华北电力大学 电力系统分析基础 复杂电力系统潮流的计算机算法

合集下载

电力系统稳态分析-第四章 复杂电力系统潮流的计算机算法

电力系统稳态分析-第四章 复杂电力系统潮流的计算机算法

第二节 功率方程及其迭代解法
在实际电力系统中,已知的运行条件往往不是节点的注 入电流而是负荷和发电机的功率,而且这些功率一般不随节 点电压的变化而变化。同时,在节点功率不变的情况下,节 点的注入电流随节点电压的变化而变化。而在节点电压未知 的情况下,节点注入电流是无法求得的。因此,不能用上节 介绍的网络方程进行潮流计算。必须在已知节点导纳矩阵的 情况下,用已知的节点功率来代替未知的节点注入电流,建 立起潮流计算用的节点功率方程,才能求出节点电压,进而 求出整个系统的潮流分布。
非线性方程组没有直接的解析方法,只能用迭代求解发方法。
第二节 功率方程及其迭代解法
为了更好的理解功率方程的意义,先以两母线系统为例, 然后推广到n母线系统 1、两母线系统的功率方程 G 1
~ ~ SG1 PG1 jQG1 SG 2 PG 2 jQG 2
U1
等值电源功率
SG1和SG2 ?
3) 输电线模型:是一个分布参数的电路,可用一个集中 参数的∏型等值电路表示;
4) 变压器模型:通常用集中参数的г型等值电路表示。
第一节 电力网络方程
要进行复杂系统的潮流计算,借助计算机程序进行计 算时,需要建立电力网络的网络方程。它是反映系统中 电流与电压之间相互关系的数学方程。需要对电力网进 行数学的抽象。
i
Yii Y jj yij Yij Y ji yij
yij
电力网
j
Yii Y jj Yii Yij Y ji Yij
(0) (0)
Yii Yij
第一节 电力网络方程
(4)在原有网络的节点i、j之间的导纳由yij改变为y'ij
i
Yii y yij ij Yij Y ji yij y ij

电力系统分析 第2版 第四章 复杂电力系统的潮流计算方法

电力系统分析 第2版 第四章 复杂电力系统的潮流计算方法
PART
节点电压方程
电力系统潮流计算实质是电路计算问题。因此,用解电路问题的基本 方法,就可以建立起电力系统潮流计算所需的数学模型——潮流方程。
回路电流方程 割集电压方程 节点电压方程

潮流方程
节点电压方程
Ui I ij
i
Ii
yij
I ij I il
Uj
j
I ik
k l
Iij yij (Ui U j )
Yni
Y
U
1
Y1n U 2
Y2n
Ynn
U
i
U U
n
节 点 电 压 列 向 量
节点电压方程
导纳矩阵 Y
Y11 Y12 Y21 Y22 Y Yi1 Yi 2 Yn1 Yn2
Y1i Y1n
Y2i
Y2
n
Yii Yin
Yni Ynn
非对角元素 :Yij
节点 i 和 j 之间支路导纳的负
电力系统分析
第四章 复杂电力系统的潮流计算方法
复杂电力系统的潮流计算方法
问题引入:
现代电力系统规模庞大,我国主要超高压同步电网规模达数千节点,面
对这样复杂的电力网络,手算方法难以胜任计算潮流任务。
10



统 的
思考:如果采用手算求解,需

要哪些步骤?从哪里开始计算?



复杂电力系统的潮流计算方法
ΔY jj
yij
PART
导纳矩阵的修改
网络结构变化时节点导纳矩阵的修改
问题引入:
电力系统运行方式常会发生某种变化,通常只是对局部区域或个别元 件作一些变化,例如投入或切除一条线路或一台变压器。这只影响了该支路两 端节点的自导纳和它们的互导纳,因此不必重新形成新的导纳矩阵,只需在原 有的导纳矩阵上做适当修改即可。

华北电力大学2019年硕士研究生入学考试初试科目考试大纲811电力系统分析基础

华北电力大学2019年硕士研究生入学考试初试科目考试大纲811电力系统分析基础

华北电力大学2019年硕士生入学考试初试科目考试大纲
科目代码:811
科目名称:电力系统分析基础
一、考试的总体要求
掌握电力系统的基本概念和特点,掌握电力系统各元件的参数和数学模型,掌握电力系统潮流计算的基本原理,掌握电力系统有功和无功优化运行及其调整方法,掌握短路电流计算的基本方法。

二、考试的内容
1.电力系统的基本概念:电力系统的基本概念及系统运行的基本要求;电力系统中性点运行方式;电力系统主要的电压等级与我国电力系统的发展情况。

2.电力系统各元件特性和数学模型:发电机组的运行特性与数学模型;输电线路、变压器、负荷的数学模型及参数计算;标幺值计算原理,理想变压器数学模型及多电压等级电力网络等效电路的形成。

3.简单电力网络的计算和分析:基于有名值与标幺值的简单电力网络(环型网、辐射型网)潮流计算方法;有功、无功的基本电力。

4 复杂电力系统潮流的计算机算法

4 复杂电力系统潮流的计算机算法

4、高斯-赛德尔法潮流原理,非线性节点电压方程的 、高斯-赛德尔法潮流原理, 潮流原理 高斯-赛德尔迭代形式, 节点向 节点转化的原因 节点向PQ节点转化的 高斯-赛德尔迭代形式,PV节点向 节点转化的原因 方法; 和方法;顿-拉夫 、 - 分解法潮流计算, - 分解法与牛顿 分解法潮流计算 分解法与牛顿- 逊的关系 由牛顿-拉夫逊法导出 关系, 导出P- 分解法用到了 逊的关系,由牛顿-拉夫逊法导出 -Q分解法用到了 几个近似条件, 近似条件的物理意义, - 分解法 几个近似条件,各近似条件的物理意义, P-Q分解法 修正方程式, - 分解法与牛顿 分解法与牛顿- 的修正方程式, P-Q分解法与牛顿-拉夫逊的迭代次 数与解题速度, - 分解法分解法潮流计算求解步骤。 分解法分解法潮流计算求解步骤 数与解题速度, P-Q分解法分解法潮流计算求解步骤。
& & I 2 = −U 4 y 24
Y24 = − y24
20
一、节点电压方程 节点导纳矩阵Y 1、节点导纳矩阵
& U1 & I1
1
&2 U2 y12
y24 y23
& U3 3
节点导纳矩阵中自导纳 和互导纳的确定 4
& I4 + & U4 -
y34 y40
y10 I &
2
y20 & I3
y30
& I3 Y34 = U & & & & 4 ( U 1 =U 2 =U 3 = 0 )
k
互导纳 Yki:当网络中除节点 以外所有 当网络中除节点k以外所有 节点都接地时,从节点i注入网 节点都接地时,从节点 注入网 络的电流同施加于节点k的电压 络的电流同施加于节点 的电压 之比 节点i的电流实际上是自网络流 节点 的电流实际上是自网络流 出并进入地中的电流,所以Y 出并进入地中的电流,所以 ki应 等于节点k 之间导纳的负值 等于节点 、i之间导纳的负值

电力系统潮流计算机算法

电力系统潮流计算机算法

电力系统潮流计算机算法电力系统潮流计算是电力系统分析中最基本的一项计算,其目的是确定电力系统中各母线电压的幅值和相角、各元件中的功率以及整个系统的功率损耗等。

随着计算机技术的发展,电力系统潮流计算算法也在不断更新和完善。

以下是电力系统潮流计算的一些常用算法:1. 牛顿-拉夫逊法(Newton-Raphson Method):这是一种求解非线性方程组的方法,应用于电力系统潮流计算中。

该方法在多数情况下没有发散的危险,且收敛性较强,可以大大节约计算时间,因此得到了广泛的应用。

2. 快速迪科法(Fast Decoupled Method):这是一种高效的电力系统潮流计算方法,将电力系统分为几个子系统进行计算,从而提高了计算速度。

3. 最小二乘法(Least Squares Method):这是一种用于求解线性方程组的方法,通过最小化误差平方和来获得最优解。

在电力系统潮流计算中,可用于优化电压幅值和相角。

4. 遗传算法(Genetic Algorithm):这是一种全局优化搜索算法,应用于电力系统潮流计算中,可以解决一些复杂和非线性问题。

5. 粒子群优化算法(Particle Swarm Optimization):这是一种启发式优化算法,通过模拟鸟群觅食行为来寻找最优解。

在电力系统潮流计算中,可用于优化网络参数和运行条件。

6. 模拟退火算法(Simulated Annealing):这是一种全局优化搜索算法,应用于电力系统潮流计算中,可以在较大范围内寻找最优解。

7. 人工神经网络(Artificial Neural Network):这是一种模拟人脑神经网络的计算模型,可用于电力系统潮流计算。

通过训练神经网络,可以实现对电力系统中复杂非线性关系的建模和预测。

以上所述算法在电力系统潮流计算中起着重要作用,为电力系统运行、设计和优化提供了有力支持。

同时,随着计算机技术的不断发展,未来还将出现更多高效、精确的电力系统潮流计算算法。

《电力系统分析》第四章 电力系统潮流的计算机算法

《电力系统分析》第四章     电力系统潮流的计算机算法

1
I1
I3
3
y12
y23
y20
2 I2
+ -
U
2
第四章 电力系统潮流的计算机算法
二、节点阻抗矩阵的节点电压方程
由YB1 ZB 的两边都左乘 YB,1 可得YB1I B U B ,

IB

YBU
,则节点电压方程为
B
ZBIB UB
第四章 电力系统潮流的计算机算法
第二节 等值变压器模型及其应用
Q2 QG2 QL2 Q2 (U , ) Q2 (U1,U 2 ,1, 2 )
第四章 电力系统潮流的计算机算法
二、变量的分类
1而、是负无荷法消控耗制的的有,功故、称无为功不功可率控(变P量L、或QL扰)动取变决量于。用一户般,以因
Y33

y30

y13

y23

y35 K 35
1 K35
K
2 35
y35

y30

y13

y23

1
K
2 35
y35
3
y35
K 35
5
j0.25
1

1
0.1 j0.35 0.08 j0.3
1 1 1.052 j0.015
1.585 j65.975
1 K35
K
第三章讨论简单电力网络的潮流分布计算,理解了与 之相关的各种物理现象。对于复杂电力网络的潮流计算, 一般必须借助电子计算机进行。 运用电子计算机,一般要完成以下步骤:
1、建立电力网络的数学模型 2、确定解算方法 3、制定计算流程和编制计算程序 本章将着重讨论前两项,主要阐述在电力系统潮流的 实际计算中常用的、基本的方法。

华北电力大学 电力系统基础 第五章 简单电力系统潮流计算

华北电力大学 电力系统基础 第五章 简单电力系统潮流计算

dU 3ZIZ 3Z ( 3SU22 )
(R jX )( P2 jQ2 ) U2
P2R Q2 X j P2X Q2R U jU
U2
U2
U1 (U2 U)2 U2 arctg U
U2 U
近似计算:
(21.10
j 21.35)
0.0745

j0.0754MVA
S
'
2

(5.62
j3.34) (0.0745
j0.0754)

5.55
j3.26MVA
S
"
1
S'Fra bibliotek2 S1

(5.55
j3.26) (20.15
j13.96)
14.60
j10.70MVA
2 N
1000SN2
QZT

S22
U
2 2
*
U
k
%U
2 N
100SN

PyT

U12
*
P0 1000U
2 N

QyT

U12
*
I0 %SN
100U
2 N
发电厂
PZT

PkU
2 N
S1
2
1000U12 S N2
QZT

U
k
%U
2 N
S1
2
100U
2 2
S
N
PyT









电力系统分析-电力系统潮流的计算机分析方法

电力系统分析-电力系统潮流的计算机分析方法
ji ji
Qi fi ( Gij e j Bij f j ) ei ( Gij f j Bij e j ), ( i 1, 2, ,n )
ji ji
直角坐标表 示的节点功 率方程
节点注入的有功和无功功率可表示成节点电压实部和虚部的二次非线性函数
2.1潮流计算的数学模型
2.1.2潮流计算中节点的分类 节点注入的有功和无功分别可表示为
Pi PGi PLi
Qi QGi QLi
PGi 0, QGi 0
发电机节点 ,
PGi 0, QGi 0, PLi 0, QLi 0,
负荷节点,
PGi 0, QGi 0, PLi 0, QLi 0,
如无特殊说明,所有变量皆为统一系统基准容量下的标幺值,并认为电力系统是 三相对称的。
节点注入的P和Q
2.1潮流计算的数学模型
2.1.1节点的功率方程
ˆ ˆ ˆ I Si Pi jQi U i i U i YijU j
节点电压用极坐标表示
U e j j U j j
ji
[ ei ( Gij e j Bij f j ) f i ( Gij f j jBij e j )]
ji
j [ f i ( Gij e j Bij f j ) ei ( Gij f j jBij e j )]
ji
Pi ei ( Gij e j Bij f j ) fi ( Gij f j Bij e j ), ( i 1, 2, ,n )
ji ji
[( Gij e j Bij f j ) j( Gij f j jBij e j )]
ji

18j811-1_整理华北电力大学2020年硕士生入学考试初试科目考试

18j811-1_整理华北电力大学2020年硕士生入学考试初试科目考试

华北电力大学2020年硕士生入学考试初试科目考试整理表姓名:职业工种:申请级别:受理机构:填报日期:华北电力大学2020年硕士生入学考试初试科目考试考试科目编号:811考试科目名称:电力系统分析基础一、考试的总体要求掌握电力系统的基本概念、各元件特性和数学模型,掌握电力系统潮流计算的基本原理和方法,掌握电力系统有功和无功优化运行及其调整方法,掌握短路故障的分析与计算方法。

二、考试的内容1.电力系统的基本概念:电力系统的基本概念及系统运行的基本要求;中性点运行方式;主要电压等级与我国电力系统发展情况。

2.电力系统各元件特性和数学模型:发电机组的运行特性与数学模型;输电线路、变压器、负荷的数学模型及参数计算;标幺值计算原理,理想变压器数学模型及多电压等级电力网络等效电路的形成。

3.简单电力网络的计算和分析:基于有名值与标幺值的简单电力网络(环型网、辐射型网)潮流计算方法;有功、无功的基本电力网络潮流控制方法。

4.复杂电力系统潮流的计算机算法:节点电压方程和电力网络方程的建立;节点导纳矩阵的形成和修改方法;功率方程及变量、节点的分类;牛顿-拉夫逊迭代法潮流计算的基本原理、数学模型和计算步骤;P-Q分解法潮流计算的基本原理、数学模型和计算步骤。

5.电力系统的有功功率和频率调整:电力系统各种有功功率电源及有功备用;有功功率的平衡与最优分配方法;电力系统频率调整的概念,自动调速系统工作原理,发电机和负荷的功频特性及其调速特性,频率的一次调整、二次调整和调频厂的选择,负荷频率控制的基本原理;联合系统调频计算。

6.电力系统的无功功率和电压调整:电力系统中无功功率的平衡和无功电源特点;电力系统中无功功率的最优分布;电力系统中枢点电压管理方式;借发电机、变压器、补偿设备调压和组合调压的原理及特点。

7.电力系统三相短路的分析与计算:电力系统故障的基本概念及其危害;各种短路故障的成因;无限大功率电源供电系统的三相短路电流分析;三相短路电流的实用计算;短路电流交流分量的初始值及任意时刻值的确定方法。

第4章复杂电力系统潮流计算

第4章复杂电力系统潮流计算

第4章复杂电力系统潮流计算复杂电力系统潮流计算是电力系统分析和运行中的关键问题之一、通过潮流计算可以获得电网各节点的电压、功率等信息,为电力系统的规划、调度和运行提供重要依据。

本章将介绍复杂电力系统潮流计算的原理及常用算法。

复杂电力系统潮流计算的目标是求解系统各节点的电压和功率,主要包括节点电压幅值和相位角。

常用的电力潮流计算算法有高斯-赛德尔迭代法、牛顿-拉夫逊迭代法和快速潮流算法等。

高斯-赛德尔迭代法是最常用的一种潮流计算方法。

该方法通过迭代计算各节点的电压幅值和相位角,直至满足收敛准则。

具体步骤如下:1.初始化各节点的电压幅值和相位角;2.根据节点电压和导纳矩阵计算节点注入功率;3.更新各节点的电压幅值和相位角;4.检查是否满足收敛准则,如果不满足则重复步骤2和3,直至满足。

牛顿-拉夫逊迭代法是一种更加精确的潮流计算方法。

该方法通过牛顿法和拉夫逊法相结合,通过雅可比矩阵的逆矩阵来迭代计算电压和功率。

具体步骤如下:1.初始化各节点的电压幅值和相位角;2.根据节点电压和导纳矩阵计算节点注入功率;3.根据雅可比矩阵计算节点电流和电压的偏导数;4.更新各节点的电压幅值和相位角;5.检查是否满足收敛准则,如果不满足则重复步骤2至4,直至满足。

快速潮流算法是一种高效的潮流计算方法。

该方法通过分解电力系统中的支路导纳矩阵,将潮流计算问题转化为不同节点之间的线性方程组求解问题,从而大大提高计算速度。

具体步骤如下:1.分解电力系统的导纳矩阵为戴维森分量和逆戴维森分量;2.根据节点电压和导纳矩阵计算节点注入功率;3.利用戴维森分量和逆戴维森分量计算节点电压幅值和相位角的变化量;4.更新各节点的电压幅值和相位角;5.检查是否满足收敛准则,如果不满足则重复步骤2至4,直至满足。

除了上述算法外,还有一些改进的算法用于复杂电力系统潮流计算,如改进的高斯-赛德尔迭代法、改进的牛顿-拉夫逊迭代法等。

这些算法在计算速度和计算精度上有所调整和改进,以满足电力系统不同场景下的需求。

华北电力大学-RJW-电力系统分析基础(第4章)

华北电力大学-RJW-电力系统分析基础(第4章)

自然分布、串联电容、串联电抗、附加串联加压器 4. 潮流调整: TCSC、STATCOM、 UPFC、 FACTS
第四章 复杂电力系统潮流的计算机算法
本章主要内容:
1. 建立数学模型:节点电压方程、导纳矩阵的形成与修改 2. 功率方程、节点分类及约束条件
3. 迭代法计算潮流
功率方程的非线性性质 高斯—塞德尔法 用于潮流计算———速度慢、易于收敛
E2
.
.
.
.
.
.
.
E1
.
Z13
Z23
I 2 = U 2 y 2 0 ( U 2 U 1 )y 2 1 ( U 2 U 3 )y 2 3 0 = U 3 y 3 0 ( U 3 U 1 )y 3 1 ( U 3 U 2 )y 3 2
. . . . .
.
.
.
.
.
.
第一节 力网的数学模型
i j
- yij
•导纳矩阵的阶数不变
• Yii = Yjj = yij ' - yij • Yij = Yji = yij - yij '
i j
-yij
yij '
第一节 电力网的数学模型
5) 修改一条支路的变压器变比值( k*改变为k* ')
yT / k*
i
j
yT(k*-1) / k*
• Yii = 0
( 2) x2 = 0.7737
解:(1)将方程组 ( 3)
(2)设初值 x ( 0) = x ( 0) = 0;代入上述迭代公式 1 2
第三节 高斯—塞德尔迭代法潮流计算 二、高斯-塞德尔迭代法原理及求解步骤
• 设有非线性方程组 的一般形式:

第四章作业(解答)华北电力大学电自习题

第四章作业(解答)华北电力大学电自习题
7. 潮流计算为什么需要平衡节点? 答:平衡节点是根据有利于计算的要求而设立的,是根据功率平衡条件要求而设立的。 因而,在潮流计算中平衡节点必不可少。
8. 电力系统的变量从控制理论角度分哪些类? 答:共有 12 个变量,它们是:
(1)扰动变量:负荷消耗的有功、无功功率—— 、 、 、 ;
(2)控制变量:电源发出的有功、无功功率—— 、 、 、 ;
节点导纳矩阵阶数不变,但与节点 i、j 有关元素应做如下修改
(3)
Yii=yij; Yjj=yij; Yij= Yji=- yij 在原有网络的节点 i、j 之间切除一支路。
节点导纳矩阵阶数不变,但与节点 i、j 有关元素应做如下修改
Yii=-yij; Yjj=-yij; Yij= Yji= yij
Uimin<Ui<Uimax (3) 为保证电力系统的稳定性,某些母线或节点间的电压相位差应在允许的范围
内,即
|δi-δj|<|δi-δj|max 10. 从潮流计算已知条件的角度分类,电力系统节点有哪些类别?
答:PQ 节点,PV 节点,平衡节点。 11. 平衡节点有何特点?与实际哪些发电厂、变电站对应?
(1) 从原有网络引出一支路,同时增பைடு நூலகம்一节点。
设 i 为原有网络中节点。j 为新增加节点,新增加支路导纳为 yij。因新增一节点, 节点导纳矩阵将增加一阶。
新增的对角元 Yij,由于在节点 j 只有一个支路 yij,将为 Yjj=yij;新增的非对角元 Yij=Yji=-yij;原有矩阵中的对角元 Yii 将增加 Yii=yij。 (2) 在原有网络的节点 i、j 之间增加一支路。
第四章 复杂电力系统潮流的计算机算法
一、思考题
1. 潮流的计算机算法需要的已知条件有那些?表达形式如何? 答: (1) 结构信息:用电力网络方程来表示,其中还包括: 1) 节点之间的连接:用网络的拓扑结构表示; 2) 元件:用阻抗、导纳、变比等表示。 (2) 运行信息,表现为节点类型及约束,包括: 1) 已知某些节点的电压,另一些节点的有功、无功; 2) 节点电压运行的上下限; 3) 发电机的有功、无功的上下限; 4) 无功电源所发无功的上下限; 5) 允许变压器、线路流过潮流的最大值。

第一章华北电力大学 电力系统潮流计算1new

第一章华北电力大学 电力系统潮流计算1new
s 1
U i

k 1
(1-17) 上式是该算法最基本的迭代计算公式。 其迭代收敛的判据是 maxU k 1 U k
i i i
i 1 n 1 Pi jQi Yi1 U1s ( Yij U i( k 1) Yij U i( k ) i 2,3,, n Yii ( k ) j 2 j i 1 Ui
第三节 潮流计算的几种基本方法
一 高斯-塞德尔法 以导纳矩阵为基础,并应用高斯-塞 德尔迭代的算法是电力系统应用最早的 潮流计算方法。
三.潮流计算的几种基本方法
高斯—塞德尔迭代法原理
已知方程组 (1) 1
( 2)
x1 0 3 0.3333
( x21) 0 2 0.6667 3
第二节 潮流计算问题的数学模型
对这样的线性网络一般采用节点电压 法进行分析。节点电压与节点注入电流 之间的关系为:

YU I


U Z I


第二节 潮流计算问题的数学模型
式中:
I1 I I 2 , In . U1 . U U 2 U. n
j 1


Ui
n

U i Z ij
j 1
Pj jQ j

i 1,2,, n
Uj
(1-7)
第二节 潮流计算问题的数学模型
上两式是潮流计算问题的基本方程式, 是一个以节点电压为变量的非线性代数 方程组。而采用节点功率作为节点注入 量是造成方程组呈非线性的根本原因。 由于方程组为非线性的,因此必须采用 迭代方法进行数值求解。 根据对方程组的不同处理方式,形成 了不同的潮流算法。

复杂电力系统潮流计算

复杂电力系统潮流计算

复杂电力系统潮流计算
复杂电力系统潮流计算的基本原理是基于Kirchhoff电流定律和Kirchhoff电压定律建立节点电流方程和节点电压方程。

节点电流方程是
根据节点电流相等原理建立的,它表达了电力系统各节点的注入、吸收和
分配的功率之间的关系。

节点电压方程是根据电压分压原理建立的,它表
达了电力系统各节点的电压之间的关系。

直接法是指直接求解潮流方程组得到节点电压和功率的数值解。

直接
法适用于小规模系统或具有特殊结构的系统,计算速度较快。

但是,对于
复杂电力系统来说,节点电压和功率的数值解往往难以得到。

迭代法是指通过迭代求解潮流方程组得到节点电压和功率的数值解。

迭代法通常包括牛顿-拉夫森法和高斯-赛德尔法两种,其中牛顿-拉夫森
法是迭代法中最常用的方法之一、迭代法的优点是适用于解决复杂电力系
统的潮流计算问题,但计算速度相对较慢。

在进行复杂电力系统潮流计算时,还需要考虑负荷模型、发电机模型
和变压器模型等实际情况。

负荷模型要考虑负荷的定常、过渡和瞬时特性,发电机模型要考虑发电机的定常和暂态特性,变压器模型要考虑变压器的
变比和损耗等因素。

这些模型的确切参数对于潮流计算的精度和可靠性至
关重要。

总之,复杂电力系统潮流计算是电力系统分析和设计中的一个重要环节。

通过建立潮流方程组,采用直接法或迭代法求解节点电压和功率的数
值解,可以评估系统的稳态运行状态,为电力系统的规划、运行和控制提
供重要的参考依据。

在实际应用中,还需要考虑负荷模型、发电机模型和
变压器模型等实际情况,以提高潮流计算的精度和可靠性。

华北电力大学 电力系统基础 第六章 电力系统潮流计算理论

华北电力大学 电力系统基础 第六章 电力系统潮流计算理论
第六章 电力系统潮流 计算的工程应用
一、计算机潮流计算理论
利用S、U、Y(Z)参数列写潮流计算基本方程
潮流计算基本方程为非线性方程
应用迭代法进行求解
1、潮流计算基本方程
《电工技术原理》节点电压方程:IB=YBUB
• IB:节点注入电流的列向量 • UB:节点电压的列向量 • YB:节点导纳矩阵
切线与y=y0相交于x1
yy0
在x=x1处做f(x)的切线
x 切线与y=y0相交于x2
……
逐步逼近真实解


3、潮流计算的基础数据 Pi jQi Ui Y ij U j (i =1,2,,n)
节点导纳矩阵Yn:
• 系统接线图
• 线路参数Z,Y;变压器参数ZT,YT
潮流计算基本方程
*
YBU B

SB
*
UB
n

Yij U j
Pi


jQi
j 1
Ui


Pi jQi Ui Y ij U j (i =1, 2,, n)
由系统各节点给定的复功率求各节点电压 非线性方程,求解比较困难,因而要借助计算机进行计算


潮流计算基本方程 Pi jQi Ui Y ij U j
0.0850 0.0920 0.1610 0.0720 0.1700 0.1008
0.0440 0.0395 0.0765 0.03725 0.0895 0.05225
四、潮流计算案例分析
结果分析
节点 节点
BUS1 BUS1
BUSA BUSB
I侧有功
41.42 30.54
I侧无功 J侧有功

33复杂电力网潮流计算的计算机解法

33复杂电力网潮流计算的计算机解法

3.3复杂电力网潮流计算的计算机解法3.3.1导纳矩阵的形成 1 •自导纳节点i 的自导纳,亦称输入导纳,在数值上等于在节点 i 施加单位电压,其他节点全部接地时,经节点i 注入网络的电流。

主对角线兀素--| -] 2. 互导纳节点i 、j 间的互导纳,在数值上等于在节点 i 施加单位电压,其他节点全部接地时,经节点 j 注入网络的电流。

非对角线元素_■. _ , 1,f - °更具体地说,.是连接节点j 和节点i 支路的导纳之和再加上负号而得。

3. 导钠矩阵的特点:(1) 因为怜,导纳矩阵Y 是对称矩阵; (2)导纳矩阵是稀疏矩阵,每一非对角元素 兀.是节点i 和j 间支路导纳的负值,当i 和j 间没有直接 相连的支路时,即为零,根据一般电力系统的特点,每一节点平均与3-5个相邻节点有直接联系,所以导纳矩阵是一高度稀疏的矩阵;(3 )导纳矩阵能从系统网络接线图直观地求岀。

4. 节点导纳矩阵的修改(1 )从原有网络引出一支路,同时增加一节点,设 i 为原有网络结点,j 为新增节点,新增支路ij 的导纳为y j 。

如图3-17 (a )所示。

因新增一节点,新的节点导纳阵需增加一阶。

且新增对角元 Y =y j ,新增非对角元Y 」=Y= —y j ,同时对原阵中的对角元 Y 进行修改,增加 AY, = y j °(2) 在原有网络节点i 、j 间增加一支路。

如图3-17 (b )所示。

设在节点i 增加一条支路,由于没有增加节点数,节点导纳矩阵 Y 阶次不变,节点的自导纳 Y i 、Y 和互 导纳Y j 分别变化量为斗y 冲話(3-57)钙=卜'(* =_冶图3-17网络接线的变化图(a )网络引出一支路,(b )节点间增加一支路,(c )节点间切除一支路,(d )节点间导纳改变 (3) 在原有网络节点i 、j 间切除一支路。

如图3-17 (c )所示。

设在节点i 切除一条支路,由于没有增加节点数,节点导纳矩阵Y 阶次不变,节点的自导纳 Y i 、Y 和互更具体地说, 扎就等于与节点 连接的所有支路导纳的和。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§4.1 电力网络方程
电力网络方程指将网络的有关参数和变量及其 相互关系归纳起来组成的,反映网络特性的数 学方程式组。如节点电压方程、回路电流方程, 割集电压方程。相应有:
(1)节点导纳矩阵 (2)节点阻抗矩阵 (3)回路阻抗矩阵
一、节点电压方程

电力网
代数方程
网络元件:恒定参数 发电机:电压源或电流源 负荷:恒定阻抗
电力系统分析基础 Power System Analysis Basis
(四)
主讲人:栗然
第四章 复杂电力系统潮流的计 算机算法
基本要求:本章着重介绍运用电子计算机计算电 力系统潮流分布的方法。它是复杂电力系统稳态和暂 态运行的基础。
运用计算机计算的步骤,一般包括建立数学模型, 确定解算方法,制定框图和编制程序,本章着重前两 步。
一、节点电压方程 以母线电压作为待求量
1
2


3
电力系统结线图
注意:
负荷用阻抗表示 1
零电位是
2
不编号的
E1
3
E2
电力系统等值网络
一、节点电压方程
电压源变为电流源
1
y12
2
I1
y10
y13
3 y23
y30
y20
以零电位作 为参考,根 据基尔霍夫 I2 电流定律
.
.
.
.
.
.
I 1 U 1 y10 (U 1 U 2) y12 (U 1 U 3) y13
其余节点j: 全部接地 Uj 0
由地流向节点j的电流
稀疏性:当yij=0 时Yij=0
二、节点导纳矩阵
节点导纳矩阵中自导纳的确定
1
U1
y12
2
y13 U 3 3 y23
I

2
I1
y10 I3
y30
y20
U2

Y22
I2
U2
(U1 U3 0)
I2 U2 y12 U2 y23 U2 y20
.
.
.
.
.
.
I 2 U 2 y20 (U 2 U 1) y21 (U 2 U 3) y23
.
.
.
.
.
0 U 3 y30 (U 3 U 1) y31 (U 3 U 2) y32
一、ห้องสมุดไป่ตู้点电压方程
.
.
.
.
I 1 ( y10 y12 y13)U 1 y12 U 2 y13 U 3
阶数:等于除参考节点外的节点数n 对角元:等于该节点所连导纳的总和
非对角元Yij:等于连接节点i、j支路 导纳的负值
三、节点导纳矩阵的修改
不同的运行状态,(如不同结线方式下的运行状况、
变压器的投切或变比的调整等)
改变一个支路的参数或它的投切只影响该支 路两端节点的自导纳和它们之间的互导纳,因此 仅需对原有的矩阵作某些修改。
n 个独立节点的网络,n 个节点方程
Y11U1 Y12U 2 Y1nU n I1 Y21U1 Y22U 2 Y2nU n I2
Yn1U1 Yn2U 2 YnnU n In
一、节点电压方程
n 个独立节点的网络,n 个节点方程
Y11 Y21
Y12
Y22
Y1n
Y2n
Y 31U 1 Y 32U 2 Y 33U 3
一、节点电压方程
其中
Y12 Y21 y12
互 导
Y23 Y32 y23

Y13 Y31 y13
Y11 y10 y12 y13
自 导
Y22 y20 y21 y23
纳 Y33 y30 y32 y33
一、节点电压方程
三、节点导纳矩阵的修改
Y 矩阵的修改
不同的运行状态,(如不同
电力网
结线方式下的运行状况、变压器 的投切或变比的调整等)
Y Y (0) Y
Yij
Y (0) ij
Yij
三、节点导纳矩阵的修改
Y 矩阵的修改
Y11 Y12 Y1i Y1 j Y1n
Y21
Y22
Y2i
Y2 j
Y2n
电力网
Y
(0)
Yi1
Yi 2
Yii
Yij
Yin
Y j1
Yj2
Yji
Yjj
Yjn
Yn1 Yn2 Yni Ynj Ynn
三、节点导纳矩阵的修改 Y 矩阵的修改
(1)从原网络引出一条支路增加一个节点
Y 增加一行一列(n+1)×(n+1)
电力网
i yik k Ykk yik Yik Yki yik Yii yik Yii Yii (0) Yii
UU 12
I1 I2
Yn1
Yn2
Ynn
U
n
In
一、节点电压方程
n 个独立节点的网络,n 个节点方程
YU I
Y 节点导纳矩阵
Yii 节点i的自导纳 Yij 节点i、j间的互导纳
二、节点导纳矩阵
Y 矩阵元素的物理意义:
自导纳
Yii
Ii
Ui
(U j 0, ji)
Y22 y12 y23 y20
二、节点导纳矩阵
节点导纳矩阵中互导纳的确定
1
U1
y12
2
y13 U 3 3 y23
I

2
I1
y10 I3
y30
y20
U2

Y12
I1
U2
(U1 U3 0)
I1 U2 y12
Y12 y12
二、节点导纳矩阵
节点导纳矩阵Y 的特点
1. 直观易得 2. 稀疏矩阵 3. 对称矩阵
Yii yi0 y ij
j
节点i: 加单位电压 Ui 1 其余节点j: 全部接地Uj 0
节点 i 注入网络电流 Yii≠0
二、节点导纳矩阵
Y 矩阵元素的物理意义 互导纳
if j i
Y ji
Ij Ui
(U j 0, ji)
Yij Yji yij
节点i: 加单位电压 Ui 1
第四章 复杂电力系统潮流的计算机算法
1. 建立数学模型: 节点电压方程、导纳矩阵的形成与修改 2. 功率方程、节点分类及约束条件 3. 迭代法计算潮流
功率方程的非线性性质 高斯—塞德尔法 用于潮流计算———速度慢、易于收敛
4. 牛顿—拉夫逊法计算潮流
原理:局部线性化 直角座标法、极座标法、PQ分解法 用于潮流计算———速度快、但注意初值选择
三、节点导纳矩阵的修改
Y 矩阵的修改 (2)在原有网络节点i、j之间增加一条支路
电力网
i
Y 阶次不变
Yii Yjj yij yij Yij Yji yij
.
.
.
Y 11U 1 Y 12U 2 Y 13U 3
.
.
.
.
I 2 y21U 1 ( y20 y21 y23)U 2 y23 U 3
.
.
.
Y 21U 1 Y 22U 2 Y 23U 3
.
.
.
0 y31U 1 y32 U 2 ( y30 y31 y32)U 3
.
.
.
相关文档
最新文档