垂直与平行精品PPT课件
合集下载
《平行与垂直》课件
物的高度、柱子和横梁等元素可以保持垂直,以实现视觉上的突出和力
量感。
02
城市规划
在城市规划中,垂直线用于划分不同的功能区域和空间层次。例如,商
业区、住宅区和公园等区域可以沿着垂直轴线进行布局,以实现空间的
有效利用和城市的可持续发展。
03
交通工程
在道路和桥梁设计中,垂直线用于支撑和连接不同的交通层面。这样可
如果一条直线与平面内的一条直 线垂直,那么这条直线与该平面
垂直。
斜线与平面
如果一条直线与平面内的两条相交 的直线都垂直,那么这条直线与该 平面垂直。
三垂线定理
如果平面内的一条直线与平面的一 条斜线在平面内的射影垂直,那么 这条直线与斜线垂直。
04
平行与垂直的应用
平行的应用
建筑学
在建筑设计中,平行线可以用来 构建对称、平衡和和谐的外观。 例如,窗户、门和墙面的线条可 以保持平行,以实现视觉上的统
填空题:若直线a与直线b平 行,且被直线c所截,则同位 角____,内错角____,同旁内
角____。
答案
判断题:错。应该是两条平行线被第三条直线所截,同位角相等。
选择题:B。
填空题:相等,相等,互补。
THANKS
感谢观看
一和美感。
交通工程
在道路和轨道设计中,平行线用 于规划车辆行驶的方向和路线。 这样可以确保交通流畅,减少事
故风险,并提高运输效率。
艺术与设计
在绘画、摄影和图形设计中,平 行线可以用来创造平衡、稳定和 动态的效果。艺术家可以利用平 行线来表达特定的主题和情感。
垂直的应用
01
建筑学
在建筑设计中,垂直线用于构建高大、雄伟和稳定的外观。例如,建筑
《平行与垂直》课件
Q&A
1 答疑解惑
解答听众在学习过程中提出的问题。
2 互动交流
与听众进行互动,促进学习交流。
2
判定平行与垂直的方法
讨论如何相互判定两条线段是否平行或垂。
3
实例分析
通过实际案例,展示平行和垂直的联合应用。
总结
1 平行和垂直的作用与重要性
总结平行与垂直在几何与日常生活中的重要作用。
2 跨领域的应用实例
展示平行与垂直在不同领域中的实际应用示例。
3 总结和展望
总结课件内容,并展望平行与垂直的未来发展。
展示生活中常见的平行线的实际应用,如建筑、城市规划等。
垂直
垂直的定义与性质
讨论垂直线段的定义及其相关 性质。
垂直线的判定方法
讲解如何判断两条线段是否垂 直,如角度、斜率等。
垂直线的应用场景
展示垂直线在不同领域的应用, 如建筑设计、电子工程等。
平行与垂直的关系
1
平行和垂直的比较
对比平行和垂直的特点,探讨二者之间的异同。
《平行与垂直》PPT课件
这个PPT课件将介绍平行与垂直的概念和应用,以生动的方式帮助您理解并区 分二者之间的关系。
介绍
• 平行与垂直的概念 • 平行与垂直在生活和工作中的应用
平行
平行的定义与性质
解释什么是平行线以及它们的基本性质。
平行线的判定方法
介绍多种判定两条线段平行的方法,如角度、距离等。
平行线的应用场景
《平行与垂直》ppt课件
1.在同一个平面内不相交的两条直线叫做平行线,也可以
说这两条直线互相平行。
课 2.两条直线相交成直角,就说这两条直线互相垂直,其中
堂 概
一条直线叫作另一条直线的垂线,这两条直线的交点叫作 垂足。
念
小
结
第五单元 平行四边形与梯形
第二课时 垂线的画法
1.过直线上一点画垂线。
1.边线重合 2.移动靠点 3.画线标记
课 2.两条直线相交成直角,就说这两条直线互相垂直,其中
堂 概
一条直线叫作另一条直线的垂线,这两条直线的交点叫作
垂足。 3.画垂线步骤:一边线重合,二移动靠点,三画线标记。
念 4.经过直线外一点可以画1条已知直线的垂线。
小 5.从直线外一点到这条直线所画的垂直线段最短,它的长
结
度叫做这点到直线的距离。 6.端点分别在两条平行线上,且与平行线垂直的所有线段
第五单元 平行四边形与梯形
第一课时 认识平行与垂直
不 相 交
不 相 交
?
在同一个平面内不相交的 两条直线叫做平行线, 也可以说这两条直线 互相平行。
在同一个平面内不相交的 两条直线叫做平行线,也可以 说这两条直线互相平行。
左边这组相交直线组成的每 个角都是直角
两条直线相交成 直角,就说这两条直 线互相垂直,其中一 条直线叫作另一条直 线的垂线,这两条直 线的交点叫作垂足。
念 4.经过直线外一点可以画1条已知直线的垂线。
小
结
第五单元 平行四边形与梯形
第三课时 垂线和平行线的性质
A a
b
(1)从直线外一点A,到这条直线画几条线段。
量一量所画线段的长度,哪一条最短?
A 垂直线段最短。
《平行与垂直》PPT教学课文课件
AD=9.5厘米 A E = 11 . 4 厘 米
B
CD
EF
量一量所画线段的长度,哪一条最短?
A•
AB=12.2厘米 AC=10厘米
AF=13.2厘米 A E = 11 . 4 厘 米 AD=9.5厘米
B
C
D
EF
13.2厘米>12.2厘米>11.4厘米>10厘米>9.5厘米
从直线外一点到这条直线所画的垂直线段最 短,它的长度叫做这点到直线的距离。
画垂线
A•
∟
在练习本上画一条直线,并在直线外任意画一点A。
A•
在练习本上画一条直线,并在直线外任意画一点A。 从点A到这条直线画线段。
A•
B
C
D
EF
量一量所画线段的长度,哪一条最短? A•
AB=12.2厘米
B
CD
EF
量一量所画线段的长度,哪一条最短?
A•
AB=12.2厘米
B
CD
EF
AC=10厘米
直线外一点到直线可以画(一条)垂直线段。 A•
端点分别在两条平行线上,且与平行线垂直可以画(无 数)条垂直线段,所有线段的长度都(相等)。 a
b
垂直的线段最短。
小明如果从A点过马路,怎样走路线最短?为什么? 把最短的路线画出来。
从幸福镇修一条通往公路的水泥路。 怎样修路最近呢?
画图 A•
B
C
D
EF
测量 A•
AB=12.2厘米 AC=10厘米
AF=13.2厘米
AD=9.5厘米 A E = 11 . 4 厘 米
B
CD
EF
比较 A•
AB=12.2厘米 AC=10厘米
B
CD
EF
量一量所画线段的长度,哪一条最短?
A•
AB=12.2厘米 AC=10厘米
AF=13.2厘米 A E = 11 . 4 厘 米 AD=9.5厘米
B
C
D
EF
13.2厘米>12.2厘米>11.4厘米>10厘米>9.5厘米
从直线外一点到这条直线所画的垂直线段最 短,它的长度叫做这点到直线的距离。
画垂线
A•
∟
在练习本上画一条直线,并在直线外任意画一点A。
A•
在练习本上画一条直线,并在直线外任意画一点A。 从点A到这条直线画线段。
A•
B
C
D
EF
量一量所画线段的长度,哪一条最短? A•
AB=12.2厘米
B
CD
EF
量一量所画线段的长度,哪一条最短?
A•
AB=12.2厘米
B
CD
EF
AC=10厘米
直线外一点到直线可以画(一条)垂直线段。 A•
端点分别在两条平行线上,且与平行线垂直可以画(无 数)条垂直线段,所有线段的长度都(相等)。 a
b
垂直的线段最短。
小明如果从A点过马路,怎样走路线最短?为什么? 把最短的路线画出来。
从幸福镇修一条通往公路的水泥路。 怎样修路最近呢?
画图 A•
B
C
D
EF
测量 A•
AB=12.2厘米 AC=10厘米
AF=13.2厘米
AD=9.5厘米 A E = 11 . 4 厘 米
B
CD
EF
比较 A•
AB=12.2厘米 AC=10厘米
直线平行与垂直课件PPT课件
直线平行与垂直课件ppt课件
contents
目录
• 直线平行与垂直的基本概念 • 直线平行与垂直的判定定理 • 直线平行与垂直的应用 • 直线平行与垂直的作图方法 • 直线平行与垂直的习题及解析
01 直线平行与垂直的基本概 念
直线平行的定义
总结词
同一平面内,不相交的两条直线
详细描述
直线平行是指两条直线在同一平面内,且不相交。这意味着它们没有交点,并 且始终保持相同的距离。
05 直线平行与垂直的习题及 解析
基础习题
基础习题1:判断下列说法是否正确,并说明理由。如果 错误,请给出反例。
两条直线被第三条直线所截,如果内错角相等,则这两 条直线平行。
基础习题2:已知直线a和b平行,点A在直线a上,点B、 C、D在直线b上,且AB=BC=CD=DE,那么线段AE是点 A到直线b的什么线?
交通
在道路和交通标志的设计中,直线平行和垂直的性质也得到 了广泛应用。例如,在道路交叉口的设计中,需要确保各个 道路相互垂直或平行,以确保交通的顺畅和安全。
在工程设计中的应用
机械设计
在机械设计中,为了确保机器的稳定性 和功能性,常常需要利用直线平行和垂 直的性质。例如,在设计和制造机器零 件时,需要确保各个部分相互垂直或平 行,以确保机器的正常运转和安全性。
VS
电子工程
在电子工程中,直线平行和垂直的性质也 得到了广泛应用。例如,在电路板的设计 中,需要确保各个线路相互垂直或平行, 以确保电流的顺畅流通。
04 直线平行与垂直的作图方 法
平行线的作图方法
1. 确定一个点
选择一个已知点作 为起点。
3. 画出直线
根据确定的方向和 起点,画出直线。
平行线的定义
contents
目录
• 直线平行与垂直的基本概念 • 直线平行与垂直的判定定理 • 直线平行与垂直的应用 • 直线平行与垂直的作图方法 • 直线平行与垂直的习题及解析
01 直线平行与垂直的基本概 念
直线平行的定义
总结词
同一平面内,不相交的两条直线
详细描述
直线平行是指两条直线在同一平面内,且不相交。这意味着它们没有交点,并 且始终保持相同的距离。
05 直线平行与垂直的习题及 解析
基础习题
基础习题1:判断下列说法是否正确,并说明理由。如果 错误,请给出反例。
两条直线被第三条直线所截,如果内错角相等,则这两 条直线平行。
基础习题2:已知直线a和b平行,点A在直线a上,点B、 C、D在直线b上,且AB=BC=CD=DE,那么线段AE是点 A到直线b的什么线?
交通
在道路和交通标志的设计中,直线平行和垂直的性质也得到 了广泛应用。例如,在道路交叉口的设计中,需要确保各个 道路相互垂直或平行,以确保交通的顺畅和安全。
在工程设计中的应用
机械设计
在机械设计中,为了确保机器的稳定性 和功能性,常常需要利用直线平行和垂 直的性质。例如,在设计和制造机器零 件时,需要确保各个部分相互垂直或平 行,以确保机器的正常运转和安全性。
VS
电子工程
在电子工程中,直线平行和垂直的性质也 得到了广泛应用。例如,在电路板的设计 中,需要确保各个线路相互垂直或平行, 以确保电流的顺畅流通。
04 直线平行与垂直的作图方 法
平行线的作图方法
1. 确定一个点
选择一个已知点作 为起点。
3. 画出直线
根据确定的方向和 起点,画出直线。
平行线的定义
平行与垂直ppt课件
平行线和垂线的判定方法
利用平行线的性质和垂线的性质进行判定。例如,在同一平面内,如果两条直线都垂直于同一 条直线,那么这两条直线平行;或者如果一条直线与另外两条平行线中的一条垂直,那么它与 另外一条平行线也垂直。
02
平行四边形中平行与垂直
平行四边形中平行线性质
01 对边平行
平行四边形两组对边分别 平行。
03 对边相等
平行四边形的对边相等。
02 对角相等
平行四边形的对角相等。
04 邻角互补
平行四边形邻角互补。
平行四边形中垂直线性质
高与底垂直
从平行四边形一个顶点向对边作垂线,这条垂线 段就是高,高与底互相垂直。
高长度相等
任意一条高都将平行四边形分为两个面积相等的 三角形,因此,同底的高长度相等。
平行四边形对角线性质
平行于直径的弦是圆的另一条直径,且这两条直 径互相平分。
03 平行弦与圆心距
在同一圆内,两平行弦到圆心的距离相等。
圆中垂直弦性质
垂直弦性质
从圆心到弦的垂线平分该弦,并且平 分该弦所对的两条弧。
垂径定理
在圆内,垂直于弦的直径平分该弦, 并且平分该弦所对的两条弧。若过圆 内一点引两条互相垂直的弦,则它们 的中点连线段必过圆心。
在绘制工程图纸时,需要使用平 行线和垂直线来表示物体的轮廓 、尺寸和位置关系,以确保图纸 的准确性和可读性。
建筑设计
在建筑设计中,平行和垂直关系 对于确定建筑物的结构、立面和 平面布局至关重要,有助于实现 稳定、美观的建筑效果。
地理信息系统中平行和垂直线用于绘制等高线、道路、河流等地理 要素,以展示地形地貌、交通网络等空间信息。
对角线互相平分
平行四边形的对角线互相平分。
利用平行线的性质和垂线的性质进行判定。例如,在同一平面内,如果两条直线都垂直于同一 条直线,那么这两条直线平行;或者如果一条直线与另外两条平行线中的一条垂直,那么它与 另外一条平行线也垂直。
02
平行四边形中平行与垂直
平行四边形中平行线性质
01 对边平行
平行四边形两组对边分别 平行。
03 对边相等
平行四边形的对边相等。
02 对角相等
平行四边形的对角相等。
04 邻角互补
平行四边形邻角互补。
平行四边形中垂直线性质
高与底垂直
从平行四边形一个顶点向对边作垂线,这条垂线 段就是高,高与底互相垂直。
高长度相等
任意一条高都将平行四边形分为两个面积相等的 三角形,因此,同底的高长度相等。
平行四边形对角线性质
平行于直径的弦是圆的另一条直径,且这两条直 径互相平分。
03 平行弦与圆心距
在同一圆内,两平行弦到圆心的距离相等。
圆中垂直弦性质
垂直弦性质
从圆心到弦的垂线平分该弦,并且平 分该弦所对的两条弧。
垂径定理
在圆内,垂直于弦的直径平分该弦, 并且平分该弦所对的两条弧。若过圆 内一点引两条互相垂直的弦,则它们 的中点连线段必过圆心。
在绘制工程图纸时,需要使用平 行线和垂直线来表示物体的轮廓 、尺寸和位置关系,以确保图纸 的准确性和可读性。
建筑设计
在建筑设计中,平行和垂直关系 对于确定建筑物的结构、立面和 平面布局至关重要,有助于实现 稳定、美观的建筑效果。
地理信息系统中平行和垂直线用于绘制等高线、道路、河流等地理 要素,以展示地形地貌、交通网络等空间信息。
对角线互相平分
平行四边形的对角线互相平分。
2-1-2两条直线平行和垂直的判定 课件(共35张PPT)
则直线 l 的倾斜角为__1_3_5_°___. 解析 ∵tanα=1-+43=-1,∴α=135°.
4.已知 A(2,3),B(1,-1),C(-1,-2),点 D 在 x 轴上,
则当点 D 的坐标为__-__12_,_0__时,AB∥CD,当点 D 的坐标为 __(-__9_,_0_)_时,AB⊥CD.
题型三 两条直线平行条件的应用
例 3 已知▱ABCD 的三个顶点的坐标分别是 A(0,1),B(1, 0),C(4,3),求顶点 D 的坐标.
【思路分析】 本题主要考查两直线平行的性质以及综合应 用.思路一,利用平行四边形的对角线互相平分求得 D 点的坐标; 思路二,利用平行四边形的对边平行求得 D 的坐标.
(2)在遇到两条直线的平行或垂直的问题时,一定要注意直线 的斜率不存在时的情形,如本例中的 CD 作为直角腰时,其斜率 便不存在.
思考题 4 已知点 A(-2,-5),B(6,6),点 P 在 y 轴上,
且∠APB=90°,则 P 点坐标为___(0_,__-_6_)_或_(_0_,_7_)__. 【解析】 由∠APB=90°,可知 AP⊥PB,且 AP 与 PB 的斜率
都存在. 设 P(0,y),则有 kAP=y+2 5,kBP=y--66. 由 kAP·kBP=-1,得y+2 5·y--66=-1. 解得 y=-6 或 y=7.即点 P 的坐标为(0,-6)或(0,7).
课后巩固
1.已知直线 l1 的斜率为 0,且直线 l1⊥l2,则直线 l2 的倾斜
角 α 为( C )
(2)若 l1⊥l2, ①当 k2=0 时,a=0,此时 k1=-12,不符合题意; ②当 k2≠0 时,l2 的斜率存在, 此时 k1=2a--4a. 由 k2k1=-1,可得 a=3 或 a=-4.
4.已知 A(2,3),B(1,-1),C(-1,-2),点 D 在 x 轴上,
则当点 D 的坐标为__-__12_,_0__时,AB∥CD,当点 D 的坐标为 __(-__9_,_0_)_时,AB⊥CD.
题型三 两条直线平行条件的应用
例 3 已知▱ABCD 的三个顶点的坐标分别是 A(0,1),B(1, 0),C(4,3),求顶点 D 的坐标.
【思路分析】 本题主要考查两直线平行的性质以及综合应 用.思路一,利用平行四边形的对角线互相平分求得 D 点的坐标; 思路二,利用平行四边形的对边平行求得 D 的坐标.
(2)在遇到两条直线的平行或垂直的问题时,一定要注意直线 的斜率不存在时的情形,如本例中的 CD 作为直角腰时,其斜率 便不存在.
思考题 4 已知点 A(-2,-5),B(6,6),点 P 在 y 轴上,
且∠APB=90°,则 P 点坐标为___(0_,__-_6_)_或_(_0_,_7_)__. 【解析】 由∠APB=90°,可知 AP⊥PB,且 AP 与 PB 的斜率
都存在. 设 P(0,y),则有 kAP=y+2 5,kBP=y--66. 由 kAP·kBP=-1,得y+2 5·y--66=-1. 解得 y=-6 或 y=7.即点 P 的坐标为(0,-6)或(0,7).
课后巩固
1.已知直线 l1 的斜率为 0,且直线 l1⊥l2,则直线 l2 的倾斜
角 α 为( C )
(2)若 l1⊥l2, ①当 k2=0 时,a=0,此时 k1=-12,不符合题意; ②当 k2≠0 时,l2 的斜率存在, 此时 k1=2a--4a. 由 k2k1=-1,可得 a=3 或 a=-4.
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
You Know, The More Powerful You Will Be
结束语
感谢聆听
不足之处请大家批评指导
Please Criticize And Guide The Shortcomings
讲师:XXXXXX XX年XX月XX日
b 其中一条直线叫做 另一条直的 垂线,
这两条直线的交点 叫做 垂足。
课间10分钟……
请同学们找出图画中的平行线和垂直线:
下面各组直线,互相平行的是( B ),互 相垂直的是( C )
A
B
C
D
E
找出下图中的平行与垂直现象!
A
B
AE
C
D
BF
C
图一
图二
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
垂直与平行
垂直与平行
执教人:冷海霞
单位:思南县实验小学
(2)线的定义:
在同一个平面内不相交的两 条直线叫做平行线,也叫这两 条直线互相平行。
这两条直线是平行线吗?为什么?
分别说出下面这4个角是什么角:
a b
垂直的定义
a 垂足 o
如果两条直线相交
成直角,这两条直 线叫做 互相垂直,
结束语
感谢聆听
不足之处请大家批评指导
Please Criticize And Guide The Shortcomings
讲师:XXXXXX XX年XX月XX日
b 其中一条直线叫做 另一条直的 垂线,
这两条直线的交点 叫做 垂足。
课间10分钟……
请同学们找出图画中的平行线和垂直线:
下面各组直线,互相平行的是( B ),互 相垂直的是( C )
A
B
C
D
E
找出下图中的平行与垂直现象!
A
B
AE
C
D
BF
C
图一
图二
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
垂直与平行
垂直与平行
执教人:冷海霞
单位:思南县实验小学
(2)线的定义:
在同一个平面内不相交的两 条直线叫做平行线,也叫这两 条直线互相平行。
这两条直线是平行线吗?为什么?
分别说出下面这4个角是什么角:
a b
垂直的定义
a 垂足 o
如果两条直线相交
成直角,这两条直 线叫做 互相垂直,