图,显然①是正确的,②是错的; 对于③因为A 1D 1∥BC ,BC ∥FG , 所以A 1D 1∥FG 且A 1D 1⊄平面EFGH , 所以A 1D 1∥平面EFGH (水面). 所以③是正确的;因为水是定量的(定体积V ). 所以S △BEF ·BC =V ,即12BE ·BF ·BC =V . 所以BE ·BF =2VBC(定值),即④是正确的,故选C.2.(2018·安徽安庆模拟)在正方体ABCD ­A 1B 1C 1D 1中,M 、N 、Q 分别是棱D 1C 1、A 1D 1、BC 的中点,点P 在BD 1上且BP =23BD 1.则以下四个说法:①MN ∥平面APC ; ②C 1Q ∥平面APC ; ③A 、P 、M 三点共线; ④平面MNQ ∥平面APC .其中说法正确的是________.解析:①连接MN ,AC ,则MN ∥AC ,连接AM 、CN ,易得AM 、CN 交于点P ,即MN ⊂面APC ,所以MN ∥面APC 是错误的; ②由①知M 、N 在平面APC 上,由题易知AN ∥C 1Q ,所以C 1Q ∥面APC 是正确的;③由①知A ,P ,M 三点共线是正确的; ④由①知MN ⊂面APC , 又MN ⊂面MNQ ,所以面MNQ ∥面APC 是错误的. 答案:②③3.(2018·福建泉州质检)在如图所示的多面体中,DE ⊥平面ABCD ,AF ∥DE ,AD ∥BC ,AB =CD ,∠ABC =60°,BC =2AD =4DE =4.(1)在AC 上求作点P ,使PE ∥平面ABF ,请写出作法并说明理由;(2)求三棱锥A ­CDE 的高.解:(1)取BC 的中点G ,连接DG ,交AC 于点P ,连接EG ,EP .此时P 为所求作的点(如图所示).下面给出证明:因为BC =2AD ,G 为BC 的中点,所以BG =AD .又因为BC ∥AD ,所以四边形BGDA 是平行四边形,故DG ∥AB ,即DP ∥AB .又AB ⊂平面ABF ,DP ⊄平面ABF ,所以DP ∥平面ABF .因为AF ∥DE ,AF ⊂平面ABF ,DE ⊄平面ABF ,所以DE ∥平面ABF .又因为DP ⊂平面PDE ,DE ⊂平面PDE ,PD ∩DE =D ,所以平面PDE ∥平面ABF ,因为PE ⊂平面PDE ,所以PE ∥平面ABF .(2)在等腰梯形ABCD 中,因为∠ABC =60°,BC =2AD =4, 所以可求得梯形的高为3,从而△ACD 的面积为12×2×3= 3.因为DE⊥平面ABCD,所以DE是三棱锥E­ACD的高.设三棱锥A­CDE的高为h.由V A­CDE=V E­ACD,可得13×S△CDE×h=13S△ACD×DE,即12×2×1×h=3×1,解得h= 3.故三棱锥A­CDE的高为 3.4.如图所示,四边形ABCD与四边形ADEF都为平行四边形,M,N,G分别是AB,AD,EF的中点.求证:(1)BE∥平面DMF;(2)平面BDE∥平面MNG.证明:(1)如图所示,设DF与GN交于点O,连接AE,则AE必过点O,连接MO,则MO为△ABE的中位线,所以BE∥MO.因为BE⊄平面DMF,MO⊂平面DMF,所以BE∥平面DMF.(2)因为N,G分别为平行四边形ADEF的边AD,EF的中点,所以DE∥GN.因为DE⊄平面MNG,GN⊂平面MNG,所以DE∥平面MNG.因为M为AB的中点,所以MN为△ABD的中位线,所以BD∥MN.因为BD⊄平面MNG,MN⊂平面MNG,所以BD∥平面MNG.因为DE与BD为平面BDE内的两条相交直线,所以平面BDE∥平面MNG.。

2020版高考数学总复习第八章立体几何初步第4节平行关系教案文(含解析)北师大版

2020版高考数学总复习第八章立体几何初步第4节平行关系教案文(含解析)北师大版

第4节 平行关系最新考纲 1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理;2.能运用公理、定理和已获得的结论证明一些有关空间图形的平行关系的简单命题.知 识 梳 理1.直线与平面平行 (1)直线与平面平行的定义直线l 与平面α没有公共点,则称直线l 与平面α平行. (2)判定定理与性质定理a α,b α,a ∥b ⇒a ∥αa ∥α,a β,α∩β=b ⇒a ∥b(1)平面与平面平行的定义没有公共点的两个平面叫做平行平面. (2)判定定理与性质定理a α,b α,a ∩b=P ,a ∥β,b ∥β⇒α∥βα∥β,a α⇒a ∥β平行关系中的三个重要结论(1)垂直于同一条直线的两个平面平行,即若a ⊥α,a ⊥β,则α∥β. (2)平行于同一平面的两个平面平行,即若α∥β,β∥γ,则α∥γ. (3)垂直于同一个平面的两条直线平行,即若a ⊥α,b ⊥α,则a ∥b .基 础 自 测1.判断下列结论正误(在括号内打“√”或“×”)(1)若一条直线和平面内一条直线平行,那么这条直线和这个平面平行.( ) (2)若直线a ∥平面α,P ∈α,则过点P 且平行于直线a 的直线有无数条.( ) (3)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.( ) (4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.( )解析 (1)若一条直线和平面内的一条直线平行,那么这条直线和这个平面平行或在平面内,故(1)错误.(2)若a ∥α,P ∈α,则过点P 且平行于a 的直线只有一条,故(2)错误.(3)如果一个平面内的两条直线平行于另一个平面,则这两个平面平行或相交,故(3)错误. 答案 (1)× (2)× (3)× (4)√2.(必修2P29抽象概括改编)下列说法中,与“直线a ∥平面α”等价的是( ) A.直线a 上有无数个点不在平面α内 B.直线a 与平面α内的所有直线平行 C.直线a 与平面α内无数条直线不相交 D.直线a 与平面α内的任意一条直线都不相交解析 因为a ∥平面α,所以直线a 与平面α无交点,因此a 和平面α内的任意一条直线都不相交,故选D. 答案 D3.(必修2P34练习2T1改编)下列命题中正确的是( )A.若a ,b 是两条直线,且a ∥b ,那么a 平行于经过b 的任何平面B.若直线a 和平面α满足a ∥α,那么a 与α内的任何直线平行C.平行于同一条直线的两个平面平行D.若直线a,b和平面α满足a∥b,a∥α,bα,则b∥α解析根据线面平行的判定与性质定理知,选D.答案 D4.(2018·长沙模拟)已知m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中正确的是( )A.m∥α,n∥α,则m∥nB.m∥n,m∥α,则n∥αC.m⊥α,m⊥β,则α∥βD.α⊥γ,β⊥γ,则α∥β解析A中,m与n平行、相交或异面,A不正确;B中,n∥α或nα,B不正确;根据线面垂直的性质,C正确;D中,α∥β或α与β相交,D错.答案 C5.(2019·铜川月考)若平面α∥平面β,直线a∥平面α,点B∈β,则在平面β内且过B点的所有直线中( )A.不一定存在与a平行的直线B.只有两条与a平行的直线C.存在无数条与a平行的直线D.存在唯一与a平行的直线解析当直线a在平面β内且过B点时,不存在与a平行的直线,故选A.答案 A6.(2019·衡水开学考试)如图是长方体被一平面所截得的几何体,四边形EFGH为截面,则四边形EFGH的形状为________.解析∵平面ABFE∥平面DCGH,又平面EFGH∩平面ABFE=EF,平面EFGH∩平面DCGH=HG,∴EF∥HG.同理EH∥FG,∴四边形EFGH是平行四边形.答案平行四边形考点一与线、面平行相关命题的判定【例1】(1)(2019·开封模拟)在空间中,a,b,c是三条不同的直线,α,β是两个不同的平面,则下列命题中的真命题是( )A.若a⊥c,b⊥c,则a∥bB.若aα,bβ,α⊥β,则a⊥bC.若a∥α,b∥β,α∥β,则a∥bD.若α∥β,aα,则a∥β(2)(2018·聊城模拟)下列四个正方体中,A,B,C为所在棱的中点,则能得出平面ABC∥平面DEF的是( )解析(1)对于A,若a⊥c,b⊥c,则a与b可能平行、异面、相交,故A是假命题;对于B,设α∩β=m,若a,b均与m平行,则a∥b,故B是假命题;对于C,a,b可能平行、异面、相交,故C是假命题;对于D,若α∥β,aα,则a与β没有公共点,则a∥β,故D是真命题.(2)在B中,如图,连接MN,PN,∵A,B,C为正方体所在棱的中点,∴AB∥MN,AC∥PN,∵MN∥DE,PN∥EF,∴AB∥DE,AC∥EF,∵AB∩AC=A,DE∩EF=E,AB ,AC平面ABC,DE,EF平面DEF,∴平面ABC∥平面DEF.答案(1)D (2)B规律方法 1.判断与平行关系相关命题的真假,必须熟悉线、面平行关系的各个定义、定理,无论是单项选择还是含选择项的填空题,都可以从中先选出最熟悉最容易判断的选项先确定或排除,再逐步判断其余选项.2.(1)结合题意构造或绘制图形,结合图形作出判断.(2)特别注意定理所要求的条件是否完备,图形是否有特殊情况,通过举反例否定结论或用反证法推断命题是否正确.【训练1】 (1)下列命题正确的是( )A.若两条直线和同一个平面平行,则这两条直线平行B.若一条直线与两个平面所成的角相等,则这两个平面平行C.若一条直线与两个相交平面都平行,则这条直线与这两个平面的交线平行D.若两个平面垂直于同一个平面,则这两个平面平行(2)(2018·安庆模拟)在正方体ABCD -A 1B 1C 1D 1中,M ,N ,Q 分别是棱D 1C 1,A 1D 1,BC 的中点,点P 在BD 1上且BP =23BD 1,则下面说法正确的是________(填序号).①MN ∥平面APC ;②C 1Q ∥平面APC ;③A ,P ,M 三点共线;④平面MNQ ∥平面APC . 解析 (1)A 选项中两条直线可能平行也可能异面或相交;对于B 选项,如图,在正方体ABCD -A 1B 1C 1D 1中,平面ABB 1A 1和平面BCC 1B 1与B 1D 1所成的角相等,但这两个平面垂直;D 选项中两平面也可能相交.C 正确.(2)如图,对于①,连接MN ,AC ,则MN ∥AC ,连接AM ,CN ,易得AM ,CN 交于点P ,即MN平面APC ,所以MN ∥平面APC 是错误的.对于②,由①知M ,N 在平面APC 内,由题易知AN ∥C 1Q ,且AN 平面APC ,C 1Q 平面APC . 所以C 1Q ∥平面APC 是正确的.对于③,由①知,A ,P ,M 三点共线是正确的.对于④,由①知MN 平面APC ,又MN 平面MNQ ,所以平面MNQ ∥平面APC 是错误的. 答案 (1)C (2)②③考点二 直线与平面平行的判定与性质多维探究角度1 直线与平面平行的判定【例2-1】 (2019·东北三省四市模拟)在如图所示的几何体中,四边形ABCD 是正方形,PA ⊥平面ABCD ,E ,F 分别是线段AD ,PB 的中点,PA =AB =1.(1)证明:EF ∥平面PDC ; (2)求点F 到平面PDC 的距离.(1)证明 取PC 的中点M ,连接DM ,MF ,∵M ,F 分别是PC ,PB 的中点,∴MF ∥CB ,MF =12CB ,∵E 为DA 的中点,四边形ABCD 为正方形, ∴DE ∥CB ,DE =12CB ,∴MF ∥DE ,MF =DE ,∴四边形DEFM 为平行四边形, ∴EF ∥DM ,∵EF 平面PDC ,DM 平面PDC , ∴EF ∥平面PDC .(2)解 ∵EF ∥平面PDC ,∴点F 到平面PDC 的距离等于点E 到平面PDC 的距离. ∵PA ⊥平面ABCD ,∴PA ⊥DA ,在Rt△PAD 中,PA =AD =1,∴DP = 2. ∵PA ⊥平面ABCD ,∴PA ⊥CB ,∵CB ⊥AB ,PA ∩AB =A ,∴CB ⊥平面PAB , ∴CB ⊥PB ,则PC =3,∴PD 2+DC 2=PC 2, ∴△PDC 为直角三角形, ∴S △PDC =12×1×2=22.连接EP ,EC ,易知V E -PDC =V C -PDE ,设E 到平面PDC 的距离为h , ∵CD ⊥AD ,CD ⊥PA ,AD ∩PA =A ,∴CD ⊥平面PAD , 则13×h ×22=13×1×12×12×1,∴h =24, ∴点F 到平面PDC 的距离为24. 角度2 直线与平面平行性质定理的应用【例2-2】 (2018·上饶模拟)如图所示,在正方体ABCD -A 1B 1C 1D 1中,棱长为2,E ,F 分别是棱DD 1,C 1D 1的中点.(1)求三棱锥B1-A1BE的体积;(2)试判断直线B1F与平面A1BE是否平行,如果平行,请在平面A1BE上作出与B1F平行的直线,并说明理由.解(1)如图所示,V B1-A1BE=V E-A1B1B=13S△A1B1B· DA=13×12×2×2×2=43.(2)B1F∥平面A1BE.延长A1E交AD延长线于点H,连BH交CD于点G,则BG就是所求直线.证明如下:因为BA1∥平面CDD1C1,平面A1BH∩平面CDD1C1=GE,所以A1B∥GE.又A1B∥CD1,所以GE∥CD1.又E为DD1的中点,则G为CD的中点.故BG∥B1F,BG就是所求直线.规律方法 1.利用判定定理判定线面平行,关键是找平面内与已知直线平行的直线.常利用三角形的中位线、平行四边形的对边或过已知直线作一平面找其交线.2.在解决线面、面面平行的判定时,一般遵循从“低维”到“高维”的转化,即从“线线平行”到“线面平行”,再到“面面平行”;而在应用性质定理时,其顺序恰好相反.【训练2】(2017·江苏卷)如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.证明(1)在平面ABD内,AB⊥AD,EF⊥AD,则AB∥EF.∵AB平面ABC,EF平面ABC,∴EF∥平面ABC.(2)∵BC⊥BD,平面ABD∩平面BCD=BD,平面ABD⊥平面BCD,BC平面BCD,∴BC⊥平面ABD.∵AD平面ABD,∴BC⊥AD.又AB⊥AD,BC,AB平面ABC,BC∩AB=B,∴AD⊥平面ABC,又因为AC平面ABC,∴AD⊥AC.考点三面面平行的判定与性质典例迁移【例3】 (经典母题)如图所示,在三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EFA1∥平面BCHG.证明(1)∵G,H分别是A1B1,A1C1的中点,∴GH是△A1B1C1的中位线,则GH∥B1C1.又∵B1C1∥BC,∴GH∥BC,∴B,C,H,G四点共面.(2)∵E,F分别为AB,AC的中点,∴EF∥BC,∵EF平面BCHG,BC平面BCHG,∴EF∥平面BCHG.又G,E分别为A1B1,AB的中点,A1B1綉AB,∴A1G綉EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E平面BCHG,GB平面BCHG,∴A1E∥平面BCHG.又∵A1E∩EF=E,∴平面EFA1∥平面BCHG.【迁移探究1】在本例中,若将条件“E,F,G,H分别是AB,AC,A1B1,A1C1的中点”变为“D1,D分别为B1C1,BC的中点”,求证:平面A1BD1∥平面AC1D.证明 如图所示,连接A 1C 交AC 1于点M , ∵四边形A 1ACC 1是平行四边形, ∴M 是A 1C 的中点,连接MD , ∵D 为BC 的中点, ∴A 1B ∥DM . ∵A 1B 平面A 1BD 1,DM 平面A 1BD 1,∴DM ∥平面A 1BD 1,又由三棱柱的性质知,D 1C 1綉BD , ∴四边形BDC 1D 1为平行四边形, ∴DC 1∥BD 1.又DC 1v 平面A 1BD 1,BD 1平面A 1BD 1, ∴DC 1∥平面A 1BD 1,又DC 1∩DM =D ,DC 1,DM 平面AC 1D , 因此平面A 1BD 1∥平面AC 1D .【迁移探究2】 在本例中,若将条件“E ,F ,G ,H 分别是AB ,AC ,A 1B 1,A 1C 1的中点”变为“点D ,D 1分别是AC ,A 1C 1上的点,且平面BC 1D ∥平面AB 1D 1”,试求AD DC的值. 解 连接A 1B 交AB 1于O ,连接OD 1.由平面BC 1D ∥平面AB 1D 1,且平面A 1BC 1∩平面BC 1D =BC 1,平面A 1BC 1∩平面AB 1D 1=D 1O ,所以BC 1∥D 1O ,则A 1D 1D 1C 1=A 1OOB=1.又由题设A 1D 1D 1C 1=DC AD , ∴DC AD=1,即AD DC=1.规律方法 1.判定面面平行的主要方法 (1)利用面面平行的判定定理.(2)线面垂直的性质(垂直于同一直线的两平面平行). 2.面面平行条件的应用(1)两平面平行,分析构造与之相交的第三个平面,交线平行. (2)两平面平行,其中一个平面内的任意一条直线与另一个平面平行.提醒 利用面面平行的判定定理证明两平面平行,需要说明是在一个平面内的两条直线是相交直线.【训练3】 (2019·南昌二模)如图,四棱锥P -ABCD 中,底面ABCD 是直角梯形,AB ∥CD ,AB ⊥AD ,AB =2CD =2AD =4,侧面PAB 是等腰直角三角形,PA =PB ,平面PAB ⊥平面ABCD ,点E ,F 分别是棱AB ,PB 上的点,平面CEF ∥平面PAD .(1)确定点E ,F 的位置,并说明理由; (2)求三棱锥F -DCE 的体积.解 (1)因为平面CEF ∥平面PAD ,平面CEF ∩平面ABCD =CE , 平面PAD ∩平面ABCD =AD , 所以CE ∥AD ,又AB ∥DC , 所以四边形AECD 是平行四边形, 所以DC =AE =12AB ,即点E 是AB 的中点.因为平面CEF ∥平面PAD ,平面CEF ∩平面PAB =EF ,平面PAD ∩平面PAB =PA , 所以EF ∥PA ,又点E 是AB 的中点, 所以点F 是PB 的中点.综上,E ,F 分别是AB ,PB 的中点.(2)连接PE ,由题意及(1)知PA =PB ,AE =EB ,所以PE ⊥AB ,又平面PAB ⊥平面ABCD ,平面PAB ∩平面ABCD =AB , 所以PE ⊥平面ABCD . 又AB ∥CD ,AB ⊥AD ,所以V F -DEC =12V P -DEC =16S △DEC ×PE =16×12×2×2×2=23.[思维升华]1.转化思想:三种平行关系之间的转化其中线面平行是核心,线线平行是基础,要注意它们之间的灵活转化.2.直线与平面平行的主要判定方法(1)定义法;(2)判定定理;(3)面面平行的性质.3.平面与平面平行的主要判定方法(1)定义法;(2)判定定理;(3)推论;(4)a⊥α,a⊥β⇒α∥β.[易错防范]1.在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.2.面面平行的判定中易忽视“面内两条相交线”这一条件.3.如果一个平面内有无数条直线与另一个平面平行,易误认为这两个平面平行,实质上也可以相交.4.运用性质定理,要遵从由“高维”到“低维”,但也要注意,转化的方向总是由题目的具体条件而定,决不可过于“模式化”.基础巩固题组(建议用时:40分钟)一、选择题1.若直线l不平行于平面α,且lα,则( )A.α内的所有直线与l异面B.α内不存在与l平行的直线C.α与直线l至少有两个公共点D.α内的直线与l都相交解析因为lα,直线l不平行于平面α,所以直线l只能与平面α相交,于是直线l 与平面α只有一个公共点,所以平面α内不存在与l平行的直线.答案 B2.(2019·大连双基测试)已知直线l,m,平面α,β,γ,则下列条件能推出l∥m的是( )A.lα,mβ,α∥βB.α∥β,α∩γ=l,β∩γ=mC.l∥α,mαD.lα,α∩β=m解析选项A中,直线l,m也可能异面;选项B中,根据面面平行的性质定理,可推出l∥m,B正确;选项C中,直线l,m也可能异面;选项D中,直线l,m也可能相交.故选B.答案 B3.(2018·长郡中学质检)如图所示的三棱柱ABC-A1B1C1中,过A1B1的平面与平面ABC交于DE,则DE与AB的位置关系是( )A.异面B.平行C.相交D.以上均有可能解析在三棱柱ABC-A1B1C1中,AB∥A1B1,∵AB平面ABC,A1B1平面ABC,∴A1B1∥平面ABC,∵过A1B1的平面与平面ABC交于DE.∴DE∥A1B1,∴DE∥AB.答案 B4.(2018·重庆六校联考)设a,b是两条不同的直线,α,β是两个不同的平面,则α∥β的一个充分条件是( )A.存在一条直线a,a∥α,a∥βB.存在一条直线a,aα,a∥βC.存在两条平行直线a,b,aα,bβ,a∥β,b∥αD.存在两条异面直线a,b,aα,bβ,a∥β,b∥α解析对于选项A,若存在一条直线a,a∥α,a∥β,则α∥β或α与β相交,若α∥β,则存在一条直线a,使得a∥α,a∥β,所以选项A的内容是α∥β的一个必要条件;同理,选项B、C的内容也是α∥β的一个必要条件而不是充分条件;对于选项D,可以通过平移把两条异面直线平移到一个平面中,成为相交直线,则有α∥β,所以选项D的内容是α∥β的一个充分条件.故选D.答案 D5.(2019·合肥模拟)若平面α截三棱锥所得截面为平行四边形,则该三棱锥与平面α平行的棱有( )A.0条B.1条C.2条D.1条或2条解析如图所示,四边形EFGH为平行四边形,则EF∥GH.∵EF 平面BCD ,GH 平面BCD , ∴EF ∥平面BCD .又∵EF 平面ACD ,平面BCD ∩平面ACD =CD ,∴EF ∥CD . 又EF 平面EFGH ,CD 平面EFGH . ∴CD ∥平面EFGH ,同理,AB ∥平面EFGH , 所以与平面α(面EFGH )平行的棱有2条. 答案 C 二、填空题6.(2018·杭州模拟)如图,在正方体ABCD -A 1B 1C 1D 1中,AB =2,E 为AD 的中点,点F 在CD 上,若EF ∥平面AB 1C ,则EF =________.解析 根据题意,因为EF ∥平面AB 1C ,所以EF ∥AC .又E 是AD 的中点,所以F 是CD 的中点.因为在Rt△DEF 中,DE =DF =1,故EF = 2. 答案27.如图,平面α∥平面β,△ABC ,△A ′B ′C ′分别在α,β内,线段AA ′,BB ′,CC ′共点于O ,O 在α,β之间,若AB =2,AC =1,∠BAC =60°,OA ∶OA ′=3∶2,则△A ′B ′C ′的面积为________.解析 相交直线AA ′,BB ′所在平面和两平行平面α,β相交于AB ,A ′B ′,所以AB ∥A ′B ′.同理BC ∥B ′C ′,CA ∥C ′A ′.所以△ABC 与△A ′B ′C ′的三内角相等,所以△ABC ∽△A ′B ′C ′,A ′B ′AB =OA ′OA =23.S △ABC =12×2×1×32=32, 所以S △A ′B ′C ′=32×⎝ ⎛⎭⎪⎫232=32×49=239.答案2398.(2019·郑州调研)设m ,n 是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:①若m α,n ∥α,则m ∥n ;②若α∥β,β∥γ,m ⊥α,则m ⊥γ; ③若α∩β=n ,m ∥n ,m ∥α,则m ∥β; ④若m ∥α,n ∥β,m ∥n ,则α∥β.其中是真命题的是________(填上正确命题的序号).解析 ①m ∥n 或m ,n 异面,故①错误;易知②正确;③m ∥β或m β,故③错误;④α∥β或α与β相交,故④错误. 答案 ② 三、解答题9.(2019·吉安模拟)已知四棱锥P -ABCD 的底面ABCD 是平行四边形,侧面PAB ⊥平面ABCD ,E 是棱PA 的中点.(1)求证:PC ∥平面BDE ;(2)平面BDE 分此棱锥为两部分,求这两部分的体积比.(1)证明 在平行四边形ABCD 中,连接AC ,设AC ,BD 的交点为O ,则O 是AC 的中点. 又E 是PA 的中点,连接EO ,则EO 是△PAC 的中位线,所以PC ∥EO , 又EO 平面EBD ,PC 平面EBD ,所以PC ∥平面EBD .(2)解 设三棱锥E -ABD 的体积为V 1,高为h ,四棱锥P -ABCD 的体积为V , 则三棱锥E -ABD 的体积V 1=13×S △ABD ×h ,因为E 是PA 的中点,所以四棱锥P -ABCD 的高为2h ,所以四棱锥P -ABCD 的体积V =13×S 四边形ABCD ×2h =4×13S △ABD ×h =4V 1,所以(V -V 1)∶V 1=3∶1,所以平面BDE 分此棱锥得到的两部分的体积比为3∶1或1∶3.10.如图,ABCD 与ADEF 均为平行四边形,M ,N ,G 分别是AB ,AD ,EF 的中点.求证:(1)BE∥平面DMF;(2)平面BDE∥平面MNG.证明(1)连接AE,则AE必过DF与GN的交点O,连接MO,则MO为△ABE的中位线,所以BE∥MO.又BE平面DMF,MO平面DMF,所以BE∥平面DMF.(2)因为N,G分别为平行四边形ADEF的边AD,EF的中点,所以DE∥GN,又DE平面MNG,GN平面MNG,所以DE∥平面MNG.又M为AB的中点,所以MN为△ABD的中位线,所以BD∥MN,又MN平面MNG,BD平面MNG,所以BD∥平面MNG,又DE,BD平面BDE,DE∩BD=D,所以平面BDE∥平面MNG.能力提升题组(建议用时:20分钟)11.(2019·石家庄模拟)过三棱柱ABC-A1B1C1的任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有( )A.4条B.6条C.8条D.12条解析如图,H,G,F,I是相应线段的中点,故符合条件的直线只能出现在平面HGFI中,有FI,FG,GH,HI,HF,GI共6条直线.答案 B12.已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是( )A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面解析A项,α,β可能相交,故错误;B项,直线m,n的位置关系不确定,可能相交、平行或异面,故错误;C项,若mα,α∩β=n,m∥n,则m∥β,故错误;D项,假设m,n垂直于同一平面,则必有m∥n与已知m,n不平行矛盾,所以原命题正确,故D项正确.答案 D13.在正四棱柱ABCD-A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,则点Q满足条件________时,有平面D1BQ∥平面PAO.解析如图所示,设Q为CC1的中点,因为P为DD1的中点,所以QB∥PA.连接DB,因为P,O 分别是DD1,DB的中点,所以D1B∥PO,又D1B平面PAO,QB平面PAO,PO平面PAO,PA 平面PAO,所以D1B∥平面PAO,QB∥平面PAO,又D1B∩QB=B,所以平面D1BQ∥平面PAO.故Q为CC1的中点时,有平面D1BQ∥平面PAO.答案Q为CC1的中点14.(2018·河南六市三模)已知空间几何体ABCDE中,△BCD与△CDE均是边长为2的等边三角形,△ABC是腰长为3的等腰三角形,平面CDE⊥平面BCD,平面ABC⊥平面BCD.(1)试在平面BCD内作一条直线,使得直线上任意一点F与E的连线EF均与平面ABC平行,并给出证明;(2)求三棱锥E-ABC的体积.解 (1)如图所示,取DC的中点N,取BD的中点M,连接MN,则MN即为所求.证明:连接EM,EN,取BC的中点H,连接AH,∵△ABC是腰长为3的等腰三角形,H为BC的中点,∴AH⊥BC,又平面ABC⊥平面BCD,平面ABC∩平面BCD=BC,AH平面ABC,∴AH⊥平面BCD,同理可证EN⊥平面BCD,∴EN∥AH,∵EN平面ABC,AH平面ABC,∴EN∥平面ABC.又M,N分别为BD,DC的中点,∴MN∥BC,∵MN平面ABC,BC平面ABC,∴MN∥平面ABC.又MN∩EN=N,MN平面EMN,EN平面EMN,∴平面EMN∥平面ABC,又EF平面EMN,∴EF∥平面ABC,即直线MN上任意一点F与E的连线EF均与平面ABC平行.(2)连接DH,取CH的中点G,连接NG,则NG∥DH,由(1)可知EN∥平面ABC,∴点E到平面ABC的距离与点N到平面ABC的距离相等,又△BCD 是边长为2的等边三角形, ∴DH ⊥BC ,又平面ABC ⊥平面BCD ,平面ABC ∩平面BCD =BC ,DH 平面BCD , ∴DH ⊥平面ABC ,∴NG ⊥平面ABC , 易知DH =3,∴NG =32, 又S △ABC =12·BC ·AH =12×2×32-12=22,∴V E -ABC =13·S △ABC ·NG =63.。

高考数学(艺体生文化课)第八章立体几何第4节空间中的平行关系课件

高考数学(艺体生文化课)第八章立体几何第4节空间中的平行关系课件
a// , b// 数学符号表示: a ,b //
a b M
2021/12/12
第四页,共二十八页。
4.面面平行的性质定理:如果两个平行平面(píngmiàn)同时与第三个平 面(píngmiàn)相交,那么它们的交线平行.
数学符号表示:α∥β,α∩γ=a,β∩γ=b⇒a∥b.
2021/12/12
2021/12/12
第七页,共二十八页。
专题(zhuāntí)训练
1.已知m,n,l是不同的直线(zhíxiàn),α,β是不同的平面,以下命题正确的是( )
①若m∥n,m⊂α,n⊂β,则α∥β; ②若m⊂α,n⊂β,α∥β,l⊥m,则l⊥n;
③若m⊥α,n⊥β,α∥β,则m∥n; ④若α⊥β,m∥α,n∥β,则m⊥n.
2021/12/12
第二十四页,共二十八页。
17.如图,ABCD与ADEF为平行四边形,M,N,G分别是AB,AD,EF的中点. (2)求证(qiúzhèng):平面BDE∥平面MNG.
(2)因为N,G分别为平行四边形ADEF的边AD,EF的中点,所以DE∥GN, 又DE⊄平面(píngmiàn)MNG,GN⊂平面MNG,所以DE∥平面MNG. 又M为AB中点,所以MN为△ABD的中位线, 所以BD∥MN,又BD⊄平面MNG,MN⊂平面MNG,所以BD∥平面MNG, 又DE与BD为平面BDE内的两条相交直线,所以平面BDE∥平面MNG.
A.充分不必要条件
B.必要(bìyào)不充分条件
C.充分必要条件
D.既不充分也不必要条件
【答案】B 【解析】 如果直线(zhíxiàn)在平面内,直线可能与平面内的无穷条直线都 平行,但直线不与平面平行,应选B.
2021/12/12

高考数学一轮复习 专题40 空间中的平行关系教学案 文-人教版高三全册数学教学案

高考数学一轮复习 专题40 空间中的平行关系教学案 文-人教版高三全册数学教学案

专题40 空间中的平行关系1.以立体几何的有关定义、公理和定理为出发点,认识和理解空间中线面平行、面面平行的有关性质与判定定理,并能够证明相关性质定理;2.能运用线面平行、面面平行的判定及性质定理证明一些空间图形的平行关系的简单命题.1.直线与平面平行的判定与性质判定性质定义定理图形条件a∩α=∅a⊂α,b⊄α,a∥b a∥αa∥α,a⊂β,α∩β=b结论a∥αb∥αa∩α=∅a∥b2.面面平行的判定与性质判定性质定义定理图形条件α∩β=∅a⊂β,b⊂β,a∩b=P,a∥α,b∥αα∥β,α∩γ=a,β∩γ=bα∥β,a⊂β结论α∥βα∥βa∥b a∥α1.平行直线(1)平行公理:过直线外一点有且只有一条直线和已知直线平行.(2)基本性质4(空间平行线的传递性):平行于同一条直线的两条直线互相平行.(3)定理:如果一个角的两边与另一个角的两边分别对应平行,并且方向相同,那么这两个角相等.(4)空间四边形:顺次连接不共面的四点A,B,C,D所构成的图形,叫做空间四边形.2.直线与平面平行(1)直线与平面平行的定义直线l与平面α没有公共点,则称直线l与平面α平行.(2)判定定理与性质定理文字语言图形表示 符号表示判定定理不在一个平面内的一条直线和平面内的一条直线平行,则该直线平行于此平面a ⊄α,b ⊂α,a ∥b ⇒a ∥α性质定理一条直线和一个平面平行,经过这条直线的平面和这个平面相交,则这条直线就和两平面的交线平行a ∥α,a ⊂β,α∩β=b ⇒a ∥b3.平面与平面平行 (1)平面与平面平行的定义没有公共点的两个平面叫做平行平面. (2)判定定理与性质定理文字语言图形表示 符号表示判定定理 一个平面内有两条相交直线平行于另一个平面,则这两个平面平行a ⊂α,b ⊂α,a ∩b=P ,a ∥β,b ∥β⇒α∥β性质定理 两个平面平行,则其中一个平面内的直线平行于另一个平面α∥β,a ⊂α⇒a ∥β如果两个平行平面同时与第三个平面相交,那么它们的交线平行α∥β,α∩γ=a ,β∩γ=b ⇒a ∥b4.与垂直相关的平行的判定 (1)a ⊥α,b ⊥α⇒a ∥b . (2)a ⊥α,a ⊥β⇒α∥β.高频考点一 直线与平面平行的判定与性质例1、如图,四棱锥P -ABCD 中,AD ∥BC ,AB =BC =12AD ,E ,F ,H 分别为线段AD ,PC ,CD的中点,AC 与BE 交于O 点,G 是线段OF 上一点.(1)求证:AP ∥平面BEF ; (2)求证:GH ∥平面PAD . 证明 (1)连接EC , ∵AD ∥BC ,BC =12AD ,(2)连接FH ,OH ,∵F ,H 分别是PC ,CD 的中点, ∴FH ∥PD ,∴FH ∥平面PAD .又∵O 是BE 的中点,H 是CD 的中点, ∴OH ∥AD ,∴OH ∥平面PAD .又FH ∩OH =H ,∴平面OHF ∥平面PAD . 又∵GH ⊂平面OHF ,∴GH ∥平面PAD .【举一反三】如图,四棱锥P -ABCD 的底面是边长为8的正方形,四条侧棱长均为217.点G ,E ,F ,H 分别是棱PB ,AB ,CD ,PC 上共面的四点,平面GEFH ⊥平面ABCD ,BC ∥平面GEFH .(1)证明:GH ∥EF ;(2)若EB =2,求四边形GEFH 的面积. 因为PA =PC ,O 是AC 的中点,所以PO ⊥AC , 同理可得PO ⊥BD .又BD ∩AC =O ,且AC ,BD 都在底面内, 所以PO ⊥底面ABCD .又因为平面GEFH ⊥平面ABCD , 且PO ⊄平面GEFH ,所以PO ∥平面GEFH . 由已知可得OB =42,PO =PB 2-OB 2=68-32=6,所以GK =3.故四边形GEFH 的面积S =GH +EF2·GK=4+82×3=18.【变式探究】(1)如图所示,在四棱锥P -ABCD 中,∠ABC =∠ACD =90°,∠BAC =∠CAD =60°,E 为PD 的中点,AB =1,求证:CE∥平面PAB;(2)如图所示,CD,AB均与平面EFGH平行,E,F,G,H分别在BD,BC,AC,AD上,且CD⊥AB.求证:四边形EFGH是矩形.证明(1)由已知条件有AC=2AB=2,AD=2AC=4,CD=2 3.如图所示,延长DC,AB,设其交于点N,连接PN,同理HE∥GF,∴四边形EFGH为平行四边形.∴CD∥EF,HE∥AB,∴∠HEF为异面直线CD和AB所成的角.又∵CD⊥AB,∴HE⊥EF.∴平行四边形EFGH为矩形.高频考点二平面与平面平行的判定与性质例2、如图所示,在三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EFA1∥平面BCHG.证明(1)∵G,H分别是A1B1,A1C1的中点,∴GH是△A1B1C1的中位线,∴EF∥平面BCHG.∵A1G綊EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG,∴A1E∥平面BCHG.∵A1E∩EF=E,∴平面EFA1∥平面BCHG.【方法技巧】证明面面平行的方法:(1)面面平行的定义;(2)面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行;(3)利用垂直于同一条直线的两个平面平行;(4)两个平面同时平行于第三个平面,那么这两个平面平行; (5)利用“线线平行”、“线面平行”、“面面平行”的相互转化.【变式探究】如图,在正方体ABCD —A 1B 1C 1D 1中,S 是B 1D 1的中点,E 、F 、G 分别是BC 、DC 、SC 的中点,求证:(1)直线EG ∥平面BDD 1B 1; (2)平面EFG ∥平面BDD 1B 1. 证明 (1)如图,连接SB ,又EG ⊂平面EFG ,FG ⊂平面EFG ,EG ∩FG =G , ∴平面EFG ∥平面BDD 1B 1.高频考点三 平行关系的综合应用例4、如图所示,在四面体ABCD 中,截面EFGH 平行于对棱AB 和CD ,试问截面在什么位置时其截面面积最大? 解 ∵AB ∥平面EFGH ,平面EFGH 与平面ABC 和平面ABD 分别交于FG 、EH .∴AB ∥FG ,AB ∥EH , ∴FG ∥EH ,同理可证EF ∥GH , ∴截面EFGH 是平行四边形.设AB =a ,CD =b ,∠FGH =α (α即为异面直线AB 和CD 所成的角或其补角). 又设FG =x ,GH =y ,则由平面几何知识可得x a =CG BC ,y b =BG BC ,两式相加得x a +y b =1,即y =ba(a -x ),∴S ▱EFGH =FG ·GH ·sin α即当截面EFGH 的顶点E 、F 、G 、H 为棱AD 、AC 、BC 、BD 的中点时截面面积最大. 【感悟提升】利用线面平行的性质,可以实现与线线平行的转化,尤其在截面图的画法中,常用来确定交线的位置,对于最值问题,常用函数思想来解决.【变式探究】如图所示,四棱锥P -ABCD 的底面是边长为a 的正方形,侧棱PA ⊥底面ABCD ,在侧面PBC 内,有BE ⊥PC 于E ,且BE =63a ,试在AB 上找一点F ,使EF ∥平面PAD . 解 如图所示,在平面PCD 内,过E 作EG ∥CD 交PD 于G , 连接AG ,在AB 上取点F ,使AF =EG ,∵EG ∥CD ∥AF ,EG =AF , ∴四边形FEGA 为平行四边形, ∴FE ∥AG .又AG ⊂平面PAD ,FE ⊄平面PAD , ∴EF ∥平面PAD . ∴F 即为所求的点. 又PA ⊥面ABCD ,∴PA ⊥BC , 即AF =23AB .故点F 是AB 上靠近B 点的一个三等分点.1.【2016高考山东理数】在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O 的直径,FB 是圆台的一条母线.(I )已知G ,H 分别为EC ,FB 的中点,求证:GH ∥平面ABC ;(II )已知EF =FB =12AC =AB =BC .求二面角F BC A --的余弦值.【答案】(Ⅰ)见解析; 【解析】 (II )解法一:连接'OO ,则'OO ⊥平面ABC ,又,AB BC =且AC 是圆O 的直径,所以.BO AC ⊥ 以O 为坐标原点,建立如图所示的空间直角坐标系O xyz -,由题意得(0,B ,(C -,过点F 作FM OB 垂直于点M ,所以3,FM =可得F故(23,23,0),(0,BC BF =--=-. 因为平面ABC 的一个法向量(0,0,1),n = 所以7cos ,||||m n m n m n ⋅<>==.所以二面角F BC A --的余弦值为7. 解法二:连接'OO ,过点F 作FM OB ⊥于点M , 则有//'FM OO , 又'OO ⊥平面ABC , 所以FM ⊥平面ABC,可得3,FM =过点M 作MN BC 垂直于点N ,连接FN , 可得FN BC ⊥, 2.【2016高考江苏卷】如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且11B D A F ⊥,1111AC A B ⊥.求证:(1)直线DE ∥平面A 1C 1F ; (2)平面B 1DE ⊥平面A 1C 1F . 【答案】(1)详见解析(2)详见解析【解析】证明:(1)在直三棱柱111ABC A B C -中,11//AC AC 在三角形ABC 中,因为D,E 分别为AB,BC 的中点. 所以//DE AC ,于是11//DE AC又因为DE ⊄平面1111,AC F AC ⊂平面11AC F 所以直线DE//平面11AC F(2)在直三棱柱111ABC A B C -中,1111AA ⊥平面A B C 因为11AC ⊂平面111A B C ,所以111AA ⊥A C 3.【2016高考天津理数】如图,正方形ABCD 的中心为O ,四边形OBEF 为矩形,平面OBEF ⊥平面ABCD ,点G 为AB 的中点,AB =BE =2.(I)求证:EG∥平面ADF;(II)求二面角O-EF-C的正弦值;(III)设H为线段AF上的点,且AH =23 HF,求直线BH和平面CEF所成角的正弦值.【答案】(Ⅰ)详见解析(Ⅱ)33(Ⅲ)721【解析】依题意,OF ABCD⊥平面,如图,以O为点,分别以,,AD BA OF的方向为x轴,y轴、z轴的正方向建立空间直角坐标系,依题意可得(0,0,0)O,()1,1,0,(1,1,0),(1,1,0),(11,0),(1,1,2),(0,0,2),(1,0,0)A B C D E F G-------,.(I)证明:依题意,()(2,0,0),1,1,2AD AF==-.设()1,,n x y z=为平面ADF的法向量,则11n ADn AF⎧⋅=⎪⎨⋅=⎪⎩,即2020xx y z=⎧⎨-+=⎩.不妨设1z=,可得()10,2,1n=,又()0,1,2EG=-,可得1EG n⋅=,又因为直线EG ADF⊄平面,所以//EG ADF平面.O EF C--3(III)解:由23AH HF=,得25AH AF=.因为()1,1,2AF=-,所以2224,,5555AH AF⎛⎫==-⎪⎝⎭,进而有334,,555H⎛⎫- ⎪⎝⎭,从而284,,555BH⎛⎫= ⎪⎝⎭,因此2227cos,21BH nBH nBH n⋅<>==-⋅.所以,直线BH和平面CEF所成角的正弦值为721.1.【2015高考新课标2,理19】(本题满分12分)如图,长方体1111ABCD A B C D-中,=16AB,=10BC,18AA=,点E,F分别在11A B,11C D 上,114A E D F ==.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(Ⅰ)在图中画出这个正方形(不必说出画法和理由); (Ⅱ)求直线AF 与平面α所成角的正弦值. 【答案】(Ⅰ)详见解析;(Ⅱ)4515. 【解析】(Ⅰ)交线围成的正方形EHGF 如图:线AF 与平面α所成角的正弦值为45. 2.【2015江苏高考,16】(本题满分14分)如图,在直三棱柱111C B A ABC -中,已知BC AC ⊥,1CC BC =,设1AB 的中点为D ,E BC C B =11 .求证:(1)C C AA DE 11//平面;(2)11AB BC ⊥.DD 1C 1A 1 EFA BCB 1【答案】(1)详见解析(2)详见解析 (2)因为棱柱111C C AB -A B 是直三棱柱, 所以1CC ⊥平面C AB .因为C A ⊂平面C AB ,所以1C CC A ⊥.又因为C C A ⊥B ,1CC ⊂平面11CC B B ,C B ⊂平面11CC B B ,1C CC C B =,所以C A ⊥平面11CC B B .又因为1C B ⊂平面11CC B B ,所以1C C B ⊥A .因为1C CC B =,所以矩形11CC B B 是正方形,因此11C C B ⊥B . 因为C A ,1C B ⊂平面1C B A ,1CC C A B =,所以1C B ⊥平面1C B A .又因为1AB ⊂平面1C B A ,所以11C B ⊥AB .3.【2015高考安徽,理19】如图所示,在多面体111A B D DCBA ,四边形11AA B B ,11,ADD A ABCD 均为正方形,E 为11B D 的中点,过1,,A D E 的平面交1CD 于F.(Ⅰ)证明:1//EF B C ;(Ⅱ)求二面角11E A D B --余弦值.【答案】(Ⅰ)1//EF B C ;(Ⅱ)3【解析】AB CD EA 1B 1C 1设面1A DE 的法向量1111(,,)n r s t =.而该面上向量11(0.5,0.5,0),(0,1,1)A E A D ==-,由1111,n A E n A D ⊥⊥得111,,r s t 应满足的方程组11110.50.500r s s t +=⎧⎨-=⎩,(1,1,1)-为其一组解,所以可取1(1,1,1)n =-.设面11A B CD 的法向量2222(,,)n r s t =,而该面上向量111(1,0,0),(0,1,1)A B A D ==-,由此同理可得2(0,1,1)n =.所以结合图形知二面角1E A D B --的余弦值为1212||6||||32n n n n ⋅==⋅⨯. 1.(2014·安徽卷)如图1­5,四棱柱ABCD ­ A 1B 1C 1D 1中,A 1A ⊥底面ABCD ,四边形ABCD 为梯形,AD ∥BC ,且AD =2BC .过A 1,C ,D 三点的平面记为α,BB 1与α的交点为Q . 图1­5(1)证明:Q 为BB 1的中点;(2)求此四棱柱被平面α所分成上下两部分的体积之比;(3)若AA 1=4,CD =2,梯形ABCD 的面积为6,求平面α与底面ABCD 所成二面角的大小. 解: (1)证明:因为BQ ∥AA 1,BC ∥AD ,BC ∩BQ =B ,AD ∩AA 1=A ,所以平面QBC ∥平面A 1AD ,从而平面A 1CD 与这两个平面的交线相互平行,即QC ∥A 1D . 故△QBC 与△A 1AD 的对应边相互平行, 于是△QBC ∽△A 1AD ,所以BQ BB 1=BQ AA 1=BC AD =12,即Q 为BB 1的中点. (2)如图1所示,连接QA ,QD .设AA 1=h ,梯形ABCD 的高为d ,四棱柱被平面α所分成上下两部分的体积分别为V 上和V 下,BC =a ,则AD =2a .图1V 三棱锥Q ­A 1AD =13×12·2a ·h ·d =13ahd ,V 四棱锥Q ­ABCD =13·a +2a 2·d ·⎝ ⎛⎭⎪⎫12h =14ahd , 所以V 下=V 三棱锥Q ­A 1AD +V 四棱锥Q ­ABCD =712ahd . 又V 四棱柱A 1B 1C 1D 1 ­ABCD =32ahd , 所以V 上=V 四棱柱A 1B 1C 1D 1 ­ABCD -V 下=32ahd -712ahd =1112ahd ,故V 上V 下=117. 故平面α与底面ABCD 所成二面角的大小为π4. 方法二:如图2所示,以D 为原点,DA ,DD 1→分别为x 轴和z 轴正方向建立空间直角坐标系.设∠CDA =θ,BC =a ,则AD =2a .因为S 四边形ABCD =a +2a 2·2sin θ=6,所以a =2sin θ. 图2从而可得C (2cos θ,2sin θ,0),A 1⎝ ⎛⎭⎪⎫4sin θ,0,4, 所以DC =(2cos θ,2sin θ,0),DA 1→=⎝⎛⎭⎪⎫4sin θ,0,4. 2.(2014·北京卷)如图1­3,正方形AMDE 的边长为2,B ,C 分别为AM ,MD 的中点.在五棱锥P ­ ABCDE 中,F 为棱PE 的中点,平面ABF 与棱PD ,PC 分别交于点G ,H .(1)求证:AB ∥FG ;(2)若PA ⊥底面ABCDE ,且PA =AE ,求直线BC 与平面ABF 所成角的大小,并求线段PH 的长. 图1­3建立空间直角坐标系Axyz ,如图所示,则A (0,0,0),B (1,0,0),C (2,1,0),P (0,0,2),F (0,1,1),BC →=(1,1,0).设平面ABF 的法向量为n =(x ,y ,z ),则⎩⎨⎧n ·o (AB,sup 6(→))=0,n ·AF →=0,即⎩⎪⎨⎪⎧x =0,y +z =0. 令z =1,则y =-1.所以n =(0,-1,1).设直线BC 与平面ABF 所成角为α,则sin α=|cos 〈n ,BC →〉|=||f (n ·o (BC,sup 6(→)),|n ||BC →|)=12. 因此直线BC 与平面ABF 所成角的大小为π6. 所以PH =⎝ ⎛⎭⎪⎫432+⎝ ⎛⎭⎪⎫232+⎝ ⎛⎭⎪⎫-432=2. 3.(2014·湖北卷)如图1­4,在棱长为2的正方体ABCD ­A 1B 1C 1D 1中,E ,F ,M ,N 分别是棱AB ,AD ,A 1B 1,A 1D 1的中点,点P ,Q 分别在棱DD 1,BB 1上移动,且DP =BQ =λ(0<λ<2).(1)当λ=1时,证明:直线BC 1∥平面EFPQ .(2)是否存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.图1­4解:方法一(几何方法):(1)证明:如图①,连接AD 1,由ABCD ­A 1B 1C 1D 1是正方体,知BC 1∥AD 1.当λ=1时,P 是DD 1的中点,又F 是AD 的中点,所以FP ∥AD 1,所以BC 1∥FP .而FP ⊂平面EFPQ ,且BC 1⊄平面EFPQ ,故直线BC 1∥平面EFPQ .图① 图②(2)如图②,连接BD .因为E ,F 分别是AB ,AD 的中点,所以EF ∥BD ,且EF =12BD . 故∠GOH 是面EFPQ 与面PQMN 所成的二面角的平面角.若存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角,则∠GOH =90°.连接EM ,FN ,则由EF ∥MN ,且EF =MN 知四边形EFNM 是平行四边形.连接GH ,因为H ,G 是EF ,MN 的中点, 所以GH =ME =2.在△GOH 中,GH 2=4,OH 2=1+λ2-⎝ ⎛⎭⎪⎫222=λ2+12, OG 2=1+(2-λ)2-⎝ ⎛⎭⎪⎫222=(2-λ)2+12, 由OG 2+OH 2=GH 2,得(2-λ)2+12+λ2+12=4,解得λ=1±22, 故存在λ=1±22,使面EFPQ 与面PQMN 所成的二面角为直二面角. 方法二(向量方法):以D 为原点,射线DA ,DC ,DD 1分别为x ,y ,z 轴的正半轴建立如图③所示的空间直角坐标系.由已知得B (2,2,0),C 1(0,2,2),E (2,1,0),F (1,0,0),P (0,0,λ). 图③BC 1→=(-2,0,2),FP =(-1,0,λ),FE =(1,1,0).(1)证明:当λ=1时,FP =(-1,0,1),因为BC 1→=(-2,0,2),所以BC 1→=2FP →,即BC 1∥FP .故存在λ=1±22,使面EFPQ 与面PQMN 所成的二面角为直二面角. 4.(2014·新课标全国卷Ⅱ)如图1­3,四棱锥P ­ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(1)证明:PB ∥平面AEC ;(2)设二面角D ­AE ­C 为60°,AP =1,AD =3,求三棱锥E ­ACD 的体积.图1­318.解:(1)证明:连接BD 交AC 于点O ,连接EO .如图,以A 为坐标原点,AB →,AD ,AP 的方向为x 轴、y 轴、z 轴的正方向,|AP →|为单位长,建立空间直角坐标系A ­xyz ,则D ()0,3,0,E ⎝ ⎛⎭⎪⎫0,32,12,AE →=⎝⎛⎭⎪⎫0,32,12. 设B (m ,0,0)(m >0),则C (m ,3,0),AC →=(m ,3,0).设n 1=(x ,y ,z )为平面ACE 的法向量,则⎩⎨⎧n 1·o (AC,sup 6(→))=0,n 1·AE →=0,即⎩⎪⎨⎪⎧mx +3y =0,32y +12z =0, 可取n 1=⎝ ⎛⎭⎪⎫3m ,-1,3. 又n 2=(1,0,0)为平面DAE 的法向量,由题设易知|cos 〈n 1,n 2〉|=12,即 33+4m 2=12,解得m =32. 因为E 为PD 的中点,所以三棱锥E ­ACD 的高为12.三棱锥E ­ACD 的体积V =13×12×3×32×12=38. 5.(2014·山东卷)如图1­3所示,在四棱柱ABCD ­A 1B 1C 1D 1中,底面ABCD 是等腰梯形,∠DAB =60°,AB =2CD =2,M 是线段AB 的中点.图1­3(1)求证:C 1M ∥平面A 1ADD 1;(2)若CD 1垂直于平面ABCD 且CD 1=3,求平面C 1D 1M 和平面ABCD 所成的角(锐角)的余弦值. 连接AD 1.因为在四棱柱ABCD ­ A 1B 1C 1D 1中,CD ∥C 1D 1,CD =C 1D 1,所以C 1D 1∥MA ,C 1D 1=MA ,所以四边形AMC 1D 1为平行四边形,因此,C 1M ∥D 1A .因此CA ⊥CB .设C 为坐标原点,建立如图所示的空间直角坐标系C ­ xyz .所以A (3,0,0),B (0,1,0),D 1(0,0,3).因此M ⎝⎛⎭⎪⎫32,12,0, 所以MD 1→=⎝ ⎛⎭⎪⎫-32,-12,3,D 1C 1→=MB →=⎝ ⎛⎭⎪⎫-32,12,0. 设平面C 1D 1M 的一个法向量n =(x ,y ,z ),由⎩⎨⎧n ·o (D 1C 1,sup 6(→))=0,n ·MD 1→=0,得⎩⎨⎧3x -y =0,3x +y -2 3z =0, 可得平面C 1D 1M 的一个法向量n =(1,3,1).又CD 1→=(0,0,3)为平面ABCD 的一个法向量.因此cos 〈CD 1→,n 〉=CD 1sup 6(→)·n |CD 1→||n |=55, 所以平面C 1D 1M 和平面ABCD 所成的角(锐角)的余弦值为55. 方法二:由(1)知,平面D 1C 1M ∩平面ABCD =AB ,点过C 向AB 引垂线交AB 于点N ,连接D 1N . 所以平面C 1D 1M 和平面ABCD 所成的角(锐角)的余弦值为55. 1.有下列命题:①若直线l 平行于平面α内的无数条直线,则直线l ∥α;②若直线a在平面α外,则a∥α;③若直线a∥b,b∥α,则a∥α;④若直线a∥b,b∥α,则a平行于平面α内的无数条直线.其中真命题的个数是( )A.1B.2C.3D.4解析命题①l可以在平面α内,不正确;命题②直线a与平面α可以是相交关系,不正确;命题③a可以在平面α内,不正确;命题④正确.答案 A2.设m,n是不同的直线,α,β是不同的平面,且m,n⊂α,则“α∥β”是“m∥β且n∥β”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A3.如图所示的三棱柱ABC-A1B1C1中,过A1B1的平面与平面ABC交于DE,则DE与AB的位置关系是( )A.异面B.平行C.相交D.以上均有可能解析在三棱柱ABC-A1B1C1中,AB∥A1B1,∵AB⊂平面ABC,A1B1⊄平面ABC,∴A1B1∥平面ABC,∵过A1B1的平面与平面ABC交于DE.∴DE∥A1B1,∴DE∥AB.答案 B4.下列四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出AB∥平面MNP的图形的序号是( )A.①③B.①④C.②③D.②④解析①中,易知NP∥AA′,MN∥A′B,∴平面MNP∥平面AA′B,可得出AB∥平面MNP(如图).④中,NP∥AB,能得出AB∥平面MNP.在②③中不能判定AB∥平面MNP.答案 B5.已知m,n表示两条不同直线,α表示平面,下列说法正确的是( )A.若m∥α,n∥α,则m∥nB.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α答案 B6.在四面体A-BCD中,M,N分别是△ACD,△BCD的重心,则四面体的四个面中与MN平行的是________.解析如图,取CD的中点E.连接AE,BE,由于M,N分别是△ACD,△BCD的重心,所以AE,BE分别过M,N,则EM∶MA =1∶2,EN∶BN=1∶2,所以MN∥AB.因为AB⊂平面ABD,MN⊄平面ABD,AB⊂平面ABC,MN⊄平面ABC,所以MN∥平面ABD,MN∥平面ABC.答案平面ABD与平面ABC7.如图所示,正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上.若EF∥平面AB1C,则线段EF的长度等于________.答案 28.如图所示,在正四棱柱ABCD-A1B1C1D1中,E,F,G,H分别是棱CC1,C1D1,D1D,DC的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M只需满足条件________时,就有MN∥平面B1BDD1.(注:请填上你认为正确的一个条件即可,不必考虑全部可能情况)解析连接HN,FH,FN,则FH∥DD1,HN∥BD,∴平面FHN ∥平面B 1BDD 1,只需M ∈FH ,则MN ⊂平面FHN ,∴MN ∥平面B 1BDD 1.答案 点M 在线段FH 上(或点M 与点H 重合)9.一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(1)请将字母F ,G ,H 标记在正方体相应的顶点处(不需说明理由);(2)判断平面BEG 与平面ACH 的位置关系,并证明你的结论.解 (1)点F ,G ,H 的位置如图所示.又BE ∩BG =B ,所以平面BEG ∥平面ACH .10. 如图,四棱锥P -ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(1)证明:PB ∥平面AEC ;(2)设AP =1,AD =3,三棱锥P -ABD 的体积V =34,求A 到平面PBC 的距离. (1)证明 设BD 与AC 的交点为O ,连接EO .因为ABCD 为矩形,所以O 为BD 的中点.又E 为PD 的中点,所以EO ∥PB .又因为EO ⊂平面AEC ,PB ⊄平面AEC ,所以PB ∥平面AEC .(2)解 V =16PA ·AB ·AD =36AB . 由V =34,可得AB =32.作AH ⊥PB 交PB 于H . 由题设知AB ⊥BC ,PA ⊥BC ,且PA ∩AB =A ,所以BC ⊥平面PAB .又AH ⊂平面PAB ,所以BC ⊥AH ,又PB ∩BC =B ,故AH ⊥平面PBC .∵PB ⊂平面PBC ,∴AH ⊥PB ,在Rt △PAB 中,由勾股定理可得PB =132, 所以AH =PA ·AB PB =31313.所以A 到平面PBC 的距离为31313.。

高考数学一轮复习 第八章 立体几何8.4直线、平面平行

高考数学一轮复习 第八章 立体几何8.4直线、平面平行

8.4 直线、平面平行的判定及其性质考纲要求1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理.2.能运用公理、定理和已获得的结论证明一些空间图形的平行关系的简单命题.1.直线和平面平行(1)定义:直线和平面没有公共点,则称直线平行于平面.(2)判定定理:如果平面外的一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行.用符号表示为:________________.(3)性质定理:如果一条直线和一个平面平行,______________________________.用符号表示为:a∥α,a⊂β,α∩β=b⇒a∥b.2.两个平面平行(1)定义:两个平面没有公共点,称这两个平面平行.(2)判定定理:如果______________________________________,那么这两个平面平行.用符号表示:a⊂α,b⊂α,a∩b=M,a∥β,b∥β⇒α∥β.(3)性质定理:如果两平行平面同时和第三个平面相交,那么它们的交线平行.用符号表示为:__________________________.1.下列条件中,能判断两个平面平行的是( ).A.一个平面内的一条直线平行于另一个平面B.一个平面内的两条直线平行于另一个平面C.一个平面内有无数条直线平行于另一个平面D.一个平面内任何一条直线都平行于另一个平面2.若直线a平行于平面α,则下列结论错误的是( ).A.a平行于α内的所有直线B.α内有无数条直线与a平行C.直线a上的点到平面α的距离相等D.α内存在无数条直线与a垂直3.已知不重合的直线a,b和平面α,①若a∥α,b⊂α,则a∥b;②若a∥α,b∥α,则a∥b;③若a∥b,b⊂α,则a∥α;④若a∥b,a∥α,则b∥α或b⊂α,上面命题中正确的是__________(填序号).一、直线与平面平行的判定与性质【例1】如图所示,四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC 的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH.求证:AP∥GH.方法提炼1.判断或证明两直线平行的常用方法: (1)三角形中位线; (2)平行四边形; (3)分线段成比例;(4)利用公理4(a ∥b ,b ∥c ⇒a ∥c );(5)利用线面平行的性质定理(a ⊂α,a ∥β,α∩β=b ⇒a ∥b );(6)利用面面平行的性质定理(α∥β,γ∩α=a ,γ∩β=b ⇒a ∥b ); (7)利用线面垂直的性质定理(a ⊥α,b ⊥α⇒a ∥b ). 2.判断或证明线面平行的常用方法: (1)利用线面平行的定义(无公共点);(2)利用线面平行的判定定理(a α,b ⊂α,a ∥b ⇒a ∥α); (3)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β);(4)利用面面平行的性质(α∥β,a α,a β,a ∥α⇒a ∥β). 请做演练巩固提升2二、平面与平面平行的判定与性质【例2-1】 如图,AB ,CD 是夹在两个平行平面α,β间的线段,且直线AB ,CD 是异面直线,M ,P 分别是AB ,CD 的中点.求证:直线MP ∥平面α.【例2-2】 (2012山东淄博模拟)如图,在三棱锥A ­BOC 中,AO ⊥平面COB ,∠OAB =∠OAC =π6,AB =AC =2,BC =2,D ,E 分别为AB ,OB 的中点.(1)求证:CO ⊥平面AOB ;(2)在线段CB 上是否存在一点F ,使得平面DEF ∥平面AOC ,若存在,试确定F 的位置,并证明此点满足要求;若不存在,请说明理由.方法提炼证明面面平行的方法: (1)面面平行的定义;(2)面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行;(3)利用垂直于同一条直线的两个平面平行;(4)两个平面同时平行于第三个平面,那么这两个平面平行;(5)利用“线线平行”、“线面平行”、“面面平行”的相互转化. 请做演练巩固提升3立体几何主观题的规范解答【典例】 (12分)(2012山东高考)如图,几何体E ­ABCD 是四棱锥,△ABD 为正三角形,CB =CD ,EC ⊥BD .(1)求证:BE =DE ;(2)若∠BCD =120°,M 为线段AE 的中点,求证:DM ∥平面BEC . 规范解答:(1)取BD 的中点O ,连接CO ,EO . 由于CB =CD ,所以CO ⊥BD .(2分)又EC ⊥BD ,EC ∩CO =C ,CO ,EC ⊂平面EOC ,所以BD ⊥平面EOC ,(5分) 因此BD ⊥EO .又O 为BD 的中点, 所以BE =DE .(6分)(2)证法一:取AB 的中点N ,连接DM ,DN ,MN .因为M 是AE 的中点,所以MN ∥BE . 又MN 平面BEC ,BE ⊂平面BEC , 所以MN ∥平面BEC .(8分)又因为△ABD 为正三角形,所以∠BDN =30°. 又CB =CD ,∠BCD =120°, 因此∠CBD =30°,所以DN ∥BC . 又DN 平面BEC ,BC ⊂平面BEC , 所以DN ∥平面BEC .(10分)又MN ∩DN =N ,故平面DMN ∥平面BEC , 又DM ⊂平面DMN ,所以DM ∥平面BEC .(12分)证法二:延长AD ,BC 交于点F ,连接EF .因为CB =CD ,∠BCD =120°,所以∠CBD =30°.(8分) 因为△ABD 为正三角形,所以∠BAD =60°,∠ABC =90°,因此∠AFB =30°,所以AB =12AF .(9分)又AB =AD ,所以D 为线段AF 的中点.(10分) 连接DM ,由点M 是线段AE 的中点, 因此DM ∥EF .又DM 平面BEC ,EF ⊂平面BEC , 所以DM ∥平面BEC .(12分)答题指导:从近几年的高考来看,对立体几何解答题的考查的难度逐步降低,一般以低中档题的形式考查,因此在备考时要高度关注基础知识,避免不必要的失分.以下几点还应注意:1.重视知识间的相互转化,如能熟练地将空间中的线线、线面、面面间的问题相互转化,以达到解决问题的目的;2.重视解题规范性的训练,强化解题步骤的完整性和严谨性,避免不必要的失分; 3.重视立体几何中通过构造模型解题的训练和计算能力的培养.1.对于平面α,β,γ和直线a ,b ,m ,n ,下列命题中是真命题的是( ). A .若a ⊥m ,a ⊥n ,m ⊂α,n ⊂α,则a ⊥α B .若a ∥b ,b ⊂α,则a ∥αC .若a ⊂β,b ⊂β,a ∥α,b ∥α,则β∥αD .若α∥β,α∩γ=a ,β∩γ=b ,则a ∥b2.(2012长沙模拟)已知m ,n 表示两条不同直线,α,β,γ表示不同平面,给出下列三个命题:(1)⎩⎪⎨⎪⎧ m ⊥αn ⊥α⇒m ∥n (2)⎩⎪⎨⎪⎧ m ⊥αm ⊥n ⇒n ∥α (3)⎩⎪⎨⎪⎧m ⊥αn ∥α⇒m ⊥n其中真命题的个数为( ).A .0B .1C .2D .3 3.(2012山东潍坊模拟)已知m ,n ,l 1,l 2表示直线,α,β表示平面.若m ⊂α,n ⊂α,l 1⊂β,l 2⊂β,l 1∩l 2=M ,则α∥β的一个充分条件是( ).A .m ∥β且l 1∥αB .m ∥β且n ∥βC .m ∥β且n ∥l 2D .m ∥l 1且n ∥l 24.如图,在正方体ABCD ­A 1B 1C 1D 1中,AB =2,点E 为AD 的中点,点F 在CD 上.若EF ∥平面AB 1C ,则线段EF 的长度等于________.5.如图,在直四棱柱ABCD ­A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB ∥CD ,AB =4,BC =CD =2,AA 1=2,E ,E 1,F 分别为棱AD ,AA 1,AB 的中点,求证:直线EE 1∥平面FCC 1.参考答案基础梳理自测知识梳理1.(2)a ⊄α,b ⊂α,a ∥b ⇒a ∥α (3)那么过这条直线的任一平面与此平面的交线与该直线平行2.(2)一个平面内的两条相交直线与另一个平面平行 (3)α∥β,α∩γ=a ,β∩γ=b ⇒a ∥b基础自测 1.D2.A 解析:A 错误,a 与α内的直线平行或异面.3.④ 解析:①中a 与b 可能异面;②中a 与b 可能相交、平行或异面;③中a 可能在平面α内,④正确. 考点探究突破【例1】 证明:如图所示,连接AC 交BD 于点O ,连接MO .∵四边形ABCD 是平行四边形. ∴O 是AC 的中点. 又M 是PC 的中点, ∴AP ∥OM .又AP ⊄平面BMD ,OM ⊂平面BMD , ∴AP ∥平面BMD .又AP ⊂平面PAHG ,平面PAHG ∩平面BMD =GH , ∴AP ∥GH .【例2-1】 证明:经过A ,C ,D 三点可确定一个平面γ,并且分别与平面β,平面α交于AC ,FD ,根据两个平面平行的性质,可知AC ∥DF .过A 作AE ∥CD ,交DF 于点E ,取AE 的中点N ,连接MN ,根据三角形中位线定理,MN ∥BE ,又NP ∥ED .根据平行平面判定定理,知平面MNP ∥平面α. 因为MP ⊂平面MNP , 所以直线MP ∥平面α.【例2-2】 解:(1)因为AO ⊥平面COB , 所以AO ⊥CO ,AO ⊥BO ,即△AOC 与△AOB 为直角三角形.又因为∠OAB =∠OAC =π6,AB =AC =2,所以OB =OC =1.由OB 2+OC 2=1+1=2=BC 2,可知△BOC 为直角三角形. 所以CO ⊥BO ,又因为AO ∩BO =O ,所以CO ⊥平面AOB .(2)在线段CB 上存在一点F ,使得平面DEF ∥平面AOC ,此时F 为线段CB 的中点. 证明过程:如图,连接DF ,EF ,因为D ,E 分别为AB ,OB 的中点,所以DE ∥OA .又DE ⊄平面AOC 上,所以DE ∥平面AOC . 因为E ,F 分别为OB ,BC 的中点, 所以EF ∥OC .又EF ⊄平面AOC ,所以EF ∥平面AOC ,又EF ∩DE =E ,EF ⊂平面DEF ,DE ⊂平面DEF , 所以平面DEF ∥平面AOC . 演练巩固提升1.D 解析:A 中只有当m 与n 相交时才有a ⊥α;B 中若a ⊂α,则结论不成立;C 中a 与b 平行时结论不成立;故D 正确.2.C 解析:若⎩⎪⎨⎪⎧m ⊥α,n ⊥α,则m ∥n ,即命题(1)正确;若⎩⎪⎨⎪⎧ m ⊥α,m ⊥n ,则n ∥α或n ⊂α,即命题(2)不正确; 若⎩⎪⎨⎪⎧m ⊥α,n ∥α,则m ⊥n ,即命题(3)正确;综上可得,真命题共有2个.3.D 解析:由定理“如果一个平面内有两条相交直线分别与另一个平面平行,那么这两个平面平行”可得,由选项D 可推知α∥β.4. 2 解析:由EF ∥平面AB 1C ,可知EF ∥AC .所以EF =12AC =12×22= 2.5.证明:方法一:取A 1B 1的中点为F 1,连接FF 1,C 1F 1,由于FF 1∥BB 1∥CC 1,所以F 1∈平面FCC 1,因此平面FCC 1即为平面C 1CFF 1.连接A 1D ,F 1C ,由于A 1F 1D 1C 1CD , 所以四边形A 1DCF 1为平行四边形, 因此A 1D ∥F 1C .又EE 1∥A 1D ,得EE 1∥F 1C ,而EE 1⊄平面FCC 1,F 1C ⊂平面FCC 1,故EE 1∥平面FCC 1. 方法二:因为F 为AB 的中点,CD =2,AB =4,AB ∥CD ,所以CD AF . 因此四边形AFCD 为平行四边形, 所以AD ∥FC .又CC 1∥DD 1,FC ∩CC 1=C ,FC ⊂平面FCC 1,CC 1⊂平面FCC 1, 所以平面ADD 1A 1∥平面FCC 1,又EE1 平面ADD1A1,所以EE1∥平面FCC1.。

2020版高考数学一轮总复习第八单元立体几何课时4空间中的平行关系课件文新人教A版

2020版高考数学一轮总复习第八单元立体几何课时4空间中的平行关系课件文新人教A版
2.直线与平面平行的性质
如果一条直线与一个平面平行,则经过这条直线的任 一平面与此平面的交线与该直线 平行 .
符号表示:a∥α,a⊂β,α∩β=b⇒ a∥b .
3.两个平面平行的判定 (1)判定定理:如果一个平面内有 两条相交直线 都
平行于另一个平面,那么这两个平面平行.
符号表示:a⊂β,b⊂β, a∩b=P ,a∥α,b∥α
1.判断两平面平行的常用结论 (1)垂直于同一直线的两个平面平行; (2)平行于同一平面的两个平面平行. 2.与平面平行有关的几个常用结论 (1)夹在两个平行平面之间的平行线段长度相等; (2)经过平面外一点有且只有一个平面与已知平面平行; (3)两条直线被第三个平面所截,截得的对应线段成比例; (4)同一条直线与两平行平面所成的角相等.
三种平行关系转化的示意图为:
2.线面平行的判定定理中,要特别注意“平面外的一条直 线”与“平面内的一条直线”,两者缺一不可;面面平行的判定 定理中,要特别注意“两条相交直线”这一条件.
3.解决有关平行问题时,要注意常用结论的总结和应用, 以下是一些常用结论,在解决有关选择题、填空题时可直接引用.
(1)经过平面外一点有且只有一个平面和已知平面平行. (2)两个平面平行,其中一个平面内的直线必平行于另一个平 面. (3)已知平面外的两条平行线中的一条平行于这个平面,则另 一条也平行于这个平面.
(2)平面 BEG∥平面 ACH.证明如下: 因为 ABCD-EFGH 为正方体, 所以 BC∥FG,BC=FG. 又 FG∥EH,FG=EH,所以 BC∥EH,BC=EH, 于是四边形 BCHE 为平行四边形,所以 BE∥CH. 又 CH⊂平面 ACH,BE⊄平面 ACH, 所以 BE∥平面 ACH. 同理 BG∥平面 ACH. 又 BE∩BG=B,所以平面 BEG∥平面 ACH.

2020年高考数学一轮复习精品学案(人教版a版)空间中的平行关系

2020年高考数学一轮复习精品学案(人教版a版)空间中的平行关系

2020年高考数学一轮复习精品学案(人教版a版)空间中的平行关系一.【课标要求】1.平面的差不多性质与推论借助长方体模型,在直观认识和明白得空间点、线、面的位置关系的基础上,抽象出空间线、面位置关系的定义,并了解如下能够作为推理依据的公理和定理:◆公理1:假如一条直线上的两点在一个平面内,那么这条直线在此平面内;◆公理2:过不在一条直线上的三点,有且只有一个平面;◆公理3:假如两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线;◆公理4:平行于同一条直线的两条直线平行;◆定理:空间中假如两个角的两条边分不对应平行,那么这两个角相等或互补2.空间中的平行关系以立体几何的上述定义、公理和定理为动身点,通过直观感知、操作确认、思辨论证,认识和明白得空间中线面平行、垂直的有关性质与判定。

通过直观感知、操作确认,归纳出以下判定定理:◆平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行;◆一个平面内的两条相交直线与另一个平面平行,那么这两个平面平行;通过直观感知、操作确认,归纳出以下性质定理,并加以证明:◆一条直线与一个平面平行,那么过该直线的任一个平面与此平面的交线与该直线平行;◆两个平面平行,那么任意一个平面与这两个平面相交所得的交线相互平行;◆垂直于同一个平面的两条直线平行能运用已获得的结论证明一些空间位置关系的简单命题二.【命题走向】立体几何在高考中占据重要的地位,通过近几年的高考情形分析,考察的重点及难点稳固,高考始终把直线与直线、直线与平面、平面与平面平行的性质和判定作为考察重点。

在难度上也始终以中等偏难为主,在新课标教材中将立体几何要求进行了降低,重点在对图形及几何体的认识上,实现平面到空间的转化,示知识深化和拓展的重点,因而在这部分知识点上命题,将是重中之重。

推测2018年高考将以多面体为载体直截了当考察线面位置关系:〔1〕考题将会显现一个选择题、一个填空题和一个解答题;〔2〕在考题上的特点为:热点咨询题为平面的差不多性质,考察线线、线面和面面关系的论证,此类题目将以客观题和解答题的第一步为主三.【要点精讲】1.平面概述〔1〕平面的两个特点:①无限延展②平的〔没有厚度〕〔2〕平面的画法:通常画平行四边形来表示平面〔3〕平面的表示:用一个小写的希腊字母α、β、γ等表示,如平面α、平面β;用表示平行四边形的两个相对顶点的字母表示,如平面AC。

2020_2021学年新教材高中数学第8章立体几何初步8.5.3平面与平面平行学案含解析新人教A版必

2020_2021学年新教材高中数学第8章立体几何初步8.5.3平面与平面平行学案含解析新人教A版必

8.5.3 平面与平面平行学习目标核心素养1.掌握空间平面与平面平行的判定定理和性质定理,并能应用这两个定理解决问题.(重点)2.平面与平面平行的判定定理和性质定理的应用.(难点)1.通过平面与平面平行的判定定理和性质定理的学习,培养直观想象的核心素养.2.借助平行关系的综合问题,提升逻辑推理的核心素养.上海世界博览会的中国国家馆被永久保留.中国国家馆表达了“东方之冠,鼎盛中华,天下粮仓,富庶百姓”的中国文化的精神与气质,展馆共分三层,这三层给人以平行平面的感觉.问题:(1)展馆的每两层所在的平面平行,那么上层面上任一直线状物体与下层地面有何位置关系?(2)上下两层所在的平面与侧墙所在平面分别相交,它们的交线是什么位置关系?1.平面与平面平行的判定(1)文字语言:如果一个平面内的两条相交直线与另一个平面平行,那么这两个平面平行.(2)符号语言:a⊂β,b⊂β,a∩b=P,a∥α,b∥α⇒β∥α.(3)图形语言:如图所示.2.平面与平面平行的性质定理(1)文字语言:两个平面平行,如果另一个平面与这两个平面相交,那么两条交线平行.(2)符号语言:α∥β,α∩γ=a,β∩γ=b⇒a∥b.(3)图形语言:如图所示.(4)作用:证明两直线平行.思考:如果两个平面平行,那么这两个平面内的所有直线都相互平行吗?[提示] 不一定.它们可能异面.1.思考辨析(正确的画“√”,错误的画“×”)(1)α内有无数多条直线与β平行,则α∥β. ( )(2)直线a∥α,a∥β,则α∥β. ( )(3)直线a⊂α,直线b⊂β,且a∥β,b∥α,则α∥β. ( )(4)α内的任何直线都与β平行,则α∥β. ( )[答案] (1)×(2)×(3)×(4)√2.平面α与圆台的上、下底面分别相交于直线m,n,则m,n的位置关系是( ) A.平行B.相交C.异面D.平行或异面A[因为圆台的上、下底面互相平行,所以由平面与平面平行的性质定理可知m∥n.] 3.已知平面α∥平面β,直线l∥α,则( )A.l∥βB.l⊂βC.l∥β或l⊂βD.l, β相交C[假设l与β相交,又α∥β,则l与α相交,与l∥α矛盾,则假设不成立,则l∥β或l⊂β.]4.已知长方体ABCD­A′B′C′D′,平面α∩平面ABCD=EF,平面α∩平面A′B′C′D′=E′F′,则EF与E′F′的位置关系是( )A.平行B.相交C.异面D.不确定A[由面面平行的性质定理易得.]平面与平面平行的判定【例1】如图,在正方体ABCD­A1B1C1D1中,M,E,F,N分别是A1B1,B1C1,C1D1,D1A1的中点.求证:(1)E,F,B,D四点共面;(2)平面MAN∥平面EFDB.[思路探究] (1)欲证E,F,B,D四点共面,需证BD∥EF即可.(2)要证平面MAN∥平面EFDB,只需证MN∥平面EFDB,AN∥平面BDFE即可.[解] (1)连接B1D1,∵E、F分别是边B1C1、C1D1的中点,∴EF∥B1D1.而BD∥B1D1,∴BD∥EF.∴E、F、B、D四点共面.(2)易知MN∥B1D1,B1D1∥BD,∴MN∥BD.又MN⊄平面EFDB,BD⊂平面EFDB.∴MN∥平面EFDB.连接MF.∵M、F分别是A1B1、C1D1的中点,∴MF∥A1D1,MF=A1D1.∴MF∥AD且MF=AD.∴四边形ADFM是平行四边形,∴AM∥DF.又AM⊄平面BDFE,DF⊂平面BDFE,∴AM∥平面BDFE.又∵AM∩MN=M,∴平面MAN∥平面EFDB.平面与平面平行的判定方法1定义法:两个平面没有公共点.2判定定理:一个平面内的两条相交直线分别平行于另一个平面.3转化为线线平行:平面α内的两条相交直线与平面β内的两条相交直线分别平行,则α∥β.4利用平行平面的传递性:若α∥β,β∥γ,则α∥γ.[跟进训练]1.如图所示,在四棱锥P­ABCD中,底面ABCD为平行四边形.点M,N,Q分别在PA,BD,PD上,且PM∶MA=BN∶ND=PQ∶QD.求证:平面MNQ∥平面PBC.[证明] ∵PM∶MA=BN∶ND=PQ∶QD,∴MQ∥AD,NQ∥BP.又∵BP⊂平面PBC,NQ⊄平面PBC,∴NQ ∥平面PBC .∵四边形ABCD 为平行四边形. ∴BC ∥AD ,∴MQ ∥BC .又∵BC ⊂平面PBC ,MQ ⊄平面PBC , ∴MQ ∥平面PBC . 又∵MQ ∩NQ =Q , ∴平面MNQ ∥平面PBC .平面与平面平行的性质[探究问题]平面与平面平行性质定理的条件有哪些?[提示] 必须具备三个条件:①平面α和平面β平行,即α∥β; ②平面γ和α相交,即α∩γ=a ; ③平面γ和β相交,即β∩γ=b . 以上三个条件缺一不可.【例2】 如图,已知平面α∥平面β,P ∉α且P ∉β,过点P 的直线m 与α、β分别交于A 、C ,过点P 的直线n 与α、β分别交于B 、D ,且PA =6,AC =9,PD =8,求BD 的长.[解] 因为AC ∩BD =P ,所以经过直线AC 与BD 可确定平面PCD ,因为α∥β,α∩平面PCD =AB ,β∩平面PCD =CD ,所以AB ∥CD .所以PA AC =PB BD ,即69=8-BD BD .所以BD =245.1. 将本例改为:已知平面α∥β∥γ,两条直线l ,m 分别与平面α,β,γ相交于点A ,B ,C 与D ,E ,F .已知AB =6,DE DF =25,则AC =________.15 [由题可知DE DF =AB AC ⇒AC =DF DE ·AB =52×6=15.]2.将本例改为:若点P 在平面α,β之间(如图所示),其他条件不变,试求BD 的长.[解] 与本例同理,可证AB ∥CD . 所以PA PC =PB PD ,即63=BD -88,所以BD =24.3.将本例改为:已知三个平面α,β,γ满足α∥β∥γ,直线a 与这三个平面依次交于点A ,B ,C ,直线b 与这三个平面依次交于点E ,F ,G . 求证:AB BC =EFFG.[证明] 连接AG 交β于H ,连BH ,FH ,AE ,CG . 因为β∥γ,平面ACG ∩β=BH ,平面ACG ∩γ=CG , 所以BH ∥CG .同理AE ∥HF , 所以AB BC =AH HG =EFFG ,所以AB BC =EFFG.应用平面与平面平行性质定理的基本步骤平行关系的综合应用【例3】 如图所示,四边形ABCD 是平行四边形,点P 是平面ABCD 外一点,M 是PC 的中点,在DM 上取一点G ,过G 和AP 作平面交平面BDM 于GH .求证:GH∥平面PAD.[证明] 如图所示,连接AC交BD于点O,连接MO.∵ABCD是平行四边形,∴O是AC的中点,又M是PC的中点,∴PA∥MO,而AP⊄平面BDM,OM⊂平面BDM,∴PA∥平面BMD,又∵PA⊂平面PAHG,平面PAHG∩平面BMD=GH,∴PA∥GH.又PA⊂平面PAD,GH⊄平面PAD,∴GH∥平面PAD.1.证明直线与直线平行的方法(1)平面几何中证明直线平行的方法.如同位角相等,两直线平行;三角形中位线的性质;平面内垂直于同一直线的两条直线互相平行等.(2)基本事实4.(3)线面平行的性质定理.(4)面面平行的性质定理.2. 证明直线与平面平行的方法(1)线面平行的判定定理.(2)两个平面平行,其中一个平面内的任意一条直线平行于另一个平面.[跟进训练]2.如图,三棱锥A­BCD被一平面所截,截面为平行四边形EFGH.求证:CD∥平面EFGH.[证明] 由于四边形EFGH是平行四边形,∴EF∥GH.∵EF⊄平面BCD,GH⊂平面BCD,∴EF∥平面BCD.又∵EF⊂平面ACD,平面ACD∩平面BCD=CD,∴EF∥CD.又∵EF⊂平面EFGH,CD⊄平面EFGH,∴CD∥平面EFGH.一、知识必备常用的面面平行的其他几个性质(1)两个平面平行,其中一个平面内的任意一条直线平行于另一个平面.(2)夹在两个平行平面之间的平行线段长度相等.(3)经过平面外一点有且只有一个平面与已知平面平行.(4)两条直线被三个平行平面所截,截得的对应线段成比例.(5)如果两个平面分别平行于第三个平面,那么这两个平面互相平行.二、方法必备三种平行关系的转化.1.a∥α,b∥β,α∥β,则a与b位置关系是( )A.平行B.异面C.相交D.平行或异面或相交D[如图①②③所示,a与b的关系分别是平行、异面或相交.①②③]2.若平面α∥平面β,直线a⊂α,点M∈β,过点M的所有直线中( )A.不一定存在与a平行的直线B.只有两条与a平行的直线C.存在无数条与a平行的直线D.有且只有一条与a平行的直线D[由于α∥β,a⊂α,M∈β,过M有且只有一条直线与a平行,故D项正确.] 3.用一个平面去截三棱柱ABC­A1B1C1,交A1C1,B1C1,BC,AC分别于点E,F,G,H. 若A1A>A1C1,则截面的形状可以为________.(填序号)①一般的平行四边形;②矩形;③菱形;④正方形;⑤梯形.②⑤[当FG∥B1B时,四边形EFGH为矩形;当FG不与B1B平行时,四边形EFGH为梯形.]4.如图,在四面体ABCD中,点E,F分别为棱AB,AC上的点,点G为棱AD的中点,且平面EFG∥平面BCD.求证:BC=2EF.[证明] 因为平面EFG∥平面BCD,平面ABD∩平面EFG=EG,平面ABD∩平面BCD=BD,所以EG∥BD,又G为AD的中点,故E为AB的中点,同理可得,F为AC的中点,所以BC=2EF.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间中的平行关系1.了解空间直线与平面平行、平面与平面平行的定义.2.掌握判断空间直线与平面平行、平面与平面平行的方法,能正确判断空间直线与平面平行、平面与平面平行.3.能正确运用“空间直线与平面平行”“平面与平面平行”进行逻辑推理.知识梳理1.直线与平面平行的判定(1)定义:直线和平面没有任何公共点;(2)判定定理:如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行.baabb∥α,∥符号表示:. ?α,??α2.直线与平面平行的性质如果一条直线与一个平面平行,那么过该直线的任一平面与此平面的交线与该直线平行 . aabab=∥?,. ?β,α∩符号表示:β∥α3.两个平面平行的判定(1)判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.ababPab∥α?βα,β,∥∩α=,. ∥符号表示:?β,?(2)垂直于同一直线的两个平面平行.4.两个平面平行的性质(1)两个平面平行,其中一个平面内的直线平行于另一个平面.aa∥ββ,,则?α.符号表示:α∥(2)如果两个平行平面同时和第三个平面相交,那么它们的交线平行 .abab∥.γβγαβα符号表示:∥,∩=,∩=,则.判断两平面平行的常用结论1.(1)垂直于同一直线的两个平面平行;(2)平行于同一平面的两个平面平行.2.与平面平行有关的几个常用结论(1)夹在两个平行平面之间的平行线段长度相等;(2)经过平面外一点有且只有一个平面与已知平面平行;(3)两条直线被第三个平面所截,截得的对应线段成比例;(4)同一条直线与两平行平面所成的角相等.热身练习1.下列说法正确的是(D)ll∥αα内的无数条直线,则A.若直线平行于平面aa∥α外,则B.若直线在平面αabba∥α,则,.若直线C?∥αababa∥α∥.若直线?α,,那么直线?α且D l在平面α外这一条件;直线在平面中缺少α外包括直线与平面相交和与平 A a不在平面α内这一条件;中缺少D满足线面平行的三个条件,面平行两种情况,故B错;C故选D.abab的位置关系是,则(D) α,直线与?α2.直线∥平面abab..∥⊥ BA ababab异面与.或,异面 D.∥C ababab平行或异面,α,所以无公共点,所以与与直线∥平面α,直线?选D.3.下列命题错误的是(C)A.若一个平面内有两条相交直线都平行于另一个平面,则这两个平面平行B.垂直于同一直线的两平面平行C.平行于同一直线的两平面平行D.平行于同一平面的两平面平行A,B是两个平面平行的两个判定定理,正确;C.正确,故选D错误,C.4.下列命题中不正确的是(D)A.两个平面平行,其中一个平面内的直线必平行于另一个平面B.两个平行平面同时和第三个平面相交,其交线一定平行C.一直线与两平行平面中的一个相交,这条直线必与另一个相交D.一直线与两平行平面中的一个平行,这条直线必与另一个平行A,B是两个平面平行的性质,正确;C正确,可用反证法进行证明;D错误,这一直线还可能在另一个平面内.故选D.mmm∥β,“是直线且”是“αα,5.(2015·北京卷)设αβ是两个不同的平面,∥β”的(B)A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件??mmmα∥β因而;∥β时,过β的平面α与β可能平行也可能相交,当∥mmm∥β”是“综上知,“α?,所以α∥β时,当α∥βα内任一直线与β平行,因为.∥β”的必要而不充分条件.直线与平面平行的判断PABCDPADAD为斜边的等腰直角△-是以,)(2017·浙江卷节选如图,已知四棱锥BCADCDADPCADDCCBEPDCEPAB.=2三角形,的中点.证明:∥,,⊥,为==2∥平面在高考中,立体几何解答题常常设置两问,第(1)问常证明线面的位置关系,第(2)常考查与体积、距离等有关的计算.两问的条件常常是一同叙述,因此,在处理第(1)问时,要根据证明的要求,对条件要进行适当的筛选.这同时也考查了考生对信息的综合分析和处理的能力.PAFEFFB.,,连接的中点为如图,设EFPDPA的中点,分别为因为,,1EFADEFAD.所以且∥=21BCADBCAD,∥=,又因为2EFBCEFBC,=∥且所以BCEFCEBF. 所以四边形∥为平行四边形,所以BFPABCEPAB,平面,因为??平面CEPAB.∥平面所以 (1)证线面平行的常用方法:①利用线面平行的判定定理,转化为证线线平行.②利用面面平行的性质定理,转化为证面面平行.(2)利用判定定理时,要注意强调:(ⅰ)一条线在平面外;(ⅱ)一条线在平面内;(ⅲ)平面外的直线与平面内的直线平行.(3)证线线平行是证线面平行的基础,要注意如下结论的运用:①三线平行公理;②平面几何中的结论:如三角形的中位线定理、平行四边形的性质等.DEFABCABDEGHACBC,,.(2015·山东卷节选)如图,在三棱台-,中,分别为=21BDFGH.∥平面的中点.求证:DGCDCDGFOOH. ,=,设∩,连接 (方法一)如图,连接DEFABCABDEGAC的中点,,在三棱台-中,为=2DFGCDFGC,∥,=可得DFCGOCD的中点.为为平行四边形,则所以四边形.HBCOHBD. 的中点,所以又∥为OHFGHBDFGH,??平面平面,又BDFGH.所以∥平面DEFABC中,-(方法二)在三棱台BCEFHBCBHEFBHEF,==2∥,为,的中点,可得由BHFEBEHF. 所以四边形∥为平行四边形,可得BEFGHHFFGH,,又平面平面BEFGH.∥平面所以ABCGACHBC的中点,的中点,在△中,为为GHABGHFGHABFGH,平面??所以,∥平面.又ABFGH.所以∥平面ABBEBFGHABED. =∥平面,所以平面又∩BDABEDBDFGH.平面∥平面因为,所以?平面与平面平行的判定(2015·四川卷节选)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.FGH标记在正方体相应的顶点处(不需说明理由)请将字母(1);,,BEGACH的位置关系,并证明你的结论.与平面(2)判断平面FGH的位置如图所示.,,点 (1).BEGACH.证明如下:(2)平面∥平面ABCDEFGHBCFGBCFG. ∥因为=-,为正方体,所以FGEHFGEHBCEHBCEH,,==,,所以又∥∥BCHEBECH. 于是四边形∥为平行四边形,所以CHACHBEACH,平面,又?平面?BEACH. 所以∥平面BGACH.同理∥平面BEBGBBEGACH.又,所以平面∩∥平面=证面面平行的基本方法是利用面面平行的判定定理,即转化为证线面平行.CAFACAABCBCE,2.如图,已知-是正三棱柱,分别是,11111BECFAB.的中点.求证:平面∥平面11CACFAE,分别是因为的中点,,11FCAE. 所以=1FCAE又因为,∥1ECFAFAEC. 是平行四边形,所以所以四边形∥11BECAFECBEC??平面平面,,因为111BECAF. 所以∥平面1BBEFEFBBEF∥=,连接因为.,11FEBB所以四边形是平行四边形,1BECBEBBEFBECBF 平面?平面,所以,∥,?1111BECBF.∥平面所以11FABAFBF,内的相交直线,因为是平面11BECFAB.∥平面所以平面11线面平行、面面平行的性质的应用ABDDCBAAABBADDAABCD,四边形,(2015·安徽卷节选)如图所示,在多面体中,1111111EBDADECDFEFBC. ,.,证明:的平面交均为正方形,为∥于的中点,过11111ABABDCABABDCABCD为平行四,=,由正方形的性质可知且∥所以四边形∥=111111BCAD.边形,从而∥11ADADEBC ADE,?,平面又平面?1111BCADEBCBCDADEBCDEF, .又,平面∥平面?平面∩平面于是=11111111EFBC.∥所以1 (1)证线线平行,常利用线面平行、面面平行的性质定理.(2)线面平行、面面平行转化为线线平行,都是通过“辅助平面”完成的.PABCDABCDPA⊥底面-为正方形,且,底面3.(2018·石家庄一模节选)已知四棱锥ABCDABPCDEFSSSPEF表示△1的交线为∶,且满足3(∶,过=的平面与侧面PEFPEFCDEF△△四边形PBACE..证明:∥平面的面积)ABCD为正方形,由题意知四边形ABCDCDPCDABPCD,平面,所以∥?,又?平面ABPCD.∥平面所以ABABFEABFEPCDEF,∩平面又?平面,平面=EFABABCD,∥∥,又所以EFCD.∥所以SSEFPCPD的中点,,分别为∶由,知3∶1=CDEFPEF四边形△.BDACGGBD的中点.连接,则交于为PBDEGEGPB. 为中位线,所以在△∥中,EGPBEGACEPBACE,平面平面因为∥,,??PBACE.∥平面所以1.在解决线面、面面平行的判定时,一般遵循从“低维”到“高维”的转化,即从“线线平行”到“线面平行”、再到“面面平行”,而在应用性质定理时,其顺序恰好相反,但必须注意,转化方向的确定必须根据题目的条件和问题的特点而定.三种平行关系转化的示意图为:2.线面平行的判定定理中,要特别注意“平面外的一条直线”与“平面内的一条直线”,两者缺一不可;面面平行的判定定理中,要特别注意“两条相交直线”这一条件.3.解决有关平行问题时,要注意常用结论的总结和应用,以下是一些常用结论,在解决有关选择题、填空题时可直接引用.(1)经过平面外一点有且只有一个平面和已知平面平行.(2)两个平面平行,其中一个平面内的直线必平行于另一个平面.(3)已知平面外的两条平行线中的一条平行于这个平面,则另一条也平行于这个平面.(4)如果一条直线与两个平行平面中的一个相交,那么它与另一个也相交.(5)一条直线垂直于两个平行平面中的一个平面,必垂直于另一个平面.(6)夹在两个平行平面间的平行线段相等.(7)两平行平面间的距离处处相等.(8)平行于同一条直线的两条直线平行.(9)平行于同一个平面的两个平面平行.平行于同一直线的两个平面平行或相交.(10).(11)平行于同一个平面的两条直线平行、相交或异面.。

相关文档
最新文档