2019年清明节文科练习(概率与统计答案)

合集下载

2019年全国高考文科数学试题分类汇编之统计与概率

2019年全国高考文科数学试题分类汇编之统计与概率

一、选择题:1.为评估一种农作物的种植效果,选了n 块地作试验田,这n 块地的亩产量(单位:kg )分别为1x ,2x ,⋅⋅⋅,n x ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A .1x ,2x ,⋅⋅⋅,n x 的平均数B .1x ,2x ,⋅⋅⋅,n x 的标准差C .1x ,2x ,⋅⋅⋅,n x 的最大值D .1x ,2x ,⋅⋅⋅,n x 的中位数2.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( ) A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 3.如图所示的茎叶图记录了甲乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为( ) A .3,5 B .5,5 C .3,7 D .5,74.如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是( )A .14B .8π C .12D .4π 5.有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为( ) A .45 B .35 C .25 D .156.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( ) A .110 B .15 C .310 D .25二、解答题:7.(新课标1)为了监控某种零件的一条生产线的生产过程,检验员每隔30min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16个零件的尺寸:经计算得16119.9716i i x x ===∑,16162221111()(16)0.2121616i i i i s x x x x ===-=-≈∑∑,1621(8.5)18.439i i =-≈∑,161()(8.5) 2.78i i x x i =--=-∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.(1)求(,)i x i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).(2)一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(i )从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ii )在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本(,)i i x y (1,2,,)i n =⋅⋅⋅的相关系数12211()()()()niii n niii i x x y y r x x y y ===--=--∑∑∑,0.0080.09≈.8.(新课标2)淡水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg )某频率直方图如下:(1)记A 表示事件“旧养殖法的箱产量低于50kg ”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:(3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行较22()()()()()n ad bc K a b c d a c b d -=++++9.(新课标3)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:C ︒)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率代替最高气温位于该区间的概率。

2019年高考概率与统计(文科)过关试卷

2019年高考概率与统计(文科)过关试卷

2019年高考---概率与统计(文科)过关试卷一、填空题(共6小题,每小题10分,共60分)1、、某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是_____________2、、为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:收入x(万元)8.2 8.6 10.0 11.3 11.9支出y(万元)6.27.58.0 8.59.8根据上表可得回归直线方程ˆˆˆy bx a=+,其中ˆˆˆ0.76,b a y bx==-,据此估计,该社区一户收入为15万元家庭年支出为万元3、、从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为_____________4、、从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为_____________5、我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为石6、在区间[0,2]上随机地取一个数x,则事件“121-1log2x≤+≤()1”发生的概率为二、解答题(共2小题,每小题20分,共40分)7、海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg), 其频率分布直方图如下:(1)记A 表示事件“旧养殖法的箱产量低于50 kg”,估计A 的概率; (2)填写下面列联表,学*科网并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50 kg 箱产量≥50 kg旧养殖法新养殖法(3P () 0.050 0.010 0.001k3.841 6.635 10.82822()()()()()n ad bc K a b c d a c b d -=++++.8、某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数 012345≥保费0.85aa1.25a 1.5a 1.75a 2a出险次数 0 1 2 3 4 5≥频数605030302010(1(2)记B 为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”. 求()P B 的估计值;(3)求续保人本年度的平均保费估计值.。

2019年高考(文科)数学真题专题10+概率与统计

2019年高考(文科)数学真题专题10+概率与统计

2019年高考(文科)数学真题专题10 概率与统计1.【2019年高考全国Ⅲ卷文数】《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为 A .0.5 B .0.6 C .0.7D .0.8【答案】C【解析】由题意得,阅读过《西游记》的学生人数为90-80+60=70, 则其与该校学生人数之比为70÷100=0.7.故选C .【名师点睛】本题考查抽样数据的统计,渗透了数据处理和数学运算素养.采取去重法,利用转化与化归思想解题.2.【2019年高考全国Ⅰ卷文数】某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生 C .616号学生D .815号学生【答案】C【解析】由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列{}n a ,公差10d =,所以610n a n =+()n *∈N ,若8610n =+,解得15n =,不合题意;若200610n =+,解得19.4n =,不合题意;若616610n =+,则61n =,符合题意;若815610n =+,则80.9n =,不合题意.故选C .3.【2019年高考全国Ⅱ卷文数】生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为 A .23B .35C .25D .15【答案】B【分析】首先用列举法写出所有基本事件,从中确定符合条件的基本事件数,应用古典概率的计算公式即可求解.【解析】设其中做过测试的3只兔子为,,a b c ,剩余的2只为,A B ,则从这5只中任取3只的所有取法有{,,},{,,},{,,},{,,},{,,},{,,},{,,}a b c a b A a b B a c A a c B a A B b c A ,{,,},{,,},{,,}b c B b A B c A B ,共10种.其中恰有2只做过测试的取法有{,,},{,,},{,,},{,,},a b A a b B a c A a c B {,,},{,,}b c A b c B ,共6种, 所以恰有2只做过测试的概率为63105=,故选B . 【名师点睛】本题主要考查古典概率的求解,题目较易,注重了基础知识、基本计算能力的考查.应用列举法写出所有基本事件过程中易于出现遗漏或重复,将兔子标注字母,利用“树图法”,可最大限度的避免出错.4.【2019年高考江苏卷】已知一组数据6,7,8,8,9,10,则该组数据的方差是______________. 【答案】53【解析】由题意,该组数据的平均数为678891086+++++=,所以该组数据的方差是22222215[(68)(78)(88)(88)(98)(108)]63-+-+-+-+-+-=. 5.【2019年高考全国Ⅱ卷文数】我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为______________. 【答案】0.98【分析】本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题.【解析】由题意得,经停该高铁站的列车正点数约为100.97200.98100.9939.2⨯+⨯+⨯=,其中高铁个数为10201040++=,所以该站所有高铁平均正点率约为39.20.9840=. 【名师点睛】本题考查了概率统计,渗透了数据处理和数学运算素养,侧重统计数据的概率估算,难度不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车总数的比值.6.【2019年高考全国Ⅰ卷文数】某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++.【答案】(1)男、女顾客对该商场服务满意的概率的估计值分别为0.8,0.6;(2)有95%的把握认为男、女顾客对该商场服务的评价有差异.【解析】(1)由调查数据,男顾客中对该商场服务满意的比率为400.8 50=,因此男顾客对该商场服务满意的概率的估计值为0.8.女顾客中对该商场服务满意的比率为300.6 50=,因此女顾客对该商场服务满意的概率的估计值为0.6.(2)由题可得22100(40203010)4.76250507030K⨯⨯-⨯=≈⨯⨯⨯.由于4.762 3.841>,故有95%的把握认为男、女顾客对该商场服务的评价有差异.7.【2019年高考全国Ⅱ卷文数】某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)8.602≈.【答案】(1)产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%;(2)这类企业产值增长率的平均数与标准差的估计值分别为30%,17%. 【解析】(1)根据产值增长率频数分布表得,所调查的100个企业中产值增长率不低于40%的企业频率为1470.21100+=. 产值负增长的企业频率为20.02100=. 用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%. (2)1(0.1020.10240.30530.50140.707)0.30100y =-⨯+⨯+⨯+⨯+⨯=, ()52211100i ii s n y y ==-∑ 222221(0.40)2(0.20)240530.20140.407100⎡⎤=-⨯+-⨯+⨯+⨯+⨯⎣⎦ =0.0296,0.020.17s ==≈,所以,这类企业产值增长率的平均数与标准差的估计值分别为30%,17%.8.【2019年高考全国Ⅲ卷文数】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A ,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P (C )的估计值为0.70. (1)求乙离子残留百分比直方图中a ,b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).【答案】(1)0.35a =,0.10b =;(2)甲、乙离子残留百分比的平均值的估计值分别为4.05,6.00. 【解析】(1)由已知得0.700.200.15a =++,故0.35a =.10.050.150.700.10b =---=.(2)甲离子残留百分比的平均值的估计值为20.1530.2040.3050.2060.1070.05 4.05⨯+⨯+⨯+⨯+⨯+⨯=.乙离子残留百分比的平均值的估计值为30.0540.1050.1560.3570.2080.15 6.00⨯+⨯+⨯+⨯+⨯+⨯=.9.【2019年高考天津卷文数】2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(1)应从老、中、青员工中分别抽取多少人?(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为, , , , , A B C D E F .享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.(i )试用所给字母列举出所有可能的抽取结果;(ii )设M 为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M 发生的概率. 【答案】(1)应从老、中、青员工中分别抽取6人,9人,10人;(2)(i )见解析,(ii )1115. 【分析】本题主要考查随机抽样、用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式等基本知识,考查运用概率知识解决简单实际问题的能力. 【解析】(1)由已知,老、中、青员工人数之比为6 : 9 : 10, 由于采用分层抽样的方法从中抽取25位员工,因此应从老、中、青员工中分别抽取6人,9人,10人.(2)(i )从已知的6人中随机抽取2人的所有可能结果为{, },{, },{, },{, },{, },{, },A B A C A D A E A F B C {, },{, },{, },{, {,}},,B D B E B F C D C E {,},C F {,},{,},{,}D E D F E F ,共15种.(ii )由表格知,符合题意的所有可能结果为{, },{, },{, },{, },{, },{, },{, {,},{,},{,},{,},}A B A D A E A F B D B C E B F E C F D F E F ,共11种.所以,事件M 发生的概率11()15P M =. 10.【2019年高考北京卷文数】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下:(1)估计该校学生中上个月A ,B 两种支付方式都使用的人数;(2)从样本仅使用B 的学生中随机抽取1人,求该学生上个月支付金额大于2 000元的概率; (3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B 的学生中随机抽查1人,发现他本月的支付金额大于2 000元.结合(2)的结果,能否认为样本仅使用B 的学生中本月支付金额大于2 000元的人数有变化?说明理由.【答案】(1)该校学生中上个月A ,B 两种支付方式都使用的人数约为400;(2)0.04;(3)见解析. 【解析】(1)由题知,样本中仅使用A 的学生有27+3=30人, 仅使用B 的学生有24+1=25人,A ,B 两种支付方式都不使用的学生有5人.故样本中A ,B 两种支付方式都使用的学生有100–30–25–5=40人. 估计该校学生中上个月A ,B 两种支付方式都使用的人数为401000400100⨯=. (2)记事件C 为“从样本仅使用B 的学生中随机抽取1人,该学生上个月的支付金额大于2 000元”, 则1()0.0425P C ==.(3)记事件E 为“从样本仅使用B 的学生中随机抽查1人,该学生本月的支付金额大于2 000元”. 假设样本仅使用B 的学生中,本月支付金额大于2 000元的人数没有变化, 则由(2)知,4(0)0.P E .答案示例1:可以认为有变化.理由如下:()P E 比较小,概率比较小的事件一般不容易发生,一旦发生,就有理由认为本月支付金额大于2 000元的人数发生了变化, 所以可以认为有变化.答案示例2:无法确定有没有变化.理由如下:事件E 是随机事件,()P E 比较小,一般不容易发生,但还是有可能发生的, 所以无法确定有没有变化.。

2019年高考数学真题专题15 概率与统计(解答题)

2019年高考数学真题专题15  概率与统计(解答题)

专题15 概率与统计(解答题)1.【2019年高考全国Ⅰ卷文数】某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++.【答案】(1)男、女顾客对该商场服务满意的概率的估计值分别为0.8,0.6;(2)有95%的把握认为男、女顾客对该商场服务的评价有差异.【解析】(1)由调查数据,男顾客中对该商场服务满意的比率为400.8 50=,因此男顾客对该商场服务满意的概率的估计值为0.8.女顾客中对该商场服务满意的比率为300.6 50=,因此女顾客对该商场服务满意的概率的估计值为0.6.(2)由题可得22100(40203010)4.76250507030K⨯⨯-⨯=≈⨯⨯⨯.由于4.762 3.841>,故有95%的把握认为男、女顾客对该商场服务的评价有差异.2.【2019年高考全国Ⅱ卷文数】某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01) 附:748.602≈.【答案】(1)产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%;(2)这类企业产值增长率的平均数与标准差的估计值分别为30%,17%. 【解析】(1)根据产值增长率频数分布表得,所调查的100个企业中产值增长率不低于40%的企业频率为1470.21100+=. 产值负增长的企业频率为20.02100=. 用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%. (2)1(0.1020.10240.30530.50140.707)0.30100y =-⨯+⨯+⨯+⨯+⨯=, ()52211100i ii s n y y ==-∑ 222221(0.40)2(0.20)240530.20140.407100⎡⎤=-⨯+-⨯+⨯+⨯+⨯⎣⎦ =0.0296,0.02960.02740.17s ==⨯≈,所以,这类企业产值增长率的平均数与标准差的估计值分别为30%,17%.3.【2019年高考全国Ⅲ卷文数】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A ,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P (C )的估计值为0.70.(1)求乙离子残留百分比直方图中a ,b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表). 【答案】(1)0.35a =,0.10b =;(2)甲、乙离子残留百分比的平均值的估计值分别为4.05,6.00. 【解析】(1)由已知得0.700.200.15a =++,故0.35a =.10.050.150.700.10b =---=.(2)甲离子残留百分比的平均值的估计值为20.1530.2040.3050.2060.1070.05 4.05⨯+⨯+⨯+⨯+⨯+⨯=.乙离子残留百分比的平均值的估计值为30.0540.1050.1560.3570.2080.15 6.00⨯+⨯+⨯+⨯+⨯+⨯=.4.【2019年高考天津卷文数】2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(1)应从老、中、青员工中分别抽取多少人?(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为, , , , , A B C D E F .享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.(i )试用所给字母列举出所有可能的抽取结果;(ii )设M 为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M 发生的概率. 【答案】(1)应从老、中、青员工中分别抽取6人,9人,10人;(2)(i )见解析,(ii )1115. 【分析】本题主要考查随机抽样、用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式等基本知识,考查运用概率知识解决简单实际问题的能力.【解析】(1)由已知,老、中、青员工人数之比为6 : 9 : 10,由于采用分层抽样的方法从中抽取25位员工,因此应从老、中、青员工中分别抽取6人,9人,10人.(2)(i)从已知的6人中随机抽取2人的所有可能结果为{, },{, },{, },{, },{, },{, },A B A C A D A E A F B C{, },{, },{, },{, {,}},,B D B E B FCD C E{,},C F {,},{,},{,}D E D F E F,共15种.(ii)由表格知,符合题意的所有可能结果为{, },{, },{, },{, },{, },{, },{, {,},{,},{,},{,},}A B A D A E A F B D B CE BF E C F D F E F,共11种.所以,事件M发生的概率11 ()15P M=.5.【2019年高考北京卷文数】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:(1)估计该校学生中上个月A,B两种支付方式都使用的人数;(2)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2 000元的概率;(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2 000元.结合(2)的结果,能否认为样本仅使用B的学生中本月支付金额大于2 000元的人数有变化?说明理由.【答案】(1)该校学生中上个月A,B两种支付方式都使用的人数约为400;(2)0.04;(3)见解析.【解析】(1)由题知,样本中仅使用A的学生有27+3=30人,仅使用B的学生有24+1=25人,A,B两种支付方式都不使用的学生有5人.故样本中A,B两种支付方式都使用的学生有100–30–25–5=40人.估计该校学生中上个月A,B两种支付方式都使用的人数为401000400 100⨯=.(2)记事件C 为“从样本仅使用B 的学生中随机抽取1人,该学生上个月的支付金额大于2 000元”, 则1()0.0425P C ==. (3)记事件E 为“从样本仅使用B 的学生中随机抽查1人,该学生本月的支付金额大于2 000元”. 假设样本仅使用B 的学生中,本月支付金额大于2 000元的人数没有变化, 则由(2)知,4(0)0.P E =.答案示例1:可以认为有变化.理由如下:()P E 比较小,概率比较小的事件一般不容易发生,一旦发生,就有理由认为本月支付金额大于2 000元的人数发生了变化, 所以可以认为有变化.答案示例2:无法确定有没有变化.理由如下:事件E 是随机事件,()P E 比较小,一般不容易发生,但还是有可能发生的, 所以无法确定有没有变化.6.【2018年高考全国Ⅱ卷文数】下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年的数据(时间变量t 的值依次为1,2,,17)建立模型①:ˆ30.413.5yt =-+;根据2010年至2016年的数据(时间变量t 的值依次为1,2,,7)建立模型②:ˆ9917.5yt =+. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.【答案】(1)模型①:226.1亿元,模型②:256.5亿元;(2)模型②得到的预测值更可靠,理由见解析.【解析】(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为y=–30.4+13.5×19=226.1(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为y=99+17.5×9=256.5(亿元).(2)利用模型②得到的预测值更可靠.理由如下:(i)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y=–30.4+13.5t上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型y=99+17.5t可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ii)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠.以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.7.【2018年高考全国Ⅰ卷文数】某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表使用了节水龙头50天的日用水量频数分布表(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)47.45m.【答案】(1)见解析;(2)0.48;(3)3【解析】(1)频率分布直方图如下:(2)根据以上数据,该家庭使用节水龙头后50天日用水量小于0.35m3的频率为0.2×0.1+1×0.1+2.6×0.1+2×0.05=0.48,因此该家庭使用节水龙头后日用水量小于0.35m 3的概率的估计值为0.48. (3)该家庭未使用节水龙头50天日用水量的平均数为11(0.0510.1530.2520.3540.4590.55260.655)0.4850x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=. 该家庭使用了节水龙头后50天日用水量的平均数为21(0.0510.1550.25130.35100.45160.555)0.3550x =⨯+⨯+⨯+⨯+⨯+⨯=. 估计使用节水龙头后,一年可节省水3(0.480.35)36547.45(m )-⨯=.8.【2018年高考全国Ⅲ卷文数】某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min )绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过m 和不超过m 的工人数填入下面的列联表:超过m不超过m第一种生产方式 第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:22()()()()()n ad bc K a b c d a c b d -=++++,2()0.0500.0100.0013.8416.63510.828P K k k ≥.【答案】(1)第二种生产方式的效率更高,理由见解析;(2)列联表见解析;(3)有99%的把握认为两种生产方式的效率有差异.【解析】(1)第二种生产方式的效率更高. 理由如下:(i )由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79分钟.因此第二种生产方式的效率更高.(ii)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为85.5分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5分钟.因此第二种生产方式的效率更高.(iii)由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟,因此第二种生产方式的效率更高.(iv)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高.以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分.(2)由茎叶图知7981802m+==.列联表如下:(3)由于2240(151555)10 6.63520202020K⨯-⨯==>⨯⨯⨯,所以有99%的把握认为两种生产方式的效率有差异.9.【2018年高考北京卷文数】电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(2)随机选取1部电影,估计这部电影没有获得好评的概率;(3)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)【答案】(1)0.025;(2)0.814;(3)增加第五类电影的好评率,减少第二类电影的好评率.【解析】(1)由题意知,样本中电影的总部数是140+50+300+200+800+510=2000.第四类电影中获得好评的电影部数是200×0.25=50,故所求概率为500.025 2000=.(2)方法1:由题意知,样本中获得好评的电影部数是140×0.4+50×0.2+300×0.15+200×0.25+800×0.2+510×0.1 =56+10+45+50+160+51=372.故所求概率估计为37210.8142000-=.方法2:设“随机选取1部电影,这部电影没有获得好评”为事件B.没有获得好评的电影共有140×0.6+50×0.8+300×0.85+200×0.75+800×0.8+510×0.9=1628部.由古典概型概率公式得16280.8142)00(P B==.(3)增加第五类电影的好评率,减少第二类电影的好评率.10.【2018年高考天津卷文数】已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(1)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(2)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作.(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率.【答案】(1)分别抽取3人,2人,2人;(2)(i)见解析,(ii)521.【分析】本小题主要考查随机抽样、用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式等基本知识,考查运用概率知识解决简单实际问题的能力.【解析】(1)由已知,甲、乙、丙三个年级的学生志愿者人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7名同学,因此应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.(2)(i)从抽出的7名同学中随机抽取2名同学的所有可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{A,G},{B,C},{B,D},{B,E},{B,F},{B,G},{C,D},{C,E},{C,F},{C,G},{D,E},{D,F},{D,G},{E,F},{E,G},{F,G},共21种.(ii )由(1),不妨设抽出的7名同学中,来自甲年级的是A ,B ,C ,来自乙年级的是D ,E ,来自丙年级的是F ,G ,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为 {A ,B },{A ,C },{B ,C },{D ,E },{F ,G },共5种. 所以,事件M 发生的概率为P (M )=521. 11.【2017年高考全国Ⅱ卷文数】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg ),其频率分布直方图如下:(1)记A 表示事件“旧养殖法的箱产量低于50 kg”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50 kg箱产量≥50 kg旧养殖法 新养殖法(3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比较. 附: P () 0.050 0.010 0.001 k3.841 6.635 10.82822()()()()()n ad bc K a b c d a c b d -=++++.【答案】(1)0.62;(2)列联表见解析,有99%的把握认为箱产量与养殖方法有关;(3)新养殖法优于旧养殖法.【分析】(1)根据频率分布直方图中小长方形面积等于对应概率,计算A 的概率;(2)将数据填入对应表格,代入卡方公式,计算215.705K ≈,对照参考数据可作出判断;(3)先从均值(或中位数)比较大小,越大越好,再从数据分布情况看稳定性,越集中越好,综上可得新养殖法优于旧养殖法. 【解析】(1)旧养殖法的箱产量低于50 kg 的频率为(0.012+0.014+0.024+0.034+0.040)×5=0.62. 因此,事件A 的概率估计值为0.62. (2)根据箱产量的频率分布直方图得列联表K 2=22006266343815.70510010096104⨯⨯-⨯⨯⨯⨯()≈.由于15.705>6.635,故有99%的把握认为箱产量与养殖方法有关.(3)箱产量的频率分布直方图表明:新养殖法的箱产量平均值(或中位数)在50 kg 到55 kg 之间,旧养殖法的箱产量平均值(或中位数)在45 kg 到50 kg 之间,且新养殖法的箱产量分布集中程度较旧养殖法的箱产量分布集中程度高,因此,可以认为新养殖法的箱产量较高且稳定,从而新养殖法优于旧养殖法.【名师点睛】(1)频率分布直方图中小长方形面积等于对应概率,所有小长方形面积之和为1. (2)频率分布直方图中均值等于组中值与对应概率乘积的和. (3)均值大小代表水平高低,方差大小代表稳定性.12.【2017年高考全国Ⅰ卷文数】为了监控某种零件的一条生产线的生产过程,检验员每隔30 min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16个零件的尺寸:经计算得16119.9716i i x x ===∑,0.212s ==≈,18.439≈,161()(8.5) 2.78i i x x i =--=-∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.(1)求(,)i x i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).(2)一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ⅱ)在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本(,)i i x y (1,2,,)i n =⋅⋅⋅的相关系数()()niix x y y r --=∑0.09≈.【答案】(1)18.0-≈r ,可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小;(2)(ⅰ)需对当天的生产过程进行检查;(ⅱ)均值与标准差的估计值分别为10.02,0.09. 【分析】(1)依公式求r ;(2)(i )由9.97,0.212x s =≈,得抽取的第13个零件的尺寸在(3,3)x s x s -+以外,因此需对当天的生产过程进行检查;(ii )剔除第13个数据,则均值的估计值为10.02,方差为0.09.【解析】(1)由样本数据得(,)(1,2,,16)i x i i =的相关系数为16()(8.5)0.18ix x i r --==≈-∑.由于||0.25r <,因此可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小. (2)(i )由于9.97,0.212x s =≈,由样本数据可以看出抽取的第13个零件的尺寸在(3,3)x s x s -+以外,因此需对当天的生产过程进行检查.(ii )剔除离群值,即第13个数据,剩下数据的平均数为1(169.979.22)10.0215⨯-=, 这条生产线当天生产的零件尺寸的均值的估计值为10.02.162221160.212169.971591.134ii x==⨯+⨯≈∑,剔除第13个数据,剩下数据的样本方差为221(1591.1349.221510.02)0.00815--⨯≈,0.09≈.【名师点睛】解答新颖的数学题时,一是通过转化,化“新”为“旧”;二是通过深入分析,多方联想,以“旧”攻“新”;三是创造性地运用数学思想方法,以“新”制“新”,应特别关注创新题型的切入点和生长点.13.【2017年高考全国Ⅲ卷文数】某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率估计最高气温位于该区间的概率. (1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y (单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y 大于零的概率.【答案】(1)0.6;(2)Y 的所有可能值为900,300,-100,Y 大于零的概率为0.8.【分析】(1)先确定需求量不超过300瓶的天数为2163654++=,再根据古典概型的概率计算公式求概率;(2)先分别求出最高气温不低于25(36天),最高气温位于区间[20,25)(36天),以及最高气温低于20(18天)对应的利润分别为900,300,100-,所以Y 大于零的概率估计为3625740.890+++=.【解析】(1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表格数据知,最高气温低于25的频率为,所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6.(2)当这种酸奶一天的进货量为450瓶时,若最高气温不低于25,则Y=6450-4450=900;若最高气温位于区间[20,25),则Y=6300+2(450-300)-4450=300;若最高气温低于20,则Y=6200+2(450-200)-4450=-100.所以,Y的所有可能值为900,300,-100.Y大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为,因此Y大于零的概率的估计值为0.8.【名师点睛】古典概型中基本事件数的探求方法:(1)列举法;(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法;(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.14.【2017年高考北京卷文数】某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30],[30,40],,[80,90],并整理得到如下频率分布直方图:(1)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.【答案】(1)0.4;(2)20;(3):32.【分析】(1)根据频率分布直方图,表示分数大于等于70的概率,就求最后两个矩形的面积;(2)根据公式:频数=总数⨯频率进行求解;(3)首先计算分数大于等于70的总人数,根据样本中分数不小于70的男女生人数相等再计算所有的男生人数,100−男生人数就是女生人数.【解析】(1)根据频率分布直方图可知,样本中分数不小于70的频率为(0.020.04)100.6+⨯=, 所以样本中分数小于70的频率为10.60.4-=.所以从总体的400名学生中随机抽取一人,其分数小于70的概率估计为0.4.(2)根据题意,样本中分数不小于50的频率为(0.010.020.040.02)100.9+++⨯=, 分数在区间[40,50)内的人数为1001000.955-⨯-=. 所以总体中分数在区间[40,50)内的人数估计为540020100⨯=. (3)由题意可知,样本中分数不小于70的学生人数为(0.020.04)1010060+⨯⨯=, 所以样本中分数不小于70的男生人数为160302⨯=. 所以样本中的男生人数为30260⨯=,女生人数为1006040-=, 男生和女生人数的比例为::604032=.所以根据分层抽样原理,总体中男生和女生人数的比例估计为:32.【名师点睛】(1)用样本估计总体是统计的基本思想,而利用频率分布表和频率分布直方图来估计总体则是用样本的频率分布去估计总体分布的两种主要方法.分布表在数量表示上比较准确,而直方图比较直观.(2)频率分布表中的频数之和等于样本容量,各组中的频率之和等于1;在频率分布直方图中,各小长方形的面积表示相应各组的频率,所以,所有小长方形的面积的和等于1.。

2019年高考文科数学阶段测试答案解析:概率、统计、算法、复数、推理与证明

2019年高考文科数学阶段测试答案解析:概率、统计、算法、复数、推理与证明

阶段检测六 概率、统计、算法、复数、推理与证明一、选择题1.C z=2-3i 1+i =(2-3i )(1-i )(1+i )(1-i )=-1-5i 2=-12-52i,z 在复平面内对应的点的坐标为 -12,-52 ,在第三象限.故选C.2.B 由题意可知,样本容量n=605×(2+3+5)=120.3.C 从这4张卡片中随机抽取2张,共有6种抽取方法,其中2张卡片上的数字之和为奇数的有(5,6),(5,8),(6,7),(7,8),共4种抽法,因此所求概率P=46=23.故选C.4.D 设AC=x cm,则BC=(18-x)cm,矩形的面积S=x(18-x)cm,由x(18-x)>32,得2<x<16,根据几何概型的概率计算公式得P=16-218=79.故选D. 5.C ∵2-i a+i =(2-i )(a-i )(a+i )(a-i )=(2a-1)-(a+2)ia +1为纯虚数,∴2a -1=0且a+2≠0,∴a=12.故选C. 6.C 对35名运动员进行编号:00,01,02,…,34,分成七组:00~04,05~09,10~14,15~19,20~24,25~29,30~34,用系统抽样的方法抽7人,则第三组到第六组中占4人,即其中成绩在区间[139,151]上的运动员人数为4,故选C.7.D 由题意知x =0+1+4+5+6+86=4, y =1.3+m+5.6+6.1+7.4+9.36=29.7+m 6, 将 4,29.7+m 6 代入y ^=0.95x+1.45中,得29.7+m 6=0.95×4+1.45,解得m=1.8. 8.B 记第k 次计算结果为S k ,则有S 1=11-2=-1,S 2=11-(-1)=12,S 3=11-12=2,S 4=11-2=-1=S 1,…,因此{S k }是周期数列,周期为3,输出结果为S 2 015=S 3×671+2=S 2=12,故选B.9.A 设不等式组 0≤x ≤1,1≤y ≤2表示的平面区域为D,其面积为1,如图,满足条件的点P 对应的区域为△ABC 及其内部,△ABC 的面积S=12×12×1=14,所以在区域D 内任取一点P(x,y),其坐标满足y ≤2x 的概率为14.故选A.10.A由频率分布直方图得(0.002+0.009 5+0.011+0.012 5+x+0.005+0.002 5)×20=1,得x=0.007 5,所以样本数据在各组的频率分别为0.04,0.19,0.22,0.25,0.15,0.10,0.05,因为0.04+0.19+0.22=0.45<0.5,所以样本数据的中位数在[220,240)内,设中位数为a,由0.04+0.19+0.22+0.012 5×(a-220)=0.5,得a=224.样本数据的平均数为x=170×0.04+190×0.19+210×0.22+230×0.25+250×0.15+270×0.10+290×0.05=225.6≈226,所以样本数据的中位数及平均数分别为224,226,故选A.11.B运行该程序,S=10+sinπ2+lo g11=11,n=2;S=11+sinπ+lo g12=11+lo g12,n=3;S=11+lo g12+sin3π2+lo g13=10+lo g16,n=4;S=10+lo g16+sin2π+lo g14=10+lo g124=9+lo g18,n=5.故输出的S=9-log38,故选B.12.D由题意可知第n行有(2n-1)个数,则前n行的数的个数为1+3+5+…+(2n-1)=n2,因为442=1 936, 452=2 025,且1 936<2 016<2 025,所以2 016在第45行,又2 016-1 936=80,故2 016在第45行第80列.故选D.二、填空题13.答案16解析小王与小郑要从铜锣湾、迪士尼乐园、维多利亚港、大屿山这四个景点中分别选取两个景点,共有36种选法,他们选择的两个景点都不相同时,小王可以先选两个景点,剩余两个景点由小郑选,共有6种选法,所以他们选择的两个景点都不相同的概率为636=1 6 .14.答案 1解析∵i-21+i =(i-2)(1-i)(1+i)(1-i)=-12+32i=a+bi,∴a=-12,b=32,∴a+b=1.15.答案甲解析假设甲去过,则甲、乙、丙说的都是假话,丁说的是真话,符合题意.16.答案 4解析由已知可得输出的S=1+11×2+…+1a(a+1)=1+1-1a+1=2-1a+1.若该程序运行后输出的值是95,则2-1 a+1=95,∴a=4.三、解答题17.解析(1)这6条道路的平均得分为16×(5+6+7+8+9+10)=7.5,∴该市的总体交通状况等级为合格.(2)设A表示事件“样本平均数与总体平均数之差的绝对值不超过1”.从这6条道路中抽取2条的得分组成的所有基本事件为{5,6},{5,7},{5,8},{5,9},{5,10},{6,7},{6,8},{6,9},{6,10},{7,8},{7,9},{7,10},{8,9},{8,10},{9,10},共15个基本事件,事件A包括{5,8},{5,9},{5,10},{6,7},{6,8},{6,9},{6,10},{7,8},{7,9},{7,10},{8,9},共11个基本事件.∴P(A)=1115.故该样本的平均数与总体的平均数之差的绝对值不超过1的概率为1115.18.解析(1)小陈这8天竞走步数的平均数为16×3+17×2+18×1+19×28=17.25(千步).(2)将步数为16千步的3天分别记为A,B,C;步数为17千步的2天分别记为D,E;步数为18千步的1天记为F.则从A,B,C,D,E,F这6天中任选2天,所含的基本事件有{A,B},{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F},{C,D},{C,E},{C,F},{D,E},{D,F},{E,F},共15个.其中小陈这2天通过竞走消耗的能量和为840卡路里所含的基本事件有{A,D},{A,E},{B,D},{B,E},{C,D},{C,E},共6个,所以小陈这2天通过竞走消耗的能量和为840卡路里的概率P=615=25.19.解析 (1)1-(0.005+0.01+0.02+0.03)×10=0.35,0.02×10=0.2,所以被采访的人恰好在第2组或第4组的概率为P 1=0.35+0.2=0.55.(2)设第1组[20,30)的频数为n 1,则n 1=120×0.005×10=6,记第1组中的男性为x 1,x 2,女性为y 1,y 2,y 3,y 4,则随机抽取3名群众的基本事件有:(x 1,x 2,y 1),(x 1,x 2,y 2),(x 1,x 2,y 3),(x 1,x 2,y 4),(x 1,y 1,y 2),(x 1,y 1,y 3),(x 1,y 1,y 4),(x 1,y 2,y 3),(x 1,y 2,y 4),(x 1,y 3,y 4),(x 2,y 1,y 2),(x 2,y 1,y 3),(x 2,y 1,y 4),(x 2,y 2,y 3),(x 2,y 2,y 4),(x 2,y 3,y 4),(y 1,y 2,y 3),(y 1,y 2,y 4),(y 1,y 3,y 4),(y 2,y 3,y 4),共20个.其中至少有2名女性的基本事件有:(x 1,y 1,y 2),(x 1,y 1,y 3),(x 1,y 1,y 4),(x 1,y 2,y 3),(x 1,y 2,y 4),(x 1,y 3,y 4),(x 2,y 1,y 2),(x 2,y 1,y 3),(x 2,y 1,y 4),(x 2,y 2,y 3),(x 2,y 2,y 4),(x 2,y 3,y 4),(y 1,y 2,y 3),(y 1,y 2,y 4),(y 1,y 3,y 4),(y 2,y 3,y 4),共16个.所以至少有2名女性的概率为P 2=1620=45. 20.解析 (1)因为x =1+2+3+4+55=3,y =5+6+7+8+105=7.2,∑i =15x i 2-5x 2=55-5×32=10,∑i =15x i y i -5xy =120-5×3×7.2=12, 所以b ^=1210=1.2,a ^=y -b ^x =7.2-1.2×3=3.6,所以y 关于x 的回归方程为y ^=1.2x+3.6.(2)将x=7代入y ^=1.2x+3.6,得y ^=1.2×7+3.6=12(千亿元),所以可预测该地区2016年的人民币储蓄存款为12千亿元.21.解析(1)由茎叶图和频率分布直方图可知,分数在[50,60)上的频数为4,频率为0.008×10=0.08,所以该班的学生人数为40.08=50,故分数在[70,80)之间的人数为50-(4+14+8+4)=20.(2)按分层抽样原理,三个分数段抽样之比等于相应频率之比,又[70,80),[80,90)和[90,100]分数段的频率之比等于5∶2∶1,由此可得抽出的样本中分数在[70,80)的有5人,记为A,B,C,D,E,分数在[80,90)的有2人,记为F,G,分数在[90,100]的有1人,记为H.现从中抽取2人的所有可能情况有{A,B},{A,C},{A,D},{A,E},{A,F},{A,G},{A,H},{B,C},{B,D},{B,E},{B,F},{B,G},{B,H},{C,D},{C,E},{C,F},{C, G},{C,H},{D,E},{D,F},{D,G},{D,H},{E,F},{E,G},{E,H},{F,G},{F,H},{G,H},共28个基本事件,设事件M为“交流的2名学生中,恰有1名成绩位于[70,80)分数段”,则事件M包含{A,F},{A,G},{A,H},{B,F},{B,G},{B,H},{C,F},{C,G},{C,H},{D,F},{D,G},{D,H},{E,F},{E,G},{E,H},共15个基本事件,所以P(M)=1528.22.解析(1)依题意,抽出的100名且消费金额在[800,1 000](单位:元)的网购者中有3名女性,记为A,B,C;2名男性,记为a,b.从5人中任选2人的基本事件有:(A,B),(A,C),(A,a),(A,b),(B,C),(B,a),(B,b),(C,a),(C,b),(a,b),共10个;设“选出的2名网购者恰好是同性”为事件M,则事件M包含的基本事件有:(A,B),(A,C),(B,C),(a,b),共4个.∴P(M)=410=2 5 .(2)2×2列联表如下所示:≈9.091,则K2=100×(50×15-30×5)280×20×55×45因为9.091>7.879,故能在犯错误的概率不超过0.005的前提下认为“是否为‘网购达人’与性别有关”.。

2019高考全国各地数学卷文科解答题分类汇编-概率与统计

2019高考全国各地数学卷文科解答题分类汇编-概率与统计

2019高考全国各地数学卷文科解答题分类汇编-概率与统计1、〔天津文〕15、〔本小题总分值13分〕编号为1216,,,A A A ⋅⋅⋅的16名篮球运动员在某次训练比赛中的得分记录如下:〔Ⅰ〕将得分在对应区间内的人数填入相应的空格;〔Ⅱ〕从得分在区间[)20,30内的运动员中随机抽取2人,〔i 〕用运动员的编号列出所有可能的抽取结果;〔ii 〕求这2人得分之和大于50的概率、【解析】〔15〕本小题主要考查用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式的等基础知识,考查数据处理能力及运用概率知识解决简单的实际问题的能力,总分值13分。

〔Ⅰ〕解:4,6,6〔Ⅱ〕〔i 〕解:得分在区间[20,30)内的运动员编号为345101113,,,,,.A A A A A A 从中随机抽取2人,所有可能的抽取结果有:343531*********{,},{,},{,},{,},{,},{,},A A A A A A A A A A A A 410{,}A A ,411413510511513101110131113{,},{,},{,},{,},{,},{,},{,},{,}A A A A A A A A A A A A A A A A ,共15种。

〔ii 〕解:“从得分在区间[20,30)内的运动员中随机抽取2人,这2人得分之和大于50”〔记为事件B 〕的所有可能结果有:454104115101011{,},{,},{,},{,},{,}A A A A A A A A A A ,共5种。

所以51().153P B ==2.〔北京文〕16、〔本小题共13分〕以下茎叶图记录了甲、乙两组各四名同学的植树棵树.乙组记录中有一个数据模糊,无法确认,在图中以X 表示.〔1〕如果X=8,求乙组同学植树棵树的平均数和方差;〔2〕如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率. 〔注:方差],)()()[(1222212x x x ns n -+-+-= 其中为nx x x ,,,21 的平均数〕 【解析】〔16〕〔共13分〕解〔1〕当X=8时,由茎叶图可知,乙组同学的植树棵数是:8,8,9,10, 所以平均数为;435410988=+++=方差为.1611])43510()4359()4358[(412222=-+-+-=s 〔Ⅱ〕记甲组四名同学为A 1,A 2,A 3,A 4,他们植树的棵数依次为9,9,11,11;乙组四名同学为B 1,B 2,B 3,B 4,他们植树的棵数依次为9,8,9,10,分别从甲、乙两组中随机选取一名同学,所有可能的结果有16个,它们是:〔A 1,B 1〕,〔A 1,B 2〕,〔A 1,B 3〕,〔A 1,B 4〕, 〔A 2,B 1〕,〔A 2,B 2〕,〔A 2,B 3〕,〔A 2,B 4〕, 〔A 3,B 1〕,〔A 2,B 2〕,〔A 3,B 3〕,〔A 1,B 4〕, 〔A 4,B 1〕,〔A 4,B 2〕,〔A 4,B 3〕,〔A 4,B 4〕,用C 表示:“选出的两名同学的植树总棵数为19”这一事件,那么C 中的结果有4个,它们是:〔A 1,B 4〕,〔A 2,B 4〕,〔A 3,B 2〕,〔A 4,B 2〕,故所求概率为.41164)(==C P3.〔全国新文〕19、〔本小题总分值12分〕 某种产品的质量以其质量指标值衡量,质量指标越大说明质量越好,且质量指标值大于或等于102的产品为优质品、现用两种新配方〔分别称为A 配方和B 配方〕做试验,各生产了100件这种产品,并测量了每产品的质量指标值,得到时下面试验结果:A 配方的频数分布表〔I 〕分别估计用A 配方,B 配方生产的产品的优质品率;〔II 〕用B 配方生产的一种产品利润y 〔单位:元〕与其质量指标值t 的关系式为2,942,941024,102t y t t -<⎧⎪=≤<⎨⎪≥⎩估计用B 配方生产的一件产品的利润大于0的概率,并求用B 配方生产的上述100件产品平均一件的利润、 【解析】〔19〕解〔Ⅰ〕由试验结果知,用A 配方生产的产品中优质的频率为228=0.3100+,所以用A 配方生产的产品的优质品率的估计值为0.3。

概率与统计(解答题)(文科专用)(原卷版)五年(2018-2022)高考数学真题分项汇编(全国通用)

概率与统计(解答题)(文科专用)(原卷版)五年(2018-2022)高考数学真题分项汇编(全国通用)

专题16 概率与统计(解答题)(文科专用)1.【2022年全国甲卷】甲、乙两城之间的长途客车均由A 和B 两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;(2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关? 附:K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d), P (K 2⩾k )0.100 0.050 0.010 k 2.7063.8416.6352.【2022年全国乙卷】某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:m 2)和材积量(单位:m 3),得到如下数据:并计算得∑x i 210i=1=0.038,∑y i 210i=1=1.6158,∑x i y i10i=1=0.2474. (1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量; (2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为186m 2.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值. 附:相关系数r =i n i=1i √∑(x i −x̅)2ni=1∑(y i−y ̅)2ni=1√1.896≈1.377.3.【2021年甲卷文科】甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++4.【2021年乙卷文科】某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:旧设备和新设备生产产品的该项指标的样本平均数分别记为x和y,样本方差分别记为21s和22s.(1)求x,y,21s,22s;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果y x-≥认为有显著提高).5.【2020年新课标1卷文科】某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表乙分厂产品等级的频数分布表(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务6.【2019年新课标1卷文科】某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++.7.【2019年新课标2卷文科】某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)8.602.8.【2018年新课标1卷文科】某家庭记录了未使用节水龙头50天的日用水量数据(单位:3m)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表使用了节水龙头50天的日用水量频数分布表(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于30.35m的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)。

概率与统计(文科)

概率与统计(文科)

第二讲 概率——古典概型与几何概型
概率知识的考查是近几年新课改后高考命题的一大热点,高 考每年在选择、填空或解答题中都有所体现,由于文科数学后续 课程不再学习概率,文科数学将重点考查概率的意义、古典概型 与几何概型的掌握和运用.在处理概率问题时主要有两种思路:正 向思路和逆向思路.正向思考可对复杂问题进行分解;逆向思考常 使一些复杂问题得到简化.要学会将实际问题转化为古典概型和
[典题例析]
(2014·广东高考)为了解 1 000 名学生的学习情况,采用系统抽
样的方法,从中抽取容量为 40 的样本,则分段的间隔为( )
A.50
B.40
C.25
D.20
解析:由1 40000=25,可得分段的间隔为 25.故选 C.
2.(人教 B 版教材习题改编)某工厂平均每天生产某种机器零件 大约 10 000 件,要求产品检验员每天抽取 50 件零件,检查 其质量状况,采用系统抽样方法抽取,若抽取的第一组中的 号码为 0010,则第三组抽取的号码为___0_4_1_0__.
几何概型来解决.
古典概型
基础梳理
1. 基本事件
(1) 基本事件的定义:
(2) 一次试验中可能出现的试验结果称为一个基本事件.所有的基本事件都 有有限个,而且是试验中不能再分的最简单的随机事件.
(3)(2) 基本事件的特点:
(4)① 任何两个基本事件互是斥的;
(5)② 任何事件都可以表示成 基本事的件和.
73 58 07 44 39 52 38 79,33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54 解析:由随机数表,可以看出前 4 个样本的个体的编号是 331,572,455,068.于是,第 4 个样本个体的编号是 068.

高二数学文科五一作业1(答案)

高二数学文科五一作业1(答案)

文科清明节作业——期中复习题答案1.“m<14”是“一元二次方程x 2+x +m =0有实数解”的( ) A .充分不必要条件 B .充分且必要条件C .必要不充分条件D .既不充分也不必要条件 【答案】A2.设全集U=R ,A={x|(2)21x x -<},B={|ln(1)}x y x =-,则右图中阴影部分表示的集合为( )A . {|1}x x ≥B . {|1}x x ≤C . {|01}x x <≤D . {|12}x x ≤< 【答案】D3.设集合{}{}20,,2,S a T x Z x ==∈<则“1a =”是“S T ⊆”的 ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A . 4.函数y =lg(1)1x x +-的定义域是( ) A .(-1,+∞) B .[-1,+∞)C .(-1,1)∪(1,+∞)D .[-1,1)∪(1,+∞) 【答案】C5.下列四组函数中,表示为同一函数的是( ) A .2(),()f x x g x x ==B .x x f -=2)(与2)(-=x x gC .21(),()11x f x g x x x -==+- D .2()11,()1f x x x g x x =+⋅-=- 【答案】A6.已知函数f (x )=12020x x x x ⎧⎪>⎨⎪≤⎩-(),(),则f (f (9))=________.【答案】187.函数()1ln1f x x =+的值域是__________. 【答案】(],0-∞.8.函数)(x f 满足3)2(2+=+x x f , 则()f x = . 【答案】742+-x x9.函数y=-(x-3)|x|的递增区间是__________. 【答案】[0,错误!未找到引用源。

]10.函数f(x)=log 5(2x +1)的单调增区间是________. 【答案】1,2⎛⎫-+∞ ⎪⎝⎭11.已知函数f (x )=a ln x +x 在区间[2,3]上单调递增,则实数a 的取值范围是________.【答案】[-2,+∞)12.已知函数22(1)2y x a x =+-+在(,4)-∞上是减函数,则实数a 的取值范围是________. 【答案】(,3]-∞-13.已知函数1333,1()log ,01x x f x x x ⎧-≥⎪=⎨<<⎪⎩,则满足不等式1()()9f m f ≤的实数m 的取值范围为 . 【答案】31[,log 5]914.若函数2()(1)3f x kx k x =+-+是偶函数,则()f x 的递减区间是 . 【答案】(],0-∞15.已知y=f(x)+x 2是奇函数,且f(1)=1,若g(x)=f(x)+2,则g(-1)= .【答案】-116.设函数f(x)=错误!未找到引用源。

概率与统计-2019年高考文科数学解答题训练

概率与统计-2019年高考文科数学解答题训练

概率与统计-2019年高考文科数学解答题训练1.对于高一年级1000名同学春节期间抢到的红包进行调查,得到了频率分布直方图。

现在需要根据频数分布表求解实数m,a,b,c的值。

分组区间为[0,100),[100,200),[200,300),[300,400),[400,500],对应的人数分别为50、250、200、100、400.由于频数分布表中人数总和为1000,因此有50+m+a+b+c=1000,解得m=300,a=200,b=150,c=100.接下来需要从第3、4、5组中用分层抽样的方法抽取7人,需要计算在第3、4、5组中分别抽取多少人。

根据分组区间和人数可以得到第3、4、5组的人数分别为200、100、400,因此按比例计算,第3、4、5组中应该分别抽取2人、1人、4人。

最后需要计算从这7人中随机抽取2人参加社区宣传交流活动,两人都来自第3组的概率。

根据基本事件的组合数可以得到共有21个基本事件,其中两人都来自第3组的基本事件有6个,因此概率为6/21=2/7.2.某中学举行了一次“环保知识竞赛”,从中抽取了部分学生的成绩作为样本进行统计。

根据[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图和茎叶图。

需要求解样本容量n和频率分布直方图中x、y的值。

根据频率分布直方图可以得到样本容量n=40,以及对应的频率分布直方图中x、y的值。

按照分层抽样的方法,从[60,70),[70,80),[80,90)中各抽取8名学生的成绩,需要计算应该抽取成绩在[70,80)内的学生人数。

根据分组区间和人数可以得到[60,70)、[70,80)、[80,90)内的人数分别为6、10、12,因此按比例计算,应该抽取3.2名成绩在[70,80)内的学生,取整后为3名。

最后需要计算从这8名学生中随机抽取2名参加环保知识宣传活动,成绩在[60,70)内的至多有1人的概率。

概率与统计(选择、填空题)(文科专用)(解析版)-五年(18-22)高考数学真题分项汇编(全国通用)

概率与统计(选择、填空题)(文科专用)(解析版)-五年(18-22)高考数学真题分项汇编(全国通用)

专题15概率与统计(选择题、填空题)(文科专用)1.【2022年全国甲卷】某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:则()A.讲座前问卷答题的正确率的中位数小于70%B.讲座后问卷答题的正确率的平均数大于85%C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差【答案】B【解析】【分析】由图表信息,结合中位数、平均数、标准差、极差的概念,逐项判断即可得解.【详解】讲座前中位数为70%+75%2>70%,所以A错;讲座后问卷答题的正确率只有一个是80%,4个85%,剩下全部大于等于90%,所以讲座后问卷答题的正确率的平均数大于85%,所以B对;讲座前问卷答题的正确率更加分散,所以讲座前问卷答题的正确率的标准差大于讲座后正确率的标准差,所以C错;讲座后问卷答题的正确率的极差为100%−80%=20%,讲座前问卷答题的正确率的极差为95%−60%=35%>20%,所以D错.故选:B.2.【2022年全国甲卷】从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为()A.15B.13C.25D.23【答案】C【解析】【分析】先列举出所有情况,再从中挑出数字之积是4的倍数的情况,由古典概型求概率即可.【详解】从6张卡片中无放回抽取2张,共有1,2,1,3,1,4,1,5,1,6,2,3,2,4,2,5,2,6,3,4,3,5,3,6,4,5,4,6,5,615种情况,其中数字之积为4的倍数的有1,4,2,4,2,6,3,4,4,5,4,66种情况,故概率为615=25.故选:C.3.【2022年全国乙卷】分别统计了甲、乙两位同学16周的各周课外体育运动时长(单位:h),得如下茎叶图:则下列结论中错误的是()A.甲同学周课外体育运动时长的样本中位数为7.4B.乙同学周课外体育运动时长的样本平均数大于8C.甲同学周课外体育运动时长大于8的概率的估计值大于0.4D.乙同学周课外体育运动时长大于8的概率的估计值大于0.6【答案】C【解析】【分析】结合茎叶图、中位数、平均数、古典概型等知识确定正确答案.【详解】对于A选项,甲同学周课外体育运动时长的样本中位数为7.3+7.52=7.4,A选项结论正确.对于B选项,乙同学课外体育运动时长的样本平均数为:6.3+7.4+7.6+8.1+8.2+8.2+8.5+8.6+8.6+8.6+8.6+9.0+9.2+9.3+9.8+10.116=8.50625>8,B选项结论正确.对于C选项,甲同学周课外体育运动时长大于8的概率的估计值616=0.375<0.4,C选项结论错误.对于D选项,乙同学周课外体育运动时长大于8的概率的估计值1316=0.8125>0.6,D选项结论正确.故选:C4.【2021年甲卷文科】为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下面结论中不正确的是()A.该地农户家庭年收入低于4.5万元的农户比率估计为6%B.该地农户家庭年收入不低于10.5万元的农户比率估计为10%C.估计该地农户家庭年收入的平均值不超过6.5万元D.估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间【答案】C【解析】【分析】根据直方图的意义直接计算相应范围内的频率,即可判定ABD,以各组的中间值作为代表乘以相应的频率,然后求和即得到样本的平均数的估计值,也就是总体平均值的估计值,计算后即可判定C.【详解】因为频率直方图中的组距为1,所以各组的直方图的高度等于频率.样本频率直方图中的频率即可作为总体的相应比率的估计值.该地农户家庭年收入低于4.5万元的农户的比率估计值为0.020.040.066%+==,故A 正确;该地农户家庭年收入不低于10.5万元的农户比率估计值为0.040.0230.1010%+⨯==,故B 正确;该地农户家庭年收入介于4.5万元至8.5万元之间的比例估计值为0.100.140.2020.6464%50%++⨯==>,故D 正确;该地农户家庭年收入的平均值的估计值为30.0240.0450.1060.1470.2080.2090.10100.10110.04120.02130.02140.02⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯(万元),超过6.5万元,故C 错误.综上,给出结论中不正确的是C.故选:C.【点睛】本题考查利用样本频率直方图估计总体频率和平均值,属基础题,样本的频率可作为总体的频率的估计值,样本的平均值的估计值是各组的中间值乘以其相应频率然后求和所得值,可以作为总体的平均值的估计值.注意各组的频率等于⨯频率组距组距.5.【2021年甲卷文科】将3个1和2个0随机排成一行,则2个0不相邻的概率为()A .0.3B .0.5C .0.6D .0.8【答案】C 【解析】【分析】利用古典概型的概率公式可求概率.【详解】解:将3个1和2个0随机排成一行,可以是:00111,01011,01101,01110,10011,10101,10110,11001,11010,11100,共10种排法,其中2个0不相邻的排列方法为:01011,01101,01110,10101,10110,11010,共6种方法,故2个0不相邻的概率为6=0.610,故选:C.6.【2021年乙卷文科】在区间10,2⎛⎤⎥⎝⎦随机取1个数,则取到的数小于13的概率为()A .34B .23C .13D .16【答案】B【分析】根据几何概型的概率公式即可求出.【详解】设Ω=“区间10,2⎛⎫ ⎪⎝⎭随机取1个数”,对应集合为:102x x ⎧⎫<<⎨⎬⎩⎭,区间长度为12,A =“取到的数小于13”,对应集合为:103x x ⎧⎫<<⎨⎬⎩⎭,区间长度为13,所以()()()10231302l A P A l -===Ω-.故选:B .【点睛】本题解题关键是明确事件“取到的数小于13”对应的范围,再根据几何概型的概率公式即可准确求出.7.【2020年新课标1卷文科】设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为()A .15B .25C .12D .45【答案】A 【解析】【分析】列出从5个点选3个点的所有情况,再列出3点共线的情况,用古典概型的概率计算公式运算即可.【详解】如图,从O A B C D ,,,,5个点中任取3个有{,,},{,,},{,,},{,,}O A B O A C O A D O B C {,,},{,,},{,,},{,,}O B D O C D A B C A B D {,,},{,,}A C D B C D 共10种不同取法,3点共线只有{,,}A O C 与{,,}B O D 共2种情况,由古典概型的概率计算公式知,取到3点共线的概率为21105=.【点晴】本题主要考查古典概型的概率计算问题,采用列举法,考查学生数学运算能力,是一道容易题.8.【2020年新课标3卷文科】设一组样本数据x 1,x 2,…,xn 的方差为0.01,则数据10x 1,10x 2,…,10xn 的方差为()A .0.01B .0.1C .1D .10【答案】C 【解析】【分析】根据新数据与原数据关系确定方差关系,即得结果.【详解】因为数据(1,2,,)i ax b i n +=L ,的方差是数据(1,2,,)i x i n =L ,的方差的2a 倍,所以所求数据方差为2100.01=1⨯故选:C 【点睛】本题考查方差,考查基本分析求解能力,属基础题.9.【2019年新课标1卷文科】某学校为了解1000名新生的身体素质,将这些学生编号为1,2,…,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是A .8号学生B .200号学生C .616号学生D .815号学生【答案】C 【解析】【分析】等差数列的性质.渗透了数据分析素养.使用统计思想,逐个选项判断得出答案.【详解】详解:由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列{}n a ,公差10d =,所以610n a n =+()n *∈N ,若8610n =+,则15n =,不合题意;若200610n =+,则19.4n =,不合题意;若616610n =+,则61n =,符合题意;若815610n =+,则80.9n =,不合题意.故选C .【点睛】本题主要考查系统抽样.10.【2019年新课标2卷文科】生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为A .23B .35C .25D .15【答案】B 【解析】【分析】本题首先用列举法写出所有基本事件,从中确定符合条件的基本事件数,应用古典概率的计算公式求解.【详解】设其中做过测试的3只兔子为,,a b c ,剩余的2只为,A B ,则从这5只中任取3只的所有取法有{,,},{,,},{,,},{,,},{,,},{,,}a b c a b A a b B a c A a c B a A B ,{,c,},{,c,},{b,,},{c,,}b A b B A B A B 共10种.其中恰有2只做过测试的取法有{,,},{,,},{,,},{,,},a b A a b B a c A a c B {,c,},{,c,}b A b B 共6种,所以恰有2只做过测试的概率为63105=,选B .【点睛】本题主要考查古典概率的求解,题目较易,注重了基础知识、基本计算能力的考查.应用列举法写出所有基本事件过程中易于出现遗漏或重复,将兔子标注字母,利用“树图法”,可最大限度的避免出错.11.【2019年新课标3卷文科】两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是A .16B .14C .13D .12【答案】D 【解析】男女生人数相同可利用整体发分析出两位女生相邻的概率,进而得解.【详解】两位男同学和两位女同学排成一列,因为男生和女生人数相等,两位女生相邻与不相邻的排法种数相同,所以两位女生相邻与不相邻的概率均是12.故选D .【点睛】本题考查常见背景中的古典概型,渗透了数学建模和数学运算素养.采取等同法,利用等价转化的思想解题.12.【2018年新课标2卷文科】从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A .0.6B .0.5C .0.4D .0.3【答案】D 【解析】【详解】分析:分别求出事件“2名男同学和3名女同学中任选2人参加社区服务”的总可能及事件“选中的2人都是女同学”的总可能,代入概率公式可求得概率.详解:设2名男同学为12,A A ,3名女同学为123,,B B B ,从以上5名同学中任选2人总共有12111213212223121323,,,,,,,,,A A A B A B A B A B A B A B B B B B B B 共10种可能,选中的2人都是女同学的情况共有121323,,B B B B B B 共三种可能则选中的2人都是女同学的概率为30.310P ==,故选D.点睛:应用古典概型求某事件的步骤:第一步,判断本试验的结果是否为等可能事件,设出事件A ;第二步,分别求出基本事件的总数n 与所求事件A 中所包含的基本事件个数m ;第三步,利用公式()mP A n=求出事件A 的概率.13.【2018年新课标3卷文科】若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A .0.3B .0.4C .0.6D .0.7【答案】B 【解析】【详解】分析:由公式()()()()P A B P A P B P AB ⋃=++计算可得详解:设事件A 为只用现金支付,事件B 为只用非现金支付,则()()()()P A B P A P B P AB 1⋃=++=因为()()P A 0.45,P AB 0.15==所以()P B 0.4=,故选B.点睛:本题主要考查事件的基本关系和概率的计算,属于基础题.14.【2022年全国乙卷】从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为____________.【答案】310##0.3【解析】【分析】根据古典概型计算即可【详解】从5名同学中随机选3名的方法数为C 53=10甲、乙都入选的方法数为C 31=3,所以甲、乙都入选的概率=310故答案为:31015.【2018年新课标3卷文科】某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.【答案】分层抽样.【解析】【详解】分析:由题可知满足分层抽样特点详解:由于从不同龄段客户中抽取,故采用分层抽样故答案为分层抽样.点睛:本题主要考查简单随机抽样,属于基础题.。

概率与统计测试题文科

概率与统计测试题文科

概率与统计测试题(文科)一、选择题(共10题,每小题均只有一个正确答案,每小题5分,共50分)1. 某工厂质检员每隔10分钟从传送带某一位置取一件产品进行检测,这种抽样方法是A.分层抽样B.简单随机抽样C.系统抽样D.以上都不对2.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为7人,则样本容量为( ).A.7 B.15C.25 D.353.在一次教师联欢会上,到会的女教师比男教师多12人,从到会教师中随机挑选一人表演节目.如果每位教师被选中的概率相等,而且选中男教师的概率为920,那么参加这次联欢会的教师共有( ).A.360人B.240人C.144人D.120人4.某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是则样本中净重大于或等于98克并且小于104克的产品的个数是( )A.90B.75C. 60D.455.设矩形的长为a ,宽为b ,其比满足b ∶a =618.0215≈-,这种矩形给人以美感,称为黄金矩形。

黄金矩形常应用于工艺品设计中。

下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:甲批次:0.598 0.625 0.628 0.595 0.639乙批次:0.618 0.613 0.592 0.622 0.620根据上述两个样本来估计两个批次的总体平均数,与标准值0.618比较,正确结论是( )A. 甲批次的总体平均数与标准值更接近B. 乙批次的总体平均数与标准值更接近C. 两个批次总体平均数与标准值接近程度相同D. 两个批次总体平均数与标准值接近程度不能确定6.甲、乙两人各抛掷一次正方体骰子(六个面分别标有数字1,2,3,4,5,6),设甲、乙所抛掷骰子朝上的面的点数分别为x 、y ,则满足复数i x y +的实部大于虚部的概率是( )A .16 B .512 C .712 D .137.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,其中{},1,2,3,4,5,6a b ∈,若1a b -≤,就称甲乙“心有灵犀”。

2019年高考文科数学阶段测试及答案解析:概率、统计、算法、复数、推理与证明

2019年高考文科数学阶段测试及答案解析:概率、统计、算法、复数、推理与证明

阶段检测六概率、统计、算法、复数、推理与证明(时间:120分钟总分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知复数z=-(i为虚数单位),则z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.某市为调查某电视节目的收视率,从全市3个区按人口数用分层抽样的方法抽取一个容量为n的样本,已知3个区的人口数之比为2∶3∶5,如果从人口数最多的1个区抽出的个体数是60,则样本容量n为()A.96B.120C.180D.2403.4张卡片上分别写有数字5,6,7,8,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为()A. B. C. D.4.在长为18 cm的线段AB上任取一点C,现作一矩形,相邻两边长分别等于线段AC,CB的长,则该矩形面积大于32 cm2的概率为()A. B. C. D.5.已知i为虚数单位,a∈R,若-为纯虚数,则a等于()A.2B.1C.D.-26.某省为了抽选运动员参加“2016吉林市国际马拉松赛”,将35名运动员的一次马拉松比赛成绩(单位:分钟)制成茎叶图,如图所示:13003456688891411122233445556678150122333若将运动员按成绩由好到差编号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数为()A.6B.5C.4D.37.已知x,y取值如下表:从所得的散点图分析可知:y与x线性相关,且=0.95x+1.45,则m=()A.1.5B.1.55C.3.5D.1.88.执行如图的程序框图,输出S的值是() A.2 B. C.-1 D.19.在平面区域{(x,y)|0≤x≤1,1≤y≤2}内随机投一点P,则点P的坐标(x,y)满足y≤2x的概率为()A. B. C. D.10.某水果商测量了一批水晶梨的重量(单位:g),将单个水晶梨的重量按[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]进行分组,得到的频率分布直方图如图所示.如果同一组中的数据用该组区间的中点值作代表,那么这组数据的中位数及平均数(结果保留到个位)分别为()A.224,226B.230,225C.224,225D.225,22611.执行如图所示的程序框图,则输出的S的值为()A.8-log38B.9-log38C.8-log340D.10-log34012.将正整数排列如下图:12345678910111213141516……则2 016出现在()13.小王与小郑到香港两日游,他们要从铜锣湾、迪士尼乐园、维多利亚港、大屿山中分别选取两个景点去游玩,则他们选择的两个景点都不相同的概率为.14.设复数-=a+bi(a,b∈R),则a+b=.15.甲、乙、丙、丁四位同学被问到是否游览过西岳华山时,甲说:我没有游览过;乙说:丙游览过;丙说:丁游览过;丁说:我没游览过.在以上的回答中只有一人回答正确且只有一人游览过华山.根据以上条件,可以判断游览过华山的人是.16.某程序框图如图所示,其中a∈N,若该程序运行后输出的值是,则a=.三、解答题(本大题共6小题,共70分.解答时写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)为了调查某市的交通拥堵状况,现对该市的6条道路进行评估,得分分别为5,6,7,8,9,10.规定评估的(1)求本次评估的平均得分,并参照上表估计该市的总体交通状况等级;(2)用简单随机抽样方法从这6条道路中抽取2条,它们的得分组成一个样本,求该样本的平均数与总体的平均数之差的绝对值不超过1的概率.18.(本小题满分12分)小陈为了参加2016年全国竞走大奖赛暨奥运会选拔赛,每天坚持竞走,并且用计步器对步数进行统计.小陈最近8天竞走步数的条形图及相应的消耗能量数据表如下:(1)求小陈这8天竞走步数的平均数;(2)从步数为16千步、17千步、18千步的几天中任选2天,求小陈这2天通过竞走消耗的能量和为840卡路里的概率.19.(本小题满分12分)某消费者协会在3月15日举行了以“携手共治,畅享消费”为主题的大型宣传咨询服务活动,着力提升消费者维权意识.组织方从参加活动的群众中随机抽取120名,按他们的年龄分组:第1组[20,30),第2组[30,40),第3组[40,50),第4组[50,60),第5组[60,70),得到的频率分布直方图如图所示:(1)若电视台记者要从抽取的群众中选1人进行采访,求被采访的人恰好在第2组或第4组的概率;(2)已知第1组群众中男性有2人,组织方要从第1组中随机抽取3名群众组成维权志愿者服务队,求至少有2名女性的概率.20.(本小题满分12分)(年底余额)如下表:(1)求y关于x的回归方程=x+;(2)用所求回归方程预测该地区2016年(x=7)的人民币储蓄存款.附:回归方程=x+中,------21.(本小题满分12分)某校某班的一模数学考试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,可见部分如下:试根据图中的信息解答下列问题:(1)求该班的学生人数及分数在[70,80)之间的人数;(2)为快速了解学生的答题情况,老师按分层抽样的方法从位于[70,80),[80,90)和[90,100]分数段的试卷中抽取8份进行分析,再从中任选2人进行交流,求交流的2名学生中,恰有1名成绩位于[70,80)分数段的概率.22.(本小题满分12分)某购物网站为优化营销策略,对在11月11日当天在该网站进行网购消费且消费金额不超过1 000元的1 000名网购者(其中有女性800名,男性200名)进行抽样分析.根据性别采用分层抽样的方法从这1 000名网购者中抽取100名进行分析,得到下列表格(消费金额单位:元). 女性消费情况:男性消费情况:(1)在抽出的100名且消费金额在[800,1 000](单位:元)的网购者中随机选出2名发放网购红包,求选出的2名网购者恰好是同性的概率;(2)若消费金额不低于600元的网购者为“网购达人”,低于600元的网购者为“非网购达人”,根据以上统计数据填写如下2×2列联表,并回答能否在犯错误的概率不超过0.005的前提下认为“是否为‘网购达人’与性别有关”?附:k 2.706 3.841 5.024 6.6357.879K2=-,其中n=a+b+c+d阶段检测六概率、统计、算法、复数、推理与证明一、选择题1.C z=-=---=--=--i,z在复平面内对应的点的坐标为--,在第三象限.故选C.2.B由题意可知,样本容量n=×(2+3+5)=120.3.C从这4张卡片中随机抽取2张,共有6种抽取方法,其中2张卡片上的数字之和为奇数的有(5,6),(5,8),(6,7),(7,8),共4种抽法,因此所求概率P==.故选C.4.D设AC=x cm,则BC=(18-x)cm,矩形的面积S=x(18-x)cm,由x(18-x)>32,得2<x<16,根据几何概型的概率计算公式得P=-=.故选D.5.C∵-=---=--为纯虚数,∴2a-1=0且a+2≠0,∴a=.故选C.6.C对35名运动员进行编号:00,01,02,…,34,分成七组:00~04,05~09,10~14,15~19,20~24,25~29,30~34,用系统抽样的方法抽7人,则第三组到第六组中占4人,即其中成绩在区间[139,151]上的运动员人数为4,故选C.7.D由题意知==4,==,将代入=0.95x+1.45中,得=0.95×4+1.45,解得m=1.8.8.B记第k次计算结果为S k,则有S1=-=-1,S2=--=,S3=-=2,S4=-=-1=S1,…,因此{S k}是周期数列,周期为3,输出结果为S2 015=S3×671+2=S2=,故选B.9.A设不等式组表示的平面区域为D,其面积为1,如图,满足条件的点P对应的区域为△ABC及其内部,△ABC的面积S=××1=,所以在区域D内任取一点P(x,y),其坐标满足y≤2x的概率为.故选A.10.A由频率分布直方图得(0.002+0.009 5+0.011+0.012 5+x+0.005+0.002 5)×20=1,得x=0.007 5,所以样本数据在各组的频率分别为0.04,0.19,0.22,0.25,0.15,0.10,0.05,因为0.04+0.19+0.22=0.45<0.5,所以样本数据的中位数在[220,240)内,设中位数为a,由0.04+0.19+0.22+0.012 5×(a-220)=0.5,得a=224.样本数据的平均数为=170×0.04+190×0.19+210×0.22+230×0.25+250×0.15+270×0.10+290×0.05=225.6≈226,所以样本数据的中位数及平均数分别为224,226,故选A.11.B运行该程序,S=10+sin+lo1=11,n=2;S=11+sinπ+lo2=11+lo2,n=3;S=11+lo2+sin+lo3=10+lo6,n=4;S=10+lo6+sin2π+lo4=10+lo24=9+lo8,n=5.故输出的S=9-log38,故选B.12.D由题意可知第n行有(2n-1)个数,则前n行的数的个数为1+3+5+…+(2n-1)=n2,因为442=1 936, 452=2 025,且1 936<2 016<2 025,所以2 016在第45行,又2 016-1 936=80,故2 016在第45行第80列.故选D. 二、填空题13.答案解析小王与小郑要从铜锣湾、迪士尼乐园、维多利亚港、大屿山这四个景点中分别选取两个景点,共有36种选法,他们选择的两个景点都不相同时,小王可以先选两个景点,剩余两个景点由小郑选,共有6种选法,所以他们选择的两个景点都不相同的概率为=.14.答案 1解析∵-=---=-+i=a+bi,∴a=-,b=,∴a+b=1.15.答案甲解析假设甲去过,则甲、乙、丙说的都是假话,丁说的是真话,符合题意.16.答案 4解析由已知可得输出的S=1++…+=1+1-=2-.若该程序运行后输出的值是,则2-=,∴a=4.三、解答题17.解析(1)这6条道路的平均得分为×(5+6+7+8+9+10)=7.5,∴该市的总体交通状况等级为合格.(2)设A表示事件“样本平均数与总体平均数之差的绝对值不超过1”.从这6条道路中抽取2条的得分组成的所有基本事件为{5,6},{5,7},{5,8},{5,9},{5,10},{6,7},{6,8},{6,9},{6,10},{7,8},{7,9},{7,10},{8,9},{8,10},{9,10},共15个基本事件,事件A包括{5,8},{5,9},{5,10},{6,7},{6,8},{6,9},{6,10},{7,8},{7,9},{7,10},{8,9},共11个基本事件.∴P(A)=.故该样本的平均数与总体的平均数之差的绝对值不超过1的概率为.18.解析(1)小陈这8天竞走步数的平均数为=17.25(千步).(2)将步数为16千步的3天分别记为A,B,C;步数为17千步的2天分别记为D,E;步数为18千步的1天记为F.则从A,B,C,D,E,F 这6天中任选2天,所含的基本事件有{A,B},{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F},{C,D},{C,E},{C,F},{D,E},{D,F},{E,F},共15个.其中小陈这2天通过竞走消耗的能量和为840卡路里所含的基本事件有{A,D},{A,E},{B,D},{B,E},{C,D},{C,E},共6个,所以小陈这2天通过竞走消耗的能量和为840卡路里的概率P==.19.解析 (1)1-(0.005+0.01+0.02+0.03)×10=0.35, 0.02×10=0.2,所以被采访的人恰好在第2组或第4组的概率为P 1=0.35+0.2=0.55.(2)设第1组[20,30)的频数为n 1,则n 1=120×0.005×10=6,记第1组中的男性为x 1,x 2,女性为y 1,y 2,y 3,y 4, 则随机抽取3名群众的基本事件有:(x 1,x 2,y 1),(x 1,x 2,y 2),(x 1,x 2,y 3),(x 1,x 2,y 4),(x 1,y 1,y 2),(x 1,y 1,y 3),(x 1,y 1,y 4),(x 1,y 2,y 3),(x 1,y 2,y 4),(x 1,y 3,y 4),(x 2,y 1,y 2),(x 2,y 1,y 3),(x 2,y 1,y 4),(x 2,y 2,y 3),(x 2,y 2,y 4),(x 2,y 3,y 4),(y 1,y 2,y 3),(y 1,y 2,y 4),(y 1,y 3,y 4),(y 2,y 3,y 4),共20个. 其中至少有2名女性的基本事件有:(x 1,y 1,y 2),(x 1,y 1,y 3),(x 1,y 1,y 4),(x 1,y 2,y 3),(x 1,y 2,y 4),(x 1,y 3,y 4),(x 2,y 1,y 2),(x 2,y 1,y 3),(x 2,y 1,y 4),(x 2,y 2,y 3),(x 2,y 2,y 4),(x 2,y 3,y 4),(y 1,y 2,y 3),(y 1,y 2,y 4),(y 1,y 3,y 4),(y 2,y 3,y 4),共16个. 所以至少有2名女性的概率为P 2= =.20.解析 (1)因为 ==3, ==7.2,所以 ==1.2,= -=7.2-1.2×3=3.6, 所以y 关于x 的回归方程为=1.2x+3.6.(2)将x=7代入=1.2x+3.6,得 =1.2×7+3.6=12(千亿元), 所以可预测该地区2016年的人民币储蓄存款为12千亿元.21.解析 (1)由茎叶图和频率分布直方图可知,分数在[50,60)上的频数为4,频率为0.008×10=0.08,所以该班的学生人数为=50,故分数在[70,80)之间的人数为50-(4+14+8+4)=20.(2)按分层抽样原理,三个分数段抽样之比等于相应频率之比,又[70,80),[80,90)和[90,100]分数段的频率之比等于5∶2∶1,由此可得抽出的样本中分数在[70,80)的有5人,记为A,B,C,D,E,分数在[80,90)的有2人,记为F,G,分数在[90,100]的有1人,记为H. 现从中抽取2人的所有可能情况有{A,B},{A,C},{A,D},{A,E},{A,F},{A,G},{A,H},{B,C},{B,D},{B,E},{B,F},{B,G},{B,H},{C,D},{C,E},{C,F},{C,G},{C,H},{D,E},{D,F},{D,G},{D,H},{E,F},{E,G},{E,H},{F,G},{F,H},{G,H},共28个基本事件, 设事件M 为“交流的2名学生中,恰有1名成绩位于[70,80)分数段”,则事件M 包含{A,F},{A,G},{A,H},{B,F},{B,G},{B,H},{C,F},{C,G},{C,H},{D,F},{D,G},{D,H},{E,F},{E,G},{E,H},共15个基本事件,所以P(M)=.22.解析 (1)依题意,抽出的100名且消费金额在[800,1 000](单位:元)的网购者中有3名女性,记为A,B,C;2名男性,记为a,b.从5人中任选2人的基本事件有:(A,B),(A,C),(A,a),(A,b),(B,C),(B,a),(B,b),(C,a),(C,b),(a,b),共10个; 设“选出的2名网购者恰好是同性”为事件M,则事件M 包含的基本事件有:(A,B),(A,C),(B,C),(a,b),共4个.∴P(M)= =.(2)2×2列联表如下所示:则K2=-≈9.091,因为9.091>7.879,故能在犯错误的概率不超过0.005的前提下认为“是否为‘网购达人’与性别有关”.。

2019届人教A版(文科数学) 概率与统计 单元测试

2019届人教A版(文科数学)   概率与统计   单元测试

1.下列命题:①将一枚硬币抛两次,设事件M :“两次出现正面”,事件N :“只有一次出现反面”,则事件M 与N 互为对立事件;②若事件A 与B 互为对立事件,则事件A 与B 为互斥事件;③若事件A 与B 为互斥事件,则事件A 与B 互为对立事件;④若事件A 与B 互为对立事件,则事件A +B 为必然事件,其中,真命题是( ) A .①②④ B .②④ C .③④D .①②【答案】C【解析】对①,一枚硬币抛两次,共出现{正,正},{正,反},{反,正},{反,反}四种结果,则事件M 与N 是互斥事件,但不是对立事件,故①错;对②,对立事件首先是互斥事件,故②正确;对③,互斥事件不一定是对立事件,如①中两个事件,故③错;对④,事件A 、B 为对立事件,则一次试验中A 、B 一定有一个要发生,故④正确.故B 正确.. 2、若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( ) A .23B .25C .35D .910【答案】D【解析】由题意知,从五位大学毕业生中录用三人,所有不同的可能结果有(甲,乙,丙),(甲,乙,丁),(甲,乙,戊),(甲,丙,丁),(甲,丙,戊),(甲,丁,戊),(乙,丙,丁),(乙,丙,戊),(乙,丁,戊),(丙,丁,戊),共10种,其中“甲与乙均未被录用”的所有不同的可能结果只有(丙,丁,戊)这1种,故其对立事件“甲或乙被录用”的可能结果有9种,所求概率P =910.3、已知△ABC 中,∠ABC =60°,AB =2,BC =6,在BC 上任取一点D ,则使△ABD 为钝角三角形的概率为( )A .16B .13C .12D .23【答案】C【解析】 如图,当BE =1时,∠AEB 为直角,则点D 在线段BE (不包含B 、E 点)上时,△ABD 为钝角三角形;当BF =4时,∠BAF 为直角,则点D 在线段CF (不包含C 、F 点)上时,△ABD 为钝角三角形.所以△ABD 为钝角三角形的概率为1+26=12.4、在区间[1,5]和[2,4]上分别各取一个数,记为m 和n ,则方程x 2m 2+y 2n 2=1表示焦点在x 轴上的椭圆的概率是________.【答案】12【解析】∵方程x 2m 2+y 2n2=1表示焦点在x 轴上的椭圆,∴m >n .如图,由题意知,在矩形ABCD 内任取一点Q (m ,n ),点Q 落在阴影部分的概率即为所求的概率,易知直线m =n 恰好将矩形平分, ∴所求的概率为P =12.5、在3张奖券中有一、二等奖各1张,另1张无奖.甲、乙两人各抽取1张,两人都中奖的概率是________. 【答案】13【解析】设中一、二等奖及不中奖分别记为1,2,0,那么甲、乙抽奖结果有(1,2),(1,0),(2,1),(2,0),(0,1),(0,2),共6种. 其中甲、乙都中奖有(1,2),(2,1),共2种,所以P (A )=26=13.【能力提升】1、若随机事件A ,B 互斥,A ,B 发生的概率均不等于0,且P (A )=2-a ,P (B )=4a -5,则实数a 的取值范围是________________ 【答案】(54,43]【解析】由题意可知⎩⎪⎨⎪⎧0<P (A )<1,0<P (B )<1,P (A )+P (B )≤1⇒⎩⎪⎨⎪⎧0<2-a <1,0<4a -5<13a -3≤1,⇒⎩⎨⎧1<a <2,54<a <32,a ≤43⇒54<a ≤43. 2、用两种不同的颜色给图中三个矩形随机涂色,每个矩形只涂一种颜色,则相邻两个矩形涂不同颜色的概率是________} 【答案】14【解析】由于只有两种颜色,不妨将其设为1和2,若只用一种颜色有111;222. 若用两种颜色有122;212;221;211;121;112. 所以基本事件共有8种.又相邻颜色各不相同的有2种,故所求概率为14.3、现有5根竹竿,它们的长度(单位:m )分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3 m 的概率为________. 【答案】 0.2【解析】抽取2根竹竿的基本事件有(2.5,2.6),(2.5,2.7),(2.5,2.8),(2.5,2.9),(2.6,2.7),(2.6,2.8),(2.6,2.9),(2.7,2.8),(2.7,2.9),(2.8,2.9)共10个,其中长度恰好相差0.3 m 的是(2.5,2.8),(2.6,2.9)共2个,所以所求概率为210=0.2.4、随机向边长为5,5,6的三角形中投一点P ,则点P 到三个顶点的距离都不小于1的概率是________. 【答案】24-π24【解析】 由题意作图,如图则点P 应落在深色阴影部分,S 三角形=12×6×52-32=12,三个小扇形可合并成一个半圆,故其面积为π2,故点P 到三个顶点的距离都不小于1的概率为12-π212=24-π24.4、甲、乙两船驶向一个不能同时停泊两艘船的码头,它们在一昼夜内到达该码头的时刻是等可能的.如果甲船停泊时间为1 h ,乙船停泊时间为2 h ,求它们中的任意一艘都不需要等待码头空出的概率_______ 【答案】1 0131 152【解析】设甲、乙两艘船到达码头的时刻分别为x 与y ,记事件A 为“两船都不需要等待码头空出”,则0≤x ≤24,0≤y ≤24,要使两船都不需要等待码头空出,当且仅当甲比乙早到达1 h 以上或乙比甲早到达2 h 以上,即y -x ≥1或x -y ≥2.故所求事件构成集合A ={(x ,y )|y -x ≥1或x -y ≥2,x ∈[0,24],y ∈[0,24]}.A 为图中阴影部分,全部结果构成集合Ω为边长是24的正方形及其内部. 所求概率为P (A )=A 的面积Ω的面积=()()221124124222242-⨯+-⨯ =506.5576=1 0131 152.统计与统计案例训练题【基础达标】1、具有线性相关关系的变量x ,y 满足一组数据如下表所示.若y 与x 的线性回归方程为y ^=3x -32,则m 的值是( )A .4B .92 C .5 D .6答案 A解析 由已知得x =32,y =m4+2,又因为点(x ,y )在直线y ^=3x -32上,所以m 4+2=3×32-32,得m =4.2.根据如下样本数据得到的回归方程为y ^=b ^x +a ^,则( )A .a ^>0,b ^>0B .a ^>0,b ^<0C .a ^<0,b ^>0 D .a ^<0,b ^<0答案 B解析 作出散点图如下:观察图象可知,回归直线y ^=b ^x +a ^的斜率b ^<0,当x =0时,y ^=a ^>0.故a ^>0,b ^<0.3.为了普及环保知识,增强环保意识,某大学从理工类专业的A 班和文史类专业的B 班各抽取20名同学参加环保知识测试.统计得到成绩与专业的列联表:附:参考公式及数据:(1)统计量:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )(n =a +b +c +d ).(2)独立性检验的临界值表:则下列说法正确的是( )A .有99%的把握认为环保知识测试成绩与专业有关B .有99%的把握认为环保知识测试成绩与专业无关C .有95%的把握认为环保知识测试成绩与专业有关D .有95%的把握认为环保知识测试成绩与专业无关 答案 C解析 因为K 2=40×(14×13-7×6)220×20×21×19≈4.9124、下图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的频率为( )A .0.2B .0.4C .0.5D .0.6 答案 B解析 10个数据落在区间[22,30)内的数据有22,22,27,29,共4个,因此,所求的频率为410=0.4.故选B .5、某公司10位员工的月工资(单位:元)为x 1,x 2,…,x 10,其平均数和方差分别为x 和s 2,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的平均数和方差分别为( )A .x ,s 2+1002B .x +100,s 2+1002C .x ,s 2D .x +100,s 2答案 D解析x 1+x 2+…+x 1010=x ,y i =x i +100,所以y 1,y 2,…,y 10的平均数为x +100,方差不变,故选D .6、已知样本(x 1,x 2,…,x n )的平均数为x ,样本(y 1,y 2,…,y m )的平均数为y (x ≠y ),若样本(x 1,x 2,…,x n ,y 1,y 2,…,y m )的平均数z =a x +(1-a )y ,其中0<a <12,则n ,m 的大小关系为( ) A .n <m B .n >m C .n =m D .不能确定答案 A解析 由题意可得x =x 1+x 2+…+x nn,y =y 1+y 2+…+y m m,z =x 1+x 2+…+x n +y 1+y 2+…+y mn +m=n n +m ·x 1+x 2+…+x n n +m n +m ·y 1+y 2+…+y mm=n n +m ·x +mn +m·y =a x +(1-a )y , 所以n n +m =a ,m n +m=1-a ,又0<a <12,所以0<n n +m <12<m n +m,故n <m .7、在一段时间内有2 000辆车通过高速公路上的某处,现随机抽取其中的200辆进行车速统计,统计结果如下面的频率分布直方图所示.若该处高速公路规定正常行驶速度为90 km /h ~120 km /h ,试估计2 000辆车中,在这段时间内以正常速度通过该处的汽车约有( )A .30辆B .300辆C .170辆D .1 700辆答案 D解析 以正常速度通过该处的汽车频率为1-(0.01+0.005)×10=0.85,所以以正常速度通过该处的汽车约有0.85×2 000=1 700(辆).【能力提升】1、有甲、乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩,得到如下所示的列联表:附:已知在全部105人中随机抽取1人,成绩优秀的概率为27,则下列说法正确的是( )A .列联表中c 的值为30,b 的值为35B .列联表中c 的值为15,b 的值为50C .根据列联表中的数据,若按97.5%的可靠性要求,能认为“成绩与班级有关系”D .根据列联表中的数据,若按97.5%的可靠性要求,不能认为“成绩与班级有关系” 答案 C解析 由题意知,成绩优秀的学生数是30,成绩非优秀的学生数是75,所以c =20,b =45,选项A 、B 错误. 根据列联表中的数据,得到K 2=105×(10×30-20×45)255×50×30×75≈6.109>5.024,因此有97.5%的把握认为“成绩与班级有关系”.2、某市居民2010~2014年家庭年平均收入x (单位:万元)与年平均支出y (单位:万元)的统计资料如下表所示:根据统计资料,居民家庭年平均收入的中位数是______,家庭年平均收入与年平均支出有________相关关系.(填“正”或“负”) 答案 13 正解析 中位数是13.由相关性知识,根据统计资料可以看出,当年平均收入增多时,年平均支出也增多,因此两者之间具有正相关关系. 3、以下四个命题,其中正确的序号是________.①从匀速传递的产品生产流水线上,质检员每20分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②两个随机变量相关性越强,则相关系数的绝对值越接近于1;③在线性回归方程y ^=0.2x +12中,当解释变量x 每增加一个单位时,预报变量y ^平均增加0.2个单位;④对分类变量X 与Y 的随机变量K 2的观测值k 来说,k 越小,“X 与Y 有关系”的把握程度越大. 答案 ②③解析 ①是系统抽样;对于④,随机变量K 2的观测值k 越小,说明两个相关变量有关系的把握程度越小.4、样本中共有五个个体,其值分别为a,0,1,2,3.若该样本的平均数为1,则样本方差为________. 答案 2解析 由题意可知样本的平均数为1, 所以a +0+1+2+35=1,解得a =-1,所以样本的方差为15[(-1-1)2+(0-1)2+(1-1)2+(2-1)2+(3-1)2]=2. 5、某电子商务公司对10 000名网络购物者在2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.(1)直方图中的a =________;(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为________. 答案 (1)3 (2)6 000解析 由频率分布直方图及频率和等于1可得0.2×0.1+0.8×0.1+1.5×0.1+2×0.1+2.5×0.1+a ×0.1=1,解得a =3.于是消费金额在区间[0.5,0.9]内的频率为0.2×0.1+0.8×0.1+2×0.1+3×0.1=0.6,所以消费金额在区间[0.5,0.9]内的购物者的人数为0.6×10 000=6 000. 6、若样本数据x 1,x 2,…,x 10的标准差为8,则数据2x 1-1,2x 2-1,…,2x 10-1的标准差为________. 答案 16解析 若x 1,x 2,…,x n 的标准差为s ,则ax 1+b ,ax 2+b ,…,ax n +b 的标准差为as .由题意s=8,则上述标准差为2×8=16.7、某学校随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100].则(1)图中的x=________;(2)若上学所需时间不少于1小时的学生可申请在学校住宿,则该校600名新生中估计有________名学生可以申请住宿.答案(1)0.012 5(2)72解析(1)由频率分布直方图知20x=1-20×(0.025+0.006 5+0.003+0.003),解得x=0.012 5.(2)上学时间不少于1小时的学生的频率为0.12,因此估计有0.12×600=72(人)可以申请住宿。

2019届人教A版(文科数学)概率与统计单元测试

2019届人教A版(文科数学)概率与统计单元测试

17 概率与统计(1)第1卷一、选择题1、有如下四个游戏盘,撒一粒黄豆,若落在阴影部分,怎可以中奖,小明希望中奖,则他应该选择的游戏是()A.B.C.D.2、甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为,再由乙猜甲刚才所想的数字,把乙猜的数字记为,其中,若,就称甲、乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为( )A.B.C.D.3、在10个球中有6个红球和4个白球(各不相同),不放回地依次摸出2个球,在第一次摸出红球的条件下,第2次也摸到红球的概率为( )A.B.C.D.4、设某批产品合格率为,不合格率为,现对该产品进行测试,设第次首次测到正品,则等于( )A.B.C.D.5、从一批产品中取出三件,设=“三件产品全不是次品”,= “三件产品全是次品”,= “三件产品不全是次品”,则下列结论正确的是( )A.与互斥B.与互斥C.任两个均互斥D.任两个均不互斥6、把红、黑、蓝、白4张纸牌随机地分发给甲、乙、丙、丁四个人,每人分得1张,事件“甲分得红牌”与事件“乙分得红牌”是( )A.对立事件B.不可能事件C.互斥事件但不是对立事件D.以上答案都不对7、口袋内装有大小相同的红球、白球和黑球,从中摸出一个球,摸出红球的概率是,摸出白球的概率是,则摸出黑球的概率是( )A.B.C.D.8、从装有两个红球和两个黑球的口袋里任取两个球,那么互斥而不对立的两个事件是( )A.“至少有一个黑球”与“都是黑球”B.“至少有一个黑球”与“至少有一个红球”C.“恰好有一个黑球”与“恰好有两个黑球”D.“至少有一个黑球”与“都是红球”9、先后抛掷一枚硬币三次,则至少一次正面朝上的概率是( )A.B.C.D.10、已知随机变量服从正态分布,且,则( )A.0.1588B.0.1587C.0.1586D.0.158511、为评估一种农作物的种植效果,选了块地作试验田。

这块地的亩产量(单位:)分别为,,...,,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A.,,...,的平均数B.,,...,的标准差C.,,...,的最大值D.,,...,的中位数12、如图,正方形内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A.B.C.D.13、从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到在2张卡片上的数奇偶性不同的概率是( )A.B.C.D.14、设随机变量服从正态分布,,则( )A.B.C.D.15、设不等式组所表示的区域为,函数的图象与轴所围成的区域为,向内随机投一个点,则该点落在内的概率为( )A.B.C.二、填空题16、某射手射击一次,击中目标的概率是,他连续射击次,且各次射击是否击中目标相互没有影响.给出下列结论:①他第次击中目标的概率是;②他恰好次击中目标的概率是;③他至少有一次击中目标的概率是.其中正确结论的序号是.17、一批产品的二等品率为,从这批产品中每次随机取一件,有放回地抽取次,表示抽到的二等品件数,则.三、解答题18、20名生某次数考试成绩(单位:分)的频数分布直方图如下:1.求频率分布直方图中的值;2.分别球出成绩落在[50,60)与[60,70)中的生人数;3.从成绩在[50,70)的生中任选2人,求此2人的成绩都在[60,70)中的概率.19、盒内有大小相同的9个球,其中2个红色球,3个白色球,4个黑色球.规定取出1个红色球得1分,取出1个白色球得0分,取出1个黑色球得-1分.现从盒内任取3个球.1.求取出的3个球中至少有一个红球的概率;2.求取出的3个球得分之和恰好为1分的概率;3.设为取出的3个球中白色球的个数,求的分布列和数期望.20、袋子中放有大小和形状相同的小球若干个,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球个,已知从袋子中随机抽取1个小球,取到标号是2的小球的概率是.1.求的值;2.从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为,第二次取出的小球标号为。

2019年高中高考试卷试题汇编文科数学概率统计

2019年高中高考试卷试题汇编文科数学概率统计
P
40
4
50
5
女顾客的的满意概率为
P
30
3
.
50
5
(2)
2
100(40
20
10
30)2
(40
10)(30
20)(40
30)(10
20)
95%

的掌握认为男、女顾客对该商场服务的谈论有差异.
1/10
(2019全国2文)4.
生物实验室有
5
只兔子,其中只有
3
只测量过某项指标
.若从这
5
只兔子中随机取出
3
只,则
2)能否有95%的掌握认为男、女顾客对该商场服务的谈论有差异?
附:
2
n(adbc)2
(a
b)(cd)(ac)(bd)
P(2
k)
k
答案:
(1)男顾客的的满意概率为
P
40
4
50
5
女顾客的的满意概率为
P
30
3
50
5
(2)
有95%的掌握认为男、女顾客对该商场服务的谈论有差异.
解答:
(1)
男顾客的的满意概率为
人抽一个,46号学生被抽到,则抽取的号数就为10n
6(0n99,n
N),
可得出
616号学生被抽到.
(2019
全国1文)17.某商场为提高服务质量,随机检查了
50名男顾客和50
名女顾客,每位顾客对该商场的服
务给出满意或不满意的谈论,获取下面列联表:
满意
不满意
男顾客
女顾客
4010
3020
1)分别估计男、女顾客对该商场服务满意的概率;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年清明节练习(概率与统计)一、选择题1.(2018·成都模拟) 小明在花店定了一束鲜花,花店承诺将在第二天早上7:30~8:30之间将鲜花送到小明家.若小明第二天离开家去公司上班的时间在早上8:00~9:00之间,则小明在离开家之前收到这束鲜花的概率是( ) A.18 B.14 C.34D.78解析:选D 如图,设送花人到达小明家的时间为x ,小明离家去上班的时间为y ,记小明离家前能收到鲜花为事件A .(x ,y )可以看成平面中的点,试验的全部结果所构成的区域为Ω={(x ,y )|7.5≤x ≤8.5,8≤y ≤9},这是一个正方形区域,面积为S Ω=1×1=1,事件A 所构成的区域为A ={(x ,y )|y ≥x,7.5≤x ≤8.5,8≤y ≤9},即图中的阴影部分,面积为S A =1-12×12×12=78.这是一个几何概型,所以P (A )=S A S Ω=78,故选D.2.(2018·福州四校联考)某汽车的使用年数x 与所支出的维修总费用y 的统计数据如下表:根据上表可得y 关于x 的线性回归方程y =b x -0.69,若该汽车维修总费用超过10万元就不再维修,直接报废,据此模型预测该汽车最多可使用(不足1年按1年计算)( )A .8年 B .9年 C .10年 D .11年解析:选D 由y 关于x 的线性回归直线y ^=b ^x -0.69过样本点的中心(3,2.34),得b ^=1.01,即线性回归方程为y ^=1.01x -0.69,由y ^=1.01x -0.69=10得x ≈10.6,所以预测该汽车最多可使用11年,故选D.3.(2018·长春模拟)如图所示是某学校某年级的三个班在一学期内的六次数学测试的平均成绩y 关于测试序号x 的函数图象,为了容易看出一个班级的成绩变化,将离散的点用虚线连接,根据图象,给出下列结论:①一班成绩始终高于年级平均水平,整体成绩比较好; ②二班成绩不够稳定,波动程度较大;③三班成绩虽然多数时间低于年级平均水平,但在稳步提升. 其中正确结论的个数为( ) A .0 B .1 C .2 D .3 解析:选D ①由图可知一班每次考试的平均成绩都在年级平均成绩之上,故①正确.②由图可知二班平均成绩的图象高低变化明显,可知成绩不稳定,波动程度较大,故②正确.③由图可知三班平均成绩的图象呈上升趋势,并且图象的大部分都在年级平均成绩图象的下方,故③正确.故选D.4.(2018·郑州模拟)我市某高中从高三年级甲、乙两个班中各选出7名学生参加2018年全国高中数学联赛(河南初赛),他们取得的成绩(满分140分)的茎叶图如图所示,其中甲班学生成绩的中位数是81,乙班学生成绩的平均数是86,若正实数a ,b 满足a ,G ,b 成等差数列且x ,G ,y 成等比数列,则1a +4b的最小值为( )A.49 B .2 C.94D .9解析:选C 由甲班学生成绩的中位数是81,可知81为甲班7名学生的成绩按从小到大的顺序排列的第4个数,故x =1.由乙班学生成绩的平均数为86,可得(-10)+(-6)+(-4)+(y -6)+5+7+10=0,解得y =4.由x ,G ,y 成等比数列,可得G 2=xy =4,由正实数a ,b 满足a ,G ,b 成等差数列,可得G =2,a +b =2G =4,所以1a +4b =⎝⎛⎭⎫1a +4b ×⎝⎛⎭⎫a 4+b 4=14⎝⎛⎭⎫1+b a +4a b +4≥14×(5+4)=94(当且仅当b =2a 时取等号).故1a +4b 的最小值为94,选C. 5、(2018·石家庄模拟)设样本数据x 1,x 2,…,x 2 018的方差是4,若y i =x i -1(i =1,2,…,2 018),则y 1,y 2,…,y 2 018的方差为________.解析:设样本数据x 1,x 2,…,x 2 018的平均数为x -,又y i =x i -1,所以样本数据y 1,y 2,…,y 2 018的平均数为x --1,则样本数据y 1,y 2,…,y 2 018的方差为12 018[(x 1-1-x -+1)2+(x 2-1-x -+1)2+…+(x 2 018-1-x -+1)2]=12 018[(x 1-x -)2+(x 2-x -)2+…+(x 2 018-x -)2]=4.答案:46.正六边形ABCDEF 的边长为1,在正六边形内随机取点M ,则使△MAB 的面积大于34的概率为________.解析:如图所示,作出正六边形ABCDEF ,其中心为O ,过点O 作OG ⊥AB ,垂足为G ,则OG 的长为中心O 到AB 边的距离.易知∠AOB =360°6=60°,且OA =OB ,所以△AOB 是等边三角形,所以OA =OB =AB =1,OG =OA ·sin 60°=1×32=32,即对角线CF 上的点到AB 的距离都为32. 设△MAB 中AB 边上的高为h , 则由S △MAB =12×1×h >34,解得h >32.所以要使△MAB 的面积大于34,只需满足h >32,即需使M 位于CF 的上方.故由几何概型得,△MAB 的面积大于34的概率P =S 梯形CDEF S 正六边形ABCDEF =12. 答案:127.某班运动队由足球运动员18人、篮球运动员12人、乒乓球运动员6人组成(每人只参加一项),现从这些运动员中抽取一个容量为n 的样本,若分别采用系统抽样法和分层抽样法,则都不用剔除个体;当样本容量为n +1时,若采用系统抽样法,则需要剔除1个个体,那么样本容量n 为________.解析:总体容量为6+12+18=36.当样本容量为n 时,由题意可知,系统抽样的抽样距为36n ,分层抽样的抽样比是n 36,则采用分层抽样法抽取的乒乓球运动员人数为6×n 36=n 6,篮球运动员人数为12×n 36=n3,足球运动员人数为18×n 36=n2,可知n 应是6的倍数,36的约数,故n =6,12,18.当样本容量为n +1时,剔除1个个体,此时总体容量为35,系统抽样的抽样距为35n +1,因为35n +1必须是整数,所以n 只能取6,即样本容量n 为6. 答案:68.(2018·石家庄模拟)某学校为了解高三学生数学学科的复习效果,现从高三学生第一学期期中考试的成绩中随机抽取50名学生的数学成绩(单位:分),按[90,100),[100,110),…,[140,150]分成6组,制成如图所示的频率分布直方图.(1)求m 的值及这50名学生数学成绩的平均数x -;(2)该学校为制订下阶段的复习计划,现需从成绩在[130,140)内的学生中任选3名作为代表进行座谈,若已知成绩在[130,140)内的学生中男女比例为2∶1,求至少有1名女生参加座谈的概率.解:(1)由题知,(0.004+0.012+0.024+0.04+0.012+m )×10=1,解得m =0.008.x -=95×0.004×10+105×0.012×10+115×0.024×10+125×0.04×10+135×0.012×10+145×0.008×10=121.8(分).(2)由频率分布直方图可知,成绩在[130,140)内的学生有0.012×10×50=6(名),由题可知这6名学生中男生有4名,女生有2名,记男生分别为A ,B ,C ,D ,女生分别为a ,b ,则从6名学生中选出3名的所有可能情况为ABC ,ABD ,ABa ,ABb ,ACD ,ACa ,ACb ,ADa ,ADb ,BCD ,BCa ,BCb ,BDa ,BDb ,CDa ,CDb ,Aab ,Bab ,Cab ,Dab ,共20种,其中不含女生的情况为ABC ,ABD ,ACD ,BCD ,共4种.记“至少有1名女生参加座谈”为事件A ,则P (A )=1-420=45. 9.(2018·广东韶关期末)某商店为了更好地规划某种商品的进货量,从某一年的销售数据中,随机抽取了8组数据作为研究对象,如下表所示(x 为该商品的进货量,y 为销售天数):(1)(2)根据上表提供的数据,求出y 关于x 的线性回归方程y ^=b ^x +a ^;(3)根据(2)中的计算结果,若该商店准备一次性进货24吨,预测需要销售的天数.参考公式和数据:b ^=∑i =1nx i y i -n x -·y -∑i =1nx 2i -n x -2,a ^=y --b ^x -; ∑i =18x 2i =356,∑i =18x i y i =241.解:(1)散点图如图所示.(2)依题意,得x -=18×(2+3+4+5+6+8+9+11)=6,y -=18×(1+2+3+3+4+5+6+8)=4,又∑i =18x 2i =356,∑i =18x i y i =241,所以b ^=∑i =18x i y i -8x -·y-∑i =18x 2i -8x -2=241-8×6×4356-8×62=4968, a ^=4-4968×6=-1134,故线性回归方程为y ^=4968x -1134.(3)由(2)知,当x =24时,y ^=4968×24-1134≈17,故若该商店一次性进货24吨,则预计需要销售17天.10.在某大学的自主招生考试中,所有选报某类志愿的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为A ,B ,C ,D ,E 五个等级.某考场考生的两科考试成绩的数据统计如图所示,其中“数学与逻辑”科目的成绩等级为B 的考生有10人.(1)若等级A ,B ,C ,D ,E 分别对应5分,4分,3分,2分,1分,求该考场考生的“数学与逻辑”科目的平均分;(2)求该考场考生的“阅读与表达”科目成绩等级为A 的考生人数;(3)如果参加本次考试的考生中,恰有2人的两科成绩等级均为A ,在至少有一科成绩等级为A 的考生中,随机抽取2人进行访谈,求所抽取的2人的两科成绩等级均为A 的概率.解:(1)因为“数学与逻辑”科目中成绩等级为B 的考生有10人,所以该考场有考生10÷0.25=40(人).“数学与逻辑”科目中成绩等级为D 的频率为1-0.075-0.2-0.25-0.375=0.1.该考场考生的“数学与逻辑”科目的平均分为[1×(40×0.2)+2×(40×0.1)+3×(40×0.375)+4×(40×0.25)+5×(40×0.075)]÷40=2.9(分).(2)依题意知该考场考生的“阅读与表达”科目成绩等级为A 的人数为40×(1-0.375-0.375-0.15-0.025)=40×0.075=3.(3)因为两科考试中,共有6人的成绩等级为A ,又恰有2人的两科成绩等级均为A ,所以还有2人只有一个科目的成绩为A.设这4人为甲,乙,丙,丁,其中甲,乙是两科成绩等级都是A 的学生,在至少一科成绩等级为A 的4位考生中,随机抽取2人进行访谈包含的基本事件有{甲,乙},{甲,丙}、{甲,丁},{乙,丙},{乙,丁},{丙,丁},共6个,其中所抽取的2人的两科成绩等级均为A 的事件为{甲,乙},所以所抽取的2人的两科成绩等级均为A 的概率为16.。

相关文档
最新文档