【真题】2015-2016学年湖北省武汉市武昌区八年级(上)期末数学试卷及参考答案PDF
2015-2016人教版八年级数学第一学期期末考试试卷及答案
2015-2016学年度第一学期八年级数学期末考试试卷一、精心选一选(本大题共8小题。
每小题3分,共24分)下面每小题均给出四个选项,请将正确选项的代号填在题后的括号内. 1.下列运算中,计算结果正确的是( ).A. 236a a a ⋅=B. 235()a a =C. 2222()a b a b =D. 3332a a a += 2.23表示( ).A. 2×2×2B. 2×3C. 3×3D. 2+2+2 3.在平面直角坐标系中。
点P (-2,3)关于x 轴的对称点在( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限 4.等腰但不等边的三角形的角平分线、高线、中线的总条数是( ).A. 3B. 5C. 7D. 95.在如图中,AB = AC 。
BE ⊥AC 于E ,CF ⊥AB 于F ,BE 、CF 交于点D ,则下列结论中不正确的是( ). A. △ABE ≌△ACFB. 点D 在∠BAC 的平分线上C. △BDF ≌△CDED. 点D 是BE的中点 6.在以下四个图形中。
对称轴条数最多的一个图形是( ).7.下列是用同一副七巧板拼成的四幅图案,则与其中三幅图案不同的一幅是( ).D.C.B.A.8.下列四个统计图中,用来表示不同品种的奶牛的平均产奶量最为合适的是( ).FEDC BAA. B. C. D.二、细心填一填(本大题共6小题,每小题3分,共18分)9.若单项式23m a b 与n ab -是同类项,则22m n -= .l0.中国文字中有许多是轴对称图形,请你写出三个具有轴对称图形的汉字 . 11.如图是由三个小正方形组成的图形,请你在图中补画一个小正方形,使补画后的图形为轴对称图形.12.如图,已知方格纸中的每个小方格都是相同的正方形.∠AOB 画在方格纸上,请在小方格的顶点上标出一个点P 。
使点P 落在∠AOB 的平分线上.BOA13.数的运算中有一些有趣的对称,请你仿照等式“12×231=132×21”的形式完成:(1)18×891 = × ;(2)24×231 = × .14.下列图案是由边长相等的灰白两色正方形瓷砖铺设的地面,则按此规律可以得到:(1)第4个图案中白色瓷砖块数是 ; (2)第n 个图案中白色瓷砖块数是 .第1个图案 第2个图案 第3个图案三、耐心求一求(本大题共4小题.每小题6分。
八年级(上)期末数学试卷(答案解析)
八年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)以下四家银行的标志图中,不是轴对称图形的是()A.B.C.D.2.(3分)下列运算中正确的是()A.x2÷x8=x﹣4B.a•a2=a2C.(a3)2=a6D.(3a)3=9a33.(3分)使分式有意义的x的取值范围是()A.x>﹣2 B.x<2 C.x≠2 D.x≠﹣24.(3分)下列各式由左边到右边的变形中,是因式分解的是()A.2xy+6xz+3=2x(y+3z)+3 B.(x+6)(x﹣6)=x2﹣36C.﹣2x2﹣2xy=﹣2x(x+y) D.3a2﹣3b2=3(a2﹣b2)5.(3分)化简正确的是()A.B.C. D.6.(3分)如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB的依据是()A.SAS B.SSS C.AAS D.ASA7.(3分)如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是()A.AD=AE B.DB=AE C.DF=EF D.DB=EC8.(3分)如图,在△ABC中,∠B=∠C=60°,点D在AB边上,DE⊥AB,并与AC边交于点E.如果AD=1,BC=6,那么CE等于()A.5 B.4 C.3 D.29.(3分)如图,AD是△ABC的角平分线,∠C=20°,AB+BD=AC,将△ABD沿AD所在直线翻折,点B在AC边上的落点记为点E.那么∠B等于()A.80°B.60°C.40°D.30°10.(3分)如图,已知,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④AC=2CD.其中正确的有()个.A.1 B.2 C.3 D.4二、填空题(共5小题,每小题3分,满分15分)11.(3分)写出点M(﹣2,3)关于x轴对称的点N的坐标.12.(3分)石墨烯目前是世界上最薄、最坚硬的纳米材料,其理论厚度仅0.00000000034米,这个数用科学记数法表示为.13.(3分)若等腰三角形的一个内角比另一个内角大30°,则这个等腰三角形的顶角的度数为.14.(3分)如图,△ABC中,点D在边BC上,若AB=AD=CD,∠BAD=100°,则∠C=度.15.(3分)如图,△ABC中,BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,若∠BAC=84°,则∠BDC=.三、解答题(共75分)16.(8分)计算(1)(a﹣1)2﹣a(a+2)(2)(x﹣6)(x+4)+(3x+2)(2﹣3x)17.(8分)解决下列两个问题:(1)如图1,在△ABC中,AB=3,AC=4,BC=5.EF垂直且平分BC.点P在直线EF上,直接写出PA+PB的最小值,并在图中标出当PA+PB取最小值时点P的位置;解:PA+PB的最小值为.(2)如图2.点M、N在∠BAC的内部,请在∠BAC的内部求作一点P,使得点P到∠BAC两边的距离相等,且使PM=PN.(尺规作图,保留作图痕迹,无需证明)18.(9分)先化简(1﹣)÷,然后从﹣2≤a≤2的范围内选取一个合适的整数作为a的值代入求值.19.(9分)如图,DE∥BC,点A为DC的中点,点B,A,E共线,求证:DE=CB.20.(9分)某市为节约水资源,从2016年1月1日起调整居民用水价格,每立方米水费比2015年上涨.小红家2015年8 月的水费是18元,而2016年8月的水费是33元.已知小红家2016年8月的用水量比2015年8月的用水量多5m3,求该市2015年居民用水的价格.21.(10分)如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小矩形,且m>n.(以上长度单位:cm)(1)观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为;(2)若每块小矩形的面积为10cm2,四个正方形的面积和为58cm2,试求图中所有裁剪线(虚线部分)长之和.22.(11分)如图,Rt△ABC中,∠ACB=90°,AC=BC,点D在斜边AB上,且AD=AC,过点B作BE⊥CD交直线CD于点E.(1)求∠BCD的度数;(2)作AF⊥CD于点F,求证:△AFD≌△CEB.(3)请直接写出CD与BE的数量关系(不需证明).23.(11分)问题情境:如图①,在△ABD与△CAE中,BD=AE,∠DBA=∠EAC,AB=AC,易证:△ABD≌△CAE.(不需要证明)特例探究:如图②,在等边△A BC中,点D、E分别在边BC、AB上,且BD=AE,AD与CE交于点F.求证:△ABD≌△CAE.归纳证明:如图③,在等边△ABC中,点D、E分别在边CB、BA的延长线上,且BD=AE.△ABD与△CAE是否全等?如果全等,请证明;如果不全等,请说明理由.拓展应用:如图④,在等腰三角形中,AB=AC,点O是AB边的垂直平分线与AC 的交点,点D、E分别在OB、BA的延长线上.若BD=AE,∠BAC=50°,∠AEC=32°,求∠BAD的度数.参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)以下四家银行的标志图中,不是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故错误;B、不是轴对称图形,故正确;C、是轴对称图形,故错误;D、不轴对称图形,故错误.故选:B.2.(3分)下列运算中正确的是()A.x2÷x8=x﹣4B.a•a2=a2C.(a3)2=a6D.(3a)3=9a3【解答】解:A、底数不变指数相减,故A错误;B、底数不变指数相加,故B错误;C、底数不变指数相乘,故C正确;D、积的乘方等于乘方的积,故D错误;故选:C.3.(3分)使分式有意义的x的取值范围是()A.x>﹣2 B.x<2 C.x≠2 D.x≠﹣2【解答】解:∵分式有意义,∴x+2≠0,即x≠﹣2.故选:D.4.(3分)下列各式由左边到右边的变形中,是因式分解的是()A.2xy+6xz+3=2x(y+3z)+3 B.(x+6)(x﹣6)=x2﹣36C.﹣2x2﹣2xy=﹣2x(x+y) D.3a2﹣3b2=3(a2﹣b2)【解答】解:A、在等式的右边最后计算的是和,不符合因式分解的定义,故A不正确;B、等式从左边到右边属于整式的乘法,故B不正确;C、等式从左边到右边把一个多项式化成两个整式积的形式,符合因式分解的定义,故C正确;D、多项式a2﹣b2仍然可以继续分解为(a+b)(a﹣b),故D属于分解不彻底,故D不正确;故选:C.5.(3分)化简正确的是()A.B.C. D.【解答】解:原式==x+1,故选:C.6.(3分)如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB的依据是()A.SAS B.SSS C.AAS D.ASA【解答】解:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD ≌△C'O'D',故选:B.7.(3分)如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是()A.AD=AE B.DB=AE C.DF=EF D.DB=EC【解答】解:∵△ABE≌△ACD,∴AB=AC,AD=AE,∠B=∠C,故A正确;∴AB﹣AD=AC﹣AE,即BD=EC,故D正确;在△BDF和△CEF中∴△BDF≌△CEF(ASA),∴DF=EF,故C正确;故选:B.8.(3分)如图,在△ABC中,∠B=∠C=60°,点D在AB边上,DE⊥AB,并与AC边交于点E.如果AD=1,BC=6,那么CE等于()A.5 B.4 C.3 D.2【解答】解:∵在△ABC中,∠B=∠C=60°,∴∠A=60°,∵DE⊥AB,∴∠AED=30°,∵AD=1,∴AE=2,∵BC=6,∴AC=BC=6,∴CE=AC﹣AE=6﹣2=4,故选:B.9.(3分)如图,AD是△ABC的角平分线,∠C=20°,AB+BD=AC,将△ABD沿AD所在直线翻折,点B在AC边上的落点记为点E.那么∠B等于()A.80°B.60°C.40°D.30°【解答】解:根据折叠的性质可得BD=DE,AB=AE.∵AC=AE+EC,AB+BD=AC,∴DE=EC.∴∠EDC=∠C=20°,∴∠AED=∠EDC+∠C=40°.∴∠B=∠AED=40°故选:C.10.(3分)如图,已知,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④AC=2CD.其中正确的有()个.A.1 B.2 C.3 D.4【解答】解:①∵BD为△ABC的角平分线,∴∠ABD=∠CBD,在△ABD和△EBC中,,∴△ABD≌△EBC(SAS),①正确;②∵BD为△ABC的角平分线,BD=BC,BE=BA,∴∠BCD=∠BDC=∠BAE=∠BEA,∵△ABD≌△EBC,∴∠BCE=∠BDA,AD=EC,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,②正确;③由②得:∠BDC=∠BEA,又∵∠ADE=∠BDC,∴∠ADE=∠BEA,∴AD=AE,∴AD=AE=EC,③正确;④∵AD=AE=EC,AE+CE>AD+CD,∴AD>CD,∴AC≠2CD,故④错误,故选:C.二、填空题(共5小题,每小题3分,满分15分)11.(3分)写出点M(﹣2,3)关于x轴对称的点N的坐标(﹣2,﹣3).【解答】解:∵M(﹣2,3),∴关于x轴对称的点N的坐标(﹣2,﹣3).故答案为:(﹣2,﹣3)12.(3分)石墨烯目前是世界上最薄、最坚硬的纳米材料,其理论厚度仅0.00000000034米,这个数用科学记数法表示为 3.4×10﹣10.【解答】解:0.00 000 000 034=3.4×10﹣10,故答案为:3.4×10﹣10.13.(3分)若等腰三角形的一个内角比另一个内角大30°,则这个等腰三角形的顶角的度数为80°或40°.【解答】解:在△ABC中,设∠A=x,∠B=x+30°,分情况讨论:当∠A=∠C为底角时,2x+(x+30°)=180°,解得x=50°,顶角∠B=80°;当∠B=∠C为底角时,2(x+30)+x=180°,解得x=40°,顶角∠A=40°.故这个等腰三角形的顶角的度数为80°或40°.故答案为:80°或40°.14.(3分)如图,△ABC中,点D在边BC上,若AB=AD=CD,∠BAD=100°,则∠C=20度.【解答】解:∵若AB=AD=CD,∠BAD=100°,∴∠B=∠ADC=(180°﹣100°)=40°,又∵在等腰三角形ADC中,∠ADB是三角形ADC的外角,∴∠BDA=∠DAC+∠C,又∵∠C=∠DAC,∴∠C=×40°=20°,故答案为:20.15.(3分)如图,△ABC中,BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,若∠BAC=84°,则∠BDC=96°.【解答】解:过点D作DE⊥AB,交AB延长线于点E,DF⊥AC于F,∵AD是∠BOC的平分线,∴DE=DF,∵DP是BC的垂直平分线,∴BD=CD,在Rt△DEB和Rt△DFC中,,∴Rt△DEB≌Rt△DFC(HL).∴∠BDE=∠CDF,∴∠BDC=∠EDF,∵∠DEB=∠DFC=90°,∴∠EAF+∠EDF=180゜,∵∠BAC=84°,∴∠BDC=∠EDF=96°,故答案为:96°.三、解答题(共75分)16.(8分)计算(1)(a﹣1)2﹣a(a+2)(2)(x﹣6)(x+4)+(3x+2)(2﹣3x)【解答】解:(1)(a﹣1)2﹣a(a+2)=a2﹣2a+1﹣a2﹣2a=﹣4a+1;(2)(x﹣6)(x+4)+(3x+2)(2﹣3x)=x2﹣2x﹣24+4﹣9x2=﹣8x2﹣2x﹣20.17.(8分)解决下列两个问题:(1)如图1,在△ABC中,AB=3,AC=4,BC=5.EF垂直且平分BC.点P在直线EF上,直接写出PA+PB的最小值,并在图中标出当PA+PB取最小值时点P的位置;解:PA+PB的最小值为4.(2)如图2.点M、N在∠BAC的内部,请在∠BAC的内部求作一点P,使得点P到∠BAC两边的距离相等,且使PM=PN.(尺规作图,保留作图痕迹,无需证明)【解答】解:(1)点P的位置如图所示:∵EF垂直平分BC,∴B、C关于EF对称,设AC交EF于D,∴当P和D重合时,AP+BP的值最小,最小值等于AC的长,即最小值为4.故答案为4.(2)如图,①作∠AOB的平分线OE,②作线段MN的垂直平分线GH,GH交OE于点P,则点P即为所求.18.(9分)先化简(1﹣)÷,然后从﹣2≤a≤2的范围内选取一个合适的整数作为a的值代入求值.【解答】解:原式=•=.当a=0时,原式==2.19.(9分)如图,DE∥BC,点A为DC的中点,点B,A,E共线,求证:DE=CB.【解答】证明:∵DE∥BC,∴∠D=∠C,∠E=∠B.∵点A为DC的中点,∴DA=CA.在△ADE和△ACB中,,∴△ADE≌△ACB.∴DE=CB.20.(9分)某市为节约水资源,从2016年1月1日起调整居民用水价格,每立方米水费比2015年上涨.小红家2015年8 月的水费是18元,而2016年8月的水费是33元.已知小红家2016年8月的用水量比2015年8月的用水量多5m3,求该市2015年居民用水的价格.【解答】解:设2015年居民用水价格为x元/m3,则2016年1月起居民用水价格为(1+)x元/m3.…(1分)依题意得:﹣=5.解得x=1.8.检验:当x=1.8时,(1+)x≠0.所以,原分式方程的解为x=1.8.答:2015年居民用水价格为1.8元/m3.21.(10分)如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小矩形,且m>n.(以上长度单位:cm)(1)观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为(m+2n)(2m+n);(2)若每块小矩形的面积为10cm2,四个正方形的面积和为58cm2,试求图中所有裁剪线(虚线部分)长之和.【解答】解:(1)2m2+5mn+2n2可以因式分解为(m+2n)(2m+n);故答案为:(m+2n)(2m+n);(2)依题意得,2m2+2n2=58,mn=10,∴m2+n2=29,∵(m+n)2=m2+2mn+n2,∴(m+n)2=29+20=49,∵m+n>0,∴m+n=7,∴.图中所有裁剪线(虚线部分)长之和为42cm.22.(11分)如图,Rt△ABC中,∠ACB=90°,AC=BC,点D在斜边AB上,且AD=AC,过点B作BE⊥CD交直线CD于点E.(1)求∠BCD的度数;(2)作AF⊥CD于点F,求证:△AFD≌△CEB.(3)请直接写出CD与BE的数量关系(不需证明).【解答】解:(1)∵∠ACB=90°,AC=BC,∴∠A=∠B=45°,∵AD=AC,∴∠ACD=∠ADC==67.5°,∴∠BCD=90°﹣67.5°=22.5°;(2)∵AD=AC,∴CF=FD=CD,∠FAD=CAB=22.5°,∵∠ADC=67.5°,∴∠BDE=67.5°,∴∠DBE=22.5°,∴∠CBE=67.5°,在△AFD和△CEB中,,∴△AFD≌△CEB,(3)CD=2BE,理由如下;∵△AFD≌△CEB,∴BE=DF,∴CD=2BE.23.(11分)问题情境:如图①,在△ABD与△CAE中,BD=AE,∠DBA=∠EAC,AB=AC,易证:△ABD≌△CAE.(不需要证明)特例探究:如图②,在等边△ABC中,点D、E分别在边BC、AB上,且BD=AE,AD与CE交于点F.求证:△ABD≌△CAE.归纳证明:如图③,在等边△ABC中,点D、E分别在边CB、BA的延长线上,且BD=AE.△ABD与△CAE是否全等?如果全等,请证明;如果不全等,请说明理由.拓展应用:如图④,在等腰三角形中,AB=AC,点O是AB边的垂直平分线与AC 的交点,点D、E分别在OB、BA的延长线上.若BD=AE,∠BAC=50°,∠AEC=32°,求∠BAD的度数.【解答】特例探究:证明:∵△ABC是等边三角形,∴AB=AC,∠DBA=∠EAC=60°,在△ABD与△CAE中,,∴△ABD≌△CAE(SAS);解:归纳证明:△ABD与△CAE全等.理由如下:∵在等边△ABC中,AB=AC,∠ABC=∠BAC=60°,∴∠DBA=∠EAC=120°.在△ABD与△CAE中,,∴△ABD≌△CAE(SAS);拓展应用:∵点O在AB的垂直平分线上,∴OA=OB,∴∠OBA=∠BAC=50°,∴∠EAC=∠DBC.在△ABD与△CAE中,,∴△ABD≌△CAE(SAS),∴∠BDA=∠AEC=32°,∴∠BAD=∠OBA﹣∠BDA=18°.。
2015-2016年湖北省武汉市武昌区七校联考八年级上学期期中数学试卷及参考答案
2015-2016学年湖北省武汉市武昌区七校联考八年级(上)期中数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)下列图形中,是轴对称图形的是()A.B.C.D.2.(3分)点P(2,3)关于x轴的对称的点的坐标是()A.(﹣2,3)B.(2,﹣3)C.(2,3) D.(﹣2,﹣3)3.(3分)以下列各组长度的线段为边,能构成三角形的是()A.3cm、4cm、8cm B.5cm、5cm、11cm C.12cm、5cm、6cm D.8cm、6cm、4cm4.(3分)如图,△ABC与△A′B′C′关于直线l对称,且∠A=105°,∠C′=30°,则∠B=()A.25°B.45°C.30°D.20°5.(3分)在△ABC与△A′B′C′中,已知∠A=∠A′,AC=A′C′,下列说法错误的是()A.若添加条件AB=A′B′,则△ABC与△A′B′C′全等B.若添加条件∠C=∠C′,则△ABC与△A′B′C′全等C.若添加条件∠B=∠B′,则△ABC与△A′B′C′全等D.若添加条件BC=B′C′,则△ABC与△A′B′C′全等6.(3分)已知等腰的底边BC=8cm,且|AC﹣BC|=3cm,则腰AC的长为()A.11cm B.11cm或5cm C.5cm D.8cm或5cm7.(3分)如图,M是线段AD、CD的垂直平分线交点,AB⊥BC,∠D=65°,则∠MAB+∠MCB的大小是()A.120°B.130°C.140° D.160°8.(3分)如图,四边形ABCD中,AB∥CD,AD∥BC,且∠BAD、∠ADC的角平分线AE、DF分别交BC于点E、F.若EF=2,AB=5,则AD的长为()A.7 B.6 C.8 D.99.(3分)如图,在四边形ABCD中,AB=AC,∠ABD=60°,∠ADB=78°,∠BDC=24°,则∠DBC=()A.18°B.20°C.25°D.15°10.(3分)如图,等腰Rt△ABC中,∠BAC=90°,AD⊥BC于点D,∠ABC的平分线分别交AC、AD于E、F两点,M为EF的中点,AM的延长线交BC于点N,连接DM,下列结论:①DF=DN;②△DMN为等腰三角形;③DM平分∠BMN;④AE=EC;⑤AE=NC,其中正确结论的个数是()A.2个 B.3个 C.4个 D.5个二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)如果一个多边形的每一个外角都等于60°,则它的内角和是.12.(3分)如果一个等腰三角形一腰上的高与腰的夹角是30°,则它的顶角度数是.13.(3分)如图,在△ABC中,AH⊥BC于H,∠C=35°,且AB+BH=HC,则∠B 度数为.14.(3分)如图,等腰Rt△ABC中,∠ABC=90°,AB=BC.点A、B分别在坐标轴上,且x轴恰好平分∠BAC,BC交x轴于点M,过C点作CD⊥x轴于点D,则的值为.15.(3分)已知Rt△ABC中,∠C=90°,AC=6,BC=8,将它的一个锐角翻折,使该锐角顶点落在其对边的中点D处,折痕交另一直角边于E,交斜边于F,则△CDE的周长为.16.(3分)如图,∠AOB=30°,点P为∠AOB内一点,OP=8.点M、N分别在OA、OB上,则△PMN周长的最小值为.三、解答题(共8题,共72分)17.(8分)若等腰三角形一腰上的中线分周长为6cm或9cm两部分,求这个等腰三角形的底边和腰的长.18.(8分)在平面直角坐标系中,已知点A(2,2)、B(1,0)、C(3,1)(1)画出△ABC关于y轴的轴对称图形△A′B′C′,则点C′的坐标为;(2)画出△ABC关于直线l(直线上各点的纵坐标都为1)的对称图形△A″B″C″,写出点C关于直线l的对称点的坐标C″.19.(8分)如图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E,F,BE=CF.求证:AD是△ABC的角平分线.20.(8分)如图,在△ABC中,△ABC的周长为38cm,∠BAC=140°,AB+AC= 22cm,AB、AC的垂直平分线分别交BC于E、F,与AB、AC分别交于点D、G,求:(1)∠EAF的度数;(2)求△AEF的周长.21.(8分)如图,在等边三角形△ABC中,AE=CD,AD、BE交于P点,BQ⊥AD于Q,(1)求证:BP=2PQ;(2)连PC,若BP⊥PC,求的值.22.(10分)在△ABC中,AD平分∠BAC交BC于D.(1)如图1,∠MDN的两边分别与AB、AC相交于M、N两点,过D作DF⊥AC 于F,DM=DN,证明:AM+AN=2AF;(2)如图2,若∠C=90°,∠BAC=60°,AC=9,∠MDN=120°,ND∥AB,求四边形AMDN的周长.23.(10分)如图1,在平面直角坐标系中,点A、B分别在x轴、y轴上.(1)如图1,点A与点C关于y轴对称,点E、F分别是线段AC、AB上的点(点E不与点A、C重合),且∠BEF=∠BAO.若∠BAO=2∠OBE,求证:AF=CE;(2)如图2,若OA=OB,在点A处有一等腰△AMN绕点A旋转,且AM=MN,∠AMN=90°.连接BN,点P为BN的中点,试猜想OP和MP的数量关系和位置关系,说明理由.24.(12分)如图,在平面直角坐标系中,已知A(0,a)、B(﹣b,0)且a、b满足+|a﹣2b+2|=0.(1)求证:∠OAB=∠OBA;(2)如图1,若BE⊥AE,求∠AEO的度数;(3)如图2,若D是AO的中点,DE∥BO,F在AB的延长线上,∠EOF=45°,连接EF,试探究OE和EF的数量和位置关系.2015-2016学年湖北省武汉市武昌区七校联考八年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)下列图形中,是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故错误;B、是轴对称图形,故正确;C、不是轴对称图形,故错误;D、不是轴对称图形,故错误.故选:B.2.(3分)点P(2,3)关于x轴的对称的点的坐标是()A.(﹣2,3)B.(2,﹣3)C.(2,3) D.(﹣2,﹣3)【解答】解:点P(2,3)关于x轴的对称的点的坐标为(2,﹣3).故选:B.3.(3分)以下列各组长度的线段为边,能构成三角形的是()A.3cm、4cm、8cm B.5cm、5cm、11cm C.12cm、5cm、6cm D.8cm、6cm、4cm【解答】解:根据三角形的三边关系,得A、4+3<8,不能组成三角形;B、5+5<11,不能组成三角形;C、6+5<12,不能够组成三角形;D、4+6>8,能组成三角形.故选:D.4.(3分)如图,△ABC与△A′B′C′关于直线l对称,且∠A=105°,∠C′=30°,则∠B=()A.25°B.45°C.30°D.20°【解答】解:∠C=∠C'=30°,则△ABC中,∠B=180°﹣105°﹣30°=45°.故选:B.5.(3分)在△ABC与△A′B′C′中,已知∠A=∠A′,AC=A′C′,下列说法错误的是()A.若添加条件AB=A′B′,则△ABC与△A′B′C′全等B.若添加条件∠C=∠C′,则△ABC与△A′B′C′全等C.若添加条件∠B=∠B′,则△ABC与△A′B′C′全等D.若添加条件BC=B′C′,则△ABC与△A′B′C′全等【解答】解:A、若添加条件AB=A′B′,可利用SAS判定△ABC≌△A′B′C′,故此选项不合题意;B、若添加条件∠C=∠C′,可利用ASA判定△ABC≌△A′B′C′,故此选项不合题意;C、若添加条件∠B=∠B′,可利用AAS判定△ABC≌△A′B′C′,故此选项不合题意;D、若添加条件BC=B′C′,不能判定△△ABC≌△A′B′C′,故此选项合题意;故选:D.6.(3分)已知等腰的底边BC=8cm,且|AC﹣BC|=3cm,则腰AC的长为()A.11cm B.11cm或5cm C.5cm D.8cm或5cm【解答】解:∵|AC﹣BC|=3cm∴AC﹣BC=±3,而BC=8cm∴AC=11cm或AC=5cm所以AC=11cm或5cm.故选:B.7.(3分)如图,M是线段AD、CD的垂直平分线交点,AB⊥BC,∠D=65°,则∠MAB+∠MCB的大小是()A.120°B.130°C.140° D.160°【解答】解:过M作射线DN,∵M是线段AD、CD的垂直平分线交点,∴AM=DM,CM=DM,∴∠DAM=∠ADM,∠DCM=∠CDM,∴∠MAD+∠MCD=∠ADM+∠CDM=∠ADC,∵∠ADC=65°,∴∠MAD+∠MCD=∠ADC=65°,∴∠AMC=∠AMN+∠CMN=∠DAM+∠ADM+∠DCM+∠CDM=65°+∠ADC=65°+65°=130°∵AB⊥BC,∴∠B=90°,∴∠MAB+∠MCB=360°﹣∠B﹣∠AMC=360°﹣90°﹣130°=140°,故选:C.8.(3分)如图,四边形ABCD中,AB∥CD,AD∥BC,且∠BAD、∠ADC的角平分线AE、DF分别交BC于点E、F.若EF=2,AB=5,则AD的长为()A.7 B.6 C.8 D.9【解答】解:∵AD∥BC,∴∠ADF=∠DFC,∵DF平分∠ADC,∴∠ADF=∠CDF,∴∠DFC=∠FDC,∴CF=CD,同理BE=AB,∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∴AB=CD,AD=BC,∴AB=BE=CF=CD=5,∴BC=BE+CF﹣EF=8,∴AD=BC=8.故选:C.9.(3分)如图,在四边形ABCD中,AB=AC,∠ABD=60°,∠ADB=78°,∠BDC=24°,则∠DBC=()A.18°B.20°C.25°D.15°【解答】解:如图延长BD到M使得DM=DC,∵∠ADB=78°,∴∠ADM=180°﹣∠ADB=102°,∵∠ADB=78°,∠BDC=24°,∴∠ADC=∠ADB+∠BDC=102°,∴∠ADM=∠ADC,在△ADM和△ADC中,,∴△ADM≌△ADC,∴AM=AC=AB,∵∠ABD=60°,∴△AMB是等边三角形,∴∠M=∠DCA=60°,∵∠DOC=∠AOB,∠DCO=∠ABO=60°,∴∠BAO=∠ODC=24°,∵∠CAB+∠ABC+∠ACB=180°,∴24°+2(60°+∠CBD)=180°,∴∠CBD=18°,故选:A.10.(3分)如图,等腰Rt△ABC中,∠BAC=90°,AD⊥BC于点D,∠ABC的平分线分别交AC、AD于E、F两点,M为EF的中点,AM的延长线交BC于点N,连接DM,下列结论:①DF=DN;②△DMN为等腰三角形;③DM平分∠BMN;④AE=EC;⑤AE=NC,其中正确结论的个数是()A.2个 B.3个 C.4个 D.5个【解答】解:∵∠BAC=90°,AC=AB,AD⊥BC,∴∠ABC=∠C=45°,AD=BD=CD,∠ADN=∠ADB=90°,∴∠BAD=45°=∠CAD,∵BE平分∠ABC,∴∠ABE=∠CBE=∠ABC=22.5°,∴∠BFD=∠AEB=90°﹣22.5°=67.5°,∴AFE=∠BFD=∠AEB=67.5°,∴AF=AE,AM⊥BE,∴∠AMF=∠AME=90°,∴∠DAN=90°﹣67.5°=22.5°=∠MBN,在△FBD和△NAD中∴△FBD≌△NAD,∴DF=DN,∴①正确;在△AFB和△△CNA中∴△AFB≌△CAN,∴AF=CN,∵AF=AE,∴AE=CN,∴⑤正确;∵∠ADB=∠AMB=90°,∴A、B、D、M四点共圆,∴∠ABM=∠ADM=22.5°,∴∠DMN=∠DAN+∠ADM=22.5°+22.5°=45°,∴DM平分∠BMN∴③正确;∵∠DNA=∠C+∠CAN=45°+22.5°=67.5°,∴∠MDN=180°﹣45°﹣67.5°=67.5°=∠DNM,∴DM=MN,∴△DMN是等腰三角形,∴②正确;∵等腰Rt△ABC中,∠BAC=90°,∴BC=AB,∵BE是∠ABC的平分线,∴,∴AE=,∴④错误,即正确的有4个,故选:C.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)如果一个多边形的每一个外角都等于60°,则它的内角和是720°.【解答】解:多边形边数为:360°÷60°=6,则这个多边形是六边形;∴内角和是:(6﹣2)•180°=720°.故答案为:720°.12.(3分)如果一个等腰三角形一腰上的高与腰的夹角是30°,则它的顶角度数是120°或60°.【解答】解:当高在内部时,顶角=90°﹣30°=60°;当高在外部时,得到顶角的外角=90°﹣30°=60°,则顶角=120°.故答案为:120°或60°.13.(3分)如图,在△ABC中,AH⊥BC于H,∠C=35°,且AB+BH=HC,则∠B 度数为70°.【解答】解:在CH上截取DH=BH,连接AD,∵AH⊥BC,∴∠AHB=∠AHD=90°,在△ABH≌△ADH中,∵∴△ABH≌△ADH,∴AD=AB∵AB+BH=HC,HD+CD=CH∴AD=CD∴∠C=∠DAC,又∵∠C=35°∴∠B=∠ADB=70°.14.(3分)如图,等腰Rt△ABC中,∠ABC=90°,AB=BC.点A、B分别在坐标轴上,且x轴恰好平分∠BAC,BC交x轴于点M,过C点作CD⊥x轴于点D,则的值为.【解答】解:设AB=BC=a,则AC=a∵MA(即x轴)平分∠BAC∴,即MC=BM∵BC=BM+MC=a,∴BM+BM=a解得BM=(﹣1)a,MC=(2﹣)a则AM==a,∵∠ABM=∠CDM=90°且∠AMB=∠CMD∴Rt△ABM∽Rt△CDM,∴,即CD=,∴=.故答案为:.15.(3分)已知Rt△ABC中,∠C=90°,AC=6,BC=8,将它的一个锐角翻折,使该锐角顶点落在其对边的中点D处,折痕交另一直角边于E,交斜边于F,则△CDE的周长为11或10.【解答】解:当角B翻折时,B点与D点重合,DE与EC的和就是BC,也就是说等于8,CD为AC的一半,故△CDE的周长为8+3=11;当A翻折时,A点与D点重合.同理DE与EC的和为AC=6,CD为BC的一半,所以CDE的周长为6+4=10.故△CDE的周长为10.16.(3分)如图,∠AOB=30°,点P为∠AOB内一点,OP=8.点M、N分别在OA、OB上,则△PMN周长的最小值为8.【解答】解:分别作点P关于OA、OB的对称点P1、P2,连P1、P2,交OA于M,交OB于N,连接OP,则OP1=OP=OP2,∠P1OA=∠POA,∠POB=∠P2OB,MP=P1M,PN=P2N,则△PMN的周长的最小值=P1P2∴∠P1OP2=2∠AOB=60°,∴△OP1P2是等边三角形.△PMN的周长=P1P2,∴P1P2=OP1=OP2=OP=8.故答案为:8.三、解答题(共8题,共72分)17.(8分)若等腰三角形一腰上的中线分周长为6cm或9cm两部分,求这个等腰三角形的底边和腰的长.【解答】解:设等腰三角形的腰长、底边长分别为x cm,y cm,依题意得或解得或.故这个等腰三角形的腰长为6 cm,底边长为3 cm,或腰长为4 cm,底边长为7 cm18.(8分)在平面直角坐标系中,已知点A(2,2)、B(1,0)、C(3,1)(1)画出△ABC关于y轴的轴对称图形△A′B′C′,则点C′的坐标为(﹣3,1);(2)画出△ABC关于直线l(直线上各点的纵坐标都为1)的对称图形△A″B″C″,写出点C关于直线l的对称点的坐标C″(3,﹣3).【解答】解:(1)如图所示,由图可知C′(﹣3,1).故答案为:(﹣3,1);(2)如图所示,由图可知C″(3,﹣3).故答案为:(3,﹣3).19.(8分)如图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E,F,BE=CF.求证:AD是△ABC的角平分线.【解答】证明:∵DE⊥AB,DF⊥AC,∴Rt△BDE和Rt△DCF是直角三角形.,∴Rt△BDE≌Rt△DCF(HL),∴DE=DF,又∵DE⊥AB,DF⊥AC,∴AD是角平分线.20.(8分)如图,在△ABC中,△ABC的周长为38cm,∠BAC=140°,AB+AC= 22cm,AB、AC的垂直平分线分别交BC于E、F,与AB、AC分别交于点D、G,求:(1)∠EAF的度数;(2)求△AEF的周长.【解答】解:(1)∵DE、FG分别垂直平分AB、AC,∴EA=EB,FA=FC,∴∠EBA=∠EAB,∠FAC=∠FCA.设∠EBA=∠EAB=α,∠FAC=∠FCA=β,∵∠BAC=140°,∴α+β=40°,∴∠BAE+∠FAC=40°,∴∠EAF=140°﹣40°=100°;(2)△AEF的周长=AE+AF+EF=BE+EF+FC=BC=38﹣22=16cm.21.(8分)如图,在等边三角形△ABC中,AE=CD,AD、BE交于P点,BQ⊥AD 于Q,(1)求证:BP=2PQ;(2)连PC,若BP⊥PC,求的值.【解答】证明:(1)在等边△ABC中,AB=AC,∠BAE=∠ACD=60°,在△BAE和△ACD中,,∴△BAE≌△ACD(SAS),∴∠ABE=∠CAD,∴∠BPQ=∠ABE+∠BAP=∠CAD+∠BAP=∠BAC=60°,∵BQ⊥AD于Q,∴∠BPQ=30°,∴BP=2PQ;(2)∵∠ABE=∠CAD,∴∠ABC﹣∠ABE=∠BAC﹣∠CAD,即∠PBC=∠BAQ,在△BAQ和△CBP中,,∴△BAQ≌△CBP(AAS),∴AQ=BP=2PQ,∴AP=PQ,即.22.(10分)在△ABC中,AD平分∠BAC交BC于D.(1)如图1,∠MDN的两边分别与AB、AC相交于M、N两点,过D作DF⊥AC 于F,DM=DN,证明:AM+AN=2AF;(2)如图2,若∠C=90°,∠BAC=60°,AC=9,∠MDN=120°,ND∥AB,求四边形AMDN的周长.【解答】证明:(1)过点D作DG⊥AB于G,如图1,∵AD平分∠BAC,DF⊥AC,∴DF=DG,在Rt△DFN和Rt△DGM中,∴Rt△DFN≌Rt△DGM(HL),∴MG=NF又∵AG=AF,∴AM+AN=AG+MG+AN=AF+NF+AN=2AF;(2)过点D作DE⊥AB于E,如图2,在四边形ACDE中,∠EDC=360°﹣60°﹣90°﹣90°=120°,∴∠EDN+∠MDE=120°,又∠EDN+∠NDC=120°,∴∠MDE=∠NDC,∵AD平分∠BAC,∴DE=DC,在△MDE和△NDC中,,∴△MDE≌△NDC(ASA),∴DM=DN,∵ND∥AB,∴∠NDC=∠B=30°,∠DNC=60°,∴∠MDB=180°﹣120°﹣30°=30°,∴△MDB为等腰三角形,∴MB=MD,∴∠ADM=90°,∴AM=2DM,在Rt△ABC中,∠B=30°,∴AB=2AC=18,AM=AB=12,BM=AB=DM=6,同理:AN=DN=DM=6,∴四边形AMDN的周长为12+6+6+6=30.23.(10分)如图1,在平面直角坐标系中,点A、B分别在x轴、y轴上.(1)如图1,点A与点C关于y轴对称,点E、F分别是线段AC、AB上的点(点E不与点A、C重合),且∠BEF=∠BAO.若∠BAO=2∠OBE,求证:AF=CE;(2)如图2,若OA=OB,在点A处有一等腰△AMN绕点A旋转,且AM=MN,∠AMN=90°.连接BN,点P为BN的中点,试猜想OP和MP的数量关系和位置关系,说明理由.【解答】证明:(1)如图1,设∠OBE=α,∠AEF=β,∴∠BAO=∠BEF=2α,∵点A、C关于y轴对称,∴BA=BC,∴∠BAO=∠BCO=2α∵∠AEB=2α+β=∠BCO+∠EBC ∴∠EBC=β,即∠EBC=∠AEF∵∠BFE=∠BAO+∠FEA=2α+β又∠ABO=∠CBO=α+β∴∠FBE=α+β+α=2α+β∴∠BFE=∠FBE∴EB=EF,在△AEF和△CBE中∴△AEF≌△CBE(AAS)∴AF=CE(2)OP=MP且OP⊥MP,理由如下:延长MP至C,且使PC=MP,连接BC、MO,延长AM交BC于D,连接CO,NO,∵点P为BN的中点,∴PN=PB,在△MPN和△CPB中∴△MPN≌△CPB(SAS)∴BC=MN=AM,∠MNP=∠CBP,∴MN∥BC,∵∠AMN=90°∴AD⊥BC,∴∠MAO=∠CBO,∴∠MOA=∠COB,MO=CO,∴∠MOC=∠MOB+∠BOC=∠MOB+∠MOA=∠AOB=90°∴△MOC为等腰直角三角形,∵MP=CP,∴OP⊥MP且OP=MP.24.(12分)如图,在平面直角坐标系中,已知A(0,a)、B(﹣b,0)且a、b 满足+|a﹣2b+2|=0.(1)求证:∠OAB=∠OBA;(2)如图1,若BE⊥AE,求∠AEO的度数;(3)如图2,若D是AO的中点,DE∥BO,F在AB的延长线上,∠EOF=45°,连接EF,试探究OE和EF的数量和位置关系.【解答】解:(1)∵a、b满足+|a﹣2b+2|=0.∴∴,∴A(0,2)、B(﹣2,0),∴OA=OB,∴△AOB为等腰直角三角形∴∠OAB=∠OBA=45°,(2)如图1,过点O作OF⊥OE交AE于F,∵∠AOF+∠BOF=90°,∠BOE+∠BOF=90°∴∠AOF=∠BOE,∵BE⊥AE,∴∠AEB=90°又∠AOB=90°∴∠OBE=∠AOF在△OBE和△OAF中,∴△OBE≌△OAF(ASA)∴OE=OF∴△OEF为等腰直角三角形∴∠AEO=45°(3)过点F作FG⊥OF交OE的延长线于G,过点F作FH⊥FB交x轴于H,延长DE交HG于I,∵∠EOF=45°,∠HBF=∠ABO=45°,∴△OFG、△HFB为等腰直角三角形,∵∠HFG+∠GFB=90°,∠BFO+∠GFB=90°∴∠HFG=∠BFO,在△HFG和△BFO中,∴△HFG≌△BFO(SAS)∴FG=FO,GH=OB=OA∴△FGO为等腰直角三角形,又∠GHF=∠OBF=135°∴∠GHO=90°∴HI=OD=IG在△EIG和△EDO中,∴△EIG≌△EDO(AAS)∴EG=EO∴FE=EO且FE⊥EO(三线合一).赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.O DAB CEAOD CB2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。
2015-2016学年度第一学期期末八年级数学试题(含答案)
2015—2016学年度第一学期期末考试八 年 级 数 学 试 卷试卷说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,满分120分,考试时间100分钟。
答题前,学生务必将自己的姓名和学校、班级、学号等填写在答题卷上;答案必须写在答题卷各题目指定区域内的相应位置上;考试结束后,只需将答题卷交回。
第Ⅰ卷(选择题)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项正确) 1、9的平方根是( ).A .3B .-3C .±3D .±32、将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是( ).A .1、2、3B . 2、3、4C . 3、4、5D .4、5、63、下列说法:①实数与数轴上的点一一对应;②2a 没有平方根;③任何实数的立方根有且只有一个;④平方根与立方根相同的数是0和1.其中正确的有( ) A .1个 B .2个 C .3个 D .4个4、下列各组图形,可以经过平移变换由一个图形得到另一个图形的是( ).A B C D5、若一个多边形的内角和等于720°,则这个多边形的边数是( ). A .5 B .6 C .7 D .86、为筹备本班元旦联欢晚会,在准备工作中,班长对全班同学爱吃什么水果作了民意调查,再决定最终买哪种水果,下面的调查数据中,他最关注的是( ) A .中位数 B .平均数 C .加权平均数 D .众数7、如图,已知棋子“车”的坐标为(-2,3),棋子“马” 的坐标为 (1,3),则棋子“炮”的坐标为( ).A .(3,1)B .(2,2)C .(3,2)D .(-2,2)8.下列一次函数中,y 的值随着x 值的增大而减小的是( ). A .y =x B .y =-x C .y =x +1 D .y = x -19、如图所示,两张等宽的纸条交叉重叠在一起,则重叠部分ABCD 一定是( ). A .菱形 B .矩形 C .正方形 D .梯形10、一水池蓄水20 m 3,打开阀门后每小时流出5 m 3,放水后池内剩下的水的立方数Q (m 3)与放水时间t (时)的函数关系用图表示为( )A B C D(第9题图)(第7题图)第Ⅱ卷(非选择题)二、填空题(本大题共5小题,每小题3分,共15分,将答案填写在题中横线上) 11、比较大小:3(填“>”、“<”、或“=”).12、写出一个你所学过的既是轴对称又是中心对称图形的四边形: .13、如图,是用形状、大小完全相同的等腰梯形密铺成的图案,则这个图案中的等腰梯形的底角(指锐角)是 度.14、 如图,若直线l 1:32-=x y 与l 2:3+-=x y 相交于点P ,则根据图象可得,二元一次方程组⎩⎨⎧=+=-332y x y x 的解是 . 15、 如图,在直角坐标平面内的△ABC 中,点A 的坐标为(0,2),点C 的坐标为(5,5),要使以A 、B 、 C 、D 为顶点的四边形是平行四边形,且点D 坐标在第一象限,那么点D 的坐标是 .三、解答题(本大题共10小题,共75分。
湖北省武汉市硚口区2015-2016学年度上学期期末测试八年级数学试卷(有答案)
A B C D 2015~2016学年度第一学期期末考试八年级数学试卷一.选择题(共10小题,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答卷上将正确答案的代号涂黑. 1.若分式122+-x x 的值为0,则x 的值为 A .2B .-2C .21D .-21 2.以下列各组长度的线段为边,能构成三角形的是A .3,4,8B .5,6,10C .5,6,11D .5,9,153.分式y x 3与223yx的最简公分母是 A .6y B .3y2C .6y2D .6y 34.下列平面图形中,不是..轴对称图形的是5.下列计算正确的是A. 2x 2-4x 2=-2B. 3x +x =3x 2C. 3x ×x =3x 2D. 4x 6÷2x 2=3x 36.下列四个整式:①x 2-4x+4; ②6x 2+3x+1; ③4x 2+4x+1; ④x 2+4xy+2y 2.其中是完全平方式的是A.①③B.①②③C.②③④D.③④7. 如图,等腰△ABC 中,AB=AC , AB 的垂直平分线MN 交AC 于点D ,∠DBC=15°, 则∠A 的度数是A .35°B .40°C .50°D .55°8.已知a-b=10,ab=5,则a 2+b 2的值为A .110B .95C .90D .105 9. AD 是△ABC 的中线,若AB =5,AC =9,则AD 的值不.可能的是 A .3 B .4 C .5 D .810.如图,在四边形ABDC 中, 对角线AD 、BC 交于点O, 90=AC ∠B , 90=DC ∠B ,BD=CD,AB =2,AC =4,记△AO C 的面积为S 1、△BO D 的面积为S 2,则S 1 -S 2的值为A .1B .1.5C .2D .2.5二.填空题(共6小题,共18分) 11.将分式约分:253x x =________12.禽流感病毒的形状一般为球形,直径大约为0.000102千米,数0.000102用科学记数法表示为________.13.若一个n 边形的内角和为720°,则边数n =________. 14. 已知a m=2, a n=3, 则2m na+ 的值是 .15.如图,AD ,BE 为锐角△ABC 的高,若BF = AC ,BC = 7,CD = 2, 则AF 的长为_____. 16.如图,△ABC ≌△A’ BC’,∠ABC=90°,∠A’=30°.(0°<∠AB A’≤60°),A’C’与AC交于点F ,与AB 交于点E ,连接BF .当△BEF 为等腰三角形时,则∠AB A’的角度为______.三.解答题(共8小题,共72分) 17.(本题8分)解方程: xx 332=-18.(本题8分)如图,已知点B 、E 、C 、F 在同一条直线上,AB =DE ,AC =DF ,BE =CF. 求证:(1)△ABC ≌△DEF ;(2)AB ∥DE.19.(本题8分)因式分解AE CDBF(1) 2mx 2-2my 2(2) (2x +4)2-162x20.(本题8分)计算(1) ()()2324322a a a aa ⋅⋅++-(2) [(a +2b)2-(a +2b)( a -2b)-7b 2]÷2b,21.(本题8分)如图,在平面直角坐标系中,已知A (1,2)、B (3,1)、C (4,3). (1) 直接写出点C 关于y 轴的对称点的坐标;(2) 作△ABC 关于直线m (直线m 上各点的纵坐标都为-1)的对称图形△A 1B 1C 1,写出点C 关于直线m 的对称点C 1的坐标;(3)点P 是坐标轴上一点,使△ABP 是等腰三角形,则符合条件的点P 的个数有_______.22.(本题10分)列方程解应用题 (1)甲、乙两人生产相同的零件,甲比乙每小时多生产30个,甲生产900个所用的时间与乙生产600个所用的时间相等,求甲、乙两人每小时各生产多少个零件?(2)某次列车平均提速v km/h.用相同的时间,列车提速前行驶s km ,提速后比提速前多行驶50 km ,提速前列车的平均速度为多少?23.(本题10分)在平面直角坐标系中,点A在y轴正半轴上.(1)如图1,以OA为底边向第一象限作等腰△OAK,直线BC∥y轴,交AK,OK分别于点B,C.求证:AB=OC;(2)如图2,点D(2a,0),(a>0),点P(a,b)在线段AD上,连接PB,PC,求证:PB=PC;(3)如图3(示意草图),已知A(0,2),E(6,3),M(m,0),N(m+1,0),若AM+MN+NE最小,请在备用图中画出线段MN(保留主要画图痕迹),并求出点M的坐标.24.(本题12分)已知:点D,E分别是等边△ABC的边BC,AB上的点,∠ADE=60°.(1)如图1,当点D是BC的中点时,求证:AE=3BE;(2)如图2,点M在AC上,满足∠ADM=60°,求证:BE=CM;(3)如图3,作CF∥AB交ED的延长线于点F,探究线段BE,CF,CD之间的数量关系,并给出证明.2015---2016学年度第一学期期末考试八年级数学考答案1.A 2.B 3.C 4.A5.C6.D7.D8.B9.D 10.A10题详细答案作DE ⊥AB 于E,作DF ⊥AC 于F,△DEB ≅DFC AB+AC=AE+AF S ABCD =SAEDF=2AE =9 S △ABC=4 S △BDC=5 S △DBO:S △DOCS △ABO:S △AOC=AB:AC=1:2 S △AOC=38 S △BOD=35 11.331x 12. 41002.1-⨯ 13.6 14.3615.316.200,400(全对,得3分;否则,每对一个答案得1分)17.解:去分母,方程两边同乘以x(x – 3) 得 ………2分 2x= 3(x – 3) ………4分∴x = 9 ……… 6分 检验:x=9时, x(x – 3)≠0 . ………7分 ∴ 原方程的解是x=9. ………8分 18.证明:(1)∵BE =CF∴ BE+EC =CF+EC, 即 BC=EF ………2分 在△ABC ≌△DEF 中,AB =DE ,AC =DF ,BC=EF ………4分 ∴ △ABC ≌△DEF ………6分(2)由(1)△ABC ≌△DEF 得∠B =∠DEC ………7分∴AB ∥DE. ………8分19.(1)原式=2m(x 2-y 2) ………2分=2m(x+y)(x-y)………4分 (2)原式= (2x +4+4x)(2x +4-4x)………6分=(x+2)2(x-2)2………8分20.(1) 原式=a 6+a 6-8a 6………3分=-6a 6………4分(2) 原式=(a 2+4ab+4b 2-a 2+4b 2-7b 2)÷2b ………7分=(4ab+b 2)÷2b=2a+b 21………8分 21.(1) (-4,3) ………2分 (2)画图略,C 1(4,-5) ………6分 (3)5………8分 22.(1)解:设甲每小时生产x 个零件,则乙每小时生产(x-30)个零件,依题意,得30600900-=x x ………3分 解方程得: x=90 ………4分经检验,原方程的解是x=90 答:甲、乙两人每小时各生产90,60个零件 .………5分(2)解:设提速前这次列车的平均速度为x km/h ,则根据行驶时间的等量关系,得:50s s v x v+=+………7分 方程两边乘()x x v +,得: ()(50)s x v x s +=+ 解得:50sv x =………9分检验:由v ,s 都是正数,当50sv x =时()0x x v +≠,所以,原分式方程的解为50sv x =答:提速前列车的平均速度为50sv km/h .………10分23.(1)证明:依题意AK=OK,得∠KAO=∠KOA, ……1分∵BC ∥y 轴 ∴∠KBC=∠KAO=∠KOA=∠KCB∴KB=KC ……2分 ∴AK-KB=KO-KC, 即AB=OC ; ……3分 (2)连接OP, 过P 作P E ⊥OD 于E ,∵点D (2a ,0),点P(a ,b)∴OD=2a,OE=a, ∴OE=ED, ∴PO=PD ……4分∴∠POD=∠PDO又∵∠POD+∠POA=∠PDO+∠DAO=900∴∠POA=∠PAO ……5分∴ PA=PO, ∠PAB=∠POC 又∵AB=OC ,∴△PAB ≌△POC , ∴PB=PC ……6分 (3)将点E (6,3)向左平移一个单位长度至点E 1(5,3), ……7分 作点A (0,2)关于x 轴的对称点A 1(0,-2) ……8分 连接E 1 A 1交于x 轴点M, 作 E 1 H ⊥A 1A 于H,得E 1 H=5= A 1 H∴∠E 1A 1H=450 ∴∠OMA 1=450 ……9分∴OM=OA 1=2 即点M 的坐标为(2, 0). ……10分24. (1)证明:∵点D 是等边△ABC 的边BC 的中点,∠ADE=60°∴∠ADB= 90°,∠BDE=∠BAD=30° , ∠BED =90° ……1分 在Rt △BED 与Rt △ABD 中∴BD=2BE , AB=2BD =4BE ……2分∴ AE=AB-BE=3BE ……3分(2)作AF ⊥ED 于F ,作AH ⊥DM 于H, ∴∠AFE=∠AHM= 90°∵ ∠ADE=∠ADM=60° ∴ AF=AH ……4分又∵ ∠BAC =60° ,四边形 AEDM 的内角和=3600∴∠AED+∠AMD = 180°, 又∵∠AMH+∠AMD = 180°,∴∠AED =∠AMH ……5分∴△AEF ≌△AMH∴ AE=AM ……6分∵ AB=AC ∴ AB-AE=AC –AM, 即BE=CM. ……7分 方法二延长DE 至G,使DG=AD,则△ADG 是等边三角形 ,△AGE ≌△ADM AE=AM方法三,延长DM至Q,使DQ=AD ,△ADE≌△ADQ AE=AQ 再证AM=AQ(3)延长CF至点N使FN=BE,连接NB,EN.∵CF∥AB∴∠BEN=∠ENF,∠BCF =∠ABC= 60°又∵EN=NE ∴△BEN≌△FNE……8分∴∠BNE=∠FEN∴ EF∥BN∴∠CDF=∠CBN……10分又∵∠ADE+∠ADC +∠CDF= 180°, ∠ACD+∠ADC +∠CAD= 180°∠ADE=∠ACB= 60°∴∠CDF=∠CAD又∠CDF=∠CBN∴∠CAD=∠CBN ……11分又CA=CB, ∠BCF=∠ACB=600 ∴△ACD≌△BCN∴ CD=CN=CF+BE. ……12分方法二在AB上截取EM=CF 由CF∥BM EM=CF 得 EF∥CM ∠BMC=∠BED ∠BED +∠BDE= 60°, ∠BDE+∠ADC = 60°∠BED=∠ADC 再证△BMC≌△CDA 方法三作∠ADP= 60°交AC于P,作∠CDG= 60°交AC于G,由(2)知BE=CP ∠GDP +∠PDC= 60°, ∠CDF+∠PDC = 60°∠GDP=∠CDF △DGP≌△DCF GP=CF CD=GC=GP+PC=CF+BE。
2015-2016学年度上学期期末考试八年级数学试卷(含答案)
2015—2016学年度上学期期末考试八年级数学试题注意事项:1.本卷满分120分,考试时间120分钟。
2.本卷是试题卷,不能答题。
答题必须写在答题卡上。
解题中的辅助线和需标注的角、字母、符号等务必添在答题卡的图形上。
3.在答题卡上答题,选择题必须用2B铅笔填涂,非选择题必须用0.5毫米黑色签字笔或黑色墨水钢笔作答。
★祝考试顺利★一、选择题(每小题3分,共30分)1.下列图形中轴对称图形是()ABCD2,.已知三角形的三边长分别是3,8,x,若x的值为偶数,则x的值有( )A.6个B.5个C.4个D.3个3.一个多边形截去一个角后,形成的多边形的内角和是2520°,则原多边形的边数是( )A.15或16B.16或17C.15或17D.15.16或174.如图,△ACB≌△A'CB',∠BCB'=30°,则∠ACA'的度数为( )A.20°B.30°C.35°D.40°5, 等腰三角形的两边长分别为5cm 和10cm,则此三角形的周长是()A.15cmB. 20cmC. 25cmD.20cm或25cm6.如图,已知∠CAB=∠DAB,则添加下列一个条件不能使△ABC≌△ABD的是( )A.AC=ADB.BC=BDC.∠C=∠DD.∠ABC=∠ABD7.如图,已知在△ABC中,CD是AB边上的高,BE平分∠ABC,交CD于点E,BC=5,DE =2,则△BCE的面积等于( )A.10B.7C.5D.4第9题图 8.若()22316m x x+-+是完全平方式,则m 的值等于( )A. 3B. -5C.7D. 7或-19.如图,在△ABC 中,AB =AC ,BE=CD ,BD =CF ,则∠EDF 的度数为 ( ) A .1452A ︒-∠ B .1902A ︒-∠ C .90A ︒-∠ D .180A ︒-∠第10题 10.如上图,等腰Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D ,∠ABC 的平分线分别交AC 、AD 于E 、F 两点,M 为EF 的中点,AM 的延长线交BC 于点N ,连接DM ,下列结论:① DF =DN ;② △DMN 为等腰三角形;③ DM 平分∠BMN ;④ AE =32EC ;⑤ AE =NC ,其中正确结论的个数是( )A .2个B .3个C .4个D .5个二、填空题(每小题3分,共24分)11.计算:()()312360.1250.2522⨯-⨯⨯- = 12,在实数范围内分解因式:3234a ab - = 13.若2,3,mn xx ==则2m nx+=14.若A (x ,3)关于y 轴的对称点是B (﹣2,y ),则x=__________,y=__________,点A 关于x 轴的对称点的坐标是__________.15,如图,△ABC 中,DE 是AC 的垂直平分线,AE =3 cm ,△ABD 的周长是13 cm ,则△ABC 的周长为 _________第15题图 第17题图16,已知等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为40°,求此等腰三角形的顶角为17.如图,∠AOB =30°,点P 为∠AOB 内一点,OP =8.点M 、N 分别在OA 、OB 上,则△PMN 周长的最小值为__________2第18题图18. 如图所示,在△ABC 中,∠A =80°,延长BC 到D ,∠ABC 与∠ACD 的平分线相交于A 1点,∠A 1BC 与∠A 1CD 的平分线相交于A 2点,依此类推,∠A 4BC 与∠A 4CD 的平分线相交于A 5点,则∠A 5的度数是 。
武昌区2015~2016学年度第二学期期末学业水平测试八年级数学试卷(word版有答案)
武昌区2015~2016学年度第二学期期末学业水平测试八年级数学试卷一、选择题(共10小题,每小题3分,共30分)1.二次根式2-x 在实数范围内有意义,则x 的取值范围是( ) A .x >2B .x >-2C .x ≥2D .x ≥-22.下列二次根式不是最简二次根式的是( ) A .5B .10C .15D .203.一次函数y =2x -1的图象不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限4.甲、乙、丙、丁四人进行100 m 短跑训练,统计近期10次测试的平均成绩都是13.2s ,10次测试成绩的方差如下表:选手 甲 乙 丙 丁 方差(s 2) 0.020 0.019 0.021 0.022 则这四人中发挥最稳定的是( ) A .甲B .乙C .丙D .丁5.下列计算正确的是( ) A .2222=-B .632=⨯C .6212=÷D .1028=+6.若△ABC 中,AB =10,BC =6,AC =8,则下列判断正确的是( ) A .∠A =90° B .∠B =90° C .∠C =90° D .△ABC 是锐角三角形 7.若一次函数y =(m -3)x +5的函数值y 随x 的增大而增大,则m 的取值范围是( ) A .m >0B .m <0C .m >3D .m <38.为加强公民的节水意识,合理利用水资源.某市对居民用水实行阶梯水价,居民家庭每月用水量划分为两个阶梯,一、二级阶梯用水的单价之比等于1∶1.5.如图折线表示实行阶梯水价后每月水费y 元与用水量x m 3之间的函数关系.某户5月份按照阶梯水价缴水费108元,其相应用水量是( ) A .27 m 3B .28 m 3C .29 m 3D .30 m 39.某单位若干名职工参加普法知识竞赛,将成绩制成如图所示的扇形统计图和条形统计图,根据图中提供的信息,这些职工成绩的中位数和平均数分别是( ) A .97分,96分 B .96分,96分 C .95分,96.4分D .97分,96.4分10.在矩形ABCD 中,AD =2AB ,点G 、H 分别在AD 、BC 上,连BG 、DH .若四边形BHDG 为菱形,则ADAG等于( ) A .54B .53 C .94 D .83二、填空题(本大题共6个小题,每小题3分,共18分) 11.计算2)32(=__________12.一组数据1、2、x 、4的众数是1,则x =__________ 13.直线y =2x +1与y 轴的交点坐标为__________14.在菱形ABCD 中,若∠A +∠C =120°,AC =32,则菱形ABCD 的周长为__________ 15.如图,在正方形ABCD 中,AB =3,E 为BC 上一点,连接AE ,H 为AE 的中点,过点H 作直线FG 交AB 于F ,交CD 于G .若∠AHF =30°,AE =FG ,则CG 的长度为__________16.一次函数y =kx +k 的图象与函数y =|x -1|的图象有两个交点,则k 的取值范围是________三、解答题(共8题,共72分) 17.(本题8分)计算:(1) 2818+- (2) )13)(23(-+18.(本题8分)如图,在△ABC 中,AD ⊥BC 于点D ,AB =5,BD =3,DC =2 (1) 求AD 的长 (2) 求AC 的长19.(本题8分)如图,四边形ABCD 是矩形,AC 、BD 相交于点O (1) 求证:∠1=∠2(2) 作CF ⊥BD 于点F ,若∠2=28°,求∠OCF 的度数20.(本题8分)学校准备从甲、乙两位选手中选择一位选手代表学生参加所在地区的汉字听写大赛,学校对两位选手从表达能力、阅读理解、综合素质和汉字听写四个方面做了测试,他们各自的成绩(百分制)如下表:选手表达能力阅读理解综合素质汉字听写甲85 79 85 74乙74 80 82 84(1) 由表中成绩已算得甲的平均成绩为80.75,请计算乙的平均成绩,从选派得分高的选手看,应选派谁?(2) 如果表达能力、阅读理解、综合素质和汉字听写分别赋予它们2、1、3和4的权,算得甲的平均成绩为80,请计算乙的平均成绩,从选派得分高的选手看,应选派谁?21.(本题8分)在平面直角坐标系中,A(-1,m)、B(4,0),直线AB交y轴于点C(0,2),D 为线段BC的中点,作直线OD(1) 求直线AB的解析式(2) 将直线OD向左水平移动n个单位后经过点A,则n=___________22.(本题10分)1号探测气球从海拔25 m处出发,以0.5 m/min的速度上升,与此同时2号探测气球一直在海拔15 m处进行设备故障排除,故障排除后比1号探测气球晚了10 min出发,以1 m/min的速度上升.两个气球都匀速上升,设1号探测气球上升时间为x min(0≤x≤80)(1) 根据题意,填写下表:x10 301号探测气球所在位置的海拔(单位:m)2号探测气球所在位置的海拔(单位:m)35(2) 用式子表示2号探测气球所在位置的海拔y m关于x min的函数关系式(3) 当x=__________时,两个气球所在位置的海拔相差5 m23.(本题10分)四边形ABCD 是菱形,点E 在BC 上,点F 在AB 上,点H 在CD 上,连接AE 、FH 相交于点P ,∠APF =∠ABC(1) 如图1,若∠ABC =90°,点F 和点B 重合,求证:AE =FH (2) 如图2,求证:AE =FH(3) 如图3,若AF +CH =BE ,BE =3EC ,求ABAE的值24.(本题12分)在平面直角坐标系中,A (0,-4)、B (-2,0)(1) 如图1,以AB 为边作正方形ABCD ,AC 、BD 相交于点E ,CD 交x 轴于点F ,连接EF ① 求点C 的坐标 ② 求线段EF 的长度(2) 如图2,M 为直线l 1:x =-1上一点,N 为直线l 2:y =x +3上一点,若以A 、B 、M 、N 为顶点的四边形是平行四边形,直接写出所有满足条件的点N 的坐标武昌区2015~2016学年度第二学期期末学业水平测试八年级数学试卷参考答案一、选择题(共10小题,每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案C D BBB CCCDD二、填空题(共6小题,每小题3分,共18分)11.12 12.113.(0,1) 14.815.32-16.0<k <115.提示:将线段FG 平移至AM ,如图∴∠AHF =∠EAM =30° ∵AE =FG ∴AE =AM∴△ABE ≌△ADM (HL ) ∴∠BAE =∠DAM =30° ∵AD =3∴DM =3,AM =AE =32 ∵H 为AE 的中点 ∴HA =HE =3 ∵∠F AH =∠FHA =30° ∴∠AFH =120° ∴AF =FH =MG =1 ∴CG =3-3-1=2-316.提示:直线y =kx +k 过定点(-1,0),绕定点旋转得到k 的取值范围 三、解答题(共8题,共72分) 17.解:(1) 22;(2) 31+ 18.解:(1) AD =4;(2) AC =52 19.解:(2) 34°20.解:(1) 乙的平均成绩为80484828074=+++∵80.75>80∴应选派甲 (2) 乙平均成绩为874312484382180274=+++⨯+⨯+⨯+⨯∵81>80 ∴应选派乙21.解:(1) 直线AB 的解析式为221+-=x y (2) D (2,1)直线OD 的解析式为x y 21=平移后的直线解析式为n x n x y 2121)(21+=+= 将A (-1,25)代入n x y 2121+=中,得n =6 22.解:(1) 如下表:x10 30 1号探测气球所在位置的海拔(单位:m ) 30 40 2号探测气球所在位置的海拔(单位:m ) 1535(2) ⎩⎨⎧≤<+≤≤=80101510015x x x y ,,(3) 20或40提示:2号探测气球刚出发时,1号探测气球在海拔30 m 处,2号探测气球在海拔15 m 处 30+0.5t -(15+t )=5或15+t -(30+0.5t )=5 23.证明:(1) 略(2) 过点A 作AM ⊥BC 于M ,过点F 作FN ⊥CD 于N ∵∠APF =∠ABC ,∠APF +∠EPF =180° ∴∠B +∠EPF =180°在四边形BEPF 中,∠AEM +∠BFH =180° ∵AB ∥CD∴∠BFH +∠FHN =180° ∴∠AEM =∠FHN∵S 菱形ABCD =BC ·AM =CD ·FN ∴AM =FN∴△AME ≌△FNH (AAS ) ∴AE =FH(3) 过点A 作AG ∥FH 交CD 于G ,连结AC ∴四边形AFHG 为平行四边形 ∴AF =HG ∵AF +CH =BE ∴CG =BE由(2)可知:AE =FH =AG∵∠AGH =∠AFH =∠AEB (还是利用到了对角互补) ∴△ABE ≌△ACG (SAS ) ∴AC =AB =BC∴△ABC 为等边三角形 ∵BE =3EC设CE =a ,BE =3a ,BC =4a 过点A 作AM ⊥BC 于M∴BM =CM =2a ,EM =a ,AB =BC =4a ,AM =a 32 ∴AE =a 13 ∴413413==a a AB AE24.解:(1) ① C (2,2)② 由三垂直得,D (4,-2) 直线CD 的解析式为y =-2x +6 ∴F (3,0) ∵E 为AC 的中点由线段AE 平移至EC 得,E (1,1) ∴EF =5 (2) 设M (-1,a )情况1:由平移可知:N (-3,a +4) 将N (-3,a +4)代入y =x +3中,得a =-4 ∴N (-3,0)情况2:由平移可知:N (1,a -4) 将N (1,a -4)代入y =x +3中,得a =8 ∴N (1,4)情况3:由平移可知:N (-1,-a -4) 将N (-1,-a -4)代入y =x +3中,得a =-6 ∴N (-1,2)武昌区2015~2016学年度第二学期期末学业水平测试八年级数学试卷参考答案一、选择题(共10小题,每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案C D BBB CCCDD二、填空题(共6小题,每小题3分,共18分)11.12 12.113.(0,1) 14.815.32-16.0<k <115.提示:将线段FG 平移至AM ,如图∴∠AHF =∠EAM =30° ∵AE =FG ∴AE =AM∴△ABE ≌△ADM (HL ) ∴∠BAE =∠DAM =30° ∵AD =3∴DM =3,AM =AE =32 ∵H 为AE 的中点 ∴HA =HE =3 ∵∠F AH =∠FHA =30° ∴∠AFH =120° ∴AF =FH =MG =1 ∴CG =3-3-1=2-316.提示:直线y =kx +k 过定点(-1,0),绕定点旋转得到k 的取值范围 三、解答题(共8题,共72分) 17.解:(1) 22;(2) 31+ 18.解:(1) AD =4;(2) AC =52 19.解:(2) 34°20.解:(1) 乙的平均成绩为80484828074=+++∵80.75>80∴应选派甲 (2) 乙平均成绩为874312484382180274=+++⨯+⨯+⨯+⨯∵81>80 ∴应选派乙21.解:(1) 直线AB 的解析式为221+-=x y (2) D (2,1)直线OD 的解析式为x y 21=平移后的直线解析式为n x n x y 2121)(21+=+= 将A (-1,25)代入n x y 2121+=中,得n =6 22.解:(1) 如下表:x10 30 1号探测气球所在位置的海拔(单位:m ) 30 40 2号探测气球所在位置的海拔(单位:m ) 1535(2) ⎩⎨⎧≤<+≤≤=80101510015x x x y ,,(3) 20或40提示:2号探测气球刚出发时,1号探测气球在海拔30 m 处,2号探测气球在海拔15 m 处 30+0.5t -(15+t )=5或15+t -(30+0.5t )=5 23.证明:(1) 略(2) 过点A 作AM ⊥BC 于M ,过点F 作FN ⊥CD 于N ∵∠APF =∠ABC ,∠APF +∠EPF =180° ∴∠B +∠EPF =180°在四边形BEPF 中,∠AEM +∠BFH =180° ∵AB ∥CD∴∠BFH +∠FHN =180° ∴∠AEM =∠FHN∵S 菱形ABCD =BC ·AM =CD ·FN ∴AM =FN∴△AME ≌△FNH (AAS ) ∴AE =FH(3) 过点A 作AG ∥FH 交CD 于G ,连结AC ∴四边形AFHG 为平行四边形 ∴AF =HG ∵AF +CH =BE ∴CG =BE由(2)可知:AE =FH =AG∵∠AGH =∠AFH =∠AEB (还是利用到了对角互补) ∴△ABE ≌△ACG (SAS ) ∴AC =AB =BC∴△ABC 为等边三角形 ∵BE =3EC设CE =a ,BE =3a ,BC =4a 过点A 作AM ⊥BC 于M∴BM =CM =2a ,EM =a ,AB =BC =4a ,AM =a 32 ∴AE =a 13 ∴413413==a a AB AE24.解:(1) ① C (2,2)② 由三垂直得,D (4,-2) 直线CD 的解析式为y =-2x +6 ∴F (3,0) ∵E 为AC 的中点由线段AE 平移至EC 得,E (1,1) ∴EF =5 (2) 设M (-1,a )情况1:由平移可知:N (-3,a +4) 将N (-3,a +4)代入y =x +3中,得a =-4 ∴N (-3,0)情况2:由平移可知:N (1,a -4) 将N (1,a -4)代入y =x +3中,得a =8 ∴N (1,4)情况3:由平移可知:N (-1,-a -4) 将N (-1,-a -4)代入y =x +3中,得a =-6 ∴N (-1,2)。
2015-2016学年湖北省武汉市江岸区八年级(上)期末数学试卷
2015-2016学年湖北省武汉市江岸区八年级(上)期末数学试卷
参考答案与试题解析
一、选择题(每题3分)
1.(3分)下列各图中,不是轴对称图形的是()
A.B.
C.D.
【解答】解:A、是轴对称图形,故错误;
B、是轴对称图形,故错误;
C、不是轴对称图形,故正确;
D、是轴对称图形,故错误.
故选:C.
2.(3分)给出下列式子:1
a 、3a
2b3c
4
、5
6+x
、x
7
+y
8
、9x+10
y
,其中,是分式的有()
A.5个B.4个C.3个D.2个
【解答】解:3a 2b3c
4
、x
7
+y
8
的分母中均不含有字母,因此它们是整式,而不是分式.
1 a 、5
6+x
、9x+10
y
,分母中含有字母,因此是分式.
故选:C.
3.(3分)分式1
x−2
有意义,则x的取值范围是()
A.x≠2 B.x≠﹣2 C.x=2 D.x=﹣2 【解答】解:根据题意得:x﹣2≠0,
解得:x≠2.
故选:A.
4.(3分)下列分式从左至右的变形正确的是()
第1页(共15页)。
武昌区2016-2017学年度第一学期期末学业水平测试八年级数学试卷
武昌区2016-2017学年度第一学期期末学业水平测试八年级数学试卷★祝考试顺利★考生注意:1. 本试卷共4页,满分120分,考试用时120分钟.2. 全部答案必须在答题卡上完成,答在其它位置上无效.3. 答题前,请认真阅读答题卡“注意事项”.考试结束后,请将答题卡上交.第Ⅰ卷(选择题 共30分)一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的代号涂黑.1. 下列几何图形不一定是轴对称图形的是:A.线段B.角C.等腰三角形D.直角三角形2. 使分式21--x x 有意义的x 的取值范围是: A.1≠x B.2≠x C.1=x D.2=x3.如图,聪聪书上的三角形被墨迹污染了一部分,他根据所学知识很快就画了一个与书本上完全一样的三角形,那么聪聪画图的依据是: A.SSS B.SAS C.ASA D.AAS4. 下列运算正确的是:A.632a a a =⋅ B.632)(a a = C.5332)(b a ab = D.326a a a =÷5. 下列各式计算正确的是:A.2)2)(2(2-=-+x x xB.1)12)(1(2-=+-x x x C.222)(b a b a +=+ D.2222)(b ab a b a +-=-6. 禽流感的形状一般为球形,直径大约为0.000000102m,数0.000000102用科学记数法表示为:A.71002.1-⨯B.81002.1-⨯C.8102.10-⨯D.61002.1-⨯ 7. 如图,Rt △ABC,∠C=90°,AD 是∠BAC 的平分线,DEAB,垂足为E,若AB=10cm,AC=6cm,则BE 的长度为:A.10cmB.6cmC.4cmD.2cm第15题图第14题图第10题图第7题图8. 若等腰三角形的一个角是80°, 则它的底角是: A.50° B.80° C.50°或80° D.80°或20° 9. 将下列多项式因式分解,结果中不含因式)1(+a 的是:A.12-a B.a a +2C.22-+a a D.1)2(2)2(2++-+a a 10. 如图,B 为线段AC 的中点,过C 点的直线l 与线段AC 成60°的角,在直线l 上取一点P,使得∠APB=30°,则满足条件的点P 的个数是:A.1个B.2个C.3个D.4个第Ⅱ卷(非选择题 共90分)二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定位置.11. 当x ___________时,分式11-+x x 的值为0. 12. 若一个n 边形的内角和为720°,则边数n =__________.13.若23-=x ,则代数式962+-x x 的值为__________.14. 如图,在△ABC 中,∠B=55°,∠C=30°,分别以点A 和点C 为圆心,大于AC 21长为半径画弧,两弧相交于点M,N,作直线MN 交BC 于点D,连接AD,则∠BAD 的度数为_________. 15. 如图,在△ABC 中,∠ACB=90°,AC=BC,点C )0,2(-,A )3,6(-,则点B 的坐标为________.16. 如图,Rt △ABC 中,∠C=90°,AC=BC=6,AB=26,将Rt △ABC 折叠,使得点C 恰好落在AB 边上的点E 处,折痕为AD,P 为折痕上一动点,则△PEB 周长的最小值是__________.三、解答题(共8小题,共72分)下列各题需要在答题卡指定位置写出文字说明、证明过程、演算步骤或画出图形. 17. (本题满分8分)(1) 计算: )3)(1(-+x x (2) 因式分解: 22363y xy x ++18. (本题满分8分)如图,AB=AC,点D,E 分别在AB,AC 上,AD=AE.求证:B =∠第16题图19. (本题满分8分) 解分式方程: (1)x x 332=- (2) x x x -=+--2312320. (本题满分8分) 先化简,再求值:342)252(--⋅--+m m m m ,其中1-=m21. (本题满分8分)如图,在34⨯的长方形网格中,我们把水平线和垂直线的交点称为格点,例如图中的点A,点B.(1) 在图1中画出一个45°的角,使点A 或者点B 是这个角的顶点,且AB 为这个角的一边. (2) 在图2中找一个格点C,使得△ABC 是等腰三角形,这样的格点C 共有__________个.22. (本题满分8分)“优Ⅰ号”小麦的试验田是边长为a (1>a )的正方形去掉一个边长为1米的正方形蓄水池后余下的部分,“优Ⅱ号”小麦的试验田是边长为)1(-a 米的正方形,两块试验田的小麦都收获了500千克.(1) 哪种小麦的单位面积产量高?(2) 若高的单位面积产量比低的单位面积产量多2)1(40-a 千克,求a 的值.图2图123. (本题满分10分)已知△ABC 中,AC=BC.(1)如图1,分别A,B 作AM ⊥BC,BN ⊥AC,垂足分别为点M,N,AM 与BN 相交于点P. 求证:AP=BP;(2)如图2,分别在AC 的右侧,BC 的左侧作等边△ACE 和△BCD,AE 与BD 相交于点F,连接CF 并延长交AB 于点G.求证:点G 是AB 的中点;(3)在(2)的条件中,当∠ACB 的大小发生变化时,设直线CD 与直线AE 相交于H 点,当∠ACB 等于_____________度时,使得AH=CD.24. (本题满分10分)如图1,△ABC 是边长为8cm 的等边三角形.点D 从B 点出发沿B →A 方向在线段BA 上以a cm/s 的速度运动,点E 从C 点出发沿C →B 方向在线段CB 上以b cm/s 的速度运动.D,E 两点同时出发,运动时间为t s,当点D 到达点A 后,D,E 两点停止运动. (1) 如图2,若1==b a ,连接AE,CD,相交于点F,连接BF. ①求∠AFC 的度数;②当CF AF 2=时,求t 的值.(2) 如图3,若1,2==b a ,连接DE,以DE 为边作等边△DEM,使M,B 在DE 两侧,点O 为AC 的中点,连接OM,求OM 的最小值.图2图1图2图3图1BC。
2015-2016武汉市武昌区八年级(上)期末数学试卷及答案
2015-2016武汉市武昌区八年级(上)期末数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)下列几何图形不一定是轴对称图形的是()A.角B.等边三角形C.等腰三角形D.直角三角形2.(3分)若分式有意义,则x满足的条件是()A.x=1 B.x=3 C.x≠1 D.x≠33.(3分)若等腰三角形的两边长分别是2和10,则它的周长是()A.14 B.22 C.14或22 D.124.(3分)下列运算中正确的是()A.(a2)3=a5B.a2•a3=a5C.a6÷a2=a3D.a5+a5=2a10 5.(3分)下列分式与分式相等的是()A.B.C.D.﹣6.(3分)下列因式分解结果正确的是()A.x2+3x+2=x(x+3)+2 B.4x2﹣9=(4x+3)(4x﹣3)C.x2﹣5x+6=(x﹣2)(x﹣3)D.a2﹣2a+1=(a+1)27.(3分)已知图中的两个三角形全等,则∠1等于()A.72°B.60°C.50°D.58°8.(3分)石墨烯目前是世界上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为()A.0.34×10﹣9B.3.4×10﹣9C.3.4×10﹣10D.3.4×10﹣11 9.(3分)如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3 B.4 C.5 D.610.(3分)如果满足条件“∠ABC=30°,AC=1,BC=k(k>0)”的△ABC是唯一的,那么k的取值是()A.0<k≤1或k=2 B.k=2 C.1<k<2 D.0<k≤1二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)计算:=.12.(3分)一个n边形的内角和是540°,那么n=.13.(3分)若x2+2x+m是一个完全平方式,则m=.14.(3分)如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.若∠DBC=33°,∠A的度数为.15.(3分)如图,把△ABC沿EF对折,折叠后的图形如图所示.若∠A=60°,∠1=96°,则∠2的度数为.16.(3分)D为等腰Rt△ABC斜边BC上一点(不与B、C重合),DE⊥BC于点D,交直线BA 于点E,作∠EDF=45°,DF交AC于F,连接EF,BD=nDC,当n=时,△DEF为等腰直角三角形.三、解答题(共8题,共72分)17.(9分)(1)计算:(x+1)(x+2)(2)分解因式:x2y+2xy+y.18.(9分)解分式方程:(1);(2).19.(9分)如图,点B、E、C、F在同一条直线上,AB=DE,∠ABC=∠DEF,BC=EF,求证:∠A=∠D.20.(9分)先化简,再求值:÷(1+),其中x=﹣4.21.(9分)如图,已知A(﹣2,4),B(4,2),C(2,﹣1)(1)作△ABC关于x轴的对称图形△A1B1C1,写出点C关于x轴的对称点C1的坐标;(2)P为x轴上一点,请在图中画出使△PAB的周长最小时的点P并直接写出此时点P的坐标(保留作图痕迹).22.(9分)甲、乙、丙三个登山爱好者经常相约去登山,今年1月甲参加了两次登山活动.(1)1月1日甲与乙同时开始攀登一座1800米高的山,甲比乙早30分钟到达顶峰.已知甲的平均攀登速度是乙的1.2倍,求甲的平均攀登速度是每分钟多少米?(2)1月10日甲与丙去攀登另一座a米高的山,甲保持第(1)问中的速度不变,比丙晚出发1小时,结果两人同时到达顶峰,问甲的平均攀登速度是丙的多少倍?(用含a的代数式表示)23.(9分)已知△ABC和△DEF为等腰三角形,AB=AC,DE=DF,∠BAC=∠EDF,点E在AB上,点F在射线AC上.(1)如图1,若∠BAC=60°,点F与点C重合,求证:AF=AE+AD;(2)如图2,若AD=AB,求证:AF=AE+BC.24.(9分)如图,在平面直角坐标系中,A(8,0),点B在第一象限,△OAB为等边三角形,OC⊥AB,垂足为点C.(1)直接写出点C的横坐标;(2)作点C关于y轴的对称点D,连DA交OB于E,求OE的长;(3)P为y轴上一动点,连接PA,以PA为边在PA所在直线的下方作等边△PAH.当OH最短时,求点H的横坐标.参考答案一、选择题(共10小题,每小题3分,共30分)1.D.2.D.3.B.4.B.5.B.6.C.7.D.8.C.9.A.10.A.二、填空题(本大题共6个小题,每小题3分,共18分)11.1 12.5 13.1 14.38° 15. 24°.16.或1.三、解答题(共8题,共72分)17.(1)(x+1)(x+2)(2)x2y+2xy+y.18.(1)x=﹣3,(2)x=是增根,分式方程无解.19.略20.,﹣.21.(1)C1(2,1).(2)(2,0).22 .解:(1)设乙的攀登速度为x米/分,则甲的速度为1.2x米/分,+30=,解得x=10,检验:x=10是原分式方程的解,所以1.2x=12,答:甲的平均攀登速度是每分钟12米;(2)设丙的攀登速度为y米/分,依题意得:+60=,解得,检验:是原分式方程的解.所以=.所以甲的平均攀登速度是丙的倍.23.(证明:(1)∵∠BAC=∠EDF=60°,∴△ABC、△DEF为等边三角形,∴∠BCE+∠ACE=∠DCA+∠ECA=60°,在△BCE和△ACD中∴△BCE≌△ACD(SAS),∴AD=BE,∴AE+AD=AE+BE=AB=AF;(2)在FA上截取FM=AE,连接DM,∵∠BAC=∠EDF,∴∠AED=∠MFD,在△AED和△MFD中,∴△AED≌△MFD(SAS),∴DA=DM=AB=AC,∠ADE=∠MDF,∴∠ADE+∠EDM=∠MDF+∠EDM,即∠ADM=∠EDF=∠BAC,在△ABC和△DAM中,,∴△ABC≌△DAM(SAS),∴AM=BC,∴AE+BC=FM+AM=AF.即AF=AE+BC.24.解:(1)如图1所示:过点B作BF⊥OA,垂足为F.∵OB=AB,BF⊥OA,∴OF=AF=4.∵△OAB为等边三角形,∴∠BOF=60°.∴FB=OB sin60°=8×=4.∴点B的坐标为(4,4).∵AO=OB,OC⊥AB,∴BC=AC.由中点坐标公式可知点C的坐标为(6,2).故答案为:6.(2)设OB的解析式为y=kx,将点B的坐标代入得:4k=4,解得:k=.∴直线OB的解析式为y=.∵点C与点D关于y轴对称,∴点D的坐标为(﹣6,2).设DA的解析式为y=k1x+b.将点A和点D的坐标代入得:,解得:k1=﹣,b=.∴直线DA的解析式为y=.将y=代入y=得:.解得:x=1.∴y=.∴点E的坐标为(1,).由两点间的距离公式可知:OE==2.(3)如图3,连接PB.∵∠HAO+∠PAO=∠BAP+∠PAO=60°,∴∠HAO=∠PAB,在△HAO和△PAB中,∴△HAO≌△PAB(SAS),∴OH=PB,当BP⊥y轴时,PB有最小值为4,此时,∠AOH=∠ABP=120°,∴∠COH=60°过点H作HC⊥x轴于C,∵OH=4,∠COH=60°,∴OC=2,即H点横坐标为﹣2.。
2015-2016学年湖北省武汉市武昌区八年级(上)期末数学试卷
2015-2016学年湖北省武汉市武昌区八年级(上)期末数学试卷
参考答案与试题解析
一、选择题(共10小题,每小题3分,共30分)
1.(3分)下列几何图形不一定是轴对称图形的是()
A.角B.等边三角形C.等腰三角形D.直角三角形【解答】解:A、B、C都是轴对称图形,D不是轴对称图形,
故选:D.
有意义,则x满足的条件是()
2.(3分)若分式x−1
x−3
A.x=1 B.x=3 C.x≠1 D.x≠3
有意义,得
【解答】解:分式x−1
x−3
x﹣3≠0.
解得x≠3,
故选:D.
3.(3分)若等腰三角形的两边长分别是2和10,则它的周长是()A.14 B.22 C.14或22 D.12
【解答】解:∵等腰三角形的两边分别是2和10,
∴应分为两种情况:①2为底,10为腰,则2+10+10=22;
②10为底,2腰,而2+2<10,应舍去,
∴三角形的周长是22.
故选:B.
4.(3分)下列运算中正确的是()
A.(a2)3=a5B.a2•a3=a5C.a6÷a2=a3D.a5+a5=2a10【解答】解:A、(a2)3=a6,故本选项错误;
B、a2•a3=a5,故本选项正确;
C、a6÷a2=a4,故本选项错误;
D、a5+a5=2a5,故本选项错误.
故选:B.
5.(3分)下列分式与分式2y
相等的是()
x
第1页(共14页)。
(完整word版)2015-2016武汉市上学期期末八年级数学试卷3套及答案
2014-2015学年度第一学期期末考试八年级数学试卷第Ⅰ卷(选择题,共30分)一、选择题(每题3分,共30分)1.下列几何图形不一定是轴对称图形的是( )A .线段B .角C .等腰三角形D .直角三角形 2. 分式||22x x --的值为零,则x 的值为( ) A . 0 B .2 C .-2 D .2或-2 3.若等腰三角形的两内角度数比为1:4,则它的顶角为( )度 A . 36或144 B . 20或120 C . 120 D . 20 4.下列各式由左边到右边的变形中,是分解因式的为( ) A .ay ax y x a +=+)(B .4)4(442+-=+-x x x x C .)12(55102-=-x x x xD .x x x x x 3)4)(4(3162++-=+-5.下列计算错误的是( )A .33345a a a =- B .()3632b a b a = C .()()()523b a a b b a -=-- D .nm n m +=⋅6326.已知m 6x =,3nx =,则2m n x -的值为( )A .12B . 43C .9D .347.若代数式253+x 的值是负数,则x 的取值范围是( ) A . 25- x B . 52- x C . 25- x D .52- x8.一项工程需在规定的日期完成,如果甲队单独做,就要超规定的日期1天,如果乙队单独做,要超过规定的日期4天,现在由甲、乙两队各做3天,剩下的工程由乙队单独做,刚好在规定的日期完成,则规定日期为( )天.A. 6B. 7C. 8D. 99.如图,在△ABE 中,∠A=105°,AE 的垂直平分线MN 交BE 于点C ,且AB+BC=BE ,则∠B 的度数是( )A .45°B .50°C . 55°D .60°10. 如图,P 为∠AOB 内一定点,M 、N 分别是射线OA 、OB 上一点,当△PMN 周长最小时, ∠OPM=50°,则∠AOB=( )A.40°B. 45°C. 50°D.55°第Ⅱ卷(非选择题 共90分)二、填空题:(每题3分,共18分) 11.若 ,则 的值是____________=____________ 12. 计算: 13. 如图,△ABC 中,∠ACB=90°,CD 是高,若∠A=30°,BD=1,则AD=____________14. 若 则 =____________15. 观察:l ×3+1=22 2×4+1=32 3×5+1=424×6+1=52……,请把你发现的规律用含正整数n (n ≥2)的等式表示为____________ (n=2时对应第1个式子,……) 16. 在平面直角坐标系中,A (4,0),B (0,4),D 在第一象限,且DO=DB,△DOA 为等腰三角形,则∠OBD 的度数为_____________三、解答题 (共72分)17.(本题满分6分)解分式方程:1712112-=-++x x x 18.(本题满分6分)(1) 分解因式 p p p 3)1)(4(++- (2)利用因式分解计算:22255755-19.(本题满分6分)如图,在△ABC 中,AB=AC ,D 为BC 边上一点,∠B=30°,∠DAB=45°..PABO第10题图第19题图D CBA 第13题图 第9题图,211-=-yx yxy x yxy x ---+232)23)(32m n n m -+(6,5==-xy y x 22xy y x -(1)求∠DAC 的度数;(2)证明:AB=CD .20.(本题满分7分)计算(1) 24244422-+∙++-x x x x x (2)29631a a --+21.(本题满分7分)已知,41=+xx 求(1)221x x + (2)2)2(-x22.(本题满分8分)某次动车平均提速50km/h.用相同的时间,动车提速前行驶150km , 提速后比提速前多行驶50km ,求动车提速后的平均速度.23.(本题满分10分)如图23-1,P 为等边△ABC 的边AB 上一点,Q 为BC 延长线上一点,且PA=CQ ,连PQ 交AC 边于D. (1)证明:PD=DQ.(2)如图23-2,过P 作PE ⊥AC 于E ,若AB=2,求DE 的长.24.(本题满分10分)若一个四边形的一条对角线(相对顶点的连线段)把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.(1)如图24-1,在四边形ABCD 中,AD ∥BC ,∠BAD=120°,∠C=75°,BD 平分∠ABC .求第23-1图第23-2图证:BD是四边形ABCD的和谐线;(2)如图24-2,在12×16的网格图上(每个小正方形的边长为1)有一个扇形BAC,点A、B、C均在格点上,请在扇形内外各找一个格点D,使得以A、B、C、D为顶点的四边形的两条对角线都是和谐线(分别标在答题卷给出的两个网格图上),并画出相应的和谐四边形;(3)四边形ABCD中,AB=AD=BC,∠BAD=90°,AC是四边形ABCD的和谐线,请画出图形,并直接写出∠BCD的度数.第24-1图第24-2图25.(本题满分12分)四边形ACBD是由等边△ABC和顶角为120°的等腰△ABD拼成,将一个60°角顶点放在D处,将60°角绕D点旋转,该60°角两边分别交直线BC、AC于M、N.交直线AB于E、F两点.(1) 当E、F分别在边AB上时,如图25-1,求证:BM+AN=MN;(2) 当E边BA的延长线上时,如图25-2,直接写出线段BM、AN、MN之间的等量关系;(3) 在(1)的条件下,若AC=5,AE=1,求BM的长.第25-2图第25-1图2014-2015学年八年级第一学期数学期末考试参 考 答 案一、选择二、填空11、30; 12、2249m n -; 13、3;14、7; 15、21)1)(1(n n n =++-; 16、75°或45°或60°.∠D3AX=30°(直角边2,斜边4) 三、解答题17、去分母…… 1分 去括号…… 2分 解方程…… 4分 验最简公分母是否为0……5分 交代方程的根……6分18、(1)展开、整理、分解各1分 (2)用平方差1分,计算2分19、(1)求出中间量∠CDA=75°或∠CAB=120°……2分 求出∠DAC=75°……4分 (2) 证明AC=CD ……5分 AB=CD ……6分20、 (1)三项因式分解各1分,结果=2 1分 (2)最简公分母找对1分,通分后分子正确1分,结果=31-a 1分21、(1)2)11222-+=+xx x x (……2分 代值=14……3分 (2)条件变形为0142=+-x x ……5分结论展开为442+-x x ……6分 结果=3 ……7分22.解:提速前动车的速度为xkm/h ,则提速后动车的速度为(x+50)km/h .…1分5050150++=x …… 3分 解得x=150, …… 5分经检验知x=150是原方程的解, …… 6分 则x+50=200, …… 7分所以提速后动车的速度为200km/h. …… 8分23.(1)作PG ∥BC ,交AC 于G ,……1分 易知△APG 是等边三角形,……2分 ∴AP=PG ,∵AP=CQ ,∴PG=CQ ,……3分可证∴△PGD ≌△QCD ,……4分 ∴PD=DQ ……5分(2)∵PE⊥A C ,△APG 是等边三角形, ∴EG=AE=AG/2,……7分由△PGD≌△QCD,有DG=CD=CG/2,……9分∴DE=EG+DG=AG/2+CG/2=AC/2=1……10分24.解:(1)证明△ADB 是等腰三角形.……1分 证明△BCD 为等腰三角形.……2分∴BD 是梯形ABCD 的和谐线.……3分(2)由题意作图为:图2,图3(图2……4分 图3……6分)(勾股定理)(3)如图4,当AD=AC时,∴∠BCD=60°+75°=135°.如图5,当AD=CD时,∴∠BCD=90°如图6,当AC=CD时,∴∠BCD=15°×3=45°.一种情况给一分,图形全画对给一分。
武汉市2015-2016学年八年级上月考数学试卷(12月)含答案解析
2015-2016学年湖北省武汉市钢城十一中八年级(上)月考数学试卷(12月份)一.选择题1.下列图形中是轴对称图形的是()A.B.C.D.2.下列运算正确的是()A.(2a3)2=2a6B.a3÷a3=1(a≠0)C.(a2)3=a5D.a5÷a=a53.如图,AB与CD相交于点E,AD=CB,若使△AED≌△CEB,则应补充的条件是()A.∠A=∠C B.AE=CE C.DE=BE D.不用补充条件4.已知△ABC在直角坐标系中的位置如图所示,如果△A′B′C′与△ABC关于y轴对称,那么点A的对应点A′的坐标为()A.(﹣4,2)B.(﹣4,﹣2) C.(4,﹣2)D.(4,2)5.计算(﹣2x﹣3y)(2x﹣3y)的结果为()A.3y2﹣2x2B.4x2﹣9y2C.4x2﹣12xy+9y2 D.9y2﹣4x26.将一副三角板按图中方式叠放,则∠m的度数为()A.30° B.45° C.60° D.75°7.下列分解因式正确的是()A.3x2﹣6x=x(3x﹣6)B.﹣a2+b2=(b+a)(b﹣a)C.4x2﹣y2=(4x+y)(4x﹣y) D.4x2﹣2xy+y2=(2x﹣y)28.(x2﹣5x+q)的展开式中,不含x3和x2项,则p﹣q的值是()A.22 B.﹣22 C.32 D.﹣329.如图,∠BAC=30°,AD平分∠BAC,DE⊥AB于E,DF∥AB,已知AF=4cm,则DE的长为()A.1cm B.2cm C.3cm D.4cm10.如图,将30°的直角三角尺ABC绕直角顶点A逆时针旋转到ADE的位置,使B点的对应点D落在BC 边上,连接EB、EC,则下列结论:①∠DAC=∠DCA;②ED为AC的垂直平分线;③∠BED=30°;④ED=2AB.其中正确的是()A.①②③B.①②④C.②③④D.①②③④二.填空题:11.分解因式:4x2﹣1= .12.若x+y=5,xy=﹣4,则x2+y2= .13.若4x2﹣2(m﹣1)x+9是完全平方式,则m= .14.在实数范围内因式分解:x4﹣4= .15.如图,A、B、C在一条直线上,△ABD、△BCE均为等边三角形,连接CD、AE交于点P,并分别交BE、BD于N、M,连接MN,下列结论中:①AE=CD;②AM=DP;③MN∥AC;④若AB=2BC,连接DE,则DE⊥BE;⑤BP平分∠APC.正确的结论有:(填写出所有正确的序号)16.已知a+=3,则a2+的值是.三.解答(共8题,共72分)17.计算:(1)(ab2)2•(﹣a3b)3÷(﹣5ab);(2)3a(2a2﹣9a+3)﹣4a(2a﹣1)18.运用乘法公式计算:(1)(2a﹣3b)(﹣2a+3b)﹣(2a+3b)2(2)(2a﹣b﹣3c)(﹣2a+b﹣3c).19.分解因式:(1)3x﹣12x3;(2)9a2(x﹣y)+4b2(y﹣x).20.如图,已知:在△AFD和△CEB中,点A、E、F、C在同一直线上,AE=CF,∠B=∠D,AD∥BC.求证:AD=BC.21.已知:a,b,c为△ABC的三边长,且2a2+2b2+2c2=2ab+2ac+2bc,试判断△ABC的形状,并证明你的结论.22.如图,△ABC的两条高AD、BF交于E,连EC,∠AEB=105°,∠ABC=45°.(1)求∠DEC的度数;(2)求证:AB﹣BE=CE.23.如图1,在Rt△ACB中,∠ACB=90°,∠ABC=30°AC=1点D为AC上一动点,连接BD,以BD为边作等边△BDE,EA的延长线交BC的延长线于F,设CD=n,(1)当n=1时,则AF= ;(2)当0<n<1时,如图2,在BA上截取BH=AD,连接EH,求证:△AEH为等边三角形.24.在平面直角坐标系中,点A(0,b)、点B(a,0)、点D(d,0)且a、b、c满足++(2﹣d)2=0,DE⊥x轴且∠BED=∠ABD,BE交y轴于点C,AE交x轴于点F.(1)求点A、B、D的坐标;(2)求点E、F的坐标;(3)如图,过P(0,﹣1)作x轴的平行线,在该平行线上有一点Q(点Q在P的右侧)使∠QEM=45°,QE交x轴于N,ME交y轴正半轴于M,求的值.2015-2016学年湖北省武汉市钢城十一中八年级(上)月考数学试卷(12月份)参考答案与试题解析一.选择题1.下列图形中是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故错误;B、不是轴对称图形,故错误;C、是轴对称图形,故正确;D、不是轴对称图形,故错误.故选C.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.下列运算正确的是()A.(2a3)2=2a6B.a3÷a3=1(a≠0)C.(a2)3=a5D.a5÷a=a5【考点】同底数幂的除法;幂的乘方与积的乘方.【分析】根据同底数幂的除法、幂的乘方与积的乘方的运算法则分别进行计算,即可得出答案.【解答】解:A、(2a3)2=4a6,故本选项错误;B、a3÷a3=1(a≠0),故本选项正确;C、(a2)3=a6,故本选项错误;D、a5÷a=a4,故本选项错误;故选B.【点评】此题考查了同底数幂的除法、幂的乘方与积的乘方,关键是熟练掌握有关法则,注意指数的变化和结果的符号.3.如图,AB与CD相交于点E,AD=CB,若使△AED≌△CEB,则应补充的条件是()A.∠A=∠C B.AE=CE C.DE=BE D.不用补充条件【考点】全等三角形的判定.【分析】根据对顶角相等得到∠AED=∠BEC,加上AD=CB,利用“AAS”判断△AED≌△CEB需补充∠A=∠C 或∠D=∠B.【解答】解:∵AD=CB,而∠AED=∠BEC,∴当∠A=∠C时,可判断△AED≌△CEB.故选A.【点评】本题考查了全等三角形的判定:判定两个三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”、“HL”.4.已知△ABC在直角坐标系中的位置如图所示,如果△A′B′C′与△ABC关于y轴对称,那么点A的对应点A′的坐标为()A.(﹣4,2)B.(﹣4,﹣2) C.(4,﹣2)D.(4,2)【考点】坐标与图形变化-对称.【分析】根据对称的性质,在题中标示出对称点的坐标,然后根据有关性质即可得出所求点的坐标.【解答】解:∵轴对称的性质,y轴垂直平分线段AA',∴点A与点A'的横坐标互为相反数,纵坐标相等.点A(﹣4,2),∴A'(4,2).故选D.【点评】本题主要考查如下内容:1、坐标平面内的点与有序实数对是一一对应的2、掌握好对称的有关性质.5.计算(﹣2x﹣3y)(2x﹣3y)的结果为()A.3y2﹣2x2B.4x2﹣9y2C.4x2﹣12xy+9y2 D.9y2﹣4x2【考点】平方差公式.【分析】根据平方差公式进行计算,即可得出结果【解答】解:(﹣2x﹣3y)(2x﹣3y)=(﹣3y)2﹣(2x)2=9y2﹣4x2;故选:D.【点评】本题考查了平方差公式;熟练掌握平方差公式是解决问题的关键.6.将一副三角板按图中方式叠放,则∠m的度数为()A.30° B.45° C.60° D.75°【考点】三角形的外角性质.【分析】首先根据三角板可知:∠CBA=60°,∠BCD=45°,再根据三角形内角和为180°,可以求出∠m 的度数.【解答】解:∵∠CBA=60°,∠BCD=45°,∴∠m=180°﹣60°﹣45°=75°,故选D.【点评】本题考查的是三角形外角的性质,熟知三角形的一个外角等于和它不相邻的两个内角的和是解答此题的关键.7.下列分解因式正确的是()A.3x2﹣6x=x(3x﹣6)B.﹣a2+b2=(b+a)(b﹣a)C.4x2﹣y2=(4x+y)(4x﹣y) D.4x2﹣2xy+y2=(2x﹣y)2【考点】因式分解-运用公式法;因式分解-提公因式法.【专题】计算题.【分析】根据因式分解的定义,把一个多项式写成几个整式积的形式叫做因式分解,并根据提取公因式法,利用平方差公式分解因式法对各选项分析判断后利用排除法求解.【解答】解:A、3x2﹣6x=3x(x﹣2),故本选项错误;B、﹣a2+b2=(b+a)(b﹣a),故本选项正确;C、4x2﹣y2=(2x+y)(2x﹣y),故本选项错误;D、4x2﹣2xy+y2不能分解因式,故本选项错误.故选B.【点评】本题主要考查了因式分解的定义,熟记常用的提公因式法,运用公式法分解因式的方法是解题的关键.8.(x2+px﹣2)(x2﹣5x+q)的展开式中,不含x3和x2项,则p﹣q的值是()A.22 B.﹣22 C.32 D.﹣32【考点】多项式乘多项式.【分析】根据多项式乘多项式的法则把原式展开,根据题意列出算式,计算即可.【解答】解:(x2+px﹣2)(x2﹣5x+q)=x4﹣5x3+qx2﹣5px2+px3+pqx﹣2x2+10x﹣2q=x4+(p﹣5)x3+(q﹣5p﹣2)x2+(pq+10)x﹣2q,由题意得,p﹣5=0,q﹣5p﹣2=0,解得,p=5,q=27,则p﹣q=﹣22,故选:B.【点评】本题考查的是多项式乘多项式,多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.9.如图,∠BAC=30°,AD平分∠BAC,DE⊥AB于E,DF∥AB,已知AF=4cm,则DE的长为()A.1cm B.2cm C.3cm D.4cm【考点】角平分线的性质;平行线的性质.【分析】由角平分线的定义和平行线的性质易得DF=AF=4m,∠DFC=∠BAC=30°,作DG⊥AC于G,根据角平分线的性质可得,DG=DE,在Rt△FDG中,易得DG=DF=2cm,即可求得DE.【解答】解:作DG⊥AC于G,∵AD平分∠BAC,∴∠BAD=∠CAD,DE=DG,∵DF∥AB,∴∠ADF=∠BAD,∠DFC=∠BAC=30°,∴∠ADF=∠CAD,∴DF=AF=4m,∴Rt△FDG中,DG=DF=2cm,∴DE=2cm.故选B.【点评】此题主要考查角平分线、平行线的性质和直角三角形中30°锐角所对直角边等于斜边的一半,作辅助线是关键.10.如图,将30°的直角三角尺ABC绕直角顶点A逆时针旋转到ADE的位置,使B点的对应点D落在BC 边上,连接EB、EC,则下列结论:①∠DAC=∠DCA;②ED为AC的垂直平分线;③∠BED=30°;④ED=2AB.其中正确的是()A.①②③B.①②④C.②③④D.①②③④【考点】旋转的性质;线段垂直平分线的性质.【分析】先利用旋转的性质得到AB=AC,AC=AE,∠BAC=∠EAC,则可判断△ABD为等边三角形,所以∠BAD=∠ADB=60°,则∠EAC=∠BAD=60°,再计算出∠DAC=30°,于是可对①进行判断;接着证明△AEC为等边三角形得到EA=EC,加上DA=DC,则根据线段垂直平分线的判定方法可对②进行判断;然后根据等边三角形的性质得DE平分∠AEC,则∠AED=30°,则可对③进行判断;接下来证明∠EAD=90°,则利用含30度的直角三角形三边的关系得到ED=2AD,所以ED=2AB,则可对④进行判断.【解答】解:在Rt△ABC中,∵∠ACB=30°,∴∠ABC=60°,∵△ABC绕直角顶点A逆时针旋转到ADE的位置,∴AB=AC,AC=AE,∠BAC=∠EAC,∴△ABD为等边三角形,∴∠BAD=∠ADB=60°,∴∠EAC=∠BAD=60°,∵∠BAC=90°,∴∠DAC=30°=∠ACB,∴∠DAC=∠DCA,所以①正确;∵AC=AE,∠EAC=60°,∴△AEC为等边三角形,∴EA=EC,而DA=DC,∴ED为AC的垂直平分线,所以②正确;∴DE平分∠AEC,∴∠AED=30°,∴∠BED<30°,所以③错误;∵∠EAD=∠EAC+∠CAD=60°+30°=90°,在Rt△AED中,∵∠AED=30°,∴ED=2AD,∴ED=2AB,所以④正确.故选B.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的判定和性质、线段垂直平分线的判定.二.填空题:11.分解因式:4x2﹣1= (2x+1)(2x﹣1).【考点】因式分解-运用公式法.【分析】直接利用平方差公式分解因式即可.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:4x2﹣1=(2x+1)(2x﹣1).故答案为:(2x+1)(2x﹣1).【点评】本题主要考查平方差公式分解因式,熟记公式结构是解题的关键.12.若x+y=5,xy=﹣4,则x2+y2= 33 .【考点】完全平方公式.【分析】把x2+y2写出(x+y)2﹣2xy的形式,然后把已知代入即可求值.【解答】解:∵x+y=5,xy=﹣4,∴x2+y2=(x+y)2﹣2xy=52﹣(﹣8)=33,故答案为33.【点评】本题考查了完全平方公式的应用,用了整体代入思想,此题难度不大.13.若4x2﹣2(m﹣1)x+9是完全平方式,则m= ﹣5或7 .【考点】完全平方式.【分析】根据完全平方公式得出﹣2(m﹣1)=±2×2×3,求出即可.【解答】解:∵4x2﹣2(m﹣1)x+9是完全平方式,∴﹣2(m﹣1)=±2×2×3,解得:m=﹣5或7.故答案为:﹣5或7.【点评】此题考查了对完全平方公式的应用,注意;完全平方式有a2+2ab+b2和a2﹣2ab+b2.14.在实数范围内因式分解:x4﹣4= (x2+2)(x+)(x﹣).【考点】实数范围内分解因式.【专题】计算题.【分析】先运用平方差公式,分解成(x2+2)(x2﹣2),再把x2﹣2写成x2﹣,符合平方差公式的特点,可以继续分解.【解答】解:x4﹣4=(x2+2)(x2﹣2)=(x2+2)[x2﹣]=(x2+2)(x+)(x﹣).故答案为:(x2+2)(x+)(x﹣).【点评】本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.15.如图,A、B、C在一条直线上,△ABD、△BCE均为等边三角形,连接CD、AE交于点P,并分别交BE、BD于N、M,连接MN,下列结论中:①AE=CD;②AM=DP;③MN∥AC;④若AB=2BC,连接DE,则DE⊥BE;⑤BP平分∠APC.正确的结论有:①③④⑤(填写出所有正确的序号)【考点】三角形综合题.【分析】根据等边三角形的性质得到AB=BD,BE=BC,∠ABD=∠CBE=60°,证得△ABE≌△DBC,由全等三角形的性质得到AE=CD,故①正确;由全等三角形的性质得到∠BAP=∠BDC,由A、B、C在一条直线上,求得∠DBN=180°﹣∠ABD﹣∠CBE=60°,推出△ABM≌△DBN,得到AM=DN,BM=BN,由DN>PD,得到AM>PD,故②错误;推出△BMN是等边三角形,得到∠MNB=60°,根据平行线的性质即可得到MN∥AC,故③正确;取BD的中点O,连接EO,DE,由AB=2BC,得到BD=2BE,证得△BEM是等边三角形,根据直角三角形的判定得到∠BED=90°,得到DE⊥BE;故④正确;过B作BG⊥CD于G,BH⊥AE于H,通过△ABH≌△DBG,得到BH=BG,根据角平分线的性质得到BP平分∠APC;故⑤正确;当A、B、C在一条直线上时,∠ABM=∠DBN=60°,∠DBE≠60°,则∠ABM≠∠DBN,于是得到△ABM与△DBN不全等,推出AM≠DN,故⑥错误.【解答】解:∵△ABD、△BCE均为等边三角形,∴AB=BD,BE=BC,∠ABD=∠CBE=60°,∴∠ABE=∠CBD,在△ABE与△CBD中,,∴△ABE≌△DBC,∴AE=CD,故①正确;∵△ABE≌△DBC,∴∠BAP=∠BDC,∵A、B、C在一条直线上,∴∠DBN=180°﹣∠ABD﹣∠CBE=60°,∴∠ABD=∠DBN,在△ABM与△BDN中,,∴△ABM≌△DBN,∴AM=DN,BM=BN,∵DN>PD,∴AM>PD,故②错误;∵BM=BN,∠MBN=60°,∴△BMN是等边三角形,∴∠MNB=60°,∴∠MNB=∠NBC,∴MN∥AC,故③正确;取BD的中点O,连接EO,DE,∵AB=2BC,∴BD=2BE,∴BE=BM=DM,∵∠MBE=60°,∴△BEM是等边三角形,∴EM=BM=DM,∴∠BED=90°,∴DE⊥BE;故④正确;过B作BG⊥CD于G,BH⊥AE于H,∴∠AHB=∠DGB=90°,在△ABH与△DBG中,,∴△ABH≌△DBG,∴BH=BG,∴BP平分∠APC;故⑤正确;∵当A、B、C在一条直线上时,∠ABM=∠DBN=60°,∠DBE≠60°,则∠ABM≠∠DBN,∴△ABM与△DBN不全等,∴AM≠DN,故⑥错误.故答案为:①③④⑤.【点评】此题考查了等边三角形的判定与性质与全等三角形的判定与性质,平行线的判定和性质,此题图形比较复杂,解题的关键是仔细识图,找准全等的三角形.16.已知a+=3,则a2+的值是7 .【考点】完全平方公式.【专题】常规题型.【分析】把已知条件两边平方,然后整理即可求解.完全平方公式:(a±b)2=a2±2ab+b2.【解答】解:∵a+=3,∴a2+2+=9,∴a2+=9﹣2=7.故答案为:7.【点评】本题主要考查了完全平方公式,利用公式把已知条件两边平方是解题的关键.三.解答(共8题,共72分)17.计算:(1)(ab2)2•(﹣a3b)3÷(﹣5ab);(2)3a(2a2﹣9a+3)﹣4a(2a﹣1)【考点】整式的混合运算.【专题】计算题.【分析】(1)原式利用积的乘方与幂的乘方运算法则计算,再利用乘除法则计算即可得到结果;(2)原式先利用单项式乘多项式法则计算,去括号合并即可得到结果.【解答】解:(1)原式=a2b4•(﹣a9b3)÷(﹣5ab)=a10b6;(2)原式=6a3﹣27a2+9a﹣8a+4a=6a3﹣35a2+13a;【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.18.运用乘法公式计算:(1)(2a﹣3b)(﹣2a+3b)﹣(2a+3b)2(2)(2a﹣b﹣3c)(﹣2a+b﹣3c).【考点】平方差公式;完全平方公式.【分析】根据乘法公式即可求出答案.【解答】解:(1)原式=﹣(2a﹣3b)(2a﹣3b)﹣(2a+3b)2=﹣(4a2﹣12ab+9b2)﹣(4a2+12ab+9b2)=﹣8a2﹣18b2;(2)原式=﹣(2a﹣b﹣3c)(2a﹣b+3c)=﹣[(2a﹣b)﹣3c][(2a﹣b)+3c]=﹣(2a﹣b)2+9c2=9c2﹣4a2+4ab﹣b2【点评】本题考查整式运算,涉及平方差公式,完全平方公式.19.分解因式:(1)3x﹣12x3;(2)9a2(x﹣y)+4b2(y﹣x).【考点】提公因式法与公式法的综合运用.【专题】计算题;因式分解.【分析】(1)原式提取公因式,再利用平方差公式分解即可;(2)原式变形后,提取公因式,再利用平方差公式分解即可.【解答】解:(1)原式=﹣3x(4x2﹣1)=﹣3x(2x+1)(2x﹣1);(2)原式=9a2(x﹣y)﹣4b2(x﹣y)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b).【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.20.如图,已知:在△AFD和△CEB中,点A、E、F、C在同一直线上,AE=CF,∠B=∠D,AD∥BC.求证:AD=BC.【考点】全等三角形的判定与性质;平行线的性质.【专题】证明题.【分析】根据平行线求出∠A=∠C,求出AF=CE,根据AAS证出△ADF≌△CBE即可.【解答】证明:∵AD∥BC,∴∠A=∠C,∵AE=CF,∴AE+EF=CF+EF,即AF=CE,∵在△ADF和△CBE中,∴△ADF≌△CBE(AAS),∴AD=BC.【点评】本题考查了平行线的性质和全等三角形的性质和判定的应用,判定两三角形全等的方法有:SAS、ASA、AAS、SSS.21.已知:a,b,c为△ABC的三边长,且2a2+2b2+2c2=2ab+2ac+2bc,试判断△ABC的形状,并证明你的结论.【考点】因式分解的应用.【专题】几何图形问题;探究型;因式分解.【分析】由2a2+2b2+2c2=2ab+2ac+2bc分组因式分解,利用非负数的性质得到三边关系,从而判定三角形形状.【解答】解:△ABC是等边三角形.证明如下:因为2a2+2b2+2c2=2ab+2ac+2bc,所以2a2+2b2+2c2﹣2ab﹣2ac﹣2bc=0,a2﹣2ab+b2+a2﹣2ac+c2+b2﹣2bc+c2=0,(a﹣b)2+(a﹣c)2+(b﹣c)2=0,所以(a﹣b)2=0,(a﹣c)2=0,(b﹣c)2=0,得a=b且a=c且b=c,即a=b=c,所以△ABC是等边三角形.【点评】此题是一道把等边三角形的判定、因式分解和非负数的性质结合求解的综合题.考查学生综合运用数学知识的能力.22.如图,△ABC的两条高AD、BF交于E,连EC,∠AEB=105°,∠ABC=45°.(1)求∠DEC的度数;(2)求证:AB﹣BE=CE.【考点】全等三角形的判定与性质.【分析】(1)首先证明△BDE≌△ADC,推出DE=EC,延长即可解决问题.(2)如图2中,延长EF到M使得FM=EF.只要证明△ECM是等边三角形,BA=BM即可证明.【解答】(1)解:如图1中,∵△ABC的两条高AD、BF交于E,∴∠ADB=∠ADC=∠AFE=90°,∵∠ABC=45°,∴∠BAD=90°﹣∠ABC=45°,∴∠ABD=∠ADB,∴BD=AD,∵∠DBE+∠ACB=90°,∠DAC+∠ACD=90°,∴∠DBE=∠DAC,在△BDE和△DAC中,,∴△BDE≌△ADC,∴DE=DC,∴∠DEC=∠DCE=45°.(2)证明:如图2中,延长EF到M使得FM=EF.∵∠AEB=105°,∴∠AEF=∠BED=75°,∴∠DBE=∠DAC=15°,∴∠MEC=∠EBC+∠ECD=60°,∵AC⊥EM,EF=FM,∴AE=AM,CE=CM,∴△ECM是等边三角形,∴EC=EM,∴∠AEM=∠AMB=75°,∠FAE=∠FAM=15°,∴∠BAM=∠BAD+∠DAM=75°,∴∠BAM=∠BMA,∴BA=BM,∴AB=BE+EM=BE+EC,∴AB﹣BE=EC.【点评】本题考查全等三角形的判定和性质.等腰直角三角形的性质、等边三角形的判定和性质,线段的垂直平分线的性质定理等知识,解题的关键是灵活运用这些知识解决问题,学会添加常用辅助线,构造特殊三角形解决问题,属于中考常考题型.23.如图1,在Rt△ACB中,∠ACB=90°,∠ABC=30°AC=1点D为AC上一动点,连接BD,以BD为边作等边△BDE,EA的延长线交BC的延长线于F,设CD=n,(1)当n=1时,则AF= 2 ;(2)当0<n<1时,如图2,在BA上截取BH=AD,连接EH,求证:△AEH为等边三角形.【考点】含30度角的直角三角形;全等三角形的判定与性质;等边三角形的性质.【专题】动点型.【分析】(1)根据三角形内角和定理求出∠BAC=60°,再根据平角等于180°求出∠FAC=60°,然后求出∠F=30°,根据30°角所对的直角边等于斜边的一半求解即可;(2)根据三角形的任意一个外角等于与它不相邻的两个内角的和利用∠CBD表示出∠ADE=30°+∠CBD,又∠HBE=30°+∠CBD,从而得到∠ADE=∠HBE,然后根据边角边证明△ADE与△HBE全等,根据全等三角形对应边相等可得AE=HE,对应角相等可得∠AED=∠HEB,然后推出∠AEH=∠BED=60°,再根据等边三角形的判定即可证明.【解答】(1)解:∵△BDE是等边三角形,∴∠EDB=60°,∵∠ACB=90°,∠ABC=30°,∴∠BAC=180°﹣90°﹣30°=60°,∴FAC=180°﹣60°﹣60°=60°,∴∠F=180°﹣90°﹣60°=30°,∵∠ACB=90°,∴∠ACF=180°﹣90°,∴AF=2AC=2×1=2;(2)证明:∵△BDE是等边三角形,∴BE=BD,∠EDB=∠EBD=60°,在△BCD中,∠ADE+∠EDB=∠CBD+∠C,即∠ADE+60°=∠CBD+90°,∴∠ADE=30°+∠CBD,∵∠HBE+∠ABD=60°,∠CBD+∠ABD=30°,∴∠HBE=30°+∠CBD,∴∠ADE=∠HBE,在△ADE与△HBE中,,∴△ADE≌△HBE(SAS),∴AE=HE,∠AED=∠HEB,∴∠AED+∠DEH=∠DEH+∠HEB,即∠AEH=∠BED=60°,∴△AEH为等边三角形.【点评】本题考查了30°角所对的直角边等于斜边的一半的性质,全等三角形的判定与性质,等边三角形的性质与判定,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,(2)中求出∠ADE=∠HBE是解题的关键.24.在平面直角坐标系中,点A(0,b)、点B(a,0)、点D(d,0)且a、b、c满足++(2﹣d)2=0,DE⊥x轴且∠BED=∠ABD,BE交y轴于点C,AE交x轴于点F.(1)求点A、B、D的坐标;(2)求点E、F的坐标;(3)如图,过P(0,﹣1)作x轴的平行线,在该平行线上有一点Q(点Q在P的右侧)使∠QEM=45°,QE交x轴于N,ME交y轴正半轴于M,求的值.【考点】一次函数综合题.【分析】(1)由非负数的性质可求得a、b、d的值,可求得A、B、D的坐标;(2)由条件可证明△ABO≌△BED,可求得DE和BD的长,可求得E点坐标,再求得直线AE的解析式,可求得F点坐标;(3)过E作EG⊥OA于点G,EH⊥PQ于点Q,可证明四边形GEHP为正方形,在GA上截GI=QH,可证明△IGE≌△QHE,可证得∠IEM=∠MEQ=45°,可证明△EIM≌△EQM,可得到IM=MQ,再结合条件可求得PH=AI=PQ,可求得答案.【解答】解:(1)∵++(2﹣d)2=0,∴a=﹣1,b=3,d=2,∴A(0,3),B(﹣1,0),D(2,0);(2)∵A(0,3),B(﹣1,0),D(2,0),∴OB=1,OD=2,OA=3,∴AO=BD,在△ABO和△BED中,,∴△ABO≌△BED(AAS),∴DE=BO=1,∴E(2,1),设直线AE解析式为y=kx+b,如图1,把A、E坐标代入可得,解得,∴直线AE的解析式为y=﹣x+3,令y=0,可解得x=3,∴F(3,0);(3)过E作EG⊥OA,EH⊥PQ,垂足分别为G、H,在GA上截取GI=QH,如图2,∵E(2,1),P(﹣1,0),∴GE=GP=GE=PH=2,∴四边形GEHP为正方形,∴∠IGE=∠EHQ=90°,在Rt△IGE和Rt△QHE中,∴△IGE≌△QHE(SAS),∴IE=EQ,∠1=∠2,∵∠QEM=45°,∴∠2+∠3=45°,∴∠1+∠3=45°,∴∠IEM=∠QEM,在△EIM和△EQM中,,∴△EIM=EQM(SAS),∴IM=MQ,∴AM﹣MQ=AM﹣IM=AI,由(2)可知OA=OF=3,∠AOF=90°,∴∠A=∠AEG=45°,∴PH=GE=GA=IG+AI,∴AI=GA﹣IG=PH﹣QH=PQ,∴==1.【点评】本题主要考查一次函数的综合应用,涉及知识点有非负数的性质、全等三角形的判定和性质、待定系数法、正方形的判定和性质知.在(1)中掌握非负数的性质是解题的关键,在(2)中证明△ABO≌△BED求得DE的长是解题的关键,在(3)中构造三角形全等证明AM﹣MQ=AI=PQ是解题的关键.本题涉及知识点较多,综合性较强,难度较大,特别是第(3)问中条件∠QEM=45°角的应用是解题的关键点.。
2015-2016学年湖北省武汉市硚口区八年级(上)期末数学试卷-(附解析答案)
2015-2016学年湖北省武汉市硚口区八年级(上)期末数学试卷参考答案与试题解析一.选择题(共10小题,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答卷上将正确答案的代号涂黑.1.(3分)若分式x−22x+1的值为0,则x 的值为( )A .2B .﹣2C .12 D .﹣12【解答】解:∵分式x−22x+1的值为0, ∴{x −2=02x +1≠0, 解得x=2. 故选:A .2.(3分)以下列各组长度的线段为边,能构成三角形的是( ) A .3,4,8B .5,6,10C .5,6,11D .5,9,15【解答】解:A 、3+4<8,不符合三角形三边关系定理,故本选项错误; B 、5+6>10,6+10>5,5+10>6,符合三角形三边关系定理,故本选项正确; C 、5+6=11,不符合三角形三边关系定理,故本选项错误; D 、5+9<15,不符合三角形三边关系定理,故本选项错误; 故选:B .3.(3分)分式x3y 与3x2y 2的最简公分母是( )A.6y B.3y2C.6y2D.6y3【解答】解:分式x3y 与3x2y的分母分别是3y、2y2,故最简公分母是6y2;故选:C.4.(3分)下列平面图形中,不是轴对称图形的是()A.B.C.D.【解答】解::A、不是轴对称图形,本选项正确;B、是轴对称图形,本选项错误;C、是轴对称图形,本选项错误;D、是轴对称图形,本选项错误.故选:A.5.(3分)下列计算正确的是()A.2x2﹣4x2=﹣2 B.3x+x=3x2 C.3x•x=3x2D.4x6÷2x2=2x3【解答】解:A、2x2﹣4x2=﹣2x2,故此选项错误;B、3x+x=4x,故此选项错误;C、3x•x=3x2,正确;D、4x6÷2x2=2x4,故此选项错误;故选:C.6.(3分)下列四个整式:①x2﹣4x+4;②6x2+3x+1;③4x2+4x+1;④x2+4xy+2y2.其中是完全平方式的是()A.①③B.①②③C.②③④D.③④【解答】解:①x2﹣4x+4=(x﹣2)2,符合题意;②6x2+3x+1,不符合题意;③4x2+4x+1=(2x+1)2,符合题意;④x2+4xy+2y2,不符合题意,故选:A.7.(3分)如图,等腰△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,∠DBC=15°,则∠A的度数是()A.35°B.40°C.50°D.55°【解答】解:∵DM是AB的垂直平分线,∴AD=BD,∴∠ABD=∠A,∵等腰△ABC中,AB=AC,,∴∠ABC=∠C=′80°−∠A2﹣∠A=15°,∴∠DBC=∠ABC﹣∠ABD=′80°−∠A2解得:∠A=50°.故选:C.8.(3分)已知a﹣b=10,ab=5,则a2+b2的值为()A.95 B.110 C.90 D.105【解答】解:∵a﹣b=10,ab=5,∴a2+b2=(a﹣b)2+2ab=102+2×5=110,故选:B.9.(3分)AD是△ABC的中线,若AB=5,AC=9,则AD的值不可能的是()A.3 B.4 C.5 D.8【解答】解:如图,延长AD到E,使AD=DE,∵AD是BC边上的中线,∴BD=DC∴四边形ABEC是平行四边形∴BE=AC=9在△ABE中,根据三角形的三边关系,得9﹣5<AE<9+5,即4<AE<14.∵AD是BC边上的中线,AE∴AD=12∴AD的取值范围是2<AD<7.故选:D.10.(3分)如图,在四边形ABDC中,对角线AD、BC交于点O,∠BAC=90°,∠BDC=90°,BD=CD,AB=2,AC=4,记△AOC的面积为S1、△BOD的面积为S2,则S1﹣S2的值为()A.1 B.1.5 C.2 D.2.5【解答】解:如图,作DE⊥AC于E,DF⊥AB于F则四边形AFDE是矩形.∴∠EDF=∠BDC=90°,∴∠BDF=∠EDC,∵∠F=∠DEC=90°,DB=DC,∴△DFB ≌△DEC , ∴DE=DF ,BF=CE ,∴AB+AC=AF ﹣BF+AE+CE=2AE=6, ∴AE=AF=3,∵S 1﹣S 2=S △ABC ﹣S △ABD =12•2•4﹣12•2•3=1, 故选:A .二.填空题(共6小题,共18分)11.(3分)将分式约分:x 53x 2= x 33.【解答】解:x 53x2=x 33.故答案为x 33.12.(3分)禽流感病毒的形状一般为球形,直径大约为0.000102千米,数0.000102用科学记数法表示为 1.02×10﹣4 . 【解答】解:0.000102=1.02×10﹣4, 故答案为:1.02×10﹣4.13.(3分)若一个n 边形的内角和为720°,则边数n= 6 . 【解答】解:由题意可得:(n ﹣2)•180°=720°, 解得:n=6.所以,多边形的边数为6.14.(3分)若a m=2,a n=3,则a2m+n=12.【解答】解:∵a m=2,a n=3,∴a2m+n=a2m•a n=(a m)2•a n=22×3=12.故答案为:12.15.(3分)如图,AD,BE为锐角△ABC的高,若BF=AC,BC=7,CD=2,则AF的长为3.【解答】解:∵AD⊥BC,BE⊥AC,∴∠BDF=∠ADC=∠BEC=90°,∴∠DBF+∠C=90°,∠DAC+∠C=90°,∴∠DBF=∠DAC,在△BDF与△ADC中,{∠DBF=∠DAC ∠BDF=∠ADC BF=AC,∴△BDF≌△ADC(ASA),∴AD=BD=BC﹣CD=7﹣2=5,DF=CD=2,∴AF=AD﹣DF=5﹣2=3;16.(3分)如图,△ABC≌△A′BC′,∠ABC=90°,∠A′=30°.(0°<∠ABA′≤60°),A′C′与AC交于点F,与AB交于点E,连接BF.当△BEF为等腰三角形时,则∠AB A′的角度为20°或40°.【解答】解:如图,当FE=FB时,△BEF为等腰三角形,设∠FEB=∠FBE=α,过B作BP⊥AC,BQ⊥A'C',由全等三角形对应边上的高相等,可得BP=BQ,∴点B在∠PFQ的角平分线上,∴∠PFB=∠QFB,∵∠PFB是△ABF的外角,∴∠PFB=∠A+∠FBE=30°+α,∴∠QFB=30°+α,∵△BEF中,∠QFB+∠FEB+∠FBE=180°,∴30°+α+2α=180°,解得α=50°,∴∠ABA'=∠FEB﹣∠A'=50°﹣30°=20°;如图,当BE=BF时,△BEF为等腰三角形,设∠FEB=∠BFE=α,过B作BP⊥AC,BQ⊥A'C',由全等三角形对应边上的高相等,可得BP=BQ,∴点B在∠PFQ的角平分线上,∴∠PFB=∠QFB=α,∵∠PFB是△ABF的外角,∴∠FBE=∠PFB﹣∠A=α﹣30°,∵△BEF中,∠QFB+∠FEB+∠FBE=180°,∴α+α+α﹣30°=180°,解得α=70°,∴∠ABA'=∠FEB﹣∠A'=70°﹣30°=40°;综上所述,∠ABA′的角度为20°或40°.故答案为:20°或40°.三.解答题(共9小题,共72分)17.(8分)解方程:2x−3=3x . 【解答】解:去分母得:2x=3x ﹣9, 解得:x=9,经检验x=9是分式方程的解.18.(8分)如图,已知点B 、E 、C 、F 在同一条直线上,AB=DE ,AC=DF ,BE=CF . 求证:(1)△ABC ≌△DEF ; (2)AB ∥DE .【解答】证明:(1)∵BE=CF , ∴BE+EC=EC+CF , 即BC=EF ,在△ABC 和△DEF 中, {AB =DE AC =DF BC =EF, ∴△ABC ≌△DEF (SSS ).(2)∵△ABC≌△DEF,∴∠B=∠DEF,∴AB∥DE(同位角相等,两直线平行).19.(8分)因式分解(1)2mx2﹣2my2(2)(x2+4)2﹣16x2.【解答】解:(1)原式=2m(x2﹣y2)=2m(x+y)(x﹣y);(2)原式=(x2+4﹣4x)(x2+4+4x)=(x﹣2)2(x+2)2.20.(8分)计算(1)a2•a4•a+(a3)2+(﹣2a2)3(2)[(a+2b)2﹣(a+2b)(a﹣2b)﹣7b2]÷2b.【解答】解:(1)原式=a7+a6﹣8a6=a7﹣7a6;(2)原式=(a2+4ab+4b2﹣a2+4b2﹣7b2)÷2b=(4ab+b2)÷2b=2a+1b.221.(8分)如图,在平面直角坐标系中,已知A(1,2)、B(3,1)、C(4,3).(1)直接写出点C关于y轴的对称点的坐标;(2)作△ABC关于直线m(直线m上各点的纵坐标都为﹣1)的对称图形△A1B1C1,写出点C关于直线m的对称点C1的坐标;(3)点P是坐标轴上一点,使△ABP是等腰三角形,则符合条件的点P的个数有6.【解答】解:(1)点C关于y轴的对称点的坐标为:(﹣4,3);(2)如图所示:△A1B1C1,即为所求,点C关于直线m的对称点C1的坐标为:(4,﹣5);(3)如图所示:△ABP是等腰三角形,P1,P2,P3,P4都符合题意,以及AB的垂直平分线会与坐标轴有两个交点,故符合条件的点P的个数有6.22.(5分)甲、乙两人生产相同的零件,甲比乙每小时多生产30个,甲生产900个所用的时间与乙生产600个所用的时间相等,求甲、乙两人每小时各生产多少个零件?(列方程解应用题)【解答】解:设乙每小时生产零件x 个,则甲每小时生产零件(x+30)个,根据题意得:900∠+30=600∠,解得x=60,经检验,x=60是原方程的解, x+30=60+30=90.答:甲每小时生产90个零件,乙每小时生产60个零件. 23.(5分)列方程解应用题:某列车平均提速vkm/h ,用相同的时间,该列车提速前行驶skm ,提速后比提速前多行驶50km ,求提速前该列车的平均速度.【解答】解:设提速前这次列车的平均速度xkm/h .由题意得,∠∠=∠+50∠+∠,方程两边乘x (x+v ),得s (x+v )=x (s+50)解得:∠=∠∠50,经检验:由v ,s 都是正数,得∠=∠∠50是原方程的解.答:提速前这次列车的平均速度∠∠50∠∠/∠.24.(10分)在平面直角坐标系中,点A 在y 轴正半轴上.(1)如图1,以OA为底边向第一象限作等腰△OAK,直线BC∥y轴,交AK,OK分别于点B,C.求证:AB=OC;(2)如图2,点D(2a,0),(a>0),点P(a,b)在线段AD上,连接PB,PC,求证:PB=PC;(3)如图3(示意草图),已知A(0,2),E(6,3),M(m,0),N(m+1,0),若AM+MN+NE 最小,请在备用图中画出线段MN(保留主要画图痕迹),并求出点M的坐标.【解答】解:(1)如图1中,∵KA=KO,∴∠KAO=∠KOA,∵BC∥OA,∴∠CBK=∠OAK,∠BCK=∠AOK,∴∠CBK=∠BCK,∴BK=CK,∵KA=KO,∴AB=OC.(2)如图2中,连接PO.∵点D(2a,0),(a>0),点P(a,b)在线段AD上,∴PA=PD,∵∠AOD=90°,∴PO=PA=PB,∴∠PAO=∠POA,∵∠BAC=∠COA(由(1)可知,∴∠PAB=∠POC,∵BA=OC(已证),∴△PAB≌△POC,∴PB=PC.(3)如图4中,将点A 向右平移1个单位得到A′,作点A′关于x 轴的对称点A″,连接A″E 交x 轴于N ,点N 向左平移1个单位得到点M ,则此时AM+MN+NE 的值最小.易知A″(1,﹣2),E (6,3),设直线A″E 的解析式为y=kx+b ,则有{∠+∠=−26∠+∠=3,解得{∠=1∠=−3,∴y=x ﹣3, ∴N (3,0), ∵MN=1,∴点M 的坐标为(2,0).25.(12分)已知,点D 、E 分别是等边△ABC 的边BC 、AB 上的点,∠ADE=60°. (1)如图1,当点D 是BC 的中点时,求证:AE=3BE ;(2)如图2,点M 在AC 上,满足∠ADM=60°,求证:BE=CM ;(3)如图3,作CF ∥AB 交ED 的延长线于点F ,探究三条线段BE 、CF 、CD 之间的数量关系,并给出证明.【解答】解:(1)∵△ABC 为等边三角形,点D 是BC 的中点, ∴∠BAD=30°,∠ADB=90°,∴BD=12∠∠,∵∠ADE=60°, ∴∠AED=90°,∴∠DEB=90°,∠BDE=30°,∴BE=12BD=14AB , ∴AE=3BE ;(2)∵△ABC 是等边三角形, ∴∠B=∠C=60°, ∵∠EDA=60°, ∴∠1+∠ADC=120°, ∵∠2+∠ADC=120°, ∴∠1=∠2, ∴△BED ∽△CDA ,∴∠∠∠∠=∠∠∠∠,即BE•AC=BD•CD,同理△DCM∽△ABD,∴∠∠∠∠=∠∠∠∠,即CM•AB=BD•DC,∴CM•AB=BE•AC,∵AB=AC,∴CM=BE;(3)FC+BE=DC,由(2)得,△ADC∽△DEB,∵CF∥BA,∴△ADC∽△DFC,∴∠∠∠∠=∠∠∠∠,∠∠∠∠=∠∠∠∠,∴∠∠+∠∠∠∠=∠∠+∠∠∠∠,∴∠∠+∠∠∠∠=∠∠∠∠=1,∴FC+BE=DC.。
2015-2016学年湖北省武汉市武昌区八年级(上)期末数学试卷
2015-2016学年湖北省武汉市武昌区八年级(上)期末数学试卷一、选择题:每小题3分,共30分.四个选项中只有一项是符合题目要求的.1.下列图形中,不是轴对称图形的是()A.B.C.D.2.若分式的值为0,则x的值为()A.2 B.﹣2 C.D.﹣3.点M(﹣2,1)关于x轴的对称点N的坐标是()A.(2,1) B.(﹣2,1)C.(﹣2,﹣1) D.(2,﹣1)4.以下列各组长度的线段为边,能构成三角形的是()A.3,4,8 B.5,6,10 C.5,6,11 D.5,9,155.下列运算中正确的是()A.b3•b3=2b3B.x2•x3=x6C.(a5)2=a7D.a2÷a5=a﹣36.分式与的最简公分母是()A.6y B.3y2C.6y2D.6y37.下列多项式中,能分解因式的是()A.a2+b2 B.﹣a2﹣b2C.a2﹣4a+4 D.a2+ab+b28.如图,AD∥BC,AD=CB,要使△ADF≌△CBE,需要添加的下列选项中的一个条件是()A.AE=CF B.DF=BE C.∠A=∠C D.AE=EF9.如图,在△ABE中,∠A=105°,AE的垂直平分线MN交BE于点C,且AB+BC=BE,则∠B的度数是()A.45° B.50° C.55° D.60°10.如图,在等腰Rt△ABC中,∠ABC=90°,O是AC的中点,P,Q分别在AB,BC上(P,Q与A,B,C都不重合),OP⊥OQ,OS⊥AQ交AB于S.下列结论:①BQ=BS;②PA=QB;③S是PB的中点;④的值为定值.其中正确结论的个数是()A.1个B.2个C.3个D.4个二、填空题:每小题3分,共18分.11.将分式约分: = .12.禽流感病毒的形状一般为球形,直径大约为0.000102千米,数0.000102用科学记数法表示为.13.若一个n边形的内角和为720°,则边数n= .14.若x2+mx+9是一个完全平方式,则m的值是.15.如图,AB⊥BC,AD⊥DC,∠BAD=130°,点M,N分别在BC,CD上,当△AMN的周长最小时,∠MAN的度数为.16.如图,在Rt△ABC和Rt△BCD中,∠BAC=∠BDC=90°,BC=8,AB=AC,∠CBD=30°,BD=4,M,N分别在BD,CD上,∠MAN=45°,则△DMN的周长为.三、解答题:共9小题,共72分.解答时写出必要的文字说明、演算步骤或画出图形.。
武汉市汉阳区2015-2016学年度第一学期数学期末考试八年级数学试题(有答案)
—1—2015-2016学年度第一学期期末考试 八年级数学试卷一、选择题(每小题3分,共30分)1.下面四个中文艺术字中,不是轴对称图形的是( )A .B .C .D .2. 要使分式1x 2+有意义,则x 的取值应满足( ) A. x 2=- B. x 2≠- C. x 2>- D. x=23.某种微粒的直径为0.00000508米,那么该微粒的直径用科学记数法可以表示为( ) A. 0.508×10-7米 B. 5.08×10-7米 C. 50.8×10-7米 D. 5.08×10-6米 4. 一个长方体的长、宽、高分别为3x-4、2x 和x ,则它的体积为( ) A.2343x x - B.863-x C.2386x x - D.x x 862- 5. 下列因式分解正确的是( ) A.22)4(44+=++x x x B. 22)12(124-=+-x x xC. 9-6(m-n)+(m-n)2=(3-m-n)2D. 222)(2b a ab b a --=+--6.下列等式成立的是( )A .b a b a +=+321 B .b a b a +=+122 C .b a a bab ab -=-2D .b a ab a a +-=+- 7. 解分式方程31212=-++-xx x 时,去分母后变形正确的为( ) A .2+(x +2)=3(x -1) B .2-x +2=3(x -1)C .2-(x +2)=3D . 2-(x +2)=3(x -1)—2—8. 已知等腰三角形的一边长为4,另一边长为8,则它的周长是( ) A. 12 B. 16 C. 20 D. 16或209. 如图,等边△ABC 的边长为1 cm ,D 、E 分别是AB 、AC 上的两点,将△ADE 沿直线DE 折叠,点A 落在点A ' 处,且点A '在△ABC 外部,则阴影部分图形的周长为( ) A. 1cm B. 1.5cmC. 2cmD. 3cm10.如图,在ABC ∆中,AB =AC ,A ∠=36°,AB 的垂直平分线DE 交AC 于D ,交AB 于E ,下列结论:①BD 平分∠ABC ;②AD =BD =BC ;③△BDC 的周长等于AB +BC ;④D 是AC 中点.其中正确结论的个数有( ) A .1个B .2个C .3个D .4个二、填空题(每题3分,共18分)11. 若分式211x x -+的值为0,则x =12. 计算59.9×60.1=13. 一个等腰三角形的一个角为50°,则它的顶角的度数是14. 如图,在边长为a 的正方形中减去一个边长为b 的小正方形(a >b),把剩下的部分拼成一个梯形,分别计算这两个图形的阴影部分的面积,可以验证一个等式,请写出这个等式15. 若关于x 的方程2222=-++-xm x x 的解为正数,则m 的取值范围是 16. 如图, 在ABC ∆中,∠A=105°,AD ⊥BC,垂足为D,且AB+BD=CD,则∠C 的度数是第14题图ACB D第16题图 第9题图—3—三、解答题(共8个小题,共72分) 17.(本题满分8分)(1) 计算:632422)(a a a a -+⋅ (2) 因式分解1212323+-x x x18. (本题满分8分)如图,在ABC ∆中,AB AC =,AD 是BC 边上的中线,BE AC ⊥于点E .(1)求证CBE BAD ∠=∠;(2)当ABC ∆满足什么条件时,AE=CE.直接写出条件. 19. (本题满分8分)(1)化简xx x -+-1112 (2)先化简,再求值:24)2122(+-÷+--x xx x ,其中42=x 20. (本题满分8分)比邻而居的蜗牛神和蚂蚁王相约,第二天上午8时结伴出发,到相距16米的银杏树下参加探讨环境保护的微型动物首脑会议,蜗牛神想到“笨鸟先飞”的古训,于是给蚂蚁王留下一张纸条后提前2小时独自先行,蚂蚁王按既定时间出发,结果他们同时到达,已知蜗牛神的速度是蚂蚁王的14,求它们各自的速度. 21. (本题满分10分) (1)观察下列各式211211-=⨯,3121321-=⨯,4131431-=⨯,5141541-=⨯,…,请根据规律写出第n 个等式; (2)若1212)12)(12(1++-=+-n b n a n n ,对任意自然数n 都成立,则=a ,=b ;(3)根据(2)的结论,计算99971751531311⨯++⨯+⨯+⨯ .22. (本题满分8分)如图,已知ABC ∆是等边三角形. 点E 在线段AB 上,点D 在射线CB 上,且ED=EC ,以CE 为边作等边CEF ∆, 连接AF. (1)求证BE=AF;(2)猜想线段AB,DB,AF 之间的数量关系,并证明你的猜想.AB CD E 第18题图—4—23. (本题满分10分)有足够多的如图所示的正方形和长方形的卡片.(1)选取1号、2号、3号卡片若干张,拼成一个正方形(不重叠无缝隙),并能运用拼图前后面积之间的关系说明公式2222)(b ab a b a ++=+成立,请画出这个正方形; (2)小明想用类似(1)的方法解释多项式乘法(a+b )(2a+3b )=22352b ab a ++,那么用2号卡片 张,3号卡片 张;(3)如果选取1号、2号、3号卡片分别为1张、2张、3张,可拼成一个长方形(不重叠无缝隙),请画出这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义.这个长方形的代数意义是 .24. (本题满分12分)直角三角形有一个重要的性质:在Rt ABC ∆中,︒=∠︒=∠30,90A C ,则AB:BC:AC=2:1:3.运用该性质可以解决下面问题.已知等边ABC ∆的边长为32.(1)如图1,过等边ABC ∆的顶点A,B,C 依次作AB,BC,CA 的垂线围成MNG ∆.①求证MNG ∆是等边三角形; ②求MN 的长.(2)在等边ABC ∆内取一点O ,过点O 分别作OD ⊥AB,OE ⊥BC,OF ⊥BC 垂足分别为点D,E,F.①如图2,若点O 是ABC ∆的三条高的交点,我们可利用三角形面积公式或等边三角形性质得到两个猜想(不必证明):猜想1:OF OE OD ++的值为 ;猜想2: CF BE AD ++的值为 ; ②如图3,若点O 是等边ABC ∆内任意一点,则①中的两个猜想是否仍然成立?如果成立,请给予证明;如果不成立,请说明理由.NMAGCBA F CBDA F CBD图1图2 图3O O 第23题图—5—八年级数学参考答案及评分标准一、选择题(共10小题,每小题3分,共30分)二、填空题(共6小题,每小题3分,共18分) 11. 1; 12.3599.99 13. 50°或80° ;14.))((22b a b a b a -+=-; 15. m <6且m≠0; 16. 25° 三、解答题(共72分)17.解:(1)原式=6662a a a -+ …………3分=0; …………4分(2)原式=)44(32+-x x x ………2分= 2)2(3-x x …………4分18.(1)证明:∵AB=AC,AD 是BC 边上的中线∴∠BAD=∠CAD,AD⊥BC ………2分 又∵BE⊥AC ∴∠CBE=∠CAD………4分 ∴∠CBE=∠CAD ………5分 (2) ABC ∆为等边三角形 …………8分…………2分(2)原式==xx x x -+⨯+-422162 ……………2分==4--x …………3分∵42=x ,,且x≠-2,∴x=2∴当x=2时,原式=-6 ……………4分20. 设蜗牛神的速度为x 米/时,则蚂蚁王的速度为4x 米/时,依题意可列:……1分241616=-xx ……4分 去分母,64-16=8x ,x =6 ……6分 经检验,x =6是原方程的根. ……7分 则蜗牛神的速度为6米/时,则蚂蚁王的速度为24米/时.答:蜗牛神的速度为6米/时,则蚂蚁王的速度为24米/时. ……8分21. (1)1)1(1=+n n n (2)21,21- …………5分 (3原式=)991971(21)311(21-++- …………7分=)991971311(21-++-=)9911(21-- =9949 …………10分22.(1)可证∠ACF=∠BCE …………2分 在∆ACF 和∆BCE 中,AC=BC, ∠ACF=∠BCE ,CE=CF ∴∆ACF≌∆BCE∴BE=AF …………4分(2)AB=AF+BD;过点E 作E G∥BC 交AC 于点G,得△AEG 为等边三角形 ∵DE=CE,∴∠CDE=∠ECD, …………5分 又∵∠CDE+∠BED=∠ABC=∠ACD=∠ECD+∠GCE ,∴∠BED=∠GCE …………6分 又∵BE=CG,DE=CE∴△BDE≌△GEC ∴BD=EG=AE∵AF=BE ∴AB=BE+AE=AF+BD …………8分23.(1)如图,…………3分第21题图b a—7—(2)3, 5 …………5分(3)如图(画出一个图形即可) …………8分或代数意义:a 2+3ab+2b 2=(a+b )(a+2b )…………10分24.(1)可证∠M=∠N=∠G=60°∴MNG ∆是等边三角形; ………2分又可求BN=2,BM=4,∴MN=6 ………4分 (2)①3;33. ………6分(2)两个结论仍然成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年湖北省武汉市武昌区八年级(上)期末数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)下列几何图形不一定是轴对称图形的是()A.角B.等边三角形C.等腰三角形D.直角三角形2.(3分)若分式有意义,则x满足的条件是()A.x=1 B.x=3 C.x≠1 D.x≠33.(3分)若等腰三角形的两边长分别是2和10,则它的周长是()A.14 B.22 C.14或22 D.124.(3分)下列运算中正确的是()A.(a2)3=a5B.a2•a3=a5 C.a6÷a2=a3D.a5+a5=2a105.(3分)下列分式与分式相等的是()A.B. C.D.﹣6.(3分)下列因式分解结果正确的是()A.x2+3x+2=x(x+3)+2 B.4x2﹣9=(4x+3)(4x﹣3)C.x2﹣5x+6=(x﹣2)(x﹣3)D.a2﹣2a+1=(a+1)27.(3分)已知图中的两个三角形全等,则∠1等于()A.72°B.60°C.50°D.58°8.(3分)石墨烯目前是世界上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为()A.0.34×10﹣9B.3.4×10﹣9C.3.4×10﹣10D.3.4×10﹣119.(3分)如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3 B.4 C.5 D.610.(3分)如果满足条件“∠ABC=30°,AC=1,BC=k(k>0)”的△ABC是唯一的,那么k的取值时()A.0<k≤1或k=2 B.k=2 C.1<k<2 D.0<k≤1二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)计算:=.12.(3分)一个n边形的内角和是540°,那么n=.13.(3分)若x2+2x+m是一个完全平方式,则m=.14.(3分)如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.若∠DBC=33°,∠A的度数为.15.(3分)如图,把△ABC沿EF对折,折叠后的图形如图所示.若∠A=60°,∠1=96°,则∠2的度数为.16.(3分)D为等腰Rt△ABC斜边BC上一点(不与B、C重合),DE⊥BC于点D,交直线BA于点E,作∠EDF=45°,DF交AC于F,连接EF,BD=nDC,当n=时,△DEF为等腰直角三角形.三、解答题(共8题,共72分)17.(9分)(1)计算:(x+1)(x+2)(2)分解因式:x2y+2xy+y.18.(9分)解分式方程:(1);(2).19.(9分)如图,点B、E、C、F在同一条直线上,AB=DE,∠ABC=∠DEF,BC=EF,求证:∠A=∠D.20.(9分)先化简,再求值:÷(1+),其中x=﹣4.21.(9分)如图,已知A(﹣2,4),B(4,2),C(2,﹣1)(1)作△ABC关于x轴的对称图形△A1B1C1,写出点C关于x轴的对称点C1的坐标;(2)P为x轴上一点,请在图中画出使△PAB的周长最小时的点P并直接写出此时点P的坐标(保留作图痕迹).22.(9分)甲、乙、丙三个登山爱好者经常相约去登山,今年1月甲参加了两次登山活动.(1)1月1日甲与乙同时开始攀登一座1800米高的山,甲比乙早30分钟到达顶峰.已知甲的平均攀登速度是乙的1.2倍,求甲的平均攀登速度是每分钟多少米?(2)1月10日甲与丙去攀登另一座a米高的山,甲保持第(1)问中的速度不变,比丙晚出发1小时,结果两人同时到达顶峰,问甲的平均攀登速度是丙的多少倍?(用含a的代数式表示)23.(9分)已知△ABC和△DEF为等腰三角形,AB=AC,DE=DF,∠BAC=∠EDF,点E在AB上,点F在射线AC上.(1)如图1,若∠BAC=60°,点F与点C重合,求证:AF=AE+AD;(2)如图2,若AD=AB,求证:AF=AE+BC.24.(9分)如图,在平面直角坐标系中,A(8,0),点B在第一象限,△OAB 为等边三角形,OC⊥AB,垂足为点C.(1)直接写出点C的横坐标;(2)作点C关于y轴的对称点D,连DA交OB于E,求OE的长;(3)P为y轴上一动点,连接PA,以PA为边在PA所在直线的下方作等边△PAH.当OH最短时,求点H的横坐标.2015-2016学年湖北省武汉市武昌区八年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)下列几何图形不一定是轴对称图形的是()A.角B.等边三角形C.等腰三角形D.直角三角形【解答】解:A、B、C都是轴对称图形,D不是轴对称图形,故选:D.2.(3分)若分式有意义,则x满足的条件是()A.x=1 B.x=3 C.x≠1 D.x≠3【解答】解:分式有意义,得x﹣3≠0.解得x≠3,故选:D.3.(3分)若等腰三角形的两边长分别是2和10,则它的周长是()A.14 B.22 C.14或22 D.12【解答】解:∵等腰三角形的两边分别是2和10,∴应分为两种情况:①2为底,10为腰,则2+10+10=22;②10为底,2腰,而2+2<10,应舍去,∴三角形的周长是22.故选B.4.(3分)下列运算中正确的是()A.(a2)3=a5B.a2•a3=a5 C.a6÷a2=a3D.a5+a5=2a10【解答】解:A、(a2)3=a6,故本选项错误;B、a2•a3=a5,故本选项正确;C、a6÷a2=a4,故本选项错误;D、a5+a5=2a5,故本选项错误.故选:B.5.(3分)下列分式与分式相等的是()A.B. C.D.﹣【解答】解:A、分子乘以2y,分母乘以x,故A错误;B、分子分母都乘以x,故B正确;C、分子除以2,分母乘以2,故C错误;D、分子、分母、分式改变其中的任意两项的符号,结果不变,故D错误;故选:B.6.(3分)下列因式分解结果正确的是()A.x2+3x+2=x(x+3)+2 B.4x2﹣9=(4x+3)(4x﹣3)C.x2﹣5x+6=(x﹣2)(x﹣3)D.a2﹣2a+1=(a+1)2【解答】解:A、原式=(x+1)(x+2),故本选项错误;B、原式=(2x+3)(2x﹣3),故本选项错误;C、原式=(x﹣2)(x﹣3),故本选项正确;D、原式=(a﹣1)2,故本选项错误;故选:C.7.(3分)已知图中的两个三角形全等,则∠1等于()A.72°B.60°C.50°D.58°【解答】解:如图,由三角形内角和定理得到:∠2=180°﹣50°﹣72°=58°.∵图中的两个三角形全等,∴∠1=∠2=58°.故选:D.8.(3分)石墨烯目前是世界上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为()A.0.34×10﹣9B.3.4×10﹣9C.3.4×10﹣10D.3.4×10﹣11【解答】解:0.000 000 000 34=3.4×10﹣10;故选C.9.(3分)如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3 B.4 C.5 D.6【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD,=AB•DE=×10•DE=15,∴S△ABD解得DE=3.故选A.10.(3分)如果满足条件“∠ABC=30°,AC=1,BC=k(k>0)”的△ABC是唯一的,那么k的取值时()A.0<k≤1或k=2 B.k=2 C.1<k<2 D.0<k≤1【解答】解:当AC<BCsin∠ABC,即1<ksin30°,即k>2时,三角形无解;当AC=BCsin∠ABC,即1=ksin30°,即k=2时,有一解;当BCsin∠ABC<AC<BC,即ksin30°<1<k,即1<k<2,三角形有2个解;当0<BC≤AC,即0<k≤1时,三角形有1个解.综上所述,k的取值范围是k=2或0<k≤1.故选:A.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)计算:=1.【解答】解:原式==1.12.(3分)一个n边形的内角和是540°,那么n=5.【解答】解:设这个多边形的边数为n,由题意,得(n﹣2)•180°=540°,解得n=5.故答案为:5.13.(3分)若x2+2x+m是一个完全平方式,则m=1.【解答】解:∵x2+2x+m是一个完全平方式,∴x2+2x+m=x2﹣2x•1+12,∴m=1,故答案为:1.14.(3分)如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.若∠DBC=33°,∠A的度数为38°.【解答】解:设∠A的度数为x,∵MN是AB的垂直平分线,∴DB=DA,∴∠DBA=∠A=x,∵AB=AC,∴∠ABC=∠C=33°+x,∴33°+x+33°+x+x=180°,解得x=38°.故答案为:38°.15.(3分)如图,把△ABC沿EF对折,折叠后的图形如图所示.若∠A=60°,∠1=96°,则∠2的度数为24°.【解答】解:∵∠A=60°,∴∠AEF+∠AFE=180°﹣60°=120°.∴∠FEB+∠EFC=360°﹣120°=240°.∵由折叠可得:∠B′EF+∠EFC′=∠FEB+∠EFC=240°.∴∠1+∠2=240°﹣120°=120°.∵∠1=96°,∴∠2=120°﹣96°=24°.故答案为:24°.16.(3分)D为等腰Rt△ABC斜边BC上一点(不与B、C重合),DE⊥BC于点D,交直线BA于点E,作∠EDF=45°,DF交AC于F,连接EF,BD=nDC,当n=或1时,△DEF为等腰直角三角形.【解答】解:分两种情况:①当∠DEF=90°时,如图1所示:∵DE⊥BC,∴∠BDE=90°=∠DEF,∴EF∥BC,作FG⊥BC于G,∵△ABC是等腰直角三角形,∴△CFG、△BDE是等腰直角三角形,四边形EFGD是正方形,∴BD=DE=EF=DG=FG=CG,∴BD=CD,∴n=;②当∠EFD=90°时,如图2所示:∵∠EDF=45°,∴∠DEF=45°,此时E与A重合,D是BC的中点,∴BD=CD,∴n=1.故答案为:或1.三、解答题(共8题,共72分)17.(9分)(1)计算:(x+1)(x+2)(2)分解因式:x2y+2xy+y.【解答】解:(1)原式=x2+2x+x+2=x2+3x+2;(2)原式=y(x2+2x+1)=y(x+1)2.18.(9分)解分式方程:(1);(2).【解答】解:(1)去分母得:2x=x﹣3,移项合并得:x=﹣3,经检验x=﹣3是分式方程的解;(2)去分母得:2(2x+1)=4,去括号得:4x+2=4,移项合并得:4x=2,解得:x=,经检验x=是增根,分式方程无解.19.(9分)如图,点B、E、C、F在同一条直线上,AB=DE,∠ABC=∠DEF,BC=EF,求证:∠A=∠D.【解答】证明:在△ABC和△DEF中,∴△ABC≌△DEF(SAS)∴∠A=∠D.20.(9分)先化简,再求值:÷(1+),其中x=﹣4.【解答】解:原式=÷=•=,当x=﹣4时,原式==﹣.21.(9分)如图,已知A(﹣2,4),B(4,2),C(2,﹣1)(1)作△ABC关于x轴的对称图形△A1B1C1,写出点C关于x轴的对称点C1的坐标;(2)P为x轴上一点,请在图中画出使△PAB的周长最小时的点P并直接写出此时点P的坐标(保留作图痕迹).【解答】解:(1)如图1所示:∵点C与点C1关于x轴对称,∴C1(2,1).(2)如图2所示:根据图形可知点P的坐标为(2,0).22.(9分)甲、乙、丙三个登山爱好者经常相约去登山,今年1月甲参加了两次登山活动.(1)1月1日甲与乙同时开始攀登一座1800米高的山,甲比乙早30分钟到达顶峰.已知甲的平均攀登速度是乙的1.2倍,求甲的平均攀登速度是每分钟多少米?(2)1月10日甲与丙去攀登另一座a米高的山,甲保持第(1)问中的速度不变,比丙晚出发1小时,结果两人同时到达顶峰,问甲的平均攀登速度是丙的多少倍?(用含a的代数式表示)【解答】解:(1)设乙的攀登速度为x米/分,则甲的速度为1.2x米/分,+30=,解得x=10,检验:x=10是原分式方程的解,所以1.2x=12,答:甲的平均攀登速度是每分钟12米;(2)设丙的攀登速度为y米/分,依题意得:+60=,解得,检验:是原分式方程的解.所以=.所以甲的平均攀登速度是丙的倍.23.(9分)已知△ABC和△DEF为等腰三角形,AB=AC,DE=DF,∠BAC=∠EDF,点E在AB上,点F在射线AC上.(1)如图1,若∠BAC=60°,点F与点C重合,求证:AF=AE+AD;(2)如图2,若AD=AB,求证:AF=AE+BC.【解答】证明:(1)∵∠BAC=∠EDF=60°,∴△ABC、△DEF为等边三角形,∴∠BCE+∠ACE=∠DCA+∠ECA=60°,在△BCE和△ACD中∴△BCE≌△ACD(SAS),∴AD=BE,∴AE+AD=AE+BE=AB=AF;(2)在FA上截取FM=AE,连接DM,∵∠BAC=∠EDF,∴∠AED=∠MFD,在△AED和△MFD中∴△AED≌△MFD(SAS),∴DA=DM=AB=AC,∠ADE=∠MDF,∴∠ADE+∠EDM=∠MDF+∠EDM,即∠ADM=∠EDF=∠BAC,在△ABC和△DAM中,,∴△ABC≌△DAM(SAS),∴AM=BC,∴AE+BC=FM+AM=AF.即AF=AE+BC.24.(9分)如图,在平面直角坐标系中,A(8,0),点B在第一象限,△OAB 为等边三角形,OC⊥AB,垂足为点C.(1)直接写出点C的横坐标6;(2)作点C关于y轴的对称点D,连DA交OB于E,求OE的长;(3)P为y轴上一动点,连接PA,以PA为边在PA所在直线的下方作等边△PAH.当OH最短时,求点H的横坐标.【解答】解:(1)如图1所示:过点B作BF⊥OA,垂足为F.∵OB=AB,BF⊥OA,∴OF=AF=4.∵△OAB为等边三角形,∴∠BOF=60°.∴FB=OBsin60°=8×=4.∴点B的坐标为(4,4).∵AO=OB,OC⊥AB,∴BC=AC.由中点坐标公式可知点C的坐标为(6,2).故答案为:6.(2)方法1:设OB的解析式为y=kx,将点B的坐标代入得:4k=4,解得:k=.∴直线OB的解析式为y=.∵点C与点D关于y轴对称,∴点D的坐标为(﹣6,2).设DA的解析式为y=k1x+b.将点A和点D的坐标代入得:,解得:k1=﹣,b=.∴直线DA的解析式为y=.将y=代入y=得:.解得:x=1.∴y=.∴点E的坐标为(1,).由两点间的距离公式可知:OE==2.方法2:如图2所示:连接CD,交OB于F.∵点C与点D关于y轴对称,∴CD∥OA,点D(﹣6,2).∴△BCF为等边三角形,∴CF=4,CD=12.∴DF=12﹣4=8=OA.在△DEF和△AEO中,∴△DEF≌△AEO(AAS),∴OE=EF=OF,∵BF=BC=4,∴OF=4,∴OE=2.(3)如图3,连接PB.∵∠HAO+∠PAO=∠BAP+∠PAO=60°,∴∠HAO=∠PAB,在△HAO和△PAB中,∴△HAO≌△PAB(SAS),∴OH=PB,当BP⊥y轴时,PB有最小值为4,此时,∠AOH=∠ABP=120°,∴∠COH=60°过点H作HC⊥x轴于C,∵OH=4,∠COH=60°,∴OC=2,即H点横坐标为﹣2.。