高中物理带电粒子在电场中的运动试题有答案和解析及解析.doc

合集下载

(物理)物理带电粒子在电场中的运动题20套(带答案)及解析

(物理)物理带电粒子在电场中的运动题20套(带答案)及解析

(物理)物理带电粒子在电场中的运动题20套(带答案)及解析一、高考物理精讲专题带电粒子在电场中的运动1.“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O ,外圆弧面AB 的电势为2L()o ϕ>,内圆弧面CD 的电势为φ,足够长的收集板MN 平行边界ACDB ,ACDB 与MN 板的距离为L .假设太空中漂浮着质量为m ,电量为q 的带正电粒子,它们能均匀地吸附到AB 圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子的影响,不考虑过边界ACDB 的粒子再次返回.(1)求粒子到达O 点时速度的大小;(2)如图2所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个匀强磁场,方向垂直纸面向内,则发现均匀吸附到AB 圆弧面的粒子经O 点进入磁场后最多有23能打到MN 板上,求所加磁感应强度的大小;(3)如图3所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个垂直MN 的匀强电场,电场强度的方向如图所示,大小4E Lφ=,若从AB 圆弧面收集到的某粒子经O 点进入电场后到达收集板MN 离O 点最远,求该粒子到达O 点的速度的方向和它在PQ 与MN 间运动的时间. 【答案】(1)2q v mϕ=2)12m B L q ϕ=;(3)060α∴= ;22m L q ϕ【解析】 【分析】 【详解】试题分析:解:(1)带电粒子在电场中加速时,电场力做功,得:2102qU mv =-2U ϕϕϕ=-=2q v mϕ=(2)从AB 圆弧面收集到的粒子有23能打到MN 板上,则上端刚好能打到MN 上的粒子与MN 相切,则入射的方向与OA 之间的夹角是60︒,在磁场中运动的轨迹如图甲,轨迹圆心角060θ=.根据几何关系,粒子圆周运动的半径:2R L =由洛伦兹力提供向心力得:2v qBv m R=联合解得:12m B L qϕ=(3)如图粒子在电场中运动的轨迹与MN 相切时,切点到O 点的距离最远, 这是一个类平抛运动的逆过程. 建立如图坐标.212qE L t m=222mL mt L qE q ϕ==22x Eq qEL q v t m m m ϕ===若速度与x 轴方向的夹角为α角cosxvvα=1cos2α=60α∴=2.如图所示,在两块长为3L、间距为L、水平固定的平行金属板之间,存在方向垂直纸面向外的匀强磁场.现将下板接地,让质量为m、电荷量为q的带正电粒子流从两板左端连线的中点O以初速度v0水平向右射入板间,粒子恰好打到下板的中点.若撤去平行板间的磁场,使上板的电势φ随时间t的变化规律如图所示,则t=0时刻,从O点射人的粒子P经时间t0(未知量)恰好从下板右边缘射出.设粒子打到板上均被板吸收,粒子的重力及粒子间的作用力均不计.(1)求两板间磁场的磁感应强度大小B.(2)若两板右侧存在一定宽度的、方向垂直纸面向里的匀强磁场,为了使t=0时刻射入的粒子P经过右侧磁场偏转后在电场变化的第一个周期内能够回到O点,求右侧磁场的宽度d 应满足的条件和电场周期T的最小值T min.【答案】(1)0mvBqL=(2)223cosd R a R L≥+=;min(632)3LTvπ+=【解析】【分析】【详解】(1)如图,设粒子在两板间做匀速圆周运动的半径为R1,则012qv B mvR=由几何关系:222113()()2L LR R=+-解得0mvBqL=(2)粒子P从O003L v t=01122y L v t =解得0y v =设合速度为v ,与竖直方向的夹角为α,则:0tan yv v α== 则=3πα00sin 3v v v α== 粒子P 在两板的右侧匀强磁场中做匀速圆周运动,设做圆周运动的半径为R 2,则212sin L R α=,解得23R =右侧磁场沿初速度方向的宽度应该满足的条件为22cos d R R L α≥+=; 由于粒子P 从O 点运动到下极板右侧边缘的过程与从上板右边缘运动到O 点的过程,运动轨迹是关于两板间的中心线是上下对称的,这两个过程经历的时间相等,则:2min 0(22)2R T t v πα--=解得()min 023L T v π=【点睛】带电粒子在电场或磁场中的运动问题,关键是分析粒子的受力情况和运动特征,画出粒子的运动轨迹图,结合几何关系求解相关量,并搞清临界状态.3.如图所示,虚线MN 左侧有一场强为E 1=E 的匀强电场,在两条平行的虚线MN 和PQ 之间存在着宽为L 、电场强度为E 2=2E 的匀强电场,在虚线PQ 右侧距PQ 为L 处有一与电场E 2平行的屏.现将一电子(电荷量为e ,质量为m ,重力不计)无初速度地放入电场E 1中的A 点,最后电子打在右侧的屏上,A 点到MN 的距离为2L,AO 连线与屏垂直,垂足为O ,求:(1) 电子到达MN 时的速度;(2) 电子离开偏转电场时偏转角的正切值tan θ; (3) 电子打到屏上的点P ′到点O 的距离.【答案】(1) eELv m=L . 【解析】 【详解】(1)电子在电场E 1中做初速度为零的匀加速直线运动,设加速度为a 1,到达MN 的速度为v ,则:a 1=1eE m =eEm 2122La v =解得eELv m=(2)设电子射出电场E 2时沿平行电场线方向的速度为v y ,a 2=2eE m =2eEm t =L v v y =a 2ttan θ=y v v=2(3)电子离开电场E 2后,将速度方向反向延长交于E 2场的中点O ′.由几何关系知:tan θ=2xLL+解得:x =3L .4.如图所示,在空间坐标系x <0区域中有竖直向上的匀强电场E 1,在一、四象限的正方形区域CDEF 内有方向如图所示的正交的匀强电场E 2和匀强磁场B ,已知CD =2L ,OC =L ,E 2 =4E 1。

高中物理带电粒子在电场中的运动解题技巧及练习题及解析

高中物理带电粒子在电场中的运动解题技巧及练习题及解析

高中物理带电粒子在电场中的运动解题技巧及练习题及解析一、高考物理精讲专题带电粒子在电场中的运动1.如图,一带电荷量q =+0.05C 、质量M =lkg 的绝缘平板置于光滑的水平面上,板上靠右端放一可视为质点、质量m =lkg 的不带电小物块,平板与物块间的动摩擦因数μ=0.75.距平板左端L =0.8m 处有一固定弹性挡板,挡板与平板等高,平板撞上挡板后会原速率反弹。

整个空间存在电场强度E =100N/C 的水平向左的匀强电场。

现将物块与平板一起由静止释放,已知重力加速度g =10m/s 2,平板所带电荷量保持不变,整个过程中物块未离开平板。

求:(1)平板第二次与挡板即将碰撞时的速率; (2)平板的最小长度;(3)从释放平板到两者最终停止运动,挡板对平板的总冲量。

【答案】(1)平板第二次与挡板即将碰撞时的速率为1.0m/s;(2)平板的最小长度为0.53m;(3)从释放平板到两者最终停止运动,挡板对平板的总冲量为8.0N•s 【解析】 【详解】(1)两者相对静止,在电场力作用下一起向左加速, 有a =qEm=2.5m/s 2<μg 故平板M 与物块m 一起匀加速,根据动能定理可得:qEL =12(M +m )v 21 解得v =2.0m/s平板反弹后,物块加速度大小a 1=mgmμ=7.5m/s 2,向左做匀减速运动平板加速度大小a 2=qE mgmμ+=12.5m/s 2, 平板向右做匀减速运动,设经历时间t 1木板与木块达到共同速度v 1′,向右为正方向。

-v 1+a 1t 1=v 1-a 2t 1解得t 1=0.2s ,v 1'=0.5m/s ,方向向左。

此时平板左端距挡板的距离:x =v 1t 122112a t -=0.15m 此后两者一起向左匀加速,设第二次碰撞时速度为v ,则由动能定理12(M +m )v 2212-(M +m )21'v =qEx 1解得v 2=1.0m/s(2)最后平板、小物块静止(左端与挡板接触),此时小物块恰好滑到平板最左端,这时的平板长度最短。

高考物理带电粒子在电场中的运动解题技巧讲解及练习题(含答案)及解析

高考物理带电粒子在电场中的运动解题技巧讲解及练习题(含答案)及解析

高考物理带电粒子在电场中的运动解题技巧讲解及练习题(含答案)及解析一、高考物理精讲专题带电粒子在电场中的运动1.一带正电小球通过绝缘细线悬挂于场强大小为E 1的水平匀强电场中,静止时细线与竖直方向的夹角θ=45°,如图所示。

以小球静止位置为坐标原点O ,在竖直平面内建立直角坐标系xOy ,其中x 轴水平。

现剪断细线,经0.1s ,电场突然反向,场强大小不变;再经0.1s ,电场突然变为另一匀强电场,场强大小为E 2,又经0.1s 小球速度为零。

已知小球质量m=1.0×10-2kg ,电荷量q=1.0×10-8C ,g 取10m/s 2,空气阻力不计。

求(1)E 1和E 2;(2)细线剪断0.3s 末小球的位置坐标。

【答案】(1) 7110/E V m = 72310/E V m =⨯ (2) (0.1,0.3)m m【解析】 【详解】(1)当小球静止时,1qE mg = 则7110/mgE V m q== 电场力与重力的合力=2cos 45mgF mg o合= 剪断细绳后,小球做匀加速直线运动,加速度的大小为2102/F a m s m==合经过0.1s 小球的速度大小为12/v at m s == 速度的方向与x 轴正方向成45o 斜向右下方在第2个0.1s 内,电场方向,小球的水平分速度112cos 450x qE v v t m=-=o竖直分速度12sin 452/y v v gt m s o=+=即第2个0.1s 末,小球的速度2v 大小为2/m s ,方向竖直向下 依题意,在第3个0.1s 内小球做匀减速直线运动, 由运动学公式知223220/0.1v a m s t ===' 根据牛顿第二定律得2qE mga m'-=代入数据得72310/E V m =⨯(2)第1个0.1s 内,小球的位移大小22111220.12220s at g m ==⨯⨯= 则小球沿x 方向移动的距离1cos 450.05x s m ==o沿y 方向移动的距离1sin 450.05y s m ==o在第2 个0.1s 内,小球沿x 方向移动的距离221221cos 450.052qE x v t t m mo=-= 沿y 方向移动的距离22121sin 450.152y v gt m =+=o在第3个0.1s 内,小球沿沿方向移动的距离2323310.12y v t a t m '=-= 即小球速度为零时的位置坐标是(0.1,0.3)m m2.平面直角坐标系的第一象限和第四象限内均存在垂直纸面向里的匀强磁场,磁感应强度大小分别为2B 和B (B 的大小未知),第二象限和第三象限内存在沿﹣y 方向的匀强电场,x 轴上有一点P ,其坐标为(L ,0)。

高中物理高考物理带电粒子在电场中的运动解题技巧及经典题型及练习题(含答案)

高中物理高考物理带电粒子在电场中的运动解题技巧及经典题型及练习题(含答案)

高中物理高考物理带电粒子在电场中的运动解题技巧及经典题型及练习题(含答案)一、高考物理精讲专题带电粒子在电场中的运动1.如图,一带电荷量q =+0.05C 、质量M =lkg 的绝缘平板置于光滑的水平面上,板上靠右端放一可视为质点、质量m =lkg 的不带电小物块,平板与物块间的动摩擦因数μ=0.75.距平板左端L =0.8m 处有一固定弹性挡板,挡板与平板等高,平板撞上挡板后会原速率反弹。

整个空间存在电场强度E =100N/C 的水平向左的匀强电场。

现将物块与平板一起由静止释放,已知重力加速度g =10m/s 2,平板所带电荷量保持不变,整个过程中物块未离开平板。

求:(1)平板第二次与挡板即将碰撞时的速率; (2)平板的最小长度;(3)从释放平板到两者最终停止运动,挡板对平板的总冲量。

【答案】(1)平板第二次与挡板即将碰撞时的速率为1.0m/s;(2)平板的最小长度为0.53m;(3)从释放平板到两者最终停止运动,挡板对平板的总冲量为8.0N•s 【解析】 【详解】(1)两者相对静止,在电场力作用下一起向左加速, 有a =qEm=2.5m/s 2<μg 故平板M 与物块m 一起匀加速,根据动能定理可得:qEL =12(M +m )v 21 解得v =2.0m/s平板反弹后,物块加速度大小a 1=mgmμ=7.5m/s 2,向左做匀减速运动平板加速度大小a 2=qE mgmμ+=12.5m/s 2, 平板向右做匀减速运动,设经历时间t 1木板与木块达到共同速度v 1′,向右为正方向。

-v 1+a 1t 1=v 1-a 2t 1解得t 1=0.2s ,v 1'=0.5m/s ,方向向左。

此时平板左端距挡板的距离:x =v 1t 122112a t -=0.15m 此后两者一起向左匀加速,设第二次碰撞时速度为v ,则由动能定理12(M +m )v 2212-(M +m )21'v =qEx 1解得v 2=1.0m/s(2)最后平板、小物块静止(左端与挡板接触),此时小物块恰好滑到平板最左端,这时的平板长度最短。

高中物理带电粒子在电场中的运动解题技巧(超强)及练习题(含答案)及解析

高中物理带电粒子在电场中的运动解题技巧(超强)及练习题(含答案)及解析

设此时的圆心位置为 O ,有: Oa r sin 30
OO 3d Oa 解得 OO d
即从 O 点进入磁场的电子射出磁场时的位置距 O 点最远
所以 ym 2r 2d 电子束从 y 轴正半轴上射入电场时的纵坐标 y 的范围为 0 y 2d 设电子从 0 y 2d 范围内某一位置射入电场时的纵坐标为 y,从 ON 间射出电场时的位
);
(3) 0 B 16mv0 或 15qL
B 16mv0 3qL
【解析】 【分析】 (1)a、b 碰撞,由动量守恒和能量守恒关系求解碰后 a、b 的速度; (2)碰后 a 在电场中向左做类平抛运动,根据平抛运动的规律求解 P 点的位置坐标; (3)要使 b 球不从 CD 边界射出,求解恰能从 C 点和 D 点射出的临界条件确定磁感应强度的 范围。 【详解】 (1)a 匀速,则
解得: L 9 d 4
当3 d 2y 2y
【点睛】本题属于带电粒子在组合场中的运动,粒子在磁场中做匀速圆周运动,要求能正 确的画出运动轨迹,并根据几何关系确定某些物理量之间的关系;粒子在电场中的偏转经 常用化曲为直的方法,求极值的问题一定要先找出临界的轨迹,注重数学方法在物理中的 应用.
6.如图所示,荧光屏 MN 与 x 轴垂直放置,与 x 轴相交于 Q 点, Q 点的横坐标 x0 6cm ,在第一象限 y 轴和 MN 之间有沿 y 轴负方向的匀强电场,电场强度 E 1.6105 N / C ,在第二象限有半径 R 5cm 的圆形磁场,磁感应强度 B 0.8T ,方 向垂直 xOy 平面向外.磁场的边界和 x 轴相切于 P 点.在 P 点有一个粒子源,可以向 x 轴 上方 180°范围内的各个方向发射比荷为 q 1.0108C / kg 的带正电的粒子,已知粒子的

高中物理带电粒子在电场中的运动试题(有答案和解析)

高中物理带电粒子在电场中的运动试题(有答案和解析)

高中物理带电粒子在电场中的运动试题(有答案和解析)一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,EF 与GH 间为一无场区.无场区左侧A 、B 为相距为d 、板长为L 的水平放置的平行金属板,两板上加某一电压从而在板间形成一匀强电场,其中A 为正极板.无场区右侧为一点电荷Q 形成的电场,点电荷的位置O 为圆弧形细圆管CD 的圆心,圆弧半径为R ,圆心角为120°,O 、C 在两板间的中心线上,D 位于GH 上.一个质量为m 、电荷量为q 的带正电粒子以初速度v 0沿两板间的中心线射入匀强电场,粒子出匀强电场经无场区后恰能进入细圆管,并做与管壁无相互挤压的匀速圆周运动.(不计粒子的重力、管的粗细)求:(1)O 处点电荷的电性和电荷量; (2)两金属板间所加的电压.【答案】(1)负电,2043mv R kq ;(2) 2033mdv qL【解析】(1)粒子进入圆管后受到点电荷Q 的库仑力作匀速圆周运动,粒子带正电,则知O 处点电荷带负电.由几何关系知,粒子在D 点速度方向与水平方向夹角为30°,进入D 点时速度为:0023303v v v cos ==︒ …①在细圆管中做与管壁无相互挤压的匀速圆周运动,故Q 带负电且满足22Qq v k mR R =…② 由①②得:2043mv RQ kq=(2)粒子射出电场时速度方向与水平方向成30° tan 30°=0y v v …③v y =at…④qUa md=…⑤ 0Lt v =…⑥ 由③④⑤⑥得:22003033mdv tan mdv U qL qL︒==2.在如图甲所示的直角坐标系中,两平行极板MN 垂直于y 轴,N 板在x 轴上且其左端与坐标原点O 重合,极板长度l =0.08m ,板间距离d =0.09m ,两板间加上如图乙所示的周期性变化电压,两板间电场可看作匀强电场.在y 轴上(0,d /2)处有一粒子源,垂直于y 轴连续不断向x 轴正方向发射相同的带正电的粒子,粒子比荷为qm=5×107C /kg ,速度为v 0=8×105m/s .t =0时刻射入板间的粒子恰好经N 板右边缘打在x 轴上.不计粒子重力及粒子间的相互作用,求:(1)电压U 0的大小;(2)若沿x 轴水平放置一荧光屏,要使粒子全部打在荧光屏上,求荧光屏的最小长度; (3)若在第四象限加一个与x 轴相切的圆形匀强磁场,半径为r =0.03m ,切点A 的坐标为(0.12m ,0),磁场的磁感应强度大小B =23T ,方向垂直于坐标平面向里.求粒子出磁场后与x 轴交点坐标的范围.【答案】(1)40 2.1610V U =⨯ (2)0.04m x ∆= (3)0.1425m x ≥【解析】 【分析】 【详解】(1)对于t =0时刻射入极板间的粒子:0l v T = 7110T s -=⨯211()22T y a =2y T v a= 22yT y v = 122dy y =+ Eq ma =U E d=解得:40 2.1610V U =⨯(2)2Tt nT =+时刻射出的粒子打在x 轴上水平位移最大:032A T x v = 所放荧光屏的最小长度A x x l ∆=-即:0.04x m ∆= (3)不同时刻射出极板的粒子沿垂直于极板方向的速度均为v y . 速度偏转角的正切值均为:0tan y v v β=37β=ocos37v v=o 6110m/s v =⨯即:所有的粒子射出极板时速度的大小和方向均相同.2v qvB m R=0.03m R r ==由分析得,如图所示,所有粒子在磁场中运动后发生磁聚焦由磁场中的一点B 离开磁场.由几何关系,恰好经N 板右边缘的粒子经x 轴后沿磁场圆半径方向射入磁场,一定沿磁场圆半径方向射出磁场;从x 轴射出点的横坐标:tan 53C A Rx x ︒=+0.1425m C x =.由几何关系,过A 点的粒子经x 轴后进入磁场由B 点沿x 轴正向运动. 综上所述,粒子经过磁场后第二次打在x 轴上的范围为:0.1425m x ≥3.利用电场可以控制电子的运动,这一技术在现代设备中有广泛的应用,已知电子的质量为m ,电荷量为e -,不计重力及电子之间的相互作用力,不考虑相对论效应.(1)在宽度一定的空间中存在竖直向下的匀强电场,一束电子以相同的初速度0v 沿水平方向射入电场,如图1所示,图中虚线为某一电子的轨迹,射入点A 处电势为A ϕ,射出点B 处电势为B ϕ.①求该电子在由A 运动到B 的过程中,电场力做的功AB W ;②请判断该电子束穿过图1所示电场后,运动方向是否仍然彼此平行?若平行,请求出速度方向偏转角θ的余弦值cos θ(速度方向偏转角是指末速度方向与初速度方向之间的夹角);若不平行,请说明是会聚还是发散.(2)某电子枪除了加速电子外,同时还有使电子束会聚或发散作用,其原理可简化为图2所示.一球形界面外部空间中各处电势均为1ϕ,内部各处电势均为221()ϕϕϕ>,球心位于z 轴上O 点.一束靠近z 轴且关于z 轴对称的电子以相同的速度1v 平行于z 轴射入该界面,由于电子只受到在界面处法线方向的作用力,其运动方向将发生改变,改变前后能量守恒.①请定性画出这束电子射入球形界面后运动方向的示意图(画出电子束边缘处两条即可);②某电子入射方向与法线的夹角为1θ,求它射入球形界面后的运动方向与法线的夹角2θ的正弦值2sin θ.【答案】(1)①()AB B A W e ϕϕ=- ②是平行;()020cos 2B A v ve v mθϕϕ==-+(2)① ②()1122211sin 2e v mθϕϕ=-+【解析】 【详解】(1)①AB 两点的电势差为AB A B U ϕϕ=-在电子由A 运动到B 的过程中电场力做的功为()AB AB B A W eU e ϕϕ=-=-②电子束在同一电场中运动,电场力做功一样,所以穿出电场时,运动方向仍然彼此平行,设电子在B 点处的速度大小为v ,根据动能定理2201122AB W mv mv =- 0cos v v θ=解得:()020cos 2B A v ve v mθϕϕ==-+(2)①运动图如图所示:②设电子穿过界面后的速度为2v ,由于电子只受法线方向的作用力,其沿界面方向的速度不变,则1122sin sin θθ=v v 电子穿过界面的过程,能量守恒则:2211221122mv e mv e ϕϕ-=- 可解得:()212212e v v mϕϕ-=+ 则()1122211sin 2e v mθϕϕ=-+故本题答案是:(1)①()AB B A W e ϕϕ=- ②()020cos 2B A v ve v mθϕϕ==-+(2)① ②()1122211sin 2e v mθϕϕ=-+4.如图所示,半径r =0.06m 的半圆形无场区的圆心在坐标原点O 处,半径R =0.1m ,磁感应强度大小B =0.075T 的圆形有界磁场区的圆心坐标为(0,0.08m ),平行金属板MN 的极板长L =0.3m 、间距d =0.1m ,极板间所加电压U =6.4x102V ,其中N 极板收集到的粒子全部中和吸收.一位于O 处的粒子源向第一、二象限均匀地发射速度为v 的带正电粒子,经圆形磁场偏转后,从第一象限出射的粒子速度方向均沿x 轴正方向,已知粒子在磁场中的运动半径R 0=0.08m ,若粒子重力不计、比荷qm=108C/kg 、不计粒子间的相互作用力及电场的边缘效应.sin53°=0.8,cos53°=0.6. (1)求粒子的发射速度v 的大小;(2)若粒子在O 点入射方向与x 轴负方向夹角为37°,求它打出磁场时的坐标: (3)N 板收集到的粒子占所有发射粒子的比例η.【答案】(1)6×105m/s ;(2)(0,0.18m );(3)29% 【解析】 【详解】(1)由洛伦兹力充当向心力,即qvB =m 2v R可得:v =6×105m/s ;(2)若粒子在O 点入射方向与x 轴负方向夹角为37°,作出速度方向的垂线与y 轴交于一点Q ,根据几何关系可得PQ=0.0637cos o=0.08m ,即Q 为轨迹圆心的位置; Q 到圆上y 轴最高点的距离为0.18m-0.0637sin o=0.08m ,故粒子刚好从圆上y 轴最高点离开; 故它打出磁场时的坐标为(0,0.18m );(3)如上图所示,令恰能从下极板右端出射的粒子坐标为y,由带电粒子在电场中偏转的规律得:y=12at2…①a=qEm=qUmd…②t=Lv …③由①②③解得:y=0.08m设此粒子射入时与x轴的夹角为α,则由几何知识得:y=r sinα+R0-R0cosα可知tanα=43,即α=53°比例η=53180o×100%=29%5.如图所示,在平面直角坐标系xOy平面内,直角三角形abc的直角边ab长为6d,与y轴重合,∠bac=30°,中位线OM与x轴重合,三角形内有垂直纸面向里的匀强磁场.在笫一象限内,有方向沿y轴正向的匀强电场,场强大小E与匀强磁场磁感应强度B的大小间满足E=v0B.在x=3d的N点处,垂直于x轴放置一平面荧光屏.电子束以相同的初速度v0从y轴上-3d≤y≤0的范围内垂直于y轴向左射入磁场,其中从y轴上y=-2d处射入的电子,经磁场偏转后,恰好经过O点.电子质量为m,电量为e,电子间的相互作用及重力不计.求(1)匀强磁杨的磁感应强度B(2)电子束从y轴正半轴上射入电场时的纵坐标y的范围;(3)荧光屏上发光点距N点的最远距离L【答案】(1)0mv ed ; (2)02y d ≤≤;(3)94d ; 【解析】(1)设电子在磁场中做圆周运动的半径为r ; 由几何关系可得r =d电子在磁场中做匀速圆周运动洛伦兹力提供向心力,由牛顿第二定律得:20v ev B m r=解得:0mv B ed=(2)当电子在磁场中运动的圆轨迹与ac 边相切时,电子从+ y 轴射入电场的位置距O 点最远,如图甲所示.设此时的圆心位置为O ',有:sin 30rO a '=︒3OO d O a ='-' 解得OO d '=即从O 点进入磁场的电子射出磁场时的位置距O 点最远 所以22m y r d ==电子束从y 轴正半轴上射入电场时的纵坐标y 的范围为02y d ≤≤设电子从02y d ≤≤范围内某一位置射入电场时的纵坐标为y ,从ON 间射出电场时的位置横坐标为x ,速度方向与x 轴间夹角为θ,在电场中运动的时间为t ,电子打到荧光屏上产生的发光点距N 点的距离为L ,如图乙所示:根据运动学公式有:0x v t =212eE y t m=⋅ y eE v t m=tan y v v θ=tan 3Ld xθ=- 解得:(32)2L d y y =-⋅ 即98y d =时,L 有最大值 解得:94L d =当322d y y -=【点睛】本题属于带电粒子在组合场中的运动,粒子在磁场中做匀速圆周运动,要求能正确的画出运动轨迹,并根据几何关系确定某些物理量之间的关系;粒子在电场中的偏转经常用化曲为直的方法,求极值的问题一定要先找出临界的轨迹,注重数学方法在物理中的应用.6.如图甲所示,在直角坐标系0≤x ≤L 区域内有沿y 轴正方向的匀强电场,右侧有一个以点(3L ,0)为圆心、半径为L 的圆形区域,圆形区域与x 轴的交点分别为M 、N .现有一质量为m 、带电量为e 的电子,从y 轴上的A 点以速度v 0沿x 轴正方向射入电场,飞出电场后从M 点进入圆形区域,此时速度方向与x 轴正方向的夹角为30°.不考虑电子所受的重力.(1)求电子进入圆形区域时的速度大小和匀强电场场强E 的大小;(2)若在圆形区域内加一个垂直纸面向里的匀强磁场,使电子穿出圆形区域时速度方向垂直于x 轴.求所加磁场磁感应强度B 的大小和电子刚穿出圆形区域时的位置坐标; (3)若在电子刚进入圆形区域时,在圆形区域内加上图乙所示变化的磁场(以垂直于纸面向外为磁场正方向),最后电子从N 点处飞出,速度方向与进入磁场时的速度方向相同.请写出磁感应强度B 0的大小、磁场变化周期T 各应满足的关系表达式.【答案】(1) (2) (3) (n=1,2,3…)(n=1,2,3…)【解析】(1)电子在电场中作类平抛运动,射出电场时,速度分解图如图1中所示.由速度关系可得:解得:由速度关系得:v y=v0tanθ=v0在竖直方向:而水平方向:解得:(2)根据题意作图如图1所示,电子做匀速圆周运动的半径R=L根据牛顿第二定律:解得:根据几何关系得电子穿出圆形区域时位置坐标为(,-)(3)电子在在磁场中最简单的情景如图2所示.在磁场变化的前三分之一个周期内,电子的偏转角为60°,设电子运动的轨道半径为r,运动的T0,粒子在x轴方向上的位移恰好等于r1;在磁场变化的后三分之二个周期内,因磁感应强度减半,电子运动周期T′=2T0,故粒子的偏转角度仍为60°,电子运动的轨道半径变为2r,粒子在x轴方向上的位移恰好等于2r.综合上述分析,则电子能到达N点且速度符合要求的空间条件是:3rn=2L(n=1,2,3…)而:解得:(n=1,2,3…)应满足的时间条件为: (T 0+T ′)=T而:解得(n=1,2,3…)点睛:本题的靓点在于第三问,综合题目要求及带电粒子运动的半径和周期关系,则符合要求的粒子轨迹必定是粒子先在正B 0中偏转60°,而后又在− B 0中再次偏转60°,经过n 次这样的循环后恰恰从N 点穿出.先从半径关系求出磁感应强度的大小,再从周期关系求出交变磁场周期的大小.7.如图所示,在第一象限内存在匀强电场,电场方向与x 轴成45°角斜向左下,在第四象限内有一匀强磁场区域,该区域是由一个半径为R 的半圆和一个长为2R、宽为2R的矩形组成,磁场的方向垂直纸面向里.一质量为m 、电荷量为+q 的粒子(重力忽略不计)以速度v 从Q(0,3R)点垂直电场方向射入电场,恰在P(R ,0)点进入磁场区域.(1)求电场强度大小及粒子经过P 点时的速度大小和方向; (2)为使粒子从AC 边界射出磁场,磁感应强度应满足什么条件;(3)为使粒子射出磁场区域后不会进入电场区域,磁场的磁感应强度应不大于多少?【答案】(1) 224mv E qR=2v ,速度方向沿y 轴负方向(2)82225mv mv B qR qR ≤≤(3))2713mvqR【解析】 【分析】【详解】(1)在电场中,粒子沿初速度方向做匀速运动132cos4522cos45RL R R=-︒=︒1L vt=沿电场力方向做匀加速运动,加速度为a22sin452L R R=︒=2212L at=qEam=设粒子出电场时沿初速度和沿电场力方向分运动的速度大小分别为1v、2v,合速度v' 1v v=、2v at=,2tanvvθ=联立可得224mvEqR=进入磁场的速度22122v v v v=+='45θ=︒,速度方向沿y轴负方向(2)由左手定则判定,粒子向右偏转,当粒子从A点射出时,运动半径12Rr=由211mvqv Br=''得122mvB=当粒子从C点射出时,由勾股定理得()222222RR r r⎛⎫-+=⎪⎝⎭解得258r R=由2 22mvqv Br=''得2825mvBqR=根据粒子在磁场中运动半径随磁场减弱而增大,可以判断,当82225mv mvBqR qR≤≤时,粒子从AC边界射出(3)为使粒子不再回到电场区域,需粒子在CD区域穿出磁场,设出磁场时速度方向平行于x轴,其半径为3r,由几何关系得222332Rr r R⎛⎫+-=⎪⎝⎭解得()3714Rr+=由233mvqv Br=''得()322713mvBqR-=磁感应强度小于3B,运转半径更大,出磁场时速度方向偏向x轴下方,便不会回到电场中8.图中是磁聚焦法测比荷的原理图。

高中物理带电粒子在电场中的运动题20套(带答案)及解析

高中物理带电粒子在电场中的运动题20套(带答案)及解析

高中物理带电粒子在电场中的运动题20套(带答案)及解析一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外.点3,03P L ⎛⎫ ⎪ ⎪⎝⎭处有一粒子源,可向各个方向发射速率不同、电荷量为q 、质量为m 的带负电粒子.不考虑粒子的重力.(1)若粒子1经过第一、二、三象限后,恰好沿x 轴正向通过点Q (0,-L ),求其速率v 1;(2)若撤去第一象限的磁场,在其中加沿y 轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v 1沿x 轴正向通过点Q ,求匀强电场的电场强度E 以及粒子2的发射速率v 2;(3)若在xOy 平面内加沿y 轴正向的匀强电场E o ,粒子3以速率v 3沿y 轴正向发射,求在运动过程中其最小速率v.某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动. 请尝试用该思路求解. 【答案】(1)23BLq m (2221BLq32230B E E v B +⎛⎫ ⎪⎝⎭【解析】 【详解】(1)粒子1在一、二、三做匀速圆周运动,则2111v qv B m r =由几何憨可知:()2221133r L r L ⎛⎫=-+ ⎪ ⎪⎝⎭得到:123BLqv m=(2)粒子2在第一象限中类斜劈运动,有:133L v t=,212qE h t m = 在第二、三象限中原圆周运动,由几何关系:12L h r +=,得到289qLB E m=又22212v v Eh =+,得到:22219BLqv m=(3)如图所示,将3v 分解成水平向右和v '和斜向的v '',则0qv B qE '=,即0E v B'= 而'223v v v ''=+ 所以,运动过程中粒子的最小速率为v v v =''-'即:22003E E v v B B ⎛⎫=+- ⎪⎝⎭2.如图所示,竖直平面内有一固定绝缘轨道ABCDP ,由半径r =0.5m 的圆弧轨道CDP 和与之相切于C 点的水平轨道ABC 组成,圆弧轨道的直径DP 与竖直半径OC 间的夹角θ=37°,A 、B 两点间的距离d =0.2m 。

高考物理带电粒子在电场中的运动题20套(带答案)及解析

高考物理带电粒子在电场中的运动题20套(带答案)及解析

高考物理带电粒子在电场中的运动题20套(带答案)及解析一、高考物理精讲专题带电粒子在电场中的运动1.某控制带电粒子运动的仪器原理如图所示,区域PP′M′M 内有竖直向下的匀强电场,电场场强E =1.0×103V/m ,宽度d =0.05m ,长度L =0.40m ;区域MM′N′N 内有垂直纸面向里的匀强磁场,磁感应强度B =2.5×10-2T ,宽度D =0.05m,比荷qm=1.0×108C/kg 的带正电的粒子以水平初速度v 0从P 点射入电场.边界MM′不影响粒子的运动,不计粒子重力.(1) 若v 0=8.0×105m/s ,求粒子从区域PP′N′N 射出的位置;(2) 若粒子第一次进入磁场后就从M′N′间垂直边界射出,求v 0的大小; (3) 若粒子从M′点射出,求v 0满足的条件.【答案】(1)0.0125m (2) 3.6×105m/s. (3) 第一种情况:v 0=54.00.8()10/21nm s n -⨯+ (其中n =0、1、2、3、4)第二种情况:v 0=53.20.8()10/21nm s n -⨯+ (其中n =0、1、2、3).【解析】 【详解】(1) 粒子以水平初速度从P 点射入电场后,在电场中做类平抛运动,假设粒子能够进入磁场,则竖直方向21··2Eq d t m= 得2mdt qE=代入数据解得t =1.0×10-6s 水平位移x =v 0t 代入数据解得x =0.80m因为x 大于L ,所以粒子不能进入磁场,而是从P′M′间射出, 则运动时间t 0=Lv =0.5×10-6s , 竖直位移201··2Eq y t m==0.0125m 所以粒子从P′点下方0.0125m 处射出.(2) 由第一问可以求得粒子在电场中做类平抛运动的水平位移x =v 0 2mdqE粒子进入磁场时,垂直边界的速度 v 1=qE m ·t =2qEd m设粒子与磁场边界之间的夹角为α,则粒子进入磁场时的速度为v =1v sin α在磁场中由qvB =m 2v R得R =mv qB 粒子第一次进入磁场后,垂直边界M′N′射出磁场,必须满足x +Rsinα=L 把x =v 02md qE 、R =mv qB 、v =1v sin α、12qEdv m =代入解得 v 0=L·2Eqmd-E B v 0=3.6×105m/s.(3) 由第二问解答的图可知粒子离MM′的最远距离Δy =R -Rcosα=R(1-cosα)把R =mv qB 、v =1v sin α、12qEdv m=代入解得12(1cos )12tan sin 2mEd mEd y B q B q ααα-∆==可以看出当α=90°时,Δy 有最大值,(α=90°即粒子从P 点射入电场的速度为零,直接在电场中加速后以v 1的速度垂直MM′进入磁场运动半个圆周回到电场)1max 212mv m qEd mEdy qB qB m B q∆=== Δy max =0.04m ,Δy max 小于磁场宽度D ,所以不管粒子的水平射入速度是多少,粒子都不会从边界NN′射出磁场.若粒子速度较小,周期性运动的轨迹如下图所示:粒子要从M′点射出边界有两种情况, 第一种情况: L =n(2v 0t +2Rsinα)+v 0t把2md t qE =、R =mv qB 、v 1=vsinα、12qEd v m= 代入解得 0221221L qE n E v n md n B=-⋅++v 0= 4.00.821n n -⎛⎫⎪+⎝⎭×105m/s(其中n =0、1、2、3、4)第二种情况:L =n(2v 0t +2Rsinα)+v 0t +2Rsinα 把2md t qE =、R =mv qB 、v 1=vsinα、12qEd v m=代入解得02(1)21221L qE n E v n md n B+=-⋅++v 0= 3.20.821n n -⎛⎫⎪+⎝⎭×105m/s(其中n =0、1、2、3).2.如图所示,荧光屏MN 与x 轴垂直放置,荧光屏所在位置的横坐标x 0=60cm ,在第一象限y 轴和MN 之间存在沿y 轴负方向的匀强电场,电场强度E =1.6×105N/C ,在第二象限有半径R =5cm 的圆形磁场,磁感应强度B =0.8T ,方向垂直xOy 平面向外.磁场的边界和x 轴相切于P 点.在P 点有一个粒子源,可以向x 轴上方180°范围内的各个方向发射比荷为qm=1.0×108C/kg 的带正电的粒子,已知粒子的发射速率v 0=4.0×106m/s .不考虑粒子的重力、粒子间的相互作用.求:(1)带电粒子在磁场中运动的轨迹半径; (2)粒子从y 轴正半轴上射入电场的纵坐标范围; (3)带电粒子打到荧光屏上的位置与Q 点的最远距离. 【答案】(1)5cm ;(2)0≤y≤10cm ;(3)9cm 【解析】 【详解】(1)带电粒子进入磁场受到洛伦兹力的作用做圆周运动,由洛伦兹力提供向心力得:qvB =m 2v r解得:r =20510mv Bq-=⨯m=5cm (2)由(1)问可知r =R ,取任意方向进入磁场的粒子,画出粒子的运动轨迹如图所示:由几何关系可知四边形PO′FO 1为菱形,所以FO 1∥O′P ,又O′P 垂直于x 轴,粒子出射的速度方向与轨迹半径FO 1垂直,则所有粒子离开磁场时的方向均与x 轴平行,所以粒子从y 轴正半轴上射入电场的纵坐标范围为0≤y ≤10cm (3)假设粒子没有射出电场就打到荧光屏上,有:x 0=v 0t 0 h =2012at a =qE m解得:h =18cm >2R =10cm说明粒子离开电场后才打在荧光屏上.设从纵坐标为y 的点进入电场的粒子在电场中沿x 轴方向的位移为x ,则:x =v 0t y =212at 代入数据解得:x 2y设粒子最终到达荧光屏的位置与Q 点的最远距离为H ,粒子射出电场时速度方向与x 轴正方向间的夹角为θ,000tan 2y qE x v m v yv v θ⋅===所以:H =(x 0﹣x )tan θ=(x 0﹣2y)•2y由数学知识可知,当(x 0﹣2y )=2y 时,即y =4.5cm 时H 有最大值 所以H max =9cm3.平面直角坐标系的第一象限和第四象限内均存在垂直纸面向里的匀强磁场,磁感应强度大小分别为2B 和B (B 的大小未知),第二象限和第三象限内存在沿﹣y 方向的匀强电场,x 轴上有一点P ,其坐标为(L ,0)。

2020-2021学年高中物理选修3-1:1.9带电粒子在电场中的运动(含答案解析)

2020-2021学年高中物理选修3-1:1.9带电粒子在电场中的运动(含答案解析)

2020-2021学年高中物理选修3-1:1.9带电粒子在电场中的运动1.下列粒子从静止状态经过电压为U的电场加速后速度最大的是()
A.质子11H B.氘核21H
C.α粒子42He D.钠离子Na+
2.如图所示,在A板附近有一电子由静止开始向B板运动.则关于电子到达B板时的速率,下列解释正确的是()
A.两极板间距越大,加速的时间就越长,则获得的速率板越大
B.两极板间距越小,加速的时间就越长,则获得的速率越大
C.获得的速率大小与两极间的距离无关,与所加电压U有关
D.两极板间距离越小,加速的时间越短,则获得的速率越小
3.一束带电粒子以相同的速率从同一位置,垂直于电场方向飞入匀强电场中,所有粒子的运动轨迹都是一样的.这说明所有粒子()
A.都具有相同的质量
B.都具有相同的电荷量
C.电荷量与质量之比都相同
D.都是同位素
4.
如图所示,从F处释放一个无初速度的电子向B板方向运动,则下列对电子运动的描述中错误的是(设电源电动势为U)()
A.电子到达B板时的动能是Ue
B.电子从B板到达C板动能变化量为零
C.电子到达D板时动能是3Ue
D.电子在A板和D板之间做往复运动
5.(多选)如图甲所示,三个相同的金属板共轴排列,它们的距离与宽度均相同,轴线上开有小孔,在左边和右边两个金属板上加电压U后,金属板间就形成匀强电场;有一个比荷
q
m=1.0×10
-2C/kg的带正电的粒子从左边金属板小孔A处由静止释放,粒子在静电力作用下从小孔射出(不计粒子重力),其v-t图像如图乙所示,则下列说法正确的是()
A.左侧金属板接电源的正极
第1 页共10 页。

带电粒子在电场中运动题目及标准答案(分类归纳经典)

带电粒子在电场中运动题目及标准答案(分类归纳经典)

带电粒子在电场中的运动一、带电粒子在电场中做偏转运动1.如图所示的真空管中,质量为m ,电量为e 的电子从灯丝F发出,经过电压U1加速后沿中心线射入相距为d 的两平行金属板B、C间的匀强电场中,通过电场后打到荧光屏上,设B、C间电压为U2,B、C板长为l 1,平行金属板右端到荧光屏的距离为l 2,求:⑴电子离开匀强电场时的速度与进入时速度间的夹角. ⑵电子打到荧光屏上的位置偏离屏中心距离. 解析:电子在真空管中的运动过分为三段,从F发出在电压U1作用下的加速运动;进入平行金属板B、C间的匀强电场中做类平抛运动;飞离匀强电场到荧光屏间的匀速直线运动.⑴设电子经电压U1加速后的速度为v 1,根据动能定理有: 21121mv eU =电子进入B、C间的匀强电场中,在水平方向以v 1的速度做匀速直线运动,竖直方向受电场力的作用做初速度为零的加速运动,其加速度为: dmeU meE a 2==电子通过匀强电场的时间11v l t =电子离开匀强电场时竖直方向的速度v y 为: 112mdv l eU at v y ==电子离开电场时速度v 2与进入电场时的速度v 1夹角为α(如图5)则d U l U mdv l eU v v tg y 112211212===α ∴dU l U arctg1122=α ⑵电子通过匀强电场时偏离中心线的位移dU l U v l dm eU at y 1212212122142121=•== 电子离开电场后,做匀速直线运动射到荧光屏上,竖直方向的位移 dU l l U tg l y 1212222==α ∴电子打到荧光屏上时,偏离中心线的距离为 )2(22111221l l d U l U y y y +=+= 图 52. 如图所示,在空间中取直角坐标系Oxy ,在第一象限内平行于y 轴的虚线MN 与y 轴距离为d ,从y 轴到MN 之间的区域充满一个沿y 轴正方向的匀强电场,场强大小为E 。

高中物理带电粒子在电场中的运动常见题型及答题技巧及练习题(含答案)含解析

高中物理带电粒子在电场中的运动常见题型及答题技巧及练习题(含答案)含解析
解得:
【点睛】
本题的关键是分析小球的受力情况,来确定小球的运动情况.从力和能两个角度研究动力学问题是常用的思路.
9.如图所示,x轴的上方存在方向与x轴成 角的匀强电场,电场强度为E,x轴的下方存在垂直纸面向里的匀强磁场,磁感应强度 有一个质量 ,电荷量 的带正电粒子,该粒子的初速度 ,从坐标原点O沿与x轴成 角的方向进入匀强磁场,经过磁场和电场的作用,粒子从O点出发后第四次经过x轴时刚好又回到O点处,设电场和磁场的区域足够宽,不计粒子重力,求:
(1)电场反向后匀强电场的电场强度大小;
(2)整个过程中电场力所做的功。
【答案】(1) (2)
【解析】(1)设t末和2t末小物块的速度大小分别为 和 ,电场反向后匀强电场的电场强度大小为E1,小金属块由A点运动到B点过程:

小金属块由B点运动到A点过程:
联立解得: ,则: ;
(2)根据动能定理,整个过程中电场力所做的功:
(1)求粒子到达O点时速度的大小;
(2)如图2所示,在PQ(与ACDB重合且足够长)和收集板MN之间区域加一个匀强磁场,方向垂直纸面向内,则发现均匀吸附到AB圆弧面的粒子经O点进入磁场后最多有 能打到MN板上,求所加磁感应强度的大小;
(3)如图3所示,在PQ(与ACDB重合且足够长)和收集板MN之间区域加一个垂直MN的匀强电场,电场强度的方向如图所示,大小 ,若从AB圆弧面收集到的某粒子经O点进入电场后到达收集板MN离O点最远,求该粒子到达O点的速度的方向和它在PQ与MN间运动的时间.
解得
(2)粒子在电场和磁场中的运动轨迹如图所示,粒子第一次出磁场到第二次进磁场,两点间距为
由类平抛规律 ,
由几何知识可得x=y,解得
两点间的距离为 ,代入数据可得

高中物理带电粒子在电场中的运动解题技巧及经典题型及练习题(含答案)及解析

高中物理带电粒子在电场中的运动解题技巧及经典题型及练习题(含答案)及解析

高中物理带电粒子在电场中的运动解题技巧及经典题型及练习题(含答案)及解析一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,竖直平面内有一固定绝缘轨道ABCDP ,由半径r =0.5m 的圆弧轨道CDP 和与之相切于C 点的水平轨道ABC 组成,圆弧轨道的直径DP 与竖直半径OC 间的夹角θ=37°,A 、B 两点间的距离d =0.2m 。

质量m 1=0.05kg 的不带电绝缘滑块静止在A 点,质量m 2=0.1kg 、电荷量q =1×10﹣5C 的带正电小球静止在B 点,小球的右侧空间存在水平向右的匀强电场。

现用大小F =4.5N 、方向水平向右的恒力推滑块,滑块到达B 点前瞬间撤去该恒力,滑块与小球发生弹性正碰,碰后小球沿轨道运动,到达P 点时恰好和轨道无挤压且所受合力指向圆心。

小球和滑块均视为质点,碰撞过程中小球的电荷量不变,不计一切摩擦。

取g =10m/s 2,sin37°=0.6,cos37°=0.8.(1)求撤去该恒力瞬间滑块的速度大小v 以及匀强电场的电场强度大小E ; (2)求小球到达P 点时的速度大小v P 和B 、C 两点间的距离x ;(3)若小球从P 点飞出后落到水平轨道上的Q 点(图中未画出)后不再反弹,求Q 、C 两点间的距离L 。

【答案】(1)撤去该恒力瞬间滑块的速度大小是6m/s ,匀强电场的电场强度大小是7.5×104N/C ;(2)小球到达P 点时的速度大小是2.5m/s ,B 、C 两点间的距离是0.85m 。

(3)Q 、C 两点间的距离为0.5625m 。

【解析】 【详解】(1)对滑块从A 点运动到B 点的过程,根据动能定理有:Fd =12m 1v 2, 代入数据解得:v =6m/s小球到达P 点时,受力如图所示,由平衡条件得:qE =m 2g tanθ, 解得:E =7.5×104N/C 。

高考物理带电粒子在电场中的运动试题(有答案和解析)及解析

高考物理带电粒子在电场中的运动试题(有答案和解析)及解析

高考物理带电粒子在电场中的运动试题(有答案和解析)及解析一、高考物理精讲专题带电粒子在电场中的运动1.如图,质量分别为m A=1kg、m B=2kg的A、B两滑块放在水平面上,处于场强大小E=3×105N/C、方向水平向右的匀强电场中,A不带电,B带正电、电荷量q=2×10-5C.零时刻,A、B用绷直的细绳连接(细绳形变不计)着,从静止同时开始运动,2s末细绳断开.已知A、B与水平面间的动摩擦因数均为μ=0.1,重力加速度大小g=10m/s2.求:(1)前2s内,A的位移大小;(2)6s末,电场力的瞬时功率.【答案】(1) 2m (2) 60W【解析】【分析】【详解】(1)B所受电场力为F=Eq=6N;绳断之前,对系统由牛顿第二定律:F-μ(m A+m B)g=(m A+m B)a1可得系统的加速度a1=1m/s2;由运动规律:x=12a1t12解得A在2s内的位移为x=2m;(2)设绳断瞬间,AB的速度大小为v1,t2=6s时刻,B的速度大小为v2,则v1=a1t1=2m/s;绳断后,对B由牛顿第二定律:F-μm B g=m B a2解得a2=2m/s2;由运动规律可知:v2=v1+a2(t2-t1)解得v2=10m/s电场力的功率P=Fv,解得P=60W2.如图所示,竖直平面内有一固定绝缘轨道ABCDP,由半径r=0.5m的圆弧轨道CDP和与之相切于C点的水平轨道ABC组成,圆弧轨道的直径DP与竖直半径OC间的夹角θ=37°,A、B两点间的距离d=0.2m.质量m1=0.05kg的不带电绝缘滑块静止在A点,质量m2=0.1kg、电荷量q=1×10-5C的带正电小球静止在B点,小球的右侧空间存在水平向右的匀强电场.现用大小F=4.5N、方向水平向右的恒力推滑块,滑块到达月点前瞬间撤去该恒力,滑块与小球发生弹性正碰,碰后小球沿轨道运动,到达P点时恰好和轨道无挤压且所受合力指向圆心.小球和滑块均视为质点,碰撞过程中小球的电荷量不变,不计一切摩擦.取g=10m/s2,sin37°=0.6,cos37°=0.8.(1)求撤去该恒力瞬间滑块的速度大小v 以及匀强电场的电场强度大小E ; (2)求小球到达P 点时的速度大小v P 和B 、C 两点间的距离x . 【答案】(1) 6m /s ;7.5×104N /C (2) 2.5m /s ;0.85m 【解析】 【详解】(1)对滑块从A 点运动到B 点的过程,根据动能定理有:2112Fd m v = 解得:v =6m /s小球到达P 点时,受力如图所示:则有:qE =m 2g tan θ, 解得:E =7.5×104N /C(2)小球所受重力与电场力的合力大小为:2cos m gG 等θ=小球到达P 点时,由牛顿第二定律有:2P v G r=等解得:v P =2.5m /s滑块与小球发生弹性正碰,设碰后滑块、小球的速度大小分别为v 1、v 2, 则有:m 1v =m 1v 1+m 2v 222211122111222m v m v m v =+ 解得:v 1=-2m /s(“-”表示v 1的方向水平向左),v 2=4m /s 对小球碰后运动到P 点的过程,根据动能定理有:()()22222211sincos 22P qE x r m g r r m v m v θθ--+=- 解得:x =0.85m3.如图所示,一内壁光滑的绝缘圆管ADB 固定在竖直平面内.圆管的圆心为O ,D 点为圆管的最低点,AB 两点在同一水平线上,AB=2L ,圆管的半径为r=2L(自身的直径忽略不计).过OD 的虚线与过AB 的虚线垂直相交于C 点,在虚线AB 的上方存在方向水平向右、范围足够大的匀强电场;虚线AB 的下方存在方向竖直向下、范围足够大的匀强电场,电场强度大小E 2=mgq.圆心O 正上方的P 点有一质量为m 、电荷量为-q(q>0)的小球(可视为质点),PC 间距为L .现将该小球从P 点无初速释放,经过一段时间后,小球刚好从管口A 无碰撞地进入圆管内,并继续运动.重力加速度为g .求:(1)虚线AB 上方匀强电场的电场强度E 1的大小; (2)小球在AB 管中运动经过D 点时对管的压力F D ;(3)小球从管口B 离开后,经过一段时间到达虚线AB 上的N 点(图中未标出),在圆管中运动的时间与总时间之比ABPNt t . 【答案】(1)mg q (2)2mg ,方向竖直向下(3)4ππ+【解析】 【分析】(1)小物体释放后在重力和电场力的作用下做匀加速直线运动,根据正交分解,垂直运动方向的合力为零,列出平衡方程即可求出虚线AB 上方匀强电场的电场强度;(2)根据动能定理结合圆周运动的规律求解小球在AB 管中运动经过D 点时对管的压力F D ;(3)小物体由P 点运动到A 点做匀加速直线运动,在圆管内做匀速圆周运动,离开管后做类平抛运动,结合运动公式求解在圆管中运动的时间与总时间之比. 【详解】(1)小物体释放后在重力和电场力的作用下做匀加速直线运动,小物体从A 点沿切线方向进入,则此时速度方向与竖直方向的夹角为45°,即加速度方向与竖直方向的夹角为45°,则:tan45°= mg Eq解得:mg qE =(2)从P 到A 的过程,根据动能定理:mgL+EqL=12mv A 2 解得v A =2gL小球在管中运动时,E 2q=mg ,小球做匀速圆周运动,则v 0=v A =2gL在D 点时,下壁对球的支持力2022v F m mg r==由牛顿第三定律,22F F mg =='方向竖直向下.(3)小物体由P 点运动到A 点做匀加速直线运动,设所用时间为t 1,则:211222L gt =解得12L t g= 小球在圆管内做匀速圆周运动的时间为t 2,则:2323244A rL t v gππ⋅==小球离开管后做类平抛运动,物块从B 到N 的过程中所用时间:322L t g= 则:24t t ππ=+ 【点睛】本题考查带点小物体在电场力和重力共同作用下的运动,解题关键是要分好运动过程,明确每一个过程小物体的受力情况,并结合初速度判断物体做什么运动,进而选择合适的规律解决问题,匀变速直线运动利用牛顿第二定律结合运动学公式求解或者运用动能定理求解,类平抛利用运动的合成和分解、牛顿第二定律结合运动学规律求解.4.如图1所示,光滑绝缘斜面的倾角θ=30°,整个空间处在电场中,取沿斜面向上的方向为电场的正方向,电场随时间的变化规律如图2所示.一个质量m=0.2kg ,电量q=1×10-5C 的带正电的滑块被挡板P 挡住,在t=0时刻,撤去挡板P .重力加速度g=10m/s 2,求:(1)0~4s 内滑块的最大速度为多少? (2)0~4s 内电场力做了多少功? 【答案】(1)20m/s (2)40J 【解析】 【分析】对滑块受力分析,由牛顿运动定律计算加速度计算各速度. 【详解】【解】(l)在0~2 s 内,滑块的受力分析如图甲所示,电场力F=qE11sin F mg ma θ-=解得2110/a m s =在2 ---4 s 内,滑块受力分析如图乙所示22sin F mg ma θ+=解得2210/a m s =因此物体在0~2 s 内,以2110/a m s =的加速度加速, 在2~4 s 内,2210/a m s =的加速度减速,即在2s 时,速度最大由1v a t =得,max 20/v m s =(2)物体在0~2s 内与在2~4s 内通过的位移相等.通过的位移max202v x t m == 在0~2 s 内,电场力做正功1160W F x J == - 在2~4 s 内,电场力做负功2220W F x J ==-电场力做功W=40 J5.一电路如图所示,电源电动势E=28v ,内阻r=2Ω,电阻R1=4Ω,R2=8Ω,R3=4Ω,C 为平行板电容器,其电容C=3.0pF ,虚线到两极板距离相等,极板长L=0.20m ,两极板的间距d=1.0×10-2m .(1)闭合开关S 稳定后,求电容器所带的电荷量为多少?(2)当开关S 闭合后,有一未知的、待研究的带电粒子沿虚线方向以v0=2.0m/s 的初速度射入MN 的电场中,已知该带电粒子刚好从极板的右侧下边缘穿出电场,求该带电粒子的比荷q/m (不计粒子的重力,M 、N 板之间的电场看作匀强电场,g=10m/s 2)【答案】(1)114.810C -⨯ (2)46.2510/C kg -⨯【解析】 【分析】 【详解】(1)闭合开关S 稳定后,电路的电流:12282482E I A A R R r ===++++;电容器两端电压:222816R U U IR V V ===⨯=;电容器带电量: 12112 3.01016 4.810R Q CU C C --==⨯⨯=⨯(2)粒子在电场中做类平抛运动,则:0L v t =21122Uq d t dm= 联立解得46.2510/qC kg m-=⨯6.如图所示,荧光屏MN 与x 轴垂直放置,与x 轴相交于Q 点,Q 点的横坐标06x cm =,在第一象限y 轴和MN 之间有沿y 轴负方向的匀强电场,电场强度51.610/E N C =⨯,在第二象限有半径5R cm =的圆形磁场,磁感应强度0.8B T =,方向垂直xOy 平面向外.磁场的边界和x 轴相切于P 点.在P 点有一个粒子源,可以向x 轴上方180°范围内的各个方向发射比荷为81.010/qC kg m=⨯的带正电的粒子,已知粒子的发射速率60 4.010/v m s =⨯.不考虑粒子的重力、粒子间的相互作用.求:(1)带电粒子在磁场中运动的轨迹半径; (2)粒子从y 轴正半轴上射入电场的纵坐标范围; (3)带电粒子打到荧光屏上的位置与Q 点间的最远距离. 【答案】(1)5cm (2)010y cm ≤≤ (3)9cm 【解析】 【详解】(1)带电粒子进入磁场受到洛伦兹力的作用做圆周运动20v qv B m r=解得:05mv r cm qB== (2)由(1)问中可知r R =,取任意方向进入磁场的粒子,画出粒子的运动轨迹如图所示,由几何关系可知四边形1PO FO '为菱形,所以1//FO O P ',又O P '垂直于x 轴,粒子出射的速度方向与轨迹半径1FO 垂直,则所有粒子离开磁场时的方向均与x 轴平行,所以粒子从y 轴正半轴上射入电场的纵坐标范围为010y cm ≤≤.(3)假设粒子没有射出电场就打到荧光屏上,有000x v t =2012h at =qE a m=解得:18210h cm R cm =>=,说明粒子离开电场后才打到荧光屏上.设从纵坐标为y 的点进入电场的粒子在电场中沿x 轴方向的位移为x ,则0x v t =212y at =代入数据解得2x y =设粒子最终到达荧光屏的位置与Q 点的最远距离为H ,粒子射出的电场时速度方向与x 轴正方向间的夹角为θ,000tan 2y qE x v m v yv v θ===g,所以()()00tan 22H x x x y y θ=-=-g , 由数学知识可知,当()022x y y -=时,即 4.5y cm =时H 有最大值,所以max 9H cm =7.能量守恒是自然界基本规律,能量转化通过做功实现。

【物理】 高考物理带电粒子在电场中的运动试题(有答案和解析)及解析

【物理】 高考物理带电粒子在电场中的运动试题(有答案和解析)及解析

【答案】(1) E mg q
(2) xCN 7L
(3)
t总=(3
3 4
)
2L g
【解析】
(1)小物体无初速释放后在重力、电场力的作用下做匀加速直线运动,小物体刚好沿切线 无碰撞地进入圆管内,故小物体刚好沿 PA 连线运动,重力与电场力的合力沿 PA 方向;又
PA AC L ,故 tan 450 qE ,解得: E mg
6.如图所示,一根光滑绝缘细杆与水平面成 α=30°角倾斜固定.细杆的一部分处在场强 方向水平向右的匀强电场中,场强 E=2 3 ×104N/C.在细杆上套有一个带负电的小球, 带电量为 q=1×10﹣5C、质量为 m=3×10﹣2kg.现使小球从细杆的顶端 A 由静止开始沿杆 滑下,并从 B 点进入电场,小球在电场中滑至最远处的 C 点.已知 AB 间距离 x1=0.4m,g =10m/s2.求: (1)小球通过 B 点时的速度大小 VB; (2)小球进入电场后滑行的最大距离 x2; (3)试画出小球从 A 点运动到 C 点过程中的 v﹣t 图象.
解得:小球抛出时的初速度
v0
23 3
m
s
(2)在
B
点时, sin60
vy vB
,则 vB
43 3
m s
小球在
A
点时, FN
qE
mg
m
vA2 R
,解得: vA
3ms
小球从 B 到 A 过程,由动能定理得: (mg qE)(R Rcos ) Wf
1 2
mvA2
1 2
mvB2
解得:小球从 B 到 A 的过程中克服摩擦所做的功Wf
mg qE ma ,解得:小球的加速度
a mg qE 210 1103 104 m / s2 5m / s2

高考物理带电粒子在电场中的运动常见题型及答题技巧及练习题(含答案)及解析

高考物理带电粒子在电场中的运动常见题型及答题技巧及练习题(含答案)及解析

高考物理带电粒子在电场中的运动常见题型及答题技巧及练习题(含答案)及解析一、高考物理精讲专题带电粒子在电场中的运动1.在如图所示的平面直角坐标系中,存在一个半径R =0.2m 的圆形匀强磁场区域,磁感应强度B =1.0T ,方向垂直纸面向外,该磁场区域的右边缘与y 坐标轴相切于原点O 点。

y 轴右侧存在一个匀强电场,方向沿y 轴正方向,电场区域宽度l =0.1m 。

现从坐标为(﹣0.2m ,﹣0.2m )的P 点发射出质量m =2.0×10﹣9kg 、带电荷量q =5.0×10﹣5C 的带正电粒子,沿y 轴正方向射入匀强磁场,速度大小v 0=5.0×103m/s (粒子重力不计)。

(1)带电粒子从坐标为(0.1m ,0.05m )的点射出电场,求该电场强度;(2)为了使该带电粒子能从坐标为(0.1m ,﹣0.05m )的点回到电场,可在紧邻电场的右侧区域内加匀强磁场,试求所加匀强磁场的磁感应强度大小和方向。

【答案】(1)1.0×104N/C (2)4T ,方向垂直纸面向外 【解析】 【详解】解:(1)带正电粒子在磁场中做匀速圆周运动,根据洛伦兹力提供向心力有:200v qv B m r=可得:r =0.20m =R根据几何关系可以知道,带电粒子恰从O 点沿x 轴进入电场,带电粒子做类平抛运动,设粒子到达电场边缘时,竖直方向的位移为y 根据类平抛规律可得:2012l v t y at ==, 根据牛顿第二定律可得:Eq ma = 联立可得:41.010E =⨯N/C(2)粒子飞离电场时,沿电场方向速度:305.010y qE lv at m v ===⨯g m/s=0v 粒子射出电场时速度:02=v v根据几何关系可知,粒子在B '区域磁场中做圆周运动半径:2r y '=根据洛伦兹力提供向心力可得: 2v qvB m r '='联立可得所加匀强磁场的磁感应强度大小:4mvB qr '=='T 根据左手定则可知所加磁场方向垂直纸面向外。

带电粒子在电场中的运动例题

带电粒子在电场中的运动例题

带电粒子在电场中的运动一、带电粒子在电场中做偏转运动1. 如图所示,在平行板电容器之间有匀强电场,一带电粒子(重力不计)以速度v 0垂直电场线射人电场,经过时间t l 穿越电场,粒子的动能由E k 增加到2E k ; 若这个带电粒子以速度32 v 0 垂直进人该电场,经过时间t 2穿越电场。

求:( l )带电粒子两次穿越电场的时间之比t 1:t 2; ( 2 )带电粒子第二次穿出电场时的动能。

2.如图所示的真空管中,质量为m ,电量为e 的电子从灯丝F发出,经过电压U1加速后沿中心线射入相距为d 的两平行金属板B、C间的匀强电场中,通过电场后打到荧光屏上,设B、C间电压为U2,B、C板长为l 1,平行金属板右端到荧光屏的距离为l 2,求:⑴电子离开匀强电场时的速度与进入时速度间的夹角. ⑵电子打到荧光屏上的位置偏离屏中心距离.解析:电子在真空管中的运动过分为三段,从F发出在电压U1作用下的加速运动;进入平行金属板B、C间的匀强电场中做类平抛运动;飞离匀强电场到荧光屏间的匀速直线运动. ⑴设电子经电压U1加速后的速度为v 1,根据动能定理有:电子进入B、C间的匀强电场中,在水平方向以v 1的速度做匀速直线运动,竖直方向受电场力的作用做初速度为零的加速运动,其加速度为: 电子通过匀强电场的时间11v l t=电子离开匀强电场时竖直方向的速度v y 为:电子离开电场时速度v 2与进入电场时的速度v 1夹角为α(如图5)则∴dU l U arctg1122=α⑵电子通过匀强电场时偏离中心线的位移电子离开电场后,做匀速直线运动射到荧光屏上,竖直方向的位移 ∴电子打到荧光屏上时,偏离中心线的距离为3. 在真空中存在空间范围足够大的、水平向右的匀强电场.若将一个质量为m 、带正电电量q 的小球在此电场中由静止释放,小球将沿与竖直方向夹角为︒37的直线运动。

现将该小球从电场中某点以初速度0v 竖直向上抛出,求运动过程中(取8.037cos ,6.037sin =︒=︒)(1)小球受到的电场力的大小及方向;(2)小球运动的抛出点至最高点之间的电势差U . 解析:v 0图 5(1)根据题设条件,电场力大小 mg mg F e 4337tan =︒= ① 电场力的方向向右(2)小球沿竖直方向做初速为0v 的匀减速运动,到最高点的时间为t ,则:gv t 0=②沿水平方向做初速度为0的匀加速运动,加速度为x ag m F a e x43==③此过程小球沿电场方向位移为:gv t a s x x 8321202==④小球上升到最高点的过程中,电场力做功为:qmv U 3292= ⑤4. 在足够大的空间中,存在水平向右的匀强电场,若用绝缘细线将质量为m 的带正电的小球悬挂在电场中,其静止时细线与竖直方向夹角θ=37°.现去掉细线,将该小球从电场中的某点竖直向上抛出,抛出时的初速度大小为v 0,如图13所示.求: (1)电场强度的大小.(2)小球在电场内运动过程中的最小速率.(3)小球从抛出至达到最小速率的过程中,电场力对小球所做的功.(sin37°=,cos37°=5. 如图所示,在空间中取直角坐标系Oxy ,在第一象限内平行于y 轴的虚线MN 与y 轴距离为d ,从y 轴到MN 之间的区域充满一个沿y 轴正方向的匀强电场,场强大小为E 。

高中物理(新人教版)必修第三册课后习题:带电粒子在电场中的运动(课后习题)【含答案及解析】

高中物理(新人教版)必修第三册课后习题:带电粒子在电场中的运动(课后习题)【含答案及解析】

带电粒子在电场中的运动合格考达标练1.(2021湖南娄底一中高二上学期期中)如图所示,两平行金属板相距为d,电势差为U,一电子质量为m,电荷量为e,从O点沿垂直于极板的方向射出,最远到达A点,然后返回,OA=h,此电子具有的初动能是()A.edℎUhC.eU dℎD.eUℎdO点运动到A点,因受静电力作用,速度逐渐减小。

电子仅受静电力,根据动能定理得1 2mv02=eU OA。

因E=Ud,U OA=Eh=Uℎd,故12mv02=eUℎd。

所以D正确。

2.如图所示,a、b两个带正电的粒子,以相同的速度先后垂直于电场线从同一点进入平行板间的匀强电场后,a粒子打在B板的a'点,b粒子打在B板的b'点,若不计重力,则()A.a的电荷量一定大于b的电荷量B.b的质量一定大于a的质量C.a的比荷一定大于b的比荷D.b的比荷一定大于a的比荷,由h=12·qEm(xv0)2得x=v0√2ℎmqE。

由v0√2ℎm aEq a<v0√2ℎm bEq b得q am a>q bm b,故选项C正确。

3.(2021江西九江修水一中高二月考)如图所示,一价氢离子和二价氦离子的混合体,经同一加速电场由静止加速后,垂直射入同一偏转电场中,偏转后,打在同一荧光屏上,则它们()A.同时到达屏上同一点B.先后到达屏上同一点C.同时到达屏上不同点D.先后到达屏上不同点qU1=12mv02,在偏转电场中的偏转距离y=12·U2qmd·L2v02=U2L24U1d,故两离子运动轨迹相同,打在屏上同一点;一价氢离子和二价氦离子的比荷不同,经过加速电场后的末速度不同,因此两离子运动的时间不同。

故选B。

4.(多选)如图所示,平行板电容器的两个极板与水平地面成一定角度,两极板与一直流电源相连。

若一带电粒子恰能沿图中所示水平直线通过电容器,则在此过程中,该粒子()A.所受重力与静电力平衡B.电势能逐渐增加C.动能逐渐增加D.做匀变速直线运动,其重力和静电力的合力应与速度共线,如图所示。

高中物理(新人教版)必修第三册课后习题:第十章习题课 带电粒子在电场中运动的四种题型【含答案及解析】

高中物理(新人教版)必修第三册课后习题:第十章习题课 带电粒子在电场中运动的四种题型【含答案及解析】

习题课:带电粒子在电场中运动的四种题型合格考达标练1.如图,两平行的带电金属板水平放置。

若在两板中间a点从静止释放一带电微粒,微粒恰好保持静止状态,现将两板绕过a点的轴(垂直于纸面)逆时针旋转45°,再由a点从静止释放一同样的微粒,该微粒将()A.保持静止状态B.向左上方做匀加速运动C.向正下方做匀加速运动D.向左下方做匀加速运动,带电微粒静止,有mg=qE,现将两板绕过a点的轴(垂直于纸面)逆时针旋转45°后,两板间电场强度方向逆时针旋转45°,静电力方向也逆时针旋转45°,但大小不变,此时静电力和重力的合力大小恒定,方向指向左下方,故该微粒将向左下方做匀加速运动,选项D正确。

2.(2021山东潍坊联考)空间有一沿x轴对称分布的电场,其电场强度E随x变化的图像如图所示(沿x 轴正方向为电场强度正方向)。

下列说法正确的是()A.O点的电势最低B.x2点的电势最高C.x1和-x1两点的电势相等D.x1和x3两点的电势相等O点为中心指向正、负方向,沿电场线方向电势逐渐降低,所以O点的电势最高,选项A、B错误;E-x图像与横轴所围的面积表示电势差,因图像关于O对称,所以从O点到x1点和从O点到-x1点电势降落相等,故x1和-x1两点的电势相等,选项C正确;x1、x3两点的电场强度大小相等,沿电场线方向电势逐渐降低,电势不相等,选项D错误。

3.如图所示,一个平行板电容器充电后与电源断开,从负极板处释放一个电子(不计重力),设其到达正极板时的速度为v1,加速度为a1。

若将两极板间的距离增大为原来的2倍,再从负极板处释放一个电子,设其到达正极板时的速度为v2,加速度为a2,则()A.a 1∶a 2=1∶1,v 1∶v 2=1∶2B.a 1∶a 2=2∶1,v 1∶v 2=1∶2C.a 1∶a 2=2∶1,v 1∶v 2=√2∶1D.a 1∶a 2=1∶1,v 1∶v 2=1∶√2,再增大两极板间的距离时,电场强度不变,电子在电场中受到的静电力不变,故a 1∶a 2=1∶1。

【物理】物理带电粒子在电场中的运动专题练习(及答案)及解析

【物理】物理带电粒子在电场中的运动专题练习(及答案)及解析

【物理】物理带电粒⼦在电场中的运动专题练习(及答案)及解析【物理】物理带电粒⼦在电场中的运动专题练习(及答案)及解析⼀、⾼考物理精讲专题带电粒⼦在电场中的运动1.如图甲所⽰,极板A 、B 间电压为U 0,极板C 、D 间距为d ,荧光屏到C 、D 板右端的距离等于C 、D 板的板长.A 板O 处的放射源连续⽆初速地释放质量为m 、电荷量为+q 的粒⼦,经电场加速后,沿极板C 、D 的中⼼线射向荧光屏(荧光屏⾜够⼤且与中⼼线垂直),当C 、D 板间未加电压时,粒⼦通过两板间的时间为t 0;当C 、D 板间加上图⼄所⽰电压(图中电压U 1已知)时,粒⼦均能从C 、D 两板间飞出,不计粒⼦的重⼒及相互间的作⽤.求:(1)C 、D 板的长度L ;(2)粒⼦从C 、D 板间飞出时垂直于极板⽅向偏移的最⼤距离;(3)粒⼦打在荧光屏上区域的长度.【答案】(1)02qU L t m =2)2102qU t y md =(3)21032qU t s s md== 【解析】试题分析:(1)粒⼦在A 、B 板间有20012qU mv = 在C 、D 板间有00L v t = 解得:02qU L t m=(2)粒⼦从nt 0(n=0、2、4……)时刻进⼊C 、D 间,偏移距离最⼤粒⼦做类平抛运动偏移距离2012y at = 加速度1qU a md=得:2102qU t y md=(3)粒⼦在C 、D 间偏转距离最⼤时打在荧光屏上距中⼼线最远ZXXK] 出C 、D 板偏转⾓0tan y v v θ=0y v at =打在荧光屏上距中⼼线最远距离tan s y L θ=+荧光屏上区域长度21032qU t s s md==考点:带电粒⼦在匀强电场中的运动【名师点睛】此题是带电粒⼦在匀强电场中的运动问题;关键是知道粒⼦在⽔平及竖直⽅向的运动规律和特点,结合平抛运动的规律解答.2.如图1所⽰,光滑绝缘斜⾯的倾⾓θ=30°,整个空间处在电场中,取沿斜⾯向上的⽅向为电场的正⽅向,电场随时间的变化规律如图2所⽰.⼀个质量m=0.2kg ,电量q=1×10-5C 的带正电的滑块被挡板P 挡住,在t=0时刻,撤去挡板P .重⼒加速度g=10m/s 2,求:(1)0~4s 内滑块的最⼤速度为多少? (2)0~4s 内电场⼒做了多少功? 【答案】(1)20m/s (2)40J 【解析】【分析】对滑块受⼒分析,由⽜顿运动定律计算加速度计算各速度.【详解】【解】(l)在0~2 s 内,滑块的受⼒分析如图甲所⽰,电场⼒F=qE11sin F mg ma θ-=解得2110/a m s =在2 ---4 s 内,滑块受⼒分析如图⼄所⽰22sin F mg ma θ+=解得2210/a m s =因此物体在0~2 s 内,以2110/a m s =的加速度加速,在2~4 s 内,2210/a m s =的加速度减速,即在2s 时,速度最⼤由1v a t =得,max 20/v m s =(2)物体在0~2s 内与在2~4s 内通过的位移相等.通过的位移max202v x t m == 在0~2 s 内,电场⼒做正功1160W F x J == - 在2~4 s 内,电场⼒做负功2220W F x J ==- 电场⼒做功W=40 J 3.在⽔平桌⾯上有⼀个边长为L 的正⽅形框架,内嵌⼀个表⾯光滑的绝缘圆盘,圆盘所在区域存在垂直圆盘向上的匀强磁场.⼀带电⼩球从圆盘上的P 点(P 为正⽅形框架对⾓线AC 与圆盘的交点)以初速度v 0⽔平射⼊磁场区,⼩球刚好以平⾏于BC 边的速度从圆盘上的Q 点离开该磁场区(图中Q 点未画出),如图甲所⽰.现撤去磁场,⼩球仍从P 点以相同的初速度v 0⽔平⼊射,为使其仍从Q 点离开,可将整个装置以CD 边为轴向上抬起⼀定⾼度,如图⼄所⽰,忽略⼩球运动过程中的空⽓阻⼒,已知重⼒加速度为g .求:(1)⼩球两次在圆盘上运动的时间之⽐;(2)框架以CD 为轴抬起后,AB 边距桌⾯的⾼度.【答案】(1)⼩球两次在圆盘上运动的时间之⽐为:π:2;(2)框架以CD 为轴抬起后,AB边距桌⾯的⾼度为222vg.【解析】【分析】【详解】(1)⼩球在磁场中做匀速圆周运动,由⼏何知识得:r2+r2=L2,解得:r=22L,⼩球在磁场中做圆周运的周期:T=2rvπ,⼩球在磁场中的运动时间:t1=14T=2Lπ,⼩球在斜⾯上做类平抛运动,⽔平⽅向:x=r=v0t2,运动时间:t2=22Lv,则:t1:t2=π:2;(2)⼩球在斜⾯上做类平抛运动,沿斜⾯⽅向做初速度为零的匀加速直线运动,位移:r=2212at,解得,加速度:a=222vL,对⼩球,由⽜顿第⼆定律得:a=mgsinmθ=g sinθ,AB 边距离桌⾯的⾼度:h =L sinθ=222v g;4.⼀电路如图所⽰,电源电动势E=28v ,内阻r=2Ω,电阻R1=4Ω,R2=8Ω,R3=4Ω,C 为平⾏板电容器,其电容C=3.0pF ,虚线到两极板距离相等,极板长L=0.20m ,两极板的间距d=1.0×10-2m .(1)闭合开关S 稳定后,求电容器所带的电荷量为多少?(2)当开关S 闭合后,有⼀未知的、待研究的带电粒⼦沿虚线⽅向以v0=2.0m/s 的初速度射⼊MN 的电场中,已知该带电粒⼦刚好从极板的右侧下边缘穿出电场,求该带电粒⼦的⽐荷q/m (不计粒⼦的重⼒,M 、N 板之间的电场看作匀强电场,g=10m/s 2)【答案】(1)114.810C -? (2)46.2510/C kg -?【解析】【分析】【详解】(1)闭合开关S 稳定后,电路的电流:12282482E I A A R R r ===++++;电容器两端电压:222816R U U IR V V ===?=;电容器带电量: 12112 3.01016 4.810R Q CU C C --==??=?(2)粒⼦在电场中做类平抛运动,则:0L v t =21122Uq d t dm= 联⽴解得46.2510/qC kg m-=?5.如图所⽰,在不考虑万有引⼒的空间⾥,有两条相互垂直的分界线MN 、PQ ,其交点为O .MN ⼀侧有电场强度为E 的匀强电场(垂直于MN ),另⼀侧有匀强磁场(垂直纸⾯向⾥).宇航员(视为质点)固定在PQ 线上距O 点为h 的A 点处,⾝边有多个质量均为m 、电量不等的带负电⼩球.他先后以相同速度v0、沿平⾏于MN ⽅向抛出各⼩球.其中第1个⼩球恰能通过MN 上的C 点第⼀次进⼊磁场,通过O 点第⼀次离开磁场,OC=2h .求:(1)第1个⼩球的带电量⼤⼩;(2)磁场的磁感强度的⼤⼩B ;(3)磁场的磁感强度是否有某值,使后⾯抛出的每个⼩球从不同位置进⼊磁场后都能回到宇航员的⼿中?如有,则磁感强度应调为多⼤.【答案】(1)20 12mvqEh=;(2)2EBv=;(3)存在,EBv'=【解析】【详解】(1)设第1球的电量为1q,研究A到C的运动:2112q E=2h v t=解得:212mvqEh=;(2)研究第1球从A到C的运动:12yq Ev hm=解得:0yv v=tan1yvvθ==,45oθ=,2v v=;研究第1球从C作圆周运动到达O的运动,设磁感应强度为B 由2q vB mR=得1mvRq B=由⼏何关系得:22sinR hθ=解得:2EBv=;(3)后⾯抛出的⼩球电量为q ,磁感应强度B '①⼩球作平抛运动过程002hmx v tv qE== 2y qE v h m= ②⼩球穿过磁场⼀次能够⾃⾏回到A ,满⾜要求:sin R x θ=,变形得:sin mvx qB θ'= 解得:0E B v '=.6.竖直平⾯内存在着如图甲所⽰管道,虚线左侧管道⽔平,虚线右侧管道是半径R=1m 的半圆形,管道截⾯是不闭合的圆,管道半圆形部分处在竖直向上的匀强电场中,电场强度E=4×103V/m .⼩球a 、b 、c 的半径略⼩于管道内径,b 、c 球⽤长2m L =的绝缘细轻杆连接,开始时c 静⽌于管道⽔平部分右端P 点处,在M 点处的a 球在⽔平推⼒F 的作⽤下由静⽌向右运动,当F 减到零时恰好与b 发⽣了弹性碰撞,F-t 的变化图像如图⼄所⽰,且满⾜224F t π+=.已知三个⼩球均可看做质点且m a =0.25kg ,m b =0.2kg ,m c =0.05kg ,⼩球c 带q=5×10-4C 的正电荷,其他⼩球不带电,不计⼀切摩擦,g =10m/s 2,求(1)⼩球a 与b 发⽣碰撞时的速度v 0; (2)⼩球c 运动到Q 点时的速度v ;(3)从⼩球c 开始运动到速度减为零的过程中,⼩球c 电势能的增加量.【答案】(1)04m/s v = (2)v =2m/s (3) 3.2J P E ?=【分析】对⼩球a ,由动量定理可得⼩球a 与b 发⽣碰撞时的速度;⼩球a 与⼩球b 、c 组成的系统发⽣弹性碰撞由动量守恒和机械能守恒可列式,⼩球c 运动到Q 点时,⼩球b 恰好运动到P 点,由动能定理可得⼩球c 运动到Q 点时的速度;由于b 、c 两球转动的⾓速度和半径都相同,故两球的线速度⼤⼩始终相等,从c 球运动到Q 点到减速到零的过程列能量守恒可得;解:(1)对⼩球a ,由动量定理可得00a I m v =-由题意可知,F-图像所围的图形为四分之⼀圆弧,⾯积为拉⼒F 的冲量,由圆⽅程可知21S m = 代⼊数据可得:04/v m s =(2)⼩球a 与⼩球b 、c 组成的系统发⽣弹性碰撞,由动量守恒可得012()a a b c m v m v m m v =++ 由机械能守恒可得222012111()222a abc m v m v m m v =++ 解得120,4/v v m s ==⼩球c 运动到Q 点时,⼩球b 恰好运动到P 点,由动能定理22211()()22c b c b c m gR qER m m v m m v -=+-+ 代⼊数据可得2/v m s =(3)由于b 、c 两球转动的⾓速度和半径都相同,故两球的线速度⼤⼩始终相等,假设当两球速度减到零时,设b 球与O 点连线与竖直⽅向的夹⾓为θ从c 球运动到Q 点到减速到零的过程列能量守恒可得:21(1cos )sin ()sin 2b c b c m gR m gR m m v qER θθθ-+++=解得sin 0.6,37θθ==?因此⼩球c 电势能的增加量:(1sin ) 3.2P E qER J θ?=+=7.如图所⽰,在竖直⾯内有两平⾏⾦属导轨AB 、CD .导轨间距为L ,电阻不计.⼀根电阻不计的⾦属棒ab 可在导轨上⽆摩擦地滑动.棒与导轨垂直,并接触良好.导轨之间有垂直纸⾯向外的匀强磁场,磁感强度为B .导轨右边与电路连接.电路中的三个定值电阻阻值分别为2R 、R 和R .在BD 间接有⼀⽔平放置的电容为C 的平⾏板电容器,板间距离为d ,电容器中质量为m 的带电微粒电量为q 。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理带电粒子在电场中的运动试题( 有答案和解析 ) 及解析一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,竖直平面内有一固定绝缘轨道ABCDP,由半径r= 0.5m 的圆弧轨道CDP和与之相切于 C 点的水平轨道ABC 组成,圆弧轨道的直径DP 与竖直半径OC 间的夹角θ=37°, A、 B 两点间的距离d= 0.2m 。

质量 m1=0.05kg 的不带电绝缘滑块静止在 A 点,质量﹣5m2= 0.1kg、电荷量q= 1× 10 C 的带正电小球静止在 B 点,小球的右侧空间存在水平向右的匀强电场。

现用大小F= 4.5N、方向水平向右的恒力推滑块,滑块到达 B 点前瞬间撤去该恒力,滑块与小球发生弹性正碰,碰后小球沿轨道运动,到达P 点时恰好和轨道无挤压且所受合力指向圆心。

小球和滑块均视为质点,碰撞过程中小球的电荷量不变,不计一切摩擦。

取 g=10m/s 2, sin37 °= 0.6,cos37°= 0.8.(1)求撤去该恒力瞬间滑块的速度大小v 以及匀强电场的电场强度大小E;(2)求小球到达 P 点时的速度大小 v 和 B、 C 两点间的距离x;P(3)若小球从 P 点飞出后落到水平轨道上的Q 点(图中未画出)后不再反弹,求Q、 C 两点间的距离 L。

【答案】(1)撤去该恒力瞬间滑块的速度大小是6m/s ,匀强电场的电场强度大小是7.5×104N/C;( 2)小球到达 P 点时的速度大小是 2.5m/s , B、C 两点间的距离是0.85m。

(3) Q、C 两点间的距离为 0.5625m 。

【解析】【详解】(1)对滑块从 A 点运动到 B 点的过程,根据动能定理有:Fd=1m1v2,2代入数据解得: v= 6m/s小球到达 P 点时,受力如图所示,由平衡条件得:qE= m2gtan θ,4解得: E=7.5 ×10N/C。

(2)小球所受重力与电场力的合力大小为:G 等=m2g①cos小球到达 P 点时,由牛顿第二定律有: G 等= m 2v 2P②r联立 ①② ,代入数据得: v P = 2.5m/s滑块与小球发生弹性正碰,设碰后滑块、小球的速度大小分别为 v 1、 v 2,以向右方向为正方向,由动量守恒定律得:m 1v = m 1v 1+m 2v 2 ③由能量守恒得:1212122 m 1v2 m 1v 12m 2v2④联立 ③④ ,代入数据得: v 1=﹣ 2m/s ( “﹣”表示 v 1 的方向水平向左), v 2=4m/s 小球碰后运动到 P 点的过程,由动能定理有:21 2 1 2qE ( x ﹣ rsin θ)﹣ m g ( r+rcos θ)= 2 m 2v P 2 m 2 v 2 ⑤代入数据得: x = 0.85m 。

(3)小球从 P 点飞出水平方向做匀减速运动,有:L ﹣ rsin θ= v P1 qE t2 ⑥cos θt ﹣ 2 m 2竖直方向做匀加速运动,有: r+rcos θ= v P sin θt+ 1 gt 2⑦2联立 ⑥⑦ 代入数据得: L =0.5625m ;2.“太空粒子探测器 ”是由加速、偏转和收集三部分组成,其原理可简化如下:如图 1 所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为 O ,外圆弧面 AB 的电势为 L(o) ,内圆弧面 CD 的电势为,足够长的收集板 MN 平行边界 ACDB , ACDB 与2MN 板的距离为 L .假设太空中漂浮着质量为 m ,电量为 q 的带正电粒子,它们能均匀地吸附到 AB 圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对 粒子的影响,不考虑过边界ACDB 的粒子再次返回.(1)求粒子到达 O 点时速度的大小;(2)如图 2 所示,在 PQ (与 ACDB 重合且足够长)和收集板MN 之间区域加一个匀强磁场,方向垂直纸面向内,则发现均匀吸附到AB 圆弧面的粒子经 O 点进入磁场后最多有2 3能打到 MN 板上,求所加磁感应强度的大小;(3)如图 3 所示,在 PQ(与 ACDB重合且足够长)和收集板MN 之间区域加一个垂直MN 的匀强电场,电场强度的方向如图所示,大小 E ,若从 AB 圆弧面收集到的某粒子经4LO 点进入电场后到达收集板MN 离 O 点最远,求该粒子到达O 点的速度的方向和它在PQ 与 MN 间运动的时间.【答案】( 1)v 2q ;(2)B 1 m ;( 3)600 ; 2L 2mm L 2q q【解析】【分析】【详解】试题分析:解:(1)带电粒子在电场中加速时,电场力做功,得:qU 0 1 mv22U 22q vm(2)从 AB 圆弧面收集到的粒子有2能打到 MN 板上,则上端刚好能打到MN 上的粒子与3MN 相切,则入射的方向与OA 之间的夹角是60 ,在磁场中运动的轨迹如图甲,轨迹圆心角600.根据几何关系,粒子圆周运动的半径:R 2L由洛伦兹力提供向心力得:qBv mv2联合解得: BR 1 mL 2q(3)如图粒子在电场中运动的轨迹与MN 相切时,切点到O 点的距离最远,这是一个类平抛运动的逆过程.建立如图坐标 .L1 qE t 22 mt2mL 2L2mqE qv xEq t 2qEL q mm 2m若速度与 x 轴方向的夹角为角cosv x cos 1 600v 23. 在如图甲所示的直角坐标系中,两平行极板 MN 垂直于 y 轴, N 板在 x 轴上且其左端与坐标原点 O 重合,极板长度l=0.08m ,板间距离 d=0.09m ,两板间加上如图乙所示的周期性变化电压,两板间电场可看作匀强电场.在y 轴上 (0, d/2)处有一粒子源,垂直于y 轴连续不断向 x 轴正方向发射相同的带正电的粒子,粒子比荷为qm× 7=510C / kg ,速度为5. t=0 时刻射入板间的粒子恰好经 N 板右边缘打在 x 轴上 .不计粒子重力及粒子v =8 × 10m/s 间的相互作用,求 :(1)电压 U 0 的大小;(2)若沿 x 轴水平放置一荧光屏,要使粒子全部打在荧光屏上,求荧光屏的最小长度; (3)若在第四象限加一个与x 轴相切的圆形匀强磁场,半径为r=0.03m ,切点 A 的坐标为(0.12m , 0),磁场的磁感应强度大小B= 2T ,方向垂直于坐标平面向里.求粒子出磁场后3与 x 轴交点坐标的范围.【答案】 (1) U0 2.16 104 V (2)x 0.04m (3) x0.1425m 【解析】【分析】【详解】(1)对于 t=0 时刻射入极板间的粒子:l v0T T 1 10 7 sy1 1 a(T )22 2v y aT2y 2 v y T2dy1 y22Eq maU 0Ed解得: U 0 2.16 104 V(2) t nT T时刻射出的粒子打在x 轴上水平位移最大:x A v0 3T 2 2所放荧光屏的最小长度x x A l 即:x 0.04m(3)不同时刻射出极板的粒子沿垂直于极板方向的速度均为v y.速度偏转角的正切值均为:tan vy37o v0o v 0cos37v 1 106 m/s即:所有的粒子射出极板时速度的大小和方向均相同.v2qvB mRR r0.03m由分析得,如图所示,所有粒子在磁场中运动后发生磁聚焦由磁场中的一点 B 离开磁场 .由几何关系,恰好经N 板右边缘的粒子经x 轴后沿磁场圆半径方向射入磁场,一定沿磁场x 轴射出点的横坐标:R圆半径方向射出磁场;从x C x Atan53x C 0.1425m .由几何关系,过 A 点的粒子经 x 轴后进入磁场由 B 点沿 x 轴正向运动 .综上所述,粒子经过磁场后第二次打在x 轴上的范围为:x0.1425m4.平面直角坐标系的第一象限和第四象限内均存在垂直纸面向里的匀强磁场,磁感应强度大小分别为2B 和 B( B 的大小未知),第二象限和第三象限内存在沿﹣y 方向的匀强电场, x 轴上有一点P,其坐标为( L, 0)。

现使一个电量大小为q、质量为 m 的带正电粒子从坐标(﹣ 2a, a)处以沿 +x 方向的初速度v0出发,该粒子恰好能经原点进入y 轴右侧并在随后经过了点P,不计粒子的重力。

(1)求粒子经过原点时的速度;(2)求磁感应强度 B 的所有可能取值(3)求粒子从出发直至到达 P 点经历时间的所有可能取值。

【答案】(1)粒子经过原点时的速度大小为 2 v0,方向:与x轴正方向夹45°斜向下;(2)磁感应强度 B 的所有可能取值: B nmv0n= 1、 2、 3;qL(3)粒子从出发直至到达2a m 3 m P 点经历时间的所有可能取值:t k (k 1)v0 2qB 4qBk = 1、 2、 3 或t2a n m n 3 m n =1、 2、 3 。

v 0 2qB4qB【解析】 【详解】(1)粒子在电场中做类平抛运动,水平方向: 2a =v 0t ,竖直方向: avy t,2v y =1, θ= 45°,解得: v y =v 0 ,tan θ=v 0粒子穿过 O 点时的速度: vv 02 v 22v 0 ;(2)粒子在第四象限内做匀速圆周运动,洛伦兹力提供向心力,由牛顿第二定律得:qvBm v 2 ,r粒子能过 P 点,由几何知识得: L = nrcos45° n = 1、 2、 3 ,解得: B nmv 0 n = 1 、 2、3 ;qL(3)设粒子在第二象限运动时间为t 1,则: t 1=2a;v 0T 12 mm 粒子在第四、第一象限内做圆周运动的周期:, T 2qB ,qB粒子在下方磁场区域的运动轨迹为 1/4 圆弧,在上方磁场区域的运动轨迹为3/4 圆弧,若粒子经下方磁场直接到达P 点,则粒子在磁场中的运动时间:t 2 1 1= 4T ,若粒子经过下方磁场与上方磁场到达P 点,粒子在磁场中的运动时间:t 2 = 1 1 3 24T + 4T ,若粒子两次经过下方磁场一次经过上方磁场到达P 点: t 2= 2× 1 1 3 24 T + 4 T ,若粒子两次经过下方磁场、两次经过上方磁场到达 P 点: t 2 = 2× 1 3T 1+2×T 2,44则 t 2k m 3 mk1 232qB ( k 1)= 、 、4qB或 t 2n m n 3 mn = 1、2、 32qB4qB粒子从出发到 P 点经过的时间: t = t 1+t 2,解得: t2a k m (k 1) 3m k = 1、 2、 3v 0 2qB4qB或 t2a n m n 3 mn =1、 2、 3 ;v 0 2qB4qB5. 长为 L 的平行板电容器沿水平方向放置,其极板间的距离为 d ,电势差为 U,有方向垂 直纸面向里的磁感应强度大小为 B 的匀强磁场.荧光屏 MN 与电场方向平行,且到匀强 电、磁场右侧边界的距离为x ,电容器左侧中间有发射质量为m 带+ q 的粒子源,如图甲所示.假设 a 、 b 、 c 三个粒子以大小不等的初速度垂直于电、磁场水平射入场中,其中 a粒子沿直线运动到荧光屏上的O 点; b 粒子在电、磁场中向上偏转;c 粒子在电、磁场中 向下偏转.现将磁场向右平移与电场恰好分开,如图乙所示.此时,a 、b 、c 粒子在原来位置上以各自的原速度水平射入电场,结果 a 粒子仍恰好打在荧光屏上的O 点; b 、 c 中有一个粒子也能打到荧光屏,且距 O 点下方最远;还有一个粒子在场中运动时间最长,且打到电容器极板的中点.求:(1)a 粒子在电、磁场分开后,再次打到荧光屏 O 点时的动能;(2)b , c 粒子中打到荧光屏上的点与O 点间的距离 (用 x 、 L 、 d 表示 );(3)b , c 中打到电容器极板中点的那个粒子先、后在电场中,电场力做功之比.L 2 B 4d 2 q 2 m 2U2d (x 1) (3) W 1Uqy 14【答案】 (1) E(2) y= d = k a2mB 2 d 2L 2W 2 Uq y 2 5d【解析】 【详解】据题意分析可作出abc 三个粒子运动的示意图,如图所示.(1)从图中可见电、磁场分开后, a 粒子经三个阶段:第一,在电场中做类平抛运动;第二,在磁场中做匀速圆周运动;第三,出磁场后做匀速直线运动到达O 点,运动轨迹如图中Ⅰ 所示.Uq Bqv ,Uv,BdL LBdt ,v Uy a 1 Uq t2 L2 B2qd ,2 dm 2mUUqy a E k a 1 m( U )2d 2 BdEk a L2 B4d 2q2 m2U 2 2mB 2 d 2(2)从图中可见 c 粒子经两个阶段打到荧光屏上.第一,在电场中做类平抛运动;第二,离开电场后做匀速直线运动打到荧光屏上,运动轨迹如图中Ⅱ所示.设 c 粒子打到荧光屏上的点到O 点的距离为y,根据平抛运动规律和特点及几何关系可得1 d2=y,1 L x L22x 1 y d( )L 2(3) 依题意可知粒子先后在电场中运动的时间比为t 1=2t 2 如图中 Ⅲ 的粒子轨迹,设粒子先、后在电场中发生的侧移为y 1, y 2y 11 Uq2v yUq ·t 1 ,t 12 md1mdy 2v y 1t21 Uq2 · t 2 ,2 mdy 2 5qU t 12 ,8mdy 1 = 4 , y 2 5W 1 = Uqy 1=4d W 2 Uq5y 2d6. 如图所示,在 xOy 平面的第一象限有一匀强磁场,方向垂直于纸面向外;在第四象限有一匀强电场,方向平行于y 轴向下.一电子以速度电场,经过 x 轴上 M 点进入磁场区域,又恰能从 v 0 从 yy 轴上的轴上的 P 点垂直于 y 轴向右飞入Q 点垂直于 y 轴向左飞出磁场已知 P 点坐标为(0,- L), M点的坐标为( 2 3L , 0).求3(1)电子飞出磁场时的速度大小v(2)电子在磁场中运动的时间t4 L 【答案】( 1) v2v 0 ;( 2) t 29v 0【解析】【详解】(1)轨迹如图所示,设电子从电场进入磁场时速度方向与x 轴夹角为,(1)在电场中 x 轴方向:23L v0t1,y轴方向: Lv y, tanv y3t1v03 2得60o, v v0 2v0cos(2)在磁场中,r 2 3L 4 Lsin 3磁场中的偏转角度为2 r3 4 L t29v0v 2 37.如图所示,充电后的平行板电容器水平放置,电容为C,极板间距离为d,上极板正中有一小孔。

相关文档
最新文档