【数学】2016学年天津市红桥区八年级下学期期中数学试卷带解析答案PDF

合集下载

天津初二初中数学期中考试带答案解析

天津初二初中数学期中考试带答案解析

天津初二初中数学期中考试班级:___________ 姓名:___________ 分数:___________一、单选题1.要使式子有意义,则x 的取值范围是( )A .x >1B .x >-1C .x≥1D .x≥-12.下列根式中是最简根式的是( ) A .B .C .D .3.一直角三角形的两直角边长为12和16,则斜边长为( ) A .12 B .16 C .18D .204.如图,在▱ABCD 中,已知AD =5 cm ,AB =3 cm ,AE 平分∠BAD 交BC 边于点E ,则EC 等于( )A .1 cmB .2 cmC .3 cmD .4 cm5.把-a 根号外的因式移到根号内的结果是( )A .B .C .-D .-6.下列计算错误的是( ) A .×= 7B .÷=2C .+=8D .3-=37.如图,已知四边形ABCD 是平行四边形,下列结论中不正确的是( )A .当AB=BC 时,它是菱形B .当AC ⊥BD 时,它是菱形C .当∠ABC=90°时,它是矩形D .当AC=BD 时,它是正方形8.如图所示,A(-,0),B(0,1)分别为x 轴,y 轴上的点,△ABC 为等边三角形,点P(3,a)在第一象限内,且满足2S △ABP =S △ABC ,则a 的值为( )A .B .C .D .2二、填空题1.已知(x -y +3)2+=0,则x +y =____________.2.如图,在矩形ABCD 中,AB =8,BC =10,E 是AB 上一点,将矩形ABCD 沿CE 折叠后,点B 落在AD 边的点F 上,则DF 的长为____________.3.如图,已知在Rt △ABC 中,∠ACB =90°,AB =4,分别以AC ,BC 为直径作半圆,面积分别记为S 1,S 2,则S 1+S 2等于____________.4.如图所示,直线a 经过正方形ABCD 的顶点A ,分别过顶点B ,D 作DE ⊥a 于点E ,BF ⊥a 于点F ,若DE =4,BF =3,则EF 的长为____________.5.如图,在图1中,A 1,B 1,C 1分别是△ABC 的边BC ,CA ,AB 的中点,在图2中,A 2,B 2,C 2分别是△A 1B 1C 1的边B 1C 1,C 1A 1,A 1B 1的中点,…,按此规律,则第n 个图形中平行四边形的个数共有______个.三、解答题1.已知x =2-,则代数式(7+4)x 2+(2+)x +的值是____________. 2.计算: (1)2+3--; (2)-÷2+(3-)(1+).3.先化简,再求值:÷(2x —)其中,x=+1.4.已知:a.b.c 满足,求:(1)a,b,c 的值;(2)试问以a,b,c 为边能否构成三角形?若能构成三角形,求出三角形的周长;若不能构成三角形,请说明理由.5.小薇将一副三角尺如图所示摆放在一起,发现只要知道其中一边的长就可以求出其他各边的长,若已知CD=2,求AC 的长.6.如图,铁路上A ,B 两点相距25 km ,C ,D 为两村庄,DA ⊥AB 于点A ,CB ⊥AB 于点B ,已知DA =15 km ,CB =10 km ,现在要在铁路AB 上建一个土特产品收购站E ,使得C ,D 两村到E 站的距离相等,则E 站应建在离A 站多少km 处?7.如图,E ,F ,G ,H 分别是边AB ,BC ,CD ,DA 的中点. (1)判断四边形EFGH 的形状,并证明你的结论;(2)当BD,AC满足什么条件时,四边形EFGH是正方形.(不要求证明)8.如图,在△ABC中,D是BC边的中点,E、F分别在AD及其延长线上,CE∥BF,连接BE、CF.(1)求证:△BDF≌△CDE;(2)若AB=AC,求证:四边形BFCE是菱形.9.如图,将矩形ABCD沿BD对折,点A落在E处,BE与CD相交于F,若AD=3,BD=6.(1)求证:△EDF≌△CBF;(2)求∠EBC.10.如图所示,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点.(1)在图(1)中以格点为顶点画一个面积为10的正方形;(2)在图(2)中以格点为顶点画一个三角形,使三角形三边长分别为2, , ;(3)如图(3)所示,点A,B,C是小正方形的顶点,求∠ABC的度数.天津初二初中数学期中考试答案及解析一、单选题1.要使式子有意义,则x的取值范围是()A.x>1B.x>-1C.x≥1D.x≥-1【答案】C【解析】,故选C.2.下列根式中是最简根式的是()A.B.C.D.【答案】B【解析】A. ,故不是最简二次根式;B. 不能化简,故是最简二次根式;C. ,故不是最简二次根式;D. ,故不是最简二次根式;故选B.3.一直角三角形的两直角边长为12和16,则斜边长为()A.12B.16C.18D.20【答案】D【解析】由勾股定理可得:斜边=,故选D.4.如图,在▱ABCD中,已知AD=5 cm,AB=3 cm,AE平分∠BAD交BC边于点E,则EC等于()A.1 cm B.2 cm C.3 cm D.4 cm【答案】B【解析】根据角平分线的性质可得AB=BE=3cm,则EC=BC-BE=5-3=2cm.【考点】角平分线的性质.5.把-a根号外的因式移到根号内的结果是( )A.B.C.-D.-【答案】C【解析】首先根据题意得出a的取值范围,然后再根据二次根式的化简法则进行化简.根据题意可得:a>0,则原式=-a·=-a·=-.【考点】二次根式的化简6.下列计算错误的是()A.×= 7B.÷=2C.+=8D.3-=3【答案】D【解析】D. 3-=2 ,故选D.7.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形【答案】D【解析】A. 根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC时,它是菱形,故A选项正确;B. ∵四边形ABCD 是平行四边形,∴BO=OD,∵AC ⊥BD,∴AB²=BO²+AO²,AD²=DO²+AO²,∴AB=AD ,∴四边形ABCD 是菱形,故B 选项正确;C. 有一个角是直角的平行四边形是矩形,故C 选项正确;D. 根据对角线相等的平行四边形是矩形可知当AC=BD 时,它是矩形,不是正方形,故D 选项错误; 综上所述,符合题意是D 选项; 故选:D.8.如图所示,A(-,0),B(0,1)分别为x 轴,y 轴上的点,△ABC 为等边三角形,点P(3,a)在第一象限内,且满足2S △ABP =S △ABC ,则a 的值为( )A .B .C .D .2【答案】C【解析】2S △ABP =S △ABC=S △ABP =,故选C.二、填空题1.已知(x -y +3)2+=0,则x +y =____________.【答案】1【解析】由题意得:2.如图,在矩形ABCD 中,AB =8,BC =10,E 是AB 上一点,将矩形ABCD 沿CE 折叠后,点B 落在AD 边的点F 上,则DF 的长为____________.【答案】6.【解析】根据矩形的性质得出CD=AB=8,∠D=90°,根据折叠性质得出CF=BC=10,根据勾股定理求出即可: ∵四边形ABCD 是矩形,∴AB=DC=8,∠D=90°.∵将矩形ABCD 沿CE 折叠后,点B 落在AD 边的F 点上, ∴CF=BC=10.在Rt △CDF 中,由勾股定理得:DF=. 【考点】1.翻折变换(折叠问题);2.矩形的性质;3.勾股定理.3.如图,已知在Rt △ABC 中,∠ACB =90°,AB =4,分别以AC ,BC 为直径作半圆,面积分别记为S 1,S 2,则S 1+S 2等于____________.【答案】【解析】根据圆的面积计算公式及勾股定理可得.4.如图所示,直线a 经过正方形ABCD 的顶点A ,分别过顶点B ,D 作DE ⊥a 于点E ,BF ⊥a 于点F ,若DE =4,BF =3,则EF 的长为____________.【答案】7【解析】因为ABCD 是正方形,所以AB=AD ,∠B=∠A=90°,则有∠ABF=∠DAE ,又因为DE ⊥a 、BF ⊥a ,根据AAS 易证△AFB ≌△AED ,所以AF=DE=4,BF=AE=3,则EF=AF+AE=4+3=7. 【考点】正方形的性质5.如图,在图1中,A 1,B 1,C 1分别是△ABC 的边BC ,CA ,AB 的中点,在图2中,A 2,B 2,C 2分别是△A 1B 1C 1的边B 1C 1,C 1A 1,A 1B 1的中点,…,按此规律,则第n 个图形中平行四边形的个数共有______个.【答案】3n 【解析】略因为每次增加一个三角形,就增加3个平行四边形,那么n 次后,就有3n 个平行四边形了三、解答题1.已知x =2-,则代数式(7+4)x 2+(2+)x +的值是____________. 【答案】2+【解析】先把已知条件两边平方,再代入代数式求值即可. 解:x 2=(2﹣)2=7﹣4,原式=(7+4)(7﹣4)+(2+)(2﹣)+ =49﹣48+1+ =2+.2.计算: (1)2+3--; (2)-÷2+(3-)(1+).【答案】(1)(2)【解析】.(1)原式=4+2--=2. (2)原式=4-+3+--1=4-+2.3.先化简,再求值:÷(2x —)其中,x=+1.【答案】【解析】÷(2x —)=把x=+1代入【考点】整式运算点评:本题难度较低,主要考查学生对整式运算知识点的掌握。

2015-2016年天津市红桥区八年级(下)期中数学试卷(解析版)

2015-2016年天津市红桥区八年级(下)期中数学试卷(解析版)

A.2
B.
C.5
D.2
二、填空题:本大题共 6 个小题,每小题 3 分,共 18 分 11. (3 分)若式子 12. (3 分)计算( 在实数范围内有意义,则 a 的取值范围是 ﹣ )÷ 的值是 . .
13. (3 分)10 名射击运动员第一轮比赛的成绩如表所示: 环数 人数 7 3 8 2 9 3 10 2 (环)
2. (3 分)下列各式中一定成立的是( A. =﹣3 B. + =
3. (3 分)等腰三角形的腰长为 10,底长为 12,则其底边上的高为( A.13 B.8 C.25 D.64 )
4. (3 分)下列四组线段中,能组成直角三角形的是( A.a=2,b=2,c=3 C.a=4,b=5,c=6
B.a=2,b=3,c=4 D.a=5,b=12,c=13
7. (3 分)某射击队从甲、乙、丙、丁四位选手中选拔一人参加市级比赛,在选 拔赛中, 每人射击 10 次, 计算他们成绩的平均数 (环) 分别是 8.2, 8.0, 8.2, 8.0,方差分别为 2.0,1.8,1.5,1.6,则最合适的人选是( A.甲 B.乙 C.丙 )
D.丁
8. (3 分)如图,▱ABCD 中,E,F 是对角线 BD 上的两点,如果添加一个条件, 使△ABE≌△CDF,则添加的条件不能为( )
18. (8 分)计算下列各式. (Ⅰ) ( (Ⅱ) (a ﹣ + ) (4 + )÷ )﹣ . ;
19. (8 分)在▱ABCD 中,点 E,F 分别在 AB,CD 上,∠ADE=∠CBF. (Ⅰ)求证:AE=CF; (Ⅱ)若 DF=BF,求证:EF⊥BD.
第 3 页(共 17 页)
20. (8 分) 如图, 在正方形 ABCD 中, E 为 BC 的中点, F 是 CD 上一点, 且∠AEF=90°, 求证:CF= AB.

天津初二初中数学期中考试带答案解析

天津初二初中数学期中考试带答案解析

天津初二初中数学期中考试班级:___________ 姓名:___________ 分数:___________一、选择题1.下列图案中既是中心对称图形,又是轴对称图形的是()A.B.C.D.2.下列说法:①能够完全重合的图形叫做全等形;②全等三角形的对应边相等、对应角相等;③全等三角形的周长相等、面积相等;④所有的等边三角形都全等;⑤面积相等的三角形全等.其中正确的说法有()A.5个B.4个C.3个D.2个3.在△ABC内一点P满足PA=PB=PC,则点P一定是△ABC()A.三条角平分线的交点B.三边垂直平分线的交点C.三条高的交点D.三条中线的交点4.等腰三角形的一个角是80°,则它的顶角的度数是()A.30°B.80°或20°C.80°或50°D.20°5.如图,把△ABC沿AD折叠,使点C落在AB上点E处,那么折痕AD是△ABC的()A.角平分线B.中线C.高线D.角平分线6.如图,∠CBD、∠ADE为△ABD的两个外角,∠CBD=70°,∠ADE=149°,则∠A的度数是()A.28° B.31° C.39° D.42°7.如图是由线段AB,CD,DF,BF,CA组成的平面图形,∠D=28°,则∠A+∠B+∠C+∠F的度数为()A.62°B.152°C.208°D.236°8.如图,∠x的两条边被一直线所截,用含α和β的式子表示∠x为()A.α﹣βB.β﹣αC.180°﹣α+βD.180°﹣α﹣β9.如图,△ABD≌△ACE,∠AEC=110°,则∠DAE的度数为()A.30°B.40°C.50°D.60°10.如图所示,在△ABC中,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则三个结论:①AS=AR;②QP∥AR;③△BPR≌△QPS中()A.全部正确B.仅①和③正确C.仅①正确D.仅①和②正确11.如图,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则()A.∠1=∠EFD B.BE="EC"C.BF="DF=CD"D.FD∥BC12.为了加快灾后重建的步伐,我市某镇要在三条公路围成的一块平地上修建一个砂石场,如图,要使这个砂石场到三条公路的距离相等,则可供选择的地址()A.仅有一处B.有四处C.有七处D.有无数处二、填空题1.如图,△ABC 中,∠A=40°,∠B=70°,CE 平分∠ACB ,CD ⊥AB 于D ,DF ⊥CE ,则∠CDF= 度. 2.如图,若△ABC ≌△ADE ,且∠B=65°,则∠BAD= .3.直角三角形的两个锐角的平分线所交成的角的度数是 .4.如图:(1)在△ABC 中,BC 边上的高是 ;(2)在△AEC 中,AE 边上的高是 ;(3)在△FEC 中,EC 边上的高是 ;(4)若AB=CD=2cm ,AE=3cm ,则S △ACE = ,CE= ,BE= .5.如图,OP 平分∠AOB ,PD ⊥OA 于点D ,点Q 是射线OB 上一个动点,若PD=2,则PQ 的取值范围为 .6.如图,AD 是△ABC 的角平分线,DF ⊥AB ,垂足为F ,DE=DG ,△ADG 和△AED 的面积分别为64和42,则△EDF 的面积为 .7.如图,△ABC 中,点A 的坐标为(0,1),点C 的坐标为(4,3),如果要使△ABD 与△ABC 全等,那么点D 的坐标是 .8.如图,已知AB=A 1B ,A 1C=A 1A 2,A 2D=A 2A 3,A 3E=A 3A 4,…,以此类推,若∠B=20°,则∠A= .三、解答题1.如图,∠AOB=30°,OA 表示草地边,OB 表示河边,点P 表示家且在∠AOB 内.某人要从家里出发先到草地边给马喂草,然后到河边喂水,最后回到家里.(1)请用尺规在图上画出此人行走的最短路线图(保留作图痕迹,不写作法和理由).(2)若OP=30米,求此人行走的最短路线的长度.2.如图,∠ABC=38°,∠ACB=100°,AD 平分∠BAC ,AE 是BC 边上的高,求∠DAE 的度数.3.已知:如图,在四边形ABCD 中,AD ∥BC ,∠BDC=∠BCD ,点E 是线段BD 上一点,且BE=AD .证明:△ADB ≌△EBC .4.如图,△ABC 中,AD 平分∠CAB ,BD ⊥AD ,DE ∥AC .求证:AE=BE .5.如图,OC 是∠AOB 平分线,点P 为OC 上一点,若∠PDO+∠PEO=180°,试判断PD 和PE 大小关系,并说明理由.6.已知△ABC 中,∠A=50°.(1)如图①,∠ABC 、∠ACB 的角平分线交于点O ,则∠BOC= °. (2)如图②,∠ABC 、∠ACB 的三等分线分别对应交于O 1、O 2,则∠BO 2C= °.(3)如图③,∠ABC 、∠ACB 的n 等分线分别对应交于O 1、O 2…O n ﹣1(内部有n ﹣1个点),求∠BO n ﹣1C (用n 的代数式表示).(4)如图③,已知∠ABC 、∠ACB 的n 等分线分别对应交于O 1、O 2…O n ﹣1,若∠BO n ﹣1C=60°,求n 的值.7.已知△ABC 中,∠A=90°,AB=AC ,D 为BC 的中点.(1)如图,若E 、F 分别是AB 、AC 上的点,且BE=AF .求证:△DEF 为等腰直角三角形;(2)若E ,F 分别为AB ,CA 延长线上的点,仍有BE=AF ,其他条件不变,那么△DEF 是否仍为等腰直角三角形?证明你的结论.8.如图,△ABC和△ADE都是等边三角形,BD与CE相交于O.(1)求证:BD=CE;(2)OA平分∠BOE吗?说明理由.天津初二初中数学期中考试答案及解析一、选择题1.下列图案中既是中心对称图形,又是轴对称图形的是()A.B.C.D.【答案】A【解析】根据轴对称图形与中心对称图形的概念求解.A、是轴对称图形,也是中心对称图形,故此选项正确;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,因为找不到任何这样的一条直线,沿这条直线对折后它的两部分能够重合;即不满足轴对称图形的定义,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误.【考点】中心对称图形;轴对称图形.2.下列说法:①能够完全重合的图形叫做全等形;②全等三角形的对应边相等、对应角相等;③全等三角形的周长相等、面积相等;④所有的等边三角形都全等;⑤面积相等的三角形全等.其中正确的说法有()A.5个B.4个C.3个D.2个【答案】C【解析】理清全等形以及全等三角形的判定及性质,即可熟练求解此题.①中能够完全重合的图形叫做全等形,正确;②中全等三角形的对应边相等、对应角相等,正确;③全等三角形的周长相等、面积相等,也正确;④中所有的等边三角形角都是60°,但由于边不相等,所以不能说其全等,④错误;⑤中面积相等的三角形并不一定是全等三角形,⑤中说法错误;【考点】全等三角形的判定与性质.3.在△ABC内一点P满足PA=PB=PC,则点P一定是△ABC()A.三条角平分线的交点B.三边垂直平分线的交点C.三条高的交点D.三条中线的交点【答案】B【解析】由在△ABC内一点P满足PA=PB=PC,可判定点P在AB,BC,AC的垂直平分线上,则可求得答案.∵在△ABC内一点P满足PA=PB=PC,∴点P一定是△ABC三边垂直平分线的交点.【考点】线段垂直平分线的性质.4.等腰三角形的一个角是80°,则它的顶角的度数是()A.30°B.80°或20°C.80°或50°D.20°【答案】B【解析】分80°角是顶角与底角两种情况讨论求解.①80°角是顶角时,三角形的顶角为80°,②80°角是底角时,顶角为180°﹣80°×2=20°,综上所述,该等腰三角形顶角的度数为80°或20°.【考点】等腰三角形的性质.5.如图,把△ABC沿AD折叠,使点C落在AB上点E处,那么折痕AD是△ABC的()A.角平分线B.中线C.高线D.角平分线【答案】A【解析】根据折叠的性质即可得到结论.∵把△ABC沿AD折叠得到△ADE,∴△ACD≌△AED,∴∠CAD=∠EAD,∴AD是△ABC的角平分线【考点】翻折变换(折叠问题).6.如图,∠CBD、∠ADE为△ABD的两个外角,∠CBD=70°,∠ADE=149°,则∠A的度数是()A.28° B.31° C.39° D.42°【答案】C【解析】根据平角的定义求出∠ABD,根据三角形的外角性质得出∠ADE=∠ABD+∠A,代入即可求出答案.∵∠ABD+∠CBD=180°,∠CBD=70°,∴∠ABD=110°,∵∠ADE=∠ABD+∠A,∠ADE=149°,∴∠A=39°.【考点】(1)、三角形的外角性质;(2)、对顶角、邻补角.7.如图是由线段AB,CD,DF,BF,CA组成的平面图形,∠D=28°,则∠A+∠B+∠C+∠F的度数为()A.62°B.152°C.208°D.236°【答案】C【解析】首先求出∠F+∠B=∠D+∠EGD,然后证明出∠C+∠A+∠F+∠B﹣∠D=180°,最后结合题干∠D=28°求出∠A+∠B+∠C+∠F的度数.∵如图可知∠BED=∠F+∠B,∠CGE=∠C+∠A,又∵∠BED=∠D+∠EGD,∴∠F+∠B=∠D+∠EGD,又∵∠CGE+∠EGD=180°,∴∠C+∠A+∠F+∠B﹣∠D=180°,又∵∠D=28°,∴∠A+∠B+∠C+∠F=180°+28°=208°,【考点】三角形内角和定理.8.如图,∠x的两条边被一直线所截,用含α和β的式子表示∠x为()A.α﹣βB.β﹣αC.180°﹣α+βD.180°﹣α﹣β【答案】B【解析】根据β为角x和α的对顶角所在的三角形的外角,再根据三角形一个外角等于和它不相邻的两个内角的和解答.如图,∵α=∠1,∴β=x+∠1 整理得:x=β﹣α.【考点】三角形的外角性质.9.如图,△ABD≌△ACE,∠AEC=110°,则∠DAE的度数为()A.30°B.40°C.50°D.60°【答案】B【解析】根据邻补角的定义求出∠AED,再根据全等三角形对应边相等可得AD=AE,然后利用等腰三角形的两底角相等列式计算即可得解.∵∠AEC=110°,∴∠AED=180°﹣∠AEC=180°﹣110°=70°,∵△ABD≌△ACE,∴AD=AE,∴∠AED=∠ADE,∴∠DAE=180°﹣2×70°=180°﹣140°=40°.【考点】全等三角形的性质.10.如图所示,在△ABC中,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则三个结论:①AS=AR;②QP∥AR;③△BPR≌△QPS中()A.全部正确B.仅①和③正确C.仅①正确D.仅①和②正确【答案】D【解析】易证RT△APR≌RT△APS,可得AS=AR,∠BAP=∠1,再根据AQ=PQ,可得∠1=∠2,即可求得QP∥AB,即可解题.如图,在RT△APR和RT△APS中,,∴RT△APR≌RT△APS(HL),∴∠AR=AS,①正确;∠BAP=∠1,∵AQ=PQ,∴∠1=∠2,∴∠BAP=∠2,∴QP∥AB,②正确,∵△BRP和△QSP中,只有一个条件PR=PS,再没有其余条件可以证明△BRP≌△QSP,故③错误.【考点】(1)、全等三角形的判定与性质;(2)、等腰三角形的性质.11.如图,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则()A.∠1=∠EFD B.BE="EC"C.BF="DF=CD"D.FD∥BC【答案】D【解析】根据题中的条件可证明出△ADF≌△ABF,由全等三角形的性质可的∠ADF=∠ABF,再由条件证明出∠ABF=∠C,由角的传递性可得∠ADF=∠C,根据平行线的判定定理可证出FD∥BC.在△AFD和△AFB中,∵AF=AF,∠1=∠2,AD=AB,∴△ADF≌△ABF,∴∠ADF=∠ABF.∵AB⊥BC,BE⊥AC,即:∠BAC+∠C=∠BAC+∠ABF=90°,∴∠ABF=∠C,即:∠ADF=∠ABF=∠C,∴FD∥BC【考点】全等三角形的判定与性质.12.为了加快灾后重建的步伐,我市某镇要在三条公路围成的一块平地上修建一个砂石场,如图,要使这个砂石场到三条公路的距离相等,则可供选择的地址()A.仅有一处B.有四处C.有七处D.有无数处【答案】A【解析】利用角平分线性质定理:角的平分线上的点,到这个角的两边的距离相等.又要求砂石场建在三条公路围成的一块平地上,所以是三个内角平分线的交点一个,外角的平分线的交点三个.满足条件的点有一个,三角形内部:三个内角平分线交点一个.三角形外部,外角的角平分线三个(不合题意).【考点】角平分线的性质.二、填空题1.如图,△ABC中,∠A=40°,∠B=70°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF= 度.【答案】75【解析】首先根据三角形的内角和定理求得∠ACB的度数,以及∠BCD的度数,根据角平分线的定义求得∠BCE 的度数,则∠ECD可以求解,然后在△CDF中,利用内角和定理即可求得∠CDF的度数.∵∠A=40°,∠B=70°,∴∠ACB=180°﹣∠A﹣∠B=70°.∵CE平分∠ACB,∴∠ACE=∠ACB=35°.∵CD⊥AB于D,∴∠CDA=90°,∠ACD=180°﹣∠A﹣∠CDA=50°.∴∠ECD=∠ACD﹣∠ACE=15°.∵DF⊥CE,∴∠CFD=90°,∴∠CDF=180°﹣∠CFD﹣∠DCF=75°.【考点】三角形内角和定理.2.如图,若△ABC≌△ADE,且∠B=65°,则∠BAD= .【答案】50°【解析】由全等三角形的性质可知AB=AD,再根据等腰三角形的性质和三角形内角和定理即可得到答案.∵△ABC≌△ADE,∴AB=AD,∴∠B=∠ADB,∵∠B=65°,∴∠BAD=180°﹣2×65°=50°【考点】全等三角形的性质.3.直角三角形的两个锐角的平分线所交成的角的度数是.【答案】45°或135°【解析】根据直角三角形的两个锐角互余、角平分线的定义求较小的夹角,由邻补角定义即可求得较大夹角的度数.直角三角形的两个锐角的平分线所交成的锐角是×90°=45°,则直角三角形的两个锐角的平分线所交成的钝角是180°﹣45°=135°.【考点】三角形内角和定理.4.如图:(1)在△ABC中,BC边上的高是;(2)在△AEC中,AE边上的高是;(3)在△FEC中,EC边上的高是;(4)若AB=CD=2cm,AE=3cm,则S= ,CE= ,BE= .△ACE【答案】AB,CD,EF,3cm2,3cm, cm.【解析】根据三角形高的定义和三角形的面积公式即可得到结论.如图:(1)、在△ABC中,BC边上的高是AB; (2)、在△AEC中,AE边上的高是CD;=AE•CD=3×2=3cm2,(3)、在△FEC中,EC边上的高是EF; (4)、∵CD⊥AE,∴S△ACE在△ABE与△CDE中,,∴△ABE≌△CDE,∴CE=AE=3,∴BE==,【考点】(1)、三角形的面积;(2)、三角形的角平分线、中线和高.5.如图,OP平分∠AOB,PD⊥OA于点D,点Q是射线OB上一个动点,若PD=2,则PQ的取值范围为.【答案】PQ≥2【解析】根据垂线段最短可得PQ⊥OB时,PQ最短,再根据角平分线上的点到角的两边距离相等可得PQ=PD.由垂线段最短可得PQ⊥OB时,PQ最短,∵OP平分∠AOB,PD⊥OA,∴PQ=PD=2, 即线段PQ 的最小值是2. ∴PQ 的取值范围为PQ≥2【考点】角平分线的性质.6.如图,AD 是△ABC 的角平分线,DF ⊥AB ,垂足为F ,DE=DG ,△ADG 和△AED 的面积分别为64和42,则△EDF 的面积为 . 【答案】9【解析】过点D 作DH ⊥AC 于H ,根据角平分线上的点到角的两边距离相等可得DF=DH ,再利用“HL”证明Rt △ADF 和Rt △ADH 全等,Rt △DEF 和Rt △DGH 全等,然后根据全等三角形的面积相等列方程求解即可. 如图,过点D 作DH ⊥AC 于H , ∵AD 是△ABC 的角平分线,DF ⊥AB , ∴DF=DH ,在Rt △ADF 和Rt △ADH 中,, ∴Rt △ADF ≌Rt △ADH (HL ), ∴S Rt △ADF =S Rt △ADH , 在Rt △DEF 和Rt △DGH 中,, ∴Rt △DEF ≌Rt △DGH (HL ), ∴S Rt △DEF =S Rt △DGH , ∵△ADG 和△AED 的面积分别为64和42, ∴42+S Rt △DEF =64﹣S Rt △DGH , ∴S Rt △DEF =9.【考点】角平分线的性质.7.如图,△ABC 中,点A 的坐标为(0,1),点C 的坐标为(4,3),如果要使△ABD 与△ABC 全等,那么点D 的坐标是 .【答案】(4,﹣1)或(﹣1,3)或(﹣1,﹣1).【解析】因为△ABD 与△ABC 有一条公共边AB ,故本题应从点D 在AB 的上边、点D 在AB 的下边两种情况入手进行讨论,计算即可得出答案.△ABD 与△ABC 有一条公共边AB ,当点D 在AB 的下边时,点D 有两种情况:①坐标是(4,﹣1);②坐标为(﹣1,﹣1);当点D 在AB 的上边时,坐标为(﹣1,3);点D 的坐标是(4,﹣1)或(﹣1,3)或(﹣1,﹣1).【考点】(1)、坐标与图形性质;(2)、全等三角形的性质.8.如图,已知AB=A 1B ,A 1C=A 1A 2,A 2D=A 2A 3,A 3E=A 3A 4,…,以此类推,若∠B=20°,则∠A= . 【答案】 【解析】先根据等腰三角形的性质求出∠BA 1A 的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠CA 2A 1,∠DA 3A 2及∠EA 4A 3的度数,找出规律即可得出∠A n 的度数.∵在△ABA 1中,∠B=20°,AB=A 1B , ∴∠BA 1A==80°, ∵A 1A 2=A 1C ,∠BA 1A 是△A 1A 2C 的外角, ∴∠CA2A1==40°;同理可得, ∠DA 3A 2=20°,∠EA 4A 3=10°, ∴∠An=. 【考点】等腰三角形的性质.三、解答题1.如图,∠AOB=30°,OA 表示草地边,OB 表示河边,点P 表示家且在∠AOB 内.某人要从家里出发先到草地边给马喂草,然后到河边喂水,最后回到家里.(1)请用尺规在图上画出此人行走的最短路线图(保留作图痕迹,不写作法和理由).(2)若OP=30米,求此人行走的最短路线的长度.【答案】(1)、答案见解析;(2)、30m.【解析】(1)、利用轴对称最短路线求法得出P 点关于OA ,OB 的对称点,进而得出行走路线;(2)、利用等边三角形的判定方法以及其性质得出此人行走的最短路线长为P′P″进而得出答案.试题解析:(1)、如图所示:此人行走的最短路线为:PC→CD→DP ;(2)、连接OP′,OP″, 由题意可得:OP′=OP″,∠P′OP″=60°,则△P′OP″是等边三角形, ∵OP=30米, ∴PC+CD+DP=P′P″=30(m ),【考点】(1)、作图—应用与设计作图;(2)、轴对称-最短路线问题.2.如图,∠ABC=38°,∠ACB=100°,AD 平分∠BAC ,AE 是BC 边上的高,求∠DAE 的度数.【答案】31°【解析】先根据三角形内角和定理求出∠BAC 的度数,由角平分线的定义得出∠BAD 的度数,根据三角形外角的性质求出∠ADE 的度数,由两角互补的性质即可得出结论.试题解析:∵∠ABC=38°,∠ACB=100°(己知) ∴∠BAC=180°﹣38°﹣100°=42°(三角形内角和180°).又∵AD 平分∠BAC (己知), ∴∠BAD=21°, ∴∠ADE=∠ABC+∠BAD=59°(三角形的外角性质). 又∵AE 是BC 边上的高,即∠E=90°, ∴∠DAE=90°﹣59°=31°.【考点】(1)、三角形内角和定理;(2)、三角形的外角性质.3.已知:如图,在四边形ABCD 中,AD ∥BC ,∠BDC=∠BCD ,点E 是线段BD 上一点,且BE=AD .证明:△ADB ≌△EBC .【答案】证明过程见解析【解析】利用平行线的性质得出∠ADB=∠CBE ,进而利用等腰三角形的性质得出BD=BC ,再利用SAS 得出△ADB ≌△EBC .试题解析:∵AD ∥BC , ∴∠ADB=∠CBE , ∵∠BDC=∠BCD , ∴BD=BC ,在△ABD 和△ECB 中,, ∴△ABD ≌△ECB (SAS ).【考点】全等三角形的判定.4.如图,△ABC 中,AD 平分∠CAB ,BD ⊥AD ,DE ∥AC .求证:AE=BE .【答案】证明过程见解析【解析】由AD 平分∠CAB ,DE ∥AC 可证得∠DAE=∠ADE ,得到AE=DE ,再结合BD ⊥AD ,可得∠EDB=∠EBD ,得到ED=EB ,从而可得出结论.试题解析:∵DE ∥AC , ∴∠CAD=∠ADE , ∵AD 平分∠CAB , ∴∠CAD=∠EAD ,∴∠EAD=∠ADE , ∴AE=ED , ∵BD ⊥AD , ∴∠ADE+∠EDB=90°,∠DAB+∠ABD=90°,又∠ADE=∠DAB , ∴∠EDB=∠ABD , ∴DE=BE , ∴AE=BE .【考点】等腰三角形的判定与性质.5.如图,OC 是∠AOB 平分线,点P 为OC 上一点,若∠PDO+∠PEO=180°,试判断PD 和PE 大小关系,并说明理由.【答案】PD=PE ;证明过程见解析【解析】先过点P 作PM ⊥OA ,PN ⊥OE ,证明△PMD ≌△PNE ,根据全等三角形的性质即可解决问题. 试题解析:PD=PE . 理由:如图,过点P 作PM ⊥OA ,PN ⊥OE ; ∵OC 平分∠AOB , ∴PM=PN ; ∵∠OEP+∠ODP=180°,∠ODP+∠PDM=180°, ∴∠OEP=∠PDM , 在△PMD 与△PNE 中,, ∴△PMD ≌△PNE (AAS ), ∴PD=PE .【考点】全等三角形的判定与性质.6.已知△ABC 中,∠A=50°.(1)如图①,∠ABC 、∠ACB 的角平分线交于点O ,则∠BOC= °. (2)如图②,∠ABC 、∠ACB 的三等分线分别对应交于O 1、O 2,则∠BO 2C= °.(3)如图③,∠ABC 、∠ACB 的n 等分线分别对应交于O 1、O 2…O n ﹣1(内部有n ﹣1个点),求∠BO n ﹣1C(用n 的代数式表示).(4)如图③,已知∠ABC 、∠ACB 的n 等分线分别对应交于O 1、O 2…O n ﹣1,若∠BO n ﹣1C=60°,求n 的值.【答案】(1)、115°;(2)、;(3)、﹣×130°;(4)、n=13.【解析】(1)、△ABC 中,已知∠A 即可得到∠ABC 与∠ACB 的和,而BO 、CO 是∠ABC ,∠ACB 的两条角平分线,即可求得∠OBC 与∠OCB 的度数,根据三角形的内角和定理即可求解;(2)、先根据三角形内角和定理求得∠ABC+∠ACB ,再根据三等分线的定义求得∠O 2BC+∠O 2CB ,即可求出∠BO 2C ;(3)、先根据三角形内角和定理求得∠ABC+∠ACB ,再根据n 等分线的定义求得∠O n ﹣1BC+∠O n ﹣1CB ,即可求出∠BO n ﹣1C .(4)、依据(3)的结论即可求出n 的值.试题解析:(1)、∵△ABC 中,∠ABC+∠ACB=180°﹣∠A=180°﹣50°=130°,BO 、CO 是∠ABC ,∠ACB 的两条角平分线. ∴∠OBC=∠ABC ,∠OCB=∠ACB , ∴∠OBC+∠OCB=(∠ABC+∠ACB )=65°, ∴△OBC 中,∠BOC=180°﹣(∠OBC+∠OCB )=115° (2)、∵点O 2是∠ABC 与∠ACB 的三等分线的交点, ∴∠O 2BC+∠O2CB=(∠ABC+∠ACB )=×130°=()°,∴∠BO2C=180°﹣()°=()°. (3)、∵点O n ﹣1是∠ABC 与∠ACB 的n 等分线的交点,∴∠O n ﹣1BC+∠O n ﹣1CB=(∠ABC+∠ACB )=×130°, ∴∠BOn ﹣1C=180°﹣×130°;(4)、∵∠BO n ﹣1C=60°, ∴180°﹣×130°=60°,解得n=13.【考点】三角形内角和定理.7.已知△ABC 中,∠A=90°,AB=AC ,D 为BC 的中点.(1)如图,若E 、F 分别是AB 、AC 上的点,且BE=AF .求证:△DEF 为等腰直角三角形;(2)若E ,F 分别为AB ,CA 延长线上的点,仍有BE=AF ,其他条件不变,那么△DEF 是否仍为等腰直角三角形?证明你的结论.【答案】(1)证明过程见解析;(2)证明过程见解析【解析】(1)、题要通过构建全等三角形来求解.连接AD ,可通过证△ADF 和△BDE 全等来求本题的结论.(2)、与(1)题的思路和解法一样.试题解析:(1)、连接AD ∵AB=AC ,∠A=90°,D 为BC 中点 ∴AD==BD=CD且AD 平分∠BAC ∴∠BAD=∠CAD=45° 在△BDE 和△ADF 中,,∴△BDE ≌△ADF (SAS ) ∴DE=DF ,∠BDE=∠ADF ∵∠BDE+∠ADE=90° ∴∠ADF+∠ADE=90° 即:∠EDF=90° ∴△EDF 为等腰直角三角形.(2)、仍为等腰直角三角形. 理由:∵△AFD ≌△BED ∴DF=DE ,∠ADF=∠BDE∵∠ADF+∠FDB=90° ∴∠BDE+∠FDB=90° 即:∠EDF=90° ∴△EDF 为等腰直角三角形.【考点】(1)、等腰直角三角形;(2)、直角三角形斜边上的中线.8.如图,△ABC和△ADE都是等边三角形,BD与CE相交于O.(1)求证:BD=CE;(2)OA平分∠BOE吗?说明理由.【答案】(1)、证明过程见解析;(2)、证明过程见解析【解析】(1)、根据等边三角形的性质得到AB=AC,AD=AE,∠BAC=∠DAE=60°,则易得∠BAD=∠CAE,根据“SAS”有△BAD≌△CAE,利用全等三角形的性质即可得到结论;(2)、作AF⊥BD,AG⊥CE,垂足分别是F、G,由△BAD≌△CAE,根据全等三角形的性质有AF=AG,再根据角平分线的判定定理即可得到OA平分∠BOE.试题解析:(1)、∵△ABC和△ADE都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE;(2)、OA平分∠BOE.理由如下:作AF⊥BD,AG⊥CE,垂足分别是F、G,如图,∵AF、AG恰好是两个全等三角形△BAD与△CAE对应边上的高,∴AF=AG,∴OA平分∠BOE.【考点】(1)、等边三角形的性质;(2)、全等三角形的判定与性质;(3)、角平分线的性质.。

天津市红桥区八年级数学下期中复习试卷(1)有答案

天津市红桥区八年级数学下期中复习试卷(1)有答案

一、选择题:1.函数y=A.x≥1八年级数学下册期中复习试卷中,自变量x的取值范围是()B.x>1C.x≥1且x≠2D.x≠22.如图,E为ABCD外一点,且EB⊥BC,ED⊥CD,若∠E=65°,则∠A的度数为()A.65°B.100°C.115°D.135°3.点A(-3,-4)到原点的距离为()A.3B.4C.5D.74.下列计算中:①==,②=,③=+=,④A.2=,完全正确的个数是()B.1C.4D.35.下列命题中的假命题是()A.一组邻边相等的平行四边形是菱形B.一组邻边相等的矩形是正方形C.一组对边平行且相等的四边形是平行四边形D.一组对边相等且有一个角是直角的四边形是矩形6.如图,菱形ABCD中,E、F分别是AB、AC的中点,若EF=3,则菱形AB CD的周长是()A.12B.16C.20D.247.在一个直角三角形中,若斜边的长是13,一条直角边的长为12,那么这个直角三角形的面积是() A.30B.40C.50D.608.如图,在由单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是().A.CD、EF、GH B.AB、EF、GH C.AB、CD、GH D.AB、CD、EF9.如图,将宽为1cm的长方形纸条沿BC折叠,使∠CAB=45°,则折叠后重叠部分的面积为()A.cm2B.cm2C.cm2D.cm210.如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,论:①△APD≌△AEB;②EB⊥ED;.下列结③点B到直线AE的距离为;④A.①②③.其中正确结论的序号是()B.①②④C.①③④D.②③④二、填空题:11.若12.将12x1有意义,则x的取值范围是因式内移的结果为_______.13.如图,在菱形ABCD中,AC、BD相交于点O,E为AB的中点,若OE=2,则菱形ABCD的周长是.14.如图,在□A BCD中,对角线AC,BD相交于点O,P是BC边中点,AP交BD于点Q.则的值为________.15.如图,在矩形ABCD中,DE平分∠ADC交BC于点E,EF⊥AD交AD于点F,若EF=3,AE=5,则AD=.16.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为.三、解答题:17.计算:;18.计算:19.如图,已知AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF.求证:四边形BECF是平行四边形.20.已知在△ABC中,a=m2-n2,b=2mn,c=m2+n2,其中m,n是正整数,且m>n.试判断△:ABC是否为直角三角形?21.如图,在矩形ABCD中,AB=4cm,BC=8cm,点P从点D出发向点A运动,运动到点A即停止;同时点Q从点B出发向点C运动,运动到点C即停止.点P、Q的速度的速度都是1cm/s,连结PQ,AQ,CP,设点P、Q运动的时间为t(s).(1)当t为何值时,四边形ABQP是矩形?(2)当t为何值时,四边形AQCP是菱形?(3)分别求出(2)中菱形AQCP的周长和面积.22.如图,已知正方形ABCD,E为形内一点,Rt△ABE,∠BAE=ɑ,(00<ɑ<450△.)将ABE沿AE折叠,得到△AEF,延长AF与边CD交于G点,已知正方形ABCD的边长为4.(1)如图1,若ɑ=300,求CG的长度;(2)如图2,若G点为CD中点,求AE长度;(3)如图3,当F点落在AC上,求AE的长度.参考答案1.C.2.C3.C4.B5.D6.D.7.A8.B9.A.10.B11.答案为:x>0.5;12.略13.答案为:16.14.答案为:15.答案为:716.答案为:617.解:原式=1;18.解:原式=;19.证明:∵BE⊥AD,CF⊥AD,∴∠AEB=∠DFC=90°,∵AB∥CD,∴∠A=∠D,在△AEB与△DFC中,,∴△AEB≌△DFC(ASA),∴BE=CF.∵BE⊥AD,CF⊥AD,∴BE∥CF.∴四边形BECF是平行四边形.20.∵a=m2-n2,b=2mn,c=m2+n2,∴a2+b2=(m2-n2)2+4m2n2=m4+n4-2m2n2+4m2n2=m4+n4+2m2n2=(m2+n2)2=c2.∴△ABC是为直角三角形.21.解:(1)当四边形ABQP是矩形时,BQ=AP,即:t=8﹣t,解得t=4.答:当t=4时,四边形ABQP是矩形;(2)设t秒后,四边形AQCP是菱形当AQ=CQ,即=8﹣t时,四边形AQCP为菱形.解得:t=3.答:当t=3时,四边形AQCP是菱形;(3)当t=3时,CQ=5,则周长为:4CQ=20cm,面积为:4×8﹣2××3×4=20(cm2).22.解:(1);(2);(3).。

天津市红桥区八年级数学下期中复习试题(有答案)

天津市红桥区八年级数学下期中复习试题(有答案)

八年级数学下册期中复习题一、选择题:1.下列各式中属于最简二次根式的是()A.B.C.D.2.式子3x在实数范围内有意义,则x的取值范围是()A.x>3B.x≥3C.x<3D.x≤33.在△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,下列结论中不正确的是()A.如果∠A﹣∠B=∠△C,那么ABC是直角三角形B.如果a2=b﹣2c△2,那么ABC是直角三角形且∠C=90°C.如果∠A:∠B:∠C=1:3:△2,那么ABC是直角三角形D.如果a2:b2:c2=9:16:25,那么△ABC是直角三角形4.如图△在ABC中,AB=5,BC=6,AC=7,点D,E,F分别是△ABC三边的中点,则△DEF周长为()A.9B.10C.11D.125.若要在(5﹣)□的“”中填上一个运算符号□使计算结果最大,则这个运算符号应该填()A.+B.﹣C.×D.÷6.如图所示,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120°的菱形,剪口与第二次折痕所成角的度数应为()A.15°或30°B.30°或45°C.45°或60°D.30°或60°7.如果梯子的底端离建筑物5m,那么长为13m梯子可以达到该建筑物的高度是()A.12m B.14m C.15m D.13m8.将一张宽为6的长方形纸片(足够长)折叠成如图所示图形△.重叠部分是一个ABC,则三角形ABC面积的最小值是()A.9B.18C.18D.36(9.下列命题中,真命题是()A.两条对角线相等的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相垂直且相等的四边形是正方形D.两条对角线互相平分的四边形是平行四边形10.如图,在ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论:1)2∠DCF=∠BCD,(2)EF=CF;(3)S△BEC=2S△CEF;(4)∠DFE=3∠AEF.其中正确结论的个数是()A.1个B.2个C.3个D.4个二、填空题:11.计算:(﹣1)0+|﹣4|﹣=..12.若有意义,则x的取值范围是13.如图,在△R t ABC中,∠ACB=90°,点D、E、F分别是AB、AC、BC中点,若CD=5,则EF长为.14.如图,若将四根木条钉成的矩形木框变成平行四边形ABCD的形状,并使其面积为矩形面积的一半,则这个平行四边形的最大内角等于15.如图,将矩形ABCD绕点A顺时针旋转到矩形AB/C/D/的位置,旋转角为a(0°<a<90°).若∠1=112°,则∠a=度.16.已知∠AOB=30°,点P、Q分别是边OA.OB上的定点,OP=3,OQ=4,点M、N是分别是边OA.OB上的动点,则折线P﹣N﹣M﹣Q长度的最小值是.三、解答题:17.(1)计算:(2)计算:18.如图,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.19.如图,在□A BCD中,E是BC的中点,连接AE并延长交DC的延长线于点F.(1)试说明:AB=CF;(2)连接DE,若AD=2AB.试说明:DE⊥AF.20.(1)如图,纸片▱ABCD中,AD=5,S▱ABCD=15.过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE'的位置,拼成四边形AEE'D,则四边形AEE'D的形状为()A.平行四边形B.菱形C.矩形D.正方形(2)如图,在(1)中的四边形纸片AEE/D中,在EE/上取一点F,使EF=4,剪下△AEF,将它平移至△D E/F/的位置,拼成四边形AFF/D.①求证:四边形AFF'D是菱形;②求四边形AFF'D的两条对角线的长.图1图221.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转△90°,得到ABG(如图①△),求证:AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.参考答案1.A2.D.3.B.4.A5.D ;6.A7.D.8.B.9.D10.解:(1)∵F 是 AD 的中点,∴AF=FD ,∵在 ABCD 中,AD=2AB ,∴AF=FD=CD ,∴∠DFC=∠DCF ,∵AD ∥BC ,∴∠DFC=∠FCB ,∴∠DCF=∠BCF ,∴∠DCF= ∠BCD ,故正确;(2)延长 EF ,交 CD 延长线于 M ,∵四边形 ABCD 是平行四边形,∴AB ∥CD ,∴∠A=∠MDF ,∵F 为 AD 中点,∴AF=FD ,在△AEF 和△DFM 中,,∴△AEF ≌△DMF (ASA ),∴FE=MF ,∠AEF=∠M ,∵CE ⊥AB ,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF ,∴FC=FM ,故正确;(3)∵EF=FM ,∴△S EFC △=S CFM ,∵MC >BE ,∴△S BEC <△2S EFC 故 S △BEC =2S △CEF 错误;(4)设∠FEC=x ,则∠FCE=x ,∴∠DCF=∠DFC=90°﹣x ,∴∠EFC=180°﹣2x ,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x ,∵∠AEF=90°﹣x ,∴∠DFE=3∠AEF ,故正确,故选:C .11.答案为:略;12.答案为:x ≥0.5.13.答案为:514.答案为:150°15.答案为:2216.答案为:5.解:作 P 关于 OB 的对称点 P ′,作 Q 关于 OA 的对称点 Q ′,连接 P ′Q ′,即为折线 P ﹣N ﹣M ﹣Q 长度的最小值.根据轴对称的定义可知:∠NOP ′=∠AOB=30°,∠OPP ′=60°,∴△OPP ′为等边三角形,△OQQ ′为等边三角形,∴∠P ′OQ ′=90°,∴在 Rt △P ′OQ ′中,P ′Q ′=5.故答案为:5.17.解:(1)原式=0;(2)原式= 63 2 .18.19.证明:(1)∵四边形ABCD是平行四边形,∴AB∥DF,∴∠ABE=∠FCE,∵E为BC中点,∴BE=CE,在△ABE与△FCE中,,∴△ABE≌△FCE(ASA),∴AB=FC;(2)∵AD=2AB,AB=FC=CD,∴AD=DF,∵△ABE≌△FCE,∴AE=EF,∴DE⊥AF.20.解:(1)C.=15,AE⊥BC,∴AE=3.(2)①证明:∵AD=BC=5,SABCD如图,∵EF=4,∴在△R t AEF中,AF=5.∴AF=AD=5.又△AEF经平移得到△DE'F',∴AF∥DF',AF=DF',∴四边形AFF'D是平行四边形.又AF=AD,∴四边形AFF'D是菱形.②如图,连接AF',DF.在△R t DE'F中,∵E'F=E'E-EF=5-4=1,DE'=3,∴DF=10.在△R t AEF'中,∵EF'=E'E+E'F'=5+4=9,AE=3,∴AF'=310.∴四边形AFF'D的两条对角线长分别为10,310.21.(1)证明:∵△ADF绕着点A顺时针旋转△90°,得到ABG,∴AF=AG,∠FAG=90°,∵∠EAF=45°,∴∠GAE=45°,在△AGE与△AFE中,,∴△AGE≌△AFE(SAS);(2)证明:设正方形ABCD的边长为△a.将ADF绕着点A顺时针旋转△90°,得到ABG,连结GM.则△ADF≌△ABG,DF=BG.由(1)知△AEG≌△AEF,∴EG=EF.∵∠CEF=45°,∴△BME、△DNF、△CEF均为等腰直角三角形,∴CE=CF,BE=BM,NF=DF,∴a﹣BE=a﹣DF,∴BE=DF,∴BE=BM=DF=BG,∴∠BMG=45°,∴∠GME=45°+45°=90°,∴EG2=ME2+MG2,∵EG=EF,MG=BM=DF=NF,∴EF2=ME2+NF2;(3)解:EF2=2BE2+2DF2.如图所示,延长EF交AB延长线于M点,交AD延长线于N点,将△ADF绕着点A顺时针旋转△90°,得到AGH,连结HM,HE.由(1)知△AEH≌△AEF,则由勾股定理有(GH+BE)2+BG2=EH2,即(GH+BE)2+(BM﹣GM)2=EH2又∴EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BE﹣GH)2=EF2,即2(DF2+BE2)=EF2。

天津市红桥区八年级数学下学期期中试卷(含解析) 新人

天津市红桥区八年级数学下学期期中试卷(含解析) 新人

2015-2016学年天津市红桥区八年级(下)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列二次根式中最简二次根式的是()A. B. C.D.2.下列各式中一定成立的是()A. =﹣3 B. +=C. =|x| D.()2=x3.等腰三角形的腰长为10,底长为12,则其底边上的高为()A.13 B.8 C.25 D.644.下列四组线段中,能组成直角三角形的是()A.a=2,b=2,c=3 B.a=2,b=3,c=4C.a=4,b=5,c=6 D.a=5,b=12,c=135.如图,在平行四边形ABCD中,∠B=80°,AE平分∠BAD交BC于点E,CF∥AE交AD于点F,则∠1=()A.40° B.50° C.60° D.80°6.已知一组数据:1,4,x,2,5,7,若这组数据的众数为2,则这组数据的平均数、中位数分别是()A.3.5,2 B.3.5,3 C.4,3 D.3.5,47.某射击队从甲、乙、丙、丁四位选手中选拔一人参加市级比赛,在选拔赛中,每人射击10次,计算他们成绩的平均数(环)分别是8.2,8.0,8.2,8.0,方差分别为2.0,1.8,1.5,1.6,则最合适的人选是()A.甲B.乙C.丙D.丁8.如图,▱ABCD中,E,F是对角线BD上的两点,如果添加一个条件,使△ABE≌△CDF,则添加的条件不能为()A.BE=DF B.BF=DE C.AE=CF D.∠1=∠29.将矩形纸片ABCD按如图方式折叠,得到菱形AECF,若AD=,则AB的长为()A.2 B.2 C.3 D.310.如图,在边长为4的正方形ABCD中,M为边AB上的点,且AM=BM,延长MB至点E,使ME=MC,连接EC,则点M到直线CE的距离是()A.2 B.C.5 D.2二、填空题:本大题共6个小题,每小题3分,共18分11.若式子在实数范围内有意义,则a的取值范围是______.12.计算(﹣)÷的值是______.(环)14.如图,在长方形ABCD中,AB=3,AD=3,AB在数轴上,以点A为圆心,对角线AC的长为半径作弧,交数轴的正半轴于点E,则E在数轴上对应的数为______.15.在▱ABCD中,对角线AC=10,BD=8,设边AD的长度为a,则a的取值范围是______.16.如图,在▱ABCD中,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,EF=2,则AB的长为______.三、解答题:本大题共6个小题,共52分,解答应写出文字说明、证明过程或演算步骤17.化简下列各式:(Ⅰ)÷(Ⅱ)•(Ⅲ);(Ⅳ).18.计算下列各式.(Ⅰ)(﹣)(4+)﹣;(Ⅱ)(a+)÷.19.在▱ABCD中,点E,F分别在AB,CD上,∠ADE=∠CBF.(Ⅰ)求证:AE=CF;(Ⅱ)若DF=BF,求证:EF⊥BD.20.如图,在正方形ABCD中,E为BC的中点,F是CD上一点,且∠AEF=90°,求证:CF=AB.21.一批零件共有3000件,为了检查这批零件的质量,从中随机抽取一部分测量了它们的长度(单位:mm),并根据得到的数据,绘制出如下的统计图①和图②.(Ⅰ)本次随机抽取的零件的件数为______,图①中m的值为______;(Ⅱ)求本次随机抽取的零件长度的平均数、中位数和众数;(Ⅲ)根据样本数据,估计该批零件中长度为52mm的零件件数.22.在▱ABCD中,AB=5,BC=10,BC边上的高AM=4,过BC边上的动点E(不与点B,C重合)作直线AB的垂线,EF与DC的延长线相交于点G.(Ⅰ)如图①,当点E与点M重合时,求EF的长;(Ⅱ)如图②,当点E为BC的中点时,连结DE,DF,求△DEF的面积;(Ⅲ)当点E在BC上运动时,△BEF与△CEG的周长之间有何关系?请说明理由.2015-2016学年天津市红桥区八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列二次根式中最简二次根式的是()A. B. C.D.【考点】最简二次根式.【分析】根据最简二次根式是被开方数不含分母,被开方数不含开的尽的因数或因式,可得答案.【解答】解:A、被开方数不含分母,被开方数不含开的尽的因数或因式,故A正确;B、被开方数含开的尽的因数或因式,故B错误;C、被开方数含开的尽的因数或因式,故C错误;D、被开方数含分母,故D正确;故选:A.2.下列各式中一定成立的是()A. =﹣3 B. +=C. =|x| D.()2=x【考点】二次根式的混合运算.【分析】根据二次根式的性质对A、C、D进行判断;根据二次根式的加减运算对B进行判断.【解答】解:A、原式=3,所以A选项错误;B、与不能合并,所以B选项错误;C、原式=|x|,所以C选项正确;D、原式=﹣x,所以D选项错误.故选C.3.等腰三角形的腰长为10,底长为12,则其底边上的高为()A.13 B.8 C.25 D.64【考点】勾股定理;等腰三角形的性质.【分析】先作底边上的高,由等腰三角形的性质和勾股定理即可求出此高的长度.【解答】解:作底边上的高并设此高的长度为x,根据勾股定理得:62+x2=102,解得:x=8.故选B.4.下列四组线段中,能组成直角三角形的是()A.a=2,b=2,c=3 B.a=2,b=3,c=4C.a=4,b=5,c=6 D.a=5,b=12,c=13【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理对各选项进行逐一分析即可.【解答】解:A、∵22+22=8≠32,∴不能构成直角三角形,故本选项错误;B、∵22+32=13≠42,∴不能构成直角三角形,故本选项错误;C、∵42+52=41≠62,∴不能构成直角三角形,故本选项错误.D、∵52+122=169=132,∴能构成直角三角形,故本选项正确;故选D.5.如图,在平行四边形ABCD中,∠B=80°,AE平分∠BAD交BC于点E,CF∥AE交AD于点F,则∠1=()A.40° B.50° C.60° D.80°【考点】平行四边形的性质.【分析】根据平行四边形的对边平行和角平分线的定义,以及平行线的性质求∠1的度数即可.【解答】解:∵AD∥BC,∠B=80°,∴∠BAD=180°﹣∠B=100°.∵AE平分∠BAD∴∠DAE=∠BAD=50°.∴∠AEB=∠DAE=50°∵CF∥AE∴∠1=∠AEB=50°.故选B.6.已知一组数据:1,4,x,2,5,7,若这组数据的众数为2,则这组数据的平均数、中位数分别是()A.3.5,2 B.3.5,3 C.4,3 D.3.5,4【考点】众数;算术平均数;中位数.【分析】根据题目中数据和题意,可以得到x的值,从而可以得到这组数据的平均数和中位数.【解答】解:一组数据:1,4,x,2,5,7的众数为2,∴x=2,∴这组数据的平均数是:,这组数据按照从小到大排列是:1,2,2,4,5,7∴这组数据的中位数是:,故选B.7.某射击队从甲、乙、丙、丁四位选手中选拔一人参加市级比赛,在选拔赛中,每人射击10次,计算他们成绩的平均数(环)分别是8.2,8.0,8.2,8.0,方差分别为2.0,1.8,1.5,1.6,则最合适的人选是()A.甲B.乙C.丙D.丁【考点】方差;算术平均数.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵S甲2=2.0,S乙2=1.8,S丙2=1.5,S丁2=1.6,∴S甲2>S乙2>S丁2>S丙2,∵甲和丙的平均数大,∴最合适的人选是丙.故选C.8.如图,▱ABCD中,E,F是对角线BD上的两点,如果添加一个条件,使△ABE≌△CDF,则添加的条件不能为()A.BE=DF B.BF=DE C.AE=CF D.∠1=∠2【考点】全等三角形的判定;平行四边形的性质.【分析】利用平行四边形的性质以及全等三角形的判定分别得出三角形全等,再进行选择即可.【解答】解:A、当BE=FD,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(SAS),故此选项错误;C、当AE=CF无法得出△ABE≌△CDF,故此选项符合题意;B、当BF=ED,∴BE=DF,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(SAS),故此选项错误;D、当∠1=∠2,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(ASA),故此选项错误;故选C.9.将矩形纸片ABCD按如图方式折叠,得到菱形AECF,若AD=,则AB的长为()A.2 B.2 C.3 D.3【考点】翻折变换(折叠问题);菱形的性质;矩形的性质.【分析】根据题意可知,AC=2BC,∠B=90°,所以根据勾股定理可知AC2=AB2+BC2,即(2AD)2=AB2+AD2,从而可求得AB的长.【解答】解:∵AC=2BC,∠B=90°,∴AC2=AB2+BC2,∴(2AD)2=AB2+AD2,∴AB=3.故选:C.10.如图,在边长为4的正方形ABCD中,M为边AB上的点,且AM=BM,延长MB至点E,使ME=MC,连接EC,则点M到直线CE的距离是()A.2 B.C.5 D.2【考点】正方形的性质;点到直线的距离.【分析】如图,作MN⊥EC于N.首先利用勾股定理求出CM、CE,再根据ME•CB=CE•MN,即可解决问题.【解答】解:如图,作MN⊥EC于N.∵四边形ABCD是正方形,∴AB=BC=CD=AD=4,∠ABC=90°,∴AM=BM,∴AM=1,BM=3,在Rt△BCM中,CM=ME===5,∴BE=5﹣3=2,∴CE===2∵ME•CB=CE•MN,∴MN===2,故选D.二、填空题:本大题共6个小题,每小题3分,共18分11.若式子在实数范围内有意义,则a的取值范围是a<3 .【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据二次根式和分式有意义的条件可得3﹣a>0,再解不等式即可.【解答】解:由题意得:3﹣a>0,解得:a<3,故答案为:a<3.12.计算(﹣)÷的值是 1 .【考点】二次根式的混合运算.【分析】先化简二次根式,再合并同类二次根式,根据二次根式的除法进行计算即可.【解答】解:原式=(4﹣3)÷=÷=1,故答案为1.则他们本轮比赛的平均成绩是8.4 (环)【考点】加权平均数.【分析】根据表格中的中的数据,可以求出这组数据的加权平均数,从而可以解答本题.【解答】解:由表格可得,他们本轮比赛的平均成绩是: =8.4(环),故答案为:8.4.14.如图,在长方形ABCD中,AB=3,AD=3,AB在数轴上,以点A为圆心,对角线AC的长为半径作弧,交数轴的正半轴于点E,则E在数轴上对应的数为3﹣1 .【考点】实数与数轴.【分析】利用勾股定理求出AE的长,设点E在数轴上对应的数为x,则x﹣(﹣1)=AE,求出x即可.【解答】解:如图:∵四边形ABCD是长方形,∴在Rt△ABC中,AC===3,∴AE=AC=3.故:点E在数轴上对应的数为3﹣115.在▱ABCD中,对角线AC=10,BD=8,设边AD的长度为a,则a的取值范围是1<a<9 .【考点】平行四边形的性质;三角形三边关系.【分析】由在▱ABCD中,对角线AC=10,BD=8,可求得OA与OD的长,然后利用三角的三边关系,求得答案.【解答】解:如图,∵四边形ABCD是平行四边形,∴OA=AC=×10=5,OD=BD=×8=4,∴5﹣4<AD<5+4,即a的取值范围是:1<a<9.故答案为:1<a<9.16.如图,在▱ABCD中,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,EF=2,则AB的长为 4 .【考点】平行四边形的性质.【分析】由AE为角平分线,得到一对角相等,再由ABCD为平行四边形,得到AD与BE平行,利用两直线平行内错角相等得到一对角相等,等量代换及等角对等边得到AD=DF,由F为DC 中点,AB=CD,求出AD与DF的长,得出三角形ADF为等腰三角形,根据三线合一得到G为AF中点,再由三角形ADF与三角形ECF全等,得出AF=EF,求出AG,由勾股定理求出AD,即可得出AB的长.【解答】解:∵AE为∠DAB的平分线,∴∠DAE=∠BAE,∵DC∥AB∴∠BAE=∠DFA,∴∠DAE=∠DFA,∴AD=FD,又∵F为DC的中点,∴DF=CF,∴AD=DF=DC=AB,∵DG⊥AE,∴AG=FG,∵平行四边形ABCD中,∴AD∥BC,∴∠DAF=∠E,∠ADF=∠ECF,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴AF=EF=2,∴AG=,∴AD==2,∴AB=2AD=4;故答案为:4.三、解答题:本大题共6个小题,共52分,解答应写出文字说明、证明过程或演算步骤17.化简下列各式:(Ⅰ)÷(Ⅱ)•(Ⅲ);(Ⅳ).【考点】二次根式的乘除法.【分析】(Ⅰ)直接利用二次根式的除法运算法则化简求出答案;(Ⅱ)直接利用二次根式的乘法运算法则化简求出答案;(Ⅲ)直接利用二次根式的除法运算法则化简求出答案;(Ⅳ)直接利用二次根式的除法运算法则化简求出答案.【解答】解:(Ⅰ)原式===2;(Ⅱ)原式==9x;(Ⅲ)原式==3;(Ⅳ)原式===.18.计算下列各式.(Ⅰ)(﹣)(4+)﹣;(Ⅱ)(a+)÷.【考点】二次根式的混合运算.【分析】(1)先化简二次根式,再根据乘法分配律去括号,最后合并可得;(2)先化简二次根式,再合并括号内同类二次根式,最后计算除法即可得.【解答】解:(Ⅰ)原式=(﹣)(2+)﹣=2×+()2﹣2×﹣×﹣=2+3﹣4﹣﹣=﹣1;(Ⅱ)原式=(2a•+4a•)÷=6a•÷(•)=6a.19.在▱ABCD中,点E,F分别在AB,CD上,∠ADE=∠CBF.(Ⅰ)求证:AE=CF;(Ⅱ)若DF=BF,求证:EF⊥BD.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】(Ⅰ)根据全等三角形的判定定理证明△ADE≌△CBF,即可证得结论;(2)证明四边形DEBF是菱形,即可得出结论.【解答】(Ⅰ)证明:∵四边形ABCD为平行四边形,∴AD=BC,∠A=∠C,在△ADE和△CBF中,,∴△ADE≌△CBF(ASA),∴AE=CF;(Ⅱ)证明:∵AE=CF,DF=BF,∴DF=BE,∵DF∥BE,∴四边形DEBF是平行四边形,∴四边形DEBF是菱形,∴EF⊥BD.20.如图,在正方形ABCD中,E为BC的中点,F是CD上一点,且∠AEF=90°,求证:CF=AB.【考点】正方形的性质;勾股定理.【分析】设正方形ABCD的边长为2a,由E为BC中点,得到BE=CE=a,根据勾股定理得到AE2=AB2+BE2=5a2,设CF=x,则DF=2a﹣x,由∠C=∠D=90°,根据勾股定理列方程得到4a2+(2a﹣x)2=5a2+a2+x2,解得x=a,于是得到结论.【解答】证明:设正方形ABCD的边长为2a,∵E为BC中点,∴BE=CE=a,∵∠B=90°,∴AE2=AB2+BE2=5a2,设CF=x,则DF=2a﹣x,由∠C=∠D=90°,得 AF2=AD2+DF2=4a2+(2a﹣x)2,EF2=CE2+CF2=a2+x2,∵∠AEF=90°,∴AF2=AE2+EF2,即 4a2+(2a﹣x)2=5a2+a2+x2,解得x=a,∴CF=AB,21.一批零件共有3000件,为了检查这批零件的质量,从中随机抽取一部分测量了它们的长度(单位:mm),并根据得到的数据,绘制出如下的统计图①和图②.(Ⅰ)本次随机抽取的零件的件数为25 ,图①中m的值为32 ;(Ⅱ)求本次随机抽取的零件长度的平均数、中位数和众数;(Ⅲ)根据样本数据,估计该批零件中长度为52mm的零件件数.【考点】条形统计图;用样本估计总体;扇形统计图;中位数;众数.【分析】(1)根据频数除以频率,求得随机抽取的零件的件数,根据100﹣28﹣20﹣8﹣12,求得m的值即可;(2)根据平均数、中位数和众数的算法进行计算即可;(3)根据样本中长度为52mm的零件所占的百分比,计算3000件零件中长度为52mm的零件数即可.【解答】解:(Ⅰ)5÷20%=25,m=100﹣28﹣20﹣8﹣12=32.故答案为:25,32;(Ⅱ)观察条形统计图,可得=(51×2+52×5+53×7+54×8+55×3)÷25=53.2,∴这组数据的平均数是53.2.∵将这组数据按照由小到大的顺序排列,其中处于中间位置的数是53,∴这组数据的中位数是53.∵在这组数据中,54出现了8次,出现的次数最多,∴这组数据的众数是54;(Ⅲ)∵在25件零件中,长度为52mm的件数比例为20%,∴由样本数据,估计该批零件中长度为52mm的件数比例约为20%,∴在3000件零件中,长度为52mm的零件有3000×20%=600.22.在▱ABCD中,AB=5,BC=10,BC边上的高AM=4,过BC边上的动点E(不与点B,C重合)作直线AB的垂线,EF与DC的延长线相交于点G.(Ⅰ)如图①,当点E与点M重合时,求EF的长;(Ⅱ)如图②,当点E为BC的中点时,连结DE,DF,求△DEF的面积;(Ⅲ)当点E在BC上运动时,△BEF与△CEG的周长之间有何关系?请说明理由.【考点】四边形综合题.【分析】(I)先由勾股定理求BM的长,再利用面积法求EF;(II)要想求△DEF的面积,需要求底边EF和高DG的长,先证明△ABM≌△EBF,得EF=AM=4,再证明FG⊥DG,证明△BEF≌△CEG,得CG=3,求出DG=8,代入面积公式可以求△DEF的面积;(III)过点C作CH⊥AB,垂足为H,利用勾股定理求BH的长,写出△BEF与△CEG的周长之和,发现:EF+EG=FG=8,BF+CG=BH=6,从而求出面积和为24,是定值.【解答】解:(Ⅰ)如图①,∵AB=5,AM=4,AM⊥BC,∴BM===3,∵S△ABM=AM•BM=AB•EF,∴EF===.(Ⅱ)如图②,∵E为BC中点,BC=10,∴BE=CE=5,∴AB=BE=5,∵EF⊥AB,AM⊥BC,∴∠AMB=∠EFB=90°,∵∠B=∠B,∴△ABM≌△EBF,∴EF=AM=4,BF=BM=3,∵四边形ABCD为平行四边形,∴AB∥DG,∴FG⊥DG,∠B=∠ECG,∵∠BFE=∠G=90°,∴△BEF≌△CEG,∴CG=BF=3,EF=EG=4,∴DG=CD+CG=5+3=8,∴S△DEF=EF•DG=×4×8=16;(Ⅲ)图③,过点C作CH⊥AB,垂足为H,∴HC⊥DG,∴四边形HFGC为矩形,∴HC=FG=8,CG=FH,∴BH===6,∵△BFE和△CEG的周长之和为:BE+EF+BF+EC+CG+EG,=BC+FG+BH,=10+8+6,=24,∴△BEE与△CEG的周长之和为定值24.。

天津初二初中数学期中考试带答案解析

天津初二初中数学期中考试带答案解析

天津初二初中数学期中考试班级:___________ 姓名:___________ 分数:___________一、单选题1.下列长度的三根小木棒能构成三角形的是( )A.2 cm,3 cm,5 cm B.7cm,4 cm,2 cmC.3 cm,4 cm,8 cm D.3 cm,3 cm,4 cm2.下列图形具有稳定性的是A.正五边形B.三角形C.梯形D.正方形3.六边形的内角和为()A.360°B.540°C.720°D.180°4.平面直角坐标系中,点P(-2,3)关于x轴对称的点的坐标为( )A.(-2,-3)B.(2,-3)C.(-3,2)D.(3,-2)5.下列命题中正确个数为()①全等三角形对应边相等;②三个角对应相等的两个三角形全等③三边对应相等的两个三角形全等;④有两边对应相等的两个三角形全等.A.4个B.3个C.2个D.1个6.如下图,点O是∠ABC和∠ACB的平分线的交点,∠A=80°,则∠BOC等于()A.120°B.130°C.135°D.无法确定二、选择题1.两个直角三角形全等的条件是()A.一锐角对应相等B.两锐角对应相等C.一条边对应相等D.两条边对应相等2.下列图形中对称轴最多的是()A.等腰三角形B.正方形C.圆D.线段3.已知A、B两点的坐标分别是(-2,3)和(2,3),则下面四个结论:①A、B关于x轴对称;②A、B关于y 轴对称;③A、B之间的距离为4,其中正确的有()A.1个 B.2个 C.3个 D.0个4.如图:∠EAF=15°,AB=BC=CD=DE=EF,则∠DEF等于()A.90°B.75°C.70°D.60°5.如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是()A.∠M=∠N B.AM=CN C.AB=CD D.AM∥CN6.如图:DE是△ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC的周长为()厘米.A.16B.18C.26D.287.如图,OP平分∠AOB,PC⊥OA于C,PD⊥OB于D,则下列结论中错误的是()A.PC=PD B.OC=OD C.∠CPO=∠DPO D.OC=PC8.如图所示,在△ABC中,AC⊥BC,AE为∠BAC的平分线,DE⊥AB,AB=7cm,AC=3cm,则BD等于()A. 1cm B. 2cm C. 3cm D. 4cm9.如图所示,是四边形ABCD的对称轴,AD∥BC,现给出下列结论:①AB∥CD;②AB=BC;③AB⊥BC;④AO="OC" 其中正确的结论有().A.1个B.2个C.3个D.4个三、填空题1.一个多边形的内角和等于外角和的2倍,则这个多边形的边数是___________。

天津初二初中数学期中考试带答案解析

天津初二初中数学期中考试带答案解析

天津初二初中数学期中考试班级:___________ 姓名:___________ 分数:___________一、选择题1.在四边形ABCD中,O是对角线的交点,能判定这个四边形是正方形的是()A.AC=BD,AB∥CD,AB=CDB.AD∥BC,∠A=∠CC.AO=BO=CO=DO,AC⊥BDD.AO=CO,BO=DO,AB=BC2.下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是( )A.3、4、5B.6、8、10C.、2、D.5、12、133.等边三角形的边长为2,则该三角形的面积为()A.B.C.D.3二、解答题1.如图,已知在△ABC中,CD⊥AB于D,AC=20,BC=15,DB=9.(1)求DC的长;(2)求AB的长.2.如图,△ABC中,AB=AC,AD是∠BAC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.3.计算:(1);(2)4.已知x=,y=,求的值.5.如图,在▱ABCD中,已知点E、F分别在边BC和AD上,且BE=DF.求证:AE=CF.三、单选题1.下列计算错误的是()A.B.C.D.2.如图,将一个边长为4和8的长方形纸片ABCD折叠,使C点与A点重合,则折痕EF的长是()A.B.C.D.3.下列二次根式中属于最简二次根式的是()A.B.C.D.4.若=x﹣5,则x的取值范围是()A.x<5B.x≤5C.x≥5D.x>55.若与|x-y-3|互为相反数,则x+y的值为( )A.3B.9C.12D.276.已知a、b、c是三角形的三边长,如果满足(a-5)2+|b-12|+c2-26c+169=0,则三角形的形状是()A:底与边不相等的等腰三角形 B:等边三角形C:钝角三角形 D:直角三角形7.已知平行四边形ABCD中,∠B=4∠A,则∠C=()A.18°B.36°C.72°D.144°8.如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点的最短路程是()A.20B.25C.20D.25四、填空题1.代数式有意义的条件是_______.2.已知n是正整数,是整数,则n的最小值是__.3.的整数部分是x,小数部分是y,则y(x+)的值为________ .4.如果直角三角形的三边长为10、6、x,则最短边上的高为_________.5.如图,过矩形ABCD的对角线BD上一点K分别作矩形两边的平行线MN与PQ,那么图中矩形AMKP的面积S 1与矩形QCNK 的面积S 2的大小关系是S 1________S 2(填“>”或“<”或“=”).6.如图,是由两个正方形组成的长方形花坛ABCD ,小明从顶点A 沿着花坛间小路直到走到长边中点O ,再从中点O 走到正方形OCDF 的中心O 1,再从中心O 1走到正方形O 1GFH 的中心O 2,又从中心O 2走到正方形O 2IHJ 的中心O 3,再从中心O 3到正方形O 3KJP 的中心O 4,一共走了31m ,则长方形花坛ABCD 的周长是_______.天津初二初中数学期中考试答案及解析一、选择题1.在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的是( )A .AC=BD ,AB ∥CD ,AB=CDB .AD ∥BC ,∠A=∠CC .AO=BO=CO=DO ,AC ⊥BDD .AO=CO ,BO=DO ,AB=BC【答案】C .【解析】A .不能,只能判定为矩形;B .不能,只能判定为平行四边形;C .能;D .不能,只能判定为菱形.故选C .【考点】正方形的判定.2.下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是( )A .3、4、5B .6、8、10C .、2、D .5、12、13【答案】C【解析】将选项逐一验证,,因此不能构成直角三角形的是C .3.等边三角形的边长为2,则该三角形的面积为( ) A . B . C . D .3【答案】C .【解析】 如图,作CD ⊥AB ,则CD 是等边△ABC 底边AB 上的高,根据等腰三角形的三线合一,可得AD=1,所以,在直角△ADC 中,利用勾股定理,可求出CD=,代入面积计算公式,∴S=×2×=;故选C.△ABC【考点】等边三角形的性质.二、解答题1.如图,已知在△ABC中,CD⊥AB于D,AC=20,BC=15,DB=9.(1)求DC的长;(2)求AB的长.【答案】(1)12;(2)25.【解析】(1)由题意可知三角形CDB是直角三角形,利用已知数据和勾股定理直接可求出DC的长;(2)由(1)的数据和勾股定理求出AD的长,进而求出AB的长.试题解析:(1)∵CD⊥AB于D,且BC=15,BD=9,AC=20∴∠CDA=∠CDB=90°在Rt△CDB中,CD2+BD2=CB2,∴CD2+92=152∴CD=12;.(2)在Rt△CDA中,CD2+AD2=AC2∴122+AD2=202∴AD="16" .∴AB=AD+BD=16+9=25.【考点】勾股定理.2.如图,△ABC中,AB=AC,AD是∠BAC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.【答案】(1)证明见解析;(2)当∠BAC=90°时,矩形AEBD是正方形.理由见解析.【解析】(1)利用平行四边形的判定首先得出四边形AEBD是平行四边形,进而由等腰三角形的性质得出∠ADB=90°,即可得出答案;(2)利用等腰直角三角形的性质得出AD=BD=CD,进而利用正方形的判定得出即可.(1)证明:∵点O为AB的中点,连接DO并延长到点E,使OE=OD,∴四边形AEBD是平行四边形,∵AB=AC,AD是∠BAC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴平行四边形AEBD是矩形;(2)当∠BAC=90°时,理由:∵∠BAC=90°,AB=AC,AD是∠BAC的角平分线,∴AD=BD=CD,∵由(1)得四边形AEBD是矩形,∴矩形AEBD是正方形.3.计算:(1);(2)【答案】(1)原式=;(2)原式=﹣.【解析】本题考查的是二次根式的混合运算.试题解析:(1)原式=4+3﹣2+4=7;(2)原式=(8)=﹣.4.已知x=,y=,求的值.【答案】4【解析】本题先把x化简,在把代数式因式分解,然后整体代入即可.试题解析:∵x==2﹣,y=,∴x2y+xy2=xy(x+y)=(2﹣)(2+)×4="4" .5.如图,在▱ABCD中,已知点E、F分别在边BC和AD上,且BE=DF.求证:AE=CF.【答案】证明见解析【解析】本题利用平行四边形的性质得出AD=BC,AD∥BC,再结合已知条件,判断出四边形AECF是平行四边形,得出结论即可.试题解析:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴AF∥EC,∵BE=DF,∴AF=EC,∴四边形AECF是平行四边形,∴AE=CF.点睛:本题的关键是充分利用平行四边形的性质和平行四边形的判定定理,也可以利用三角形全等得出结论.三、单选题1.下列计算错误的是()A.B.C.D.【答案】B【解析】选项A,根据二次根式的乘法法则可得,选项正确;选项B,不是同类二次根式,不能够合并,选项错误;选项C,根据二次根式的除法法则可得,选项正确;选项D,,选项正确,故选B.2.如图,将一个边长为4和8的长方形纸片ABCD折叠,使C点与A点重合,则折痕EF的长是()A.B.C.D.【答案】D【解析】根据折叠的性质知,四边形AFEB与四边形FDCE全等,有EC=AF=AE,由勾股定理得,AB2+BE2=AE2即42+(8﹣AE)2=AE2,解得,AE=AF=5,BE=3,作EG⊥AF于点G,则四边形AGEB是矩形,有AG=3,GF=2,GE=AB=4,由勾股定理得EF=.故选D.3.下列二次根式中属于最简二次根式的是()A.B.C.D.【答案】C【解析】分析:本题考查的是最简二次根式的判断问题.解析:A. =2, B. = , C. 不能化简, D. =2.故选C.4.若=x﹣5,则x的取值范围是()A.x<5B.x≤5C.x≥5D.x>5【答案】C【解析】分析:本题考查的是的运用.解析:∵=x﹣5,∴故选C.5.若与|x-y-3|互为相反数,则x+y的值为( )A.3B.9C.12D.27【答案】D【解析】由题意可得,∴x-2y+9=0,x-y-3=0,∴x=15,y=12.∴x+y=27,故选D.6.已知a、b、c是三角形的三边长,如果满足(a-5)2+|b-12|+c2-26c+169=0,则三角形的形状是()A:底与边不相等的等腰三角形 B:等边三角形C:钝角三角形 D:直角三角形【答案】D【解析】分析:本题考查的是非负数的意义,得出a、b、c的值,利用勾股定理的逆定理得出三角形的形状.解析:∵(a-5)2+|b-12|+c2-26c+169=0,∴a=5,b=12,c=13,∵∴三角形是直角三角形.故选D.7.已知平行四边形ABCD中,∠B=4∠A,则∠C=()A.18°B.36°C.72°D.144°【答案】B【解析】试题解析:如图:∵四边形ABCD是平行四边形,∴∠C=∠A,BC∥AD,∴∠A+∠B=180°,∵∠B=4∠A,∴∠A=36°,∴∠C=∠A=36°,故选B.【考点】1.平行四边形的性质;2.平行线的性质.8.如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点的最短路程是()A.20B.25C.20D.25【答案】D【解析】分析:本题考查的是利用勾股定理求线段的长度.解析:根据题意,得出如下图形,最短路径为AB的长,AC=20,BC=15,∴AB=25故选D.点睛:本题的关键是变曲为直,画出矩形,利用勾股定理得出对角线的长度.四、填空题1.代数式有意义的条件是_______.【答案】x>-2【解析】分析:本题考查的是代数式有意义的条件,分母不为零,被开方数大于等于零.解析:根据题意得,故答案为x>-2.2.已知n是正整数,是整数,则n的最小值是__.【答案】3【解析】分析:本题考查的是二次根式的化简.解析:∵,∵n是正整数,是整数,∴n的最小值是3.故答案为3.3.的整数部分是x,小数部分是y,则y(x+)的值为________ .【答案】1【解析】分析:本题考查的是无理数的整数部分和小数部分的相关计算,小数部分要用原数减去整数部分.解析:∵的整数部分是3,∴小数部分是:-3,∴x=3,y=-3,∴y(x+)= . 故答案为1.4.如果直角三角形的三边长为10、6、x ,则最短边上的高为_________.【答案】8或10【解析】分析:本题考查的是利用勾股定理求出第三边,根据等积法求出最短边上的高.解析:当10为斜边时,另一条直角边为8,所以最短边上的高为8;当10为直角边时,最短的直角边为6,则最短边上的高是10.故答案为8或10.5.如图,过矩形ABCD 的对角线BD 上一点K 分别作矩形两边的平行线MN 与PQ ,那么图中矩形AMKP 的面积S 1与矩形QCNK 的面积S 2的大小关系是S 1________S 2(填“>”或“<”或“=”).【答案】=【解析】分析:本题考查的是矩形的性质.解析:因为ABCD 是矩形,所以△ABD 与△BCD 的面积相等,同理△PKD 与△NKD 的面积相等, △BMK 与△BQK 的面积相等,∴S 1=S 2.故答案为=.6.如图,是由两个正方形组成的长方形花坛ABCD ,小明从顶点A 沿着花坛间小路直到走到长边中点O ,再从中点O 走到正方形OCDF 的中心O 1,再从中心O 1走到正方形O 1GFH 的中心O 2,又从中心O 2走到正方形O 2IHJ 的中心O 3,再从中心O 3到正方形O 3KJP 的中心O 4,一共走了31m ,则长方形花坛ABCD 的周长是_______.【答案】64m【解析】分析:本题考查的是正方形的性质,得出各边之间的关系,列出方程解之即可.解析:设O 3 O 4=x ,, ,∴ABCD 的周长是64m. 故答案为64m.点睛:本题的关键是利用正方形的性质,正方形的对角线相等并且互相平分.得出各个线段之间的关系.。

天津市初中数学八年级下期中经典练习(含答案解析)

天津市初中数学八年级下期中经典练习(含答案解析)

一、选择题1.(0分)[ID:9927]如图,四边形ABCD是长方形,AB=3,AD=4.已知A(﹣32,﹣1),则点C的坐标是()A.(﹣3,32)B.(32,﹣3)C.(3,32)D.(32,3)2.(0分)[ID:9914]下列函数中,是一次函数的是()A.11yx=+B.y=﹣2xC.y=x2+2 D.y=kx+b(k、b是常数)3.(0分)[ID:9912]如图,数轴上点A,B表示的数分别是1,2,过点B作PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M表示的数是( )A.3B.5C.6D.74.(0分)[ID:9900]如图,在菱形ABCD中,AB=6,∠ABC=60°,M为AD中点,P为对角线BD上一动点,连接PA和PM,则PA+PM的最小值是( )A.3 B.2√3C.3√3D.65.(0分)[ID:9899]下列条件中,不能判断△ABC为直角三角形的是A.21a=,22b=,23c=B.a:b:c=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:56.(0分)[ID :9886]如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为,CE 且D 点落在对角线'D 处.若3,4,AB AD ==则ED 的长为( )A .32B .3C .1D .437.(0分)[ID :9880]如图,在边长为a 的正方形ABCD 中,把边BC 绕点B 逆时针旋转60︒,得到线段BM .连接AM 并延长交CD 于点N ,连接MC ,则MNC ∆的面积为( )A .2312a -B .2212a -C .2314a -D .2214a - 8.(0分)[ID :9859]下列各组数据中能作为直角三角形的三边长的是( ) A .1,2,2B .1,1,3C .4,5,6D .1,3,2 9.(0分)[ID :9858]菱形ABCD 中,AC =10,BD =24,则该菱形的周长等于( )A .13B .52C .120D .240 10.(0分)[ID :9852]在矩形ABCD 中,AB=2,AD=4,E 为CD 的中点,连接AE 交BC 的延长线于F 点,P 为BC 上一点,当∠PAE=∠DAE 时,AP 的长为 ( )A .4B .174C .92D .511.(0分)[ID :9845]下列各组数是勾股数的是( )A .3,4,5B .1.5,2,2.5C .32,42,52D 34512.(0分)[ID :9921]已知直角三角形中30°角所对的直角边长是23,则另一条直角边的长是( )A .4cmB .3C .6cmD .313.(0分)[ID :9910]小明搬来一架 3.5 米长的木梯,准备把拉花挂在 2.8 米高的墙上,则梯脚与墙脚的距离为( )A .2.7 米B .2.5 米C .2.1 米D .1.5 米 14.(0分)[ID :9898]下列结论中,矩形具有而菱形不一定具有的性质是( ) A .内角和为360°B .对角线互相平分C .对角线相等D .对角线互相垂直 15.(0分)[ID :9872]下列计算正确的是( )A .a 2+a 3=a 5B .3221-=C .(x 2)3=x 5D .m 5÷m 3=m 2 二、填空题16.(0分)[ID :10016]如图,在5×5的正方形网格中,以AB 为边画直角△ABC ,使点C 在格点上,且另外两条边长均为无理数,满足这样条件的点C 共__个.17.(0分)[ID :10013]如图,点E 在正方形ABCD 的边AB 上,若1EB,2EC =,那么正方形ABCD 的面积为_.18.(0分)[ID :9994]在Rt ABC ∆中,a ,b ,c 分别为A ∠,B ,C ∠的对边,90C ∠=︒,若:2:3a b =,52c =,则a 的长为_______.19.(0分)[ID :9983]△ABC 中,AB =13cm ,BC =10cm ,BC 边上的中线AD =12cm .则AC =______cm .20.(0分)[ID :9976]如图,在ABC ∆中,D 、E 分别为AB 、AC 的中点,点F 在DE 上,且AF CF ⊥,若3AC =,5BC =,则DF =__________.21.(0分)[ID :9947]如图,矩形ABCD 中,15cm AB =,点E 在AD 上,且9cm AE =,连接EC ,将矩形ABCD 沿直线BE 翻折,点A 恰好落在EC 上的点A'处,则'A C =____________cm .22.(0分)[ID :9943]果字成熟后从树上落到地面,它落下的高度与经过的时间有如下的关系: 时间t (秒)0.5 0.6 0.7 0.8 0.9 1 落下的高度h (米) 50.25⨯ 50.36⨯ 50.49⨯ 50.64⨯ 50.81⨯ 51⨯如果果子经过2秒落到地上,那么此果子开始落下时离地面的高度大约是__________米.23.(0分)[ID :9939]在平面直角坐标系中,(1,0)(4,0)(0,3),A B C -、、若以A B C D 、、、为顶点的四边形是平行四边形,则D 点坐标是________________.24.(0分)[ID :9933]如图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作EF ∥BC ,分别交AB ,CD 于点E ,F ,连接PB ,PD .若AE =2,PF =8.则图中阴影部分的面积为___.25.(0分)[ID :9957]如图,ABC 是以AB 为斜边的直角三角形,4AC =,3BC =,P 为AB 上一动点,且PE AC ⊥于E ,PF BC ⊥于F ,则线段EF 长度的最小值是________.三、解答题26.(0分)[ID :10118]如图,已知一次函数y kx b =+的图象经过A (-2,-1),B (1,3)两点,并且交x 轴于点C ,交y 轴于点D .(1)求该一次函数的解析式;(2)△ABC 的面积.27.(0分)[ID :10094]如图,矩形ABCD 的对角线相交于点O ,分别过点C 、D 作CE ∥BD 、DE ∥AC ,CE 、DE 交于点E .(1)求证:四边形OCED 是菱形.(2)将矩形ABCD 改为菱形ABCD ,其余条件不变,连结OE .若AC =10,BD =24,则OE 的长为____.28.(0分)[ID :10092]如图,在平面直角坐标系中,点(6,0)A -,(4,3)B -,边AB 上有一点(,2)P m ,点C ,D 分别在边OA ,OB 上,联结CD ,//CD AB ,联结PC ,PD ,BC .(1)求直线AB 的解析式及点P 的坐标;(2当CQ BQ =时,求出点C 的坐标;(3)在(2)的条件下,点R 在射线BC 上,ABO RBO S S ∆∆=,请直接写出点R 的坐标.29.(0分)[ID :10080]一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量y (升)关于加满油后已行驶的路程x (千米)的函数图象.(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;(2)求y 关于x 的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.30.(0分)[ID :10037]如图,菱形ABCD 的边长为2,60DAB ︒∠=,点E 为BC 边的中点,点P 为对角线AC 上一动点,则PB+PE 的最小值为_____.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题1.D2.B3.B4.C5.D6.A7.C8.D9.B10.B11.A12.C13.C14.C15.D二、填空题16.4【解析】【分析】本题需根据直角三角形的定义和图形即可找出所有满足条件的点【详解】解:根据题意可得以AB为边画直角△ABC使点C在格点上满足这样条件的点C 共8个故答案为817.【解析】【分析】根据勾股定理求出BC根据正方形的面积公式计算即可【详解】解:由勾股定理得正方形的面积故答案为:【点睛】本题考查了勾股定理如果直角三角形的两条直角边长分别是ab斜边长为c那么a2+b218.4【解析】【分析】设每份为x则根据勾股定理即可求出x的值然后求出a的长【详解】解:根据题意设每份为x∵∴在中由勾股定理得解得:(负值已舍去)∴;故答案为:4【点睛】本题考查了勾股定理解直角三角形解题19.13【解析】【分析】在△ABD中根据勾股定理的逆定理即可判断AD⊥BC然后根据线段的垂直平分线的性质即可得到AC=AB从而求解【详解】∵AD是中线AB=13BC=10∴∵52+122=132即BD220.1【解析】【分析】根据三角形中位线定理求出DE根据直角三角形的性质求出EF计算即可【详解】解:∵DE分别为ABAC的中点∴DE=BC=25∵AF⊥CFE为AC的中点∴EF =AC=15∴DF=DE﹣E21.8【解析】【分析】设A′C=xcm先根据已知利用AAS证明△A′BC≌△DCE得出A′C=DE=xcm则BC=AD=(9+x)cmA′B=AB=15cm然后在Rt△A′BC中由勾股定理可得BC2=A22.20【解析】【分析】分析表格中数据得到物体自由下落的高度随着时间的增大而增大与的关系为:把代入再进行计算即可【详解】解:由表格得用时间表示高度的关系式为:当时所以果子开始落下时离地面的高度大约是2023.(-53)(53)(3−3)【解析】【分析】作出图形分ABBCAC为对角线三种情况进行求解【详解】如图所示①AC为对角线时AB=5∴点D的坐标为(-53)②BC为对角线时AB=5∴点D的坐标为(5324.16【解析】【分析】作PM⊥AD于M交BC于N则有四边形AEPM四边形DFPM四边形CFPN四边形BEPN都是矩形可得S△PEB=S△PFD=8则可得出S阴【详解】作PM⊥AD 于M交BC于N则有四边25.【解析】【分析】先由矩形的判定定理推知四边形PECF是矩形;连接PC则PC=EF 所以要使EF即PC最短只需PC⊥AB即可;然后根据三角形的等积转换即可求得PC的值【详解】连接PC∵PE⊥ACPF⊥B三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D【解析】【分析】由矩形的性质可知CD=AB= 3,BC=AD= 4,结合A点坐标即可求得C点坐标.【详解】∵四边形ABCD是长方形,∴CD=AB= 3,BC=AD= 4,∵点A(﹣32,﹣1),∴点C的坐标为(﹣32+3,﹣1+4),即点C的坐标为(32,3),故选D.【点睛】本题考查了矩形的性质和坐标的平移,根据平移的性质解决问题是解答此题的关键.2.B解析:B【解析】A、y=1x+1不是一次函数,故错误;B、y=-2x是一次函数,故正确;C、y=x2+2是二次函数,故错误;D、y=kx+b(k、b是常数),当k=0时不是一次函数,故本选项错误,故选B.3.B解析:B【解析】【分析】先依据勾股定理可求得OC的长,从而得到OM的长,于是可得到点M对应的数.【详解】解:由题意得可知:OB=2,BC=1,依据勾股定理可知:OC=22OB BC=5.∴OM=5.故选:B.【点睛】本题考查勾股定理、实数与数轴,熟练掌握相关知识是解题的关键.4.C解析:C【解析】【分析】首先连接AC,交BD于点O,连接CM,则CM与BD交于点P,此时PA+PM的值最小,由在菱形ABCD中,AB=6,∠ABC=60°,易得△ACD是等边三角形,BD垂直平分AC,继而可得CM⊥AD,则可求得CM的值,继而求得PA+PM的最小值.【详解】解:连接AC,交BD于点O,连接CM,则CM与BD交于点P,此时PA+PM的值最小,∵在菱形ABCD中,AB=6,∠ABC=60°,∴∠ADC=∠ABC=60°,AD=CD=6,BD垂直平分AC,∴△ACD 是等边三角形,PA=PC ,∵M 为AD 中点,∴DM=12AD=3,CM ⊥AD , ∴CM=√CD 2−DM 2=3√3,∴PA+PM=PC+PM=CM=3√3.故选:C .【点睛】此题考查了最短路径问题、等边三角形的判定与性质、勾股定理以及菱形的性质.注意准确找到点P 的位置是解此题的关键.5.D解析:D【解析】【分析】【详解】试题分析:A 、根据勾股定理的逆定理,可知222+=a b c ,故能判定是直角三角形; B 、设a=3x ,b=4x ,c=5x ,可知222+=a b c ,故能判定是直角三角形;C 、根据三角形的内角和为180°,因此可知∠C=90°,故能判定是直角三角形;D 、而由3+4≠5,可知不能判定三角形是直角三角形.故选D考点:直角三角形的判定6.A解析:A【解析】【分析】首先利用勾股定理计算出AC 的长,再根据折叠可得DEC ≌'D EC ,设ED x =,则'=D E x ,''2=-=AD AC CD ,4AE x =-,再根据勾股定理可得方程2222(4)x x +=-,解方程即可求得结果.【详解】解:∵四边形ABCD 是长方形,3,4AB AD ==,∴3,4====AB CD AD BC ,90ABC ADC ∠=∠=︒,∴ABC 为直角三角形,∴5AC ===,根据折叠可得:DEC ≌'D EC ,∴'3==CD CD ,'DE D E =,'90∠=∠=︒CD E ADC ,∴'90∠=︒AD E ,则AD'E △为直角三角形,设ED x =,则'=D E x ,''2=-=AD AC CD ,4AE x =-,在'Rt AD E 中,由勾股定理得:222''+=AD D E AE ,即2222(4)x x +=-, 解得:32x =, 故选:A .【点睛】 此题主要考查了轴对称的折叠问题,以及勾股定理的应用,关键是掌握折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.7.C解析:C【解析】【详解】如图,作MG ⊥BC 于G ,MH ⊥CD 于H ,则BG=GC ,AB ∥MG ∥CD ,∴AM=MN ,∵MH ⊥CD ,∠D=90°,∴MH ∥AD ,∴NH=HD ,由旋转变换的性质可知,△MBC 是等边三角形,∴MC=BC=a ,∠MCD=30°,∴MH=12MC=12a ,3, ∴DH=a 3, ∴CN=CH ﹣3﹣(a 3)=3﹣1)a , ∴△MNC 的面积=12×2a ×3﹣1)a=314a 2. 故选C. 8.D解析:D【解析】【分析】根据勾股定理的逆定理对各选项进行逐一分析即可.解:A、∵12+22=5≠22,∴此组数据不能作为直角三角形的三边长,故本选项错误;B、∵12+12=2≠)2,∴此组数据不能作为直角三角形的三边长,故本选项错误;C、∵42+52=41≠62,∴此组数据不能作为直角三角形的三边长,故本选项错误;D、∵12+2=4=22,∴此组数据能作为直角三角形的三边长,故本选项正确.故选D.【点睛】本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.9.B解析:B【解析】试题解析:菱形对角线互相垂直平分,∴BO=OD=12,AO=OC=5,13AB∴==,故菱形的周长为52.故选B.10.B解析:B【解析】【分析】根据矩形的性质结合等角对等边,进而得出CF的长,再利用勾股定理得出AP的长.【详解】∵∠PAE=∠DAE,∠DAE=∠F∴∠PAE=∠F∴PA=PF∵E是CD的中点∴BF=8设AP=x,则BP=8−x在RtΔABP中,4+(8−x)2=x2得x=174故选:B点睛:此题主要考查了矩形的性质以及勾股定理等知识,正确得出FC的长是解题关键.11.A解析:A【解析】【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证较小两数的平方和是否等于最大数的平方.A.32+42=52,是勾股数;B.1.5,2,2.5中,1.5,2.5不是正整数,故不是勾股数;C.(32)2+(42)2≠(52)2,不是勾股数;D.(4)2+(3)2≠5)2,且3,5不是正整数,故不是勾股数.故选A.【点睛】本题考查了勾股数,解答此题要深刻理解勾股数的定义,并能够熟练运用.12.C解析:C【解析】如图,∵∠C=90°,∠B=30°,3,∴3cm,由勾股定理得:22-,AB AC故选C.13.C解析:C【解析】【分析】仔细分析题意得:梯子、地面、墙刚好形成一直角三角形,梯高为斜边,利用勾股定理解此直角三角形即可.【详解】22-=2.1(米).3.5 2.8故选C.【点睛】本题考查了勾股定理的应用.善于提取题目的信息是解题以及学好数学的关键.14.C解析:C【解析】【分析】矩形与菱形相比,菱形的四条边相等、对角线互相垂直;矩形四个角是直角,对角线相等,由此结合选项即可得出答案.A、菱形、矩形的内角和都为360°,故本选项错误;B、对角互相平分,菱形、矩形都具有,故本选项错误;C、对角线相等菱形不具有,而矩形具有,故本选项正确D、对角线互相垂直,菱形具有而矩形不具有,故本选项错误,故选C.【点睛】本题考查了菱形的性质及矩形的性质,熟练掌握矩形的性质与菱形的性质是解题的关键. 15.D解析:D【解析】分析:直接利用合并同类项法则以及幂的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.详解:A、a2与a3不是同类项,无法计算,故此选项错误;B、32-2=22,故此选项错误;C、(x2)3=x6,故此选项错误;D、m5÷m3=m2,正确.故选:D.点睛:此题主要考查了合并同类项以及幂的乘方运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.二、填空题16.4【解析】【分析】本题需根据直角三角形的定义和图形即可找出所有满足条件的点【详解】解:根据题意可得以AB为边画直角△ABC使点C在格点上满足这样条件的点C共8个故答案为8解析:4【解析】【分析】本题需根据直角三角形的定义和图形即可找出所有满足条件的点.【详解】解:根据题意可得以AB为边画直角△ABC,使点C在格点上,满足这样条件的点C共 8个.故答案为8.17.【解析】【分析】根据勾股定理求出BC 根据正方形的面积公式计算即可【详解】解:由勾股定理得正方形的面积故答案为:【点睛】本题考查了勾股定理如果直角三角形的两条直角边长分别是ab 斜边长为c 那么a2+b2 解析:3.【解析】【分析】根据勾股定理求出BC ,根据正方形的面积公式计算即可.【详解】解:由勾股定理得,BC == ∴正方形ABCD 的面积23BC ==,故答案为:3.【点睛】本题考查了勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2. 18.4【解析】【分析】设每份为x 则根据勾股定理即可求出x 的值然后求出a 的长【详解】解:根据题意设每份为x∵∴在中由勾股定理得解得:(负值已舍去)∴;故答案为:4【点睛】本题考查了勾股定理解直角三角形解题 解析:4【解析】【分析】设每份为x ,则2a x =,3=b x ,根据勾股定理,即可求出x 的值,然后求出a 的长.【详解】解:根据题意,设每份为x ,∵:2:3a b =,∴2a x =,3=b x ,在Rt ABC ∆中,由勾股定理,得222(2)(3)x x +=,解得:2x =(负值已舍去),∴4a =;故答案为:4.【点睛】本题考查了勾股定理解直角三角形,解题的关键是熟练掌握勾股定理求出三角形的边长. 19.13【解析】【分析】在△ABD 中根据勾股定理的逆定理即可判断AD⊥BC 然后根据线段的垂直平分线的性质即可得到AC=AB 从而求解【详解】∵AD 是中线AB=13BC=10∴∵52+122=132即BD2解析:13【解析】【分析】在△ABD中,根据勾股定理的逆定理即可判断AD⊥BC,然后根据线段的垂直平分线的性质,即可得到AC=AB,从而求解.【详解】∵AD是中线,AB=13,BC=10,∴152BD BC==.∵52+122=132,即BD2+AD2=AB2,∴△ABD是直角三角形,则AD⊥BC,又∵BD=CD,∴AC=AB=13.故答案为13.【点睛】本题考查的知识点是勾股定理的逆定理与线段的垂直平分线的性质,解题关键是利用勾股定理的逆定理证得AD⊥BC.20.1【解析】【分析】根据三角形中位线定理求出DE根据直角三角形的性质求出EF计算即可【详解】解:∵DE分别为ABAC的中点∴DE=BC=25∵AF⊥CFE 为AC的中点∴EF=AC=15∴DF=DE﹣E解析:1【解析】【分析】根据三角形中位线定理求出DE,根据直角三角形的性质求出EF,计算即可.【详解】解:∵D、E分别为AB、AC的中点,∴DE=12BC=2.5,∵AF⊥CF,E为AC的中点,∴EF=12AC=1.5,∴DF=DE﹣EF=1,故答案为:1.【点睛】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.21.8【解析】【分析】设A′C=xcm 先根据已知利用AAS 证明△A′BC≌△DCE 得出A′C=DE=xcm 则BC=AD=(9+x )cmA′B=AB=15cm 然后在Rt△A′BC 中由勾股定理可得BC2=A解析:8【解析】【分析】设A ′C=xcm ,先根据已知利用AAS 证明△A ′BC ≌△DCE ,得出A ′C=DE= xcm ,则BC=AD=(9+x )cm ,A ′B=AB=15cm ,然后在Rt △A ′BC 中,由勾股定理可得BC 2=A ′B 2+A ′C 2,即可得方程,解方程即可求得答案【详解】解:∵四边形ABCD 是矩形,∴AB=CD=15cm ,∠A=∠D=90°,AD ∥BC ,AD=BC ,∴∠DEC=∠A ′CB ,由折叠的性质,得:A ′B=AB=15cm ,∠BA ′E=∠A=90°,∴A ′B=CD ,∠BA ′C=∠D=90°,在△A ′BC 和△DCE 中,BA C D A CB DEC A B CD ∠=∠⎧⎪∠=∠=''⎨'⎪⎩∴△A ′BC ≌△DCE (AAS ),∴A ′C=DE ,设A ′C=xcm ,则BC=AD=DE+AE=x+9(cm ),在Rt △A ′BC 中,BC 2=A ′B 2+A ′C 2,即(x+9)2=x 2+152,解得:x=8,∴A ′C=8cm .故答案为:8.【点睛】此题考查了矩形的性质、全等三角形的判定与性质、勾股定理以及折叠的性质.此题难度适中,注意掌握数形结合思想与方程思想的应用,注意掌握折叠前后图形的对应关系. 22.20【解析】【分析】分析表格中数据得到物体自由下落的高度随着时间的增大而增大与的关系为:把代入再进行计算即可【详解】解:由表格得用时间表示高度的关系式为:当时所以果子开始落下时离地面的高度大约是20 解析:20【解析】【分析】分析表格中数据,得到物体自由下落的高度h 随着时间t 的增大而增大,h 与t 的关系为:25h t =,把2t =代入25h t =,再进行计算即可.【详解】解:由表格得,用时间()t s 表示高度()h m 的关系式为:25h t =,当2t =时,2525420h =⨯=⨯=.所以果子开始落下时离地面的高度大约是20米.故答案为:20.【点睛】本题考查了根据图表找规律,并应用规律解决问题,要求有较强的分析数据和描述数据的能力.能够正确找到h 和t 的关系是解题的关键.23.(-53)(53)(3−3)【解析】【分析】作出图形分ABBCAC 为对角线三种情况进行求解【详解】如图所示①AC 为对角线时AB=5∴点D 的坐标为(-53)②BC 为对角线时AB=5∴点D 的坐标为(53解析:(-5,3)、(5,3)、(3,−3)【解析】【分析】作出图形,分AB 、BC 、AC 为对角线三种情况进行求解.【详解】如图所示,①AC 为对角线时,AB=5,∴点D 的坐标为(-5,3),②BC 为对角线时,AB=5,∴点D 的坐标为(5,3),③AB 为对角线时,C 平移至A 的方式为向左平移1个单位,向下平移3个单位,∴点B 向左平移1个单位,向下平移3个单位得到点D 的坐标为(3,−3),综上所述,点D 的坐标是(-5,3)、(5,3)、(3,−3).故答案为:(-5,3)、(5,3)、(3,−3).【点睛】本题考查了坐标与图形的性质,平行四边形的判定,根据题意作出图形,注意要分情况进行讨论.24.16【解析】【分析】作PM⊥AD 于M 交BC 于N 则有四边形AEPM 四边形DFPM 四边形CFPN 四边形BEPN 都是矩形可得S△PEB=S△PFD=8则可得出S 阴【详解】作PM⊥AD于M交BC于N则有四边解析:16【解析】【分析】作PM⊥AD于M,交BC于N,则有四边形AEPM、四边形DFPM、四边形CFPN、四边形BEPN都是矩形,可得S△PEB=S△PFD=8,则可得出S阴.【详解】作PM⊥AD于M,交BC于N,则有四边形AEPM、四边形DFPM、四边形CFPN、四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,∴S△DFP=S△PBE=12×2×8=8,∴S阴=8+8=16.故答案是:16.【点睛】考查矩形的性质、三角形的面积等知识,解题的关键是证明S△PEB=S△PFD.25.【解析】【分析】先由矩形的判定定理推知四边形PECF是矩形;连接PC 则PC=EF所以要使EF即PC最短只需PC⊥AB即可;然后根据三角形的等积转换即可求得PC的值【详解】连接PC∵PE⊥ACPF⊥B解析:12 5【解析】【分析】先由矩形的判定定理推知四边形PECF是矩形;连接PC,则PC=EF,所以要使EF,即PC最短,只需PC⊥AB即可;然后根据三角形的等积转换即可求得PC的值.【详解】连接PC,∵PE⊥AC,PF⊥BC,∴∠PEC =∠PFC =∠C =90°;又∵∠ACB =90°,∴四边形ECFP 是矩形,∴EF =PC ,∴当PC 最小时,EF 也最小,即当CP ⊥AB 时,PC 最小,∵AC =4,BC =3,∴AB =5, ∴12AC•BC =12AB•PC , ∴PC =125. ∴线段EF 长的最小值为125; 故答案是:125. 【点睛】 本题考查了勾股定理、矩形的判定与性质、垂线段最短.利用“两点之间垂线段最短”找出PC ⊥AB 时,PC 取最小值是解答此题的关键.三、解答题26.(1)4533y x =+;(2)52. 【解析】【分析】(1)利用待定系数法即可求出一次函数解析式;(2)求出点D 坐标,根据ABC AOD BOD SS S =+即可求解.【详解】(1)把A (-2,-1),B (1,3)代入y =kx +b 得 213k b k b -+=-⎧⎨+=⎩, 解得 4353k b ⎧=⎪⎪⎨⎪=⎪⎩, 所以一次函数解析式为4533y x =+;(2)把x=0代入4533y x=+得y=53,∴D点坐标为(0,53 ),∴15155=21=23232 ABC AOD BODS S S=+⨯⨯+⨯⨯.【点睛】(1)待定系数法是求函数解析式的一种常用方法,要深刻领会,其实质是根据题意设出函数关系式,把点的坐标代入解析式构造方程,求解,回代,最后确定解析式;(2)平面直角坐标系中如果图形的面积不易直接求,则一般采用割补法求解.27.(1)见解析;(2)13【解析】【分析】(1)首先由平行判定四边形OCED是平行四边形,然后由矩形性质得出OC=OD,即可判定四边形OCED是菱形;(2)首先由平行判定四边形OCED是平行四边形,然后由菱形性质得出AC⊥BD,AD=CD,即可判定四边形OCED是矩形,再利用勾股定理即可得解.【详解】(1)∵DE∥AC、CE∥BD,∴四边形OCED是平行四边形.∵四边形ABCD是矩形,∴AC=BD,12OC AC=,12OD BD=.∴OC=OD.∴四边形OCED是菱形.(2)∵DE∥AC、CE∥BD,∴四边形OCED是平行四边形.∵四边形ABCD是菱形,∴AC⊥BD,AD=CD∴∠COD=90°∴四边形OCED是矩形∴OE=CD∵AC=10,BD=24,∴OD=12,OC=5∴13==【点睛】此题主要考查菱形的判定与性质,熟练掌握,即可解题.28.(1)直线AB 解析式为y =32x +9,P 点坐标为(-143,2)(2)C 点坐标为(-2,0)(3)R (2,-6).【解析】【分析】(1)由A 、B 两点的坐标,利用待定系数法可求得直线AB 的解析式,再把P 点坐标代入直线解析式可求得P 点坐标;(2)由条件可证明△BPQ ≌△CDQ ,可证得四边形BDCP 为平行四边形,由B 、P 的坐标可求得BP 的长,则可求得CD 的长,利用平行线分线段成比例可求得OC 的长,则可求得C 的坐标;(3)由条件可知AR ∥BO ,故可先求出直线OB ,BC 的解析式,再根据直线平行求出AR 的解析式,联立直线AR 、BC 即可求出R 点坐标.【详解】(1)设直线AB 解析式为y =kx +b , 把A 、B 两点坐标代入可得4360k b k b -+=⎧⎨-+=⎩,解得329k b ⎧=⎪⎨⎪=⎩, ∴直线AB 解析式为y =32x +9, ∵(,2)P m 在直线AB 上,∴2=−32m +9,解得m =-143, ∴P 点坐标为(-143,2); (2)∵//CD AB ,∴∠PBQ =∠DCQ ,在△PBQ 和△DCQ 中 PBQ DCQ CQ BQPQB DQC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△PBQ ≌△DCQ (ASA ),∴BP =CD ,∴四边形BDCP 为平行四边形,∵(4,3)B -,(-143,2), ∴CD =BP= ∵A (-6,0),∴OA =6,AB=∵CD ∥AB ,∴△COD ∽△AOB ∴CO CD AO AB =,即6CO =,解得CO =2, ∴C 点坐标为(-2,0);(3)∵ABO RBO S S ∆∆=,∴点A 和点R 到BO 的距离相等,∴BO ∥AR ,设直线BO 的解析式为y=nx ,把(4,3)B -代入得3=-4n ,解得n=-34x ∴直线BO 的解析式为y=-34x , ∴设直线AR 的解析式为y=-34x+e , 把A(-6,0)代入得0=-34×(-6)+e 解得e=-92∴直线AR 的解析式为y=-34x-92, 设直线BC 解析式为y =px +q , 把C 、B 两点坐标代入可得4320k b k b -+=⎧⎨-+=⎩,解得323k b ⎧=-⎪⎨⎪=-⎩, ∴直线AB 解析式为y =-32x-3,联立3942332y x y x ⎧=--⎪⎪⎨⎪=--⎪⎩解得26x y =⎧⎨=-⎩∴R (2,-6).【点睛】本题为一次函数的综合应用,涉及待定系数法、全等三角形的判定和性质、勾股定理、平行四边形的判定和性质、相似三角形的判定与性质、三角形的面积等知识点,解题的关键是熟知待定系数法求出函数解析式.29.(1)汽车行驶400千米,剩余油量30升,加满油时,油量为70升;(2)已行驶的路程为650千米.【解析】【分析】(1)观察图象,即可得到油箱内的剩余油量,根据耗油量计算出加满油时油箱的油量; ()2用待定系数法求出一次函数解析式,再代入进行运算即可.【详解】(1)汽车行驶400千米,剩余油量30升,304000.170.+⨯=即加满油时,油量为70升.(2)设()0y kx b k =+≠,把点()0,70,()400,30坐标分别代入得70b =,0.1k =-,∴0.170y x =-+,当5y =时,650x =,即已行驶的路程为650千米.【点睛】本题主要考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征等,关键是掌握待定系数法求函数解析式.30.【解析】【分析】根据ABCD 是菱形,找出B 点关于AC 的对称点D ,连接DE 交AC 于P ,则DE 就是PB+PE 的最小值,根据勾股定理求出即可.【详解】解:如图,连接DE 交AC 于点P ,连接DB ,∵四边形ABCD 是菱形,∴点B 、D 关于AC 对称(菱形的对角线相互垂直平分),∴DP=BP ,∴PB+PE 的最小值即是DP+PE 的最小值(等量替换),又∵ 两点之间线段最短,∴DP+PE 的最小值的最小值是DE ,又∵60DAB ︒∠=,CD=CB,∴△CDB 是等边三角形,又∵点E 为BC 边的中点,∴DE ⊥BC (等腰三角形三线合一性质),菱形ABCD 的边长为2,∴CD=2,CE=1, 由勾股定理得22(1) DE=213-=, 3.【点睛】本题主要考查轴对称、最短路径问题、菱形的性质以及勾股定理(两直角边的平方和等于斜边的平方),确定P 点的位置是解题的关键.。

2016年天津市红桥区八年级下学期数学期末试卷及解析答案

2016年天津市红桥区八年级下学期数学期末试卷及解析答案

2015-2016学年天津市红桥区八年级(下)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列运算中正确的是()A.B.C.D.2.(3分)如图,在菱形ABCD中,对角线AC、BD交于点O,下列说法错误的是()A.AD∥BC B.OA=OC C.AC⊥BD D.AC=BD3.(3分)若三角形的三边长分别为,,2,则此三角形的面积为()A.B.C.D.4.(3分)甲、乙、丙、丁四人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么四人中成绩最稳定的是()A.甲B.乙C.丙D.丁5.(3分)下列图象分别给出了x与y的对应关系,其中y是x的函数的是()A.B.C.D.6.(3分)与直线y=2x+5平行,且与x轴相交于点M(﹣2,0)的直线的解析式为()A.y=2x+4 B.y=2x﹣2 C.y=﹣2x﹣4 D.y=﹣2x﹣27.(3分)某超市一月份的营业额为36万元,三月份的营业额为48万元.设每月的平均增长率为x,则可列方程为()A.48(1+x)2=36 B.48(1﹣x)2=36 C.36(1﹣x)2=48 D.36(1+x)2=48 8.(3分)若一元二次方程式x2﹣2x﹣3599=0的两根为a、b,且a>b,则2a﹣b的值为()A.﹣57 B.63 C.179 D.1819.(3分)已知一元二次方程x2﹣x﹣3=0的较小根为x1,则下面对x1的估计正确的是()A.﹣3<x 1<﹣2 B.﹣2<x1<﹣1 C.﹣1<x1<0 D.1<x1<210.(3分)甲、乙两名选手参加长跑比赛,他们的行程y(km)随时间x(h)变化的图象(全程)如图所示,有下列说法:①在起跑后1h内,甲在乙的前面;②甲在第1.5h时的行程为12km;③乙比甲早0.3h到达终点;④本次长跑比赛的全程为20km.其中正确说法的个数是()A.1 B.2 C.3 D.4二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)在函数中,自变量x的取值范围是.12.(3分)若关于x的方程x2﹣x﹣a2+5=0的一个根是2,则它的另一个根为.13.(3分)已知一次函数的图象经过点(0,1),且满足y随x的增大而增大,则该一次函数的解析式可以为.14.(3分)在△ABC中,AD⊥BC于D,AB=3,BD=2,DC=1,则AC=.15.(3分)如图,在平行四边形ABCD中,AB=2,BC=4,AC的垂直平分线交AD于点E,则△CDE的周长为.16.(3分)如图,在平面直角坐标系xOy中,菱形ABCD的顶点A的坐标为(2,0),点B的坐标为(0,1),点C在第一象限内,对角线BD与x轴平行,直线y=x+3与x轴、y轴分别交于点E,F.将菱形ABCD沿x轴向左平移m(m>0)个单位,当点D落在△EOF的内部时(不包括三角形的边),则m的取值范围是.三、解答题:本大题共6个小题,共52分17.(8分)小明本学期的数学测验成绩如表所示:测验类别平时测验期中测验期末测验第1次第2此第3次第4次成绩808684909095(1)求六次测验成绩的众数和中位数;(2)求小明本学期的数学平时测验的平均成绩;(3)如果本学期的总评成绩是将平时测验的平均成绩、期中测验成绩、期末测验成绩按照3:3:4的比例计算所得,计算小明本学期学科的总评成绩.18.(8分)已知一次函数y=kx+b(k为常数,k≠0)的图象经过点A(2,2),B (0,1).(1)求该一次函数的解析式,并作出其图象;(2)当0≤y≤2时,求x的取值范围.19.(8分)用适当的方法解下列方程.(1)x2+3x=5(x+3);(2)2x2﹣6x+1=0.20.(8分)已知关于x的方程x2﹣2(k﹣1)x+k2=0有两个实数根x 1,x2.(1)求k的取值范围;(2)若|x1+x2|=x1x2,求k的值.21.(10分)如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E.(1)试找出一个与△AED全等的三角形,并加以证明;(2)若AB=8,DE=3,P为线段AC上的任意一点,PG⊥AE于G,PH⊥EC于H,试求PG+PH的值,并说明理由.22.(10分)某家具厂生产的沙发计划在甲地区全部采用网络直销的方式销售,并找当地人员进行安装,甲地区一家专业安装公司给出如下安装方案(均为每月收费),设该品牌沙发在甲地区每月的销量为x套(x>0),该家具厂需支付安装公司的费用为y元.方案1:安装费为9600元,不限安装套数;方案2:每安装一套沙发,安装费为80元;方案3:不超过30套,每套安装费为100元,超过30套,超出部分每套安装费为60元.(1)分别求出按方案1,方案2,方案3需要支付给安装公司的费用y与销量x 之间的函数关系式;(2)该家具厂应选择哪种安装方案比较省钱?2015-2016学年天津市红桥区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列运算中正确的是()A.B.C.D.【解答】解:A、+≠,选项A错误;B、×=,选项B错误;C、÷==2,选项C正确;D、==6,选项D错误;故选:C.2.(3分)如图,在菱形ABCD中,对角线AC、BD交于点O,下列说法错误的是()A.AD∥BC B.OA=OC C.AC⊥BD D.AC=BD【解答】解:∵四边形ABCD为菱形,∴AD∥BC,OA=OC,AC⊥BD,所以A、B、C选项的说法正确,D选项的说法错误.故选:D.3.(3分)若三角形的三边长分别为,,2,则此三角形的面积为()A.B.C.D.【解答】解:∵三角形的三边长分别为,,2,∴()2+22=()2,∴此三角形是直角三角形,∴此三角形的面积是××2=,故选:C.4.(3分)甲、乙、丙、丁四人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么四人中成绩最稳定的是()A.甲B.乙C.丙D.丁【解答】解:从折线图上看,乙的波动最小,因此成绩最稳定的是乙,故选:B.5.(3分)下列图象分别给出了x与y的对应关系,其中y是x的函数的是()A.B.C.D.【解答】解:在图象A,C,D中,每给x一个值,y都有2个值与它对应,所以A,C,D中y不是x的函数,在B中,给x一个正值,y有一个值与之对应,所以y是x的函数.故选:B.6.(3分)与直线y=2x+5平行,且与x轴相交于点M(﹣2,0)的直线的解析式为()A.y=2x+4 B.y=2x﹣2 C.y=﹣2x﹣4 D.y=﹣2x﹣2【解答】解:设直线解析式为y=kx+b(k≠0),∵函数的图象与直线y=2x+5平行,∴k=2;∵与x轴相交于点M(﹣2,0),∴0=﹣4+b,解得b=4;∴此一次函数的解析式为y=2x+4;故选:A.7.(3分)某超市一月份的营业额为36万元,三月份的营业额为48万元.设每月的平均增长率为x,则可列方程为()A.48(1+x)2=36 B.48(1﹣x)2=36 C.36(1﹣x)2=48 D.36(1+x)2=48【解答】解:依题意得三月份的营业额为36(1+x)2,∴36(1+x)2=48.故选:D.8.(3分)若一元二次方程式x2﹣2x﹣3599=0的两根为a、b,且a>b,则2a﹣b的值为()A.﹣57 B.63 C.179 D.181【解答】解:x2﹣2x﹣3599=0,移项得:x2﹣2x=3599,x2﹣2x+1=3599+1,即(x﹣1)2=3600,x﹣1=60,x﹣1=﹣60,解得:x=61,x=﹣59,∵一元二次方程式x2﹣2x﹣3599=0的两根为a、b,且a>b,∴a=61,b=﹣59,∴2a﹣b=2×61﹣(﹣59)=181,故选:D.9.(3分)已知一元二次方程x2﹣x﹣3=0的较小根为x1,则下面对x1的估计正确的是()A.﹣3<x1<﹣2 B.﹣2<x1<﹣1 C.﹣1<x1<0 D.1<x1<2【解答】解:x2﹣x﹣3=0,b2﹣4ac=(﹣1)2﹣4×1×(﹣3)=13,∴x=,∴方程的最小值是,∵3<<4,∴﹣3>﹣>﹣4,∴﹣>﹣>﹣2,∴﹣>﹣>﹣2,∴﹣1>>﹣故选:B.10.(3分)甲、乙两名选手参加长跑比赛,他们的行程y(km)随时间x(h)变化的图象(全程)如图所示,有下列说法:①在起跑后1h内,甲在乙的前面;②甲在第1.5h时的行程为12km;③乙比甲早0.3h到达终点;④本次长跑比赛的全程为20km.其中正确说法的个数是()A.1 B.2 C.3 D.4【解答】解:由图象可知,在起跑后1h内,甲在乙的前面,故①正确.=10x,∵y乙=4x+6,当0.5<x<1.5时,y甲x=1.5时,y甲=12,故②正确,x=2时,y乙=20,故④正确,无法判断甲到达终点的时间,故③错误,故选:C.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)在函数中,自变量x的取值范围是x≤2.【解答】解:由题意,得2﹣x≥0,解得x≤2,故答案为:x≤2.12.(3分)若关于x的方程x2﹣x﹣a2+5=0的一个根是2,则它的另一个根为﹣1.【解答】解:设关于x的一元二次方程x2﹣x﹣a2+5=0的另一个根为x2,则2+x2=1,解得x2=﹣1.故答案为﹣1.13.(3分)已知一次函数的图象经过点(0,1),且满足y随x的增大而增大,则该一次函数的解析式可以为y=x+1(答案不唯一,可以是形如y=kx+1,k>0的一次函数).【解答】解:设一次函数的解析式为:y=kx+b(k≠0),∵一次函数的图象经过点(0,1),∴b=1,∵y随x的增大而增大,∴k>0,故答案为y=x+1(答案不唯一,可以是形如y=kx+1,k>0的一次函数).14.(3分)在△ABC中,AD⊥BC于D,AB=3,BD=2,DC=1,则AC=.【解答】解:分两种情况:①D在BC上,如图1.在Rt△ADB中,由勾股定理得:AD2=AB2﹣BD2=32﹣22=5,在Rt△ADC中,由勾股定理得:AC2=DC2+AD2=12+5=6,所以AC=;②D在BC的延长线上,如图2.在Rt△ADB中,由勾股定理得:AD2=AB2﹣BD2=32﹣22=5,在Rt△ADC中,由勾股定理得:AC2=DC2+AD2=12+5=6,所以AC=;综上可知,AC=.故答案为.15.(3分)如图,在平行四边形ABCD中,AB=2,BC=4,AC的垂直平分线交AD 于点E,则△CDE的周长为6.【解答】解:∵四边形ABCD是平行四边形,AB=2,BC=4,∴AD=BC=4,CD=AB=2,∵AC的垂直平分线交AD于点E,∴AE=CE,∴△CDE的周长为DE+CE+DC=DE+AE+CD=AD+CD=4+2=6,故答案为:6.16.(3分)如图,在平面直角坐标系xOy中,菱形ABCD的顶点A的坐标为(2,0),点B的坐标为(0,1),点C在第一象限内,对角线BD与x轴平行,直线y=x+3与x轴、y轴分别交于点E,F.将菱形ABCD沿x轴向左平移m(m>0)个单位,当点D落在△EOF的内部时(不包括三角形的边),则m的取值范围是4<m<6.【解答】解:∵菱形ABCD的顶点A(2,0),点B(1,0),∴点D的坐标为(4,1),当y=1时,x+3=1,解得x=﹣2,∴点D向左移动2+4=6时,点D在EF上,∵点D落在△EOF的内部时(不包括三角形的边),∴4<m<6.故答案为:4<m<6.三、解答题:本大题共6个小题,共52分17.(8分)小明本学期的数学测验成绩如表所示:测验类别平时测验期中测验期末测验第1次第2此第3次第4次成绩808684909095(1)求六次测验成绩的众数和中位数;(2)求小明本学期的数学平时测验的平均成绩;(3)如果本学期的总评成绩是将平时测验的平均成绩、期中测验成绩、期末测验成绩按照3:3:4的比例计算所得,计算小明本学期学科的总评成绩.【解答】解:(1)∵在六次成绩中,90出现了2次,出现的次数最多,∴这组数据的众数为90;∵将六次成绩按从小到大的顺序排列,处于中间的两个数分别为86,90,有=88,∴这组数据的中位数为88;(2)根据表中数据,小明四次平时成绩的平均值==85;(3)根据题意,小明的总评成绩为85×0.3+90×0.3+95×0.4=90.5.18.(8分)已知一次函数y=kx+b(k为常数,k≠0)的图象经过点A(2,2),B (0,1).(1)求该一次函数的解析式,并作出其图象;(2)当0≤y≤2时,求x的取值范围.【解答】解:(Ⅰ)∵点A(2,2),点B(0,1)在一次函数y=kx+b(k为常数,k≠0)的图象上,∴解得∴一次函数的解析式为:y=x+1其图象如下图所示:(Ⅱ)∵k=>0,∴一次函数y=x+1的函数值y随x的增大而增大.当y=0时,解得x=﹣2;当y=2时,x=2.∴﹣2≤x≤2.即:当0≤y≤2时,求x的取值范围是:﹣2≤x≤2.19.(8分)用适当的方法解下列方程.(1)x2+3x=5(x+3);(2)2x2﹣6x+1=0.【解答】解:(1)移项,得x(x+3)﹣5(x+3)=0.因式分解,得(x﹣5)(x+3)=0.于是得x﹣5=0,或x+3=0,解得:x1=5,x2=﹣3;(2)∵a=2,b=﹣6,c=1,△=b2﹣4ac=(﹣6)2﹣4×2×1=28>0,方程有两个不等的实数根x===,解得:x1=,x2=.20.(8分)已知关于x的方程x2﹣2(k﹣1)x+k2=0有两个实数根x1,x2.(1)求k的取值范围;(2)若|x 1+x2|=x1x2,求k的值.【解答】解:(1)根据题意得△=4(k﹣1)2﹣4k2≥0,解得k≤;(2)根据题意得x1+x2=2(k﹣1),x1•x2=k2,∵k≤,∴x1+x2=2(k﹣1)<0,∴﹣(x1+x2)=x1x2,∴﹣2(k﹣1)=k2,整理得k2+2k﹣2=0,解得k1=﹣1+,k2=﹣1﹣,∵k≤,∴k=﹣1﹣.21.(10分)如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E.(1)试找出一个与△AED全等的三角形,并加以证明;(2)若AB=8,DE=3,P为线段AC上的任意一点,PG⊥AE于G,PH⊥EC于H,试求PG+PH的值,并说明理由.【解答】解:(1)△AED≌△CEB′证明:∵四边形ABCD为矩形,∴B′C=BC=AD,∠B′=∠B=∠D=90°,又∵∠B′EC=∠DEA,∴△AED≌△CEB′;(2)由折叠的性质可知,∠EAC=∠CAB,∵CD∥AB,∴∠CAB=∠ECA,∴∠EAC=∠ECA,∴AE=EC=8﹣3=5.在△ADE中,AD===4,延长HP交AB于M,则PM⊥AB,∴PG=PM.∴PG+PH=PM+PH=HM=AD=4.22.(10分)某家具厂生产的沙发计划在甲地区全部采用网络直销的方式销售,并找当地人员进行安装,甲地区一家专业安装公司给出如下安装方案(均为每月收费),设该品牌沙发在甲地区每月的销量为x套(x>0),该家具厂需支付安装公司的费用为y元.方案1:安装费为9600元,不限安装套数;方案2:每安装一套沙发,安装费为80元;方案3:不超过30套,每套安装费为100元,超过30套,超出部分每套安装费为60元.(1)分别求出按方案1,方案2,方案3需要支付给安装公司的费用y与销量x 之间的函数关系式;(2)该家具厂应选择哪种安装方案比较省钱?【解答】解:(1)按方案一,需要支付给安装公司的费为y=9600;按方案二,需要支付给安装公司的费为y=80x;按方案三,根据题意,当0<x≤30时,y3=100x;当x>30时,其中有30套沙发的安装费按100元∕套收费,其余的(x﹣30)套沙发按60元∕套收费,∴y3=30×100+60(x﹣30)=60x+1200,∴y 3关于x的函数解析式为y3=;(2)根据题意,由,解得:,由60x+1200=9600,解得:x=140;由80x=9600,解得:x=120,∴当0<x<60时,方案2比较省钱;当x=60时,方案2,方案3安装费相同;当60<x<140时,方案3比较省钱;当x=140时,方案1,方案3安装费相同;当x>140时,方案1比较省钱.赠送初中数学几何模型【模型二】半角型:图形特征:45°4321DA1FDAB正方形ABCD 中,∠EAF =45° ∠1=12∠BAD 推导说明:1.1在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且∠FAE =45°,求证:EF =BE +DF45°DEa +b-a45°A1.2在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且EF =BE +DF ,求证:∠FAE =45°DEa +b-aa45°ABE挖掘图形特征:a+bx-aa 45°DBa +b-a45°A运用举例:1.正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF =45°.将△DAE 绕点D 逆时针旋转90°,得到△DCM .(1)求证:EF=FM(2)当AE=1时,求EF的长.DE2.如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,求△AMN的周长.ND CABM3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF,BE,DF之间的数量关系.ABFEDCF。

天津市红桥区2016年八年级下期末数学试题含答案

天津市红桥区2016年八年级下期末数学试题含答案

二、填空题:本大题共 6 个小题,每小题 3 分,共 18 分. (11) x ≤ 2 (13) y x 1 (满足 k 0 , b 1 即可) (15) 10 三、解答题:本大题 共 6 个小题,共 52 分. (17)(本小题满分 8 分) 解:(Ⅰ)∵ 在六次成绩中, 90 出现了 2 次,出现的次数最多, ∴ 这组数据的众数为 90 . ∵ ……………………………………………… 2 分 (12) 1 (14) 6 (16) 4 m 6
B D E H
G C
P A F B
…………………………… 8 分
………………………………………………… 9 分 ………………………………… 10 分
天津市红桥区 2016 年八年级下期末数学试题含答案
天津市红桥区 2016 年八年级下期末数学试题含答案
天津市红桥区 2下期末数学试题含答案
天津市红桥区 2016 年八年级下期末数学试题含答案
八年级数学(2016、06)
一、选择题:本大题共 10 个小题,每小题 3 分,共 30 分. (1)C (6 )A (2)D (7)A (3)C (8)D (4)B (9)B (5)B (10)D
b 2 4ac 4(k 1) 2 4 1 k 2 4 8k ,
…………………………………… 1 分 1 由已知, 0 ,解得 k . 2 结果 1 分)
……………… … 3 分(判别式符号 1 分,
(Ⅱ)根据题意, x1 x2 2(k 1) , x1 x2 k 2 , 积各 1 分) 由(Ⅰ)知, x1 x2 0 ,有 ………………………… 6 分 由已知,得 2(k 1) k 2 1 ,即 k 2 2k 3 0 . ……………………………… 7 分 解得 k 3 ,或 k 1 (舍去). ∴ k 的值为 3 .

天津市八年级下学期数学期中考试试卷

天津市八年级下学期数学期中考试试卷

天津市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列四个图形中,不是轴对称图形的是()A .B .C .D .2. (2分)在△ABC中,∠B=67°,∠C=33°,AD是△BAC的角平分线,则∠CAD的度数为()A . 40°B . 45°C . 59°D . 55°3. (2分)绝对值不大于2的整数的个数有()A . 3个B . 4个C . 5个D . 6个4. (2分)如图,在四边形ABCD中,点E在BC上,AB∥DE ,∠B=78º,∠C=60º,则∠EDC的度数为()A . 78ºB . 60ºC . 42ºD . 80º5. (2分) (2019八上·平潭月考) 如图,∠B=∠D=90°,CB=CD,∠1=30°,则∠2=()A . 30°B . 40°C . 50°D . 60°6. (2分) (2020九下·沈阳月考) 如图,在矩形ABCD中,AB=4,BC=8,对角线AC的垂直平分线分别交AD,AC于点E、O,连接CE,则CE的长为()A . 3B . 3.5C . 5D . 5.57. (2分) (2019七下·廉江期末) 一个篮球队共打12场比赛,其中赢的场数比平的场数要多,平的场数比输的场数宴多,则这个篮球队赢了的场数最少为().A . 6B . 5C . 4D . 38. (2分) (2016八上·镇江期末) 函数y= 中自变量x的取值范围是()A . x>4B . x≥4C . x≤4D . x≠49. (2分) (2019八上·固镇月考) 如图,直线与相交于点P,点P的横坐标为-1,则关于x的不等式的解集在数轴上表示正确的是()A .B .C .D .10. (2分) (2019八上·长兴期中) 如图,在Rt△ABC中,∠ACB=90°,分别以点B和点C为圆心,大于BC的长为半径作弧,两弧相交于D、E两点,作直线DE交AB于点F,交BC于点G,连结CF.若AC =3,CG=2,则CF的长为()A . 2.5B . 3C . 2D . 3.5二、填空题 (共9题;共14分)11. (1分) (2015八下·杭州期中) 在等腰△ABC中,三边分别为a、b、c,其中a=4,b、c恰好是方程x2﹣(2k+1)x+5(k﹣)=0的两个实数根,则△ABC的周长为________12. (1分)点A(m+5,m﹣4)在x轴上,则m=________;若点A在第三象限,则m的取值范围是________.13. (5分) (2019八上·惠山期中) 如图,等腰△ABC的周长为25,底边BC=7,AB的垂直平分线DE交AB 于点D,交AC于点E,则△BEC的周长为________.14. (1分) (2019七上·越城期末) 如图,直线AD与BE相交于点O,∠COD=90°,∠COE=70°,则∠AOB =________.15. (1分) (2020八上·拱墅期末) 若关于x的一元一次方程4x+m+1=x-1的解是负数,则m的取值范围是________。

新人教版2016-2017学年天津市红桥区第二学区八年级(下)期中数学试卷

新人教版2016-2017学年天津市红桥区第二学区八年级(下)期中数学试卷

2016-2017学年天津市红桥区第二学区八年级(下)期中数学试卷一、选择题(本大题共12小题,每小题3分,共36分) 1.(3分)下列各式是二次根式的是( )A B C D2.(3在实数范围内有意义,则x 的取值范围是( ) A .3x <B .3x …C .3x >D .3x …3.(3分)下列计算错误的是( )A .3B =C =D =4.(3( ) A .3和4之间B .4和5之间C .5和6之间D .6和7之间5.(3分)已知ABC ∆的三边长分别为a ,b ,c ,且满足2(5)|12|0a b -+-=,则(ABC ∆ ) A .不是直角三角形B .是以a 为斜边的直角三角形C .是以b 为斜边的直角三角形D .是以c 为斜边的直角三角形6.(3分)能判定四边形ABCD 为平行四边形的条件是( ) A .//AB CD ,AD BC =B .A B ∠=∠,CD ∠=∠ C .//AB CD ,C A ∠=∠D .AB AD =,CB CD =7.(3分)如图, 点P 是平面坐标系中一点, 则点P 到原点的距离是( )A .3BC D8.(3分)如图,四边形ABCD中,4=,13DA cm=,且CD cm=,3AB cmBC cm=,12∠=︒,则四边形ABCD的面积为()90ABCA.224cm D.236cm30cm C.26cm B.29.(3分)如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME MC=,以DE为边作正方形DEFG,点G在边CD上,则DG的长为()A1-B.3C1D110.(3分)如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB BC⊥时,它是菱形=时,它是菱形B.当AC BDC.当90=时,它是正方形∠=︒时,它是矩形D.当AC BDABC11.(3分)已知菱形ABCD中,对角线AC与BD交于点O,120AC=,则BAD∠=︒,4该菱形的面积是()A.B.16C.D.812.(3分)如图,四边形ABCD中,AB BC⊥于点E,=,90∠=∠=︒,BE ADABC CDA且四边形ABCD的面积为8,则(BE=)A.2B.3C.D.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算的结果等于.14.(3分)直角三角形的两边长分别为3cm、4cm,则第三边的长为.15.(3分)在平面直角坐标系中,点A,B,C的坐标分别是(2,5)A-,(3,1)B--,(1,1)C-,在平面直角坐标系内找一点D,使四边形ABCD是平行四边形,那么点D的坐标是.16.(3分)如图,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有米.17.(3分)实数a、b的化简结果为.18.(3的最小值为.三、解答题(本大题共5小题,共46分)19.(12分)计算下列各题(1112(32)3+(2(3(3-+(4)2(3(1-.20.(8分)如图,ABCD中,点E,F在对角线BD上,且BE DF=,求证:(1)AE CF=;(2)四边形AECF是平行四边形.21.(8分)如图,在平面直角坐标系中,长方形纸片的AB 边在y 轴上,BC 边在x 轴上,B 与坐标原点重合,折叠长方形ABCD 的一边AD ,使点D 落在BC 边的F 处,折痕为AE ,已知A 点坐标为(0,8),C 点坐标为(10,0). 求:E 点坐标.22.(8分)先化简,再求值:22211()22a ab b a b b a -+÷--,其中1a =,1b .23.(10分)如图,ABC ∆中,点O 为AC 边上的一个动点,过点O 作直线//MN BC ,设MN 交ACB ∠的外角平分线CF 于点F ,交ACB ∠内角平分线CE 于E . (1)求证:OE OF =;(2)当点O 运动到何处时,四边形AECF 是矩形,并证明你的结论;(3)在(2)的条件下,试猜想当ABC ∆满足什么条件时使四边形AECF 是正方形,请直接写出你的结论.2016-2017学年天津市红桥区第二学区八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分) 1.(3分)下列各式是二次根式的是( )A B C D【解答】解:A 、70-<不是二次根式;B 、当0m <C 、210a +>D 3,不是二次根式.故选:C .2.(3在实数范围内有意义,则x 的取值范围是( ) A .3x <B .3x …C .3x >D .3x …【解答】解:根据题意得,30x -…, 解得3x …. 故选:D .3.(3分)下列计算错误的是( )A .3B =C =D =【解答】解:A 、原式=,所以A 选项的计算错误;B 、原式B 选项的计算正确;C 、原式==C 选项的计算正确;D 、原式,所以D 选项的计算正确.故选:A .4.(3( )A .3和4之间B .4和5之间C .5和6之间D .6和7之间【解答】解:45∴<.故选:B .5.(3分)已知ABC ∆的三边长分别为a ,b ,c ,且满足2(5)|12|0a b -+-=,则(ABC ∆ ) A .不是直角三角形B .是以a 为斜边的直角三角形C .是以b 为斜边的直角三角形D .是以c 为斜边的直角三角形【解答】解:2(5)|12|0a b -+-=,5a ∴=,12b =,13c =,22251213+=,ABC ∴∆是以c 为斜边的直角三角形. 故选:D .6.(3分)能判定四边形ABCD 为平行四边形的条件是( ) A .//AB CD ,AD BC =B .A B ∠=∠,CD ∠=∠ C .//AB CD ,C A ∠=∠D .AB AD =,CB CD =【解答】解:根据平行四边形的判定可知:A 、若//AB CD ,AD BC =,则可以判定四边形是梯形,故A 错误, B 、两组邻角相等也有可能是等腰梯形,故B 错误.C 、可判定是平行四边形的条件,故C 正确.D 、此条件下无法判定四边形的形状,还可能是等腰梯形,故D 错误.故选:C .7.(3分)如图, 点P 是平面坐标系中一点, 则点P 到原点的距离是( )。

天津市天津市红桥区2016-2017学年第二学区八年级下学期期中数学试卷及参考答案

天津市天津市红桥区2016-2017学年第二学区八年级下学期期中数学试卷及参考答案
A . 6cm2 B . 30cm2 C . 24cm2 D . 36cm2 9. 如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG, 点G在边CD上,则DG的长为( )
A . ﹣1 B . 3﹣ C . +1 D . ﹣1 10. 如图,已知四边形ABCD是平行四边形,下列结论中不正确的是( )
+ =8 D . ×
4. 估计 的值是在( )
A . 3和4之间 B . 4和5之间 C . 5和6之间 D . 6和7之间 5. 已知△ABC的三边长分别为a,b,c,且满足(a﹣5)2+|b﹣12|+
=7 =0,则△ABC( )
A . 不是直角三角形 B . 是以a为斜边的直角三角形 C . 是以b为斜边的直角三角形 D . 是以c为斜边的直角三角形 6. 能判定四边形ABCD为平行四边形的条件是( )
天津市天津市红桥区2016-2017学年第二学区八年级下学期期中数学试卷
一、选择题
1. 下列各式是二次根式的是( )
A.
B. C.
D.
2. 若
在实数范围内有意义,则x的取值范围是( )
A . x<3 B . x≤3 C . x>3 D . x≥3
3. 下列计算错误的是( ) A . 3 ﹣ =3 B . ÷ =2 C .
A.2B.3C. D.
二、填空题
13. 计算( + )( ﹣ )的结果等于________. 14. 直角三角形的两边长分别为3cm、4cm,则第三边的长为________. 15. 在平面直角坐标系中,点A,B,C的坐标分别是A(﹣2,5),B(﹣3,﹣1),C(1,﹣1),在平面直角坐标 系内找一点D,使四边形ABCD是平行四边形,那么点D的坐标是________. 16. 如图,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有________米.

天津市红桥区2016年八年级下期末数学试题含答案(扫描版)

天津市红桥区2016年八年级下期末数学试题含答案(扫描版)

(15)10
(16) 4 m 6
三、解答题:本大题共 6 个小题,共 52 分.
(17)(本小题满分 8 分)
解:(Ⅰ)∵ 在六次成绩中,90 出现了 2 次,出现的次数最多, ∴ 这组数据的众数为90 . ………………………………………………2 分

将六次成绩按从小到大的顺序排列,处于中间的两个数分别为86 , 90 ,有
(Ⅱ)∵ 1 0 , 2
y
O
x
八年级数学(2016、06)
一、选择题:本大题共 10 个小题,每小题 3 分,共 30 分.
(1)C
(2)D
(3)C
(4)B
(6 )A
(7)ABiblioteka (8)D(9)B二、填空题:本大题共 6 个小题,每小题 3 分,共 18 分.
(11) x ≤ 2
(12) 1
(5)B (10)D
(13) y x 1(满足 k 0 , b 1 即可) (14) 6
86 90 88 , 2
∴ 这组数据的中位数为88 . ……………………………………………4 分
(Ⅱ)根据表中数据,小明四次平时成绩的平均值 x 80 86 84 90 85 .…… 4
6

(Ⅲ)根据题意,小明的总评成绩为85 0.3 90 0.3 95 0.4 90.5 . ……………
8分
(18)(本小题满分 8 分)
解:(Ⅰ)∵ 点 A ,点 B 在一次函数的图象上,
2k b 2 ,
k 1 ,
∴ b 1,
解得 2 b 1.
…………2 分
∴ 一 次函 数的解析式为 y 1 x 1. 2

天津市八年级数学下学期期中试题(含解析)新人教版

天津市八年级数学下学期期中试题(含解析)新人教版

天津一中2015-2016学年八年级数学下学期期中试题一.选择题1.下列根式不是最简二次根式的是()A.B.C.D.2.下列根式中,与是同类二次根式的是()A. B. C.D.3.△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题中的假命题是()A.如果∠C﹣∠B=∠A,则△ABC是直角三角形B.如果c2=b2﹣a2,则△ABC是直角三角形,且∠C=90°C.如果(c+a)(c﹣a)=b2,则△ABC是直角三角形D.如果∠A:∠B:∠C=5:2:3,则△ABC是直角三角形4.下列命题的逆命题是真命题的个数为()(1)对顶角相等;(2)等腰三角形的两个底角相等;(3)三组边分别相等的两个三角形全等.A.0个B.1个C.2个D.3个5.一个直角三角形,有两边长分别为6和8,下列说法正确的是()A.第三边为B.三角形的周长为25C.三角形的面积为48 D.第三边可能为106.顺次连接四边形四条边的中点,所得的四边形是菱形,则原四边形一定是()A.平行四边形B.对角线相等的四边形C.矩形 D.对角线互相垂直的四边7.已知一个菱形的周长是20cm,两条对角线的比是4:3,则这个菱形的面积是()A.12cm2B.24cm2C.48cm2D.96cm28.若=a, =b,则=()A. B. C.D.9.下列四个说法:①一组对角相等,一组邻角互补的四边形是平行四边形;②一组对边平行,另一组对边相等的四边形是平行四边形;③一组对边平行,一组对角相等的四边形是平行四边形;④一组对边相等,一组对角相等的四边形是平行四边形;其中说法正确的个数是()A.1个B.2个C.3个D.4个10.如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是()A.7 B.9 C.10 D.1111.如图所示,是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x,y表示直角三角形的两直角边(x>y),下列四个说法:①x2+y2=49,②x﹣y=2,③2xy+4=49,④x+y=9.其中说法正确的是()A.①② B.①②③C.①②④D.①②③④12.如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为()A.B.2C.2 D.3二.填空题13.函数y=有意义,则x范围是.14.若0<a<1,且,则= .15.如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AB的距离OH= .16.在平行四边形ABCD中,对角线AC,BD相交于点O,若BD与AC的和为18,CD:DA=2:3,△AOB的周长为13,则BC的长为.17.如图,圆柱形玻璃杯高为12cm、底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为cm.18.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的是.三、解答题19.有10个边长为1的正方形,排列形式如下左图.请在左图中把它们分割,使之拼接成一个大正方形,并把分割后的图形画在右图的正方形网格中.(正方形网格中的每个小正方形边长都是1,每个小格顶点为格点,要求以格点为顶点画大正方形)20.计算:(1)()()﹣()2(2)﹣.21.先化简,再求值:(÷,其中x=.22.如图,四边形ABCD是平行四边形,E、F是对角线AC上的两点,∠1=∠2.(1)求证:AE=CF;(2)求证:四边形EBFD是平行四边形.23.如图,点E是正方形ABCD内一点,△CDE是等边三角形,连接EB、EA,延长BE交边AD点于点F.(1)求证:△ADE≌△BCE;(2)求∠AFB的度数.24.如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过A点作AG∥DB交CB的延长线于点G.(1)求证:DE∥BF;(2)若∠G=90°,求证:四边形DEBF是菱形;(3)请利用备用图分析,在(2)的条件下,若BE=4,∠DEB=120°,点M为BF的中点,当点P在BD边上运动时,求PF+PM的最小值,并求出此时线段BP的长.25.将矩形纸片OABC放在平面直角坐标系中,O为原点,点A在y轴上,点C在x轴上,点B坐标是(8,6),点P是边AB上的一个动点,将△OAP沿OP折叠,使点A落在点Q处.(1)如图1,当点Q恰好落在OB上时,求点P的坐标;(2)如图2,当点P是AB中点时,直线OQ交BC于点M点.①求证:MB=MQ;②求点Q的坐标.2015-2016学年天津一中八年级(下)期中数学试卷参考答案与试题解析一.选择题1.下列根式不是最简二次根式的是()A.B.C.D.【考点】最简二次根式.【分析】根据最简二次根式的判断标准即可得到正确的选项.【解答】解: =.故选D2.下列根式中,与是同类二次根式的是()A. B. C.D.【考点】同类二次根式.【分析】运用化简根式的方法化简每个选项.【解答】解:A、=2,故A选项不是;B、=2,故B选项是;C、=,故C选项不是;D、=3,故D选项不是.故选:B.3.△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题中的假命题是()A.如果∠C﹣∠B=∠A,则△ABC是直角三角形B.如果c2=b2﹣a2,则△ABC是直角三角形,且∠C=90°C.如果(c+a)(c﹣a)=b2,则△ABC是直角三角形D.如果∠A:∠B:∠C=5:2:3,则△ABC是直角三角形【考点】勾股定理的逆定理;三角形内角和定理.【分析】直角三角形的判定方法有:①求得一个角为90°,②利用勾股定理的逆定理.【解答】解:A、根据三角形内角和定理,可求出角C为90度,故正确;B、解得应为∠B=90度,故错误;C、化简后有c2=a2+b2,根据勾股定理,则△ABC是直角三角形,故正确;D、设三角分别为5x,3x,2x,根据三角形内角和定理可求得三外角分别为:90度,36度,54度,则△ABC是直角三角形,故正确.故选B.4.下列命题的逆命题是真命题的个数为()(1)对顶角相等;(2)等腰三角形的两个底角相等;(3)三组边分别相等的两个三角形全等.A.0个B.1个C.2个D.3个【考点】命题与定理.【分析】利用对顶角的性质、等腰三角形的性质及三角形的全等的判定方法分别判断后即可确定正确的选项.【解答】解:(1)对顶角相等,正确,为真命题;(2)等腰三角形的两个底角相等,正确,为真命题;(3)三组边分别相等的两个三角形全等,正确,为真命题,故选D.5.一个直角三角形,有两边长分别为6和8,下列说法正确的是()A.第三边为B.三角形的周长为25C.三角形的面积为48 D.第三边可能为10【考点】勾股定理.【分析】分情况讨论:主要看两个数中较大的数的情况,8是斜边和8不是斜边两种情况求解.【解答】解:当8是直角边时,第三边==10,【解答】当8是斜边时,第三边==2.故选D.6.顺次连接四边形四条边的中点,所得的四边形是菱形,则原四边形一定是()A.平行四边形B.对角线相等的四边形C.矩形 D.对角线互相垂直的四边【考点】菱形的判定;三角形中位线定理.【分析】根据三角形中位线的性质及菱形的性质,可证四边形的对角线相等.【解答】解:∵四边形EFGH是菱形,∴EH=FG=EF=HG=BD=AC,故AC=BD.故选B.7.已知一个菱形的周长是20cm,两条对角线的比是4:3,则这个菱形的面积是()A.12cm2B.24cm2C.48cm2D.96cm2【考点】菱形的性质.【分析】设菱形的对角线分别为8x和6x,首先求出菱形的边长,然后根据勾股定理求出x 的值,最后根据菱形的面积公式求出面积的值.【解答】解:设菱形的对角线分别为8x和6x,已知菱形的周长为20cm,故菱形的边长为5cm,根据菱形的性质可知,菱形的对角线互相垂直平分,即可知(4x)2+(3x)2=25,解得x=1,故菱形的对角线分别为8cm和6cm,所以菱形的面积=×8×6=24cm2,故选B.8.若=a, =b,则=()A. B. C.D.【考点】算术平方根;二次根式的性质与化简.【分析】先将被开方数0.9化成分数,观察四个选项,再化简为,开方,注意要把化为,代入即可.【解答】解:=====;故选C.9.下列四个说法:①一组对角相等,一组邻角互补的四边形是平行四边形;②一组对边平行,另一组对边相等的四边形是平行四边形;③一组对边平行,一组对角相等的四边形是平行四边形;④一组对边相等,一组对角相等的四边形是平行四边形;其中说法正确的个数是()A.1个B.2个C.3个D.4个【考点】平行四边形的判定.【分析】平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.根据平行四边形的判定,逐个验证即可.【解答】解:①一组对角相等,一组邻角互补.可得到任意两对邻角互补,那么可得到两组对边分别平行,为平行四边形,此选项正确;②一组对边平行,另一组对边相等的四边形不是平行四边形,此选项错误;③由一组对边平行,一组对角相等可得另一组对边平行,所以是平行四边形,此选项正确;④一组对边相等,一组对角相等的四边形不能证明另一组对边也相等或平行,所以该四边形不一定是平行四边形,故本选项错误;所以①③共2项正确,故选B.10.如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是()A.7 B.9 C.10 D.11【考点】三角形中位线定理;勾股定理.【分析】根据勾股定理求出BC的长,根据三角形的中位线定理得到HG=BC=EF,EH=FG=AD,求出EF、HG、EH、FG的长,代入即可求出四边形EFGH的周长.【解答】解:∵BD⊥DC,BD=4,CD=3,由勾股定理得:BC==5,∵E、F、G、H分别是AB、AC、CD、BD的中点,∴HG=BC=EF,EH=FG=AD,∵AD=6,∴EF=HG=2.5,EH=GF=3,∴四边形EFGH的周长是EF+FG+HG+EH=2×(2.5+3)=11.故选D.11.如图所示,是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x,y表示直角三角形的两直角边(x>y),下列四个说法:①x2+y2=49,②x﹣y=2,③2xy+4=49,④x+y=9.其中说法正确的是()A.①② B.①②③C.①②④D.①②③④【考点】勾股定理.【分析】大正方形的面积是49,则其边长是7,显然,利用勾股定理可得①x2+y2=49;小正方形的面积是4,则其边长是2,根据图可发现y+2=x,即②x﹣y=2;还可以得出四个三角形的面积+小正方形的面积=大正方形的面积,即4×xy+4=49,化简得③2xy+4=49;其中④x+y=,故不成立.【解答】解:①大正方形的面积是49,则其边长是7,显然,利用勾股定理可得x2+y2=49,故选项①正确;②小正方形的面积是4,则其边长是2,根据图可发现y+2=x,即x﹣y=2,故选项②正确;③根据图形可得四个三角形的面积+小正方形的面积=大正方形的面积,即4×xy+4=49,化简得2xy+4=49,故选项③正确;④,则x+y=,故此选项不正确.故选B.12.如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为()A.B.2C.2 D.3【考点】翻折变换(折叠问题).【分析】由折叠的性质得出△CBE≌△COE,再由全等三角形的性质得出∠B=∠COE=90° CO=CB,∠BCE=∠ACE,证出OE是AC的垂直平分线,由线段垂直平分线的性质得出CE=AE,由等边对等角得出∠ACE=∠CAE,因此∠BCE=∠ACE=∠CAE,由直角三角形的性质得出∠BCE=30°,然后解直角三角形求出折痕CE的长即可.【解答】解:由折叠的性质得:△CBE≌△COE,∴∠B=∠COE=90°,CO=CB=3,∠BCE=∠ACE,∵O是矩形ABCD中心,∴CO=AO,∴OE垂直平分AC,∴CE=AE,∴∠ACE=∠CAE,∴∠BCE=∠ACE=∠CAE,在Rt△BCE中,∠BCE=30°,∵BC=3,∴CE==2;故选:B.二.填空题13.函数y=有意义,则x范围是x≥0且x≠4 .【考点】函数自变量的取值范围.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,就可以得到,从而求解.【解答】解:根据二次根式的意义和分式有意义的条件,可得,解得x≥0且x≠4.所以自变量的范围是x≥0且x≠4.故答案为:x≥0且x≠4.14.若0<a<1,且,则= ﹣2 .【考点】完全平方公式.【分析】根据完全平方公式把﹣两边平方并代入数据求出值,再根据平方根的定义求解.【解答】解:∵a+=6,∴(﹣)2=a﹣2+=6﹣2=4,∵0<a<1,∴0<<1,>1,∴﹣=﹣=﹣2.故答案为:﹣2.15.如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AB的距离OH= .【考点】菱形的性质;点到直线的距离;勾股定理.【分析】因为菱形的对角线互相垂直平分,菱形的四边相等,根据面积相等,可求出OH的长.【解答】解:∵AC=8,BD=6,∴BO=3,AO=4,∴AB=5.AO?BO=AB?OH,OH=.故答案为:.16.在平行四边形ABCD中,对角线AC,BD相交于点O,若BD与AC的和为18,CD:DA=2:3,△AOB的周长为13,则BC的长为 6 .【考点】平行四边形的性质.【分析】根据平行四边形的性质可得AB=CD,AD=BC,AO=CO=AC,BO=DO=,然后再根据条件求出AO+BO的长,进而可得AB的长,从而得到CD的长,再根据CD:DA=2:3可得AD的长,进而可得BC的长.【解答】解:如图:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,AO=CO=AC,BO=DO=,∵BD与AC的和为18,∴AO+BO=18=9,∵△AOB的周长为13,∴AB=13﹣9=4,∴CD=4,∵CD:DA=2:3,∴AD=6,∴BC=6,故答案为:6.17.如图,圆柱形玻璃杯高为12cm、底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为15 cm.【考点】平面展开-最短路径问题.【分析】过C作CQ⊥EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则AP+PC就是蚂蚁到达蜂蜜的最短距离,求出A′Q,CQ,根据勾股定理求出A′C即可.【解答】解:沿过A的圆柱的高剪开,得出矩形EFGH,过C作CQ⊥EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则AP+PC 就是蚂蚁到达蜂蜜的最短距离,∵AE=A′E,A′P=AP,∴AP+PC=A′P+PC=A′C,∵CQ=×18cm=9cm,A′Q=12cm﹣4cm+4cm=12cm,在Rt△A′QC中,由勾股定理得:A′C==15cm,故答案为:15.18.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的是①②③.【考点】翻折变换(折叠问题);正方形的性质.【分析】根据翻折变换的性质和正方形的性质可证△ABG≌△AFG;在直角△ECG中,根据勾股定理可证BG=GC;通过证明∠AGB=∠AGF=∠GFC=∠GCF,由平行线的判定可得AG∥CF;由于S△FGC=S△GCE﹣S△FEC,求得面积比较即可.【解答】解:①正确.因为AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴△ABG≌△AFG;②正确.因为:EF=DE=CD=2,设BG=FG=x,则CG=6﹣x.在直角△ECG中,根据勾股定理,得(6﹣x)2+42=(x+2)2,解得x=3.所以BG=3=6﹣3=GC;③正确.因为CG=BG=GF,所以△FGC是等腰三角形,∠GFC=∠GCF.又∠AGB=∠AGF,∠AGB+∠AGF=180°﹣∠FGC=∠GFC+∠GCF,∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;④错误.过F作FH⊥DC,∵BC⊥DH,∴FH∥GC,∴△EFH∽△EGC,∴=,EF=DE=2,GF=3,∴EG=5,∴△EFH∽△EGC,∴相似比为: ==,∴S△FGC=S△GCE﹣S△FEC=×3×4﹣×4×(×3)=≠3.故答案为:①②③.三、解答题19.有10个边长为1的正方形,排列形式如下左图.请在左图中把它们分割,使之拼接成一个大正方形,并把分割后的图形画在右图的正方形网格中.(正方形网格中的每个小正方形边长都是1,每个小格顶点为格点,要求以格点为顶点画大正方形)【考点】图形的剪拼.【分析】直接利用网格结合正方形面积得出其边长,即可得出答案.【解答】解:如图所示:四边形ABCD即为所求.20.计算:(1)()()﹣()2(2)﹣.【考点】二次根式的混合运算;零指数幂.【分析】(1)直接利用乘法公式化简二次根式,进而合并求出答案;(2)首先化简二次根式,进而合并同类二次根式求出答案.【解答】解:(1)()()﹣()2 =3﹣5﹣(10+2﹣4)=﹣2﹣12+4=﹣14+4;(2)﹣=9﹣1﹣+1+﹣1=8.21.先化简,再求值:(÷,其中x=.【考点】分式的化简求值.【分析】先算括号里面的,再算除法,分式化为最简根式后,把x的值代入进行计算即可.【解答】解:原式=?=?=?=2x,当x=时,原式==﹣1﹣.22.如图,四边形ABCD是平行四边形,E、F是对角线AC上的两点,∠1=∠2.(1)求证:AE=CF;(2)求证:四边形EBFD是平行四边形.【考点】平行四边形的判定与性质;全等三角形的判定与性质.【分析】(1)通过全等三角形△ADE≌△CBF的对应边相等证得AE=CF;(2)根据平行四边形的判定定理:对边平行且相等的四边形是平行四边形证得结论.【解答】(1)证明:如图:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∠3=∠4,∵∠1=∠3+∠5,∠2=∠4+∠6,∠1=∠2∴∠5=∠6∵在△ADE与△CBF中,∴△ADE≌△CBF(ASA),∴AE=CF;(2)证明:∵∠1=∠2,∴DE∥BF.又∵由(1)知△ADE≌△CBF,∴DE=BF,∴四边形EBFD是平行四边形.23.如图,点E是正方形ABCD内一点,△CDE是等边三角形,连接EB、EA,延长BE交边AD点于点F.(1)求证:△ADE≌△BCE;(2)求∠AFB的度数.【考点】正方形的性质;全等三角形的判定与性质;等边三角形的性质.【分析】(1)由题意正方形ABCD的边AD=DC,在等边三角形CDE中,CE=DE,∠EDC等于∠ECD,即能证其全等.(2)根据等边三角形、等腰三角形、平行线的角度关系,可以求得∠AFB的度数.【解答】(1)证明:∵ABCD是正方形∴AD=BC,∠ADC=∠BCD=90°又∵三角形CDE是等边三角形∴CE=DE,∠EDC=∠ECD=60°∴∠ADE=∠ECB∴△ADE≌△BCE.(2)解:∵△CDE是等边三角形,∴CE=CD=DE,∵四边形ABCD是正方形∴CD=BC,∴CE=BC,∴△CBE为等腰三角形,且顶角∠ECB=90°﹣60°=30°∴∠EBC==75°∵AD∥BC∴∠AFB=∠EBC=75°.24.如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过A点作AG∥DB交CB的延长线于点G.(1)求证:DE∥BF;(2)若∠G=90°,求证:四边形DEBF是菱形;(3)请利用备用图分析,在(2)的条件下,若BE=4,∠DEB=120°,点M为BF的中点,当点P在BD边上运动时,求PF+PM的最小值,并求出此时线段BP的长.【考点】四边形综合题.【分析】(1)根据平行四边形的性质得到DF=BE,AB∥CD,根据平行四边形的判定定理证明四边形DEBF是平行四边形,根据平行四边形的性质证明结论;(2)根据矩形的判定定理得到四边形AGBD是矩形,根据直角三角形的性质得到ED=EB,证明结论;(3)连接EM交BD于P,根据轴对称的性质证明此时PF+PM的值最小,根据等边三角形的性质计算即可.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∵E、F分别为边AB、CD的中点,∴DF=BE,又AB∥CD,∴四边形DEBF是平行四边形,∴DE∥BF;(2)∵AG∥DB,AD∥CG,∴四边形AGBD是平行四边形,∵∠G=90°,∴平行四边形AGBD是矩形,∴∠ADB=90°,又E为边AB的中点,∴ED=EB,又四边形DEBF是平行四边形,∴四边形DEBF是菱形;(3)连接EF,连接EM交BD于P,∵四边形DEBF是菱形,∴点E和点F关于BD轴对称,此时PF+PM的值最小,∵四边形DEBF是菱形,∠DEB=120°,∴∠EBF=60°,∴△BEF是等边三角形,又BE=4,∴EM=2,即PF+PM的最小值为2,由题意得,点P为△EBF的重心,∴BP=.25.将矩形纸片OABC放在平面直角坐标系中,O为原点,点A在y轴上,点C在x轴上,点B坐标是(8,6),点P是边AB上的一个动点,将△OAP沿OP折叠,使点A落在点Q处.(1)如图1,当点Q恰好落在OB上时,求点P的坐标;(2)如图2,当点P是AB中点时,直线OQ交BC于点M点.①求证:MB=MQ;②求点Q的坐标.【考点】相似形综合题.【分析】(1)由点B坐标和矩形性质得AO=BC=6,OC=AB=8,再利用勾股定理计算出OB=10,接着根据折叠得性质可得OQ=OA=6,PQ=AP,则BQ=OB﹣OQ=4,设AP=x,得到PQ=x,BP=8﹣x,然后在Rt△PQB中利用勾股定理得到,x2+42=(8﹣x)2,再解方程求出x即可得到点P的坐标;°,然后根据“HL”证明Rt△(2)①连结PM,如图,由折叠性质得PQ=PA,∠PQM=OAP=90PQM≌Rt△PBM即可得到BM=MQ;②过Q作QN⊥OC,垂足为N,如图,设BM=MQ=m,CM=BC﹣BM=6﹣m,在,则OM=OQ+QM=6+mRt△OMC中利用勾股定理得到82+(6﹣m)2=(6+m)2,解得m=,则MC=,OM=,再证明Rt△OQN∽Rt△OMC,利用相似比可计算出QN=,ON=,于是可得点Q的坐标是(,).【解答】(1)解:∵四边形ABCD为矩形,点B坐标是(8,6),∴AO=BC=6,OC=AB=8,在Rt△OCB中,OB==10,∵△OAP沿OP折叠,使点A落在点Q处,∴OQ=OA=6,PQ=AP,∴BQ=OB﹣OQ=4,设AP=x,则PQ=x,BP=8﹣x,在Rt△PQB中,∵PQ2+QB2=PB2,∴x2+42=(8﹣x)2,解得x=3,∴点P的坐标为(3,6);(2)①证明:连结PM,如图,∵△OAP沿OP折叠,使点A落在点Q处,°,∴PQ=PA,∠PQM=OAP=90∵点P是AB中点,∴PA=PB,∴PB=PQ,在Rt△PQM和Rt△PBM中,∴Rt△PQM≌Rt△PBM,∴BM=MQ;②解:过Q作QN⊥OC,垂足为N,如图,,则OM=OQ+QM=6+m,CM=BC﹣BM=6﹣m,设BM=MQ=m在Rt△OMC中,∵OC2+CM2=OM2,∴82+(6﹣m)2=(6+m)2,解得m=,∴MC=6﹣=,OM=6+=,∵∠QON=∠MOC,∴Rt△OQN∽Rt△OMC,∴,即==,∴QN=,ON=,∴点Q的坐标是(,).21 / 21。

天津市红桥区八年级数学下册期中复习试卷(2)有答案【精校】.doc

天津市红桥区八年级数学下册期中复习试卷(2)有答案【精校】.doc

八年级数学期中复习试卷一、选择题:1.若式子在实数范围内有意义,则x的取值范围是()A.x>3 B.x≥3 C.x>-3 D.x≥-32.如果,那么()A.B.C.D.3.下列长度的3条线段能构成直角三角形的是()①8,15,17;②4,5,6;③7.5,4,8.5;④24,25,7;⑤5,8,17.A.①②④B.②④⑤C.①③⑤D.①③④4.如图,在▱ABCD中,AB>AD,按以下步骤作图:以点A为圆心,小于AD的长为半径画弧,分别交AB、AD于点E、F;再分别以点E、F为圆心,大于EF的长为半径画弧,两弧交于点G;作射线AG交CD于点H,则下列结论中不能由条件推理得出的是()A.AG平分∠DAB B.AD=DH C.DH=BC D.CH=DH5.下列各式计算正确的是()A. B.(﹣3)﹣2=﹣C.a0=1 D.A.163B.16 C.83D.8如图,在波平如镜的湖面上,有一朵盛开的美丽的红莲,它高出水面3尺.突然一阵大风吹过,红莲被吹至一边,花朵刚好齐及水面,如果知道红莲移动的水平距离为6尺,则水深是()尺A.3.5 B.4 C.4.5 D.58.如图,把长方形纸片ABCD折叠,使其对角顶点C与A重合.若长方形的长BC为8,宽AB为4,则折痕EF的长度为()A.5 B.3 C.2 D.39.下列命题中,不正确的是()A.有一个角是60°的等腰三角形是等边三角形B.一组对边平行且一组对角相等的四边形是平行四边形C.对角线互相垂直且相等的四边形是矩形D.对角线相等的菱形是正方形10.如图,在平行四边形ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是( )①2∠DCF=∠BCD ;②EF=CF ;③S △BEC =2S △CEF ;④∠DFE=3∠AEF .A .①②B .②③④C .①②④D .①②③④ 二、填空题: 11.若2)3( x =3﹣x ,则x 的取值范围是 .12.计算:(﹣1)0+|﹣4|﹣= .13.如图所示,已知四边形ABCD 是等边长为2的正方形,AP=AC ,则数轴上点P 所表示的数是________.14.如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,请你添加一个适当的条件 使其成为菱形(只填一个即可).15.如图,将矩形纸片ABCD 折叠,使边AB 、CB 均落在对角线BD 上,得折痕BE 、BF ,则∠EBF= °.16.如图,菱形ABCD 中,对角线AC=6,BD=8,M 、N 分别是BC 、CD 的中点,P 是线段BD 上的一个动点,则PM+PN 的最小值是______.三、解答题:17.计算:18.求值:当时,求代数式的值.19.已知在△ABC中,a=m2-n2,b=2mn,c=m2+n2,其中m,n是正整数,且m>n.试判断:△ABC是否为直角三角形?20.如图,平行四边形ABCD,E、F两点在对角线BD上,且BE=DF,连接AE,EC,CF,FA.(1)求证:四边形AECF是平行四边形.(2)若AF=EF,∠BAF=108°,∠CDF=36°,直接写出图中所有的等腰三角形.21.如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.(1)求证:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.22.如图,在矩形ABCD中,点E为CD上一点,将△BCE沿BE翻折后点C恰好落在AD边上的点F处,将线段EF绕点F旋转,使点E落在BE上的点G处,连接CG.(1)证明:四边形CEFG是菱形;(2)若AB=8,BC=10,求四边形CEFG的面积;(3)试探究当线段AB与BC满足什么数量关系时,BG=CG,请写出你的探究过程.参考答案1.D2.B.3.D4.D5.A6.C;7.C8.C.9.C10.B11.D12.C.13.答案为:x≤3.14.答案为:5﹣2.15.答案为:1﹣2.16.答案为:AC⊥BC或∠AOB=90°或AB=BC17.答案为:45°18.答案为:5.19.解:原式=20.解:则21.∵a=m2-n2,b=2mn,c=m2+n2,∴a2+b2=(m2-n2)2+4m2n2=m4+n4-2m2n2+4m2n2=m4+n4+2m2n2=(m2+n2)2=c2.∴△ABC是为直角三角形.22.(1)证明:如图,连接AC交BD于点O,在▱ABCD中,OA=OC,OB=OD,∵BE=DF,∴OB﹣BE=OD﹣DF,即OE=OF,∴四边形AECF是平行四边形(对角线互相平分的四边形是平行四边形);(2)解:∵AB∥CD,∴∠ABF=∠CDF=36°,∴∠AFB=180°﹣108°﹣36°=36°,∴AB=AF,∵AF=EF,∴△ABF和△AFE是等腰三角形,同理△EFC与△CDE是等腰三角形.23.解:(1)证明:∵△ABC绕A点旋转得到△ADE,∴AB=AD,AC=AE,∠BAC=∠DAE,∴∠BAC+∠BAE=∠DAE+∠BAE,∴∠EAC=∠DAB.又AB=AC,∴AE=AD,∴△AEC≌△ADB.(2)∵四边形ADFC是菱形,且∠BAC=45°,∴∠DBA=∠BAC=45°,又由旋转知AB=AD,∴∠DBA=∠BDA=45°,∴△BAD是等腰直角三角形.∴BD2=AB2+AD2=22+22=8,∴BD=22.∵四边形ADFC是菱形,∴AD=DF=FC=AC=AB=2,∴BF=BD-DF=22-2.(1)证明:根据翻折的方法可得EF=EC,∠FEG=∠CEG.又∵GE=GE,∴△EFG≌△ECG.∴FG=GC. ∵线段FG是由EF绕F旋转得到的,∴EF=FG.∴EF=EC=FG=GC.∴四边形FGCE是菱形.(2)连接FC交GE于O点.根据折叠可得BF=BC=10.∵AB=8∴在Rt△ABF中,根据勾股定理得AF=6.∴FD=AD-AF=10-6=4.设EC=x,则DE=8-x,EF=x,在Rt△FDE中,FD2+DE2=EF2,即42+(8-x)2=x2.解得x=5.即CE=5.S菱形CEFG=CE·FD=5×4=20.(3)当=时,BG=CG,理由:由折叠可得BF=BC,∠FBE=∠CBE,∵在Rt△ABF中,=,∴BF=2AF.∴∠ABF=30°.又∵∠ABC=90°,∴∠FBE=∠CBE=30°,EC=0.5BE.∵∠BCE=90°,∴∠BEC=60°.又∵GC=CE,∴△GCE为等边三角形.∴GE=CG=CE=0.5BE.∴G为BE的中点.∴CG=BG=0.5BE.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
8. (3 分)如图,▱ABCD 中,E,F 是对角线 BD 上的两点,如果添加一个条件, 使△ABE≌△CDF,则添加的条件不能为( )
A.BE=DF
B.BF=DE
C.AE=CF
D.∠1=∠2 ,则
9. (3 分)将矩形纸片 ABCD 按如图方式折叠,得到菱形 AECF,若 AD= AB 的长为( )
(Ⅱ)求本次随机抽取的零件长度的平均数、中位数和众数; (Ⅲ)根据样本数据,估计该批零件中长度为 52mm 的零件件数.
22. (10 分)在▱ABCD 中,AB=5,BC=10,BC 边上的高 AM=4,过 BC 边上的动 点 E(不与点 B,C 重合)作直线 AB 的垂线,EF 与 DC 的延长线相交于点 G. (Ⅰ)如图①,当点 E 与点 M 重合时,求 EF 的长; (Ⅱ)如图②,当点 E 为 BC 的中点时,连结 DE,DF,求△DEF 的面积; (Ⅲ)当点 E 在 BC 上运动时,△BEF 与△CEG 的周长之间有何关系?请说明理

【解答】解:作底边上的高并设此高的长度为 x,根据勾股定理得:62+x2=102, 解得:x=8. 故选:B.
三、解答题:本大题共 6 个小题,共 52 分,解答应写出文字说明、证明过程或 演算步骤 17. (8 分)化简下列各式: (Ⅰ) (Ⅱ) (Ⅲ) (Ⅳ) ÷ • ; .
18. (8 分)计算下列各式. (Ⅰ) ( (Ⅱ) (a ﹣ + ) (4 + )÷ )﹣ . ;
19. (8 分)在▱ABCD 中,点 E,F 分别在 AB,CD 上,∠ADE=∠CBF. (Ⅰ)求证:AE=CF; (Ⅱ)若 DF=BF,求证:EF⊥BD.
3. (3 分)等腰三角形的腰长为 10,底长为 12,则其底边上的高为( A.13 B.8 C.25 D.64 )
4. (3 分)下列四组线段中,能组成直角三角形的是( A.a=2,b=2,c=3 B.a=2,b=3,c=4 C.a=4,b=5,c=6 D.a=5,b=12,c=13
5. (3 分)如图,在平行四边形 ABCD 中,∠B=80°,AE 平分∠BAD 交 BC 于点 E, CF∥AE 交 AD 于点 F,则∠1=( )
15. (3 分)在▱ABCD 中,对角线 AC=10,BD=8,设边 AD 的长度为 a,则 a 的取 值范围是 .
16. (3 分)如图,在▱ABCD 中,∠BAD 的平分线与 BC 的延长线交于点 E,与 DC 交于点 F,且点 F 为边 DC 的中点,DG⊥AE,垂足为 G,若 DG=1,EF=2 AB 的长为 . ,则
2015-2016 学年天津市红桥区八年级(下)期中数学试卷
一、选择题(本大题共 10 小题,每小题 3 分,共 30 分,在每小题给出的四个 选项中,只有一项是符合题目要求的) 1. (3 分)下列二次根式中最简二次根式的是( A. B. C. D. ) =|x| D. ( )2=x ) )
2. (3 分)下列各式中一定成立的是( A. =﹣3 B. + = C.
4
由.
ቤተ መጻሕፍቲ ባይዱ
5
2015-2016 学年天津市红桥区八年级(下)期中数学试卷
参考答案与试题解析
一、选择题(本大题共 10 小题,每小题 3 分,共 30 分,在每小题给出的四个 选项中,只有一项是符合题目要求的) 1. (3 分)下列二次根式中最简二次根式的是( A. B. C. D. )
【解答】解:A、被开方数不含分母,被开方数不含开的尽的因数或因式,故 A 正确; B、被开方数含开的尽的因数或因式,故 B 错误; C、被开方数含开的尽的因数或因式,故 C 错误; D、被开方数含分母,故 D 正确; 故选:A.
2. (3 分)下列各式中一定成立的是( A. =﹣3 B. + = C.
) =|x| D. ( )2=x
【解答】解:A、原式=3,所以 A 选项错误; B、 与 不能合并,所以 B 选项错误;
C、原式=|x|,所以 C 选项正确; D、原式=﹣x,所以 D 选项错误. 故选:C.
3. (3 分)等腰三角形的腰长为 10,底长为 12,则其底边上的高为( A.13 B.8 C.25 D.64
A.40° B.50° C.60° D.80° 6. (3 分)已知一组数据:1,4,x,2,5,7,若这组数据的众数为 2,则这组 数据的平均数、中位数分别是( A.3.5,2 B.3.5,3 C.4,3 ) D.3.5,4
7. (3 分)某射击队从甲、乙、丙、丁四位选手中选拔一人参加市级比赛,在选 拔赛中,每人射击 10 次,计算他们成绩的平均数(环)分别是 8.2,8.0,8.2, 8.0,方差分别为 2.0,1.8,1.5,1.6,则最合适的人选是( A.甲 B.乙 C.丙 D.丁 )
13. (3 分)10 名射击运动员第一轮比赛的成绩如表所示: 环数 人数 7 3 8 2 9 3 10 2 (环)
则他们本轮比赛的平均成绩是
14. (3 分)如图,在长方形 ABCD 中,AB=3,AD=3,AB 在数轴上,以点 A 为圆
2
心,对角线 AC 的长为半径作弧,交数轴的正半轴于点 E,则 E 在数轴上对应的 数为 .
3
20. (8 分) 如图, 在正方形 ABCD 中, E 为 BC 的中点, F 是 CD 上一点, 且∠AEF=90°, 求证:CF= AB.
21. (10 分)一批零件共有 3000 件,为了检查这批零件的质量,从中随机抽取 一部分测量了它们的长度(单位:mm) ,并根据得到的数据,绘制出如下的统计 图①和图②. (Ⅰ)本次随机抽取的零件的件数为 ,图①中 m 的值为 ;
A.2
B.2
C.3
D.3
10. (3 分) 如图, 在边长为 4 的正方形 ABCD 中, M 为边 AB 上的点, 且 AM= BM, 延长 MB 至点 E,使 ME=MC,连接 EC,则点 M 到直线 CE 的距离是( )
A.2
B.
C.5
D.2
二、填空题:本大题共 6 个小题,每小题 3 分,共 18 分 11. (3 分)若式子 12. (3 分)计算( 在实数范围内有意义,则 a 的取值范围是 ﹣ )÷ 的值是 . .
相关文档
最新文档