矿井水综合利用的新思路

合集下载

煤矿矿井水处理技术及资源化综合利用

煤矿矿井水处理技术及资源化综合利用

煤矿矿井水处理技术及资源化综合利用摘要:煤矿产业一直是全球能源供应中的关键组成部分,然而,煤矿开采和生产过程中常伴随着矿井水的涌出问题。

这些矿井水不仅对煤矿的安全和环境构成威胁,还造成了水资源的浪费。

因此,煤矿矿井水处理技术及资源化综合利用变得尤为重要。

本文将深入探讨煤矿矿井水处理技术的最新发展和资源化综合利用的潜力,以实现煤矿产业的可持续发展。

关键词:煤矿矿井水;处理技术;资源化综合利用引言:水是生命之源,而在煤矿领域,水问题却常常被忽视。

矿井水的排放不仅导致地下水位下降,还污染周边水体,对生态环境产生巨大冲击。

然而,矿井水也蕴含着巨大的潜力,可以通过先进的处理技术被转化为宝贵的资源。

一、煤矿矿井水处理技术1.膜分离技术膜分离技术是矿井水处理中一种高效而广泛应用的方法,基于膜的选择性通透性,可以有效地去除水中的污染物,包括固体颗粒、离子、有机物等,从而提高水质并实现资源化综合利用。

膜分离技术基于半透膜的原理,半透膜允许水分子通过,但拒绝大多数溶解物和微粒穿过。

其工作机制主要包括以下几个过程:(1)渗透过程。

水分子通过膜的孔隙进入膜内,这是一个自然的渗透过程。

(2)拒绝过程。

膜会选择性地拒绝大分子、离子和溶解物,使它们无法穿过膜,从而实现分离效果。

(3)浓缩过程。

在膜一侧的污染物被拒绝,水分子通过后,会导致污染物在膜一侧浓缩,从而产生浓缩液。

膜分离技术在矿井水处理中有广泛的应用,包括矿井排水处理、水资源回收和高浓度废水处理等。

膜分离技术的优点包括高效、节能、占地面积小、操作简便等。

然而,也存在膜污染、膜破坏和高能耗等挑战,需要合理的维护和管理,以确保膜分离技术的长期稳定运行。

1.化学处理技术煤矿矿井水的处理技术中,化学处理方法是一种重要且常用的手段,它通过化学反应来去除水中的污染物,改善水质,使其符合排放标准或实现资源化综合利用。

化学处理方法利用化学反应的原理,通过添加适当的化学药剂来改变水中污染物的性质,使其发生沉淀、结合或转化为不溶于水的固体,从而将其分离出来。

矿井水处理技术及研究进展

矿井水处理技术及研究进展

矿井水处理技术及研究进展1. 引言1.1 矿井水处理技术的重要性矿井水处理技术的重要性在于保护水资源和环境,确保矿山生产和周边生态的良性循环。

矿井水中含有大量的重金属、有机物和悬浮物质,如果不经过有效处理就直接排放到环境中,会对地下水、地表水和土壤造成严重污染,影响生态平衡和人类健康。

对矿井水进行有效处理是保护水资源、维护生态环境的必然要求。

矿井水处理技术的研究和应用,也可以有效解决矿山生产过程中的困难和问题,提高资源利用率和经济效益。

通过对矿井水进行处理,可以减少水资源的消耗,改善矿山生产环境,降低因水污染而引发的环境风险,提高矿山的社会责任感和可持续发展能力。

矿井水处理技术的重要性不仅在于环境保护,更在于促进矿山产业的健康发展和可持续发展。

1.2 矿井水处理技术的研究意义矿井水处理技术的研究意义在于解决矿井水污染对环境和人类健康造成的威胁。

矿井水中常含有大量的重金属、硫酸盐、溶解性无机盐等有害物质,如果不经过有效处理直接排放到环境中,会对周围的土壤、地下水和生态系统造成严重的破坏。

矿井水中的有害物质也会对工业生产和居民生活带来负面影响,影响社会的可持续发展。

通过研究矿井水处理技术,可以实现对矿井水中有害物质的有效去除和资源化利用,实现矿井水的净化和循环利用,有效降低对环境的污染,保护自然生态环境。

研究新型矿井水处理技术还能促进科技创新,推动矿业领域的可持续发展,提高矿业企业的竞争力和可持续发展能力。

矿井水处理技术的研究意义重大,对保护环境、促进资源循环利用和实现可持续发展具有重要意义。

2. 正文2.1 传统矿井水处理技术传统矿井水处理技术是指在过去长期以来被广泛应用的矿井水处理方法。

传统矿井水处理技术主要包括物理处理、化学处理和生物处理三大类。

物理处理是最基本的矿井水处理方法之一,包括沉淀、过滤、膜分离等技术。

沉淀是通过加入沉淀剂使废水中的悬浮物、浊度较高的固体颗粒等沉降下来,从而实现水质的净化。

煤矿矿井水处理方法与综合利用策略分析

煤矿矿井水处理方法与综合利用策略分析

煤矿矿井水处理方法与综合利用策略分析摘要:在煤炭开发过程中,不仅会破坏原有的地表结构,导致周围环境的污染,也会造成严重的水污染问题。

煤矿矿井水中存在很多的杂物,是聚集于矿井中的废水,合理地处理矿井水不仅可以减少污染,也可以发挥矿井水资源的最大价值,对于煤矿矿井水,在加工处理上要严格按照一定的施工工序和流程进行,才能净化煤矿矿井水,也可以合理地利用煤矿矿井水。

本文主要探讨煤矿矿井水处理方法与综合利用策略。

关键词:煤矿矿井水;处理方法;综合利用;策略前言矿井水污染问题会直接影响人们的用水,也会阻碍煤炭生产作业,在煤炭行业深入发展的背景下,水污染问题更为严重,同时缺水问题也更为显著。

在处理后对矿井水进行综合利用,不仅可以减少污染,也可以节省水资源,发挥煤矿矿井水最大的利用价值,进而实现生态效益和经济效益的共同发展。

1矿井水特点和类型煤矿矿井水主要来源于地下水,当矿井产生裂缝时,地下水会渗出来,形成煤矿矿井水。

一般情况下,煤矿矿井水的特点有成煤地质环境和地层矿物质成分有关,其水质和水量受多个因素的影响,其中地质条件与充水是影响水质和水量的主要因素。

煤矿矿井水主要有洁净矿井水和酸性矿井水两种,虽然煤矿矿井水有地下水的特征,但是也存在地表水的特点,在排水量上,受到水文地质条件的影响,不同地区的煤矿矿井水总体特点不同。

据统计,产生1t原煤,会形成0.5m3到10m3的煤矿矿井水,虽然矿井废水污染不大,一般不会存在有毒物质,但是部分成分超标,如硫酸盐、氨氮、COD、总氮含量等成分,对煤矿矿井水进行处理,可以实现综合利用,满足当下社会的环保生产理念[1]。

2矿井水处理方法2.1 洁净矿井水的处理一般洁净的矿井水没有受到污染,这类水的应用价值较高,可以用于生活和生产,在处理这类水时,一般对煤矿水层经过采样进行分析,并实施井下清污分流的处理方法,通过专用的管道将其排出并实现二次利用,处理成本较低,经济性强,操作较为简单。

浅谈煤矿矿井水的处理及其综合利用

浅谈煤矿矿井水的处理及其综合利用

浅谈煤矿矿井水的处理及其综合利用前言水是社会文明、经济建设和人类赖以生存必不可少的自然资源, 但我国是一个严重缺水的国家, 人均占有的淡水资源在全世界排第84 位,而且水资源分布极不均衡。

煤炭在我国能源结构中占70%以上, 一方面,我国的煤炭绝大部分蕴藏在北方缺水地区; 另一方面, 随着煤炭产量的不断增长, 又进一步加速了北方地区的缺水。

如何把井下排水作为一种水资源加以开发利用, 已引起煤炭行业的广泛重视。

因此, 加速矿井水资源的开发和利用, 寻求先进而又经济可行的工艺和技术处理矿井水作为生产和生活用水, 已成为保证煤矿正常生产经营, 提高企业综合效益, 实现可持续发展的必由之路。

1 煤矿矿井水水质及分析煤矿矿井水是指煤炭开采过程中地下地质性涌渗水涌渗到巷道里被排出的自然地下水。

另外, 井下采煤生产过程中的洒水、降尘、灭火灌浆、消防及液压设备产生的含煤尘废水也是矿井水的一部分。

因此, 它既具有地下水特征, 但又受到人为污染。

矿井水的特性取决于成煤的地质环境和煤系低层的矿物化学成分, 其中水文地质条件及充水因素对于矿井开采过程矿井废水的水质、水量有决定性的影响。

2 煤矿矿井水分类及处置矿井水的水质一般可分为含悬浮物矿井水、酸性矿井排水、高矿化度矿井排水几类。

( 1) 含悬浮物矿井水。

主要是指含有一般悬浮物的矿井水,水质的pH 一般为中性, 总硬度和矿化度不高,其构成矿井悬浮物的主要成分是粒径极为细小的煤粉、岩尘、粉等悬浮物,一般呈黑色。

对于此类矿化度不高而悬浮物含量较高的矿井水, 有较成熟可行的工艺和经验。

一般采用传统给水处理净化工艺, 混凝、沉淀( 气浮) 、过滤、消毒等工序处理, 其中混凝是水处理工艺中十分重要的环节。

选用混凝剂的原则是产生大、重、强的矾花,常用的混凝剂为铝盐和铁盐混凝剂,其净水效果好,出水水质能达到矿区生产用水标准的要求,在经过过滤和消毒处理后也可达到饮用水标准。

( 2) 酸性矿井水。

矿井水处理及利用

矿井水处理及利用

矿井水处理及利用摘要:环保问题是个人和国家都重视的问题,它关系着每个人健康和生活品质,怎样给矿井居民带来舒适的生活环境一直是企业思考的问题。

关键字:煤矿;矿井水处理;利用一、现状矿井水是地下开采煤炭资源的"副产品",长期以来被片面地作为危及安全生产的隐患相待,并习惯性地以工业废水长年外排流失。

目前,松藻煤电公司石壕煤矿井下工业水日排数量达到13000多立方米,这些大量未经处理含有煤粉、岩粉和其他污染物的矿井水外排,影响到矿区及周边的环境。

因此,如何处理矿井排出的工业废水的水质,成为迫在眉睫的问题。

科研小组成员寻求矿井水净化处理设备,必须在井下对进入水仓前的矿井水进行净化处理,实现清水入仓,水体中的煤泥打捞并经脱水实现最大化的综合利用,处理完毕的水提升至地面,实现达标排放,同时彻底解决井下水仓沉积物淤积及人工清仓问题。

二、矿井水处理解决方案选用四川环能德美科技股份有限公司的超磁分离水体净化成套技术设备,ReCoMagTM 超磁分离水体净化技术其成套设备与普通的沉淀和过滤相比,具有无反冲洗、分离悬浮物效率高、工艺流程短、占地少、投资省、运行费用低等特点。

该技术具有以下特点:2.1处理时间短、速度快、处理量大。

处理效率高、流程短,总的处理时间不到3min,冶金系统单台设备最大处理量为1500m3/h,可多台并联运行,满足大流量处理要求。

2.2占地少、出水稳定。

出水SS稳定在<10mg/L。

2.3排泥浓度高。

磁盘直接强磁吸附污泥,连续打捞提升出水面,通过卸渣装置得到的污泥浓度高。

2.4运行费用低。

采用微磁絮凝技术,投加药量少,磁种循环利用率高,运行费用低。

2.5日常维护方便,自动化程度高。

三、矿井水净化工艺流程简述3.1 超磁分离水体净化工艺流程图ReCoMagTM超磁分离水体净化技术适用于处理含有难沉降悬浮物的废水,其工艺流程图如图3-1-1所示。

图3-1-1超磁分离工艺流程图3.2工艺流程简述3.2.1 废水的净化主流程经过预沉处理除掉较大悬浮物及杂质后的废水,被提升至混凝系统中,在混凝系统中投加磁种、PAC和PAM三种物质实现对废水的净化,在混凝系统的后段生成以磁种作为“核”的悬浮物混合体,包含磁种的悬浮物(也称为磁性絮团)流经超磁分离机,利用超磁分离机里的稀土永磁体产生的高强磁力实现磁性絮团与水的快速分离。

矿山开采中的废水资源化利用技术

矿山开采中的废水资源化利用技术

矿山开采中的废水资源化利用技术在矿山开采的过程中,会产生大量的废水。

这些废水如果未经处理直接排放,不仅会对环境造成严重的污染,还会浪费宝贵的水资源。

随着环保意识的增强和水资源短缺问题的日益突出,对矿山开采中废水的资源化利用已经成为了一项重要的任务。

矿山废水的来源多样,包括矿井水、选矿废水、露天矿坑水等。

这些废水中通常含有悬浮物、重金属离子、有机物、酸碱性物质等污染物,水质复杂且处理难度较大。

然而,通过合理的技术手段,这些废水可以被转化为可利用的资源。

首先,物理处理方法在矿山废水资源化利用中发挥着重要作用。

常见的物理处理技术包括沉淀、过滤和吸附。

沉淀法是利用重力作用使废水中的悬浮物自然沉降,从而达到去除的目的。

过滤则是通过过滤介质,如石英砂、活性炭等,拦截废水中的杂质。

吸附法主要利用具有高比表面积和吸附能力的材料,如活性炭、沸石等,吸附废水中的污染物。

这些物理处理方法操作简单,成本较低,能够有效去除废水中的大颗粒物质和部分溶解性污染物。

化学处理方法也是矿山废水处理的常用手段之一。

例如,中和法可以用于调节废水的酸碱度,使其达到排放标准或可利用的范围。

化学沉淀法能够使废水中的重金属离子形成沉淀而被去除。

氧化还原法可用于处理废水中的有机物和还原性物质。

通过这些化学处理方法,可以显著改善废水的水质,为后续的资源化利用创造条件。

生物处理技术在矿山废水处理中也逐渐得到应用。

利用微生物的代谢作用,将废水中的有机物分解为无害物质。

常见的生物处理方法有活性污泥法、生物膜法等。

微生物能够适应一定的水质条件,并在代谢过程中对污染物进行降解和转化。

但需要注意的是,矿山废水中的某些成分可能对微生物的生长和活性产生抑制作用,因此在应用生物处理技术时需要进行充分的评估和优化。

除了上述处理方法,膜分离技术在矿山废水资源化利用中展现出了广阔的前景。

膜分离技术包括微滤、超滤、纳滤和反渗透等。

通过选择合适的膜孔径和操作条件,可以实现对废水中不同粒径和溶解性物质的分离。

最新十二五矿井水利用发展规划

最新十二五矿井水利用发展规划

十二五矿井水利用发展规划“十二五”矿井水利用发展规划一、我国矿井水排放利用现状及存在的主要问题(一)矿井水排放现状我国能源资源的特点是富煤缺油少气,煤炭资源总量居世界第一,占国内一次能源资源总量94%。

2010年产煤32.4亿吨,占世界煤炭总产量的45%,占我国一次能源生产量78%,占消费总量的70.2%。

煤炭工业的持续发展有力地支持了我国经济持续发展对能源的需求。

目前,国家十分重视新能源开发、低碳经济的发展,煤炭占总能源消费量的比重将逐步降低,为确保我国能源供求,预计20-30年内煤炭生产总量还要增加。

“十二五”规划,到2015年我国煤炭产量将增加到37.5亿吨,才能满足社会经济发展的需要。

煤炭是赋存在地下沉积岩类的矿产资源,含煤层、含水层、隔水层共生在一起,为确保煤矿井下生产安全,在煤炭开采过程中,必然要排放大量的矿井涌水。

2010年全国煤矿年排放矿井水约61亿m3。

矿井涌水量大小与矿山所处的地理位置、气候、地质构造、煤层形成年代、开采深度、开采方法等因素有关。

气候湿润,地下水资源丰富的东南部地区,矿井水排放量就大,有的煤矿,吨煤排水量高达80 m3/t以上;气候干燥、少雨、蒸发量大的中西部、北部地区,矿井水排放量就小,如山西大同吨煤排水量平均只有0.24m3/t。

(详见附表1)(二)矿井水的资源情况和特点我国煤炭资源一般埋葬较深,以地下井工开采为主,煤炭在开采过程中,必然要排放大量的地下涌水,即矿井水。

矿井水的主要来源:一是地下水,主要来自奥陶系和寒武系灰岩水、砂岩裂痕水、第四季冲积层水、老窑水等,各煤矿煤层所处的地质构造不同,排水量大小差别很大;二是煤矿生产废水,采矿过程中,地面要输入生产用水用于液压支柱、机电设备、挖煤过程中防尘降尘洒水等产生的极少量的废水;三是地表裂痕渗入的地表水。

1、煤矿矿井水水质特点。

煤矿矿井水主要来源于地下水,一般占到矿井排水量95%左右,矿井水的水质与当地地下水水质基本相同,煤矿在生产过程中,由于地下水在流经采煤工作面时会携带大量的煤粉、岩粉等悬浮物杂质,使矿井水颜色多呈灰黑色,有的煤矿煤层与碳酸盐矿物、硫酸盐、石灰岩等可溶性岩石共生在一起,地下水与岩石发生氧化作用,使矿井水呈高矿化度或酸性。

煤矿矿井水处理技术现状与展望

煤矿矿井水处理技术现状与展望

煤矿矿井水处理技术现状与展望目录一、内容概要 (2)二、煤矿矿井水处理技术现状 (3)三、煤矿矿井水处理技术现状分析 (4)3.1 现有技术的主要特点 (6)3.2 技术应用中的成功案例 (7)3.3 存在的主要问题和挑战 (8)四、煤矿矿井水处理技术展望 (10)4.1 技术发展趋势预测 (11)4.1.1 高效节能技术的应用 (12)4.1.2 智能化技术的应用 (13)4.1.3 绿色可持续发展技术的应用 (14)4.2 未来矿井水处理技术的关键领域 (16)4.2.1 深度处理技术领域 (17)4.2.2 矿井水回用技术领域 (18)4.2.3 自动化与智能化技术领域 (20)五、技术改进与创新的建议 (21)5.1 加强科技创新,提高处理效率 (22)5.2 推广先进工艺,提升产业水平 (23)5.3 强化人才培养,增强技术创新能力 (24)六、结论 (26)6.1 对当前煤矿矿井水处理技术的总结 (26)6.2 对未来煤矿矿井水处理技术的展望 (28)一、内容概要随着全球经济的快速发展,煤炭作为主要能源资源的需求不断增加,煤矿矿井水的排放问题日益严重。

煤矿矿井水处理技术的研究和应用对于保障水资源安全、提高煤炭开采效率和实现绿色矿山建设具有重要意义。

本文将对当前煤矿矿井水处理技术的现状进行分析,并对未来发展趋势进行展望。

煤矿矿井水主要包括地下水、地表水和井下废水。

地下水是矿区居民生活用水和工业用水的重要来源,地表水则是矿区生态环境的重要组成部分。

随着煤炭开采的不断扩大,矿井水量逐渐增加,矿井水污染问题日益严重。

主要污染源包括:采煤过程中产生的废水、煤矸石堆场渗滤出的水、地面塌陷引起的污水等。

这些污染物对地下水和地表水造成严重污染,影响矿区居民的生活和生态环境。

针对煤矿矿井水的处理技术主要包括物理处理、化学处理和生物处理等方法。

物理处理方法主要包括沉淀、过滤、吸附等技术,适用于去除悬浮物、颗粒物等污染物;化学处理方法主要包括中和、氧化还原、沉淀等技术,适用于去除重金属离子、有机物等污染物;生物处理方法主要包括好氧生物处理、厌氧生物处理等技术,适用于去除有机物、氮磷等污染物。

矿井水的防治与利用范文(二篇)

矿井水的防治与利用范文(二篇)

矿井水的防治与利用范文矿井水作为一种特殊的废水源,具有较高的污染物浓度和复杂的组成,对环境和人类的健康造成了严重的威胁。

为了实现矿井水的防治与利用,减少其对环境的影响,保护地下水资源,必须采取科学有效的措施进行处理和利用。

本文将对矿井水的防治与利用进行探讨。

矿井水的防治是保护和修复矿井周围环境的关键方法之一。

首先,我们可以采取物理方法来处理矿井水,如通过沉淀、过滤等方式去除其中悬浮固体和颗粒物质。

其次,可以利用化学方法对矿井水进行处理,如利用氧化剂氧化其中的有机物质,或者使用沉淀剂将其中的重金属离子沉淀下来。

此外,生物方法也是一种常用的处理方式,可以利用微生物来降解有机物质,或者利用植物吸收污染物质。

采用这些方法,可以有效地去除矿井水中的污染物,降低其对环境的影响。

除了防治之外,矿井水的利用也是一个重要的方面。

矿井水中含有丰富的资源,如金属元素、矿物质等,可以进行回收和利用。

例如,可以利用矿井水中的金属元素进行资源回收,如通过电解或其他方法提取其中的金、银等贵金属。

此外,矿井水中的矿物质也可以进行回收和利用,如利用其中的钠、钾等矿物质进行化肥生产。

这种利用方式不仅可以降低矿井水对环境的影响,还能够有效地利用资源,实现资源的循环利用。

此外,还可以将矿井水进行再利用,如利用矿井水进行工业用水或农业灌溉等。

矿井水具有一定的水源地位,可以作为水资源的补充。

通过对矿井水进行处理,去除其中的有害物质,可以使其符合工业用水或灌溉用水的要求,从而实现矿井水的再利用。

这种方式不仅可以减少对地下水的开采,还能够降低对自然水源的压力,保护地下水资源。

在矿井水的防治与利用过程中,还需要加强监管与管理。

首先,需要建立健全的法律法规体系,对矿井水的防治和利用进行规范。

其次,要加强监测和评估工作,及时了解矿井水的污染情况和变化趋势,采取相应的治理措施。

另外,要加强技术研发和推广应用,提高矿井水的治理效果和利用效益。

最后,还需加强宣传和教育,提高公众的环境保护意识和参与度,共同保护好矿井水资源。

煤矿矿井水处理技术及资源化综合利用_1

煤矿矿井水处理技术及资源化综合利用_1

煤矿矿井水处理技术及资源化综合利用发布时间:2022-12-09T03:31:37.933Z 来源:《工程管理前沿》2022年第15期作者:张程[导读] 当前,我国煤炭能源开采率不断增加,是我国十分重要的能源之一,也是实现企业发展的重要前提保障。

在每一张程中煤科工集团沈阳设计研究院有限公司 110015摘要:当前,我国煤炭能源开采率不断增加,是我国十分重要的能源之一,也是实现企业发展的重要前提保障。

在每一年煤矿资源开采的过程中,都会伴随着大量的矿井水产生,随着煤矿资源的不断增多,矿井水如果直接排放到自然环境中,势必会导致周边环境的严重污染情况,这样不仅会给矿区内的生产环境造成影响,严重的情况下还会影响周边居民的生存。

同时,地表水以及降水也是煤矿开采工作中应重点预防的问题。

目前,我国煤矿资源主要集中在西北地区,但是西北地区的水资源却十分稀少,尽管目前矿井水资源的实际利用效率有着明显的提升,但是依旧会存在一定的矛盾情况,为了改善此类问题的发生,相关企业更应该重视对矿井水资源的防治。

关键词:煤矿矿井水;处理技术;资源化综合利用引言矿场污水主要包含煤泥微粒和石灰岩微粒的矿井涌水,矿山采矿步骤中喷雾抑尘、机械设备及消防救援过程中产生的煤尘废水,未经处理的矿场污水直接排放会造成自然环境的污染。

矿场污水最终通过小巷池塘或排水泵汇集于水仓中,夹杂的煤泥、石灰岩和沉积微粒随着时间延长不断在水仓中沉积,造成整治水仓的频率及成本增加,大大增加了煤矿的生产成本。

1煤矿矿井水处理的影响因素分析矿井水所面对的处理对象各不相同,所以水处理期间的处理工艺同样具有明显的差异。

例如:在使用絮凝工艺时,需要重点关注絮凝剂的使用以及助凝剂的比例。

通常情况下,能够影响到矿井水处理效果的因素有很多,比如废水温度、水体杂质等。

当矿井水的浊度过高时,应该适当增加絮凝剂用量。

需要注意的是,pH值能够影响絮凝剂水解平衡,并改变污染物的表面性质,所以在选择处理工艺时,需要提前对絮凝剂的pH值进行测量。

煤矿矿井水的综合利用

煤矿矿井水的综合利用
境造成污染 。
4 . 2 . 3高效混凝反应沉淀池 高效混凝反应沉淀池由混凝反应池和沉 淀池两部分组成。采 用微涡混凝絮凝反应 、 高密度迷宫斜板沉淀处理技术。该方案特 点工艺具有体 积小 、 占地 面积省 、 处理效率高 、 出水水 质好 、 流程 简单 。 结合上述三个方案 , 选择高效混凝反应沉淀池 。经高效混凝 反应沉淀池后根据水质化验情 况 ,经过锰砂过滤 ,除去水 中 F e 、 Mn离 子 。 4 . 3深 度 处 理 技 术 设计 与选 择 盐类物质 的去除 , 必须进行深度处理 , 去除这些 盐类 物质 , 主 要有药剂软化法 、 离子交换 法和膜处理法 三种方法 。其 中膜分离 处理技术主要包括 电渗析( E o) 、 超滤( u F ) 、 纳滤( N F ) 以及反渗透 ( R O) 。反渗透是最精密的膜法液体分离技术 , 反渗透膜的有 效处 理孔径在 0 . 1 n m以上 , 可 以从水 中除去 9 0 %以上的溶解 性盐类 和 9 9 %以上的胶体微生物及有机物 。根据 以上分 析 , 目前 能够稳 定 可靠 的除盐方法是采用膜分离技术 , 结合 本矿深度处理需要 去除 的物质 , 从运行 可靠性和控制 系统操作 复杂程度 , 本次设计 拟采 用分 渗透 工艺 对 矿井水 进 行深 度处 理 ,用 于 去 除 C O D、 S O 4 2 _ 、 N O  ̄ 、 总硬度 、 氯化物 、 硬度 和细菌 。
性 可 以 大 大 缓 减 了 用 水 紧 张 的 压 力 .改善 生 产 和 生 活 用 水情 况 . 对 促 进 区域 经 济发 展 . 起到积极的作用。
山西大
关键 词 : 矿井水 ; 反 渗 透技 术 ; 综合 ; 利用
1项 目概 况
同煤集团晋华宫矿位 于大 同市西郊 , 年设计 生产能力 4 5 0万 吨。 井下有付立井 中央泵房 , 南 山中央坑底泵房 2 个排水系统。 根 据2 0 0 8 -2 0 1 1 年矿井涌水量统计 ,晋 华宫矿矿井最 大涌水量 为 4 3 5 0 m 3 / d , 若不对水资源加以利用直接排 出, 对地表水体造成严 重 污染 , 同时对水资源的浪 费所造成的损失不可估量。

煤矿开采的矿井水回用与综合利用

煤矿开采的矿井水回用与综合利用
02
通过回用矿井水,可以降低对自 然水体的负担,保护水资源的可 持续利用。
减少环境污染
矿井水回用可以减少废水的排放,减 轻对周边环境的污染压力。
回用的矿井水可以替代新鲜水源,减 少化学物质和有害物质的排放,降低 对生态系统的破坏。
提高矿区生态环境质量
矿井水回用有助于改善矿区的水资源状况,促进生态环境的 恢复和改善。
通过综合利用矿井水,可以促进矿区植被的生长和生物多样 性的增加,提高生态系统的稳定性和可持续性。
CHAPTER 02
矿井水回用的技术与方法
矿井水处理技术
沉淀与澄清
通过自然沉淀或加入药剂加速沉淀, 去除水中的悬浮物和部分溶解性物质 。
过滤
消毒
采用氯、臭氧等消毒剂杀灭水中的细 菌和病毒。
通过砂、活性炭等介质去除水中的细 小颗粒、有机物和部分溶解性物质。
矿井水回用的管理
制定严格的管理制度,确保矿井水 回用的安全、可靠和可持续性,同 时建立完善的监测体系,对回用水 进行定期检测和评估。
矿井水回用的成功案例
某大型煤矿
该煤矿采用先进的矿井水处理技术, 将处理后的矿井水用于工业冷却、锅 炉补水等方面,不仅节约了水资源, 还降低了生产成本。
某铁矿
该铁矿将处理后的矿井水用于选矿工 艺,提高了选矿效率和产品质量,同 时也节约了水资源。
矿井水回用的经验与教训
经验总结
矿井水回用具有节约水资源、降低生产成本、保护环境等优点,应积极推广应 用。同时,应加强技术创新和研究,提高矿井水处理技术和设备的效率。
教训分析
在矿井水回用过程中,应严格遵守相关法律法规和标准,确保回用水的质量和 安全性。同时,应加强管理和监测,及时发现和处理问题,避免造成不良影响 。

煤层气(煤矿瓦斯)煤矸石矿井水综合利用实施方案(2017—2020年)

煤层气(煤矿瓦斯)煤矸石矿井水综合利用实施方案(2017—2020年)

煤层气(煤矿瓦斯)煤矸石矿井水综合利用实施方案(2017—2020年)根据《市人民政府关于煤炭工业淘汰落后产能加快转型升级的实施意见》,制定本方案。

一、总体要求按照安全、高效、绿色发展原则,切实提高煤层气(煤矿瓦斯)、煤矸石、矿井水综合利用水平。

煤层气(煤矿瓦斯)坚持井下抽采与地面开发相统筹,促进煤矿安全生产的原则;煤矸石综合利用坚持减少排放和扩大利用相结合的原则,实行就近利用、分类利用、大宗利用,增加综合利用量;矿井水综合利用坚持统筹规划、因地制宜、有效利用的原则,提高技术装备水平,降低处理成本,建设完善矿井水净化处理工程,推进资源化利用。

二、综合利用目标到2020年实现以下目标:(一)煤层气(煤矿瓦斯)。

抽采量达到1800万立方米。

符合利用条件的,进行综合利用。

(二)煤矸石。

产生量9万吨,利用量达到7.2万吨,综合利用率力争达到80%。

(三)矿井水。

产生量300万立方米,实现100%达标排放,综合利用量240万立方米,综合利用率力争达到80%。

三、主要任务(一)煤层气(煤矿瓦斯)。

坚持“应抽尽抽、多措并举、抽掘采平衡”的原则,因地制宜采取“一矿一策”“一面一策”的瓦斯治理措施,不断创新优化瓦斯抽采工艺和提升装备水平,提高瓦斯抽采浓度,鼓励有条件的煤矿开展瓦斯抽采综合利用试点。

(二)煤矸石。

1.因地制宜推行沿空留巷、充填开采、煤矸石不升井等绿色开采技术,减少煤矸石排放量。

2.利用煤矸石实施土地复垦、有效控制地面沉陷、损毁耕地和筑基铺路。

到2020年煤矸石回填和筑基铺路利用量力争达到总产生量的55%。

3.扩大煤矸石在水泥等新型建材的利用规模。

到2020年,矸石制建材利用量力争达到总产生量的25%。

(三)矿井水。

1.建设完善矿井水净化处理工程和再生水利用设施,推动矿井水综合利用,重点用于矿区生产、就近工农业和生态环境用水,减少新鲜水取水量。

到2020年矿井水利用率达到80%以上。

2.2019年前关闭清镇市站街镇大沙坡煤矿、花溪区燕楼乡新兴煤矿、花溪区燕楼乡长冲煤矿、花溪区燕楼乡兴达煤矿等水环境敏感区的煤矿。

煤矿矿井水处理技术及资源化综合利用

煤矿矿井水处理技术及资源化综合利用

煤矿矿井水处理技术及资源化综合利用摘要:我国“富煤、贫油、少气”的能源结构决定了能源消耗以煤炭为主。

大随着煤矿开采规模越来越大,也造成了诸多环境问题。

本文以矿井水为例,介绍了矿井水的分类,并对矿井水处理技术及综合利用途径进行了综述。

关键词:矿井水;水处理技术;资源化综合利用引言由于我国“富煤、贫油、少气”的能源结构,决定了煤炭是我国的主要能源。

多年来,随着煤炭开采规模的不断扩大,造成了一系列环境问题,特别是矿井水长期排放,在周边形成了黑湖、咸水湖,且面积逐年扩大,导致出现土壤盐碱化和浅层地下水含盐量增大等一系列严重危害。

随着国家《关于煤炭工业“十三五”节能环保与资源综合利用的指导意见》的出台,明确提出要求推动矿井水产业化,提高矿井水利用率,加强水资源节约、保护和循环高效利用;并在《煤炭工业“十四五”高质量发展指导意见》中明确指出生态环境约束需不断强化,实施碳达峰和碳中和,绿色低碳与清洁高效利用相结合战略,矿井水的处理及资源化综合利用已经势在必行。

1煤矿矿井水矿井水分类矿井水是指在矿井水抽排、洗煤等过程中产生的废水,根据矿井水水质的特性主要可以分为含悬浮物矿井水、高矿化度矿井水及酸性矿井水。

矿井水的污染主要是指抽采及排放时候导致的地表水或者地下水的污染、底板塌陷等,特别是以矿井水排放导致的地表水污染为主,矿井水内含有大量的重金属物质,长期排放到地表后会导致排放区域或者河流内的重金属物质超标。

目前采用的混凝+沉淀的处理模式仅能对矿井水进行初始过滤,难以满足祛除矿井水内的有毒有害物质的需求。

2煤矿矿井水处理技术2.1应用聚合氯化铝聚合氯化铝是矿场污水处理中运用最普遍的混凝剂。

而絮凝剂,近年来有许多全新研发的絮凝剂可供选择,但需根据矿场污水的实际情况作出选择。

我国的矿场污水原水浊度达数万NTU,目前使用最多的处理方案为:PAC(混凝剂)配合PAM(絮凝剂)。

其中混凝剂PAC通过压缩双电层作用使得胶粒得以迅速凝聚;再通过吸附电中和的吸附作用中和部分电荷,减少静电斥力,使其更易与其他颗粒接近而互相吸附;最后通过吸附架桥作用,将高分子物质与胶粒吸附与桥连,使明矾花迅速形成。

煤矿矿井水处理方案

煤矿矿井水处理方案

目录一、工程概况 (3)二、废水的特点 (3)三、设计依据及原则 (4)3.1 设计原则 (4)3.2设计原则 (4)四、设计处理能力、进水水质和出水水质 (5)4.1设计处理能力 (5)4.3设计出水水质 (5)五、工艺方案选择 (6)5.1工艺方案选择 (6)5.2污泥处理 (7)5.3 工艺流程 (8)5.4 工艺特点 (8)六、工程设计 (9)七、工程内容 (1)八、投资估算 (2)8.1土建工程投资 (2)8.2 设备工程投资 (2)8.3 其他费用 (3)8.4总费用合计 (3)九、生产组织及劳动定员 (3)9.1生产组织 (3)9.2 劳动定员 (3)9.3 人员培训 (4)十、成本分析 (4)10.1人工费 (4)10.2电费 (4)10.3药剂费 (5)10.4吨水费用 (5)十一、工程实施进度计划表 (5)煤矿矿井水处理改造工程技术方案一、工程概况项目名称:煤矿矿井水处理改造工程项目规模:3500m3/d项目地址:主管单位:矿井设计生产能力为15万t/a,该煤矿废水主要来自于矿井排水,井下排水量正常涌水量为125m3/h,最大涌水量达146 m3/h,由于该煤矿地下为紫红色、灰白色铝质岩层,局部为紫红色、褐色矿层,该矿井排水含有黄褐色铁矿颗粒和铝矿颗粒,颜色呈黄褐色。

目前煤矿废水处理系统仅有三个沉淀池,处理系统不能满足新的环保要求,为保护环境,治理污染,现拟对原有设施升级改造,使废水经处理后实现达标排放。

二、废水的特点煤矿矿井排水呈黄褐色,感官性差,水中的主要污染物为悬浮物(SS)和铁,是典型的无机废水。

悬浮物的主要是煤屑、岩粉、粘土等细小颗粒物,尤其是煤粉,其含量为几十到几百毫克/升,特点是悬浮物粒度小、比重轻、沉降速度慢。

三、设计依据及原则3.1 设计原则1.《污水综合排放标准》(GB8978-1996)2.《建筑给水排水设计规范》(GBJ50015-2003)3.《室外排水设计规范》(GB50014-2006)4.《煤炭工业矿井设计规范》(GB50215-2005)5.《煤炭工业污染物排放标准》(GB20426-2006)6.《污水综合排放标准》(GB8978-1996)7.《建筑给水排水设计规范》(GBJ50015-2003)8.《供配电系统设计规范》(GB50052-2009)9.《通用用电设备配电设计规范》(GB50055-1993)10.《自动化仪表工程施工及验收规范》(GB50093-2002)11.煤矿提供的水质、水量参数3.2设计原则1)认真贯彻国家关于环境保护工作的方针和政策,符合国家相关政策法规、规范、技术标准,实现废水综合处置与回用的目标,为环境的可持续发展做出贡献。

我国煤矿矿井水处理现状及发展趋势分析

我国煤矿矿井水处理现状及发展趋势分析

我国煤矿矿井水处理现状及发展趋势近年来高矿化度和含特殊组分矿井水逐年增多,相关水质标准大幅提高,给煤矿矿井水处理提出了更高的要求。

为了适应新形势,煤矿矿井水处理技术应通过科技创新,实现矿井水大规模低成本处理,支撑矿井水高效利用,一是要大力发展井下处理技术,利用井下空间和岩体自然净化优势大幅降低矿井水处理成本,并实现矿井水大规模调配与利用;二是要因地制宜利用西部矿区丰富的太阳能、地热等新能源以及火电厂余热等,驱动低温多效蒸发、膜蒸馏等处理技术,可大幅降低处理能耗;三是要通过对相关标准体系的完善,促进矿井水处理实现“分级处理、分质利用”。

1、煤矿矿井水处理技术现状1)高悬浮物矿井水的澄清处理我国高悬浮物矿井水处理技术已较为成熟,尤其煤矿地下水库净化技术的发展和应用,实现了矿井水的大规模低成本自净化。

主要有常规处理技术、超磁分离水技术、高密度沉降技术(重介速沉)、煤矿地下水库净化技术。

2)高矿化度矿井水处理按照处理工艺顺序主要分为预处理(通常采用混凝沉淀和软化工艺对高矿化度矿井水进行预处理)、脱盐浓缩(主要有膜法和热法两大技术类别)和蒸发结晶(主要有蒸汽机械再压缩、多效蒸发和蒸发塘)3个工艺段。

3)含特殊组分的矿井水的处理主要是含氟和含铁、锰矿井水,以及少量的含重金属矿井水,主要处理技术包括含氟矿井水处理技术和含铁、锰矿井水处理技术。

目前处理技术都存在明显的技术缺陷,还需要通过科技创新和工程实践提高处理水平。

2、我国矿井水处理利用面临的新挑战(1)高矿化度和含特殊组分矿井水逐年增多给矿井水处理带来新挑战。

西部矿区干旱少雨蒸发量大,以及复杂的水文地质条件,造成西部矿井水中高矿化度矿井水和含特殊组分矿井水的比例较高。

近年来,随着我国西部煤炭开采规模和产量的逐年增加,高矿化度矿井水和含特殊组分矿井水处理利用问题给我国煤炭绿色开发带来了新的挑战。

(2)水质标准的提高给矿井水处理提出了更高的要求。

随着《水污染防治行动计划》(水十条)的深入开展和新的煤矿环境影响评价制度的执行,外排矿井水含盐质量浓度要达到1000mg/L,且山西、陕西、内蒙古等省份的煤炭主产区近年来开始要求将矿井水外排标准根据受纳水体环境功能区划规定提高到GB 3838—2002《地表水环境质量标准》Ⅲ类标准及以上。

关于矿井水处理智能化控制思路探讨

关于矿井水处理智能化控制思路探讨

关于矿井水处理智能化控制思路探讨摘要:我国各领域迅猛发展的大背景下,工业与经济发展对能源、矿产的需求量不断增大,矿井生产的压力也就越来越大,尤其是当前矿山发展不断向着智能化、环保化方向发展,矿井生产的环保要求也在不断攀升。

基于此,本文针对矿井水处理系统进行综合分析,以期为矿山生产及规划同仁提供些许参考。

关键词:矿井;水处理;智能化控制思路一、前言矿井水是煤炭开采过程中地下水渗透到巷道为安全生产而排除的废水,水污染治理仍然是煤矿当前主要的环境治理任务,富水煤矿尤为突出。

煤矿矿井水主要污染物为悬浮物,处理流程短、工艺简单,但大部分矿井处理控制系统智能化程度不高,有甚者还未实现自动化,在当前智能化、少人化趋势下,矿井水处理实现智能化控制是必然的。

为提高智能化控制思路设计的可行性,以富水煤矿矿井水处理作为蓝本开展设计工作,矿井水处理站设计规模为1200m3/h,采用“预沉调节+高效澄清+转盘过滤”工艺,该工艺控制节点少、工艺流程简单可靠、通用性强,为当前煤矿矿井水处理的主流工艺,并基于智能PLC、巡检机器人、智能操控系统等软硬件实现智能化控制。

实施矿井水处理智能化建设,实现少人化乃至无人化操作,并利用智能模糊控制功能,自主查找矿井水污染物、水量规律,智能操作水泵、药剂、污泥排放等参数控制,避免药剂和电力浪费,可以节省大量人力物力,降低环境治理成本,提高了污水处理智能化水平。

二、矿井水处理简述该煤矿为富水煤矿,排水量200-1100m3/h左右、悬浮物含量300-600mg/L,矿井排水执行避峰填谷、井下实行预沉和清污分流等措施,矿井水处理站设计规模为1200m3/h,采用“预沉调节+高效澄清+转盘过滤”工艺。

1.矿井水处理站整体布局该矿井水处理站布局采用集中式布置,预沉调节池、提升泵房、加药车间建设为联合建筑,便于工艺管道布置和缩短加药通路,高效澄清池、纤维转盘过滤器、污泥池条形布置。

(详见图1-1)图1-1 矿井水处理站平面布置图2.工艺流程矿井水由井下排水泵提升后进入地面预沉调节池,首先部分大颗粒煤泥在调节池中得以沉淀,再由提升泵将矿井水提升进入高效澄清池,泵前投加混凝剂,泵后投加絮凝剂,经混凝反应、沉淀、澄清后,出水入纤维转盘过滤器,通过池中的纤维滤布对水中杂质进行彻底过滤,过滤后出水进入清水池回用,多余达标外排。

煤矿治水方案

煤矿治水方案
3.改善矿区生态环境,促进绿色可持续发展。
4.推动矿井水害防治技术进步,提升我国煤矿治水水平。
本方案在实施过程中,应根据实际情况进行调整与优化。同时,严格遵守国家法律法规,确保治水工程合法合规。通过持续评估与改进,为煤矿治水工作提供有力保障。
二、治水目标
1.保障矿井生产安全,降低水害事故发生率。
2.提高矿井水资源利用率,减轻对地表水资源的依赖。
3.改善矿区生态环境,实现可持续发展。
三、治水原则
1.安全优先,预防为主,综合防治。
2.科学规划,合理布局,确保治水工程有效实施。
3.结合实际,注重实效,分类指导。
4.创新驱动,技术引领,推动治水技术发展。
(3)建立矿井水害监测预警系统,实时掌握矿井水文动态。
3.矿井水资源利用
(1)对矿井涌水进行水质分析,分类处理,实现水资源化。
(2)合理利用矿井水,用于矿区生产、生活及生态用水。
(3)开展矿井水回灌、补给等试验,提高矿井水利用率。
4.生态环境保护与恢复
(1)加强矿区生态环境保护,防治水污染。
(2)实施矿区土地复垦与绿化,改善矿区生态环境。
(1)加强矿井水害防治技术研究和创新,提高治水技术水平。
(2)积极推广应用新技术、新工艺、新材料,提高治水效果。
五、组织管理与保障措施
1.成立治水工作领导小组,加强对治水工作的组织领导。
2.明确相关部门职责,建立健全治水工作协调机制。
3.制定治水工作计划,明确工作目标、任务和进度。
4.落实治水资金,确保治水工程顺利实施。
(1)对矿井涌水进行分类处理,实现水资源化。
(2)合理利用矿井水,用于矿区生产、生活及生态用水。
(3)开展矿井水回灌、补给等试验研究,提高矿井水利用率。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档