常见的相遇问题及追及问题等计算公式(非常实用)
行程问题、相遇问题和追及问题的解题技巧

行程问题、相遇问题和追及问题的解题技巧一、行程问题、相遇问题和追及问题的核心公式:行程问题最核心的公式“速度=路程÷时间”。
由此可以演变为相遇问题和追及问题。
其中:相遇时间=相遇距离÷速度和,追及时间=追及距离÷速度差。
速度和=快速+慢速速度差=快速-慢速二、相遇距离、追及距离、速度和(差)及相遇(追及)时间的确定第一:相遇时间和追及时间是指甲乙在完成相遇(追及)任务时共同走的时间。
第二:在甲乙同时走时,它们之间的距离才是相遇距离(追及距离)分为:相遇距离——甲与乙在相同时间内走的距离之和;S=S1+S2甲︳→ S1 →∣← S2 ←︳乙A C B追及距离——甲与乙在相同时间内走的距离之差甲︳→ S1 ←∣乙→ S2 ︳A B C在相同时间内S甲=AC , S乙=BC 距离差 AB =S甲- S乙第三:在甲乙同时走之前,不管是甲乙谁先走,走的方向如何?走的距离是多少?都不影响相遇时间和追及时间,只是引起相遇距离和追及距离的变化,具体变化都应视情况从开始相距的距离中加减。
简单的有以下几种情况:三、例题:(一)相遇问题(1)A、B两地相距1000千米,甲车从A地开出,每小时行120千米,乙车从B地开出,每小时走80千米。
若两车从A、B两地同时开出,相向而行,T小时相遇,则可列方程为T =1000/(120+80)。
甲︳→ S1 →∣← S2 ←︳乙A C B解析一:①此题为相遇问题;②甲乙共同走的时间为T小时;③甲乙在同时走时相距1000千米,也就是说甲乙相遇的距离为1000千米;④利用公式:相遇时间=相遇距离÷速度和根据等量关系列等式T =1000/(120+80)解析二:甲乙相距的距离是由甲乙在相同的时间内共同走完的。
相距的距离=甲车走的距离+乙车走的距离根据等量关系列等式1000=120*T+80*T(2)A、B两地相距1000千米,甲车从A地开出,每小时行120千米,乙车从B地开出,每小时走80千米。
常见的相遇问题及追及问题等计算公式

小学常用公式和差问题(和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数+1)=小数差倍问题差÷(倍数-1)=小数植树问题1 单条线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:棵数=全长÷间隔长+1=间隔数+1全长=间隔长×(棵数-1)间隔长=全长÷(棵数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 棵数=间隔数=全长÷间隔长全长=间隔长×棵数间隔长=全长÷棵数⑶如果在非封闭线路的两端都不要植树,那么:棵数=全长÷间隔长-1=间隔数-1全长=间隔长×(棵数+1)间隔长=全长÷(棵数+1)2 双边线路上的植树问题主要也有三种情形:参考单条线路上的植树问题,注意要除以2。
3 环形或叫封闭线路上的植树问题的数量关系如下棵数=间隔数=全长÷间隔长全长=间隔长×棵数间隔长=全长÷棵数盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)【题目】一游泳池道长100米,甲乙两个运动员从泳道的两端同时下水做往返训练15分钟,甲每分钟游81米,乙每分钟游89米。
常见的相遇问题及追及问题等计算公式(非常实用)

小学常用公式和差问题(和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数+1)=小数差倍问题差÷(倍数-1)=小数植树问题1 单条线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:棵数=全长÷间隔长+1=间隔数+1全长=间隔长×(棵数-1)间隔长=全长÷(棵数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:棵数=间隔数=全长÷间隔长全长=间隔长×棵数间隔长=全长÷棵数⑶如果在非封闭线路的两端都不要植树,那么:棵数=全长÷间隔长-1=间隔数-1全长=间隔长×(棵数+1)间隔长=全长÷(棵数+1)2 双边线路上的植树问题主要也有三种情形:参考单条线路上的植树问题,注意要除以2.3 环形或叫封闭线路上的植树问题的数量关系如下棵数=间隔数=全长÷间隔长全长=间隔长×棵数间隔长=全长÷棵数盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)【题目】一游泳池道长100米,甲乙两个运动员从泳道的两端同时下水做往返训练15分钟,甲每分钟游81米,乙每分钟游89米.甲运动员一共从乙运动员身边经过了多少次?【解答】从身边经过,包括迎面和追上两种情况。
高中物理相遇和追及问题(完整版)

高中物理相遇和追及问题(完整版)相遇追及问题一、考点、热点回顾追及问题分为速度小者追速度大者和速度大者追速度小者两种情况。
1.速度小者追速度大者类型:匀加速追匀速图象说明:① t=t 以前,后面物体与前面物体间距离增大② t=t 时,两物体相距最远为x+Δx匀速追匀减速③ t=t 以后,后面物体与前面物体间距离减小④能追及且只能相遇一次匀加速追匀减速2.速度大者追速度小者类型:匀减速追匀速开始追及时,后面物体与前面物体间的距离在减小,当两物体速度相等时,即 t=t0 时刻:①若Δx=x0,则恰能追及,两物体只能相遇一次,这也是避免相撞的临界条件②若Δx<x0,则不能追及,此时两物体最小距离为 x0-Δx③若Δx>x0,则相遇两次,设 t1 时刻Δx1=x0,两物体第一次相遇,则 t2 时刻两物体第二次相遇匀减速追匀加速注意:① Δx 是开始追及以后,后面物体因速度大而比前面物体多运动的位移;② x 是开始追及以前两物体之间的距离;③ t2-t1=t-t2;④ v1 是前面物体的速度,v2 是后面物体的速度。
二、相遇问题相遇问题分为同向运动的两物体的相遇问题和相向运动的物体的相遇问题。
解此类问题的思路:1.根据追赶和被追赶的两个物体的运动性质,列出两个物体的位移方程,并注意两物体运动时间之间的关系。
2.通过对运动过程的分析,画出简单的图示,找出两物体的运动位移间的关系式。
追及的主要条件是两个物体在追上时位置坐标相同。
3.寻找问题中隐含的临界条件。
例如速度小者加速追赶速度大者,在两物体速度相等时有最大距离;速度大者减速追赶速度小者,在两物体速度相等时有最小距离,等等。
利用这些临界条件常能简化解题过程。
4.求解此类问题的方法,除了根据追及的主要条件和临界条件解联立方程外,还可以利用二次函数求极值,应用图象法和相对运动知识求解。
相遇问题的分析思路:相遇问题分为追及相遇和相向运动相遇两种情形,其主要条件是两物体在相遇处的位置坐标相同。
高中物理相遇和追及问题(完整版)

相遇追及问题一、考点、热点回忆一、追及问题1.速度小者追速度大者类型图象说明匀加速追匀速①t=t0以前,后面物体与前面物体间距离增大②t=t0时,两物体相距最远为x0+Δx③t=t0以后,后面物体与前面物体间距离减小匀速追匀减速④能追及且只能相遇一次匀加速追匀减速2.速度大者追速度小者度大者追速度小者匀减速追匀速开始追及时,后面物体与前面物体间的距离在减小,当两物体速度相等时,即t=t0时刻:①假设Δx=x0,则恰能追及,两物体只能相遇一次,这也是防止相撞的临界条件匀速追匀加速②假设Δx<x0,则不能追及,此时两物体最小距离为x0-Δx③假设Δx>x0,则相遇两次,设t1时刻Δx1=x0,两物体第一次相遇,则t2时刻两物体第二次相遇匀减速追匀加速①表中的Δx是开始追及以后,后面物体因速度大而比前面物体多运动的位移;②x0是开始追及以前两物体之间的距离;③t2-t0=t0-t1;④v1是前面物体的速度,v2是后面物体的速度.二、相遇问题这一类:同向运动的两物体的相遇问题,即追及问题.第二类:相向运动的物体,当各自移动的位移大小之和等于开始时两物体的距离时相遇.解此类问题首先应注意先画示意图,标明数值及物理量;然后注意当被追赶的物体做匀减速运动时,还要注意该物体是否停止运动了.求解追及问题的分析思路(1)根据追赶和被追赶的两个物体的运动性质,列出两个物体的位移方程,并注意两物体运动时间之间的关系.(2)通过对运动过程的分析,画出简单的图示,找出两物体的运动位移间的关系式.追及的主要条件是两个物体在追上时位置坐标相同.(3)寻找问题中隐含的临界条件.例如速度小者加速追赶速度大者,在两物体速度相等时有最大距离;速度大者减速追赶速度小者,在两物体速度相等时有最小距离,等等.利用这些临界条件常能简化解题过程.(4)求解此类问题的方法,除了以上所述根据追及的主要条件和临界条件解联立方程外,还有利用二次函数求极值,及应用图象法和相对运动知识求解.相遇问题相遇问题的分析思路:相遇问题分为追及相遇和相向运动相遇两种情形,其主要条件是两物体在相遇处的位置坐标相同.〔1)列出两物体运动的位移方程、注意两个物体运动时间之间的关系. (2)利用两物体相遇时必处在同一位置,寻找两物体位移间的关系. (3)寻找问题中隐含的临界条件.(4)与追及中的解题方法相同.二、典型例题【例1】物体A 、B 同时从同一地点,沿同一方向运动,A 以10m/s 的速度匀速前进,B 以2m/s 2的加速度从静止开始做匀加速直线运动,求A 、B 再次相遇前两物体间的最大距离. 【解析一】 物理分析法A 做 υA =10 m/s 的匀速直线运动,B 做初速度为零、加速度a =2 m/s 2的匀加速直线运动.根据题意,开始一小段时间内,A 的速度大于B 的速度,它们间的距离逐渐变大,当B 的速度加速到大于A 的速度后,它们间的距离又逐渐变小;A 、B 间距离有最大值的临界条件是υA =υB . ① 设两物体经历时间t 相距最远,则υA =at ② 把已知数据代入①②两式联立得t =5 s 在时间t 内,A 、B 两物体前进的距离分别为 s A =υA t =10×5 m=50 ms B =12at 2=12×2×52m =25 mA 、B 再次相遇前两物体间的最大距离为 Δs m =s A -s B =50 m -25 m =25 m 【解析二】 相对运动法因为此题求解的是A 、B 间的最大距离,所以可利用相对运动求解.选B 为参考系,则A 相对B 的初速度、末速度、加速度分别是υ0=10 m/s 、υt =υA -υB =0、a =-2 m/s 2. 根据υt 2-υ0=2as .有0-102=2×(-2)×s AB 解得A、B 间的最大距离为s AB =25 m . 【解析三】 极值法物体A 、B 的位移随时间变化规律分别是s A =10t ,s B =12at 2=12×2×t 2 =t 5.则A 、B 间的距离Δs =10t -t 2,可见,Δs 有最大值,且最大值为Δs m =4×(-1)×0-1024×(-1) m =25 m【解析四】 图象法根据题意作出A 、B 两物体的υ-t 图象,如图1-5-1所示.由图可知,A 、B 再次相遇前它们之间距离有最大值的临界条件是υA =υB ,得t 1=5 s . A 、B 间距离的最大值数值上等于ΔOυA P 的面积,即Δs m =12×5×10 m=25 m .【答案】25 m【点拨】相遇问题的常用方法(1)物理分析法:抓好“两物体能否同时到达空间某位置”这一关键,按〔解法一〕中的思路分析.(2)相对运动法:巧妙地选取参考系,然后找两物体的运动关系.(3)极值法:设相遇时间为t ,根据条件列方程,得到关于t 的一元二次方程,用判别式进行讨论,假设△>0,即有两个解,说明可以相遇两次;假设△=0,说明刚好追上或相碰;假设△<0,说明追不上或不能相碰.(4)图象法:将两者的速度时间图象在同一个坐标系中画出,然后利用图象求解. 拓展如图1-5-2所示是甲、乙两物体从同一地点,沿同一方向做直线运动的υ-t 图象,由图象可以看出 〔 〕A .这两个物体两次相遇的时刻分别是1s 末和4s 末B .这两个物体两次相遇的时刻分别是2s 末和6s 末C .两物体相距最远的时刻是2s 末D .4s 末以后甲在乙的前面【解析】从图象可知两图线相交点1s 末和4s 末是两物速度相等时刻,从0→2s,乙追赶甲到2s 末追上,从2s 开始是甲去追乙,在4s 末两物相距最远,到6s 末追上乙.故选B . 【答案】B【实战演练1】〔2011·新课标全国卷〕甲乙两辆汽车都从静止出发做加速直线运动,加速度方向一直不变。
奥数.行程.相遇和追及公式

相遇和追及问题一.行程问题是研究物体运动的,它研究的是物体速度、时间、路程三者之间的关系。
基本公式: 路程=速度×时间 速度=路程÷时间时间=路程÷速度关键问题:确定行程过程中的位置二.相遇甲从A 地到B 地,乙从B 地到A 地,然后两人在途中相遇,实质上是甲和乙一起走了A,B 之间这段路程,如果两人同时出发,那么相遇路程=甲走的路程+乙走的路程=甲的速度×相遇时间+乙的速度×相遇时间=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间.相向运动相遇问题的 速度和×相遇时间=总路程,即=t S V 和和数量关系 总路程÷速度和=相遇时间总路程÷相遇时间=速度和三.追及有两个人同时行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他.这就产生了“追及问题”.实质上,要算走得快的人在某一段时间内,比走得慢的人多走的路程,也就是要计算两人走的路程之差(追及路程).如果设甲走得快,乙走得慢,在相同的时间(追及时间)内:追及路程=甲走的路程-乙走的路程=甲的速度×追及时间-乙的速度×追及时间=(甲的速度-乙的速度)×追及时间=速度差×追及时间.一般地追击问题的 追及路程=速度差×追及时间,即=t S V 差差数量关系 速度差=追及路程÷追及时间追及时间=追及路程÷速度差【分段提速 】 环路周长(路程差)÷速度差=相遇时间环路上【同向运动】追击问题 环路周长÷相遇时间=速度差数量关系 速度差×相遇时间=环路周长速度和×相遇时间=环路周长 路程差÷速度差=相同走过的时间往返平均速度=往返总路程÷往返总时间 平均速度=总路程÷总时间1、“环形跑道”,也是称为封闭回路,它可以是圆形的、长方形的、三角形的,也可以是由长方形和两个半圆组成的运动场形状。
常见的相遇问题及追及问题等计算公式(非常实用)

小学常用公式和差问题(和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)植树问题1 非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)【题目】一游泳池道长100米,甲乙两个运动员从泳道的两端同时下水做往返训练15分钟,甲每分钟游81米,乙每分钟游89米。
小升初行程问题 相遇问题 追及问题

行程问题(一)相遇问题追及问题【基本公式】1、路程=速度X时间2、相遇问题:相遇路程=速度和X相遇时间3、追及问题:相差路程=速度差X追及时间行程问题(一)相遇问题1、甲、乙两辆车同时从相距675千米的两地对开,经过5小时相遇。
甲车每小时行70千米,求乙车每小时行多少千米?2、快、慢两车同时从两城相向出发,4小时后在离中点18千米处相遇。
已知快车每小时行70千米,问慢车每小时行多千米?3、甲、乙两车同时从相距1313千米的两地相向开出,3小时后还相距707千米,再经过几小时两车相遇?4、两城相距564千米,两列火车同时从两城相对开出,6小时相遇,已知第一列火车的速度比第二列火车的速度每小时快2千米,两列火车的速度各是多少?5、小斌骑自行车每小时行15千米,小明步行每小时行5千米。
两人同时在某地沿同一条线路到30千米外的学校去上课。
小斌到校后发现忘了带钥匙,就沿原路回家去拿,在途中与小明相遇。
问相遇时小明共行了多少千米?6、A、B两地相距380千米。
甲、乙两辆汽车同时从两地相向开出,原计划甲每小时行36千米,乙每小时行40千米,但开车时,甲改变了速度,也以每小时40千米的速度行驶。
这样相遇时乙车比原计划少走了多少千米?7、东、西两地相距90千米,甲、乙两人分别从两地同时出发,相向而行。
甲每小时行的路程是乙的2倍。
5小时后两人相遇,两人的速度各是多少?8、甲、乙两车从相距360千米的两地相向而行,甲车时速70千米,乙车时速50千米,几小时后两车相距120千米?9、甲、乙两车同时从A、B两地出发,相向而行,4小时相遇,相遇后甲车继续行驶3小时到达B地,乙车每小时行54千米,问A、B两地相距多少千米?10、甲从A地、乙从B地同时以均匀的速度相向而行,第一次相遇A地6千米,继续前进,到达对方起点后立即返回,在离B地3千米处第二次相遇,问A、B两地相距多少千米?11、A大学的小李和B大学的小孙分别从自已的学校同时出发,不断往返于A、B两校之间。
(完整版)相遇问题与追及问题

相遇与追及问题
一、学习目标
1. 理解相遇与追及的运动模型,掌握相遇与追及这两种情况下路程、时间、速度这三个
基本量之间的关系.会利用这个关系来解决一些简单的行程问题.
2. 体会数形结合的数学思想方法.
二、主要内容
1. 行程问题的基本数量关系式:
路程=时间×速度;速度=路程÷时间;时间=路程÷速度.
2.相遇问题的数量关系式:
相遇路程=相遇时间×速度和;
速度和=相遇路程÷相遇时间;
相遇时间=相遇路程÷速度和.
3.追及问题的数量关系式:
追及距离=追及时间×速度差;
速度差=追及距离÷追及时间;
追及时间=追及距离÷速度差.
4. 能熟练运用路程、时间、速度这三个基本量的关系,结合图形分析,解决一些简单的
行程问题.
三、例题选讲
例1两辆汽车同时分别从相距500千米的A,B两地出发,相向而行,速度分别为每小时40千米和每小时60千米.求几小时后两车相遇.
例2甲车在乙车前200千米,同时出发,速度分别为每小时40千米与60千米.问多少小时后,乙车追上甲车.
例3一辆公共汽车和一辆小轿车同时从相距598千米的两地相向而行.公共汽车每小时行40千米,小轿车每小时行52千米,问几小时后两车相距138千米?
1。
小学数学典型应用题相遇和追及问题

小学数学典型应用题相遇和追及问题相遇问题含义:两个运动的物体同时由两地出发相向而行,在途中相遇。
这类应用题叫做相遇问题。
这类应用题叫做相遇问题。
数量关系:相遇时间=总路程÷(甲速+乙速)总路程=(甲速+乙速)×相遇时间解题思路和方法:简单的题目可直接利用公式,复杂的题目变通后再利用公式,利用线段图分析可以让解题事半功倍。
例题1:欢欢和乐乐在一条马路的两端相向而行,欢欢每分钟行60米,乐乐每分钟行80米,他们同时出发5分钟后相遇。
这条马路长()。
解:根据公式总路程=(甲速+乙速)×相遇时间,可以求出这条马路长(60+80)×5=700(米)。
例题2:甲乙两车分别以不变的速度从AB两地同时出发,相向而行。
到达目的地后立即返回。
已知第一次相遇地点距离A地50千米,第二次相遇地点距离B地60千米,AB两地相距_____千米。
解:1、本题考查的是二次相遇问题,灵活的运用画线段图的方法来分析是解决这类问题的关键。
2、画线段图3、从图中可以看出,第一次相遇时甲行了50千米。
甲乙合行了一个全程的路程。
从第一次相遇后到第二次相遇,甲乙合行了两个全程的路程。
由于甲乙速度不变,合行两个全程时,甲能行50×2=100(千米)。
4、因此甲一共行了50+100=150(千米),从图中看甲所行路程刚好比AB两地相距路程还多出60千米。
所以AB两地相距150-60=90(千米)。
例题3:欢欢和乐乐在相距80米的直跑道上来回跑步,乐乐的速度是每秒3米,欢欢的速度是每秒2米。
如果他们同时分别从跑道两端出发,当他们跑了10分钟时,在这段时间里共相遇过_____次。
解:1、根据题意,第一次相遇时,两人共走了一个全程,但是从第二次开始每相遇一次需要的时间都是第一次相遇时间的两倍。
(线段图参考例2。
)2、根据“相遇时间=总路程÷速度和”得到,欢欢和乐乐首次相遇需要80÷(3+2)=16(秒)。
行程问题、相遇问题和追及问题的解题技巧

行程问题、相遇问题和追及问题的解题技巧一、行程问题、相遇问题和追及问题的核心公式:行程问题最核心的公式“速度=路程÷时间”。
由此可以演变为相遇问题和追及问题。
其中:相遇时间=相遇距离÷速度和,追及时间=追及距离÷速度差。
速度和=快速+慢速速度差=快速-慢速二、相遇距离、追及距离、速度和(差)及相遇(追及)时间的确定第一:相遇时间和追及时间是指甲乙在完成相遇(追及)任务时共同走的时间。
第二:在甲乙同时走时,它们之间的距离才是相遇距离(追及距离)分为:相遇距离——甲与乙在相同时间内走的距离之和;S=S1+S2 甲︳→ S1 →∣← S2 ←︳乙A C B追及距离——甲与乙在相同时间内走的距离之差甲︳→ S1 ←∣乙→ S2 ︳A B C在相同时间内S甲=AC , S乙=BC 距离差 AB =S甲- S乙第三:在甲乙同时走之前,不管是甲乙谁先走,走的方向如何?走的距离是多少?都不影响相遇时间和追及时间,只是引起相遇距离和追及距离的变化,具体变化都应视情况从开始相距的距离中加减。
简单的有以下几种情况:三、例题:(一)相遇问题(1)A、B两地相距1000千米,甲车从A地开出,每小时行120千米,乙车从B地开出,每小时走80千米。
若两车从A、B两地同时开出,相向而行,T小时相遇,则可列方程为T=1000/(120+80)。
甲︳→ S1 →∣← S2 ←︳乙A C B解析一:①此题为相遇问题;②甲乙共同走的时间为T小时;③甲乙在同时走时相距1000千米,也就是说甲乙相遇的距离为1000千米;④利用公式:相遇时间=相遇距离÷速度和根据等量关系列等式T=1000/(120+80)解析二:甲乙相距的距离是由甲乙在相同的时间内共同走完的。
相距的距离=甲车走的距离+乙车走的距离根据等量关系列等式1000=120*T+80*T(2)A、B两地相距1000千米,甲车从A地开出,每小时行120千米,乙车从B地开出,每小时走80千米。
初一追及问题六大公式

初一追及问题六大公式导言初中数学中的追及问题是一类常见的物理运动问题,也是数学中的经典题型。
通过学习追及问题,我们不仅可以提高对物理运动的理解,还可以培养解决问题的能力和思维逻辑。
本文将介绍初一阶段常见的追及问题,并总结出六大解题公式,帮助同学们更好地掌握和应用这类题型。
一、两物相向而行问题某一时刻,两物体相隔一定距离,同时朝着对方方向开始运动,速度分别为v1和v2。
求它们相遇需要多少时间。
解题方法:1.建立关系式:时间t乘以v1,等于时间t乘以v2;2.解方程:根据关系式得到方程t*v1=t*v2,化简并解方程求得t。
公式一:两物相向而行问题公式dt=--------v1-v2二、两物先后出发问题某一时刻,物体A以速度v1出发,过了一段时间后,物体B以速度v2出发。
求物体B追上物体A需要多少时间。
解题方法:1.建立关系式:时间t加上A先行的时间,等于B行程的时间;2.解方程:根据关系式得到方程t+(t*v1)=t*v2,化简并解方程求得t。
公式二:两物先后出发问题公式dt=---------v2-v1三、正向相遇问题某一时刻,物体A以速度v1出发,物体B以速度v2出发,在距离x处相遇。
求A出发后多长时间会与B相遇。
解题方法:1.建立关系式:时间t加上x除以速度v1,等于时间t乘以速度v2;2.解方程:根据关系式得到方程t+(x/v1)=t*v2,化简并解方程求得t。
公式三:正向相遇问题公式xt=---------v2-v1四、追上问题某一时刻,物体A以速度v1出发,物体B以速度v2出发,求A多长时间能追上B。
解题方法:1.建立关系式:时间t乘以速度v1,等于时间t加上t乘以速度v2;2.解方程:根据关系式得到方程t*v1=t+(t*v2),化简并解方程求得t。
公式四:追上问题公式tv1=-----1-v2五、反向相遇问题某一时刻,物体A以速度v1出发,物体B以速度v2出发,它们相遇后,A往回走,B继续向前,求B追上A需要多长时间。
小升初数学专题讲练--行程问题(一):相遇问题-追及问题

行程问题(一)相遇问题追及问题【基本公式】1、路程=速度×时间2、相遇问题:相遇路程=速度和×相遇时间3、追及问题:相差路程=速度差×追及时间行程问题(一)-----相遇问题【典型例题】1、老李和老刘同时从两地相对出发,老李步行每分钟走8米,老刘骑自行车的速度是老李步行的3倍,经过5分钟后两人相遇,问这两地相距多少米2、在一条笔直的公路上,王辉和李明骑车从相距900米的A、B两地同时出发,王辉每分钟行200米,李明每分钟行250米,经过多少时间两人相距2700米(分析各种情况)3、客货两车同时从甲、乙两地相对开出,客车每小时行44千米,货车每小时行52千米,两车相遇后继续以原速度前进,到达乙、甲两地后立即返回,第二次相遇时,货车比客车多行60千米。
问甲、乙两地相距多千米4、小冬从甲地向乙地走,小青同时从乙地向甲地走,当各自到达终点后,又迅速返回,各自速度不变,两人第一次相遇在距甲地40米处,第二次相遇在距乙地15米处,问甲、乙两地相距多少米5、甲村、乙村相距6千米,小张与小王分别从甲、乙两村出发,在两村之间往返行走(到达另一村后就马上返回)。
在出发后40分钟两人第一次相遇。
小王到达甲村后返回,在离甲村2千米的地方两人第二次相遇。
问小张和小王两人的速度各是多少6、小张与小王分别从甲、乙两村出发,在两村之间往返行走(到达另一村后就马上返回)。
他们离甲村千米处第一次相遇,在离乙村2千米处第二次相遇。
问他们两人第四次相遇的地点离乙村有多远(相遇指迎面相遇)7、甲、乙两辆汽车同时从东西两地相向开出,甲每小时行56千米,乙每小时行48千米,两车在离两地中点32千米处相遇。
问:东西两地间的距离是多少千米8、甲、乙两地相距15千米,小聪和小明分别从甲、乙两地同时相向而行,2小时后在离中点千米处相遇,求小聪和小明的速度。
9、甲、乙两人同时从相距50千米的两地同时出发相向而行,甲每小时行3千米,乙每小时行2千米,与甲同时同向而行的一条小狗,每小时行5千米,小狗在甲、乙之间不停往返,直到两人相遇为止。
小学数学相遇问题和追及问题的公式汇总_公式总结

小学数学相遇问题和追及问题的公式汇总_公式总结
小学是我们整个学业生涯的基础,所以小朋友们一定要培养良好的学习习惯,查字典数学网为同学们特别提供了小学数学相遇问题和追及问题的公式,希望对大家的学习有所帮助! 相遇问题:
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题:
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
这就是小编为大家准备的相遇问题和追及问题的公式,希望可以为大家的学习起到一定作用!。
高中物理相遇和追及问题(完整版)

高中物理相遇和追及问题(完整版)相遇追及问题一、考点、热点回顾一、追及问题1.速度小者追速度大者类型图象说明匀加速追匀速①t=t以前,后面物体与前面物体间距离增大②t=t时,两物体相距最远为x+Δx③t=t以后,后面物体与前面物体间距离减小④能追及且只能相遇一次匀速追匀减速匀加速追匀减速2.速度大者追速度小者度大者追速度小者匀减速追匀速开始追及时,后面物体与前面物体间的距离在减小,当两物体速度相等时,即t=t0时刻:①若Δx=x0,则恰能追及,两物体只能相遇一次,这也是避免相撞的临界条件②若Δx<x0,则不能追匀速追匀加速匀减速追匀加速及,此时两物体最小距离为x0-Δx③若Δx>x0,则相遇两次,设t1时刻Δx1=x0,两物体第一次相遇,则t2时刻两物体第二次相遇①表中的Δx是开始追及以后,后面物体因速度大而比前面物体多运动的位移;②x是开始追及以前两物体之间的距离;③t2-t=t-t1;④v1是前面物体的速度,v2是后面物体的速度.二、相遇问题这一类:同向运动的两物体的相遇问题,即追及问题.第二类:相向运动的物体,当各自移动的位移大小之和等于开始时两物体的距离时相遇.解此类问题首先应注意先画示意图,标明数值及物理量;然后注意当被追赶的物体做匀减速运动时,还要注意该物体是否停止运动了.求解追及问题的分析思路(1)根据追赶和被追赶的两个物体的运动性质,列出两个物体的位移方程,并注意两物体运动时间之间的关系.(2)通过对运动过程的分析,画出简单的图示,找出两物体的运动位移间的关系式.追及的主要条件是两个物体在追上时位置坐标相同. (3)寻找问题中隐含的临界条件.例如速度小者加速追赶速度大者,在两物体速度相等时有最大距离;速度大者减速追赶速度小者,在两物体速度相等时有最小距离,等等.利用这些临界条件常能简化解题过程.(4)求解此类问题的方法,除了以上所述根据追及的主要条件和临界条件解联立方程外,还有利用二次函数求极值,及应用图象法和相对运动知识求解.相遇问题相遇问题的分析思路:相遇问题分为追及相遇和相向运动相遇两种情形,其主要条件是两物体在相遇处的位置坐标相同.(1)列出两物体运动的位移方程、注意两个物体运动时间之间的关系.(2)利用两物体相遇时必处在同一位置,寻找两物体位移间的关系.(3)寻找问题中隐含的临界条件.(4)与追及中的解题方法相同.二、典型例题【例1】物体A、B同时从同一地点,沿同一方向运动,A以10m/s的速度匀速前进,B以2m/s2的加速度从静止开始做匀加速直线运动,求A、B再次相遇前两物体间的最大距离.【解析一】物理分析法A做υA=10 m/s的匀速直线运动,B做初速度为零、加速度a=2 m/s2的匀加速直线运动.根据题意,开始一小段时间内,A的速度大于B的速度,它们间的距离逐渐变大,当B的速度加速到大于A的速度后,它们间的距离又逐渐变小;A、B间距离有最大值的临界条件是υA=υB.①设两物体经历时间t相距最远,则υA=at ②把已知数据代入①②两式联立得t=5 s 在时间t内,A、B两物体前进的距离分别为s A=υA t=10×5 m=50 ms B=12at2=12×2×52 m=25 mA、B再次相遇前两物体间的最大距离为Δs m=s A-s B=50 m-25 m=25 m【解析二】相对运动法因为本题求解的是A、B间的最大距离,所以可利用相对运动求解.选B为参考系,则A相对B的初速度、末速度、加速度分别是υ0=10 m/s、υt=υA-υB=0、a=-2 m/s2.根据υt2-υ0=2as.有0-102=2×(-2)×s AB解得A、B间的最大距离为s AB=25 m.【解析三】极值法物体A、B的位移随时间变化规律分别是s A=10t,s B=12at2=12×2×t2=t5.则A、B间的距离Δs=10t-t2,可见,Δs有最大值,且最大值为Δs m=4×(-1)×0-1024×(-1)m=25 m【解析四】图象法根据题意作出A、B两物体的υ-t图象,如图1-5-1所示.由图可知,A、B再次相遇前它们之间距离有最大值的临界条件是υA=υB,得t1=5 s.A、B间距离的最大值数值上等于ΔOυA P的面积,即Δs m=12×5×10 m=25 m.【答案】25 m【点拨】相遇问题的常用方法(1)物理分析法:抓好“两物体能否同时到达空间某位置”这一关键,按(解法一)中的思路分析.(2)相对运动法:巧妙地选取参考系,然后找两物体的运动关系.(3)极值法:设相遇时间为t,根据条件列方程,得到关于t的一元二次方程,用判别式进行讨论,若△>0,即有两个解,说明可以相遇两次;若△=0,说明刚好追上或相碰;若△<0,说明追不上或不能相碰.(4)图象法:将两者的速度时间图象在同一个坐标系中画出,然后利用图象求解.拓展如图1-5-2所示是甲、乙两物体从同一地点,沿同一方向做直线运动的υ-t图象,由图象可以看出(〕A.这两个物体两次相遇的时刻分别是1s末和4s末B.这两个物体两次相遇的时刻分别是2s末和6s末C.两物体相距最远的时刻是2s末D.4s末以后甲在乙的前面【解析】从图象可知两图线相交点1s末和4s末是两物速度相等时刻,从0→2s,乙追赶甲到2s 末追上,从2s开始是甲去追乙,在4s末两物相距最远,到6s末追上乙.故选B.【答案】B【实战演练1】(2011·新课标全国卷)甲乙两辆汽车都从静止出发做加速直线运动,加速度方向一直不变。
高中物理相遇及追及问题[(完整版)]
![高中物理相遇及追及问题[(完整版)]](https://img.taocdn.com/s3/m/746da95c482fb4daa58d4bb3.png)
相遇追及问题一、考点、热点回顾一、追及问题1.速度小者追速度大者类型图象说明匀加速追匀速①t=t0以前,后面物体与前面物体间距离增大②t=t0时,两物体相距最远为x0+Δx③t=t0以后,后面物体与前面物体间距离减小匀速追匀减速④能追及且只能相遇一次匀加速追匀减速2.速度大者追速度小者度大者追速度小者匀减速追匀速开始追及时,后面物体与前面物体间的距离在减小,当两物体速度相等时,即t=t0时刻:①若Δx=x0,则恰能追及,两物体只能相遇一次,这也是避免相撞的临界条件匀速追匀加速②若Δx<x0,则不能追及,此时两物体最小距离为x0-Δx③若Δx>x0,则相遇两次,设t1时刻Δx1=x0,两物体第一次相遇,则t2时刻两物体第二次相遇匀减速追匀加速①表中的Δx是开始追及以后,后面物体因速度大而比前面物体多运动的位移;②x0是开始追及以前两物体之间的距离;③t2-t0=t0-t1;④v1是前面物体的速度,v2是后面物体的速度.二、相遇问题这一类:同向运动的两物体的相遇问题,即追及问题.第二类:相向运动的物体,当各自移动的位移大小之和等于开始时两物体的距离时相遇.解此类问题首先应注意先画示意图,标明数值及物理量;然后注意当被追赶的物体做匀减速运动时,还要注意该物体是否停止运动了.求解追及问题的分析思路(1)根据追赶和被追赶的两个物体的运动性质,列出两个物体的位移方程,并注意两物体运动时间之间的关系.(2)通过对运动过程的分析,画出简单的图示,找出两物体的运动位移间的关系式.追及的主要条件是两个物体在追上时位置坐标相同.(3)寻找问题中隐含的临界条件.例如速度小者加速追赶速度大者,在两物体速度相等时有最大距离;速度大者减速追赶速度小者,在两物体速度相等时有最小距离,等等.利用这些临界条件常能简化解题过程.(4)求解此类问题的方法,除了以上所述根据追及的主要条件和临界条件解联立方程外,还有利用二次函数求极值,及应用图象法和相对运动知识求解.相遇问题相遇问题的分析思路:相遇问题分为追及相遇和相向运动相遇两种情形,其主要条件是两物体在相遇处的位置坐标相同.(1)列出两物体运动的位移方程、注意两个物体运动时间之间的关系. (2)利用两物体相遇时必处在同一位置,寻找两物体位移间的关系. (3)寻找问题中隐含的临界条件.(4)与追及中的解题方法相同.二、典型例题【例1】物体A 、B 同时从同一地点,沿同一方向运动,A 以10m/s 的速度匀速前进,B 以2m/s 2的加速度从静止开始做匀加速直线运动,求A 、B 再次相遇前两物体间的最大距离. 【解析一】 物理分析法A 做 υA =10 m/s 的匀速直线运动,B 做初速度为零、加速度a =2 m/s 2的匀加速直线运动.根据题意,开始一小段时间内,A 的速度大于B 的速度,它们间的距离逐渐变大,当B 的速度加速到大于A 的速度后,它们间的距离又逐渐变小;A 、B 间距离有最大值的临界条件是υA =υB . ① 设两物体经历时间t 相距最远,则υA =at ② 把已知数据代入①②两式联立得t =5 s 在时间t 内,A 、B 两物体前进的距离分别为 s A =υA t =10×5 m=50 ms B =12at 2=12×2×52m =25 mA 、B 再次相遇前两物体间的最大距离为 Δs m =s A -s B =50 m -25 m =25 m 【解析二】 相对运动法因为本题求解的是A 、B 间的最大距离,所以可利用相对运动求解.选B 为参考系,则A 相对B 的初速度、末速度、加速度分别是υ0=10 m/s 、υt =υA -υB =0、a =-2 m/s 2. 根据υt 2-υ0=2as .有0-102=2×(-2)×s AB 解得A、B 间的最大距离为s AB =25 m . 【解析三】 极值法物体A 、B 的位移随时间变化规律分别是s A =10t ,s B =12at 2=12×2×t 2 =t 5.则A 、B 间的距离Δs =10t -t 2,可见,Δs 有最大值,且最大值为Δs m =4×(-1)×0-1024×(-1) m =25 m【解析四】 图象法根据题意作出A 、B 两物体的υ-t 图象,如图1-5-1所示.由图可知,A 、B 再次相遇前它们之间距离有最大值的临界条件是υA =υB ,得t 1=5 s . A 、B 间距离的最大值数值上等于ΔOυA P 的面积,即Δs m =12×5×10 m=25 m .【答案】25 m【点拨】相遇问题的常用方法(1)物理分析法:抓好“两物体能否同时到达空间某位置”这一关键,按(解法一)中的思路分析.(2)相对运动法:巧妙地选取参考系,然后找两物体的运动关系.(3)极值法:设相遇时间为t ,根据条件列方程,得到关于t 的一元二次方程,用判别式进行讨论,若△>0,即有两个解,说明可以相遇两次;若△=0,说明刚好追上或相碰;若△<0,说明追不上或不能相碰.(4)图象法:将两者的速度时间图象在同一个坐标系中画出,然后利用图象求解. 拓展如图1-5-2所示是甲、乙两物体从同一地点,沿同一方向做直线运动的υ-t 图象,由图象可以看出 ( 〕A .这两个物体两次相遇的时刻分别是1s 末和4s 末B .这两个物体两次相遇的时刻分别是2s 末和6s 末C .两物体相距最远的时刻是2s 末D .4s 末以后甲在乙的前面【解析】从图象可知两图线相交点1s 末和4s 末是两物速度相等时刻,从0→2s,乙追赶甲到2s 末追上,从2s 开始是甲去追乙,在4s 末两物相距最远,到6s 末追上乙.故选B . 【答案】B【实战演练1】(2011·新课标全国卷)甲乙两辆汽车都从静止出发做加速直线运动,加速度方向一直不变。
多次追及问题公式和相遇问题公式

多次追及问题公式和相遇问题公式在我们学习数学的旅程中,多次追及问题和相遇问题就像是两个调皮的小精灵,时不时地跳出来给我们一些挑战。
今天咱们就来好好聊聊这两个让人又爱又恨的小家伙。
先来说说多次追及问题公式。
多次追及问题啊,简单说就是两个或多个物体在不同的起点,按照不同的速度运动,然后一个追着另一个跑,跑了好几次。
这时候就需要用到专门的公式来计算它们什么时候能追上。
比如说,有甲、乙两个人,甲在前面跑,速度是V1,乙在后面追,速度是 V2。
他们一开始相距 S 米。
第一次追上的时候,所用的时间 t1 就可以用公式 t1 = S / (V2 - V1) 来计算。
那如果是多次追及呢?假设第一次追上之后,又出现新的情况,比如甲、乙到达某个地点后又重新出发,这时候就要根据新的初始条件和速度来计算下一次追上的时间。
我记得有一次,我在公园里散步,看到两个小朋友在玩追逐游戏。
小男孩跑在前面,小女孩在后面紧追不舍。
小男孩跑得挺快,速度大概每秒 3 米,小女孩速度每秒 4 米。
一开始小男孩领先小女孩 5 米。
小女孩一边跑一边喊:“等等我,我马上就追上你!”这场景就像我们数学里的追及问题。
我在旁边看着,心里默默计算,按照这个速度和距离,小女孩大概 5 秒钟就能追上小男孩。
果不其然,没一会儿小女孩就得意地抓住了小男孩的衣角,开心地笑了起来。
再讲讲相遇问题公式。
相遇问题就是两个物体从不同的地方出发,朝着对方前进,然后在途中相遇。
假设甲从 A 地出发,速度是 V3,乙从 B 地出发,速度是 V4,两地相距 L 米。
那么他们相遇所用的时间 t 可以用公式 t = L / (V3 + V4) 来计算。
就像有一次我坐火车,火车在途中会经过一些小站。
我从车窗往外看,看到一辆汽车在平行的公路上行驶。
火车的速度我大概能感觉到,汽车的速度通过它和路边树木的相对移动也能估算个大概。
我就在想,如果火车和汽车一直这样开下去,它们在某个点会不会相遇呢?这其实就是一个相遇问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学常用公式和差问题(和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数+1)=小数差倍问题差÷(倍数-1)=小数植树问题1 单条线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:棵数=全长÷间隔长+1=间隔数+1全长=间隔长×(棵数-1)间隔长=全长÷(棵数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 棵数=间隔数=全长÷间隔长全长=间隔长×棵数间隔长=全长÷棵数⑶如果在非封闭线路的两端都不要植树,那么:棵数=全长÷间隔长-1=间隔数-1全长=间隔长×(棵数+1)间隔长=全长÷(棵数+1)2 双边线路上的植树问题主要也有三种情形:参考单条线路上的植树问题,注意要除以2。
3 环形或叫封闭线路上的植树问题的数量关系如下棵数=间隔数=全长÷间隔长全长=间隔长×棵数间隔长=全长÷棵数盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)【题目】一游泳池道长100米,甲乙两个运动员从泳道的两端同时下水做往返训练15分钟,甲每分钟游81米,乙每分钟游89米。
甲运动员一共从乙运动员身边经过了多少次?【解答】从身边经过,包括迎面和追上两种情况。
能迎面相遇【(81+89)×15+100】÷200,取整是13次。
第一次追上用100÷(89-81)=12.5分钟,以后每次追上需要12.5×2=25分钟,显然15分钟只能追上一次。
因此经过13+1=14次。
如果甲乙从A,B两点出发,甲乙第n次迎面相遇时,路程和为全长的2n-1倍,而此时甲走的路程也是第一次相遇时甲走的路程的2n-1倍(乙也是如此)。
总结:若两人走的一个全程中甲走1份M米,两人走3个全程中甲就走3份M米。
(含义是说,第一次相遇时,甲乙实际就是走了一个全程,第二次相遇时,根据上面的公式,甲乙走了2x2-1=3个全程,如果在第一次相遇时甲走了m米,那么第二次相遇时甲就走了3个m米)下面我们用这个方法看一道例题。
湖中有A,B两岛,甲、乙二人都要在两岛间游一个来回。
两人分别从A,B两岛同时出发,他们第一次相遇时距A岛700米,第二次相遇时距B岛400米。
问:两岛相距多远?【解】从起点到第一次迎面相遇地点,两人共同完成1个全长,从起点到第二次迎面相遇地点,两人共同完成3个全长,此时甲走的路程也为第一次相遇地点的3倍。
画图可知,由3倍关系得到:A,B两岛的距离为 700×3-400=1700米小学奥数行程问题分类讨论2010-06-08 12:00:20 来源:网络资源进入论坛行程问题是小升初考试和小学四大杯赛四大题型之一(计算、数论、几何、行程)。
具体题型变化多样,形成10多种题型,都有各自相对独特的解题方法。
现根据四大杯赛的真题研究和主流教材将小题型总结如下,希望各位看过之后给予更加明确的分类。
一、一般相遇追及问题。
包括一人或者二人时(同时、异时)、地(同地、异地)、向(同向、相向)的时间和距离等条件混合出现的行程问题。
在杯赛中大量出现,约占80%左右。
建议熟练应用标准解法,即s=v×t结合标准画图(基本功)解答。
由于只用到相遇追及的基本公式即可解决,并且要就题论题,所以无法展开,但这是考试中最常碰到的,希望高手做更为细致的分类。
二、复杂相遇追及问题。
(1)多人相遇追及问题。
比一般相遇追及问题多了一个运动对象,即一般我们能碰到的是三人相遇追及问题。
解题思路完全一样,只是相对复杂点,关键是标准画图的能力能否清楚表明三者的运动状态。
(2)多次相遇追及问题。
即两个人在一段路程中同时同地或者同时异地反复相遇和追及,俗称反复折腾型问题。
分为标准型(如已知两地距离和两者速度,求n次相遇或者追及点距特定地点的距离或者在规定时间内的相遇或追及次数)和纯周期问题(少见,如已知两者速度,求一个周期后,即两者都回到初始点时相遇、追及的次数)。
标准型解法固定,不能从路程入手,将会很繁,最好一开始就用求单位相遇、追及时间的方法,再求距离和次数就容易得多。
如果用折线示意图只能大概有个感性认识,无法具体得出答案,除非是非考试时间仔细画标准尺寸图。
一般用到的时间公式是(只列举甲、乙从两端同时出发的情况,从同一端出发的情况少见,所以不赘述):单程相遇时间:t单程相遇=s/(v甲+v乙)单程追及时间:t单程追及=s/(v甲-v乙)第n次相遇时间:Tn= t单程相遇×(2n-1)第m次追及时间:Tm= t单程追及×(2m-1)限定时间内的相遇次数:N相遇次数=[ (Tn+ t单程相遇)/2 t单程相遇]限定时间内的追及次数:M追及次数=[ (Tm+ t单程追及)/2 t单程追及]注:[]是取整符号之后再选取甲或者乙来研究有关路程的关系,其中涉及到周期问题需要注意,不要把运动方向搞错了。
简单例题:甲、乙两车同时从A地出发,在相距300千米的A、B两地之间不断往返行驶,已知甲车的速度是每小时30千米,乙车的速度是每小时20千米,问(1)第二次迎面相遇后又经过多长时间甲、乙追及相遇?(2)相遇时距离中点多少千米?(3)50小时内,甲乙两车共迎面相遇多少次?三、火车问题。
特点无非是涉及到车长,相对容易。
小题型分为:(1)火车vs点(静止的,如电线杆和运动的,如人)s火车=(v火车±v人)×t 经过(2)火车vs线段(静止的,如桥和运动的,如火车)s火车+s桥=v火车×t经过和s火车1+s火车2=(v火车1±v火车2)×t经过合并(1)和(2)来理解即s和=v相对×t经过把电线杆、人的水平长度想象为0即可。
火车问题足见基本公式的应用广度,只要略记公式,火车问题一般不是问题。
(3)坐在火车里。
本身所在火车的车长就形同虚设了,注意的是相对速度的计算。
电线杆、桥、隧道的速度为0(弱智结论)。
四、流水行船问题。
理解了相对速度,流水行船问题也就不难了。
理解记住1个公式(顺水船速=静水船速+水流速度)就可以顺势理解和推导出其他公式(逆水船速=静水船速-水流速度,静水船速=(顺水船速+逆水船速)÷2,水流速度=(顺水船速-逆水船速)÷2),对于流水问题也就够了。
技巧性结论如下:(1)相遇追及。
水流速度对于相遇追及的时间没有影响,即对无论是同向还是相向的两船的速度差不构成“威胁”,大胆使用为善。
(2)流水落物。
漂流物速度=水流速度,t1= t2(t1:从落物到发现的时间段,t2:从发现到拾到的时间段)与船速、水速、顺行逆行无关。
此结论所带来的时间等式常常非常容易的解决流水落物问题,其本身也非常容易记忆。
例题:一条河上有甲、乙两个码头,甲码头在乙码头的上游50千米处。
一艘客船和一艘货船分别从甲、乙两码头同时出发向上游行驶,两船的静水速度相同。
客船出发时有一物品从船上落入水中,10分钟后此物品距客船5千米。
客船在行驶20千米后掉头追赶此物品,追上时恰好和货船相遇。
求水流速度。
五、间隔发车问题。
空间理解稍显困难,证明过程对快速解题没有帮助。
一旦掌握了3个基本公式,一般问题都可以迎刃而解。
(1)在班车里。
即柳卡问题。
不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。
如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。
例题:A、B是公共汽车的两个车站,从A站到B站是上坡路。
每天上午8点到11点从A、B两站每隔30分同时相向发出一辆公共汽车。
已知从A站到B站单程需要105分钟,从B站到A站单程需要80分钟。
问8:30、9:00从A站发车的司机分别能看到几辆从B站开来的汽车?(2)在班车外。
联立3个基本公式好使。
汽车间距=(汽车速度+行人速度)×相遇事件时间间隔------1汽车间距=(汽车速度-行人速度)×追及事件时间间隔------2汽车间距=汽车速度×汽车发车时间间隔------31、2合并理解,即汽车间距=相对速度×时间间隔分为2个小题型:1、一般间隔发车问题。
用3个公式迅速作答;2、求到达目的地后相遇和追及的公共汽车的辆数。
标准方法是:画图-尽可能多的列3个好使公式-结合s全程=v×t-结合植树问题数数。
例题:小峰在骑自行车去小宝家聚会的路上注意到,每隔9分钟就有一辆公交车从后方超越小峰。
小峰骑车到半路车坏了,于是只好坐出租车去小宝家。
这时小峰又发现出租车也是每隔9分钟超越一辆公交车,已知出租车的速度是小峰骑车速度的5倍,如果这3种车辆在行驶过程中都保持匀速,那么公交车站每隔多少分钟发一辆车?六、平均速度问题。
相对容易的题型。
大公式要牢牢记住:总路程=平均速度×总时间。
用s=v×t写出相应的比要比直接写比例式好理解并且规范,形成行程问题的统一解决方案。
七、环形问题。
是一类有挑战性和难度的题型,分为“同一路径”、“不同路径”、“真实相遇”、“能否看到”等小题型。
其中涉及到周期问题、几何位置问题(审题不仔细容易漏掉多种位置可能)、不等式问题(针对“能否看到”问题,即问甲能否在线段的拐角处看到乙)。
仍旧属于就题论题范畴,不展开了。
八、钟表问题。
是环形问题的特定引申。
基本关系式:v分针= 12v时针(1)总结记忆:时针每分钟走1/12格,0.5°;分针每分钟走1格,6°。