概率与统计高考真题文科-含解析
专题10.2 概率与统计(解答题)(全国卷文科数学专用)-5年高考真题与优质模拟题(原卷版+解析版)
![专题10.2 概率与统计(解答题)(全国卷文科数学专用)-5年高考真题与优质模拟题(原卷版+解析版)](https://img.taocdn.com/s3/m/7cba37d1dd36a32d737581f3.png)
专题10.2 概率与统计(解答题)A组 5年高考真题1.(2020全国Ⅲ文理18)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1)分别估计该市一天的空气质量等级为1,2,3,4 的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面22⨯的列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:()()()()()22n ad bcKa b c d a c b d-=++++2.(2020全国Ⅱ文理18)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据()(),1,2,,20i i x y i =,其中i x 和i y 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得∑==20160i i x ,∑==2011200i i y ,()∑==-201280i i x x ,()∑==-20129000i iy y,()()080201∑==--i ii y yx x .(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本()(),1,2,,20i i x y i =的相关系数(精确到0.01); (3)根据现有统计资料,各地块间植物覆盖面积差异很大,为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数()()()()∑∑∑===----=ni ini i ni ii y y x x yyx x r 12121,414.12≈.3.(2018全国卷Ⅲ)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m和不超过m的工人数填入下面的列联表:(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++,2()0.0500.0100.0013.841 6.63510.828P K kk≥4.(2017新课标Ⅱ)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)记A 表示事件“旧养殖法的箱产量低于50kg”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:(3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比较.附:22()()()()()n ad bc K a b c d a c b d -=++++新养殖法旧养殖法箱产量/kg箱产量/kg5.(2019全国III文17)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).6.(2019全国II 文19)某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y 的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01) .8.602≈7.(2018全国卷Ⅰ)某家庭记录了未使用节水龙头50天的日用水量数据(单位:3m)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表使用了节水龙头50天的日用水量频数分布表(1)在下图中作出使用了节水龙头50天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于0.353m的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)8.(2016年全国I卷)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:记x 表示1台机器在三年使用期内需更换的易损零件数,y 表示1台机器在购买易损零件上所需的费用(单位:元),n 表示购机的同时购买的易损零件数. (I )若n =19,求y 与x 的函数解析式;(II )若要求“需更换的易损零件数不大于n ”的频率不小于0.5,求n 的最小值;(III )假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?频数9.(2015新课标2)某公司为了解用户对其产品的满意度,从,A B两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得分A地区用户满意评分的频率分布直方图和B地区用户满意度评分的频数分布表.B地区用户满意度评分的频数分布表(Ⅰ)在答题卡上作出B地区用户满意度评分的频数分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(Ⅱ)根据用户满意度评分,将用户的满意度分为三个等级;估计哪个地区用户的满意度等级为不满意的概率大?说明理由.B组三年模拟10.(2020·湖北省武汉市高三质检(文))一个小商店从一家食品有限公司购进10袋白糖,每袋白糖的标准重量是500g,为了了解这些白糖的实际重量,称量出各袋白糖的实际重量(单位:g)如下:503,502,496,499,491,498,506,504,501,510(1)求这10袋白糖的平均重量x和标准差s;(2)从这10袋中任取2袋白糖,那么其中恰有一袋的重量不在(x-s,x+s)的概率是多少?≈5.08≈16.06≈5.09≈16.09)11.(2020·湖南省长郡中学高三测试(文))某蔬菜批发商经销某种新鲜蔬菜(以下简称A蔬菜),购入价为200元/袋,并以300元/袋的价格售出,若前8小时内所购进的A蔬菜没有售完,则批发商将没售完的A 蔬菜以150元/袋的价格低价处理完毕(根据经验,2小时内完全能够把A蔬菜低价处理完,且当天不再购进).该蔬菜批发商根据往年的销量,统计了100天A蔬菜在每天的前8小时内的销售量,制成如下频数分布条形图.(1)若某天该蔬菜批发商共购入6袋A蔬菜,有4袋A蔬菜在前8小时内分别被4名顾客购买,剩下2袋在8小时后被另2名顾客购买.现从这6名顾客中随机选2人进行服务回访,则至少选中1人是以150元/袋的价格购买的概率是多少?(2)以上述样本数据作为决策的依据.(i)若今年A蔬菜上市的100天内,该蔬菜批发商坚持每天购进6袋A蔬菜,试估计该蔬菜批发商经销A 蔬菜的总盈利值;(ii)若明年该蔬菜批发商每天购进A蔬菜的袋数相同,试帮其设计明年的A蔬菜的进货方案,使其所获取的平均利润最大.12.(2020·吉林省实验中学高三第一次检测(文))国家每年都会对中小学生进行体质健康监测,一分钟跳绳是监测的项目之一.今年某小学对本校六年级300名学生的一分钟跳绳情况做了统计,发现一分钟跳绳个数最低为10,最高为189.现将跳绳个数分成[)10,40,[)40,70,[)70,100,[)100,130,[)130,160,[]160,1906组,并绘制出如下的频率分布直方图.(1)若一分钟跳绳个数达到160为优秀,求该校六年级学生一分钟跳绳为优秀的人数;(2)上级部门要对该校体质监测情况进行复查,发现每组男、女学生人数比例有很大差别,[)10,40组男、女人数之比为2:1,[)40,70组男、女人数之比为5:1,[)70,100组男、女人数之比为11:7,[)100,130组男、女人数之比为10:11,[)130,160组男、女人数之比为19:20,[]160,190组男、女人数之比为1: 6.试估计此校六年级男生一分钟跳绳个数的平均数(同一组中的数据用该组区间的中点值作代表,结果保留整数).13.(2020·陕西省西安中学高三二模(文))某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:(I )记A 为事件:“一续保人本年度的保费不高于基本保费”.求P (A )的估计值;(Ⅱ)记B 为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求P (B )的估计值;(Ⅲ)求续保人本年度的平均保费估计值.14.(2020·江西省名师联盟高三调研(文))已知甲、乙两名工人在同样条件下每天各生产100件产品,且每生产1件正品可获利20元,生产1件次品损失30元,甲,乙两名工人100天中出现次品件数的情况如(1)将甲每天生产的次品数记为x(单位:件),日利润记为y(单位:元),写出y与x的函数关系式;(2)如果将统计的100天中产生次品量的频率作为概率,记X表示甲、乙两名工人1天中各自日利润不少于1950元的人数之和,求随机变量X的分布列和数学期望.15.(2020·江西省名师联盟高三一模(文))某厂销售部以箱为单位销售某种零件,每箱的定价为200元,低于100箱按原价销售,不低于100箱则有以下两种优惠方案:①以100箱为基准,每多50箱送5箱;②通过双方议价,买方能以优惠8%成交的概率为0.6,以优惠6%成交的概率为0.4.()1甲、乙两单位都要在该厂购买150箱这种零件,两单位都选择方案②,且各自达成的成交价格相互独立,求甲单位优惠比例不低于乙单位优惠比例的概率;()2某单位需要这种零件650箱,以购买总价的数学期望为决策依据,试问该单位选择哪种优惠方案更划算?专题10.2 概率与统计(解答题)A组 5年高考真题1.(2020全国Ⅲ文理18)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1)分别估计该市一天的空气质量等级为1,2,3,4 的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面22⨯的列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:()()()()()22n ad bcKa b c d a c b d-=++++【解析】(1)根据上面的统计数据,可得:该市一天的空气质量等级为1的概率为43100100=;该市一天的空气质量等级为2的概率为5101227100100++=;该市一天的空气质量等级为3的概率为67821100100++=;该市一天的空气质量等级为4的概率为7209100100++=. (2)由题意,计算得1000.203000.355000.45350x =⨯+⨯+⨯=. (3)列联表如下:由表中数据可得:22100(3383722) 5.820 3.84170305545K ⨯⨯-⨯=≈>⨯⨯⨯,∴有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.2.(2020全国Ⅱ文理18)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据()(),1,2,,20i i x y i =,其中i x 和i y 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得∑==20160i i x ,∑==2011200i i y ,()∑==-201280i i x x ,()∑==-20129000i iy y,()()080201∑==--i ii y yx x .(4)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(5)求样本()(),1,2,,20i i x y i =的相关系数(精确到0.01); (6)根据现有统计资料,各地块间植物覆盖面积差异很大,为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数()()()()∑∑∑===----=ni ini i ni ii y y x x yyx x r 12121,414.12≈.【解析】(1)样区野生动物平均数为201111200602020ii y ==⨯=∑, 地块数为200,该地区这种野生动物的估计值为2006012000⨯=.(2)样本(,)i i x y的相关系数为20()()0.943iix x y y r --===≈∑.(3)由于各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样.先将植物覆盖面积按优中差分成三层,在各层内按比例抽取样本,在每层内用简单随机抽样法抽取样本即可.3.(2018全国卷Ⅲ)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min )绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过m 和不超过m 的工人数填入下面的列联表:(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:22()()()()()n ad bc K a b c d a c b d -=++++, 2()0.0500.0100.0013.841 6.63510.828P K k k ≥【解析】(1)第二种生产方式的效率更高.理由如下:(i)由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79分钟.因此第二种生产方式的效率更高.(ii)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为85.5分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5分钟.因此第二种生产方式的效率更高.(iii)由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟,因此第二种生产方式的效率更高.(iv)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高.以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分.(2)由茎叶图知7981802m+==.列联表如下:(3)由于2240(151555)10 6.63520202020K⨯-⨯==>⨯⨯⨯,所以有99%的把握认为两种生产方式的效率有差异.4.(2017新课标Ⅱ)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)记A 表示事件“旧养殖法的箱产量低于50kg”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:(3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比较.附:22()()()()()n ad bc K a b c d a c b d -=++++ 【解析】(1)旧养殖箱的箱产量低于50kg 的频率为(0.0120.0140.0240.0340.040)50.62++++⨯=.因此,事件A 的概率估计值为0.62. (2)根据箱产量的频率分布直方图得列联表22200(62663438)15.70510010096104K ⨯⨯-⨯=≈⨯⨯⨯.新养殖法旧养殖法箱产量/kg箱产量/kg由于15.705 6.635>,故有99%的把握认为箱产量与养殖方法有关.(3)箱产量的频率分布直方图表明:新养殖法的箱产量平均值(或中位数)在50kg 到55kg 之间,旧养殖法的箱产量平均值(或中位数)在45kg 到50kg 之间,且新养殖法的箱产量分布集中程度较旧养殖法的箱产量分布集中程度高,因此,可以认为新养殖法的箱产量较高且稳定,从而新养殖法优于旧养殖法. 5.(2019全国III 文17)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A ,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P (C )的估计值为0.70. (1)求乙离子残留百分比直方图中a ,b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表). 【解析】(1)由已知得,故,b=1–0.05–0.15–0.70=0.10. (2)甲离子残留百分比的平均值的估计值为2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05. 乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00. 6.(2019全国II 文19)某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y 的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01) .【解析】(1)根据产值增长率频数分布表得,所调查的100个企业中产值增长率不低于40%的企业频率为0.700.200.15a =++0.35a =8.602≈,产值负增长的企业频率为,用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%. (2), , ,所以这类企业产值增长率的平均数与标准差的估计值分别为30%,17%. 7.(2018全国卷Ⅰ)某家庭记录了未使用节水龙头50天的日用水量数据(单位:3m )和使用了节水龙头50天的日用水量数据,得到频数分布表如下: 未使用节水龙头50天的日用水量频数分布表使用了节水龙头50天的日用水量频数分布表(1)在下图中作出使用了节水龙头50天的日用水量数据的频率分布直方图:1470.21100+=20.02100=1(0.1020.10240.30530.50140.707)0.30100y =-⨯+⨯+⨯+⨯+⨯=()52211100i i i s n y y ==-∑222221(0.40)2(0.20)240530.20140.407100⎡⎤=-⨯+-⨯+⨯+⨯+⨯⎣⎦=0.02960.020.17s =≈(2)估计该家庭使用节水龙头后,日用水量小于0.353m 的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.) 【解析】(1)(2)根据以上数据,该家庭使用节水龙头后50天日用水量小于0.353m 的频率为 0.2×0.1+1×0.1+2.6×0.1+2×0.05=0.48,因此该家庭使用节水龙头后日用水量小于0.353m 的概率的估计值为0.48. (3)该家庭未使用节水龙头50天日用水量的平均数为 11(0.0510.1530.2520.3540.4590.55260.655)0.4850=⨯+⨯+⨯+⨯+⨯+⨯+⨯=x . 该家庭使用了节水龙头后50天日用水量的平均数为 21(0.0510.1550.25130.35100.45160.555)0.3550=⨯+⨯+⨯+⨯+⨯+⨯=x . 估计使用节水龙头后,一年可节省水3(0.480.35)36547.45(m )-⨯=.8.(2016年全国I 卷)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:记x 表示1台机器在三年使用期内需更换的易损零件数,y 表示1台机器在购买易损零件上所需的费用(单位:元),n 表示购机的同时购买的易损零件数. (I )若n =19,求y 与x 的函数解析式;(II )若要求“需更换的易损零件数不大于n ”的频率不小于0.5,求n 的最小值;(III )假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?【解析】(Ⅰ)当时,;当时,,所以与的函数解析式为.(Ⅱ)由柱状图知,需更换的零件数不大于18的概率为0.46,不大于19的概率为0.7,故的最小值为19.(Ⅲ)若每台机器在购机同时都购买19个易损零件,则这100台机器中有70台在购买易损零件上的费用为3800,20台的费用为4300,10台的费用为4800,因此这100台机器在购买易损零件上所需费用的平均数为. 比较两个平均数可知,购买1台机器的同时应购买19个易损零件.9.(2015新课标2)某公司为了解用户对其产品的满意度,从,A B 两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得分A 地区用户满意评分的频率分布直方图和B 地区用户满意度评分的频数分布表.频数19≤x 3800=y 19>x 5700500)19(5003800-=-+=x x y y x )(,19,5700500,19,3800N x x x x y ∈⎩⎨⎧>-≤=n 4050)104500904000(1001=⨯+⨯B地区用户满意度评分的频数分布表(Ⅰ)在答题卡上作出B地区用户满意度评分的频数分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(Ⅱ)根据用户满意度评分,将用户的满意度分为三个等级;估计哪个地区用户的满意度等级为不满意的概率大?说明理由.【解析】通过两地区用户满意度评分的频率分布直方图可以看出,B 地区用户满意度评分的平均值高于A 地区用户满意度评分的平均值;B 地区用户满意度评分比较集中,而A 地区用户满意度评分比较分散. (Ⅱ)A 地区用户的满意度等级为不满意的概率大.记A C 表示事件:“A 地区用户的满意度等级为不满意”;B C 表示事件“B 地区用户的满意度等级为不满意”. 由直方图得()A P C 的估计值为(0.010.020.03)100.6++⨯=,()B P C 的估计值为(0.0050.02)100.25+⨯=.所以A 地区用户的满意度等级为不满意的概率大.B组三年模拟10.(2020·湖北省武汉市高三质检(文))一个小商店从一家食品有限公司购进10袋白糖,每袋白糖的标准重量是500g,为了了解这些白糖的实际重量,称量出各袋白糖的实际重量(单位:g)如下:503,502,496,499,491,498,506,504,501,510(1)求这10袋白糖的平均重量x和标准差s;(2)从这10袋中任取2袋白糖,那么其中恰有一袋的重量不在(x-s,x+s)的概率是多少?≈5.08≈16.06≈5.09≈16.09)【答案】(1)501,5.08;(2)16 45.【解析】(1)根据题意,10袋白糖的实际重量如下:503,502,496,499,491,498,506,504,501,510,则其平均重量110x=(503+502+496+499+491+498+506+504+501+510)=500110+(3+2﹣4﹣1﹣9﹣2+6+4+1+10)=501,其方差S2110=[(503﹣501)2+(502﹣501)2+(496﹣501)2+(499﹣501)2+(491﹣501)2+(498﹣501)2+(506﹣501)2+(504﹣501)2+(501﹣501)2+(510﹣501)2]=25.8;则其标准差s=≈5.08;(2)根据题意,由(1)的结论,10袋白糖在(x-s,x+s)之间的有503,502,496,499,498,506,504,501,共8袋,从10袋白糖中任取两袋,有C102=45种取法,其中恰有一袋的重量不在(x-s,x+s)的情况有8×2=16种,则恰有一袋的重量不在(x-s,x+s)的概率P16 45 =.11.(2020·湖南省长郡中学高三测试(文))某蔬菜批发商经销某种新鲜蔬菜(以下简称A蔬菜),购入价为200元/袋,并以300元/袋的价格售出,若前8小时内所购进的A蔬菜没有售完,则批发商将没售完的A 蔬菜以150元/袋的价格低价处理完毕(根据经验,2小时内完全能够把A蔬菜低价处理完,且当天不再购进).该蔬菜批发商根据往年的销量,统计了100天A蔬菜在每天的前8小时内的销售量,制成如下频数分布条形图.(1)若某天该蔬菜批发商共购入6袋A 蔬菜,有4袋A 蔬菜在前8小时内分别被4名顾客购买,剩下2袋在8小时后被另2名顾客购买.现从这6名顾客中随机选2人进行服务回访,则至少选中1人是以150元/袋的价格购买的概率是多少? (2)以上述样本数据作为决策的依据.(i )若今年A 蔬菜上市的100天内,该蔬菜批发商坚持每天购进6袋A 蔬菜,试估计该蔬菜批发商经销A 蔬菜的总盈利值;(ii )若明年该蔬菜批发商每天购进A 蔬菜的袋数相同,试帮其设计明年的A 蔬菜的进货方案,使其所获取的平均利润最大. 【答案】(1)35;(2)(i )42000元;(ii )该批发商明年每天购进A 蔬菜5袋,所获平均利润最大. 【解析】(1)设这6人中花150元/袋的价格购买A 蔬菜的顾客为,a b ,其余4人为c ,d ,e ,f .则从6人中任选2人的基本事件为:(),a b ,(),a c ,(),a d ,(),a e ,(),a f ,(),b c ,(),b d ,(),b e ,(),b f ,(),c d ,(),c e ,(,)c f ,(),d e ,(),d f ,(),e f ,共15个.其中至少选中1人是以150元/袋的价格购买的基本事件有:(),a c ,(),a d ,(),a e ,(),a f ,(),b c ,(),b d ,(),b e ,(),b f ,(),a b ,共9个.∴至少选中1人是以150元/袋的价格购买的概率为93155P ==. (2)(i )该蔬菜批发商经销A 蔬菜的总盈利值为:()()306010100100450210055060042000100100100⎡⎤⨯⨯-⨯⨯+⨯-⨯+⨯=⎢⎥⎣⎦(元). (ii )当购进A 蔬菜4袋时,每天所获平均利润为11004400x =⨯=(元),。
高考数学专项复习:概率统计综合检测题(文科)
![高考数学专项复习:概率统计综合检测题(文科)](https://img.taocdn.com/s3/m/378027a5c77da26925c5b067.png)
概率统计综合检测题(文科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)某校要从高一、高二、高三共2010名学生中选取50名组成访问团,若采用下面的方法选取:先按简单随机抽样的方法从2010人中剔除10人,剩下的2000人再用分层抽样方法进行,则每个人入选的概率()A.不全相等 B.均不相等C.都相等且为D.都相等且为2.(5分)某学校2009年五四青年节举办十佳歌手赛,如图是七位评委为某选手打出的分数的茎叶图,去掉一个最高分和一个最低分后,所剩数据的平均数与方差分别为()A.83,1.6 B.84,0.4 C.85,1.6 D.86,1.53.(5分)一个单位有职工120人,其中业务人员60人,管理人员40人,后勤人员20人,为了解职工健康情况,要从中抽取一个容量为24的样本,如用分层抽样,则管理人员应抽到的人数为()A.4 B.12 C.5 D.84.(5分)某地2009年2月到6月各(x)月的平均气温y(℃)如表:根据表中数据,用最小二乘法求得平均气温y关于月份x的线性回归方程是()A.=5x﹣11.5 B.=6.5x﹣11.5 C.=1.2x﹣11.5 D.5.(5分)如图,已知正方形的边长为10,向正方形内随机地撒200颗黄豆,数得落在阴影外的黄豆数为114颗,以此实验数据为依据,可以估计出阴影部分的面积约为()A.53 B.43 C.47 D.576.(5分)足球比赛的计分规则是:胜一场得3分,平一场得1分,负一场得0分,那么一个队打14场共得19分的情况有()A.3种B.4种C.5种D.6种7.(5分)将一颗骰子投掷两次,第一次出现的点数记为a,第二次出现的点数记为b,设两条直线l1:ax+by=2,l2:x+2y=2平行的概率为P1,相交的概率为P2,则复数P1+P2i所对应的点P与直线l2:x+2y=2的位置关系()A.P在直线l2的右下方B.P在直线l2的右上方C.P在直线l2上D.P在直线l2的左下方8.(5分)下列命题中,正确命题的个数为()①命题“若,则x=2且y=﹣1”的逆命题是真命题;②P:个位数字为零的整数能被5整除,则¬P:个位数字不是零的整数不能被5整除;③茎叶图中,去掉一个最大的数和一个最小的数后,所剩数据的方差与原来不相同.A.0 B.1 C.2 D.39.(5分)连续掷两次骰子,以先后得到的点数m,n为点P(m,n)的坐标,那么点P在圆x2+y2=17内部的概率是()A.B.C.D.10.(5分)将长度为1米的铁丝随机剪成三段,则这三段能拼成三角形(三段的端点相接)的概率等于()A.B.C.D.11.(5分)为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图如图,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a,视力在4.6到5.0之间的学生数为b,则a,b 的值分别为()A.0.27,78 B.0.27,83 C.2.7,78 D.2.7,8312.(5分)已知Ω={(x,y)|},直线y=mx+2m和曲线y=有两个不同的交点,它们围成的平面区域为M,向区域Ω上随机投一点A,点A落在区域M内的概率为P(M),若P(M)∈[,1],则实数m的取值范围()A.[,1]B.[0,] C.[,1] D.[0,1]二、填空题(共4小题,每小题4分,满分16分)13.(4分)200辆汽车经过某一雷达地区,时速频率分布直方图如图所示,则时速不低于60km/h的汽车数量为辆.14.(4分)从集合{(x,y)|x2+y2≤4,x∈R,y∈R}内任选一个元素(x,y),则x,y满足x+y≥2的概率为.15.(4分)用黑白两种颜色的正方形地砖依照图中的规律拼成若干图形,则按此规律第100个图形中有白色地砖块;现将一粒豆子随机撒在第100个图中,则豆子落在白色地砖上的概率是.16.(4分)给出下列命题:①命题“∃x∈R,使得x2+x+1<0”的非命题是“对∀x∈R,都有x2+x+1>0”;②独立性检验显示“患慢性气管炎和吸烟有关”,这就是“有吸烟习惯的人,必定会患慢性气管炎”;③某校有高一学生300人,高二学生270人,高三学生210人,现教育局欲用分层抽样的方法,抽取26名学生进行问卷调查,则高三学生被抽到的概率最小.其中错误的命题序号是(将所有错误命题的序号都填上).三、解答题(共6小题,满分74分)17.(12分)某班50名学生在一次百米测试中,成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组[13,14),第二组[14,15)…第五组[17,18]如图是按上述分组方法得到的频率分布直方图.(1)若成绩大于等于14秒且小于16秒规定为良好,求该班在这次百米测试中成绩为良好的人数.(2)设m,n表示该班两个学生的百米测试成绩,已知m,n∈[13,14)∪[17,18]求事件“|m﹣n|>2”的概率.18.(12分)已知关于x的一元二次函数f(x)=ax2﹣4bx+1.(1)设集合P={1,2,3}和Q={﹣1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率;(2)设点(a,b)是区域内的随机点,求y=f(x)在区间[1,+∞)上是增函数的概率.19.(12分)某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种程,再对被选取的2组数据进行检验.(1)求选取的2组数据恰好是不相邻2天数据的概率;(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?20.(12分)某商场举行购物抽奖促销活动,规定每位顾客从装有编号为0,1,2,3四个相同小球的抽奖箱中,每次取出一球记下编号后放回,连续取两次,若取出的两个小球号码相加之和等于6则中一等奖,等于5中二等奖,等于4或3中三等奖.(1)求中三等奖的概率;(2)求中奖的概率.21.(12分)福州某中学高一(10)班男同学有45名,女同学有15名,老师按照性别分层抽样的方法组建了一个由4人组成的课外学习兴趣小组.(Ⅰ)求课外兴趣小组中男、女同学的人数;(Ⅱ)经过一个月的学习、讨论,这个兴趣小组决定从该组内选出2名同学分别做某项试验,求选出的2名同学中恰有1名女同学的概率;(Ⅲ)试验结束后,同学A得到的试验数据为68,70,71,72,74;同学B得到的试验数据为69,70,70,72,74;请问哪位同学的试验更稳定?并说明理由.22.(14分)先后2次抛掷一枚骰子,将得到的点数分别记为a,b.(Ⅰ)设函数f(x)=|x﹣a|,函数g(x)=x﹣b,令F(x)=f(x)﹣g(x),求函数F(x)有且只有一个零点的概率;(Ⅱ)将a,b,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.概率统计综合检测题(文科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2010•沈阳模拟)某校要从高一、高二、高三共2010名学生中选取50名组成访问团,若采用下面的方法选取:先按简单随机抽样的方法从2010人中剔除10人,剩下的2000人再用分层抽样方法进行,则每个人入选的概率()A.不全相等 B.均不相等C.都相等且为D.都相等且为【分析】剔除10人是按照随机抽样进行的,剩下的2000人再用分层抽样方法,也符合随机抽样原理,即每个人入选的概率是样本容量比总体容量【解答】解:剔除10人是按照随机抽样进行的,剩下的2000人再用分层抽样方法,也符合随机抽样原理,即每个人入选的概率是样本容量比总体容量,故为故选C【点评】本题主要考查分层抽样方法.2.(5分)(2012•陆丰市校级模拟)某学校2009年五四青年节举办十佳歌手赛,如图是七位评委为某选手打出的分数的茎叶图,去掉一个最高分和一个最低分后,所剩数据的平均数与方差分别为()A.83,1.6 B.84,0.4 C.85,1.6 D.86,1.5【分析】根据算分的规则,去掉一个最高分和一个最低分有84,84,84,86,87五个数据,把五个数据代入求平均数的公式,得到这组数据的平均数,再代入方差的公式,得到方差.【解答】解:∵由题意知,选手的分数去掉一个最高分和一个最低分有84,84,84,86,87,∴选手的平均分是=85,选手的得分方差是(1+1+1+1+4)=1.6,故选C.【点评】本题考查平均数和方差,对于一组数据通常要求的是这组数据的众数,中位数,平均数,方差,它们分别表示一组数据的特征,这样的问题可以出现在选择题或填空题.3.(5分)(2016春•益阳校级期末)一个单位有职工120人,其中业务人员60人,管理人员40人,后勤人员20人,为了解职工健康情况,要从中抽取一个容量为24的样本,如用分层抽样,则管理人员应抽到的人数为()A.4 B.12 C.5 D.8【分析】根据各个部门存在较大的差异,利用分层抽样方法抽取一个样本,首先根据所给的总人数和样本数,做出每个个体被抽到的概率,利用这个概率乘以管理人员的数目,得到结果.【解答】解:∵一个单位有职工120人,为了解职工健康情况,要从中抽取一个容量为24的样本,∴每个个体被抽到的概率是,∵管理人员40人,∴从管理人员中抽取40×=8故选D.【点评】本题考查分层抽样,这是最典型的一个分层抽样题目,高考卷中曾经考过类似的问题,同学们要认真对待,不能丢分.4.(5分)(2010•锦州二模)某地2009年2月到6月各(x)月的平均气温y(℃)如表:根据表中数据,用最小二乘法求得平均气温y关于月份x的线性回归方程是()A.=5x﹣11.5 B.=6.5x﹣11.5 C.=1.2x﹣11.5 D.【分析】由已知表格中的数据,我们易计算出变量x,y的平均数,及x i,x i y i的累加值,代入回归直线系数公式,即可求出回归直线的系数,进而求出回归直线方程.【解答】解:,所以回归直线方程为故选D.【点评】求回归直线的方程,关键是要求出回归直线方程的系数,由已知的变量x,y的值,我们计算出变量x,y的平均数,及x i,x i y i的累加值,代入回归直线系数公式,即可求出回归直线的系数,进而求出回归直线方程.5.(5分)(2010•辽宁模拟)如图,已知正方形的边长为10,向正方形内随机地撒200颗黄豆,数得落在阴影外的黄豆数为114颗,以此实验数据为依据,可以估计出阴影部分的面积约为()A.53 B.43 C.47 D.57【分析】本题利用几何概型求解.由于是向正方形内随机地撒200颗黄豆,其落在阴影外的概率是阴影外的面积与整个正方形的面积之比,从而可列式求得阴影部分的面积.【解答】解:设阴影外部分的面积为s,则由几何概型的概率公式得:,解得s=57,可以估计出阴影部分的面积约为100﹣57=43.故选B.【点评】本题主要考查了几何概型,以及利用几何意义求面积,属于基础题.简单地说,如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.6.(5分)足球比赛的计分规则是:胜一场得3分,平一场得1分,负一场得0分,那么一个队打14场共得19分的情况有()A.3种B.4种C.5种D.6种【分析】本题是一个分类计数问题,需要分别列举出胜平负的所有情况,从胜一场开始,当胜一场时得到3分,平16场才能凑足19分,这样需要打17场,故不合题意,当胜2场时同样可以分析不合题意,再分析胜3,4,5,6场的情况,兼顾所打的场数和所得到分数.【解答】解:由题意知本题是一个分类计数问题,当胜一场时得到3分,平16场才能凑足19分故不合题意,当胜2场时得到6分,平13场,共需15场比赛,不合题意,胜3场时得到9分,平10场,输一场,符合题意.胜4场时得到12分,平7场,输3场,符合题意胜5场时得到15分,平4场,输5场,符合题意胜6场时得到18分,平1场,输6场,符合题意综上所述共有4种结果满足题意,故选B.【点评】本题考查分类计数问题,这是经常出现的一个问题,解题时一定要分清做这件事需要分为几类,每一类包含几种方法,把几个步骤中数字相加得到结果7.(5分)(2010•广东校级模拟)将一颗骰子投掷两次,第一次出现的点数记为a,第二次出现的点数记为b,设两条直线l1:ax+by=2,l2:x+2y=2平行的概率为P1,相交的概率为P2,则复数P1+P2i所对应的点P与直线l2:x+2y=2的位置关系()A.P在直线l2的右下方B.P在直线l2的右上方C.P在直线l2上D.P在直线l2的左下方【分析】据两直线相交斜率不等,求出a,b满足的条件,据古典概型概率公式求出P1,P2,据复数的集合意义求出点P坐标,判断出与直线的关系.【解答】解:易知当且仅当时两条直线只有一个交点,而的情况有三种:a=1,b=2(此时两直线重合);a=2,b=4(此时两直线平行);a=3,b=6(此时两直线平行).而投掷两次的所有情况有6×6=36种,所以两条直线相交的概率;两条直线平行的概率为P1=,P1+P2i所对应的点为P,易判断P在l2:x+2y=2的左下方,故选项为D.【点评】本题融合了直线、线性规划、概率及复数等有关知识,在处理方法上可采用枚举法处理,注意不等忽视了直线重合这种情况,否则会选C.8.(5分)(2010•辽宁模拟)下列命题中,正确命题的个数为()①命题“若,则x=2且y=﹣1”的逆命题是真命题;②P:个位数字为零的整数能被5整除,则¬P:个位数字不是零的整数不能被5整除;③茎叶图中,去掉一个最大的数和一个最小的数后,所剩数据的方差与原来不相同.A.0 B.1 C.2 D.3【分析】写出第一个命题的逆命题x=2且y=﹣1可以推出成立,对个位数字为零的整数能被5整除的否定个位数字为零的整数不能被5整除,去掉一个最大的数和一个最小的数后,所剩数据的方差与原来不相同,得到结果.【解答】解:∵x=2且y=﹣1可以推出,故①正确,∵P:个位数字为零的整数能被5整除,它的¬P:个位数字为零的整数不能被5整除;故②不正确,∵去掉一个最大的数和一个最小的数后,所剩数据的方差与原来不相同故③正确,总上可知有2个命题是正确的,故选C.【点评】本题考查极差、方差与标准差,考查四种命题之间的关系,考查命题的否定,命题的否定与否命题要区别开,这是一个易错题.9.(5分)(2010•上虞市模拟)连续掷两次骰子,以先后得到的点数m,n为点P(m,n)的坐标,那么点P在圆x2+y2=17内部的概率是()A.B.C.D.【分析】连续掷两次骰子,以先后得到的点数结果有36种,构成的点的坐标有36个,把这些点列举出来,检验是否满足x2+y2<17,满足这个条件的点就在圆的内部,数出个数,根据古典概型个数得到结果.【解答】解:这是一个古典概型由分步计数原理知:连续掷两次骰子,构成的点的坐标有6×6=36个,而满足x2+y2<17的有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2)共有8个,∴P==,故选C.【点评】将数形结合的思想渗透到具体问题中来,用列举法列举基本事件的个数,不仅能让学生直观的感受到对象的总数,而且还能使学生在列举的时候作到不重不漏.比如,列举点的坐标时,我们把横标从小变大挨个列举.10.(5分)(2009•泰安一模)将长度为1米的铁丝随机剪成三段,则这三段能拼成三角形(三段的端点相接)的概率等于()A.B.C.D.【分析】将长度为1米的铁丝随机剪成三段的长度分别为x,y,z,x+y+z=1则求解面积,然后求构成试验的全部区域为所表示的区域的面积,代入几何概率的计算公式可求.【解答】解:设将长度为1米的铁丝随机剪成三段的长度分别为x,y,z,x+y+z=1则构成试验的全部区域为⇒所表示的区域为边长为1的直角三角形,其面积为记“这三段能拼成三角形”为事件A,则构成A的区域⇒为边长为的直角三角形,面积为代入几何概率公式可得P(A)=故选B【点评】本题考查了与面积有关的几何概率的求解,难点是要把题中所提供的条件转化为数学问题,进而求出面积,突破难点的关键是构造与构成三角形的条件,根据线性规划的知识求解面积.11.(5分)(2005•江西)为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图如图,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a,视力在4.6到5.0之间的学生数为b,则a,b的值分别为()A.0.27,78 B.0.27,83 C.2.7,78 D.2.7,83【分析】先根据直方图求出前2组的频数,根据前4组成等比数列求出第3和第4组的人数,从而求出后6组的人数,根据直方图可知4.6~4.7间的频数最大,即可求出频率a,根据等差数列的性质可求出公差d,从而求出在4.6到5.0之间的学生数为b.【解答】解:由频率分布直方图知组矩为0.1,4.3~4.4间的频数为100×0.1×0.1=1.4.4~4.5间的频数为100×0.1×0.3=3.又前4组的频数成等比数列,∴公比为3.根据后6组频数成等差数列,且共有100﹣13=87人.从而4.6~4.7间的频数最大,且为1×33=27,∴a=0.27,设公差为d,则6×27+d=87.∴d=﹣5,从而b=4×27+(﹣5)=78.故选:A.【点评】本题考查频率分布直方图的相关知识,以及等差数列和等比数列的应用等有关知识,直方图中的各个矩形的面积代表了频率,所以各个矩形面积之和为1,同时考查分析问题的能力,属于基础题.12.(5分)(2013•东莞一模)已知Ω={(x,y)|},直线y=mx+2m和曲线y=有两个不同的交点,它们围成的平面区域为M,向区域Ω上随机投一点A,点A落在区域M内的概率为P(M),若P(M)∈[,1],则实数m的取值范围()A.[,1]B.[0,] C.[,1] D.[0,1]【分析】画出图形,不难发现直线恒过定点(﹣2,0),结合概率范围可知直线与圆的关系,直线以(﹣2,0)点为中心顺时针旋转至与x轴重合,从而确定直线的斜率范围.【解答】解:画出图形,不难发现直线恒过定点(﹣2,0),圆是上半圆,直线过(﹣2,0),(0,2)时,它们围成的平面区域为M,向区域Ω上随机投一点A,点A落在区域M内的概率为P(M),此时P(M)=,当直线与x轴重合时,P(M)=1;直线的斜率范围是[0,1].故选D.【点评】本题考查直线与圆的方程的应用,几何概型,直线系,数形结合的数学思想,是好题,难度较大.二、填空题(共4小题,每小题4分,满分16分)13.(4分)(2014•市中区校级二模)200辆汽车经过某一雷达地区,时速频率分布直方图如图所示,则时速不低于60km/h的汽车数量为76辆.【分析】先根据“频率=×组距”求出时速不低于60km/h的汽车的频率,然后根据“频数=频率×样本容量”进行求解.【解答】解:时速不低于60km/h的汽车的频率为(0.028+0.01)×10=0.38∴时速不低于60km/h的汽车数量为200×0.38=76故答案为:76【点评】本题考查频率分布直方图的相关知识,直方图中的各个矩形的面积代表了频率,频数=频率×样本容量,属于基础题.14.(4分)(2013•南充一模)从集合{(x,y)|x2+y2≤4,x∈R,y∈R}内任选一个元素(x,y),则x,y满足x+y≥2的概率为.【分析】利用几何概型求解本题中的概率是解决本题的关键.需要作出事件所满足的区域,找出全部事件的区域和所求事件区域,利用二者的面积比求出该题的概率.【解答】解:本题事件所包含的区域如图,全部事件区域是整个圆内部分,事件x+y≥2表示的在圆内并且位于直线x+y=2右侧的部分.因此,所求概率为圆在第一象限位于直线x+y=2右侧的弓形部分面积除以整个圆的面积而得.即为:.故答案为:.【点评】本题考查几何概型求概率的办法,考查不等式满足的可行域问题,考查数形结合的思想和几何图形面积的计算问题.15.(4分)(2010•辽宁模拟)用黑白两种颜色的正方形地砖依照图中的规律拼成若干图形,则按此规律第100个图形中有白色地砖503块;现将一粒豆子随机撒在第100个图中,则豆子落在白色地砖上的概率是.【分析】由第一、二、三个图形寻找白色地砖块数的规律性,易发现构成等差数列,由等差数列的通项公式求出第100个图形中有白色地砖的块数,再由几何概型求概率即可.【解答】解:白色地砖构成等差数列:8,13,18,…,5n+3,a n=5n+3,a100=503,第100个图形中有地砖503+100=603,故所求概率.故答案为:503;【点评】本题考查归纳推理和几何概型知识,考查利用所学知识解决问题的能力.16.(4分)给出下列命题:①命题“∃x∈R,使得x2+x+1<0”的非命题是“对∀x∈R,都有x2+x+1>0”;②独立性检验显示“患慢性气管炎和吸烟有关”,这就是“有吸烟习惯的人,必定会患慢性气管炎”;③某校有高一学生300人,高二学生270人,高三学生210人,现教育局欲用分层抽样的方法,抽取26名学生进行问卷调查,则高三学生被抽到的概率最小.其中错误的命题序号是①②③(将所有错误命题的序号都填上).【分析】据特称命题的否定是全称命题:将存在改为任意,结论否定;得到①错误;独立性检验显示的分类变量有关、无关不是确定关系,故两个分类变量有关时,不能推出一个存在另一个一定存在故②错;在抽样方法中,每种抽样方法都遵循每个个体被抽到的概率相等的特点,故③错.【解答】解:①中原命题的非命题是“对∀x∈R,都有x2+x+1≥0”,所以①错误;②中说法不正确,“患慢性气管炎和吸烟有关”只是说明“患慢性气管炎”和“吸烟”有一定的相关关系,但不是确定关系,所以“有吸烟习惯的人,未必患慢性气管炎”;③中,由于抽样比为=,所以高一学生被抽到的人数为×300=10人,高二学生被抽到的人数为×270=9人,高三学生被抽到的人数为×210=7人,尽管高三学生抽到的人数少,但每个学生被抽到的机会均等,所以“高三学生被抽到的概率最小”这种说法错误.故答案为①②③【点评】本题三个命题重点考查简易逻辑用语、统计案例和统计等基本概念.三、解答题(共6小题,满分74分)17.(12分)(2012•宝鸡模拟)某班50名学生在一次百米测试中,成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组[13,14),第二组[14,15)…第五组[17,18]如图是按上述分组方法得到的频率分布直方图.(1)若成绩大于等于14秒且小于16秒规定为良好,求该班在这次百米测试中成绩为良好的人数.(2)设m,n表示该班两个学生的百米测试成绩,已知m,n∈[13,14)∪[17,18]求事件“|m﹣n|>2”的概率.【分析】(Ⅰ)根据直方图矩形的面积表示频率,可知成绩在[14,16)内的人数;(Ⅱ)成绩在[13,14)的人数有2人,设为a,b.成绩在[17,18]的人数有3人,设为A,B,C;基本事件总数为10,事件“|m﹣n|>2”由6个基本事件组成.根据古典概型公式可求出所求.【解答】解:(Ⅰ)根据直方图可知成绩在[14,16)内的人数为:50×0.18+50×0.38=28人;(5分)(Ⅱ)成绩在[13,14)的人数有:50×0.04=2人,设为a,b.成绩在[17,18]的人数有:50×0.06=3人,设为A,B,C.m,n∈[13,14)时有ab一种情况.m,n∈[17,18]时有AB,AC,BC三种情况.m,n分别在[13,14)和[17,18]时有aA,aB,aC,bA,bB,bC六种情况.基本事件总数为10,事件“|m﹣n|>2”由6个基本事件组成.所以P(|m﹣n|>2)=(13分)【点评】本题主要考查了频率分布直方图,以及古典概型的概率问题、用样本的数字特征估计总体的数字特征等有关知识,属于中档题.18.(12分)(2011•广东三模)已知关于x的一元二次函数f(x)=ax2﹣4bx+1.(1)设集合P={1,2,3}和Q={﹣1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率;(2)设点(a,b)是区域内的随机点,求y=f(x)在区间[1,+∞)上是增函数的概率.【分析】(1)本题是一个等可能事件的概率,试验发生包含的事件是3×5,满足条件的事件是函数f(x)=ax2﹣4bx+1在区间[1,+∞)上为增函数,根据二次函数的对称轴,写出满足条件的结果,得到概率.(2)本题是一个等可能事件的概率问题,根据第一问做出的函数是增函数,得到试验发生包含的事件对应的区域和满足条件的事件对应的区域,做出面积,得到结果.【解答】解:(1)由题意知本题是一个等可能事件的概率,∵试验发生包含的事件是3×5=15,函数f(x)=ax2﹣4bx+1的图象的对称轴为,要使f(x)=ax2﹣4bx+1在区间[1,+∞)上为增函数,当且仅当a>0且,即2b≤a若a=1则b=﹣1,若a=2则b=﹣1,1;若a=3则b=﹣1,1;∴事件包含基本事件的个数是1+2+2=5∴所求事件的概率为.(2)由(Ⅰ)知当且仅当2b≤a且a>0时,函数f(x)=ax2﹣4bx+1在区是间[1,+∞)上为增函数,依条件可知试验的全部结果所构成的区域为构成所求事件的区域为三角形部分由得交点坐标为,∴所求事件的概率为.【点评】古典概型和几何概型是我们学习的两大概型,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的就是几何概型,几何概型的概率的值是通过长度、面积、和体积、的比值得到.19.(12分)(2016•河南模拟)某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验程,再对被选取的2组数据进行检验.(1)求选取的2组数据恰好是不相邻2天数据的概率;(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?【分析】(1)根据题意列举出从5组数据中选取2组数据共有10种情况,每种情况都是可能出现的,满足条件的事件包括的基本事件有6种.根据等可能事件的概率做出结果.(2)根据所给的数据,先做出x,y的平均数,即做出本组数据的样本中心点,根据最小二乘法求出线性回归方程的系数,写出线性回归方程.(3)根据估计数据与所选出的检验数据的误差均不超过2颗,就认为得到的线性回归方程是可靠的,根据求得的结果和所给的数据进行比较,得到所求的方程是可靠的.【解答】解:(1)设抽到不相邻的两组数据为事件A,从5组数据中选取2组数据共有10种情况:(1,2)(1,3)(1,4)(1,5)(2,3)(2,4)(2,5)(3,4)(3,5)(4,5),其中数据为12月份的日期数.每种情况都是可能出现的,事件A包括的基本事件有6种.∴P(A)=.。
高考真题解答题概率与统计文科学生版
![高考真题解答题概率与统计文科学生版](https://img.taocdn.com/s3/m/3186986ebcd126fff7050b50.png)
2017—2018年高考真题解答题:概率与统计(文科)学生版1.(2017.北京卷)某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[)[)80,90,并整理得到如下频率分布直方图:L[]20,30,30,40,,(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.2.(2017.山东卷)某旅游爱好者计划从3个亚洲国家A1,A2,A3和3个欧洲国家B1,B2,B3中选择2个国家去旅游.(1)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;(2)若从亚洲国家和欧洲国家中各选1个,求这两个国家包括A1,但不包括B1的概率.3.(2017.天津1卷)电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:已知电视台每周安排的甲、乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x,学&科网y表示每周计划播出的甲、乙两套连续剧的次数.(I)用x,y列出满足题目条件的数学关系式,并画出相应的平面区域,(II)问电视台每周播出甲、乙两套连续剧各多少次,才能使收视人次最多?4.(2017.新课标2卷)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg,, 其频率分布直方图如下:,1)记A表示事件“旧养殖法的箱产量低于50kg”,估计A的概率;,2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:,3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行较。
文科数学概率高考题(含答案)
![文科数学概率高考题(含答案)](https://img.taocdn.com/s3/m/7cf6ed312bf90242a8956bec0975f46526d3a744.png)
文科数学概率高考题(含答案)概率是历年高考数学文科考试经常出现的题型。
为了帮助考生掌握数学中概率知识点,下面是店铺为大家整理的数学概率高考题,希望对大家有所帮助!文科数学概率高考题(一)1.[2014•新课标全国卷Ⅱ] 甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为________.1.132.[2014•全国新课标卷Ⅰ] 将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________.2.233.[2014•浙江卷] 在3张奖券中有一、二等奖各1张,另1张无奖.甲、乙两人各抽取1张,两人都中奖的概率是________.3.134.[2014•陕西卷] 某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:赔付金额(元) 0 1000 2000 3000 4000车辆数(辆) 500 130 100 150 120(1)若每辆车的投保金额均为2800元,估计赔付金额大于投保金额的概率;(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.4.解:(1)设A表示事件“赔付金额为3000元”,B表示事件“赔付金额为4000元”,以频率估计概率得P(A)=1501000=0.15,P(B)=1201000=0.12.由于投保金额为2800元,所以赔付金额大于投保金额的概率为P(A)+P(B)=0.15+0.12=0.27.(2)设C表示事件“投保车辆中新司机获赔4000元”,由已知,得样本车辆中车主为新司机的有0.1×1000=100(辆),而赔付金额为4000元的车辆中,车主为新司机的有0.2×120=24(辆),所以样本车辆中新司机车主获赔金额为4000元的频率为24100=0.24.由频率估计概率得P(C)=0.24.5.、[2014•四川卷] 一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a,b,c.(1)求“抽取的卡片上的数字满足a+b=c”的概率;(2)求“抽取的卡片上的数字a,b,c不完全相同”的概率.5.解:(1)由题意,(a,b,c)所有的可能为:(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2),(3,3,3),共27种.设“抽取的卡片上的数字满足a+b=c”为事件A,则事件A包括(1,1,2),(1,2,3),(2,1,3),共3种,所以P(A)=327=19.因此,“抽取的卡片上的数字满足a+b=c”的概率为19.(2)设“抽取的卡片上的数字a,b,c不完全相同”为事件B,则事件B包括(1,1,1),(2,2,2),(3,3,3),共3种.所以P(B)=1-P(B)=1-327=89.因此,“抽取的卡片上的数字a,b,c不完全相同”的概率为89.K2 古典概型6.[2014•福建卷] 根据世行2013年新标准,人均GDP低于1035美元为低收入国家;人均GDP为1035~4085美元为中等偏下收入国家;人均GDP为4085~12 616美元为中等偏上收入国家;人均GDP不低于12 616美元为高收入国家.某城市有5个行政区,各区人口占该城市人口比例及人均GDP如下表:行政区区人口占城市人口比例区人均GDP(单位:美元)A 25% 8000B 30% 4000C 15% 6000D 10% 3000E 20% 10 000(1)判断该城市人均GDP是否达到中等偏上收入国家标准;(2)现从该城市5个行政区中随机抽取2个,求抽到的2个行政区人均GDP都达到中等偏上收入国家标准的概率.6.解:(1)设该城市人口总数为a,则该城市人均GDP为8000×0.25a+4000×0.30a+6000×0.15a+3000×0.10a+10 000×0.20aa=6400(美元).因为6400∈[4085,12 616),所以该城市人均GDP达到了中等偏上收入国家标准.(2)“从5个行政区中随机抽取2个”的所有的基本事件是:{A,B},{A,C},{A,D},{A,E},{B,C},{B,D},{B,E},{C,D},{C,E},{D,E},共10个.设事件M为“抽到的2个行政区人均GDP都达到中等偏上收入国家标准”,则事件M包含的基本事件是:{A,C},{A,E},{C,E},共3个.所以所求概率为P(M)=310.7.[2014•广东卷] 从字母a,b,c,d,e中任取两个不同字母,则取到字母a的概率为________.7.258.[2014•湖北卷] 随机掷两枚质地均匀的骰子,它们向上的点数之和不超过5的概率记为p1,点数之和大于5的概率记为p2,点数之和为偶数的概率记为p3,则( )A.p1C.p18.C9.[2014•湖南卷] 某企业有甲、乙两个研发小组,为了比较他们的研发水平,现随机抽取这两个小组往年研发新产品的结果如下:(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),(a,b).其中a,a分别表示甲组研发成功和失败;b,b分别表示乙组研发成功和失败.(1)若某组成功研发一种新产品,则给该组记1分,否则记0分.试计算甲、乙两组研发新产品的成绩的平均数和方差,并比较甲、乙两组的研发水平.(2)若该企业安排甲、乙两组各自研发一种新产品,试估计恰有一组研发成功的概率.9.解:(1)甲组研发新产品的成绩为1,1,1,0,0,1,1,1,0,1,0,1,1,0,1,其平均数为x甲=1015=23,方差为s2甲=1151-232×10+0-232×5=29.乙组研发新产品的成绩为1,0,1,1,0,1,1,0,1,0,0,1,0,1,1,其平均数为x乙=915=35,方差为s2乙=1151-352×9+0-352×6=625.因为x甲>x乙,s2甲(2)记E={恰有一组研发成功}.在所抽得的15个结果中,恰有一组研发成功的结果是(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),共7个,故事件E发生的频率为715.将频率视为概率,即得所求概率为P(E)=715.文科数学概率高考题(二)10.[2014•江苏卷] 从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是________.10.1311.[2014•江西卷] 掷两颗均匀的骰子,则点数之和为5的概率等于( )A.118B.19C.16D.11211.B12.[2014•江西卷] 将连续正整数1,2,…,n(n∈N*)从小到大排列构成一个数123…n,F(n)为这个数的位数(如n=12时,此数为123456789101112,共有15个数字,F(12)=15),现从这个数中随机取一个数字,p(n)为恰好取到0的概率.(1)求p(100);(2)当n≤2014时,求F(n)的表达式;(3)令g(n)为这个数中数字0的个数,f(n)为这个数中数字9的个数,h(n)=f(n)-g(n),S={n|h(n)=1,n≤100,n∈N*},求当n∈S时p(n)的最大值.12.解:(1)当n=100时,这个数中总共有192个数字,其中数字0的个数为11,所以恰好取到0的概率为p(100)=11192.(2)F(n)=n,1≤n≤9,2n-9,10≤n≤99,3n-108,100≤n≤999,4n-1107,1000≤n≤2014.(3)当n=b(1≤b≤9,b∈N*),g(n)=0;当n=10k+b(1≤k≤9,0≤b≤9,k∈N*,b∈N)时,g(n)=k;当n=100时,g(n)=11,即g(n)=0,1≤n≤9,k,n=10k+b,11,n=100.1≤k≤9,0≤b≤9,k∈N*,b∈N,同理有f(n)=0,1≤n≤8,k,n=10k+b-1,1≤k≤8,0≤b≤9,k∈N*,b∈N,n-80,89≤n≤98,20,n=99,100.由h(n)=f(n)-g(n)=1,可知n=9,19,29,39,49,59,69,79,89,90,所以当n≤100时,S={9,19,29,39,49,59,69,79,89,90}.当n=9时,p(9)=0.当n=90时,p(90)=g(90)F(90)=9171=119.当n=10k+9(1≤k≤8,k∈N*)时,p(n)=g(n)F(n)=k2n-9=k20k+9,由y=k20k+9关于k单调递增,故当n=10k+9(1≤k≤8,k∈N*)时,p(n)的最大值为p(89)=8169.又8169<119,所以当n∈S时,p(n)的最大值为119.13.[2014•辽宁卷] 某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:喜欢甜品不喜欢甜品合计南方学生 60 20 80北方学生 10 10 20合计 70 30 100(1)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;(2)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.附:χ2=n(n11n22-n12n21)2n1+n2+n+1n+2,P(χ2≥k) 0.100 0.050 0.010k 2.706 3.841 6.63513.解:(1)将2×2列联表中的数据代入公式计算,得χ2=n(n11n22-n12n21)2n1+n2+n+1n+2=100×(60×10-20×10)270×30×80×20=10021≈4.762.由于4.762>3.841,所以有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”.(2)从5名数学系学生中任取3人的一切可能结果所组成的基本事件空间Ω={(a1,a2,b1),(a1,a2,b2),(a1,a2,b3),(a1,b1,b2),(a1,b1,b3),(a1,b2,b3),(a2,b1,b2),(a2,b1,b3),(a2,b2,b3),(b1,b2,b3)},其中ai表示喜欢甜品的学生,i=1,2,bj表示不喜欢甜品的学生,j=1,2,3.Ω由10个基本事件组成,且这些基本事件的出现是等可能的.用A表示“3人中至多有1人喜欢甜品”这一事件,则A={(a1,b1,b2),(a1,b1,b3),(a1,b2,b3),(a2,b1,b2),(a2,b1,b3),(a2,b2,b3),(b1,b2,b3)}.事件A由7个基本事件组成,因而P(A)=710.14.[2014•山东卷] 海关对同时从A,B,C三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.地区 A B C数量 50 150 100(1)求这6件样品中来自A,B,C各地区商品的数量;(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.14.解:(1)因为样本容量与总体中的个体数的比是650+150+100=150,所以样本中包含三个地区的个体数量分别是:50×150=1,150×150=3,100×150=2.所以A,B,C三个地区的商品被选取的件数分别是1,3,2.(2)设6件来自A,B,C三个地区的样品分别为:A;B1,B2,B3;C1,C2.则抽取的这2件商品构成的所有基本事件为:{A,B1},{A,B2},{A,B3},{A,C1},{A,C2},{B1,B2},{B1,B3},{B1,C1},{B1,C2},{B2,B3}{B2,C1},{B2,C2},{B3,C1},{B3,C2},{C1,C2},共15个.每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.记事件D为“抽取的这2件商品来自相同地区”,则事件D包含的基本事件有{B1,B2},{B1,B3},{B2,B3},{C1,C2},共4个.所以P(D)=415,即这2件商品来自相同地区的概率为415.15.[2014•陕西卷] 从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离小于该正方形边长的概率为( )A.15B.25C.35D.4515.B16.[2014•四川卷] 一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a,b,c.(1)求“抽取的卡片上的数字满足a+b=c”的概率;(2)求“抽取的卡片上的数字a,b,c不完全相同”的概率.16.解:(1)由题意,(a,b,c)所有的可能为:(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2),(3,3,3),共27种.设“抽取的卡片上的数字满足a+b=c”为事件A,则事件A包括(1,1,2),(1,2,3),(2,1,3),共3种,所以P(A)=327=19.因此,“抽取的卡片上的数字满足a+b=c”的概率为19.(2)设“抽取的卡片上的数字a,b,c不完全相同”为事件B,则事件B包括(1,1,1),(2,2,2),(3,3,3),共3种.所以P(B)=1-P(B)=1-327=89.因此,“抽取的卡片上的数字a,b,c不完全相同”的概率为89.17.[2014•天津卷] 某校夏令营有3名男同学A,B,C和3名女同学X,Y,Z,其年级情况如下表:一年级二年级三年级男同学 A B C女同学 X Y Z现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同).(1)用表中字母列举出所有可能的结果;(2)设M为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M发生的概率.17.解:(1)从6名同学中随机选出2人参加知识竞赛的所有可能结果为{A,B},{A,C},{A,X},{A,Y},{A,Z},{B,C},{B,X},{B,Y},{B,Z},{C,X},{C,Y},{C,Z},{X,Y},{X,Z},{Y,Z},共15种.(2)选出的2人来自不同年级且恰有1名男同学和1名女同学的所有可能结果为{A,Y},{A,Z},{B,X},{B,Z},{C,X},{C,Y},共6种.因此,事件M发生的概率P(M)=615=25.18.[2014•重庆卷] 20名学生某次数学考试成绩(单位:分)的频率分布直方图如图13所示.(1)求频率分布直方图中a的值;(2)分别求出成绩落在[50,60)与[60,70)中的学生人数;(3)从成绩在[50,70)的学生中任选2人,求此2人的成绩都在[60,70)中的概率.18.解:(1)据直方图知组距为10,由(2a+3a+7a+6a+2a)×10=1,解得a=1200=0.005.(2)成绩落在[50,60)中的学生人数为2×0.005×10×20=2.成绩落在[60,70)中的学生人数为3×0.005×10×20=3.(3)记成绩落在[50,60)中的2人为A1,A2,成绩落在[60,70)中的3人为B1,B2,B3,则从成绩在[50,70)的学生中任选2人的基本事件共有10个,即(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(B1,B2),(B1,B3),(B2,B3).其中2人的成绩都在[60,70)中的基本事件有3个,即(B1,B2),(B1,B3),(B2,B3).故所求概率为P=310.文科数学概率高考题(三)19.[2014•福建卷] 如图15所示,在边长为1的正方形中随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为________.19.1820.[2014•湖南卷] 在区间[-2,3]上随机选取一个数X,则X≤1的概率为( )A.45B.35C.25D.1520.B21.[2014•辽宁卷] 若将一个质点随机投入如图11所示的长方形ABCD中,其中AB=2,BC=1,则质点落在以AB为直径的半圆内的概率是( )A.π2B.π4C.π6D.π821.B22.[2014•重庆卷] 某校早上8:00开始上课,假设该校学生小张与小王在早上7:30~7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为________.(用数字作答)22.932K4 互斥事件有一个发生的概率K5 相互对立事件同时发生的概率23.[2014•全国卷] 设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)实验室计划购买k台设备供甲、乙、丙、丁使用.若要求“同一工作日需使用设备的人数大于k”的概率小于0.1,求k的最小值.23.解:记A1表示事件:同一工作日乙、丙中恰有i人需使用设备,i=0,1,2.B表示事件:甲需使用设备.C表示事件:丁需使用设备.D表示事件:同一工作日至少3人需使用设备.E表示事件:同一工作日4人需使用设备.F表示事件:同一工作日需使用设备的人数大于k.(1)因为P(B)=0.6,P(C)=0.4,P(Ai)=Ci2×0.52,i=0,1,2,所以P(D)=P(A1•B•C+A2•B+A2•B•C)=P(A1•B•C)+P(A2•B)+P(A2•B•C) =P(A1)P(B)P(C)+P(A2)P(B)+P(A2)P(B)P(C)=0.31.(2)由(1)知,若k=2,则P(F)=0.31>0.1,P(E)=P(B•C•A2)=P(B)P(C)P(A2)=0.06.若k=3,则P(F)=0.06<0.1,所以k的最小值为3.K6 离散型随机变量及其分布列24.[2014•江苏卷] 盒中共有9个球,其中有4个红球、3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x1,x2,x3,随机变量X表示x1,x2,x3中的最大数,求X 的概率分布和数学期望E(X).24.解:(1)取到的2个颜色相同的球可能是2个红球、2个黄球或2个绿球,所以P=C24+C23+C22C29=6+3+136=518.(2)随机变量X所有可能的取值为2,3,4.{X=4}表示的随机事件是“取到的4个球是4个红球”,故P(X=4)=C44C49=1126;{X=3}表示的随机事件是“取到的4个球是3个红球和1个其他颜色的球,或3个黄球和1个其他颜色的球”,故P(X=3)=C34C15+C33C16C49=20+6126=1363;于是P(X=2)=1-P(X=3)-P(X=4)=1-1363-1126=1114.所以随机变量X的概率分布如下表:X 2 3 4P 111413631126因此随机变量X的数学期望E(X)=2×1114+3×1363+4×1126=209.K7 条件概率与事件的独立性K8 离散型随机变量的数字特征与正态分布25.[2014•全国卷] 设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)实验室计划购买k台设备供甲、乙、丙、丁使用.若要求“同一工作日需使用设备的人数大于k”的概率小于0.1,求k的最小值.25.解:记A1表示事件:同一工作日乙、丙中恰有i人需使用设备,i=0,1,2.B表示事件:甲需使用设备.C表示事件:丁需使用设备.D表示事件:同一工作日至少3人需使用设备.E表示事件:同一工作日4人需使用设备.F表示事件:同一工作日需使用设备的人数大于k.(1)因为P(B)=0.6,P(C)=0.4,P(Ai)=Ci2×0.52,i=0,1,2,所以P(D)=P(A1•B•C+A2•B+A2•B•C)=P(A1•B•C)+P(A2•B)+P(A2•B•C) =P(A1)P(B)P(C)+P(A2)P(B)+P(A2)P(B)P(C)=0.31.(2)由(1)知,若k=2,则P(F)=0.31>0.1,P(E)=P(B•C•A2)=P(B)P(C)P(A2)=0.06.若k=3,则P(F)=0.06<0.1,所以k的最小值为3.。
统计与概率高考题(文科)
![统计与概率高考题(文科)](https://img.taocdn.com/s3/m/6eb136604b35eefdc8d333a0.png)
统计与概率高考题1(文科)一、选择题1.(2018全国卷Ⅰ,T3)某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半2.(2018全国卷Ⅱ,T5)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A .0.6B .0.5C .0.4D .0.33.(2018全国卷Ⅲ,T5)某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A .0.3B .0.4C .0.6D .0.74.(2017新课标Ⅰ,T2)为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg)分别为1x ,2x ,…,n x ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是A .1x ,2x ,…,n x 的平均数B .1x ,2x ,…,n x 的标准差C .1x ,2x ,…,n x 的最大值D .1x ,2x ,…,n x 的中位数5.(2017新课标Ⅰ,T4)如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .8πC .12D .4π 6.(2017新课标Ⅱ,T11)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为A .110B .15C .310D .257.(2017新课标Ⅲ,T3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了20XX 年1月至20XX 年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A .月接待游客逐月增加B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳8.(2016全国I卷,T3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是A.13B.12C.23D.569.(2016全国II卷,T8)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为A.B.C.D.10.(20XX年全国III卷,T4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃.下面叙述不正确的是A.各月的平均最低气温都在0℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20℃的月份有5个11.(2016全国III卷,T5)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是A.815B.18C.115D.130710583831012.(20XX年北京,T6)从甲、乙等5名学生中随机选出2人,则甲被选中的概率为A.15B.25C.825D.92513.(20XX年北京,T8)某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则A.2号学生进入30秒跳绳决赛B.5号学生进入30秒跳绳决赛C.8号学生进入30秒跳绳决赛D.9号学生进入30秒跳绳决赛14.(2015新课标1,T4)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为A.310B.15C.110D.12015.(2015新课标2,T3)根据下面给出的20XX年至20XX年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论不正确的是A.逐年比较,20XX年减少二氧化硫排放量的效果最显著B.20XX年我国治理二氧化硫排放显现成效C.20XX年以来我国二氧化硫年排放量呈减少趋势D.20XX年以来我国二氧化硫年排放量与年份正相关16.(2015北京,T4)某校老年,中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体情况,在抽取的样本中,青年教师有320人,则该样本的老年教师人数为A.90 B.100 C.180 D.300二、填空题17.(2018全国卷Ⅲ,T14)某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.18.(20XX年全国II卷,T16)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________________.19.(20XX年北京,T14)某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种,则该网店②第一天售出但第二天未售出的商品有______种;②这三天售出的商品最少有_______种.20.(2015北京,T14)高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级中的排名情况如下,甲、乙、丙为该班三位学生.从这次考试成绩看,①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是;②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是.。
最新全国卷高考(2016-2018)汇编 概率与统计文科 含解析
![最新全国卷高考(2016-2018)汇编 概率与统计文科 含解析](https://img.taocdn.com/s3/m/655fb6ca9b89680203d825f1.png)
概率与统计 试题分类汇编(文科)分析解读 从近几年的高考试题来看,本部分在高考中的考查点如下:1.主要考查分层抽样的定义,频率分布直方图,平均数、方差的计算,识图能力及借助概率知识分析、解决问题的能力;2.在频率分布直方图中,注意小矩形的高=频率/组距,小矩形的面积为频率,所有小矩形的面积之和为1;3.分析两个变量间的相关关系,通过独立性检验判断两个变量是否相关.本节内容在高考中分值为17分左右,属中档题.1.【2018年全国卷Ⅲ文】若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为 A. 0.3 B. 0.4 C. 0.6 D. 0.7 【答案】B2.【2018年全国卷II 文】从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A.B.C.D.【答案】D点睛:应用古典概型求某事件的步骤:第一步,判断本试验的结果是否为等可能事件,设出事件;第二步,分别求出基本事件的总数与所求事件中所包含的基本事件个数;第三步,利用公式求出事件的概率.3.【2017课标1,文4】如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .π8C .12D .π 4【答案】B【解析】【考点】几何概型【名师点睛】对于一个具体问题能否用几何概型的概率公式计算事件的概率,关键在于能否将问题几何化,也可根据实际问题的具体情况,选取合适的参数建立适当的坐标系,在此基础上,将实验的每一结果一一对应于该坐标系中的一点,使得全体结果构成一个可度量的区域;另外,从几何概型的定义可知,在几何概型中,“等可能”一词理解为对应于每个实验结果的点落入某区域内的可能性大小,仅与该区域的度量成正比,而与该区域的位置、形状无关.4. 【2017课标II,文11】从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为A.110B.15C.310D.25【答案】D【名师点睛】古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.5.【2017课标1,文2】为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数【答案】B【名师点睛】众数:一组数据出现次数最多的数叫众数,众数反应一组数据的多数水平;中位数:一组数据中间的数,(起到分水岭的作用)中位数反应一组数据的中间水平;平均数:反应一组数据的平均水平;方差:方差是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)并把它叫做这组数据的方差.在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定. 标准差是方差的算术平方根,意义在于反映一个数据集的离散程度.6. 如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为A. 3,5B. 5,5C. 3,7D. 5,7【答案】A试题分析:由题意,甲组数据为56,62,65,70x +,74,乙组数据为59,61,67,60y +,78.要使两组数据数相等,有6560y =+,所以5y =,又平均数相同,则566265(70)74596167657855x +++++++++=,解得3x =.故选A. 【名师点睛】由茎叶图可以清晰地看到数据的分布情况,这一点同频率分布直方图类似.它优于频率分布直方图的第一点是从茎叶图中能看到原始数据,没有任何信息损失,第二点是茎叶图便于记录和表示.其缺点是当样本容量较大时,作图较繁琐. 利用茎叶图对样本进行估计是,要注意区分茎与叶,茎是指中间的一列数,叶是从茎的旁边生长出来的数.7.【2017课标3,文3】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( )A.月接待游客逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳【答案】A【考点】折线图【名师点睛】用样本估计总体时统计图表主要有频率分布直方图,(特点:频率分布直方图中各小长方形的面积等于对应区间概率,所有小长方形的面积之和为1); 2. 频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图. 3. 茎叶图.对于统计图表类题目,最重要的是认真观察图表,从中提炼有用的信息和数据.8. [2016高考新课标Ⅲ文数]某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为150C,B点表示四月的平均最低气温约为50C.下面叙述不正确的是()(A) 各月的平均最低气温都在00C以上 (B) 七月的平均温差比一月的平均温差大(C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于200C的月份有5个【答案】D【解析】考点:1、平均数;2、统计图.【易错警示】解答本题时易错可能有两种:(1)对图形中的线条认识不明确,不知所措,只觉得是两把雨伞重叠在一起,找不到解决问题的方法;(2)估计平均温差时易出现错误,错选B .9.【2016高考新课标1文数】为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( ) (A )13 (B )12 (C )23 (D )56【答案】A 【解析】试题分析:将4中颜色的花种任选两种种在一个花坛中,余下2种种在另一个花坛,有6种种法,其中红色和紫色不在一个花坛的种数有4种,故概率为23,故选C. 考点:古典概型【名师点睛】作为客观题形式出现的古典概型试题,一般难度不大,解答常见错误是在用列举法计数时出现重复或遗漏,避免此类错误发生的有效方法是按照一定的标准进行列举. 10.甲、乙两人下棋,两人下成和棋的概率是21,甲获胜的概率是31,则甲不输的概率为( ) (A )65 (B )52 (C )61 (D )31【答案】A 【解析】11. 某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77则这组数据的中位数是_________(米). 【答案】1.76考点:中位数的概念.【名师点睛】本题主要考查中位数的概念,是一道基础题目.从历年高考题目看,涉及统计的题目,往往不难,主要考查考生的视图、用图能力,以及应用数学解决实际问题的能力.12.从2、3、8、9任取两个不同的数值,分别记为a 、b ,则log a b 为整数的概率= . 【答案】16【解析】试题分析:从2,3,8,9中任取两个数记为,a b ,作为作为对数的底数与真数,共有2412A =个不同的基本事件,其中为整数的只有23log 8,log 9两个基本事件,所以其概率21126P ==. 考点:古典概型.【名师点睛】本题考查古典概型,解题关键是求出基本事件的总数,本题中所给数都可以作为对数的底面,因此所有对数的个数就相当于4个数中任取两个的全排列,个数为44A ,而满足题意的只有2个,由概率公式可得概率.在求事件个数时,涉及到排列组合的应用,涉及到两个有理的应用,解题时要善于分析.13. 某食堂规定,每份午餐可以在四种水果中任选两种,则甲、乙两同学各自所选的两种水果相同的概率为______. 【答案】16考点:.古典概型【名师点睛】本题主要考查古典概型概率的计算.解答本题,关键在于能准确确定所研究对象的基本事件空间、基本事件个数,利用概率的计算公式求解.本题能较好的考查考生数学应用意识、基本运算求解能力等.14.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为________.【答案】详解:从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种,因此所求概率为点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法(理科):适用于限制条件较多且元素数目较多的题目.15.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为________.【答案】90点睛:的平均数为.16.【2018年全国卷Ⅲ文】某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.【答案】分层抽样17.【2018年新课标I卷文】某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表使用了节水龙头50天的日用水量频数分布表(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)【答案】(1)直方图见解析.(2) 0.48.(3).详解:(1)点睛:该题考查的是有关统计的问题,涉及到的知识点有频率分布直方图的绘制、利用频率分布直方图计算变量落在相应区间上的概率、利用频率分布直方图求平均数,在解题的过程中,需要认真审题,细心运算,仔细求解,就可以得出正确结果.18.【2018年全国卷Ⅲ文】某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数,并将完成生产任务所需时间超过和不超过的工人数填入下面的列联表:超过不超过(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:,.【答案】(1)第二种生产方式的效率更高.理由见解析(2)超过不超过(3)有【解析】分析:(1)计算两种生产方式的平均时间即可。
高中数学经典概率与统计(解析版)
![高中数学经典概率与统计(解析版)](https://img.taocdn.com/s3/m/561fc4f24bfe04a1b0717fd5360cba1aa8118c23.png)
概率与统计统计与概率是高考文科中的一个重要的一环高考对概率与统计内容的考查一般以实际应用题出现,这既是这类问题的特点,也符合高考发展的方向.概率应用题侧重于古典概率,近几年的高考有以概率应用题替代传统应用题的趋势,该题出现在解答题第二或第三题的位置,可见概率统计在高考中属于中档题.虽为中档题,但是实际生活背景在加强,阅读量大,所以快速阅读考题并准确理解题意是很重要的.对于这部分,我们还应当重视与传统内容的有机结合. 为了准确地把握2020年高考概率统计命题思想与趋势,在最后的复习中做到有的放矢,提高复习效率,纵观近五年的全国文科I卷,我们看到近几年每年一考,多出现在19题,分值12分;从难度上看:以中档题为主,重基础,考查的重点为统计图表的绘制与分析、数字特征的计算与分析、概率计算、线性回归分析,独立性检验等知识点,一般都会以实际问题为载体,代替传统建模题目.本专题我们把这些热点问题逐一说明,并提出备考指南,希望同学们在复习时抓住重点、事半功倍.【热点预测以及解题技巧】1 .抽样方法是统计学的基础,在复习时要抓住各种抽样方法的概念以及它们之间的区别与联系.茎叶图也成为高考的热点内容,应重点掌握.明确变量间的相关关系,体会最小二乘法和线性回归方法是解决两个变量线性相关的基本方法,就能适应高考的要求.2.求解概率问题首先确定是何值概型再用相应公式进行计算,特别对于解互斥事件(独立事件)的概率时,要注意两点:(1)仔细审题,明确题中的几个事件是否为互斥事件(独立事件),要结合题意分析清楚这些事件互斥(独立)的原因.(2)要注意所求的事件是包含这些互斥事件(独立事件)中的哪几个事件的和(积),如果不符合以上两点,就不能用互斥事件的和的概率.3.离散型随机变量的均值和方差是概率知识的进一步延伸,是当前高考的热点内容.解决均值和方差问题,都离不开随机变量的分布列,另外在求解分布列时还要注意分布列性质的应用.【考查题型】选择,填空,解答题【限时检测】(建议用时:45分钟)一、单选题1.(2020·上海闵行区·高三二模)某县共有300个村,现采用系统抽样方法,抽取15个村作为样本,调查农民的生活和生产状况,将300个村编上1到300的号码,求得间隔数3002015k==,即每20个村抽取一个村,在1到20中随机抽取一个数,如果抽到的是7,则从41到60这20个数中应取的号码数是( ) A .45B .46C .47D .48 【答案】C【分析】根据系统抽样的定义和性质即可得到结论.【详解】解:根据题意,样本间隔数3002015k ==,在1到20中抽到的是7, 则41到60为第3组,此时对应的数为7+2×20=47.故选:C.【点睛】本题主要考查系统抽样的应用,样本间距是解决本题的关键,比较基础.2.(2020·上海松江区·高三其他模拟)已知6260126(1)x a a x a x a x +=+++⋯+,在0,a 1,a 2,a ,⋅⋅⋅6a 这7个数中,从中任取两数,则所取的两数之和为偶数的概率为( )A .12B .37C .47D .821【答案】B【分析】根据6260126(1)x a a x a x a x +=+++⋯+,将0,a 1,a 2,a ,⋅⋅⋅6a 计算出来,分清几个奇数,几个偶数, 得到从中任取两数的种数;所取的两数之和为偶数的种数,代入古典概型的概率公式求解.【详解】因为6260126(1)x a a x a x a x +=+++⋯+,0,a 1,a 2,a ,⋅⋅⋅6a 这7个数分别为:061,C =166,C =2615,C =3620,C =4615,C =566,C =661,C =. 4个奇数,3个偶数;从中任取两数共有:2721C =种;所取的两数之和为偶数的有:22439C C +=;∴所取的两数之和为偶数的概率为:93217=. 故选:B.【点睛】本题主要考查二项式系数和古典概型的概率,还考查了运算求解的能力,属于基础题.3.(2019·上海杨浦区·高三一模)某象棋俱乐部有队员5人,其中女队员2人,现随机选派2人参加一个象棋比赛,则选出的2人中恰有1人是女队员的概率为( )A .310B .35C .25D .23【答案】B【分析】直接利用概率公式计算得到答案.【详解】11322563105C C P C ⨯=== ,故选:B 【点睛】本题考查了概率的计算,属于简单题.4.(2019·上海黄浦区·高三二模)在某段时间内,甲地不下雨的概率为1P (101P <<),乙地不下雨的概率为2P (201P <<),若在这段时间内两地下雨相互独立,则这段时间内两地都下雨的概率为( ) A .12PPB .121PP -C .12(1)P P -D .12(1)(1)P P -- 【答案】D【分析】根据相互独立事件的概率,可直接写出结果.【详解】因为甲地不下雨的概率为1P ,乙地不下雨的概率为2P ,且在这段时间内两地下雨相互独立, 所以这段时间内两地都下雨的概率为()()1211P P P =--.故选D【点睛】本题主要考查相互独立事件的概率,熟记概念即可,属于基础题型.二、填空题5.(2020·上海奉贤区·高三一模)某工厂生产A 、B 两种型号的不同产品,产品数量之比为2:3.用分层抽样的方法抽出一个样本容量为n 的样本,则其中A 种型号的产品有14件.现从样本中抽出两件产品,此时含有A 型号产品的概率为__________. 【答案】1117【分析】先由分层抽样抽样比求B 种型号抽取件数,以及n ,再根据古典概型公式求概率. 【详解】设B 种型号抽取m 件,所以1423m =,解得:21m =,142135n =+=, 从样本中抽取2件,含有A 型号产品的概率2111414212351117C C C P C +==.故答案为:11176.(2019·上海市建平中学高三月考)一个总体分为A ,B 两层,其个体数之比为4:1,用分层抽样方法从总体中抽取一个容量为10的样本.已知B 层中甲、乙都被抽到的概率为128,则总体中的个体数为 _____ . 【答案】40【解析】设B 层中的个体数为n ,则211828nn C =⇒=,则总体中的个体数为8540.⨯=7.(2020·上海黄浦区·高三二模)某社区利用分层抽样的方法从140户高收入家庭、280户中等收入家庭、80户低收入家庭中选出100户调查社会购买力的某项指标,则中等收入家庭应选________户.【答案】56【分析】由分层抽样的计算方法有,中等收入家庭的户数占总户数的比例再乘以要抽取的户数,即可得到答案.【详解】该社区共有14028080500++=户.利用分层抽样的方法, 中等收入家庭应选28010056500⨯=户,故答案为:56 【点睛】本题考查分层抽样,注意抽取比例是解决问题的关键,属于基础题.8.(2020·上海高三其他模拟)某校三个年级中,高一年级有学生400人,高二年级有学生360人,高三年级有学生340人,现采用分层抽样的方法从高一年级学生中抽出20人,则从高三年级学生中抽取的人数为________.【答案】17【分析】由于分层抽样是按比例抽取,若设高三年级的学生抽取了x 人,则有40034020x=,求出x 的值即可【详解】解:设高三年级的学生抽取了x 人,则由题意得 40034020x=,解得17x =,故答案为:17 【点睛】此题考查分层抽样,属于基础题.9.(2016·上海杨浦区·复旦附中高三月考)如图所示,一家面包销售店根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,若一个月以30天计算,估计这家面包店一个月内日销售量不少于150个的天数为________.【答案】9【分析】根据频率分布直方图计算出日销售量不少于150个的频率,然后乘以30即可.【详解】根据频率分布直方图可知,一个月内日销售量不少于150个的频率为()0.0040.002500.3+⨯=, 因此,这家面包店一个月内日销售量不少于150个的天数为300.39⨯=.故答案为9.【点睛】本题考查频率分布直方图的应用,解题时要明确频数、频率和样本容量三者之间的关系,考查计算能力,属于基础题.10.(2020·上海高三专题练习)中位数为1010的一组数构成等差数列,其末项为 2015,则该数列的首项为__________.【答案】5.【解析】设数列的首项为1a ,则12015210102020a+=⨯=,所以15a =,故该数列的首项为5,所以答案应填:5.【考点定位】等差中项.11.(2020·上海浦东新区·高三一模)在7(2)x +的二项展开式中任取一项,则该项系数为有理数的概率为_________.(用数字作答)【答案】12【分析】根据二项展开式的通项,确定有理项所对应的r 的值,从而确定其概率. 【详解】7(2)x +展开式的通项为()77217722rr rr rr r T C x C x --+==,07,r r N ≤≤∈, 当且仅当r 为偶数时,该项系数为有理数,故有0,2,4,6r =满足题意,故所求概率4182P ==.【点睛】(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.12.(2020·上海松江区·高三一模)从包含学生甲的1200名学生中随机抽取一个容量为80的样本,则学生甲被抽到的概率___.【答案】115【分析】基本事件总数801200n C =,学生甲被抽到包含的基本事件个数79112001m C C =,由此能求出学生甲被抽到的概率.【详解】解:从包含学生甲的1200名学生中随机抽取一个容量为80的样本,基本事件总数801200n C =, 学生甲被抽到包含的基本事件个数79112001m C C =,∴学生甲被抽到的概率79111991801200115C C m P n C ===. 故答案为:115. 【点睛】方法点睛:求概率常用的方法是:先定性(六种概率:古典概型的概率、几何概型的概率、独立事件的概率、互斥事件的概率、条件概率和独立重复试验的概率),再定量.13.(2019·上海市建平中学高三月考)已知方程221x y a b+=表示的曲线为C ,任取a 、{}1,2,3,4,5b ∈,则曲线C 表示焦距等于2的椭圆的概率等于________. 【答案】825【分析】计算出基本事件的总数,并列举出事件“曲线C 表示焦距等于2的椭圆”所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【详解】所有可能的(),a b 的组数为:5525⨯=,又因为焦距22c =,所以1c =,所以1a b -=±, 则满足条件的有:()1,2、()2,3、()3,4、()4,5、()5,4、()4,3、()3,2、()2,1,共8组, 所以概率为:825P =.故答案为:825. 【点睛】方法点睛:计算古典概型概率的方法如下:(1)列举法;(2)数状图法;(3)列表法;(4)排列、组合数的应用.14.(2020·上海徐汇区·高三一模)小王同学有4本不同的数学书,3本不同的物理书和3本不同的化学书,从中任取2本,则这2本书属于不同学科的概率为______________(结果用分数表示). 【答案】1115【分析】利用古典概型公式计算概率.【详解】共43310++=本不同的数,任取2本包含21045C =种方法,若从中任取两本,这2本书属于不同学科的情况有11111143433333C C C C C C ⋅+⋅+⋅=,所以这2本书属于不同学科的概率33114515P ==. 故答案为:111515.(2020·上海高三一模)近年来,人们的支付方式发生了巨大转变,使用移动支付购买商品已成为一部分人的消费习惯.某企业为了解该企业员工A 、B 两种移动支付方式的使用情况,从全体员工中随机抽取了100人,统计了他们在某个月的消费支出情况.发现样本中A ,B 两种支付方式都没有使用过的有5人;使用了A 、B 两种方式支付的员工,支付金额和相应人数分布如下:依据以上数据估算:若从该公司随机抽取1名员工,则该员工在该月A 、B 两种支付方式都使用过的概率为______.【答案】310【分析】根据题意,计算出两种支付方式都使用过的人数,即可得到该员工在该月A 、B 两种支付方式都使用过的概率.【详解】解:依题意,使用过A 种支付方式的人数为:18292370++=,使用过B 种支付方式的人数为:10242155++=,又两种支付方式都没用过的有5人,所以两种支付方式都用过的有()()7055100530+--=,所以该员工在该月A 、B 两种支付方式都使用过的概率30310010p ==. 故答案为:310. 【点睛】本题考查了古典概型的概率,主要考查计算能力,属于基础题.16.(2020·上海大学附属中学高三三模)一名工人维护甲、乙两台独立的机床,在一小时内,甲需要维护和乙需要维护相互独立,它们的概率分别为0.4和0.3,则一小时内没有一台机床需要维护的概率为________【答案】0.42【分析】根据甲需要维护和乙需要维护相互独立,它们的概率分别为0.4和0.3,利用独立事件和对立事件的概率求法求解.【详解】因为甲需要维护和乙需要维护相互独立,它们的概率分别为0.4和0.3,所以一小时内没有一台机床需要维护的概率为()()10.410.30.42-⨯-=,故答案为:0.42【点睛】本题主要考查独立事件和对立事件的概率,属于基础题.17.(2020·上海长宁区·高三三模)2021年某省将实行“312++”的新高考模式,即语文、数学、英语三科必选,物理、历史二选一,化学、生物、政治、地理四选二,若甲同学选科没有偏好,且不受其他因素影响,则甲同学同时选择历史和化学的概率为________ 【答案】14【分析】甲同学从物理、历史二选一,其中选历史的概率为12,从化学、生物、政治、地理四选二,有6种选法,其中选化学的有3种,从而可得四选二,选化学的概率为12,然后由分步原理可得同时选择历史和化学的概率.【详解】解:由甲同学选科没有偏好,且不受其他因素影响,所以甲同学从物理、历史二选一选历史的概率为12,甲同学从化学、生物、政治、地理四选二有:化学与生物,化学与政治,化学与地理,生物与政治,生物与地理,政治与地理共6种不同的选法,其中选化学的有3种,所以四选二中有化学的概率为12, 所以由分步原理可知甲同学同时选择历史和化学的概率为111=224⨯, 故答案为:14 【点睛】此题考查古典概型概率以及独立事件概率乘法公式的求法,考查理解运算能力,属于基础题. 18.(2019·上海市七宝中学高三三模)一名信息员维护甲乙两公司的5G 网络,一天内甲公司需要维护和乙公司需要维护相互独立,它们需要维护的概率分别为0.4和0.3,则至少有一个公司不需要维护的概率为________【答案】0.88【分析】根据相互独立事件概率计算公式和对立事件的概率计算公式直接求解即可.【详解】"至少有一个公司不需要维护"的对立事件是"两公司都需要维护",所以至少有一个公司不需要维护的概率为10.30.40.88p =-⨯=,故答案为0.88.【点睛】本题主要考查概率的求法以及相互独立事件概率计算公式和对立事件的概率计算公式的应用. 19.(2019·上海金山区·高三二模)若生产某种零件需要经过两道工序,在第一、二道工序中生产出废品的概率分别为0.01、0.02,每道工序生产废品相互独立,则经过两道工序后得到的零件不是废品的概率是________(结果用小数表示)【答案】0.9702【分析】利用对立事件概率计算公式和相互独立事件概率乘法公式能求出经过两道工序后得到的零件不是废品的概率.【详解】生产某种零件需要经过两道工序,在第一、二道工序中生产出废品的概率分别0.01、0.02, 每道工序生产废品相互独立,则经过两道工序后得到的零件不是废品的概率:p =(1﹣0.01)(1﹣0.02)=0.9702.故答案为0.9702.【点睛】本题考查概率的求法,考查对立事件概率计算公式和相互独立事件概率乘法公式等基础知识,考查运算求解能力,是基础题.三、解答题20.(2019·上海普陀区·)某城市自2014年至2019年每年年初统计得到的人口数量如表所示.(1)设第n 年的人口数量为n a (2014年为第1年),根据表中的数据,描述该城市人口数量和2014年至2018年每年该城市人口的增长数量的变化趋势;(2)研究统计人员用函数0.6544450()2000 4.48781x P x e -=++拟合该城市的人口数量,其中x 的单位是年.假设2014年初对应0x =,()P x 的单位是万.设()P x 的反函数为()T x ,求(2440)T 的值(精确到0.1),并解释其实际意义.【分析】(1)根据表中的数据可得从2014年到2019年人口增加的数量,逐年增多,从2017年后,增加的人数逐年减少,但人口总数是逐年增加的;(2)根据函数的表达式,以及反函数的定义,代值计算即可.【详解】(1)201520142135208253f f -=-=,201620152203213568f f -=-=,201720162276220373f f -=-=,201820172339227663f f -=-=,201920182385233946f f -=-=,由上述计算可知,该地区2014年至2019年每年人口增长数量呈先增后减的变化趋势,每一年任可总数呈逐渐递增的趋势;(2)因为0.65444.48781x e -+为单调递减函数,则()P x 为单调递增函数,则0(2440)T x =0()2440P x ⇒=, 代入000.6544450()200024404.48781x P x e -=+=+,解得08.1x =,即(2440)8.1T =, 其实际意义为:可根据数学模型预测人口数量增长规律,及提供有效依据,到2022年人口接近2440万.【点睛】该题考查的是有关统计的问题,涉及到的知识点有利用表格判断其变化趋势,利用题中所给的函数解析式,计算相关的量,反函数的定义,属于中档题目.。
概率与统计(选择题、填空题)—高考真题文科数学分项汇编(解析版)
![概率与统计(选择题、填空题)—高考真题文科数学分项汇编(解析版)](https://img.taocdn.com/s3/m/3cdb9b1eda38376bae1fae88.png)
其中恰有 2只做过测试的取法有{a,b, A},{a,b,B},{a,c, A},{a,c,B}, {b,c, A},{b,c,B},共 6种, 所以恰有 2只做过测试的概率为 6 3,故选 B.
10 5
【名师点睛】本题主要考查古典概率的求解,题目较易,注重了基础知识、基本计算能力的考查.应用 列举法写出所有基本事件过程中易于出现遗漏或重复,将兔子标注字母,利用“树图法”,可最大限度
1 【答案】 9 【解析】根据题意可得基本事件数总为66 36个.
5
点数和为 5的基本事件有1,4,4,1,2,3,3,2共
4个.
∴出现向上的点数和为
5的概率为
P
4 36
1求法,考查古典概型、列举法等基础知识,考查运算求解能力,是基础题.
12.【2020年高考天津】从一批零件中抽取 80个,测量其直径(单位:mm),将所得数据分为 9组:
则n 61,符合题意;若815 610n,则n 80.9,不合题意.故选 C.
7.【2019年高考全国Ⅱ卷文数】生物实验室有 5只兔子,其中只有 3只测量过某项指标,若从这 5只兔子
中随机取出 3只,则恰有 2只测量过该指标的概率为
2 A. 3
3 B. 5
3
2 C. 5
【答案】B
1 D. 5
【分析】首先用列举法写出所有基本事件,从中确定符合条件的基本事件数,应用古典概率的计算公式
即可求解.
【解析】设其中做过测试的 3只兔子为a,b,c,剩余的 2只为 A,B, 则从这 5只中任取 3只的所有取法有{a,b,c},{a,b, A},{a,b,B},{a,c, A},{a,c,B},{a, A,B},{b,c, A},
{b,c,B},{b, A,B},{c, A,B},共 10种.
专题21概率统计(文科)解答题20题-备战高考数学冲刺横向强化精练精讲(解析版)
![专题21概率统计(文科)解答题20题-备战高考数学冲刺横向强化精练精讲(解析版)](https://img.taocdn.com/s3/m/587bc433fe00bed5b9f3f90f76c66137ee064f98.png)
概率统计(文科)解答题20题1.(2021年全国高考乙卷数学(文)试题)某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下: 旧设备9.810.3 10.0 10.29.99.810.0 10.1 10.29.7新设备 10.1 10.4 10.1 10.0 10.1 10.3 10.6 10.5 10.4 10.5旧设备和新设备生产产品的该项指标的样本平均数分别记为x 和y ,样本方差分别记为21s 和22s .(1)求x ,y ,21s ,22s ;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果2212210s s y x +-≥则不认为有显著提高).【答案】(1)221210,10.3,0.036,0.04x y s s ====;(2)新设备生产产品的该项指标的均值较旧设备有显著提高. 【分析】(1)根据平均数和方差的计算方法,计算出平均数和方差. (2)根据题目所给判断依据,结合(1)的结论进行判断. 【详解】 (1)9.810.31010.29.99.81010.110.29.71010x +++++++++==,10.110.410.11010.110.310.610.510.410.510.310y +++++++++==,22222222210.20.300.20.10.200.10.20.30.03610s +++++++++==,222222222220.20.10.20.30.200.30.20.10.20.0410s +++++++++==.(2)依题意,20.320.1520.1520.0225y x -==⨯=0.0360.04220.007610+= 2212210s s y x +-≥. 2.(2021年全国高考甲卷数学(理)试题)甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++【答案】(1)75%;60%;(2)能.【分析】根据给出公式计算即可【详解】(1)甲机床生产的产品中的一级品的频率为15075% 200=,乙机床生产的产品中的一级品的频率为12060% 200=.(2)()22400150801205040010 6.63527013020020039K⨯-⨯==>>⨯⨯⨯,故能有99%的把握认为甲机床的产品与乙机床的产品质量有差异.3.(2021·四川成都·一模(文))某项目的建设过程中,发现其补贴额x(单位:百万元)与该项目的经济回报y(单位:千万元)之间存在着线性相关关系,统计数据如下表:经济回报y (单位:千万元)2.5 3 4 4.5 6(1)请根据上表所给的数据,求出y 关于x 的线性回归直线方程ˆˆˆybx a =+; (2)请根据(1)中所得到的线性回归直线方程,预测当补贴额达到8百万元时该项目的经济回报.参考公式:121()()ˆˆ,.()==--==--∑∑niii nii x x y y bay bx x x 【答案】(1)0.850.6y x =+ (2)7.4千万元 【分析】(1)根据所给数据和公式算出答案即可; (2)当8x =时,算出ˆy的值即可. (1) ∵2345645x ++++==,345y +==.()()15(2)( 1.5)(1)(1)0010.5228.5iii x x y y =--=-⨯-+-⨯-+⨯+⨯+⨯=∑,()5214101410ii x x =-=++++=∑.∴()()()31321ˆˆ0.85,40.8540.6iii ii x x y y bax x ==--===-⨯=-∑∑ ∴0.850.6y x =+; (2)当8x =时,ˆ0.8580.67.4=⨯+=y. ∴当补贴额达到8百万元时,该项日的经济回报为7.4千万元.4.(2017年全国3卷)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.【答案】(1)35.(2)45.【分析】(1)由前三年六月份各天的最高气温数据,求出最高气温位于区间[20,25)和最高气温低于20的天数,由此能求出六月份这种酸奶一天的需求量不超过300瓶的概率.(2)当温度大于等于25℃时,需求量为500,求出Y=900元;当温度在[20,25)℃时,需求量为300,求出Y=300元;当温度低于20℃时,需求量为200,求出Y=﹣100元,从而当温度大于等于20时,Y>0,由此能估计估计Y大于零的概率.【详解】解:(1)由前三年六月份各天的最高气温数据,得到最高气温位于区间[20,25)和最高气温低于20的天数为2+16+36=54,根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶,如果最高气温位于区间[20,25),需求量为300瓶,如果最高气温低于20,需求量为200瓶,∴六月份这种酸奶一天的需求量不超过300瓶的概率p543 905 ==.(2)当温度大于等于25℃时,需求量为500,Y=450×2=900元,当温度在[20,25)℃时,需求量为300,Y=300×2﹣(450﹣300)×2=300元,当温度低于20℃时,需求量为200,Y=400﹣(450﹣200)×2=﹣100元,当温度大于等于20时,Y>0,由前三年六月份各天的最高气温数据,得当温度大于等于20℃的天数有:90﹣(2+16)=72,∴估计Y大于零的概率P724 905==.【点睛】本题考查概率的求法,考查利润的所有可能取值的求法,考查函数、古典概型等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.5.(2017年全国普通高等学校招生统一考试文科数学(新课标2卷精编版))海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg), 其频率分布直方图如下:(1)记A表示事件“旧养殖法的箱产量低于50kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50kg箱产量≥50kg旧养殖法新养殖法(3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行较.附:P(K2≥k)0.0500.0100.001k 3.841 6.63510.82822()()()()()n ad bc K a b c d a c b d -=++++【答案】(1)0.62(2)有99%的把握 (3)新养殖法优于旧养殖法 【详解】 试题分析:(1)由频率近似概率值,计算可得旧养殖法的箱产量低于50kg 的频率为0.62.据此,事件A 的概率估计值为0.62.(2)由题意完成列联表,计算K 2的观测值k =()22006266343810010096104⨯⨯-⨯⨯⨯⨯≈15.705>6.635,则有99%的把握认为箱产量与养殖方法有关.(3)箱产量的频率分布直方图表明:新养殖法的箱产量较高且稳定,从而新养殖法优于旧养殖法. 试题解析:(1)旧养殖法的箱产量低于50kg 的频率为 (0.012+0.014+0.024+0.034+0.040)×5=0.62. 因此,事件A 的概率估计值为0.62. (2)根据箱产量的频率分布直方图得列联表K 2的观测值k =()22006266343810010096104⨯⨯-⨯⨯⨯⨯≈15.705.由于15.705>6.635,故有99%的把握认为箱产量与养殖方法有关. (3) 由频率分布直方图可得:旧养殖法100个网箱产量的平均数x 1=(27.5×0.012+32.5×0.014+37.5×0.024+42.5×0.034+47.5×0.040+52.5×0.032+57.5×0.032+62.5×0.012+67.5×0.012)×5 =5×9.42=47.1; 新养殖法100个网箱产量的平均数x 2=(37.5×0.004+42.5×0.020+47.5×0.044+52.5×0.054+57.5×0.046+62.5×0.010+67.5×0.008)×5=5×10.47=52.35;<2,比较可得:x1x故新养殖法更加优于旧养殖法.点睛:利用频率分布直方图求众数、中位数和平均数时,应注意三点:①最高的小长方形底边中点的横坐标即是众数;②中位数左边和右边的小长方形的面积和是相等的;③平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.独立性检验得出的结论是带有概率性质的,只能说结论成立的概率有多大,而不能完全肯定一个结论,因此才出现了临界值表,在分析问题时一定要注意这点,不可对某个问题下确定性结论,否则就可能对统计计算的结果作出错误的解释.6.(2020年全国统一高考数学试卷(理科)(新课标Ⅲ))某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):锻炼人次[0,200](200,400](400,600]空气质量等级1(优)216252(良)51012 3(轻度污染)6784(中度污染)720(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?人次≤400人次>400空气质量好空气质量不好附:22()()()()()n ad bc K a b c d a c b d -=++++,【答案】(1)该市一天的空气质量等级分别为1、2、3、4的概率分别为0.43、0.27、0.21、0.09;(2)350;(3)有,理由见解析.【分析】(1)根据频数分布表可计算出该市一天的空气质量等级分别为1、2、3、4的概率; (2)利用每组的中点值乘以频数,相加后除以100可得结果;(3)根据表格中的数据完善22⨯列联表,计算出2K 的观测值,再结合临界值表可得结论. 【详解】(1)由频数分布表可知,该市一天的空气质量等级为1的概率为216250.43100++=,等级为2的概率为510120.27100++=,等级为3的概率为6780.21100++=,等级为4的概率为7200.09100++=; (2)由频数分布表可知,一天中到该公园锻炼的人次的平均数为100203003550045350100⨯+⨯+⨯=(3)22⨯列联表如下:()221003383722 5.820 3.84155457030K ⨯⨯-⨯=≈>⨯⨯⨯,因此,有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关. 【点睛】本题考查利用频数分布表计算频率和平均数,同时也考查了独立性检验的应用,考查数据处理能力,属于基础题.7.(2020年全国统一高考数学试卷(文科)(新课标Ⅱ))某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i i x ==∑,2011200i i y ==∑,2021)80i ix x =-=∑(,2021)9000i i y y =-=∑(,201))800i i i x y x y =--=∑((. (1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r =12211))))ni iiiin ni i x y x x y y y x ===----∑∑∑((((,≈1.414.【答案】(1)12000;(2)0.94;(3)详见解析 【分析】(1)利用野生动物数量的估计值等于样区野生动物平均数乘以地块数,代入数据即可;(2)利用公式20120202211()()()()iii iii i x x y y r x x y y ===--=--∑∑∑计算即可;(3)各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样. 【详解】(1)样区野生动物平均数为201111200602020i i y ==⨯=∑, 地块数为200,该地区这种野生动物的估计值为2006012000⨯= (2)样本(,)i i x y (i =1,2,…,20)的相关系数为20120202211()()220.94809000()()iii iii i x x y y r x x y y ===--===≈⨯--∑∑∑(3)由(2)知各样区的这种野生动物的数量与植物覆盖面积有很强的正相关性, 由于各地块间植物覆盖面积差异很大,从而各地块间这种野生动物的数量差异很大, 采用分层抽样的方法较好地保持了样本结构与总体结构的一致性,提高了样本的代表性,从而可以获得该地区这种野生动物数量更准确的估计.【点晴】本题主要考查平均数的估计值、相关系数的计算以及抽样方法的选取,考查学生数学运算能力,是一道容易题.8.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A 级品、B级品、C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表乙分厂产品等级的频数分布表(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?【答案】(1)甲分厂加工出来的A级品的概率为0.4,乙分厂加工出来的A级品的概率为0.28;(2)选甲分厂,理由见解析.【分析】(1)根据两个频数分布表即可求出;(2)根据题意分别求出甲乙两厂加工100件产品的总利润,即可求出平均利润,由此作出选择.【详解】(1)由表可知,甲厂加工出来的一件产品为A级品的概率为400.4100=,乙厂加工出来的一件产品为A级品的概率为280.28 100=;(2)甲分厂加工100件产品的总利润为()()()() 4090252050252020252050251500⨯-+⨯-+⨯--⨯+=元,所以甲分厂加工100件产品的平均利润为15元每件;乙分厂加工100件产品的总利润为()()()() 2890201750203420202150201000⨯-+⨯-+⨯--⨯+=元,所以乙分厂加工100件产品的平均利润为10元每件.故厂家选择甲分厂承接加工任务.【点睛】本题主要考查古典概型的概率公式的应用,以及平均数的求法,并根据平均值作出决策,属于基础题.9.(2020年北京市高考数学试卷)某校为举办甲、乙两项不同活动,分别设计了相应的活动方案:方案一、方案二.为了解该校学生对活动方案是否支持,对学生进行简单随机抽样,获得数据如下表:男生女生支持不支持支持不支持方案一200人400人300人100人方案二350人250人150人250人假设所有学生对活动方案是否支持相互独立.(Ⅰ)分别估计该校男生支持方案一的概率、该校女生支持方案一的概率;(Ⅱ)从该校全体男生中随机抽取2人,全体女生中随机抽取1人,估计这3人中恰有2人支持方案一的概率;(Ⅲ)将该校学生支持方案二的概率估计值记为0p,假设该校一年级有500名男生和300名女生,除一年级外其他年级学生支持方案二的概率估计值记为1p,试比较0p与1p的大小.(结论不要求证明)【答案】(Ⅰ)该校男生支持方案一的概率为13,该校女生支持方案一的概率为34;(Ⅱ)1336,(Ⅲ)01p p<【分析】(Ⅰ)根据频率估计概率,即得结果;(Ⅱ)先分类,再根据独立事件概率乘法公式以及分类计数加法公式求结果;(Ⅲ)先求0p ,再根据频率估计概率1p ,即得大小. 【详解】(Ⅰ)该校男生支持方案一的概率为2001200+4003=,该校女生支持方案一的概率为3003300+1004=;(Ⅱ)3人中恰有2人支持方案一分两种情况,(1)仅有两个男生支持方案一,(2)仅有一个男生支持方案一,一个女生支持方案一,所以3人中恰有2人支持方案一概率为:2121311313()(1)()(1)3433436C -+-=; (Ⅲ)01p p < 【点睛】本题考查利用频率估计概率、独立事件概率乘法公式,考查基本分析求解能力,属基础题.10.(2019年全国统一高考数学试卷(文科)(新课标Ⅲ))为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成,A B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到()P C 的估计值为0.70.(1)求乙离子残留百分比直方图中,a b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).【答案】(1) 0.35a =,0.10b =;(2) 4.05,6. 【分析】(1)由()0.70P C =及频率和为1可解得a 和b 的值;(2)根据公式求平均数.【详解】(1)由题得0.200.150.70a ++=,解得0.35a =,由0.050.151()10.70b P C ++=-=-,解得0.10b =.(2)由甲离子的直方图可得,甲离子残留百分比的平均值为0.1520.2030.3040.2050.1060.057 4.05⨯+⨯+⨯+⨯+⨯+⨯=,乙离子残留百分比的平均值为0.0530.1040.1550.3560.2070.1586⨯+⨯+⨯+⨯+⨯+⨯= 【点睛】本题考查频率分布直方图和平均数,属于基础题.11.(2019年全国统一高考数学试卷(文科)(新课标Ⅱ))某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y 的频数分布表.y 的分组[0.20,0)- [0,0.20) [0.20,0.40) [0.40,0.60) [0.60,0.80)企业数2 24 53 14 7(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01) 附:748.602≈.【答案】(1) 增长率超过0040的企业比例为21100,产值负增长的企业比例为2110050;(2)平均数0.3;标准差0.17. 【分析】(1)本题首先可以通过题意确定100个企业中增长率超过0400的企业以及产值负增长的企业的个数,然后通过增长率超过0400的企业以及产值负增长的企业的个数除随机调查的企业总数即可得出结果;(2)可通过平均值以及标准差的计算公式得出结果. 【详解】(1)由题意可知,随机调查的100个企业中增长率超过0400的企业有14721个, 产值负增长的企业有2个,所以增长率超过0400的企业比例为21100,产值负增长的企业比例为2110050.(2)由题意可知,平均值,标准差的平方:11000.320.960.56 1.120.0296,所以标准差.【点睛】本题考查平均值以及标准差的计算,主要考查平均值以及标准差的计算公式,考查学生从信息题中获取所需信息的能力,考查学生的计算能力,是简单题.12.(2019年北京市高考数学试卷(文科))改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:(Ⅰ)估计该校学生中上个月A,B两种支付方式都使用的人数;(Ⅱ)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2000元.结合(Ⅱ)的结果,能否认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化?说明理由.【答案】(Ⅰ)400人;(Ⅱ)125;(Ⅲ)见解析.【分析】(Ⅰ)由题意利用频率近似概率可得满足题意的人数;(Ⅱ)利用古典概型计算公式可得上个月支付金额大于2000元的概率;(Ⅲ)结合概率统计相关定义给出结论即可.【详解】(Ⅰ)由图表可知仅使用A的人数有30人,仅使用B的人数有25人,由题意知A,B两种支付方式都不使用的有5人,所以样本中两种支付方式都使用的有1003025540---=,所以全校学生中两种支付方式都使用的有401000400100⨯=(人).(Ⅱ)因为样本中仅使用B的学生共有25人,只有1人支付金额大于2000元,所以该学生上个月支付金额大于2000元的概率为1 25.(Ⅲ)由(Ⅱ)知支付金额大于2000元的概率为125,因为从仅使用B的学生中随机调查1人,发现他本月的支付金额大于2000元,依据小概率事件它在一次试验中是几乎不可能发生的,所以可以认为仅使用B的学生中本月支付金额大于2000元的人数有变化,且比上个月多.【点睛】本题主要考查古典概型概率公式及其应用,概率的定义与应用等知识,意在考查学生的转化能力和计算求解能力.13.(2019年天津市高考数学试卷(文科))2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(Ⅰ)应从老、中、青员工中分别抽取多少人?(Ⅱ)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为,,,,,A B C D E F.享受情况如下表,其中“”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.员工项目A B C D E F子女教育○○×○×○继续教育××○×○○大病医疗×××○××住房贷款利息○○××○○住房租金××○×××赡养老人○○×××○(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.【答案】(I )6人,9人,10人; (II )(i )见解析;(ii )1115. 【分析】(I )根据题中所给的老、中、青员工人数,求得人数比,利用分层抽样要求每个个体被抽到的概率是相等的,结合样本容量求得结果;(II )(I )根据6人中随机抽取2人,将所有的结果一一列出; (ii )根据题意,找出满足条件的基本事件,利用公式求得概率. 【详解】(I )由已知,老、中、青员工人数之比为6:9:10, 由于采取分层抽样的方法从中抽取25位员工, 因此应从老、中、青员工中分别抽取6人,9人,10人. (II )(i )从已知的6人中随机抽取2人的所有可能结果为{}{}{}{}{},,,,,,,,,A B A C A D A E A F ,{}{}{}{},,,,,,,B C B D B E B F ,{}{}{},,,,,C D C E C F ,{}{}{},,,,,D E D F E F ,共15种;(ii )由表格知,符合题意的所有可能结果为{}{}{}{},,,,,,,A B A D A E A F ,{}{}{},,,,,B D B E B F ,{}{},,,C E C F ,{}{},,,D F E F ,共11种,所以,事件M 发生的概率11()15P M =. 【点睛】本小题主要考查随机抽样、用列举法计算随机事件所含的基本事件数、古典概型即其概率计算公式等基本知识,考查运用概率知识解决简单实际问题的能力.14.(2018年全国普通高等学校招生统一考试理数(全国卷II ))下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年的数据(时间变量t 的值依次为1,2,,17)建立模型①:ˆ30.413.5yt =-+;根据2010年至2016年的数据(时间变量t 的值依次为1,2,,7)建立模型②:ˆ9917.5yt =+. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.【答案】(1)利用模型①预测值为226.1,利用模型②预测值为256.5,(2)利用模型②得到的预测值更可靠. 【详解】分析:(1)两个回归直线方程中无参数,所以分别求自变量为2018时所对应的函数值,就得结果;(2)根据折线图知2000到2009,与2010到2016是两个有明显区别的直线,且2010到2016的增幅明显高于2000到2009,也高于模型1的增幅,因此所以用模型2更能较好得到2018的预测.详解:(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为 ˆy =–30.4+13.5×19=226.1(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为 ˆy =99+17.5×9=256.5(亿元).(2)利用模型②得到的预测值更可靠. 理由如下:(i )从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y =–30.4+13.5t 上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型ˆy=99+17.5t可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ii)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠.点睛:若已知回归直线方程,则可以直接将数值代入求得特定要求下的预测值;若回归直线方程有待定参数,则根据回归直线方程恒过点(,)x y求参数.15.(2018年全国普通高等学校招生统一考试文科数学(新课标I卷))某家庭记录了未使用节水龙头50天的日用水量数据(单位:3m)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表使用了节水龙头50天的日用水量频数分布表(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于30.35m的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)【答案】(1)直方图见解析;(2)0.48;(3)347.45m.【分析】(1)根据题中所给的使用了节水龙头50天的日用水量频数分布表,算出落在相应区间上的频率,借助于直方图中长方形的面积表示的就是落在相应区间上的频率,从而确定出对应矩形的高,从而得到直方图;(2)结合直方图,算出日用水量小于0.35的矩形的面积总和,即为所求的频率;(3)根据组中值乘以相应的频率作和求得50天日用水量的平均值,作差乘以365天得到一年能节约用水多少3m,从而求得结果.【详解】(1)频率分布直方图如下图所示:。
十年高考:高考数学(文数真题)概率与统计-- 统计初步专题整理(附详细答案解析)
![十年高考:高考数学(文数真题)概率与统计-- 统计初步专题整理(附详细答案解析)](https://img.taocdn.com/s3/m/a02f245e763231126fdb1132.png)
“十年高考”概率与统计----统计初步专题(附详细答案解析)2019年1.(2019全国1文6)某学校为了解1000名新生的身体素质,将这些学生编号为1,2,…,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是A.8号学生B.200号学生C.616号学生D.815号学生2.(2019全国II文14)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________.3.(2019全国II文19)某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.y的分组[0.20,0)-[0,0.20)[0.20,0.40)[0.40,0.60)[0.60,0.80)企业数22453147(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)≈.8.6024.(2019全国III文4)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A.0.5B.0.6C.0.7D.0.85.(2019全国III文17)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).6.(2019江苏5)已知一组数据6,7,8,8,9,10,则该组数据的方差是.7.(2019北京文17)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:不大于2000元大于2000元支付金额支付方式仅使用A27人3人仅使用B24人1人(Ⅰ)估计该校学生中上个月A,B两种支付方式都使用的人数;(Ⅱ)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2000元.结合(Ⅱ)的结果,能否认为样本仅使用B 的学生中本月支付金额大于2000元的人数有变化?说明理由.8.(2019天津文15)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(Ⅰ)应从老、中、青员工中分别抽取多少人?A B C D E F.(Ⅱ)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为,,,,,享受情况如右表,其中“○”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.员工A B C D E F项目子女教育○○×○×○继续教育××○×○○大病医疗×××○××住房贷款利息○○××○○住房租金××○×××赡养老人○○×××○(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.2010-2018年一、选择题1.(2018全国卷Ⅰ)某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半2.(2017新课标Ⅰ)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为1x,2x,…,n x,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是A.1x,2x,…,n x的平均数B.1x,2x,…,n x的标准差C.1x,2x,…,n x的最大值D.1x,2x,…,n x的中位数3.(2017新课标Ⅲ)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A.月接待游客逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳4.(2017山东)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为A.3,5B.5,5C.3,7D.5,75.(2016年全国III卷)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15℃,B 点表示四月的平均最低气温约为5℃.下面叙述不正确的是A.各月的平均最低气温都在0℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20℃的月份有5个6.(2016年北京)某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.学生序号12345678910立定跳远(单位:米) 1.96 1.92 1.82 1.80 1.78 1.76 1.74 1.72 1.68 1.60 30秒跳绳(单位:次)63a7560637270a−1b65在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则A.2号学生进入30秒跳绳决赛B.5号学生进入30秒跳绳决赛C.8号学生进入30秒跳绳决赛D.9号学生进入30秒跳绳决赛7.(2016年山东)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是A.56B.60C.120D.1408.(2015新课标2)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论不正确的是A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势。
07-13年广东高考数学文科概率统计真题(含答案)
![07-13年广东高考数学文科概率统计真题(含答案)](https://img.taocdn.com/s3/m/38962b2daf45b307e971970f.png)
2007-2013广东高考文科数学真题汇编——概率与统计1、(2007广东文数)在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是【解析】随机取出2个小球得到的结果数有154102⨯⨯=种(提倡列举).取出的小球标注的数字之和为3或6的结果为{1,2},{1,5},{2,4}共3种,故所求答案为(A).2、(2007广东文数)图3是某汽车维修公司的维修点环形分布图.公司在年初分配给A B C D ,,,四个维修点某种配件各50件.在使用前发现需将A B C D ,,,四个维修点的这批配件分别调整为40,45,54,61件,但调整只能在相邻维修点之间进行,那么要完成上述调整,最少的调动件次(n 件配件从一个维修点调整到相邻维修点的调动件次为n )为( ) A.18 B.17 C.16 D.15 答案:C【解析】很多同学根据题意发现n=16可行,判除A,B 选项,但对于C,D 选项则难以作出选择,事实上,这是一道运筹问题,需要用函数的最值加以解决.设A B →的件数为1x (规定:当10x <时,则B 调整了1||x 件给A,下同!),B C →的件数为2x ,C D →的件数为3x ,D A →的件数为4x ,依题意可得415040x x +-=,125045x x +-=,235054x x +-=,345061x x +-=,从而215x x =+,311x x =+,4110x x =-,故调动件次11111()|||5||1||10|f x x x x x =+++++-,画出图像(或绝对值的几何意义)可得最小值为16,故选(C).3、(2009广东文科)广州2010年亚运会火炬传递在A 、B 、C 、D 、E 五个城市之间进行,各城市之间的路线距离(单位:百公里)见下表.若以A 为起点,E 为终点,每个城市经过且只经过一次,那么火炬传递的最短路线距离是A.20.6B.21C.22D.23 答案:B 【解析】由题意知,所有可能路线有6种: ①A B C D E →→→→,②A B D C E →→→→,③A C B D E→→→→,④A C DB E →→→→,⑤A D BC E →→→→,⑥AD C BE →→→→,其中, 路线③A C B D E →→→→的距离最短, 最短路线距离等于496221+++=,图34、(2009广州一模文数)某商场在国庆黄金周的促销活动中,对10月2日9时至14时的销售额进行统计,其频率分布直方图如图1所示.已知9时至10时的销售额为2.5万元,则11时至12时的销售额为 A .6万元 B .8万元C .10万元 D .12万元 答案C解:设11时到12时的销售额为x 万元,依题意有 2.5/x=0.10/0.4,X=10 故选 C .5、 (2010广州二模文数)在长为3m 的线段AB 上任取一点P , 则点P 与线段两端点A 、B 的距离都大于1m 的概率是 A.14 B.13 C. 12 D.23答案B 线段AB 三等分,当点P 落在中间那一段时满足条件,所以概率P=1/36、 (2010广州一模文数)在棱长为2的正方体1111ABCD A B C D -中,点O 为底面ABCD 的中心,在正方体1111ABCD A B C D -内随机取一点P ,则点P 到点O 的距离大于1的概率为A .12πB .112π-C .6π D .16π-答案B以O 为圆心半径为1的球体积为4πR^3/3,因为O 在底面上,所以为半个球的体积即2πR^3/3=2π/3,正方体体积为2^3=8.,所以概率为(8-2π/3)/8=1-π/127、(2011广州一模文数)甲、乙、丙、丁四人参加奥运会射击项目选拔赛,四人的平均成绩和方差如下表所示:从这四个人中选择一人参加奥运会射击项目比赛,最佳人选是 A .甲B .乙C .丙D .丁 答案C8、(2011广州二模文数)在区间()0,1内任取两个实数,则这两个实数的和大于13的概率为 A .1718B .79C .29D .118答案A设这两个数为x ,y ,建立一个直角坐标系,标出x ∈(0,1),y ∈(0,1)的区域,是一个正方形。
高考复习文科数学之统计与概率
![高考复习文科数学之统计与概率](https://img.taocdn.com/s3/m/caa243fd9e314332396893db.png)
各地解析分类汇编:统计与概率1.【山东省济南外国语学校2013届高三上学期期中考试 文科】某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名。
现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为( ) A. 6 B. 7 C. 8 D.9 【答案】C【解析】设从高二应抽取x 人,则有30:406:x =,解得8x =,选C.2.【山东省济南外国语学校2013届高三上学期期中考试 文科】(本小题满分12分)某河流上的一座水力发电站,每年六月份的发电量Y (单位:万千瓦时)与该河上游在六月份的降雨量X (单位:毫米)有关.据统计,当X=70时,Y=460;X 每增加10,Y 增加5;已知近20年X 的值为:140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110,160,220,140,160. (I )完成如下的频率分布表:近20年六月份降雨量频率分布表(II )假定今年六月份的降雨量与近20年六月份的降雨量的分布规律相同,并将频率视为概率,求今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率.【答案】解:(I )在所给数据中,降雨量为110毫米的有3个,为160毫米的有7个,为200毫米的有3个,故近20年六月份降雨量频率分布表为…………………………………………………………………………………….…..….5分.(II )("132320202010P ++=发电量低于490万千瓦时或超过530万千瓦时")=P(Y<490或Y>530)=P(X<130或X>210)=故今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率为310.…………………………………………………………………………………12分3.【云南师大附中2013届高三高考适应性月考卷(三)文】记集合{}22(,)|16A x y x y =+≤和集合{}(,)|40,0,0B x y x y x y =+-≤≥≥表示的平面区域分别为12,ΩΩ若在区域1Ω内任取一点(,)M x y ,则点M 落在区域2Ω的概率为A .12πB .1πC .14D .24ππ- 【答案】A【解析】区域1Ω为圆心在原点,半径为4的圆,区域2Ω为等腰直角三角形,两腰长为4,所以218116π2πS P S ΩΩ===,故选A . 4.【云南省昆明一中2013届高三新课程第一次摸底测试文】在某地区某高传染性病毒流行期间,为了建立指标显示疫情已受控制,以便向该地区居众显示可以过正常生活,有公共卫生专家建议的指标是“连续7天每天新增感染人数不超过5人”,根据连续7天的新增病倒数计算,下列各选项中,一定符合上述指标的是 ①平均数3x ≤;②标准差2S ≤;③平均数3x ≤且标准差2S ≤;④平均数3x ≤且极差小于或等于2;⑤众数等于1且极差小于或等于4。
概率与统计(选择、填空题)(文科专用)(解析版)-五年(18-22)高考数学真题分项汇编(全国通用)
![概率与统计(选择、填空题)(文科专用)(解析版)-五年(18-22)高考数学真题分项汇编(全国通用)](https://img.taocdn.com/s3/m/965122d818e8b8f67c1cfad6195f312b3069eb5a.png)
专题15概率与统计(选择题、填空题)(文科专用)1.【2022年全国甲卷】某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:则()A.讲座前问卷答题的正确率的中位数小于70%B.讲座后问卷答题的正确率的平均数大于85%C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差【答案】B【解析】【分析】由图表信息,结合中位数、平均数、标准差、极差的概念,逐项判断即可得解.【详解】讲座前中位数为70%+75%2>70%,所以A错;讲座后问卷答题的正确率只有一个是80%,4个85%,剩下全部大于等于90%,所以讲座后问卷答题的正确率的平均数大于85%,所以B对;讲座前问卷答题的正确率更加分散,所以讲座前问卷答题的正确率的标准差大于讲座后正确率的标准差,所以C错;讲座后问卷答题的正确率的极差为100%−80%=20%,讲座前问卷答题的正确率的极差为95%−60%=35%>20%,所以D错.故选:B.2.【2022年全国甲卷】从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为()A.15B.13C.25D.23【答案】C【解析】【分析】先列举出所有情况,再从中挑出数字之积是4的倍数的情况,由古典概型求概率即可.【详解】从6张卡片中无放回抽取2张,共有1,2,1,3,1,4,1,5,1,6,2,3,2,4,2,5,2,6,3,4,3,5,3,6,4,5,4,6,5,615种情况,其中数字之积为4的倍数的有1,4,2,4,2,6,3,4,4,5,4,66种情况,故概率为615=25.故选:C.3.【2022年全国乙卷】分别统计了甲、乙两位同学16周的各周课外体育运动时长(单位:h),得如下茎叶图:则下列结论中错误的是()A.甲同学周课外体育运动时长的样本中位数为7.4B.乙同学周课外体育运动时长的样本平均数大于8C.甲同学周课外体育运动时长大于8的概率的估计值大于0.4D.乙同学周课外体育运动时长大于8的概率的估计值大于0.6【答案】C【解析】【分析】结合茎叶图、中位数、平均数、古典概型等知识确定正确答案.【详解】对于A选项,甲同学周课外体育运动时长的样本中位数为7.3+7.52=7.4,A选项结论正确.对于B选项,乙同学课外体育运动时长的样本平均数为:6.3+7.4+7.6+8.1+8.2+8.2+8.5+8.6+8.6+8.6+8.6+9.0+9.2+9.3+9.8+10.116=8.50625>8,B选项结论正确.对于C选项,甲同学周课外体育运动时长大于8的概率的估计值616=0.375<0.4,C选项结论错误.对于D选项,乙同学周课外体育运动时长大于8的概率的估计值1316=0.8125>0.6,D选项结论正确.故选:C4.【2021年甲卷文科】为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下面结论中不正确的是()A.该地农户家庭年收入低于4.5万元的农户比率估计为6%B.该地农户家庭年收入不低于10.5万元的农户比率估计为10%C.估计该地农户家庭年收入的平均值不超过6.5万元D.估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间【答案】C【解析】【分析】根据直方图的意义直接计算相应范围内的频率,即可判定ABD,以各组的中间值作为代表乘以相应的频率,然后求和即得到样本的平均数的估计值,也就是总体平均值的估计值,计算后即可判定C.【详解】因为频率直方图中的组距为1,所以各组的直方图的高度等于频率.样本频率直方图中的频率即可作为总体的相应比率的估计值.该地农户家庭年收入低于4.5万元的农户的比率估计值为0.020.040.066%+==,故A 正确;该地农户家庭年收入不低于10.5万元的农户比率估计值为0.040.0230.1010%+⨯==,故B 正确;该地农户家庭年收入介于4.5万元至8.5万元之间的比例估计值为0.100.140.2020.6464%50%++⨯==>,故D 正确;该地农户家庭年收入的平均值的估计值为30.0240.0450.1060.1470.2080.2090.10100.10110.04120.02130.02140.02⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯(万元),超过6.5万元,故C 错误.综上,给出结论中不正确的是C.故选:C.【点睛】本题考查利用样本频率直方图估计总体频率和平均值,属基础题,样本的频率可作为总体的频率的估计值,样本的平均值的估计值是各组的中间值乘以其相应频率然后求和所得值,可以作为总体的平均值的估计值.注意各组的频率等于⨯频率组距组距.5.【2021年甲卷文科】将3个1和2个0随机排成一行,则2个0不相邻的概率为()A .0.3B .0.5C .0.6D .0.8【答案】C 【解析】【分析】利用古典概型的概率公式可求概率.【详解】解:将3个1和2个0随机排成一行,可以是:00111,01011,01101,01110,10011,10101,10110,11001,11010,11100,共10种排法,其中2个0不相邻的排列方法为:01011,01101,01110,10101,10110,11010,共6种方法,故2个0不相邻的概率为6=0.610,故选:C.6.【2021年乙卷文科】在区间10,2⎛⎤⎥⎝⎦随机取1个数,则取到的数小于13的概率为()A .34B .23C .13D .16【答案】B【分析】根据几何概型的概率公式即可求出.【详解】设Ω=“区间10,2⎛⎫ ⎪⎝⎭随机取1个数”,对应集合为:102x x ⎧⎫<<⎨⎬⎩⎭,区间长度为12,A =“取到的数小于13”,对应集合为:103x x ⎧⎫<<⎨⎬⎩⎭,区间长度为13,所以()()()10231302l A P A l -===Ω-.故选:B .【点睛】本题解题关键是明确事件“取到的数小于13”对应的范围,再根据几何概型的概率公式即可准确求出.7.【2020年新课标1卷文科】设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为()A .15B .25C .12D .45【答案】A 【解析】【分析】列出从5个点选3个点的所有情况,再列出3点共线的情况,用古典概型的概率计算公式运算即可.【详解】如图,从O A B C D ,,,,5个点中任取3个有{,,},{,,},{,,},{,,}O A B O A C O A D O B C {,,},{,,},{,,},{,,}O B D O C D A B C A B D {,,},{,,}A C D B C D 共10种不同取法,3点共线只有{,,}A O C 与{,,}B O D 共2种情况,由古典概型的概率计算公式知,取到3点共线的概率为21105=.【点晴】本题主要考查古典概型的概率计算问题,采用列举法,考查学生数学运算能力,是一道容易题.8.【2020年新课标3卷文科】设一组样本数据x 1,x 2,…,xn 的方差为0.01,则数据10x 1,10x 2,…,10xn 的方差为()A .0.01B .0.1C .1D .10【答案】C 【解析】【分析】根据新数据与原数据关系确定方差关系,即得结果.【详解】因为数据(1,2,,)i ax b i n +=L ,的方差是数据(1,2,,)i x i n =L ,的方差的2a 倍,所以所求数据方差为2100.01=1⨯故选:C 【点睛】本题考查方差,考查基本分析求解能力,属基础题.9.【2019年新课标1卷文科】某学校为了解1000名新生的身体素质,将这些学生编号为1,2,…,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是A .8号学生B .200号学生C .616号学生D .815号学生【答案】C 【解析】【分析】等差数列的性质.渗透了数据分析素养.使用统计思想,逐个选项判断得出答案.【详解】详解:由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列{}n a ,公差10d =,所以610n a n =+()n *∈N ,若8610n =+,则15n =,不合题意;若200610n =+,则19.4n =,不合题意;若616610n =+,则61n =,符合题意;若815610n =+,则80.9n =,不合题意.故选C .【点睛】本题主要考查系统抽样.10.【2019年新课标2卷文科】生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为A .23B .35C .25D .15【答案】B 【解析】【分析】本题首先用列举法写出所有基本事件,从中确定符合条件的基本事件数,应用古典概率的计算公式求解.【详解】设其中做过测试的3只兔子为,,a b c ,剩余的2只为,A B ,则从这5只中任取3只的所有取法有{,,},{,,},{,,},{,,},{,,},{,,}a b c a b A a b B a c A a c B a A B ,{,c,},{,c,},{b,,},{c,,}b A b B A B A B 共10种.其中恰有2只做过测试的取法有{,,},{,,},{,,},{,,},a b A a b B a c A a c B {,c,},{,c,}b A b B 共6种,所以恰有2只做过测试的概率为63105=,选B .【点睛】本题主要考查古典概率的求解,题目较易,注重了基础知识、基本计算能力的考查.应用列举法写出所有基本事件过程中易于出现遗漏或重复,将兔子标注字母,利用“树图法”,可最大限度的避免出错.11.【2019年新课标3卷文科】两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是A .16B .14C .13D .12【答案】D 【解析】男女生人数相同可利用整体发分析出两位女生相邻的概率,进而得解.【详解】两位男同学和两位女同学排成一列,因为男生和女生人数相等,两位女生相邻与不相邻的排法种数相同,所以两位女生相邻与不相邻的概率均是12.故选D .【点睛】本题考查常见背景中的古典概型,渗透了数学建模和数学运算素养.采取等同法,利用等价转化的思想解题.12.【2018年新课标2卷文科】从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A .0.6B .0.5C .0.4D .0.3【答案】D 【解析】【详解】分析:分别求出事件“2名男同学和3名女同学中任选2人参加社区服务”的总可能及事件“选中的2人都是女同学”的总可能,代入概率公式可求得概率.详解:设2名男同学为12,A A ,3名女同学为123,,B B B ,从以上5名同学中任选2人总共有12111213212223121323,,,,,,,,,A A A B A B A B A B A B A B B B B B B B 共10种可能,选中的2人都是女同学的情况共有121323,,B B B B B B 共三种可能则选中的2人都是女同学的概率为30.310P ==,故选D.点睛:应用古典概型求某事件的步骤:第一步,判断本试验的结果是否为等可能事件,设出事件A ;第二步,分别求出基本事件的总数n 与所求事件A 中所包含的基本事件个数m ;第三步,利用公式()mP A n=求出事件A 的概率.13.【2018年新课标3卷文科】若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A .0.3B .0.4C .0.6D .0.7【答案】B 【解析】【详解】分析:由公式()()()()P A B P A P B P AB ⋃=++计算可得详解:设事件A 为只用现金支付,事件B 为只用非现金支付,则()()()()P A B P A P B P AB 1⋃=++=因为()()P A 0.45,P AB 0.15==所以()P B 0.4=,故选B.点睛:本题主要考查事件的基本关系和概率的计算,属于基础题.14.【2022年全国乙卷】从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为____________.【答案】310##0.3【解析】【分析】根据古典概型计算即可【详解】从5名同学中随机选3名的方法数为C 53=10甲、乙都入选的方法数为C 31=3,所以甲、乙都入选的概率=310故答案为:31015.【2018年新课标3卷文科】某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.【答案】分层抽样.【解析】【详解】分析:由题可知满足分层抽样特点详解:由于从不同龄段客户中抽取,故采用分层抽样故答案为分层抽样.点睛:本题主要考查简单随机抽样,属于基础题.。
高考真题文科数学分项汇编概率与统计(解析版)
![高考真题文科数学分项汇编概率与统计(解析版)](https://img.taocdn.com/s3/m/4405029ae45c3b3566ec8b3e.png)
专题 15 概率与统计(解答题)1. 【2020 年高考全国Ⅰ卷文数】某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为 A ,B , C ,D 四个等级.加工业务约定:对于 A 级品、B 级品、C 级品,厂家每件分别收取加工费 90 元,50 元, 20 元;对于 D 级品,厂家每件要赔偿原料损失费 50 元.该厂有甲、乙两个分厂可承接加工业务.甲分厂 加工成本费为 25 元/件,乙分厂加工成本费为 20 元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了 100 件这种产品,并统计了这些产品的等级,整理如下: 甲分厂产品等级的频数分布表乙分厂产品等级的频数分布表(1) 分别估计甲、乙两分厂加工出来的一件产品为 A 级品的概率;(2) 分别求甲、乙两分厂加工出来的 100 件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?【解析】(1)由试加工产品等级的频数分布表知,甲分厂加工出来的一件产品为 A 级品的概率的估计值为 40100 乙分厂加工出来的一件产品为 A 级品的概率的估计值为 28 100= 0.4 ;= 0.28 . (2)由数据知甲分厂加工出来的 100 件产品利润的频数分布表为因此甲分厂加工出来的 100 件产品的平均利润为65 ⨯ 40 + 25 ⨯ 20 - 5 ⨯ 20 - 75 ⨯ 20 = 15 .100由数据知乙分厂加工出来的 100 件产品利润的频数分布表为因此乙分厂加工出来的100 件产品的平均利润为∑ i =1n(x - x ) ( y - y )2∑ n2iii =1∑ i20 (x - x ) (y - y )2i =1∑ i202i =180 ⨯ 90002 2 ∑ ∑ ∑ - x ) = 80 ,∑(y - y ) = 9000 , ∑(x 20∑ 70 ⨯ 28 + 30 ⨯17 + 0 ⨯ 34 - 70 ⨯ 21 = 10 .100比较甲乙两分厂加工的产品的平均利润,应选甲分厂承接加工业务.【点睛】本题主要考查古典概型的概率公式的应用,以及平均数的求法,并根据平均值作出决策,属 于基础题.2. 【2020 年高考全国Ⅱ卷文数】某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加. 为调查该地区某种野生动物的数量,将其分成面积相近的 200 个地块,从这些地块中用简单随机抽样的方法抽取 20 个作为样区,调查得到样本数据(x i ,y i )(i=1,2,…,20),其中 x i 和 y i 分别表示第 i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20xii =120 = 60 , y i i =120 = 1200 , (x i i =120 2i i =1202i i =1- x () y i - y ) = 800 .(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i=1,2,…,20)的相关系数(精确到 0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野 生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.∑(x i - x )( yi- y )附:相关系数 r =i =1,≈1.414.1 20【解析】(1)由己知得样本平均数 y = ∑ y i= 60 ,从而该地区这种野生动物数量的估计值为 60×i =1200=12000.(2)样本(x i , y i ) (i = 1, 2, , 20) 的相关系数20(x i- x () y i- y ) 80r =i =1== ≈ 0.94 .3 (3)分层抽样:根据植物覆盖面积的大小对地块分层,再对 200 个地块进行分层抽样.理由如下:由(2)知各样区的这种野生动物数量与植物覆盖面积有很强的正相关.由于各地块间植物 覆盖面积差异很大,从而各地块间这种野生动物数量差异也很大,采用分层抽样的方法较好地保持了n 2样本结构与总体结构的一致性,提高了样本的代表性,从而可以获得该地区这种野生动物数量更准确的估计.【点晴】本题主要考查平均数的估计值、相关系数的计算以及抽样方法的选取,考查学生数学运算能 力,是一道容易题.3. 【2020 年高考全国Ⅲ卷文数】某学生兴趣小组随机调查了某市 100 天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1) 分别估计该市一天的空气质量等级为 1,2,3,4 的概率;(2) 求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3) 若某天的空气质量等级为 1 或 2,则称这天“空气质量好”;若某天的空气质量等级为 3 或 4,则称这天“空气质量不好”.根据所给数据,完成下面的 2×2 列联表,并根据列联表,判断是否有 95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附: K 2 n (ad - bc )2, (a + b )(c + d )(a + c )(b + d )【解析】(1)由所给数据,该市一天的空气质量等级为 1,2,3,4 的概率的估计值如下表:(2) 一天中到该公园锻炼的平均人次的估计值为1(100 ⨯ 20 + 300 ⨯ 35 + 500 ⨯ 45) = 350 . 100==2 (3) 根据所给数据,可得 2 ⨯ 2 列联表:根据列联表得2100 ⨯ (33 ⨯ 8 - 22 ⨯ 37) 2K 55 ⨯ 45 ⨯ 70 ⨯ 30 由于5.820 > 3.841 ,故有 95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关. 【点睛】本题考查利用频数分布表计算频率和平均数,同时也考查了独立性检验的应用,考查数据处 理能力,属于基础题.4. 【2020 年新高考全国Ⅰ卷】为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100 天空气中的PM 2.5 和SO 浓度(单位:μg/m 3 ),得下表:(1) 估计事件“该市一天空气中PM 2.5 浓度不超过75 ,且SO 2 浓度不超过150 ”的概率;(2) 根据所给数据,完成下面的 2 ⨯ 2 列联表:(3) 根据(2)中的列联表,判断是否有99% 的把握认为该市一天空气中PM 2.5 浓度与SO 2 浓度有关?附: K 2 n (ad - bc )2,(a + b )(c + d )(a + c )(b + d )=2 = ≈【解析】(1)根据抽查数据,该市 100 天的空气中 PM2.5 浓度不超过 75,且SO 2 浓度不超过 150 的天数为32 + 18 + 6 + 8 = 64 ,因此,该市一天空气中 PM2.5 浓度不超过 75,且SO 2 浓度不超过 150 的概率的估64计值为 100= 0.64 .(2) 根据抽查数据,可得 2 ⨯ 2 列联表:(3) 根据(2)的列联表得 K 7.484 .80 ⨯ 20 ⨯ 74 ⨯ 26由于7.484 > 6.635 ,故有99% 的把握认为该市一天空气中PM 2.5 浓度与SO 2 浓度有关.5. 【2019 年高考全国Ⅰ卷文数】某商场为提高服务质量,随机调查了 50 名男顾客和 50 名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1) 分别估计男、女顾客对该商场服务满意的概率;(2) 能否有 95%的把握认为男、女顾客对该商场服务的评价有差异?附: K 2 n (ad - bc )2.(a + b )(c + d )(a + c )(b + d )【答案】(1)男、女顾客对该商场服务满意的概率的估计值分别为0.8 ,0.6 ;(2)有 95%的把握认为男、女顾客对该商场服务的评价有差异.【解析】(1)由调查数据,男顾客中对该商场服务满意的比率为 40= 0.8 ,50因此男顾客对该商场服务满意的概率的估计值为0.8 .P (K 2 ≥ k )0.050 0.010 0.001 k3.8416.63510.828=女顾客中对该商场服务满意的比率为30= 0.6 , 50因此女顾客对该商场服务满意的概率的估计值为0.6 .2100 ⨯(40 ⨯ 20 - 30 ⨯10) 2(2)由题可得 K =≈ 4.762 . 50 ⨯ 50 ⨯ 70 ⨯ 30由于 4.762 > 3.841,故有95%的把握认为男、女顾客对该商场服务的评价有差异.6. 【2019 年高考全国Ⅱ卷文数】某行业主管部门为了解本行业中小企业的生产情况,随机调查了 100 个企业,得到这些企业第一季度相对于前一年第一季度产值增长率 y 的频数分布表.(1) 分别估计这类企业中产值增长率不低于 40%的企业比例、产值负增长的企业比例;(2) 求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到 0.01) ≈ 8.602 .【答案】(1)产值增长率不低于 40%的企业比例为 21%,产值负增长的企业比例为 2%;(2)这类企业产值增长率的平均数与标准差的估计值分别为 30%,17%. 【解析】(1)根据产值增长率频数分布表得,所调查的 100 个企业中产值增长率不低于 40%的企业频率为14 + 7 = 0.21 .1002产值负增长的企业频率为100= 0.02 .用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%.(2) y = 1(-0.10 ⨯ 2 + 0.10 ⨯ 24 + 0.30 ⨯ 53 + 0.50 ⨯14 + 0.70 ⨯ 7) = 0.30 ,100s 2= 1 ∑ n ( y - y )2=1 i ii =1⎡⎣(-0.40)2 ⨯ 2 + (-0.20)2 ⨯ 24 + 02 ⨯ 53 + 0.202 ⨯14 + 0.402 ⨯ 7⎤⎦100=0.0296 ,s == 0.02⨯ 0.17 ,5 100所以,这类企业产值增长率的平均数与标准差的估计值分别为30%,17%.7.【2019 年高考全国Ⅲ卷文数】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B 两组,每组100 只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记 C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).【答案】(1)a = 0.35 ,b = 0.10 ;(2)甲、乙离子残留百分比的平均值的估计值分别为4.05 ,6.00 .【解析】(1)由已知得0.70 =a + 0.20 + 0.15 ,故a = 0.35 .b = 1- 0.05 - 0.15 - 0.70 = 0.10 .(2)甲离子残留百分比的平均值的估计值为2⨯ 0.15 + 3⨯ 0.20 + 4⨯ 0.30 + 5⨯ 0.20 + 6⨯ 0.10 + 7 ⨯ 0.05 = 4.05 .乙离子残留百分比的平均值的估计值为3⨯ 0.05 + 4⨯ 0.10 + 5⨯ 0.15 + 6⨯ 0.35 + 7 ⨯ 0.20 + 8⨯ 0.15 = 6.00 .8.【2019 年高考天津卷文数】2019 年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120 人,现采用分层抽样的方法,从该单位上述员工中抽取25 人调查专项附加扣除的享受情况.(1)应从老、中、青员工中分别抽取多少人?(2)抽取的25 人中,享受至少两项专项附加扣除的员工有6 人,分别记为A, B, C, D, E, F .享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6 人中随机抽取2 人接受采访.(i)试用所给字母列举出所有可能的抽取结果;(ii)设M 为事件“抽取的2 人享受的专项附加扣除至少有一项相同”,求事件M 发生的概率.11【答案】(1)应从老、中、青员工中分别抽取6人,9人,10人;(2)(i)见解析,(ii).15【分析】本题主要考查随机抽样、用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式等基本知识,考查运用概率知识解决简单实际问题的能力.【解析】(1)由已知,老、中、青员工人数之比为6 : 9 : 10 ,由于采用分层抽样的方法从中抽取25 位员工,因此应从老、中、青员工中分别抽取6 人,9 人,10 人.( 2 )(i )从已知的 6 人中随机抽取 2 人的所有可能结果为{A, B},{A, C},{A, D},{A, E},{A, F},{B, C}, {B, D},{B, E},{B, F},{C, D},{C, E}, {C, F}, {D, E},{D, F},{E, F} ,共15 种.(ii)由表格知,符合题意的所有可能结果为{A, B},{A, D},{A, E},{A, F},{B, D},{B,E },{B ,F},{C, E},{C, F},{D, F},{E, F} ,共11 种.所以,事件M 发生的概率P(M ) 11.159.【2019 年高考北京卷文数】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B 两种移动支付方式的使用情况,从全校所有的1000 名学生中随机抽取了100 人,发现样本中A,B 两种支付方式都不使用的有5 人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下:(1)估计该校学生中上个月A,B 两种支付方式都使用的人数;(2)从样本仅使用B 的学生中随机抽取1 人,求该学生上个月支付金额大于2 000 元的概率;(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B 的学生中随机抽查1 人,发现他本月的支付金额大于2 000 元.结合(2)的结果,能否认为样本仅使用B 的学生中本月支付金额大于 2 000 元的人数有变化?说明理由.【答案】(1)该校学生中上个月A,B两种支付方式都使用的人数约为400 ;(2)0.04 ;(3)见解析.【解析】(1)由题知,样本中仅使用A 的学生有27+3=30 人,仅使用B 的学生有24+1=25 人,A,B两种支付方式都不使用的学生有5人.故样本中A,B两种支付方式都使用的学生有100–30–25–5=40人.估计该校学生中上个月A,B两种支付方式都使用的人数为40⨯1000 = 400 .100(2)记事件C为“从样本仅使用B的学生中随机抽取1人,该学生上个月的支付金额大于2 000元”,则P(C) = 1= 0.04 .25(3)记事件E为“从样本仅使用B的学生中随机抽查1人,该学生本月的支付金额大于2 000元”.假设样本仅使用B的学生中,本月支付金额大于2 000元的人数没有变化,则由(2)知,P(E) = 0.04 .答案示例1:可以认为有变化.理由如下:P(E) 比较小,概率比较小的事件一般不容易发生,一旦发生,就有理由认为本月支付金额大于2 000元的人数发生了变化,所以可以认为有变化.答案示例2:无法确定有没有变化.理由如下:事件E是随机事件,P(E) 比较小,一般不容易发生,但还是有可能发生的,所以无法确定有没有变化.10.【2018 年高考全国Ⅱ卷文数】下图是某地区2000 年至2016 年环境基础设施投资额y (单位:亿元)的折线图.为了预测该地区2018 年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000 年至2016 年的数据(时间变量t 的值依次为1, 2, , 17 )建立模型①:yˆ=-30.4 + 13.5t ;根据2010 年至2016 年的数据(时间变量t 的值依次为1, 2, , 7 )建立模型②:yˆ= 99 + 17.5t .(1)分别利用这两个模型,求该地区2018 年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.【答案】(1)模型①:226.1亿元,模型②:256.5亿元;(2)模型②得到的预测值更可靠,理由见解析.【解析】(1)利用模型①,该地区2018 年的环境基础设施投资额的预测值为$y=–30.4+13.5×19=226.1(亿元).利用模型②,该地区2018 年的环境基础设施投资额的预测值为$y=99+17.5×9=256.5(亿元).(2)利用模型②得到的预测值更可靠.理由如下:(i)从折线图可以看出,2000 年至2016 年的数据对应的点没有随机散布在直线y=–30.4+13.5t 上下,这说明利用2000 年至2016 年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010 年相对2009 年的环境基础设施投资额有明显增加,2010 年至2016 年的数据对应的点位于一条直线的附近,这说明从2010 年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010 年至2016 年的数据建立的线性模型$y=99+17.5t 可以较好地描述2010 年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ii)从计算结果看,相对于2016 年的环境基础设施投资额220 亿元,由模型①得到的预测值226.1 亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠.以上给出了2 种理由,考生答出其中任意一种或其他合理理由均可得分.1.【2018 年高考全国Ⅰ卷文数】某家庭记录了未使用节水龙头50 天的日用水量数据(单位:m3)和使用了节水龙头50 天的日用水量数据,得到频数分布表如下:未使用节水龙头50 天的日用水量频数分布表日用水量[0 ,0.1) [0.1,0.2) [0.2 ,0.3) [0.3,0.4) [0.4 ,0.5) [0.5,0.6) [0.6 ,0.7) 频数1324926 5使用了节水龙头50 天的日用水量频数分布表日用水量[0 ,0.1) [0.1,0.2) [0.2 ,0.3) [0.3,0.4) [0.4 ,0.5) [0.5,0.6) 频数1513 10 16 5(1)在答题卡上作出使用了节水龙头50 天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365 天计算,同一组中的数据以这组数据所在区间中点的值作代表.)【答案】(1)见解析;(2)0.48;(3)47.45m3.【解析】(1)频率分布直方图如下:(2)根据以上数据,该家庭使用节水龙头后50 天日用水量小于0.35m3的频率为0.2×0.1+1×0.1+2.6×0.1+2×0.05=0.48,因此该家庭使用节水龙头后日用水量小于0.35m3的概率的估计值为0.48.(3)该家庭未使用节水龙头50 天日用水量的平均数为x1 = 1(0.05⨯1+ 0.15⨯ 3 + 0.25⨯ 2 + 0.35⨯ 4 + 0.45⨯ 9 + 0.55⨯ 26 + 0.65⨯ 5) = 0.48 .50该家庭使用了节水龙头后50 天日用水量的平均数为x2 = 1(0.05⨯1+ 0.15⨯ 5 + 0.25⨯13 + 0.35⨯10 + 0.45⨯16 + 0.55⨯ 5) = 0.35 .50估计使用节水龙头后,一年可节省水(0.48 - 0.35) ⨯365 = 47.45(m 3) .12.【2018 年高考全国Ⅲ卷文数】某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40 名工人,将他们随机分成两组,每组20 人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:P (K 2 ≥ k ) 0.050 0.010 0.001 k 3.841 6.635 10.828 (1) 根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2) 求 40 名工人完成生产任务所需时间的中位数 m ,并将完成生产任务所需时间超过 m 和不超过m 的工人数填入下面的列联表:(3) 根据(2)中的列联表,能否有 99%的把握认为两种生产方式的效率有差异?附: K 2n (ad - bc )2, . (a + b )(c + d )(a + c )(b + d )【答案】(1)第二种生产方式的效率更高,理由见解析;(2)列联表见解析;(3)有 99%的把握认为两种生产方式的效率有差异.【解析】(1)第二种生产方式的效率更高. 理由如下:(i ) 由茎叶图可知:用第一种生产方式的工人中,有 75%的工人完成生产任务所需时间至少 80 分钟,用第二种生产方式的工人中,有 75%的工人完成生产任务所需时间至多 79 分钟. 因此第二种生产方式的效率更高.(ii ) 由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为 85.5 分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为 73.5 分钟.因此第二种生产方式的效率更高.(iii ) 由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于 80 分钟;用第二种生产方式的工人完成生产任务平均所需时间低于 80 分钟,因此第二种生产方式的效率更高.(iv ) 由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎 8 上的最多,关于茎 8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎 7 上的最多,关于茎 7 大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高.以上给出了 4 种理由,考生答出其中任意一种或其他合理理由均可得分. (2)由茎叶图知 m = 79 + 81 = 80 .2列联表如下:=2 40(15 15 5 5)(3)由于K⨯-⨯2== 10 > 6.635 ,所以有99%的把握认为两种生产方式的效率有差异.20 ⨯ 20 ⨯ 20 ⨯ 2013.【2018 年高考北京卷文数】电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.(1)从电影公司收集的电影中随机选取1 部,求这部电影是获得好评的第四类电影的概率;(2)随机选取1 部电影,估计这部电影没有获得好评的概率;(3)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)【答案】(1)0.025 ;(2)0.814 ;(3)增加第五类电影的好评率,减少第二类电影的好评率.【解析】(1)由题意知,样本中电影的总部数是140+50+300+200+800+510=2000.第四类电影中获得好评的电影部数是200×0.25=50,50故所求概率为2000= 0.025 .(2)方法1:由题意知,样本中获得好评的电影部数是140×0.4+50×0.2+300×0.15+200×0.25+800×0.2+510×0.1=56+10+45+50+160+51=372.故所求概率估计为1-3722000= 0.814 .方法2:设“随机选取 1 部电影,这部电影没有获得好评”为事件B.没有获得好评的电影共有140×0.6+50×0.8+300×0.85+200×0.75+800×0.8+510×0.9=1628 部.由古典概型概率公式得P(B) =1628= 0.814 .2000(3)增加第五类电影的好评率,减少第二类电影的好评率.14.【2018 年高考天津卷文数】已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7 名同学去某敬老院参加献爱心活动.(1)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(2)设抽出的7 名同学分别用A,B,C,D,E,F,G 表示,现从中随机抽取2 名同学承担敬老院的卫生工作.(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率.5【答案】(1)分别抽取3人,2人,2人;(2)(i)见解析,(ii).21【分析】本小题主要考查随机抽样、用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式等基本知识,考查运用概率知识解决简单实际问题的能力.【解析】(1)由已知,甲、乙、丙三个年级的学生志愿者人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7 名同学,因此应从甲、乙、丙三个年级的学生志愿者中分别抽取 3 人,2 人,2 人.(2)(i)从抽出的7名同学中随机抽取2名同学的所有可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{A,G},{B,C},{B,D},{B,E},{B,F},{B,G},{C,D},{C,E},{C,F},{C,G},{D,E},{D,F},{D,G},{E,F},{E,G},{F,G},共21 种.(ii)由(1),不妨设抽出的7名同学中,来自甲年级的是A,B,C,来自乙年级的是D,E,来自丙年级的是F,G,则从抽出的7 名同学中随机抽取的 2 名同学来自同一年级的所有可能结果为{A,B},{A,C},{B,C},{D,E},{F,G},共5 种.5所以,事件M 发生的概率为P(M)=.21。
概率与统计测试题文科
![概率与统计测试题文科](https://img.taocdn.com/s3/m/cf4a0364227916888586d714.png)
概率与统计测试题(文科)一、选择题(共10题,每小题均只有一个正确答案,每小题5分,共50分)1. 某工厂质检员每隔10分钟从传送带某一位置取一件产品进行检测,这种抽样方法是A.分层抽样B.简单随机抽样C.系统抽样D.以上都不对2.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为7人,则样本容量为( ).A.7 B.15C.25 D.353.在一次教师联欢会上,到会的女教师比男教师多12人,从到会教师中随机挑选一人表演节目.如果每位教师被选中的概率相等,而且选中男教师的概率为920,那么参加这次联欢会的教师共有( ).A.360人B.240人C.144人D.120人4.某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是则样本中净重大于或等于98克并且小于104克的产品的个数是( )A.90B.75C. 60D.455.设矩形的长为a ,宽为b ,其比满足b ∶a =618.0215≈-,这种矩形给人以美感,称为黄金矩形。
黄金矩形常应用于工艺品设计中。
下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:甲批次:0.598 0.625 0.628 0.595 0.639乙批次:0.618 0.613 0.592 0.622 0.620根据上述两个样本来估计两个批次的总体平均数,与标准值0.618比较,正确结论是( )A. 甲批次的总体平均数与标准值更接近B. 乙批次的总体平均数与标准值更接近C. 两个批次总体平均数与标准值接近程度相同D. 两个批次总体平均数与标准值接近程度不能确定6.甲、乙两人各抛掷一次正方体骰子(六个面分别标有数字1,2,3,4,5,6),设甲、乙所抛掷骰子朝上的面的点数分别为x 、y ,则满足复数i x y +的实部大于虚部的概率是( )A .16 B .512 C .712 D .137.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,其中{},1,2,3,4,5,6a b ∈,若1a b -≤,就称甲乙“心有灵犀”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率与统计高考真题练习
1. [2016]下图是我国 2008 年至 2014 年生活垃圾无害化处理量(单位:亿吨)的折线图
(I)由折线图看出,可用线性回归模型拟合 y 与 t 的关系,请用相关系数加以说明; (II)建立 y 关于 t 的回归方程(系数精确到 0.01),预测 2016 年我国生活垃圾无害化处理量.
(1) 记 A 表示事件“旧养殖法的箱产量低于 50kg”,估计 A 的概率;
(2) 填写下面列联表,并根据列联表判断是否有 99%的把握认为箱产量与养殖方法有关:
箱产量<50kg
箱产量≥50kg
旧养殖法
新养殖法
(3) 根据箱产量的频率分布直方图,对两种养殖方法的优劣进行较。
'.
.
3.【2018】某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新生产方式.为 比较两种生产方式效率,选取 40 名工人,将他们随机分成两组,每组 20 人,第一组工人用第一种生产 方式,第二组工人用第二种生产方式.根据工人完成生产任务工作时间(单位:min)绘制了如下茎叶图:
(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由; (2)求 40 名工人完成生产任务所需时间的中位数 ,并将完成生产任务所需时间超过 和不超过 的工人
数填入下面的列联表:
超过
不超过
第一种生产方式
第二种生产方式 (3)根据(2)中的列联表,能否有 99%的把握认为两种生产方式的效率有差异?
4. 【2019】某行业主管部门为了解本行业中小企业的生产情况,随机调查了 100 个企业,得到这些企业
7
7
7
附参考: yi 9.32 , ti yi 40.17 , ( Байду номын сангаасi y)2 0.55 , 7≈2.646.
i 1
i 1
i 1
2.【2017】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了 100 个网箱, 测量各箱水产品的产量(单位:kg), 其频率分布直方图如下:
(精确到 0.01)
附: 74 8.602 .
.
'.
第一季度相对于前一年第一季度产值增长率 y 的频数分布表.
y 的分组 [ 0.20,0)
[0,0.20)
[0.20,0.40) [0.40,0.60) [0.60,0.80)
企业数 2
24
53
14
7
(1)分别估计这类企业中产值增长率不低于 40%的企业比例、产值负增长的企业比例;
(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).