人教版六年级数学上册全部知识点汇总
人教版六年级(上册)数学知识点汇总
数学知识点汇总第一单元分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b >1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b <1时,c<a(b≠0)。
一个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b =1时,c=a 。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c(五)倒数的意义:乘积为1的两个数互为倒数。
六年级上册数学人教版知识点
六年级上册数学人教版知识点
六年级上册数学人教版的主要知识点如下:
1.小数的概念和表示法:十分位、百分位、千分位等
2.小数之间的比较和排序
3.小数的加法和减法运算
4.小数与整数的混合运算
5.小数的乘法和除法运算,包括小数的乘除法运算规则和口诀
6.倍数和约数的概念和运算
7.最大公因数和最小公倍数的求法
8.分数的概念和表示法,分数的约分和通分
9.分数的加法和减法运算
10.分数与整数的混合运算
11.比例的概念和表示法
12.比例的性质和应用
13.解简单方程的方法,如加法逆元和等式的两边相等
14.图形的周长和面积的计算,包括长方形、正方形、三角形和圆的周长和面积计算公式
15.直角坐标系和坐标的概念
16.图形的位置关系,包括同位角、相交线和垂直线等
17.角度的概念和度量
18.三角形的分类和性质,包括等边三角形、等腰三角形和直角三角形等
19.相似图形的概念和判定条件
20.平面镶嵌和投影图形的解析
以上是六年级上册数学人教版的主要知识点,具体内容可以参考该教材。
人教版小学数学六年级上册知识点整理归纳完整版
人教版小学数学六年级上册知识点整理归纳 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】六年级上册数学知识点第一单元 分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。
例如:53×7表示: 求7个53的和是多少? 或表示:53的7倍是多少? 2、一个数乘分数的意义就是求一个数的几分之几是多少。
注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以) 例如:53×61表示: 求53的61是多少? 9 × 61表示: 求9的61是多少? A × 61表示: 求a 的61是多少? (二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
注:(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数, 这样计算后的结果才是最简单分数)(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a ×b=c,当b >1时,c>a.一个数(0除外)乘小于1的数,积小于这个数。
a ×b=c,当b <1时,c<a (b ≠0).一个数(0除外)乘等于1的数,积等于这个数。
人教版小学数学六年级上册知识点汇总(全一册)
人教版小学数学六年级上册知识点汇总第一单元 分数乘法一、分数乘法(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。
都是求几个相同加数的和的简便运算。
例如: 98×5表示求5个98的和是多少? 2、分数乘分数是求一个数的几分之几是多少。
例如: 98×43表示求98的43是多少? (二)、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)、规律:(乘法中比较大小时) 一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(四)、分数混合运算的运算顺序和整数的运算顺序相同。
(五)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a × b = b × a乘法结合律:( a × b )×c = a × ( b × c )乘法分配律:(a + b )×c = a c + b c二、分数乘法的解决问题(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1、画线段图:(1)两个量的关系:画两条线段图;(2)部分和整体的关系:画一条线段图。
2、找单位“1”:在分率句中分率的前面;或“占”、“是”、“比”的后面3、求一个数的几倍:一个数×几倍;求一个数的几分之几是多少:一个数×几。
几三、倒数1、倒数的意义:乘积是1的两个数互为..倒数。
强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。
(要说清谁是谁的倒数)。
2、求倒数的方法:(1)、求分数的倒数:交换分子分母的位置。
人教版六年级数学上册知识点汇总
人教版六年级数学上册知识点汇总第一单元分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(计算结果必须是最简分数)。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b >1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b <1时,c<a(b ≠0)。
一个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b =1时,c=a 。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c(五)倒数的意义:乘积为1的两个数互为倒数。
人教版六年级数学上册全部知识点汇总
第一单元分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算.“分数乘整数”指的是第二个因数必须是整数,不能是分数.2、一个数乘分数的意义就是求一个数的几分之几是多少.“一个数乘分数”指的是第二个因数必须是分数,不能是整数.(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变.(1)为了计算简便能约分的可先约分再计算.(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数.(整数千万不能与分母相乘,计算结果必须是最简分数).2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母.(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算.(2)分数化简的方法是:分子、分母同时除以它们的最大公因数.(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数.(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数).(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变.(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数.a×b=c,当b >1时,c>a.一个数(0除外)乘小于1的数,积小于这个数.a×b=c,当b <1时,c<a(b≠0).一个数(0除外)乘等于1的数,积等于这个数.a×b=c,当b =1时,c=a .在进行因数与积的大小比较时,要注意因数为0时的特殊情况.(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的.2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便.乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c(五)倒数的意义:乘积为1的两个数互为倒数.1、倒数是两个数的关系,它们互相依存,不能单独存在.单独一个数不能称为倒数.(必须说清谁是谁的倒数)2、判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为“1”.例如:a×b=1则a、b互为倒数.3、求倒数的方法:①求分数的倒数:交换分子、分母的位置.②求整数的倒数:整数分之1.③求带分数的倒数:先化成假分数,再求倒数.④求小数的倒数:先化成分数再求倒数.4、1的倒数是它本身,因为1×1=10没有倒数,因为任何数乘0积都是0,且0不能作分母.5、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身.假分数的倒数小于或等于1.带分数的倒数小于1.(六)分数乘法应用题——用分数乘法解决问题1、求一个数的几分之几是多少?(用乘法)已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘.2、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”.3、什么是速度?速度是单位时间内行驶的路程.速度=路程÷时间时间=路程÷速度路程=速度×时间单位时间指的是1小时1分钟1秒等这样的大小为1的时间单位,每分钟、每小时、每秒钟等.4、求甲比乙多(少)几分之几?多:(甲-乙)÷乙少:(乙-甲)÷乙第二单元位置与方向(二)1、什么是数对?数对:由两个数组成,中间用逗号隔开,用括号括起来.括号里面的数由左至右为列数和行数,即“先列后行”.数对的作用:确定一个点的位置.经度和纬度就是这个原理.2、确定物体位置的方法:(1)、先找观测点;(2)、再定方向(看方向夹角的度数);(3)、最后确定距离(看比例尺).描绘路线图的关键是选好观测点,建立方向标,确定方向和路程.位置关系的相对性:两地的位置具有相对性在叙述两地的位置关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等.相对位置:东--西;南--北;南偏东--北偏西.第三单元分数的除法一、分数除法的意义:分数除法是分数乘法的逆运算,已知两个数的积与其中一个因数,求另一个因数的运算.二、分数除法计算法则:除以一个数(0除外),等于乘上这个数的倒数.1、被除数÷除数=被除数×除数的倒数.2、除法转化成乘法时,被除数一定不能变,“÷”变成“×”,除数变成它的倒数.3、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算.4、被除数与商的变化规律:①除以大于1的数,商小于被除数:a÷b=c 当b>1时,c<a (a≠0)②除以小于1的数,商大于被除数:a÷b=c 当b<1时,c>a (a≠0 b≠0)③除以等于1的数,商等于被除数:a÷b=c 当b=1时,c=a三、分数除法混合运算1、混合运算用梯等式计算,等号写在第一个数字的左下角.2、运算顺序:①连除:同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据“除以几个数,等于乘上这几个数的积”的简便方法计算.加、减法为一级运算,乘、除法为二级运算.②混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面.(a±b)÷c=a÷c±b÷c第四单元比比:两个数相除也叫两个数的比1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值.连比如:3:4:5读作:3比4比52、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几.例:12∶20= =12÷20= =0.6 12∶20读作:12比20区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数.比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式.3、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变.4、化简比:化简之后结果还是一个比,不是一个数.(1)、用比的前项和后项同时除以它们的最大公约数.(2)、两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简.也可以求出比值再写成比的形式.(3)、两个小数的比,向右移动小数点的位置,也是先化成整数比.5、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比.6、比和除法、分数的区别:除法:被除数除号(÷)除数(不能为0)商不变性质除法是一种运算分数:分子分数线(—)分母(不能为0)分数的基本性质分数是一个数比:前项比号(∶)后项(不能为0)比的基本性质比表示两个数的关系商不变性质:被除数和除数同时乘或除以相同的数(0除外),商不变.分数的基本性质:分子和分母同时乘或除以相同的数(0除外),分数的大小不变.分数除法和比的应用1、已知单位“1”的量用乘法.2、未知单位“1”的量用除法.3、分数应用题基本数量关系(把分数看成比)(1)甲是乙的几分之几?甲=乙×几分之几乙=甲÷几分之几几分之几=甲÷乙(2)甲比乙多(少)几分之几?4、按比例分配:把一个量按一定的比分配的方法叫做按比例分配.5、画线段图:(1)找出单位“1”的量,先画出单位“1”,标出已知和未知.(2)分析数量关系.(3)找等量关系.(4)列方程.两个量的关系画两条线段图,部分和整体的关系画一条线段图.第五单元圆一、圆的特征1、圆是平面内封闭曲线围成的平面图形.2、圆的特征:外形美观,易滚动.3、圆心O:圆中心的点叫做圆心.圆心一般用字母O表示.圆多次对折之后,折痕的相交于圆的中心即圆心.圆心确定圆的位置.半径r:连接圆心到圆上任意一点的线段叫做半径.在同一个圆里,有无数条半径,且所有的半径都相等.半径确定圆的大小.直径d:通过圆心且两端都在圆上的线段叫做直径.在同一个圆里,有无数条直径,且所有的直径都相等.直径是圆内最长的线段.同圆或等圆内直径是半径的2倍:d=2r 或r=d÷24、等圆:半径相等的圆叫做同心圆,等圆通过平移可以完全重合.同心圆:圆心重合、半径不等的两个圆叫做同心圆.5、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形.折痕所在的直线叫做对称轴.有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角.有二条对称轴的图形:长方形有三条对称轴的图形:等边三角形有四条对称轴的图形:正方形有无条对称轴的图形:圆,圆环6、画圆(1)圆规两脚间的距离是圆的半径.(2)画圆步骤:定半径、定圆心、旋转一周.二、圆的周长:围成圆的曲线的长度叫做圆的周长,周长用字母C表示.1、圆的周长总是直径的三倍多一些.2、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示.即:圆周率π= 周长÷直径≈3.14所以,圆的周长(c)=直径(d)×圆周率(π)—周长公式:c=πd,c=2πr圆周率π是一个无限不循环小数,3.14是近似值.3、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同.4、半圆周长=圆周长一半+直径= πr+d三、圆的面积s1、圆面积公式的推导如图把一个圆沿直径等分成若干份,剪开拼成长方形,份数越多拼成的图像越接近长方形.圆的半径=长方形的宽圆的周长的一半=长方形的长长方形面积=长×宽所以:圆的面积=圆的周长的一半(πr)×圆的半径(r)S圆=πr×r=πr22、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则最大,而长方形的面积则最小.周长相同时,圆面积最大,利用这一特点,篮子、盘子做成圆形.3、圆面积的变化的规律:半径扩大多少倍,直径、周长也同时扩大多少倍,圆面积扩大的倍数是半径、直径扩大的倍数的平方倍.4、环形面积=大圆–小圆=πR2-πr2扇形面积=πr2×n÷360(n表示扇形圆心角的度数)5、跑道:每条跑道的周长等于两半圆跑道合成的圆的周长加上两条直跑道的和.因为两条直跑道长度相等,所以,起跑线不同,相邻两条跑道起跑线也不同,间隔的距离是:2×π×跑道宽度.一个圆的半径增加a厘米,周长就增加2πa厘米.一个圆的直径增加b厘米,周长就增加πb厘米.6、任意一个正方形的内切圆即最大圆的直径是正方形的边长,它们的面积比是4∶π.7、常用数据π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7第六单元百分数(一)一、百分数的意义:表示一个数是另一个数的百分之几的数叫做百分数.百分数又叫百分比或百分率,百分数不能带单位.注意:百分数是专门用来表示一种特殊的倍比关系的,表示两个数的比.1、百分数和分数的区别和联系:(1)联系:都可以用来表示两个量的倍比关系.(2)区别:意义不同:百分数只表示倍比关系,不表示具体数量,所以不能带单位.分数不仅表示倍比关系,还能带单位表示具体数量.百分数的分子可以是小数,分数的分子只可以是整数.注意:百分数在生活中应用广泛,所涉及问题基本和分数问题相同,分母是100的分数并不是百分数,必须把分母写成“%”才是百分数,所以“分母是100的分数就是百分数”这句话是错误的.“%”的两个0要小写,不要与百分数前面的数混淆.一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%.一般出粉率在70%、80%,出油率在30%、40%.2、小数、分数、百分数之间的互化(1)百分数化小数:小数点向左移动两位,去掉“%”.(2)小数化百分数:小数点向右移动两位,添上“%”.(3)百分数化分数:先把百分数写成分母是100的分数,然后再化简成最简分数.(4)分数化百分数:分子除以分母得到小数,(除不尽的保留三位小数)然后化成百分数.(5)小数化分数:把小数成分母是10、100、1000等的分数再化简.(6)分数化小数:分子除以分母.二、百分数应用题1、求常见的百分率,如:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几.2、求一个数比另一个数多(或少)百分之几,实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度.求甲比乙多百分之几:(甲-乙)÷乙求乙比甲少百分之几:(甲-乙)÷甲3、求一个数的百分之几是多少.一个数(单位“1”)×百分率4、已知一个数的百分之几是多少,求这个数.部分量÷百分率=一个数(单位“1”)5、折扣、打折的意义:几折就是十分之几也就是百分之几十折扣、成数=几分之几、百分之几、小数八折=八成=十分之八=百分之八十=0.8八五折=八成五=十分之八点五=百分之八十五=0.85五折=五成=十分之五=百分之五十=0.5=半价6、利率(1)存入银行的钱叫做本金.(2)取款时银行多支付的钱叫做利息.(3)利息与本金的比值叫做利率.利息=本金×利率×时间税后利息=利息-利息的应纳税额=利息-利息×5%注:国债和教育储蓄的利息不纳税7、百分数应用题型分类(1)求甲是乙的百分之几——(甲÷乙)×100%=百分之几(2)求甲比乙多百分之几——(甲-乙)÷乙×100%(3)求甲比乙少百分之几——(乙-甲)÷乙×100%第七单元扇形统计图的意义1、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间关系,也就是各部分数量占总数的百分比,因此也叫百分比图.2、常用统计图的优点:(1)条形统计图直观显示每个数量的多少.(2)折线统计图不仅直观显示数量的增减变化,还可清晰看出各个数量的多少.(3)扇形统计图直观显示部分和总量的关系.第八单元数学广角--数与形2+4+6+8+10+12+14+16+18+20=(110)规律:从2开始的n个连续偶数的和等于n×(n+1).10×(10+1)=10×11=110从1开始的连续奇数的和正好是这串数个数的平方.。
人教版六年级上册数学知识点汇总
人教版六年级上册数学知识点汇总
一、整数
1. 自然数、负整数和零的概念
2. 整数的比较大小
3. 整数相加、相减
4. 整数的乘法和除法
5. 整数的绝对值
6. 整数的加法和减法运算法则
7. 整数的乘法和除法运算法则
8. 整数的混合运算
二、分数
1. 分数的概念
2. 分数的比较大小
3. 分数的相加、相减
4. 分数的乘法和除法
5. 分数的化简
6. 分数的三个基本性质:相等性、倍数性、约分性
7. 分数的混合运算
三、小数
1. 小数的概念
2. 小数和分数的关系
3. 小数的读法和写法
4. 小数的比较大小
5. 小数的加法和减法
6. 小数的乘法和除法
7. 小数的化简
8. 小数的混合运算
四、数据与图形
1. 数据和调查的关系
2. 数据的整理和分类
3. 表格和柱形图的绘制和解读
4. 折线图和饼图的绘制和解读
五、数式与方程
1. 代数字母的认识和使用
2. 使用字母表示数的大小
3. 表达计算结果的数式
4. 数式的运算:加法、减法、乘法和除法
5. 解一元一次方程。
人教版六年级数学上册知识点汇总
人教版六年级数学上册知识点汇总第一单元分数乘法(一)分数乘法的意义1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。
例如:512×6,表示:6个512相加是多少,还表示512的6倍是多少。
2、一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。
例如:6×512,表示:6的512是多少。
2 7×512,表示:27的512是多少。
(二)分数乘法的计算法则1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。
2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。
3、注意:能约分的先约分,然后再乘,得数必须是最简分数。
当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)分数大小的比较:1、一个数(0除外)乘以一个真分数,所得的积小于它本身。
一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。
一个数(0除外)乘以一个带分数,所得的积大于它本身。
2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。
(四)解决实际问题。
1、分数应用题一般解题步行骤。
(1)找出含有分率的关键句。
(2)找出单位“1”的量(3)根据线段图写出等量关系式:单位“1”的量×对应分率=对应量。
(4)根据已知条件和问题列式解答。
2、乘法应用题有关注意概念。
(1)乘法应用题的解题思路:已知一个数,求这个数的几分之几是多少?(2)找单位“1”的方法:从含有分数的关键句中找,注意“的”前“比”后的规则。
当句子中的单位“1”不明显时,把原来的量看做单位“1”。
(3)甲比乙多几分之几表示甲比乙多的数占乙的几分之几,甲比乙少几分之几表示甲比乙少数占乙的几分之几。
(4)在应用题中如:小湖村去年水稻的亩产量是750千克,今年水稻的亩产量是800千克,增产几分之几?题目中的“增产”是多的意思,那么谁比谁多,应该是“多比少多”,“多”的是指800千克,“少”的是指750千克,即800千克比750千克多几分之几,结合应用题的表达方式,可以补充为“今年水稻的亩产量比去年水稻的亩产量多几分之几?”(5)“增加”、“提高”、“增产”等蕴含“多”的意思,“减少”、“下降”、“裁员” 等蕴含“少”的意思,“相当于”、“占”、“是”、“等于”意思相近。
人教版六年级上册数学全册知识点归纳
一、分数乘法1、一个数乘分数的意义:表示一个数的几分之几是多少。
2、整数乘分数的计算方法:整数乘分子做新的分子,分母不变。
3、分数乘分数的计算方法:分子乘分子做为新的分子,分母乘分母做为新的分母。
4、小数乘分数计算方法:把小数转化成分数,再计算;或者把分数转化成小数再计算注意:结果的分数能约分的要进行约分5、运算定律、乘法交换律:a × b = b ×a乘法结合律:(a×b)×c = a×(b×c )乘法分配律:(a + b)×c = a ×c + b×c注:有加法、乘法和小括号,先算小括号的加法,再算小括号外面的乘法。
6、长方形的面积=长×宽正方形的面积=边长×边长长方形的周长=(长+宽)×2 正方形的周长=边长×47、一个数(0除外)乘小于1的数,积小于这个数;一个数(0除外)乘等于1的数,积等于这个数;一个数(0除外)乘大于1的数,积大于这个数。
二、位置与方向(二)1、根据方向和距离确定物体位置的方法(1)确定好方向并用量角器量出被测物体的方位角度(2)明确被测物体和观测点的实际距离(3)根据方向(角度)和距离准确判断或描述被测量物体的位置。
2、描述路线图时,要先按行走路线确定每一个观测点,然后以每一个参照物为观测点,测量好到下一个目标行走的方向(角度)和距离。
3、两地的位置具有相对性,观测点不同,叙述的方向正好相反,角度和距离不变例:甲在乙的北偏东35°200米处;也可以是乙在甲的南偏西35°200米处。
4、同一个观测点,位置的描述有两种说法例:甲在乙的北偏东35°200米处,也可以是甲在乙的东偏北55°200米处三、分数除法1、乘积是1的两个数互为倒数。
2、1的倒数是1;因为0与任何数相乘都不等于1,0没有倒数。
3、分数除以整数,既可以看成把这个分数平均分成整数份;也可以看成已知两个因数的积与其中一个因数,求另一个因数是多少。
人教版小学六年级数学上册知识点归纳总结
人教版小学六年级数学上册知识点归纳总结第一单元分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数须是分数,不能是整数。
(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b >1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b<1时,c<a(b≠0)。
< p="">一个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b =1时,c=a 。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可使一些计算简便。
人教版六年级数学上册全册知识点汇总
爱学堂-人教版六年级数学上册全册知识点汇总第一单元分数乘法一、分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)二、分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
三、积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b >1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b <1时,c=?0)。
一个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b =1时,c=a 。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
四、分数乘法混合运算:1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c五、倒数的意义(乘积为1的两个数互为倒数)1、倒数是两个数的关系,它们互相依存,不能单独存在。
人教版小学六年级上册数学知识点总结
人教版小学六年级上册数学知识点总结一、数与代数(一)分数的运算1.分数的加减法•同分母分数:分母保持不变,分子进行加减运算。
例如:2/5 + 3/5 = 5/5 或1;4/7 - 2/7 = 2/7。
•异分母分数:首先找到两个分母的最小公倍数,然后进行通分,使两个分数具有相同的分母,接着进行加减运算。
例如:1/2 + 1/3 = 3/6 + 2/6 =5/6;3/4 - 1/5 = 15/20 - 4/20 = 11/20。
2.分数的乘法•分子乘分子,分母乘分母。
例如:2/3 × 4/5 = 8/15。
•分数与整数相乘,整数可以看作是分母为1的分数,然后与另一个分数相乘。
例如:2 × 3/4 = 6/4 = 3/2。
3.分数的除法•将除数颠倒后与被除数相乘。
例如:4/5 ÷ 2/3 = 4/5 × 3/2 = 12/10 = 6/5。
4.带分数与假分数的互化•带分数转化为假分数:分母不变,分子为整数部分与分母的乘积加上原分数的分子。
例如:2(1/2) = 2 × 2 + 1 = 5/2。
•假分数转化为带分数:分母不变,分子除以分母得到的商为整数部分,余数作为新分数的分子。
例如:7/3 = 2...1,所以7/3 = 2(1/3)。
5.分数与小数的互化•分数转化为小数:直接进行除法运算,得到的结果即为小数形式。
例如:1/2 = 0.5;3/4 = 0.75。
•小数转化为分数:将小数表示为分数形式,能简化的要简化。
例如:0.5 = 1/2;0.75 = 3/4。
(二)百分数1.百分数的概念•百分数是表示一个数是另一个数的百分之几的数,也叫百分率或百分比。
百分数通常不会写成分数的形式,而采用符号“%”(百分号)来表示。
2.百分数与小数、分数的互化•百分数转化为小数:去掉百分号,小数点左移两位。
例如:75% = 0.75。
•小数转化为百分数:加上百分号,小数点右移两位。
人教版小学数学六年级上册知识点总结
人教版小学数学六年级上册知识点总结第一章:整数整数是由正整数、0和负整数组成的数。
1. 整数的表示方法整数可以用数轴表示,数轴上0点表示正整数和负整数之间的分界点。
2. 整数的比较比较两个整数的大小时,可以通过它们在数轴上的位置关系来判断。
3. 整数的运算整数的加法、减法、乘法和除法运算规则与正整数相同,需要特别注意负数的运算规则。
4. 整数的绝对值整数的绝对值是该数到0点的距离,绝对值大于0的整数称为正整数。
5. 整数的借位和进位在整数的加法和减法中,可能会涉及到借位和进位的操作。
第二章:分数1. 分数的基本概念分数表示了一个整体被分成若干等分,其中的分子表示被分的部分,分母表示整体被分成的等分数。
2. 分数的大小比较比较两个分数的大小时,可以通过找出它们的公共分母,然后比较分子的大小来判断。
3. 分数的运算分数的加法、减法、乘法和除法运算规则可以通过分子、分母的相应运算来得出。
4. 分数的化简将一个分数化简到最简形式,即分子和分母没有公共因子。
5. 分数的整数部分和小数部分分数可表示为整数部分和真分数部分之和,也可以表示为小数的形式。
第三章:小数小数是整数和分数之间的数。
1. 小数的读法小数的读法与整数相似,小数点后的数按照数位读取。
2. 小数的大小比较比较两个小数的大小时,可以按照数位从左到右逐个比较。
3. 小数的运算小数的加法、减法、乘法和除法运算规则与整数和分数类似,需要注意小数点的对齐。
4. 小数的化简将一个小数化简到最简形式,即去掉尾部0后使得剩余数字最少。
5. 小数与分数的转换小数可以转化为分数,分数可以转化为小数。
第四章:几何图形几何图形是由点、线、面组成的图形。
1. 点、线和线段点是几何图形的最基本单位,线是连接两个点的直线轨迹,线段是连接两个点并且包含这两个点的线。
2. 直线、射线和角直线是一条连续的无限延伸的线,射线是起点是一个点,向一个方向无限延伸的线,角是由两条射线共享一个端点组成的图形。
人教版小学六年级数学上册知识点归纳总结
人教版小学六年级数学上册知识点归纳总结第一单元分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数须是分数,不能是整数。
(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b >1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b<1时,c<a(b≠0)。
< p="">一个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b =1时,c=a 。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可使一些计算简便。
人教版六年级数学上册全部知识点汇总
第一单元分数乘法〔一〕分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算.“分数乘整数〞指的是第二个因数必须是整数,不能是分数.2、一个数乘分数的意义就是求一个数的几分之几是多少.“一个数乘分数〞指的是第二个因数必须是分数,不能是整数.〔第一个因数是什么都可以〕〔二〕分数乘法计算法那么:1、分数乘整数的运算法那么是:分子与整数相乘,分母不变.〔1〕为了计算简便能约分的可先约分再计算.〔整数和分母约分〕〔2〕约分是用整数和下面的分母约掉最大公因数.〔整数千万不能与分母相乘,计算结果必须是最简分数〕.2、分数乘分数的运算法那么是:用分子相乘的积做分子,分母相乘的积做分母.〔分子乘分子,分母乘分母〕〔1〕如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算.〔2〕分数化简的方法是:分子、分母同时除以它们的最大公因数.〔3〕在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数.〔约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数〕.〔4〕分数的根本性质:分子、分母同时乘或者除以一个相同的数〔0除外〕,分数的大小不变.____〔三〕积与因数的关系:一个数〔0除外〕乘大于1的数,积大于这个数. axb=c,当b >1时,c>a .一个数〔0除外〕乘小于1的数,积小于这个数. axb=c,当b <1 时,c<a〔b w0〕. 一个数〔0除外〕乘等于1的数,积等于这个数. axb=c,当b =1时,c=a .在进行因数与积的大小比拟时,要注意因数为0时的特殊情况.〔四〕分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的.2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便.乘法交换律:axb=b xa 乘法结合律:〔a xb〕 xc=a X〔b xc〕乘法分配律:ax〔b ±c〕=a xb ±axc〔五〕倒数的意义:乘积为1的两个数互为倒数.1、倒数是两个数的关系,它们互相依存,不能单独存在.单独一个数不能称为倒数.〔必须说清谁是谁的倒数〕2、判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为“1".例如:ax b=1那么a、b互为倒数.3、求倒数的方法:①求分数的倒数:交换分子、分母的位置.②求整数的倒数:整数分之1.③求带分数的倒数:先化成假分数,再求倒数.④求小数的倒数:先化成分数再求倒数.4、1的倒数是它本身,由于1 X1=10没有倒数,由于任何数乘0积都是0,且0不能作分母.5、真分数的倒数是假分数,真分数的倒数大于 1 ,也大于它本身.假分数的倒数小于或等于1.带分数的倒数小于〔六〕分数乘法应用题一一用分数乘法解决问题1、求一个数的几分之几是多少?〔用乘法〕单位“ 1〞的量,求单位“ 1 〞的量的几分之几是多少,用单位“1〞的量与分数相乘.2、巧找单位“ 1〞的量:在含有分数〔分率〕的语句中,分率前面的量就是单位“1对应的量,或者“占〞“是〞“比〞字后面的量是单位“1〞.3、什么是速度?速度是单位时间内行驶的路程.速度=路程+时间时间=路程+速度路程=速度x时间单位时间指的是1小时1分钟1秒等这样的大小为1的时间单位,每分钟、每小时、每秒钟等.4、求甲比乙多〔少〕几分之几?多:〔甲-乙〕+乙少:〔乙-甲〕+乙第二单元位置与方向〔二〕1、什么是数对?数对:由两个数组成,中间用逗号隔开,用括号括起来.括号里面的数由左至右为列数和行数,即“先列后行〞.数对的作用:确定一个点的位置. 经度和纬度就是这个原理.2、确定物体位置的方法:〔1 〕、先找观测点;〔离2〕、再定方向〔看方向夹角的度数〕;〔3〕、最后确定距〔看比例尺〕.描绘路线图的关键是选好观测点,建立方向标,确定方向和路程.位置关系的相对性:两地的位置具有相对性在表达两地的位置关系时,观测点不同,表达的方向正好相反,而度数和距离正好相等.相对位置:东--西;南--北;南偏东--北偏西.第三单元分数的除法一、分数除法的意义:分数除法是分数乘法的逆运算,两个数的积与其中一个因数,求另一个因数的运算.二、分数除法计算法那么:除以一个数〔0除外〕,等于乘上这个数的倒数.1、被除数+除数=被除数X除数的倒数.2、除法转化成乘法时,被除数一定不能变,“ 一〞变成“X",除数变成它的倒数.3、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算.4、被除数与商的变化规律:①除以大于1的数,商小于被除数:a+b=c 当b>1时,c<a 〔a w.〕②除以小于1的数,商大于被除数:a+b=c 当b<1时,c>a 〔a w.b w.〕③除以等于1的数,商等于被除数:a+b=c 当b=1时,c=a三、分数除法混合运算1、混合运算用梯等式计算,等号写在第一个数字的左下角.2、运算顺序:①连除:同级运算,根据从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据“除以几个数,等于乘上这几个数的积〞的简便方法计算.力口、减法为一级运算,乘、除法为二级运算.②混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面.(a±b) +c=a +c±b+c第四单元比比:两个数相除也叫两个数的比1、比式中,比号〔:〕前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值.连比方:3: 4: 5读作:3比4比52、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几.例:12 : 20= = 12 +20= =0.6 12 : 20 读作:12 比20区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数.比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式.3、比的根本性质:比的前项和后项同时乘以或除以相同的数〔0除外〕,比值不变.4、化简比:化简之后结果还是一个比,不是一个数.〔1〕、用比的前项和后项同时除以它们的最大公约数.〔2〕、两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简.也可以求出比值再写成比的形式.〔3〕、两个小数的比,向右移动小数点的位置,也是先化成整数比.5、求比值:把比号写成除号再计算,结果是一个数〔或分数〕,相当于商,不是比.6、比和除法、分数的区别:除法:被除数除号〔+ 〕除数〔不能为0〕商不变性质除法是一种运算分数:分子分数线〔一〕分母〔不能为0〕分数的根本性质分数是一个数比:前项比号〔:〕后项〔不能为0〕比的根本性质比表示两个数的关系商不变性质:被除数和除数同时乘或除以相同的数〔0除外〕,商不变.分数的根本性质:分子和分母同时乘或除以相同的数〔0除外〕,分数的大小不变.分数除法和比的应用1、单位“ 1 〞的量用乘法.2、未知单位“ 1〞的量用除法.3、分数应用题根本数量关系〔把分数看成比〕〔1〕甲是乙的几分之几?甲=乙*几分之几乙=甲+几分之几几分之几=甲+乙〔2〕甲比乙多〔少〕几分之几?4、按比例分配:把一个量按一定的比分配的方法叫做按比例分配.5、画线段图:〔1〕找出单位“1〞的量,先画出单位“1〞,标出和未知.〔2〕分析数量关系.〔3〕找等量关系.〔4〕列方程.两个量的关系画两条线段图,局部和整体的关系画一条线段图.第五单元圆一、圆的特征1、圆是平面内封闭曲线围成的平面图形.2、圆的特征:外形美观,易滚动.3、圆心O:圆中央的点叫做圆心.圆心一般用字母O表示.圆屡次对折之后,折痕的相交于圆的中央即圆心.圆心确定圆的位置.半径r:连接圆心到圆上任意一点的线段叫做半径.在同一个圆里,有无数条半径, 且所有的半径都相等.半径确定圆的大小.直径d:通过圆心且两端都在圆上的线段叫做直径.在同一个圆里,有无数条直径,且所有的直径都相等.直径是圆内最长的线段.同圆或等圆内直径是半径的2倍:d=2r 或r=d +24、等圆:半径相等的圆叫做同心圆,等圆通过平移可以完全重合.同心圆:圆心重合、半径不等的两个圆叫做同心圆.5、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形.折痕所在的直线叫做对称轴.有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角.有二条对称轴的图形:长方形有三条对称轴的图形:等边三角形有四条对称轴的图形:正方形有无条对称轴的图形:圆,圆环6、画圆(1)圆规两脚间的距离是圆的半径.( 2)画圆步骤:定半径、定圆心、旋转一周.二、圆的周长:围成圆的曲线的长度叫做圆的周长,周长用字母C表示.1、圆的周长总是直径的三倍多一些.2、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母兀表示. 即:圆周率兀=周长+直径〜3.14所以,圆的周长(c)=直径(d) x圆周率(兀)一周长公式:c= ud, c=2 ur圆周率兀是一个无限不循环小数, 3.14是近似值.3、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同.4、半圆周长=圆周长一半+直径=ur+d三、圆的面积s1、圆面积公式的推导如图把一个圆沿直径等分成假设干份,剪开拼成长方形,份数越多拼成的图像越接近长方形.圆的半径=长方形的宽圆的周长的一半=长方形的长长方形面积=长x宽所以:圆的面积 =圆的周长的一半〔兀r〕 x圆的半径〔r〕S 圆=兀「Xr= Ttr22、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积那么最大,而长方形的面积那么最小.周长相同时,圆面积最大,利用这一特点,篮子、盘子做成圆形.3、圆面积的变化的规律:半径扩大多少倍,直径、周长也同时扩大多少倍,圆面积扩大的倍数是半径、直径扩大的倍数的平方倍.4、环形面积=大圆-小圆=TT R2-"2扇形面积=ur2 Xn -360 〔n表示扇形圆心角的度数〕5、跑道:每条跑道的周长等于两半圆跑道合成的圆的周长加上两条直跑道的和.因为两条直跑道长度相等,所以,起跑线不同,相邻两条跑道起跑线也不同,间隔的距离是:2><冗>< 跑道宽度.一个圆的半径增加a厘米,周长就增加 2 Tta厘米.一个圆的直径增加b厘米,周长就增加Ttb厘米.6、任意一个正方形的内切圆即最大圆的直径是正方形的边长, 它们的面积比是4 :兀.7、常用数据兀=3.14 2 71=6.28 3 兀=9.42 4 兀=12.56 5 兀=15.7第六单元百分数(一)一、百分数的意义:表示一个数是另一个数的百分之几的数叫做百分数.百分数又叫百分比或百分率,百分数不能带单位.注意:百分数是专门用来表示一种特殊的倍比关系的,表示两个数的比.1、百分数和分数的区别和联系:(1)联系:都可以用来表示两个量的倍比关系.(2)区别:意义不同:百分数只表示倍比关系,不表示具体数量,所以不能带单位.分数不仅表示倍比关系,还能带单位表示具体数量.百分数的分子可以是小数,分数的分子只可以是整数.注意:百分数在生活中应用广泛,所涉及问题根本和分数问题相同,分母是100的分数并不是百分数,必须把分母写成“%〞才是百分数,所以“分母是100的分数就是百分数〞这句话是错误的.“%〞的两个0要小写,不要与百分数前面的数混淆.一般来讲,出勤率、成活率、合格率、正确率能到达100% ,出米率、出油率达不到100% ,完成率、增长了百分之几等可以超过100% .一般出粉率在70%、80% ,出油率在30%、40% .2、小数、分数、百分数之间的互化(1)百分数化小数:小数点向左移动两位,去掉“%〞.(2)小数化百分数:小数点向右移动两位,添上“%〞.(3)百分数化分数:先把百分数写成分母是100的分数,然后再化简成最简分数.〔4〕分数化百分数:分子除以分母得到小数,〔除不尽的保存三位小数〕然后化成百分数.〔5〕小数化分数:把小数成分母是10、100、1000等的分数再化简. 〔6〕分数化小数:分子除以分母.二、百分数应用题1、求常见的百分率 ,如:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几.2、求一个数比另一个数多〔或少〕百分之几,实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度.求甲比乙多百分之几:〔甲 -乙〕+乙求乙比甲少百分之几:〔甲 -乙〕+甲3、求一个数的百分之几是多少.一个数〔单位“1〞〕X百分率4、一个数的百分之几是多少,求这个数.局部量一百分率=一个数〔单位“1〞〕5、折扣、打折的意义:几折就是十分之几也就是百分之几十折扣、成数=几分之几、百分之几、小数八折=八成=十分之八=百分之八十=0.8八五折=八成五=十分之八点五=百分之八十五=0.85五折=五成=十分之五=百分之五十=0.5= 半价6、利率〔1〕存入银行的钱叫做本金.〔2 〕取款时银行多支付的钱叫做利息.(3)利息与本金的比值叫做利率.利息=本金x利率x时间税后利息=禾【J息-禾【J息的应纳税额=禾【J息-禾【J息、乂 5%注:国债和教育储蓄的利息不纳税7、百分数应用题型分类(1)求甲是乙的百分之几一一(甲+乙)X 100%=百分之几(2)求甲比乙多百分之几一一(甲-乙)+乙X 100%(3)求甲比乙少百分之几一一(乙 -甲)+乙X 100%第七单元扇形统计图的意义1、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各局部数量同总数之间关系,也就是各局部数量占总数的百分比,因此也叫百分比图.2、常用统计图的优点:(1)条形统计图直观显示每个数量的多少.(2)折线统计图不仅直观显示数量的增减变化,还可清楚看出各个数量的多少.(3)扇形统计图直观显示局部和总量的关系.第八单元数学广角-嗷与形2 + 4 + 6 + 8+10+12 + 14+16 + 18+20= (110)规律:从2开始的n个连续偶数的和等于n X(n + 1).10 X(10 + 1) = 10 X11 = 1101 = 11 =11+3=2』⑷1 + 3+5 = 32=⑼1 + 3+5+7 = 42= (16)1 + 3+5 斗7+9=5'= <25)1 + 3+5+7+9+11=6= <36)1 + 3+5 +7+9+11 +13= 7:= (49)1 + 3+5+7+9+11 +13+ L5=8:= (64)1 +3+5+7+9+11+13+15 +17=9"= (81)1 + 3+5 +7+9+11 +13+15+17+19 = 102 = (100) 从1开始的连续奇数的和正好是这串数个数的平方.。
人教版小学六年级数学上册知识点归纳
小学六年级数学复习知识点归纳第一单元:分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是简分数)。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:①一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b >1时,c>a。
②一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b <1时,c<a③一个数乘等于1的数,积等于这个数。
a×b=c,当B=1时,c=a。
(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c) 乘法分配律:a×(b±c)=a×b±a×c(五)倒数的意义:乘积为1的两个数互为倒数。
最全面人教版数学六年级上册知识点归纳总结
最全面人教版数学六年级上册知识点归纳总结人教版数学六年级上册知识点是学生在初中数学学习过程中的基本知识,需要学生认真掌握和理解。
下面是数学六年级上册知识点的详细归纳总结。
第一章分类整数知识点1.1 整数和自然数自然数:1, 2, 3, 4, 5,…….(不包括0)整数:…….-2, -1, 0, 1, 2, ……(自然数和负整数)知识点1.2 整数的相加法则同号两数相加,绝对值相加,符号不变;异号两数相加,绝对值相减,结果的符号与绝对值较大的数的符号相同。
知识点1.3 整数减法整数减法可以转化为加法,即a - b = a + (-b)知识点1.4 绝对值数轴上数a的绝对值,表示为|a|,表示a到0的距离。
知识点1.5 整数的大小比较两个整数比较大小,可以先比较绝对值,再根据符号确定大小。
知识点1.6 整数的拓展绝对值可以是小数或分数,小数或分数的绝对值用绝对值符号表示。
第二章十进制小数知识点2.1 小数的意义小数是指有小数点的数,小数点是整数位和小数位的分界线。
知识点2.2 小数的读法从小数点左起第一位到最后一位依次读出,小数点可以读作“点”.知识点2.3 小数的比较比较小数大小,可以先确定小数点后的整数大小,然后比较小数点后的小数位。
知识点2.4 小数的相加法则小数相加,先让小数点对齐,然后按位相加,最后把小数点写在和的下方。
知识点2.5 小数的减法法则小数相减,先让小数点对齐,然后按位相减,最后把小数点写在答案的下方。
知识点2.6 小数的乘法法则小数相乘,先把小数前的数乘起来,再把总位数相加,最后把小数点放到乘积中位数的位置。
知识点2.7 小数的除法法则小数相除,先把被除数和除数放大到整数,再按整数的除法法则计算,最后把小数点放在商中位数的位置。
第三章平面图形知识点3.1 分类平面图形可以分为点、线、面,其中面又可分为三角形、四边形等。
知识点3.2 三角形三角形是由三条边和三个角组成的图形,可以根据边长和角度分类。
人教版六年级数学上册知识点汇总
人教版六年級數學上冊知識點匯總第一單元分數乘法(一)分數乘法的意義1、分數乘整數:分數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數和得簡便運算。
例如:512×6,表示:6個512相加是多少,還表示512的6倍是多少。
2、一個數(小數、分數、整數)乘分數:一個數乘分數的意義與整數乘法的意義不相同,是表示這個數的幾分之幾是多少。
例如:6×512,表示:6的512是多少。
2 7×512,表示:27的512是多少。
(二)分數乘法的計算法則1、整數和分數相乘:整數和分子相乘的積作分子,分母不變。
2、分數和分數相乘:分子相乘的積作分子,分母相乘的積作分母。
3、注意:能約分的先約分,然後再乘,得數必須是最簡分數。
當帶分數進行乘法計算時,要先把帶分數化成假分數再進行計算。
(三)分數大小的比較:1、一個數(0除外)乘以一個真分數,所得的積小於它本身。
一個數(0除外)乘以一個假分數,所得的積等於或大於它本身。
一個數(0除外)乘以一個帶分數,所得的積大於它本身。
2、如果幾個不為0的數與不同分數相乘的積相等,那麼與大分數相乘的因數反而小,與小分數相乘的因數反而大。
(四)解決實際問題。
1、分數應用題一般解題步行驟。
(1)找出含有分率的關鍵句。
(2)找出單位“1”的量(3)根據線段圖寫出等量關係式:單位“1”的量×對應分率=對應量。
(4)根據已知條件和問題列式解答。
2、乘法應用題有關注意概念。
(1)乘法應用題的解題思路:已知一個數,求這個數的幾分之幾是多少?(2)找單位“1”的方法:從含有分數的關鍵句中找,注意“的”前“比”後的規則。
當句子中的單位“1”不明顯時,把原來的量看做單位“1”。
(3)甲比乙多幾分之幾表示甲比乙多的數占乙的幾分之幾,甲比乙少幾分之幾表示甲比乙少數占乙的幾分之幾。
(4)在應用題中如:小湖村去年水稻的畝產量是750千克,今年水稻的畝產量是800千克,增產幾分之幾?題目中的“增產”是多的意思,那麼誰比誰多,應該是“多比少多”,“多”的是指800千克,“少”的是指750千克,即800千克比750千克多幾分之幾,結合應用題的表達方式,可以補充為“今年水稻的畝產量比去年水稻的畝產量多幾分之幾?”(5)“增加”、“提高”、“增產”等蘊含“多”的意思,“減少”、“下降”、“裁員” 等蘊含“少”的意思,“相當於”、“占”、“是”、“等於”意思相近。
人教版六年级数学上册重要知识点汇总
人教版六年级上册数学知识点汇总 第一单元分数乘法(一)分数乘法:1. 分数乘法的意义:分数乘整数与整数乘法的意义相同。
都是求几个相同加数的和的简便运算。
2.一个整数乘分数有时表示几个相同的分数相加的和是多少,有时 表示这个整数的几分之几是多少。
例如:65×5表示求5个65相加的和是多少?13×5表示求5个13的和是多少?例如:5×13表示求5的13是多少?3.一个数乘分数的意义是求一个数的几分之几是多少。
例如:13×47表示求13的47是多少。
4×38表示求4的38是多少。
(二)分数乘法的计算法则:1.分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)当分母为1时,可省略不写,直接写成整数。
2.分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
3.为了计算简便,能约分的要先约分,再计算。
(尽量约分,不会约分的就不约,常考的质因数有11×11=121;13×13=169;17×17=289;19×19=361)4.分数乘小数:可以先把小数化为分数再计算,也可以把分数化成小数再计算(建议把小数化分数再计算)。
当分母与小数有倍数关系时,可以直接先约分,再计算。
(三)乘法中比较大小的规律一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(四)分数混合运算的运算顺序和整数的运算顺序相同。
整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律:a ×b=b ×a乘法结合律:(a ×b) ×c=a ×(b ×c)乘法分配律:(a+b) ×c=ac+bc(五)分数乘法的解决问题(已知单位“1”的量(用乘法),即求单位“1”的几分之几是多少) 求一个数的几分之几是多少用乘法计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一单元分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b >1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b <1时,c<a(b≠0)。
一个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b =1时,c=a 。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c(五)倒数的意义:乘积为1的两个数互为倒数。
1、倒数是两个数的关系,它们互相依存,不能单独存在。
单独一个数不能称为倒数。
(必须说清谁是谁的倒数)2、判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为“1”。
例如:a×b=1则a、b互为倒数。
3、求倒数的方法:①求分数的倒数:交换分子、分母的位置。
②求整数的倒数:整数分之1。
③求带分数的倒数:先化成假分数,再求倒数。
④求小数的倒数:先化成分数再求倒数。
4、1的倒数是它本身,因为1×1=10没有倒数,因为任何数乘0积都是0,且0不能作分母。
5、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身。
假分数的倒数小于或等于1。
带分数的倒数小于1。
(六)分数乘法应用题——用分数乘法解决问题1、求一个数的几分之几是多少?(用乘法)已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘。
2、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。
3、什么是速度?速度是单位时间内行驶的路程。
速度=路程÷时间时间=路程÷速度路程=速度×时间单位时间指的是1小时1分钟1秒等这样的大小为1的时间单位,每分钟、每小时、每秒钟等。
4、求甲比乙多(少)几分之几?多:(甲-乙)÷乙少:(乙-甲)÷乙第二单元位置与方向(二)1、什么是数对?数对:由两个数组成,中间用逗号隔开,用括号括起来。
括号里面的数由左至右为列数和行数,即“先列后行”。
数对的作用:确定一个点的位置。
经度和纬度就是这个原理。
2、确定物体位置的方法:(1)、先找观测点;(2)、再定方向(看方向夹角的度数);(3)、最后确定距离(看比例尺)。
描绘路线图的关键是选好观测点,建立方向标,确定方向和路程。
位置关系的相对性:两地的位置具有相对性在叙述两地的位置关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等。
相对位置:东--西;南--北;南偏东--北偏西。
第三单元分数的除法一、分数除法的意义:分数除法是分数乘法的逆运算,已知两个数的积与其中一个因数,求另一个因数的运算。
二、分数除法计算法则:除以一个数(0除外),等于乘上这个数的倒数。
1、被除数÷除数=被除数×除数的倒数。
2、除法转化成乘法时,被除数一定不能变,“÷”变成“×”,除数变成它的倒数。
3、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算。
4、被除数与商的变化规律:①除以大于1的数,商小于被除数:a÷b=c 当b>1时,c<a (a≠0)②除以小于1的数,商大于被除数:a÷b=c 当b<1时,c>a (a≠0 b≠0)③除以等于1的数,商等于被除数:a÷b=c 当b=1时,c=a三、分数除法混合运算1、混合运算用梯等式计算,等号写在第一个数字的左下角。
2、运算顺序:①连除:同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据“除以几个数,等于乘上这几个数的积”的简便方法计算。
加、减法为一级运算,乘、除法为二级运算。
②混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面。
(a±b)÷c=a÷c±b÷c第四单元比比:两个数相除也叫两个数的比1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。
连比如:3:4:5读作:3比4比52、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。
例:12∶20= =12÷20= =0.6 12∶20读作:12比20区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。
比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。
3、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。
4、化简比:化简之后结果还是一个比,不是一个数。
(1)、用比的前项和后项同时除以它们的最大公约数。
(2)、两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。
也可以求出比值再写成比的形式。
(3)、两个小数的比,向右移动小数点的位置,也是先化成整数比。
5、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。
6、比和除法、分数的区别:除法:被除数除号(÷)除数(不能为0)商不变性质除法是一种运算分数:分子分数线(—)分母(不能为0)分数的基本性质分数是一个数比:前项比号(∶)后项(不能为0)比的基本性质比表示两个数的关系商不变性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
分数除法和比的应用1、已知单位“1”的量用乘法。
2、未知单位“1”的量用除法。
3、分数应用题基本数量关系(把分数看成比)(1)甲是乙的几分之几?甲=乙×几分之几乙=甲÷几分之几几分之几=甲÷乙(2)甲比乙多(少)几分之几?4、按比例分配:把一个量按一定的比分配的方法叫做按比例分配。
5、画线段图:(1)找出单位“1”的量,先画出单位“1”,标出已知和未知。
(2)分析数量关系。
(3)找等量关系。
(4)列方程。
两个量的关系画两条线段图,部分和整体的关系画一条线段图。
第五单元圆一、圆的特征1、圆是平面内封闭曲线围成的平面图形。
2、圆的特征:外形美观,易滚动。
3、圆心O:圆中心的点叫做圆心.圆心一般用字母O表示。
圆多次对折之后,折痕的相交于圆的中心即圆心。
圆心确定圆的位置。
半径r:连接圆心到圆上任意一点的线段叫做半径。
在同一个圆里,有无数条半径,且所有的半径都相等。
半径确定圆的大小。
直径d:通过圆心且两端都在圆上的线段叫做直径。
在同一个圆里,有无数条直径,且所有的直径都相等。
直径是圆内最长的线段。
同圆或等圆内直径是半径的2倍:d=2r 或r=d÷24、等圆:半径相等的圆叫做同心圆,等圆通过平移可以完全重合。
同心圆:圆心重合、半径不等的两个圆叫做同心圆。
5、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。
折痕所在的直线叫做对称轴。
有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角。
有二条对称轴的图形:长方形有三条对称轴的图形:等边三角形有四条对称轴的图形:正方形有无条对称轴的图形:圆,圆环6、画圆(1)圆规两脚间的距离是圆的半径。
(2)画圆步骤:定半径、定圆心、旋转一周。
二、圆的周长:围成圆的曲线的长度叫做圆的周长,周长用字母C表示。
1、圆的周长总是直径的三倍多一些。
2、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。
即:圆周率π= 周长÷直径≈3.14所以,圆的周长(c)=直径(d)×圆周率(π)—周长公式:c=πd, c=2πr圆周率π是一个无限不循环小数,3.14是近似值。
3、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。
4、半圆周长=圆周长一半+直径= πr+d三、圆的面积s1、圆面积公式的推导如图把一个圆沿直径等分成若干份,剪开拼成长方形,份数越多拼成的图像越接近长方形。
圆的半径=长方形的宽圆的周长的一半=长方形的长长方形面积=长×宽所以:圆的面积=圆的周长的一半(πr)×圆的半径(r)S圆=πr×r=πr22、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则最大,而长方形的面积则最小。
周长相同时,圆面积最大,利用这一特点,篮子、盘子做成圆形。
3、圆面积的变化的规律:半径扩大多少倍,直径、周长也同时扩大多少倍,圆面积扩大的倍数是半径、直径扩大的倍数的平方倍。
4、环形面积=大圆–小圆=πR2-πr2扇形面积=πr2×n÷360(n表示扇形圆心角的度数)5、跑道:每条跑道的周长等于两半圆跑道合成的圆的周长加上两条直跑道的和。
因为两条直跑道长度相等,所以,起跑线不同,相邻两条跑道起跑线也不同,间隔的距离是:2×π×跑道宽度。
一个圆的半径增加a厘米,周长就增加2πa厘米。