人教版六年级数学上册全部知识点汇总
人教版六年级上册数学知识点汇总
人教版六年级上册数学知识点汇总
汇总一
第一单元分数乘法
一、分数乘法
(一)分数乘法的意义:
1、分数乘整数与整数乘法的意义相同。
都是求几个相同加数的和的简便运算。
2、分数乘分数是求一个数的几分之几是多少。
(二)、分数乘法的计算法则:
1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
注意
(1)分数的化简:分子、分母同时除以它们的最大公因数。
(2)关于分数乘法的计算:可在乘的过程中约分,也可将积的分子分母约分,提倡在计算过程中约分,这样简便。
(3)当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)、规律:(乘法中比较大小时)
一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(四)、分数混合运算的运算顺序和整数的运算顺序相同。
(五)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a×b=b×d
乘法结合律: a×b×c=a×(b×c)
乘法分配律:a×(b+c)=ab+ac 或a×(b-c)=ab-ac
二、分数乘法的解决问题
(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)
1、找单位“1”:“占”、“是”、“比”的后面
2、求一个数的几倍是多少;求一个数的几分之几是多少。用乘法
三、倒数
1、倒数的意义:乘积是1的两个数互为倒数。
(互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。)
2、求倒数的方法:
新人教版六年级数学上册知识点总结
第一单元分数乘法
一、分数乘法
(一)、分数乘法的计算法则:
1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)
2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(二)、规律:(乘法中比较大小时)
一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(三)、分数混合运算的运算顺序和整数的运算顺序相同。
(四)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a × b = b×a
乘法结合律:( a× b )×c = a×( b × c )
乘法分配律: ( a + b )×c= ac + b c ac + b c = ( a + b )×c 二、分数乘法的解决问题
(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)
1、找单位“1”:在分率句中分率的前面;或“占”、“是”、“比”的后面
2、求一个数的几倍: 一个数×几倍;求一个数的几分之几是多少: 一个数×。
3、写数量关系式技巧:
(1)“的”相当于“×”“占”、“是”、“比”相当于“ = ”
(2)百分率前是“的”:单位“1”的量×百分率=百分率对应量(3)百分率前是“多或少”的意思: 单位“1”的量×(百分率)=百分率对应量三、倒数
1、倒数的意义:乘积是1的两个数互为倒数。
强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。
人教版六年级上册数学全册知识点归纳
一、分数乘法
1、一个数乘分数的意义:表示一个数的几分之几是多少。
2、整数乘分数的计算方法:整数乘分子做新的分子,分母不变。
3、分数乘分数的计算方法:分子乘分子做为新的分子,分母乘分母做为新的分母。
4、小数乘分数计算方法:把小数转化成分数,再计算;或者把分数转化成小数再计算
注意:结果的分数能约分的要进行约分
5、运算定律、
乘法交换律:a × b = b ×a
乘法结合律:(a×b)×c = a×(b×c )
乘法分配律:(a + b)×c = a ×c + b×c
注:有加法、乘法和小括号,先算小括号的加法,再算小括号外面的乘法。6、长方形的面积=长×宽正方形的面积=边长×边长
长方形的周长=(长+宽)×2 正方形的周长=边长×4
7、一个数(0除外)乘小于1的数,积小于这个数;一个数(0除外)乘等于1的数,积等于这个数;一个数(0除外)乘大于1的数,积大于这个数。
二、位置与方向(二)
1、根据方向和距离确定物体位置的方法
(1)确定好方向并用量角器量出被测物体的方位角度
(2)明确被测物体和观测点的实际距离
(3)根据方向(角度)和距离准确判断或描述被测量物体的位置。
2、描述路线图时,要先按行走路线确定每一个观测点,然后以每一个参照物为观测点,测量好到下一个目标行走的方向(角度)和距离。
3、两地的位置具有相对性,观测点不同,叙述的方向正好相反,角度和距离不变
例:甲在乙的北偏东35°200米处;也可以是乙在甲的南偏西35°200米处。
4、同一个观测点,位置的描述有两种说法
例:甲在乙的北偏东35°200米处,也可以是甲在乙的东偏北55°200米处
人教版小学数学六年级上册知识点汇总(全一册)
人教版小学数学六年级上册知识点汇总
第一单元 分数乘法
一、分数乘法
(一)分数乘法的意义:
1、分数乘整数与整数乘法的意义相同。都是求几个相同加数的和的简便运算。
例如: 98×5表示求5个9
8的和是多少? 2、分数乘分数是求一个数的几分之几是多少。
例如: 98×43表示求98的4
3是多少? (二)、分数乘法的计算法则:
1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)
2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)、规律:(乘法中比较大小时) 一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(四)、分数混合运算的运算顺序和整数的运算顺序相同。
(五)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a × b = b × a
乘法结合律:( a × b )×c = a × ( b × c )
乘法分配律:(a + b )×c = a c + b c
二、分数乘法的解决问题
(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)
1、画线段图:
(1)两个量的关系:画两条线段图;
(2)部分和整体的关系:画一条线段图。
2、找单位“1”:在分率句中分率的前面;或“占”、“是”、“比”的后面
3、求一个数的几倍:一个数×几倍;
求一个数的几分之几是多少:一个数×几
人教版六年级数学上册知识点汇总
一个数(0除外)乘小于1的数,积小于这个数。a×b=c,当b<1时,c<a(b≠0)。一个数(0除外)乘等于1的数,积等于这个数。a×b=c,当b=1时,c=a。在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算
1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:a×(b±c)=a×b±a×c
(五)倒数的意义:乘积为1的两个数互为倒数。
1、倒数是两个数的关系,它们互相依存,不能单独存在。单独一个数不能称为倒数。(必须说清谁是谁的倒数)
2、判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为“1”。例如:a×b=1,则a、b互为倒数。
3、求倒数的方法:
①求分数的倒数:交换分子、分母的位置。
②求整数的倒数:整数分之1。
③求带分数的倒数:先化成假分数,再求倒数。
④求小数的倒数:先化成分数再求倒数。
4、1的倒数是它本身,因为1×1=1。
0没有倒数,因为任何数乘0积都是0,且0不能作分母。
5、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身。
(1)用比的前项和后项同时除以它们的最大公约数。
(2)两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。也可以求出比值再写成比的形式。
(3)两个小数的比,向右移动小数点的位置,也是先化成整数比。
5、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。
人教版六年级数学上册知识点汇总
人教版六年级数学上册知识点汇总
人教版六年级数学上册知识点汇总
第一单元:分数乘法
一)分数乘法的意义
1.分数乘整数的意义与整数乘法的意义相同,即求相同加
数的和,简化运算。例如:555×6,表示6个相加是多少,也
表示6倍是多少。
2.一个数(小数、分数、整数)乘以分数的意义与整数乘
法的意义不同,表示这个数的几分之几是多少。例如:6×55,表示6的五分之五是多少;25×2525,表示25的二十五分之二十五是多少;7 1/2×12/12,表示7 1/2的十二分之十二是多少。
二)分数乘法的计算法则
1.整数和分数相乘:整数和分子相乘的积作为分子,分母不变。
2.分数和分数相乘:分子相乘的积作为分子,分母相乘的积作为分母。
3.注意:能约分的先约分,然后再乘,得数必须是最简分数。当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
三)分数大小的比较
1.一个数(除外)乘以一个真分数,所得积小于它本身。一个数(除外)乘以一个假分数,所得积等于或大于它本身。一个数(除外)乘以一个带分数,所得积大于它本身。
2.如果几个不为零的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。
四)解决实际问题
1.分数应用题一般解题步骤:
1)找出含有分数的关键句。
2)找出单位“1”的量。
3)根据线段图写出等量关系式:单位“1”的量×对应分数=对应量。
4)根据已知条件和问题列式解答。
2.乘法应用题有关注意概念:
1)乘法应用题的解题思路:已知一个数,求这个数的几分之几是多少?
2)找单位“1”的方法:从含有分数的关键句中找,注意“的”前“比”后的规则。当句子中的单位“1”不明显时,把原来的量看做单位“1”。
人教版小学六年级数学上册知识点总结(完美排版)
小学六年级数学上册知识点汇总第一单元:位置 1、用数对确定点的位置,第一个数表示列,第二个数表示行。如(3,5)表示(第三列,第五行)2、图形左、右平移: 列变,行不变 图形上、下平移: 行变,列不变第二单元 分数乘法一、 分数乘法的意义:1、 分数乘整数与整数乘法的意义相同,都是求几个相同加数的和的简便运算。例如:×5表示求5个的和是多少?2、分数乘分数是求一个数的几分之几是多少。例如:×表示求的四分之一是多少。二、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。为了计算简便,能约分的要先约分,再计算。注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。分数的基本性质:分子分母同时乘或者除以一个相同的数时(0除外),分数值不变。三、 乘法中比较大小时规律:一个数(0除外)乘大于1的数,积大于这个数。一个数(0除外)乘小于1的数(0除外),积小于这个数。一个数(0除外)乘1,积等于这个数。四、分数混合运算的运算顺序和整数的运算顺序相同。五、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。乘法交换律: a × b = b × a乘法结合律: ( a × b )×c = a × ( b × c ) 乘法分配律: ( a + b )×c = a×c + b×c六、分数乘法的解决问题(已知单位"1"的量,求单位"1"的几分之几是多少(具体量)用乘法) 一个数的几分之几= 一个数×几分之几 1、找单位"1": 在分数句中分数的前面; 或 "占"、"是"、"比"的后面; 2、看有没有多或少的问题; 3、写数量关系式技巧:(1)"的" 相当于 "×" "占"、"是"、"比"相当于" = " (2)分数前是"的": 单位"1"的量×分数=具体量 (3)分数前是"多或少"的意思: 单位"1"的量×(1-分数)=具体量;单位"1"的量×(1+分数)=具体量 (已知具体量求单位"1"的量,用除法)七、倒数 1、倒数的意义: 乘积是1的两个数互为倒数。1的倒数是1; 0没有倒数。 强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。(要说清谁是谁的倒数)。 2、求倒数的方法: (1)、求分数的倒数:交换分子分母的位置。 (2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。 (3)、求带分数的倒数:把带分数化为假分数,再求倒数。 (4)、求小数的倒数: 把小数化为分数,再求倒数。 3、真分数的倒数大于1;假
人教版六年级上册数学知识点汇总
人教版六年级上册数学知识点汇总
一、整数
1. 自然数、负整数和零的概念
2. 整数的比较大小
3. 整数相加、相减
4. 整数的乘法和除法
5. 整数的绝对值
6. 整数的加法和减法运算法则
7. 整数的乘法和除法运算法则
8. 整数的混合运算
二、分数
1. 分数的概念
2. 分数的比较大小
3. 分数的相加、相减
4. 分数的乘法和除法
5. 分数的化简
6. 分数的三个基本性质:相等性、倍数性、约分性
7. 分数的混合运算
三、小数
1. 小数的概念
2. 小数和分数的关系
3. 小数的读法和写法
4. 小数的比较大小
5. 小数的加法和减法
6. 小数的乘法和除法
7. 小数的化简
8. 小数的混合运算
四、数据与图形
1. 数据和调查的关系
2. 数据的整理和分类
3. 表格和柱形图的绘制和解读
4. 折线图和饼图的绘制和解读
五、数式与方程
1. 代数字母的认识和使用
2. 使用字母表示数的大小
3. 表达计算结果的数式
4. 数式的运算:加法、减法、乘法和除法
5. 解一元一次方程
人教版六年级数学上册各单元知识点 汇总
人教版六年级数学上册各单元知识点汇
总
六年级数学上册各单元知识点汇总
第一单元分数乘法
一、分数乘法
一) 分数乘法的意义:
1.分数乘整数与整数乘法的意义相同,都是求几个相同加数的和的简易运算。例如,65×5 表示求 5 个 65 的和是多少?5×65 表示求 5 个 65 的和是多少?
2.一个数乘分数的意义是求一个数的几分之几是多少。例如,4×表示求 4 的是多少。
二) 分数乘法的计算法则:
1.分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)
2.分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
3.为了计算简易,能约分的要先约分,再计算。(尽量约分,不会约分的就不约,常考的质因数有 11×11=121;
13×13=169;14×14=196;15×15=225;16×16=256;
17×17=289;18×18=324;19×19=361)
4.小数乘分数,可以先把小数化为分数,也可以把分数化成小数再计算(建议把小数化分数再计算)。
三) 乘法中比较大小的规律
一个数(0 除外)乘大于 1 的数,积大于这个数。
一个数(0 除外)乘小于 1 的数(0 除外),积小于这个数。
一个数(0 除外)乘 1,积等于这个数。
四) 分数混合运算的运算顺序和整数的运算顺序相同。整
数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律:a×b = b×a
乘法结合律:(a×b)×c = a×(b×c)
乘法分配律:(a+b)×c = ac + bc
人教版六年级数学上册知识点汇总
一个数(0除外)乘小于1的数,积小于这个数。a×b=c,当b<1时,c<a(b≠0)。一个数(0除外)乘等于1的数,积等于这个数。a×b=c,当b=1时,c=a。在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算
1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:a×(b±c)=a×b±a×c
(五)倒数的意义:乘积为1的两个数互为倒数。
1、倒数是两个数的关系,它们互相依存,不能单独存在。单独一个数不能称为倒数。(必须说清谁是谁的倒数)
2、判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为“1”。例如:a×b=1,则a、b互为倒数。
3、求倒数的方法:
①求分数的倒数:交换分子、分母的位置。
②求整数的倒数:整数分之1。
③求带分数的倒数:先化成假分数,再求倒数。
④求小数的倒数:先化成分数再求倒数。
4、1的倒数是它本身,因为1×1=1。
0没有倒数,因为任何数乘0积都是0,且0不能作分母。
5、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身。
(1)用比的前项和后项同时除以它们的最大公约数。
(2)两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。也可以求出比值再写成比的形式。
(3)两个小数的比,向右移动小数点的位置,也是先化成整数比。
5、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。
人教版六年级数学上册全册知识点汇总
爱学堂-人教版六年级数学上册全册知识点汇总
第一单元分数乘法
一、分数乘法意义:
1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)
二、分数乘法计算法则:
1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
(1)为了计算简便能约分的可先约分再计算。(整数和分母约分)
(2)约分是用整数和下面的分母约掉最大公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。(分子乘分子,分母乘分母)
(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
三、积与因数的关系:
一个数(0除外)乘大于1的数,积大于这个数。a×b=c,当b >1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。a×b=c,当b <1时,c=?0)。
一个数(0除外)乘等于1的数,积等于这个数。a×b=c,当b =1时,c=a 。
新人教版六年级数学上册知识点总结
第一单元分数乘法
一、分数乘法
(一)、分数乘法的计算法则:
1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)
2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。(二)、规律:(乘法中比较大小时)
一个数(0除外)乘大于1的数,积大于这个数.
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(三)、分数混合运算的运算顺序和整数的运算顺序相同。
(四)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a × b = b × a
乘法结合律:( a × b )×c = a × ( b × c )
乘法分配律: ( a + b )×c = a c + b c a c + b c = ( a + b )×c
二、分数乘法的解决问题
(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)
1、找单位“1”: 在分率句中分率的前面;或“占"、“是”、“比”的后面
2、求一个数的几倍: 一个数×几倍; 求一个数的几分之几是多少:一个数×。
3、写数量关系式技巧:
(1)“的”相当于“×”“占"、“是”、“比”相当于“ = "
(2)百分率前是“的”:单位“1”的量×百分率=百分率对应量(3)百分率前是“多或少"的意思:单位“1”的量×(百分率)=百分率对应量
三、倒数
1、倒数的意义: 乘积是1的两个数互为倒数.
强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。
人教版六年级上册数学知识点归纳总结
目录
第一单元负数 (2)
第二单元百分数二 (4)
第三单元圆柱和圆锥 (6)
第四单元比例 (12)
第五单元数学广角-鸽巢问题 (17)
第一单元负数
1、负数的由来:
为了表示相反意义的两个量(如盈利亏损、收入支出……),光有学过的0 1 3.4 2/5……是远远不够的。所以出现了负数,以盈利为正、亏损为负;以收入为正、支出为负
2、负数:小于0的数叫负数(不包括0),数轴上0左边的数叫做负数。
若一个数小于0,则称它是一个负数。
负数有无数个,其中有(负整数,负分数和负小数)
负数的写法:
数字前面加负号“-”号,不可以省略
例如:-2,-5.33,-45,-2/5
正数:
大于0的数叫正数(不包括0),数轴上0右边的数叫做正数
若一个数大于0,则称它是一个正数。正数有无数个,其中有(正整数,正分数和正小数)
正数的写法:数字前面可以加正号“+”号,也可以省略不写。
例如:+2,5.33,+45,2/5
4、0 既不是正数,也不是负数,它是正、负数的分界限
负数都小于0,正数都大于0,负数都比正数小,正数都比负数大
5、数轴:
6、比较两数的大小:
①利用数轴:
负数<0<正数或左边<右边
②利用正负数含义:正数之间比较大小,数字大的就大,数字小的就小。负数之间比较大小,数字大的反而小,数字小的反而大
1/3>1/6 -1/3<-1/6
(一)、折扣和成数
1、折扣:用于商品,现价是原价的百分之几,叫做折扣。通称“打折”。
几折就是十分之几,也就是百分之几十。例如:八折=8/10=80﹪,六折五=6.5/10=65/100=65﹪
人教版六年级数学上册知识点汇总
人教版六年级数学上册知识点汇总
第一单元分数乘法
(一)分数乘法的意义
1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。
例如:5
12×6,表示:6个
5
12
相加是多少,还表示
5
12
的6倍是多少。
2、一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。
例如:6×
5
12
,表示:6的
5
12
是多少。
2 7×
5
12
,表示:
2
7
的
5
12
是多少。
(二)分数乘法的计算法则
1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。
2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。
3、注意:能约分的先约分,然后再乘,得数必须是最简分数。当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)分数大小的比较:
1、一个数(0除外)乘以一个真分数,所得的积小于它本身。一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。一个数(0除外)乘以一个带分数,所得的积大于它本身。
2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。
(四)解决实际问题。
1、分数应用题一般解题步行骤。
(1)找出含有分率的关键句。
(2)找出单位“1”的量
(3)根据线段图写出等量关系式:单位“1”的量×对应分率=对应量。
(4)根据已知条件和问题列式解答。
2、乘法应用题有关注意概念。
(1)乘法应用题的解题思路:已知一个数,求这个数的几分之几是多少?(2)找单位“1”的方法:从含有分数的关键句中找,注意“的”前“比”后的规则。当句子中的单位“1”不明显时,把原来的量看做单位“1”。
人教版六年级上册数学知识点归纳总结
人教版六年级上册数学知识点归纳总结
目录
第一单元负数。2
第二单元百分数二。4
第三单元圆柱和圆锥。6
第四单元比例。12
第五单元数学广角-鸽巢问题。17
第一单元负数
1、负数的由来:
为了表示相反意义的两个量(如盈利亏损、收入支出……),光有学过的13.42/5……是远远不够的。所以出现了负数,以盈利为正、亏损为负;以收入为正、支出为负。
2、负数:小于零的数叫负数(不包括零),数轴上左边的数叫做负数。
若一个数小于零,则称它是一个负数。
负数有无数个,其中包括负整数、负分数和负小数。
负数的写法:
数字前面加负号“-”号,不可以省略。
例如:-2,-5.33,-45,-2/5.
正数:
大于零的数叫正数(不包括零),数轴上右边的数叫做正数。若一个数大于零,则称它是一个正数。正数有无数个,其中包括正整数、正分数和正小数。
正数的写法:数字前面可以加正号“+”号,也可以省略不写。
例如:+2,5.33,+45,2/5.
4、零是正数和负数的分界限。
负数都小于零,正数都大于零。负数都比正数小,正数都比负数大。
5、数轴:
6、比较两数的大小:
①利用数轴:
负数<<正数或左边<右边。
②利用正负数含义:正数之间比较大小,数字大的就大,数字小的就小。负数之间比较大小,数字大的反而小,数字小的反而大。
例如:1/3>1/6,-1/3<-1/6.
第二单元百分数二
一)、折扣和成数
折扣是指商品现价与原价的比值,通常以百分数或分数表示。例如,八折意味着商品现价是原价的80%,六折五则是65%。解决打折问题的关键在于将折数转化为百分数或分数,
人教版六年级上册数学全册重点知识点归纳
人教版数学六年级上册重点知识点归纳
第一单元知识点
一、分数、百分数应用题解题公式
单位“1” 已知:
单位“1” × 对应分率= 对应数量
求单位“1”或单位“1”未知:
对应数量÷ 对应分率= 单位“1”
1、求一个数是另一个数的几分之几(或百分之几)公式:
一个数÷ 另一个数= 一个数是另一个数的几分之几(百分之几)
2、求一个数比另一个数多几分之几(或百分之几)公式:
多的数量÷单位“1” = 一个数比另一个数多几分之几(百分之几)
3、求一个数比另一个数少几分之几(或百分之几)公式:
少的数量÷单位“1” = 一个数比另一个数少几分之几(百分之几)
二、熟练掌握:百分数和分数、小数的互化,熟练背诵:
2/1= 0.5 = 50% 4/1= 0.25=25% 4/3= 0.75 = 75%
5/1= 0.2 = 20% 5/2= 0.4 = 40% 5/3= 0.6 = 60%
5/4= 0.8 = 80% 8/1=0.125=12.5% 8/3=0.375=37.5%
8/5=0.625=62.5% 8/7=0.875=87.5% 10/1=0.1=10%
20/1=0.05=5% 25/1=0.04=4% 50/1=0.02=2%
100/1=0.01=1%
第二单元知识点
1、什么是数对?
数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右为列数和行数,即“先列后行”。
数对的作用:确定一个点的位置。经度和纬度就是这个原理。
2、确定物体位置的方法:
(1)先找观测点;(2)再定方向(看方向夹角的度数);(3)最后确定距离(看比例尺)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一单元分数乘法
(一)分数乘法意义:
1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)
(二)分数乘法计算法则:
1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
(1)为了计算简便能约分的可先约分再计算。(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。(分子乘分子,分母乘分母)
(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:
一个数(0除外)乘大于1的数,积大于这个数。a×b=c,当b >1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。a×b=c,当b <1时,c 在进行因数与积的大小比较时,要注意因数为0时的特殊情况。 (四)分数乘法混合运算 1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。 2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。 乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c) 乘法分配律:a×(b±c)=a×b±a×c (五)倒数的意义:乘积为1的两个数互为倒数。 1、倒数是两个数的关系,它们互相依存,不能单独存在。单独一个数不能称为倒数。(必须说清谁是谁的倒数) 2、判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为“1”。例如:a×b=1则a、b互为倒数。 3、求倒数的方法: ①求分数的倒数:交换分子、分母的位置。 ②求整数的倒数:整数分之1。 ③求带分数的倒数:先化成假分数,再求倒数。 ④求小数的倒数:先化成分数再求倒数。 4、1的倒数是它本身,因为1×1=1 0没有倒数,因为任何数乘0积都是0,且0不能作分母。 5、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身。 假分数的倒数小于或等于1。带分数的倒数小于1。 (六)分数乘法应用题——用分数乘法解决问题 1、求一个数的几分之几是多少?(用乘法) 已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘。 2、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。 3、什么是速度? 速度是单位时间内行驶的路程。 速度=路程÷时间时间=路程÷速度路程=速度×时间 单位时间指的是1小时1分钟1秒等这样的大小为1的时间单位,每分钟、每小时、每秒钟等。 4、求甲比乙多(少)几分之几? 多:(甲-乙)÷乙少:(乙-甲)÷乙 第二单元位置与方向(二) 1、什么是数对? 数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右为列数和行数,即“先列后行”。 数对的作用:确定一个点的位置。经度和纬度就是这个原理。 2、确定物体位置的方法: (1)、先找观测点;(2)、再定方向(看方向夹角的度数);(3)、最后确定距离(看比例尺)。 描绘路线图的关键是选好观测点,建立方向标,确定方向和路程。 位置关系的相对性:两地的位置具有相对性在叙述两地的位置关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等。 相对位置:东--西;南--北;南偏东--北偏西。 第三单元分数的除法 一、分数除法的意义:分数除法是分数乘法的逆运算,已知两个数的积与其中一个因数,求另一个因数的运算。 二、分数除法计算法则:除以一个数(0除外),等于乘上这个数的倒数。 1、被除数÷除数=被除数×除数的倒数。 2、除法转化成乘法时,被除数一定不能变,“÷”变成“×”,除数变成它的倒数。 3、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算。 4、被除数与商的变化规律: ①除以大于1的数,商小于被除数:a÷b=c 当b>1时,c ②除以小于1的数,商大于被除数:a÷b=c 当b<1时,c>a (a≠0 b≠0) ③除以等于1的数,商等于被除数:a÷b=c 当b=1时,c=a 三、分数除法混合运算 1、混合运算用梯等式计算,等号写在第一个数字的左下角。 2、运算顺序: ①连除:同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据“除以几个数,等于乘上这几个数的积”的简便方法计算。加、减法为一级运算,乘、除法为二级运算。 ②混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面。