苏教版八年级上数学期中复习知识点
苏教版八年级数学上册知识点总结(苏科版)
苏教版八年级数学上册知识点总结(苏科版)知识点总结:第一章:三角形全等全等三角形的定义是指能够完全重合的两个三角形。
全等三角形的形状和大小完全相等,与位置无关。
一个三角形经过平移、翻折、旋转后得到的三角形,与原三角形仍然全等。
三角形全等不因位置发生变化而改变。
全等三角形的性质包括对应边相等、对应角相等,周长相等、面积相等,以及对应边上的对应中线、角平分线、高线分别相等。
全等三角形的判定有边角边公理(SAS)、角边角公理(ASA)、推论(AAS)、边边边公理(SSS)、斜边、直角边公理(HL)。
证明两个三角形全等的基本思路是已知两边时找第三边(SSS),找夹角(SAS),或找是否有直角(HL);已知一边一角时找一角(AAS或ASA),或找夹边(SAS);已知两角时找夹边(ASA),或找其它边(AAS)。
第二章:轴对称轴对称图形是指关于直线对称的两个图形。
轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线。
如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线。
线段的垂直平分线的性质定理是线段垂直平分线上的点到线段两个端点的距离相等。
判定定理是到线段两个端点距离相等的点在这条线段的垂直平分线上。
三角形三条边的垂直平分线的交点到三个顶点的距离相等。
角的角平分线的性质定理是角平分线上的点到角两边的距离相等。
判定定理是到角两个边距离相等的点在这个角的角平分线上。
三角形三个角的角平分线的交点到三条边的距离相等。
等腰三角形的性质定理是两个底角相等(等边对等角)。
和立方1、定义:开平方和立方是数学中常见的运算。
2、表示方法:开平方用符号√,立方用符号³表示。
3、性质:1)开平方和立方的结果都是实数。
2)开平方和立方运算具有可逆性,即可以进行反向运算。
三、实数的分类1、定义:实数是数学中的一种数值,包括有理数和无理数。
2、分类:1)有理数:可以表示为两个整数之比的数,包括整数、分数和小数。
苏教版八年级上数学知识点总结
苏教版《数学》(八年级上册)知识点总结第一章 轴对称图形第二章 勾股定理与平方根一.勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
3、勾股数:满足222c b a =+的三个正整数,称为勾股数。
二、实数的概念及分类1、实数的分类 正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类: (1)开方开不尽的数,如32,7等;轴对称轴对称的性质轴对称图形线段 角 等腰三角形 轴对称的应用等腰梯形设计轴对称图案(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数值,如sin60o 等三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。
特别地,0的算术平方根是0。
表示方法:记作“a ”,读作根号a 。
性质:正数和零的算术平方根都只有一个,零的算术平方根是零。
2、平方根:一般地,如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 就叫做a 的平方根(或二次方根)。
表示方法:正数a 的平方根记做“a ±”,读作“正、负根号a ”。
性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
开平方:求一个数a 的平方根的运算,叫做开平方。
0≥a注意a 的双重非负性:a ≥03、立方根一般地,如果一个数x 的立方等于a ,即x 3=a 那么这个数x 就叫做a 的立方根(或三次方根)。
表示方法:记作3a性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
苏科版数学八年级上册期中考试复习要点
第一学期八年级期中考试复习要点考试范围:苏科版八年级数学教材上册第一章《全等三角形》、第二章《轴对称图形》、第四章《实数》;考试时间:120分钟;考试分值:130分;考试题型:选择题、填空题、解答题。
第一章《全等三角形》考点:全等图形;全等三角形;三角形全等条件与性质。
练习:1. (2016·陕西·3分)如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A.2对B.3对C.4对D.5对(第1题)(第2题)2. (2016·湖北荆门·3分)如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是()A.△AFD≌△DCE B.AF=AD C.AB=AF D.BE=AD﹣DF3.如图,在△ABC中,AD BC于点D,DB=DC,若BC=6,AD=5,则图中阴影部分的面积为(▲) A. 30 B. 15 C. 7.5 D.6(第3题)4.如图,小明不小心把一块三角形的玻璃打碎成了三块,现要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去;B.带②去;C.带③去;D.带①和②去5.如图,工人师傅常用角尺平分一个任意角,做法是:在∠AOB的边OA、OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与点M、N重合(即PM=PN,点P为角尺的直角顶点),连接OP并延长即得到∠AOB的平分线.该做法中用到三角形全等的判定方法是()A.SAS B.ASA C.AAS D.SSS(第5题)(第7题)6.已知P是△ABC内一点,连接PA,PB,PC,且PA=PB=PC,则P点一定是( ) A.△ABC的三条中线的交点 B.△ABC的三条内角平分线的交点C.△ABC的三条高的交点 D.△ABC的三边的中垂线的交点7.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是(▲)A. CB=CD B. ∠BAC=∠DACC. ∠BCA=∠DCAD. ∠B=∠D=90︒8.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是(▲)A. ∠B=∠CB. AD⊥BCC. AD平分∠BACD.AB=2BD9. 如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=3,AE=4,则CH的长是(▲)A. 1B. 2C. 3D.410. 如图,P是等边三角形ABC内的一点,且PA=3,PB=4,PC=5,以BC为边在△ABC外作△BQC≅△BPA,连接PQ,则以下结论错误的是(▲)A. △BPQ是等边三角形B. △PCQ是直角三角形C. ∠APB=150°D. ∠APC=135°第8题第9题第10题11. (2016·山东省济宁市·3分)如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:,使△AEH≌△CE B.。
苏教版初二年级数学上册总复习知识点考点总结
苏教版初二年级数学上册总复习知识点考点总结1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44 定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45 逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46 勾股定理直角三角形两直角边a、b的平方和、等于斜边c 的平方,即a^2+b^2=c^247 勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48 定理四边形的内角和等于360°49 四边形的外角和等于360°50 多边形内角和定理 n边形的内角的和等于(n-2)×180°51 推论任意多边的外角和等于360°52 平行四边形性质定理1 平行四边形的对角相等53 平行四边形性质定理2 平行四边形的对边相等54 推论夹在两条平行线间的平行线段相等55 平行四边形性质定理3 平行四边形的对角线互相平分56 平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57 平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58 平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四60矩形性质定理1 矩形的四个角都是直角苏教版初二年级数学上册知识点总结.doc下载Word文档到电脑,方便收藏和打印[全文共1781字]。
八年级上数学知识点苏教版
八年级上数学知识点苏教版数学一直是学生们头疼的科目之一,特别是在初中阶段,每个学生都会经历一番钻研数学知识点的阶段。
本文将为大家介绍八年级上数学苏教版应该掌握的知识点。
一、整式运算整式运算是数学学习的第一步,对数学基础打牢坚实的基础具有重要意义。
在整式运算这一章节,主要涉及到各种整式的加减乘除。
例如:(1+x)²+(1-x)²,(a+b)(a-b)×(a²+ab+b²)等。
二、二次根式对于二次根式的掌握对于学生们来说有着重要的作用,因为它在高中阶段会有更加深入的探究。
本章主要包括二次根式的基本概念、化简等。
例如:√18,2√5+5√2等。
三、勾股定理勾股定理是古代中国的杰作之一,被广泛应用于各个领域中。
在八年级上,学生们需要学会利用勾股定理求解各种三角形的边长和角度。
例如:已知直角三角形的两条直角边长,求第三边长。
四、平面几何基本定理平面几何作为数学中的基础学科之一,其基本定理的掌握是数学学习必不可少的一步。
本章主要包括等腰三角形的性质、平行线的性质、同位角等。
例如:在等腰三角形中,底角相等;同位角互相相等等。
五、函数函数是数学学习中的重要组成部分,而在八年级上,函数的掌握需要掌握函数的相关概念、函数的表示和函数图形等。
例如:y=3x+2,y=x²-1等。
六、立体几何基础立体几何是数学中的重点之一,不仅涉及到基础概念的掌握,还需要掌握旋转体、棱柱、棱锥、球和圆柱等的相关定理等。
例如:旋转体的计算,圆锥的表面积计算等。
以上六个章节是八年级上数学苏教版中的重点内容,学生们需要根据实际情况来制定学习计划和学习目标,认真钻研每个知识点,不断提高自己的数学水平。
苏教版八年级上册数学知识点汇总
苏教版八年级上册数学知识点汇总第一章三角形的初步知识•三角形的概念与分类:理解三角形的定义,掌握按边和角对三角形进行分类(如等边三角形、等腰三角形、直角三角形等)。
•三角形的三边关系:理解并应用三角形的三边关系定理(任意两边之和大于第三边)进行边长判断。
•三角形的高、中线、角平分线、中位线:了解并掌握这些线段的概念、性质及画法,特别是中位线的性质(平行于第三边且等于第三边的一半)。
•三角形的稳定性:理解三角形在结构中的稳定性作用。
第二章全等三角形•全等三角形的概念与性质:理解全等三角形的定义,掌握全等三角形的对应边相等、对应角相等的性质。
•全等三角形的判定:掌握全等三角形的几种判定方法,包括SSS、SAS、ASA、AAS、HL(直角三角形专用)。
•全等三角形的应用:运用全等三角形的性质解决实际问题,如测量、作图等。
第三章轴对称与中心对称•轴对称图形与轴对称变换:理解轴对称图形的概念,掌握轴对称变换的性质,能识别并作出轴对称图形。
•中心对称图形与中心对称变换:了解中心对称图形的概念,掌握中心对称变换的性质,能识别并作出中心对称图形。
•设计轴对称或中心对称图案:通过实践活动,设计并制作轴对称或中心对称的图案。
第四章勾股定理•勾股定理的内容:理解并掌握勾股定理(直角三角形两直角边的平方和等于斜边的平方)及其逆定理。
•勾股定理的证明:了解勾股定理的多种证明方法,如赵爽弦图、欧几里得证明等。
•勾股定理的应用:运用勾股定理解决直角三角形中的边长计算问题,以及涉及勾股定理的实际问题。
第五章数据的收集、整理与描述•数据的收集:了解数据收集的方法(如调查、实验等),掌握数据收集过程中的注意事项。
•数据的整理:学习数据的分类、排序、分组等整理方法,掌握频数分布表、频数分布直方图的绘制方法。
•数据的描述:理解平均数、中位数、众数等统计量的概念、意义及计算方法,能选择合适的统计量描述数据特征。
•数据的波动:了解极差、方差等描述数据波动程度的统计量,掌握其计算方法及意义。
苏教版八年级上册数学知识点归纳及总结
苏教版八年级上册数学知识点归纳及总结本文档旨在对苏教版八年级上册数学课程的知识点进行归纳和总结,帮助学生更好地掌握和复相关内容。
一、代数与函数- 代数运算:四则运算,整式的加减乘除等。
- 一元一次方程:解一次方程的基本方法,应用题的解法。
- 一元一次不等式:求解不等式,应用题的解法。
- 函数概念:自变量和因变量,函数的图象。
- 一元一次函数:函数的定义,函数图象的性质,函数与方程的联系。
- 一元一次函数图象的绘制与应用:确定函数的部分特征,应用题的解法。
二、图形的认识与运用- 点和线:点的名称与判定,线的名称与判定。
- 图形的基本性质:图形的名称与判定,图形基本性质的应用。
- 直线与角:直线的性质,角的性质,角的名称与判定。
- 三角形:三角形的性质,三角形判定,三角形的分类。
- 四边形:四边形的性质,四边形的分类,四边形的判定。
- 一般平行四边形:平行四边形的性质,平行四边形的判定。
- 圆及其部分:圆的性质,圆的判定,圆内角的性质。
三、空间与形体- 空间中的位置与方向:空间中点的坐标,方向的判定与计算。
- 空间中直线、平面与图形:直线与平面的判定,平行与垂直的判定。
- 空间中三视图与展开图:图形的三视图,平面图形的展开图。
四、数据统计- 统计与统计分布:数据的统计指标,数据的统计分布。
- 直方图与折线图:直方图的绘制与解读,折线图的绘制与解读。
五、平面向量- 平面向量的表示与运算:平面向量的表示方法,向量的运算。
以上是苏教版八年级上册数学课程的主要知识点归纳和总结。
希望本文档对学生理解和掌握相关知识有所帮助。
苏科版数学八年级上册重点知识点汇总
苏科版数学八年级上册重点知识点汇总第一章全等三角形知识导图重点知识点要点一、全等三角形的判定与性质要点二、全等三角形的证明思路SAS HL SSS AAS SAS ASA AAS ASA AAS ⎧→⎧⎪⎪→⎨⎪⎪⎪→⎩⎪⎪→→⎧⎪⎪→⎧⎪⎪⎨⎨⎪→⎨⎪⎪⎪⎪⎪→⎩⎩⎪⎪→⎧⎪⎨→⎪⎩⎪⎩找夹角已知两边找直角找另一边边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一边要点三、角平分线的性质1.角的平分线的性质定理角的平分线上的点到这个角的两边的距离相等.2.角的平分线的判定定理角的内部到角的两边距离相等的点在角的平分线上.3.三角形的角平分线三角形角平分线交于一点,且到三边的距离相等.一般三角形直角三角形判定边角边(SAS)角边角(ASA)角角边(AAS)边边边(SSS)两直角边对应相等一边一锐角对应相等斜边、直角边定理(HL)性质对应边相等,对应角相等(其他对应元素也相等,如对应边上的高相等)备注判定三角形全等必须有一组对应边相等4.与角平分线有关的辅助线在角两边截取相等的线段,构造全等三角形;在角的平分线上取一点向角的两边作垂线段.要点四、全等三角形证明方法全等三角形是平面几何内容的基础,这是因为全等三角形是研究特殊三角形、四边形、相似图形、圆等图形性质的有力工具,是解决与线段、角相关问题的一个出发点.运用全等三角形,可以证明线段相等、线段的和差倍分关系、角相等、两直线位置关系等常见的几何问题.可以适当总结证明方法.1.证明线段相等的方法:(1)证明两条线段所在的两个三角形全等.(2)利用角平分线的性质证明角平分线上的点到角两边的距离相等.(3)等式性质.2.证明角相等的方法:(1)利用平行线的性质进行证明.(2)证明两个角所在的两个三角形全等.(3)利用角平分线的判定进行证明.(4)同角(等角)的余角(补角)相等.(5)对顶角相等.3.证明两条线段的位置关系(平行、垂直)的方法;可通过证明两个三角形全等,得到对应角相等,再利用平行线的判定或垂直定义证明. 4.辅助线的添加:(1)作公共边可构造全等三角形;(2)倍长中线法;(3)作以角平分线为对称轴的翻折变换全等三角形;(4)利用截长(或补短)法作旋转变换的全等三角形.5.证明三角形全等的思维方法:(1)直接利用全等三角形判定和证明两条线段或两个角相等,需要我们敏捷、快速地发现两条线段和两个角所在的两个三角形及它们全等的条件.(2)如果要证明相等的两条线段或两个角所在的三角形全等的条件不充分时,则应根据图形的其它性质或先证明其他的两个三角形全等以补足条件.(3)如果现有图形中的任何两个三角形之间不存在全等关系,此时应添置辅助线,使之出现全等三角形,通过构造出全等三角形来研究平面图形的性质.第二章轴对称图形知识导图重点知识点要点一、轴对称1.轴对称图形和轴对称(1)轴对称图形如果一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.轴对称图形的性质:轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.(2)轴对称定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴.成轴对称的两个图形的性质:①关于某条直线对称的两个图形形状相同,大小相等,是全等形;②如果两个图形关于某条直线对称,则对称轴是任何一对对应点所连线段的垂直平分线;③两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么它们的交点在对称轴上.(3)轴对称图形与轴对称的区别和联系区别:轴对称是指两个图形的位置关系,轴对称图形是指具有特殊形状的一个图形;轴对称涉及两个图形,而轴对称图形是对一个图形来说的.联系:如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形关于这条轴对称;如果把成轴对称的两个图形看成一个整体,那么它就是一个轴对称图形.2.线段的垂直平分线垂直并且平分一条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线.3.作轴对称图形(1)几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对应点,再连接这些点,就可以得到原图形的轴对称图形;(2)对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.4.用坐标表示轴对称点(x,y)关于x轴对称的点的坐标为(x,-y);点(x,y)关于y轴对称的点的坐标为(-x,y);点(x,y)关于原点对称的点的坐标为(-x,-y).要点二、线段、角的轴对称性1.线段的轴对称性(1)线段是轴对称图形,线段的垂直平分线是它的对称轴.(2)线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等;(3)线段垂直平分线的性质定理的逆定理:到线段两个端距离相等的点在线段的垂直平分线2.角的轴对称性(1)角是轴对称图形,角的平分线所在的直线是它的对称轴.(2)角平分线上的点到角两边的距离相等.(3)角的内部到角两边距离相等的点在角的平分线上.要点三、等腰三角形1.等腰三角形(1)定义:有两边相等的三角形,叫做等腰三角形.(2)等腰三角形性质①等腰三角形的两个底角相等,即“等边对等角”;②等腰三角形顶角的平分线、底边上的中线与底边上的高线互相重合(简称“三线合一”).特别地,等腰直角三角形的每个底角都等于45°.(3)等腰三角形的判定如果一个三角形有两个角相等,那么这两个角所对的边也相等(即“等角对等边”).2.等边三角形(1)定义:三条边都相等的三角形,叫做等边三角形.(2)等边三角形性质:等边三角形的三个角相等,并且每个角都等于60°.(3)等边三角形的判定:①三条边都相等的三角形是等边三角形;②三个角都相等的三角形是等边三角形;③有一个角为60°的等腰三角形是等边三角形.3.直角三角形的性质定理:直角三角形斜边上的中线等于斜边的一半.第三章勾股定理知识导图重点知识点要点一、勾股定理1.勾股定理:直角三角形两直角边a b 、的平方和等于斜边c 的平方.(即:222a b c +=)2.勾股定理的应用勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用是:(1)已知直角三角形的两边,求第三边;(2)利用勾股定理可以证明有关线段平方关系的问题;(3)解决与勾股定理有关的面积计算;(4)勾股定理在实际生活中的应用.要点二、勾股定理的逆定理1.勾股定理的逆定理如果三角形的三边长a b c 、、,满足222a b c +=,那么这个三角形是直角三角形.要点诠释:应用勾股定理的逆定理判定一个三角形是不是直角三角形的基本步骤:(1)首先确定最大边,不妨设最大边长为c ;(2)验证:22a b +与2c 是否具有相等关系:若222a b c +=,则△ABC 是以∠C 为90°的直角三角形;若222a b c +>时,△ABC 是锐角三角形;若222a b c +<时,△ABC 是钝角三角形.2.勾股数满足不定方程222x y z +=的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x y z 、、为三边长的三角形一定是直角三角形.要点诠释:常见的勾股数:①3、4、5;②5、12、13;③8、15、17;④7、24、25;⑤9、40、41.如果(a b c 、、)是勾股数,当t 为正整数时,以at bt ct 、、为三角形的三边长,此三角形必为直角三角形.观察上面的①、②、④、⑤四组勾股数,它们具有以下特征:1.较小的直角边为连续奇数;2.较长的直角边与对应斜边相差1.3.假设三个数分别为a b c 、、,且a b c <<,那么存在2a b c =+成立.(例如④中存在27=24+25、29=40+41等)要点三、勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,两者互为逆定理,都与直角三角形有关.第四章实数知识导图重点知识点要点一:平方根和立方根类型项目平方根立方根被开方数非负数任意实数符号表示a±3a性质一个正数有两个平方根,且互为相反数;零的平方根为零;负数没有平方根;一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零;重要结论⎩⎨⎧<-≥==≥=)0()0()0()(22a a a a a a a aa 333333)(aa a a aa -=-==要点二:实数有理数和无理数统称为实数.1.实数的分类①按定义分:实数⎧⎨⎩有理数:有限小数或无限循环小数无理数:无限不循环小数②按与0的大小关系分:实数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正数正无理数负有理数负数负无理数要点诠释:(1)所有的实数分成三类:有限小数,无限循环小数,无限不循环小数.其中有限小数和无限循环小数统称有理数,无限不循环小数叫做无理数.等;②有特殊意义的数,如π;③有特定结构的数,如0.1010010001…(3)凡能写成无限不循环小数的数都是无理数,并且无理数不能写成分数形式.(4)实数和数轴上点是一一对应的.2.实数与数轴上的点一一对应.数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.3.三类具有非负性的实数在实数范围内,正数和零统称为非负数.我们已经学习过的非负数有如下三种形式:(1)任何一个实数a 的绝对值是非负数,即|a |≥0;(2)任何一个实数a 的平方是非负数,即2a ≥0;0≥(0a ≥).非负数具有以下性质:(1)非负数有最小值——零;(2)有限个非负数之和仍是非负数;(3)几个非负数之和等于0,则每个非负数都等于0.4.实数的运算数a 的相反数是-a ;一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.有理数的运算法则和运算律在实数范围内仍然成立.实数混合运算的运算顺序:先乘方、开方、再乘除,最后算加减.同级运算按从左到右顺序进行,有括号先算括号里.5.实数的大小的比较有理数大小的比较法则在实数范围内仍然成立.(1)实数和数轴上的点一一对应,在数轴上表示的两个数,右边的数总比左边的数大;(2)正数大于0,0大于负数,正数大于一切负数,两个负数比较,绝对值大的反而小;(3)两个数比较大小常见的方法有:求差法,求商法,倒数法,估算法,平方法.要点三、近似数及精确度1.近似数接近准确值而不等于准确值的数,叫做这个精确数的近似数或近似值.一般采用四舍五入法取近似数,只要看要保留位数的下一位是舍还是入.2.精确度近似数中,四舍五入到哪一位,就称这个数精确到哪一位,精确到的这一位也叫做这个近似数的精确度.要点诠释:(1)精确度是指近似数与准确数的接近程度.(2)精确度一般用“精确到哪一位”的形式的来表示,一般来说精确到哪一位表示误差绝对值的大小,例如精确到0.1米,说明结果与实际数相差不超过0.05米.第五章平面直角坐标系知识导图重点知识点要点一、有序数对把一对数按某种特定意义,规定了顺序并放在一起就形成了有序数对,人们在生产生活中经常以有序数对为工具表达一个确定的意思,如某人记录某个月不确定周期的零散收入,可用(13,2000),(17,190),(21,330)…,表示,其中前一数表示日期,后一数表示收入,但更多的人们还是用它来进行空间定位,如:(4,5),(20,12),(13,2),…,用来表示电影院的座位,其中前一数表示排数,后一数表示座位号.要点二、平面直角坐标系平面内两条互相垂直的数轴构成平面直角坐标系,简称直角坐标系.水平的数轴称为x 轴或横轴,向右为正方向;铅直方向的数轴称为y 轴或纵轴,向上为正方向,两轴的交点O 是原点.如下图:要点诠释:(1)两条坐标轴将平面分成4个区域:第一象限、第二象限、第三象限、第四象限,x 轴与y 轴上的点(包括原点)不属于任何一个象限.(2)在平面上建立平面直角坐标系后,坐标平面上的点与有序数对(x,y)之间建立了一一对应关系,这样就将‘形’与‘数’联系起来,从而实现了代数问题与几何问题的转化.(3)要熟记坐标系中一些特殊点的坐标及特征:①x 轴上的点纵坐标为零;y 轴上的点横坐标为零.②平行于x 轴直线上的点横坐标不相等,纵坐标相等;平行于y 轴直线上的点横坐标相等,纵坐标不相等.③关于x 轴对称的点横坐标相等,纵坐标互为相反数;关于y 轴对称的点纵坐标相等,横坐标互为相反数;关于原点对称的点横、纵坐标分别互为相反数.④象限角平分线上的点的坐标特征:一、三象限角平分线上的点横、纵坐标相等;二、四象限角平分线上的点横、纵坐标互为相反数.注:反之亦成立.(4)理解坐标系中用坐标表示距离的方法和结论:①坐标平面内点P(x,y)到x 轴的距离为|y|,到y 轴的距离为|x|.②x 轴上两点A(x 1,0)、B(x 2,0)的距离为AB=|x 1-x 2|;y 轴上两点C(0,y 1)、D(0,y 2)的距离为CD=|y 1-y 2|.③平行于x 轴的直线上两点A(x 1,y)、B(x 2,y)的距离为AB=|x 1-x 2|;平行于y 轴的直线上两点C(x,y 1)、D(x,y 2)的距离为CD=|y 1-y 2|.(5)利用坐标系求一些知道关键点坐标的几何图形的面积常用方法:切割、拼补.要点三、坐标方法的简单应用1.用坐标表示地理位置(1)建立坐标系,选择一个适当的参照点为原点,确定x 轴、y 轴的正方向;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.要点诠释:(1)我们习惯选取向东、向北分别为x 轴、y 轴的正方向,建立坐标系的关键是确定原点的位置.(2)确定比例尺是画平面示意图的重要环节,要结合比例尺来确定坐标轴上的单位长度.2.用坐标表示平移(1)点的平移点的平移引起坐标的变化规律:在平面直角坐标中,将点(x,y)向右(或左)平移a 个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b 个单位长度,可以得到对应点(x,y+b)(或(x,y-b)).要点诠释:上述结论反之亦成立,即点的坐标的上述变化引起的点的平移变换.(2)图形的平移在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a 个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a 个单位长度.要点诠释:平移是图形的整体运动,某一个点的坐标发生变化,其他点的坐标也进行了相应的变化,反过来点的坐标发生了相应的变化,也就意味着点的位置也发生了变化,其变化规律遵循:“右加左减,纵不变;上加下减,横不变”.第六章一次函数知识导图重点知识点变化的世界函数建立数学模型应用概念选择方案概念再认识表示方法图象性质一次函数(正比例函数)一元一次方程一元一次不等式二元一次方程组与数学问题的综合与实际问题的综合列表法解析法图象法要点一、函数的相关概念一般地,在一个变化过程中.如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说x 是自变量,y 是x 的函数.y 是x 的函数,如果当x =a 时y =b ,那么b 叫做当自变量为a 时的函数值.函数的表示方法有三种:解析式法,列表法,图象法.要点二、一次函数的相关概念一次函数的一般形式为y kx b =+,其中k 、b 是常数,k ≠0.特别地,当b =0时,一次函数y kx b =+即y kx =(k ≠0),是正比例函数.要点三、一次函数的图象及性质1、函数的图象如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.要点诠释:直线y kx b =+可以看作由直线y kx =平移|b |个单位长度而得到(当b >0时,向上平移;当b <0时,向下平移).说明通过平移,函数y kx b =+与函数y kx =的图象之间可以相互转化.2、一次函数性质及图象特征掌握一次函数的图象及性质(对比正比例函数的图象和性质)要点诠释:理解k 、b 对一次函数y kx b =+的图象和性质的影响:(1)k 决定直线y kx b =+从左向右的趋势(及倾斜角α的大小——倾斜程度),b 决定它与y 轴交点的位置,k 、b 一起决定直线y kx b =+经过的象限.(2)两条直线1l :11y k x b =+和2l :22y k x b =+的位置关系可由其系数确定:12k k ≠⇔1l 与2l 相交;12k k =,且12b b ≠⇔1l 与2l 平行;12k k =,且12b b =⇔1l 与2l 重合;(3)直线与一次函数图象的联系与区别一次函数的图象是一条直线;特殊的直线x a =、直线y b =不是一次函数的图象.要点四、用函数的观点看方程、方程组、不等式方程(组)、不等式问题函数问题从“数”的角度看从“形”的角度看求关于x 、y 的一元一次方程ax b +=0(a ≠0)的解x 为何值时,函数y ax b =+的值为0?确定直线y ax b =+与x 轴(即直线y =0)交点的横坐标求关于x 、y 的二元一次方程组1122=+⎧⎨=+⎩,.y a x b y a x b 的解.x 为何值时,函数11y a x b =+与函数22y a x b =+的值相等?确定直线11y a x b =+与直线22y a x b =+的交点的坐标求关于x 的一元一次不等式ax b +>0(a ≠0)的解集x 为何值时,函数y ax b =+的值大于0?确定直线y ax b =+在x 轴(即直线y =0)上方部分的所有点的横坐标的范围。
苏教版八年级上册数学复习资料
苏教版八年级上册数学复习资料八年级数学怎么复习呢?下面学习啦我整理了苏教版八年级上册数学复习资料,供你参考。
苏教版八年级上册数学复习提纲苏教版八年级上册数学复习提纲(三角形全等)1、全等三角形的定义:能够完全重合的两个三角形叫做全等三角形。
理解:①全等三角形样子与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转后得到的三角形,与原三角形照旧全等; ..③三角形全等不因位置发生转变而转变。
2、全等三角形的性质:⑴全等三角形的对应边相等、对应角相等。
理解:①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。
⑴全等三角形的周长相等、面积相等。
⑴全等三角形的对应边上的对应中线、角平分线、高线分别相等。
3、全等三角形的判定:①边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等。
②角边角公理(ASA) 有两角和它们的夹边对应相等的两个三角形全等。
③推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等。
④边边边公理(SSS) 有三边对应相等的两个三角形全等。
⑤斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等。
4、证明两个三角形全等的基本思路:⑴已知两边:①找第三边(SSS);②找夹角(SAS);③找是否有直角(HL). ⑴已知一边一角:①找一角(AAS或ASA);②找夹边(SAS).⑴已知两角:①找夹边(ASA);②找其它边(AAS).苏教版八年级上册数学复习提纲(轴对称)1、轴对称图形相对一个图形的对称而言;轴对称是关于直线对称的两个图形而言。
2、轴对称的性质:①轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;②假如两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线;3、线段的垂直平分线:①性质定理:线段垂直平分线上的点到线段两个端点的距离相等。
②判定定理:到线段两个端点距离相等的点在这条线段的垂直平分线上。
苏教版数学八年级上册知识点总结
苏教版《数学》(八年级上册)知识点总结第一章 轴对称图形第二章 勾股定理与平方根一.勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
3、勾股数:满足222c b a =+的三个正整数,称为勾股数。
二、实数的概念及分类1、实数的分类 正有理数有理数 零 有限小数和无限循环小数 实数 负有理数正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数值,如sin60o 等三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。
特别地,0的算术平方根是0。
表示方法:记作“a ”,读作根号a 。
性质:正数和零的算术平方根都只有一个,零的算术平方根是零。
2、平方根:一般地,如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 就叫做a 的平方根(或二次方根)。
表示方法:正数a 的平方根记做“a ±”,读作“正、负根号a ”。
性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
开平方:求一个数a 的平方根的运算,叫做开平方。
0≥a注意a 的双重非负性:a ≥03、立方根一般地,如果一个数x 的立方等于a ,即x 3=a 那么这个数x 就叫做a 的立方根(或三次方根)。
表示方法:记作3a性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
注意:33a a -=-,这说明三次根号内的负号可以移到根号外面。
八年级上数学苏教版知识点
八年级上数学苏教版知识点数学是一门需要系统学习和练习的学科,八年级上数学苏教版也不例外。
在此,本文将针对该学期的数学知识点进行详细阐述,希望能够帮助大家更好地掌握这门学科。
1.正比例函数正比例函数是八年级数学中的一个重要知识点。
其定义为:y与x成正比,即y=kx(k为比例系数)。
举个例子来说,如果你要在50分钟内做完100道题目,则题目数量y与时间x成正比,k=2,即y=2x。
2.反比例函数反比例函数与正比例函数类似,其定义为:y与x成反比,即y=k/x(k为比例系数)。
举个例子来说,如果你的速度为60km/h,则在一段固定的路程上,速度与时间成反比,即速度越快,所用的时间越短。
3.三角函数三角函数是一类与角度相对应的函数,常用于计算各种问题。
其包括正弦函数、余弦函数和正切函数。
以正弦函数为例,其定义为:sinA=对边/斜边。
其中A为角度,对边指的是与该角度相对的边,斜边则是以该角度为一侧的直角三角形斜边。
4.一元二次方程一元二次方程是数学中很重要的一个概念,其包括形如ax²+bx+c=0的一元二次方程。
求解一元二次方程的方法有很多种,包括配方法、公式法等,需要根据具体情况进行选择。
5.集合集合是由一些特定的元素组成的总体,常用大写字母表示,如A、B、C等。
在集合中,元素之间没有顺序关系,也没有重复的元素。
集合中的基本概念包括全集、子集等,需要有一定的抽象思维能力。
6.函数函数是数学中的一个非常基本的概念,可以理解为一种“映射”,其输入是自变量,输出则是因变量。
在函数的定义中,需要确定函数的定义域和值域,并且对输入输出之间的关系进行详细的描述。
7.数据的图标表示数据的图标表示是数学中的一个实际应用。
常见的数据图标包括直方图、饼图、折线图等。
需要注意的是,在使用这些图标进行数据表示时,需要根据不同的数据类型进行选择。
8.统计量统计量是描述样本中数据特征的指标,包括均值、中位数、众数、标准差等。
苏教版八年级上数学期中复习知识点
八年级上册期中知识点第一章轴对称图形1.1轴对称与轴对称图形1.轴对称:把一个图形沿着某一条直线折叠;如果它能够与另外一个图形重合;称这两个图形关于这条直线对称..这条直线叫做对称轴;两个图形中的对应点叫做对称点..对称轴是直线;所在的直线等2.轴对称图形:把一个图形沿着某一条直线折叠;如果直线两旁的部分能够互相重合..3.二者的区别和联系轴对称是2个分开图形整体叫做轴对称图形;轴对称图形是1个图形看成对称轴左右两个图形..4.正多边形:1.有几条边就有几条对称轴..偶数边的正多边形既是轴对称又是中心对称图形2.成轴对称的两个图形的任何对应部分也成轴对称..1.2轴对称的性质1.垂直平分线:垂直并且平分一条线段的直线..高线;中线;角平分线都是线段2.成轴对称的两个图形全等;且其中一个图形沿某条直线翻折后能与另一个图形重合..如果两个图形成轴对称;那么对称轴是对称点连线的垂直平分线..1.4线段、角的轴对称线段的轴对称性:1.线段是轴对称图形;对称轴是线段垂直平分线所在的直线;2.线段的垂直平分线上的点到线段两端的距离相等;3.到线段两端距离相等的点;在这条线段的垂直平分线上..结论:线段的垂直平分线是到线段两端距离相等的点的集合角的轴对称性:1.角是轴对称图形;对称轴是角平分线所在的直线..2.角平分线上的点到角的两边距离相等..3.到角的两边距离相等的点;在这个角的平分线上..结论:角的平分线是到角的两边距离相等的点的集合1.51.1.等腰三角形为轴对称图形;对称轴为顶角平分线所在的直线2.两个底角相等等边对等角3.三线合一顶角平分线;底边中线;底边的高判定:1.如果一个三角形两角相等那么两角所对的边也相等2.两边相等的三角形是等腰三角形2.等边三角形性质和判定:性质:1.等边三角形是轴对称图形;有三条对称轴2.三个边相等3.每个角都是60度判定:1.三个边相等的三角形是等边三角形2.三个角都相等的三角形3.有一个角等于60度的等腰三角形1.6等腰梯形的轴对称等腰梯形的定义:1.梯形的定义:一组对边平行;另一组对边不平行的四边形为梯形..梯形中;平行的一组对边称为底;不平行的一组对边称为腰..2.等腰梯形的定义:两腰相等的梯形叫做等腰梯形..等腰梯形的性质: 1.等腰梯形是轴对称图形;2.等腰梯形同一底上两底角相等..3.等腰梯形的对角线相等..等腰梯形的判定:1.在同一底上的2个底角相等的梯形是等腰梯形..补充:对角线相等的梯形是等腰梯形..第二章 勾股定理与平方根2.1勾股定理1.勾股定理直角三角形两直角边a;b 的平方和等于斜边c 的平方;即222c b a =+2.勾股定理的逆定理如果三角形的三边长a;b;c 有关系222c b a =+;那么这个三角形是直角CB2.2神秘的数组勾股数:满足222c b a =+的三个正整数;称为勾股数..2.3平方根1.平方根1.平方根:一般地;如果一个数x 的平方等于a;即x 2=a;那么这个数x 就叫做a 的平方根或二次方根..表示方法:正数a 的平方根记做“a ±”;读作“正、负根号a ”..性质:一个正数有两个平方根;它们互为相反数;零的平方根是零;负数没有平方根..开平方:求一个数a 的平方根的运算;叫做开平方.. 注意a 的双重非负性:a ≥02.算术平方根:一般地;如果一个正数x 的平方等于a;即x 2=a;那么这个正数x 就叫做a 的算术平方根..特别地;0的算术平方根是0.. 表示方法:记作“a ”;读作根号a..性质:正数和零的算术平方根都只有一个;零的算术平方根是零..2.4平方根立方根:一般地;如果一个数x 的立方等于a;即x 3=a 那么这个数x 就叫做a 的立方根或三次方根.. 表示方法:记作3a性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立注意:33a a -=-;这说明三次根号内的负号可以移到根号外面..2.5实数1.实数的概念及分类 正有理数有理数 零 有限小数和无限循环小数1实数 负有理数正无理数无理数 无限不循环小数负无理数2⎪⎩⎪⎨⎧⎩⎨⎧无理数分数整数有理数实数 3⎪⎩⎪⎨⎧负数正数实数0 每一个实数都可以用数轴上的一个点来表示;反之;数轴上的每一个点都表示一个实数;实数与数轴上的点一一对应..2.无理数:无限不循环小数叫做无理数..在理解无理数时;要抓住“无限不循环”这一时之;归纳起来有四类: 1开方开不尽的数;如32,7等;2有特定意义的数;如圆周率π;或化简后含有π的数;如3π+8等; …等;3.实数的倒数、相反数和绝对值1、相反数实数与它的相反数是一对数零的相反数是零;从数轴上看;互为相反数的两个数所对应的点关于原点对称;如果a与b互为相反数;则有a+b=0;a=—b;反之亦成立..2、绝对值在数轴上;一个数所对应的点与原点的距离;叫做该数的绝对值..|a|≥0..零的绝对值是它本身;也可看成它的相反数;若|a|=a;则a≥0;若|a|=-a;则a≤0..3、倒数如果a与b互为倒数;则有ab=1;反之亦成立..倒数等于本身的数是1和-1..零没有倒数..4、数轴规定了原点、正方向和单位长度的直线叫做数轴画数轴时;要注意上述规定的三要素缺一不可..解题时要真正掌握数形结合的思想;理解实数与数轴的点是一一对应的;并能灵活运用..5、估算4.实数大小的比较1、实数比较大小:正数大于零;负数小于零;正数大于一切负数;数轴上的两个点所表示的数;右边的总比左边的大;两个负数;绝对值大的反而小..2、实数大小比较的几种常用方法1数轴比较:在数轴上表示的两个数;右边的数总比左边的数大..2求差比较:设a、b是实数;3求商比较法:设a 、b 是两正实数;;1;1;1b a ba b a b a b a b a <⇔<=⇔=>⇔> 4绝对值比较法:设a 、b 是两负实数;则b a b a <⇔>..5平方法:设a 、b 是两负实数;则b a b a <⇔>22..5.实数的运算1六种运算:加、减、乘、除、乘方 、开方2实数的运算顺序先算乘方和开方;再算乘除;最后算加减;如果有括号;就先算括号里面的..3运算律加法交换律 a b b a +=+加法结合律 )()(c b a c b a ++=++乘法交换律 ba ab =乘法结合律 )()(bc a c ab =乘法对加法的分配律 ac ab c b a +=+)(2.6近似数与有效数字近似数:测量结果都是包含误差的近似数有效数字:对一个近似数;从左边第一个不是0的数字起;到末尾数字止;所有数字称为这个近似数的有效数字..注:当保留n 位有效数字;若第n+1位数字≤4就舍掉;若第n+1位数字≥5时;则第n 位数字进1..科学记数法一般地;一个大于10的数可以表示成n⨯的形式;其中10a10≤a;n是1<正整数;这种记数方法叫做科学记数法..第三章中心对称图形一3.1图形的旋转1.旋转定义在平面内;将一个图形绕某一定点沿某个方向转动一个角度;这样的图形运动称为旋转;这个定点称为旋转中心;转动的角叫做旋转角..性质旋转前后两个图形是全等图形;对应点到旋转中心的距离相等;对应点与旋转中心的连线所成的角等于旋转角..3.2.中心对称与中心对称图形1.中心对称:定义:在平面内;一个图形绕某个点旋转180°;如果旋转前后的图形互相重合;那么这个图形叫做中心对称图形;这个点叫做它的对称中心..性质:1关于中心对称的两个图形是全等形..2关于中心对称的两个图形;对称点连线都经过对称中心;并且被对称中心平分..3关于中心对称的两个图形;对应线段平行或在同一直线上且相等..判定:如果两个图形的对应点连线都经过某一点;并且被这一点平分;那么这两个图形关于这一点对称..2.中心对称图形:把一个平面图形绕着某一个点旋转180°;如果旋转后的图形能够与原来的图形互相重合;那么这个图形叫做中心对称图形..这个点叫做它的对称中心..3.3平行四边形1.四边形的相关概念1、四边形在同一平面内;由不在同一直线上的四条线段首尾顺次相接组成的图形叫做四边形..2、四边形具有不稳定性3、四边形的内角和定理及外角和定理四边形的内角和定理:四边形的内角和等于360°..四边形的外角和定理:四边形的外角和等于360°..推论:多边形的内角和定理:n边形的内角和等于•(n180°;-)2多边形的外角和定理:任意多边形的外角和等于360°..2.平行四边形定义:两组对边分别平行的四边形性质:1. 两组对边分别相等 2.两组对角分别相等 3.对角线互相平分判定 1.两组对边分别平行的四边形是平行四边形 2.两组对边分别相等的四边形是平行四边形 3.对角线互相平分的四边形是平行四边形 4.一组对边平行且相等的四边形是平行四边形3.两条平行线的距离两条平行线中;一条直线上的任意一点到另一条直线的距离;叫做这两条平行线的距离..平行线间的距离处处相等..4.平行四边形的面积=底边长×高=ahS平行四边形3.4矩形、菱形、正方形1.矩形定义:有一个角是直角的平行四边形性质:1..对角线相等对角线把矩形分为四个等腰三角形2.四个角都是直角判定:1.有一个角是直角的平行四边形是矩形 2.三个角都是直角的四边形是矩形3.对角线相等的平行四边形是矩形形矩形的面积S=长×宽=ab矩形2. 菱形:定义:有一组邻边相等的平行四边形性质:1.四条边都相等 2.对角线互相垂直平分且每一条对角线平分一组对角对角线把菱形分为四个全等的直角三角形面积公式S=1/2ab判定:1.有一组邻边相等的平行四边形是菱形 2.对角线互相垂直的平行四边形是菱形3.四条边都相等的四边形是菱形面积:S菱形=底边长×高=两条对角线乘积的一半3.正方形:定义:有一组邻边相等且有一个角是直角的平行四边形性质:1.四边相等;邻边垂直;对边平行 2.四个角都是直角3.两对角线相等;互相垂直平分; 每条对角线平分一组对角判定:1.一组邻边相等的矩形是正方形 2.一个角是直角的菱形是正方形3.对角线互相垂直的矩形是正方形4.对角线相等的菱形是正方形3菱形的对角线互相垂直平分;并且每一条对角线平分一组对角面积:设正方形边长为a;对角线长为bS正方形=222b a3.5三角形、梯形的中位线1.三角形的中位线定义:连接三角形两边中点的线段性质:三角形的中位线平行于三角形的第三边;且等于第三边的一半2.梯形的中位线定义:连接梯形两腰中点的线段性质:梯形中位线平行于两底并且等于两底和的一半。
苏教版初二年级数学上册期中辅导资料考前复习
苏教版初二年级数学上册期中辅导资料考前复习
完成了小学阶段的学习,进入紧张的初中阶段。
这篇初二年级数学上册期中辅导资料,是初中频道特地为大家整理的,欢迎阅读。
1.有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数.
2.有理数减法法则:减去一个数,等于加上这个数的相反数.
3.有理数乘法法则:两个有理数相乘,同号得正,异号得负,再把绝对值相乘; 任何数与0相乘,积仍为0
4.几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数的个数为奇数时,积为负;当负因数的个数为偶数个时,积为正。
5.有理数除法法则:两个有理数相除,同号得正,异号得负,并把绝对值相除;0除以任何非0的数都得0;除以一个数等于乘以这个数的倒数.
欢迎大家去阅读由小编为大家提供的初二年级数学上册期中辅导资料大家好好去品味了吗?希望能够帮助到大家,加油哦!。
苏教版数学八年级上册知识点总结
苏教版《数学》(八年级上册)知识点总结第一章 轴对称图形第二章 勾股定理与平方根一.勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
3、勾股数:满足222c b a =+的三个正整数,称为勾股数。
二、实数的概念及分类1、实数的分类 正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数值,如sin60o等三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。
特别地,0的算术平方根是0。
表示方法:记作“a ”,读作根号a 。
性质:正数和零的算术平方根都只有一个,零的算术平方根是零。
2、平方根:一般地,如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 就叫做a 的平方根(或二次方根)。
表示方法:正数a 的平方根记做“a ±”,读作“正、负根号a ”。
性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
开平方:求一个数a 的平方根的运算,叫做开平方。
0≥a 注意a 的双重非负性:a ≥03、立方根一般地,如果一个数x 的立方等于a ,即x 3=a 那么这个数x 就叫做a 的立方根(或三次方根)。
表示方法:记作3a性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
注意:33a a -=-,这说明三次根号内的负号可以移到根号外面。
苏科版八年级上册数学期中考点
苏科版八年级上册数学期中考点数学研究越来越严格,开始触及与数量和量度无明确关系的群论和投影几何等抽象主题,数学家和哲学家开始提出各种新的定义。
这些定义中的一些强调了大量数学的演绎性质,一些强调了它的抽象性,一些强调数学中的某些话题。
今天作者在这给大家整理了一些苏科版八年级上册数学期中考点,我们一起来看看吧!苏科版八年级上册数学期中考点一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。
②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果还是等式。
解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。
二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。
二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。
合适一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。
二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。
解二元一次方程组的方法:代入消元法/加减消元法。
2:不等式与不等式组不等式:①用符号 = 号连接的式子叫不等式。
②不等式的两边都加上或减去同一个整式,不等号的方向不变。
③不等式的两边都乘以或者除以一个正数,不等号方向不变。
④不等式的两边都乘以或除以同一个负数,不等号方向相反。
不等式的解集:①能使不等式成立的未知数的值,叫做不等式的解。
②一个含有未知数的不等式的所有解,组成这个不等式的解集。
③求不等式解集的进程叫做解不等式。
一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。
一元一次不等式组:①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。
②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。
③求不等式组解集的进程,叫做解不等式组。
3:函数变量:因变量,自变量。
在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。
苏教版数学八年级上册知识点总结
苏教版《数学》(八年级上册)知识点总结第一章 轴对称图形第二章 勾股定理与平方根 一.勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a=+2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
3、勾股数:满足222c b a=+的三个正整数,称为勾股数。
二、实数的概念及分类1、实数的分类正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类: (1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; 轴对称轴对称的性质轴对称图形线段 角 等腰三角形轴对称的应用等腰梯形设计轴对称图案…等;(4)某些三角函数值,如sin60o 等三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。
特别地,0的算术平方根是0。
表示方法:记作“a ”,读作根号a 。
性质:正数和零的算术平方根都只有一个,零的算术平方根是零。
2、平方根:一般地,如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 就叫做a 的平方根(或二次方根)。
表示方法:正数a 的平方根记做“a ±”,读作“正、负根号a ”。
性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
开平方:求一个数a 的平方根的运算,叫做开平方。
注意a 的双重非负性:a≥03、立方根一般地,如果一个数x 的立方等于a ,即x 3=a 那么这个数x 就叫做a 的立方根(或三次方根)。
表示方法:记作3a性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
苏教版数学八年级上册知识点总结
苏教版《数学》(八年级上册)知识点总结第一章 轴对称图形第二章 勾股定理与平方根一.勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
3、勾股数:满足222c b a =+的三个正整数,称为勾股数。
二、实数的概念及分类1、实数的分类 正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数值,如sin60o等三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。
特别地,0的算术平方根是0。
表示方法:记作“a ”,读作根号a 。
性质:正数和零的算术平方根都只有一个,零的算术平方根是零。
2、平方根:一般地,如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 就叫做a 的平方根(或二次方根)。
表示方法:正数a 的平方根记做“a ±”,读作“正、负根号a ”。
性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
开平方:求一个数a 的平方根的运算,叫做开平方。
0≥a 注意a 的双重非负性:a ≥03、立方根一般地,如果一个数x 的立方等于a ,即x 3=a 那么这个数x 就叫做a 的立方根(或三次方根)。
表示方法:记作3a性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
注意:33a a -=-,这说明三次根号内的负号可以移到根号外面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上册期中知识点第一章轴对称图形1.1轴对称与轴对称图形1.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另外一个图形重合,称这两个图形关于这条直线对称。
这条直线叫做对称轴,两个图形中的对应点叫做对称点。
(对称轴是直线,所在的直线等)2.轴对称图形:把一个图形沿着某一条直线折叠,如果直线两旁的部分能够互相重合。
3.二者的区别和联系轴对称是2个分开图形(整体叫做轴对称图形),轴对称图形是1个图形(看成对称轴左右两个图形)。
4.正多边形:1.有几条边就有几条对称轴。
(偶数边的正多边形既是轴对称又是中心对称图形)2.成轴对称的两个图形的任何对应部分也成轴对称。
1.2轴对称的性质1.垂直平分线:垂直并且平分一条线段的直线。
(高线,中线,角平分线都是线段)2.成轴对称的两个图形全等,且其中一个图形沿某条直线翻折后能与另一个图形重合。
如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。
1.4线段、角的轴对称线段的轴对称性:1.线段是轴对称图形,对称轴是线段垂直平分线所在的直线;2.线段的垂直平分线上的点到线段两端的距离相等;3.到线段两端距离相等的点,在这条线段的垂直平分线上。
结论:线段的垂直平分线是到线段两端距离相等的点的集合角的轴对称性:1.角是轴对称图形,对称轴是角平分线所在的直线。
2.角平分线上的点到角的两边距离相等。
3.到角的两边距离相等的点,在这个角的平分线上。
结论:角的平分线是到角的两边距离相等的点的集合1.5等腰三角形的轴对称1.等腰三角形定义:有两边相等的三角形为等腰三角形 性质:1.等腰三角形为轴对称图形,对称轴为顶角平分线所在的直线2.两个底角相等(等边对等角)3.三线合一 顶角平分线,底边中线,底边的高 判定:1.如果一个三角形两角相等那么两角所对的边也相等2.两边相等的三角形是等腰三角形 2.等边三角形性质和判定: 性质:1.等边三角形是轴对称图形,有三条对称轴2.三个边相等3.每个角都是60度 判定:1.三个边相等的三角形是等边三角形2.三个角都相等的三角形3.有一个角等于60度的等腰三角形1.6等腰梯形的轴对称等腰梯形的定义:1.梯形的定义:一组对边平行,另一组对边不平行的四边形为梯形。
梯形中,平行的一组对边称为底,不平行的一组对边称为腰。
2.等腰梯形的定义:两腰相等的梯形叫做等腰梯形。
等腰梯形的性质:1.等腰梯形是轴对称图形,对称轴是两底中点的连线所在的直线。
2.等腰梯形同一底上两底角相等。
3.等腰梯形的对角线相等。
等腰梯形的判定:1.在同一底上的2个底角相等的梯形是等腰梯形。
补充:对角线相等的梯形是等腰梯形。
第二章 勾股定理与平方根2.1勾股定理1.勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+C2.勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
2.2神秘的数组勾股数:满足222c b a =+的三个正整数,称为勾股数。
2.3平方根1.平方根1.平方根:一般地,如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 就叫做a 的平方根(或二次方根)。
表示方法:正数a 的平方根记做“a ±”,读作“正、负根号a ”。
性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
开平方:求一个数a 的平方根的运算,叫做开平方。
0≥a注意a 的双重非负性:a ≥02.算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。
特别地,0的算术平方根是0。
表示方法:记作“a ”,读作根号a 。
性质:正数和零的算术平方根都只有一个,零的算术平方根是零。
2.4平方根立方根:一般地,如果一个数x 的立方等于a ,即x 3=a 那么这个数x 就叫做a 的立方根(或三次方根)。
表示方法:记作3a性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
注意:33a a -=-,这说明三次根号内的负号可以移到根号外面。
2.5实数1.实数的概念及分类正有理数有理数 零 有限小数和无限循环小数 1)实数 负有理数正无理数无理数 无限不循环小数负无理数2)⎪⎩⎪⎨⎧⎩⎨⎧无理数分数整数有理数实数 3)⎪⎩⎪⎨⎧负数正数实数0每一个实数都可以用数轴上的一个点来表示;反之,数轴上的每一个点都表示一个实数,实数与数轴上的点一一对应。
2.无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类: (1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;3.实数的倒数、相反数和绝对值1、相反数实数与它的相反数是一对数(零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。
(|a|≥0)。
零的绝对值是它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
5、估算4.实数大小的比较1、实数比较大小:正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。
2、实数大小比较的几种常用方法(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。
(2)求差比较:设a 、b 是实数,,0b a b a >⇔>- ,0b a b a =⇔=-b a b a <⇔<-0(3)求商比较法:设a 、b 是两正实数,;1;1;1b a bab a b a b a b a<⇔<=⇔=>⇔> (4)绝对值比较法:设a 、b 是两负实数,则b a b a <⇔>。
(5)平方法:设a 、b 是两负实数,则b a b a <⇔>22。
5.实数的运算(1)六种运算:加、减、乘、除、乘方 、开方 (2)实数的运算顺序先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。
(3)运算律加法交换律 a b b a +=+加法结合律 )()(c b a c b a ++=++ 乘法交换律 ba ab = 乘法结合律 )()(bc a c ab = 乘法对加法的分配律 ac ab c b a +=+)(2.6近似数与有效数字近似数:(测量结果都是包含误差的近似数)有效数字:对一个近似数,从左边第一个不是0的数字起,到末尾数字止,所有数字称为这个近似数的有效数字。
注:当保留n 位有效数字,若第n+1位数字≤4就舍掉,若第n+1位数字≥5时,则第n 位数字进1。
科学记数法一般地,一个大于10的数可以表示成na 10⨯的形式,其中101<≤a ,n 是正整数,这种记数方法叫做科学记数法。
第三章 中心对称图形(一)3.1图形的旋转1.旋转 定义在平面内,将一个图形绕某一定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角叫做旋转角。
性质旋转前后两个图形是全等图形,对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角等于旋转角。
3.2.中心对称与中心对称图形1.中心对称 :定义:在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。
性质:(1)关于中心对称的两个图形是全等形。
(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。
判定:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。
2.中心对称图形:把一个平面图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形互相重合,那么这个图形叫做中心对称图形。
这个点叫做它的对称中心。
3.3平行四边形1.四边形的相关概念 1、四边形在同一平面内,由不在同一直线上的四条线段首尾顺次相接组成的图形叫做四边形。
2、四边形具有不稳定性3、四边形的内角和定理及外角和定理四边形的内角和定理:四边形的内角和等于360°。
四边形的外角和定理:四边形的外角和等于360°。
推论:多边形的内角和定理:n 边形的内角和等于•-)2(n 180°;多边形的外角和定理:任意多边形的外角和等于360°。
2.平行四边形定义:两组对边分别平行的四边形性质:1. 两组对边分别相等 2.两组对角分别相等3.对角线互相平分判定 1.两组对边分别平行的四边形是平行四边形 2.两组对边分别相等的四边形是平行四边形 3.对角线互相平分的四边形是平行四边形4.一组对边平行且相等的四边形是平行四边形3.两条平行线的距离两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。
平行线间的距离处处相等。
4.平行四边形的面积S 平行四边形=底边长×高=ah。