(完整版)追及与相遇问题(含答案)

合集下载

第12讲 追及和相遇问题(解析版)

第12讲 追及和相遇问题(解析版)

第12讲 追及和相遇问题甲、乙两人沿平直的公路进行自行车追逐比赛,他们初始在同一位置A ,某时刻甲以12m/s 的速度从A 位置开始匀速运动,经过时间2s 后,乙再从A 位置出发追赶甲,乙先做初速度为零的匀加速直线运动,加速度大小为23m/s ,速度达到15m/s 后做匀速直线运动。

(1)求乙追上甲之前,甲、乙间的最大距离; (2)经过多少时间乙才能追上甲?【答案】(1)4s ;(2)20.5s 【解析】(1)乙出发时,甲运动的位移1124m x vt ==乙追上甲之前,当甲、乙速度相等时,它们间距离最大,设乙运动的时间为2t ,有2v at =解得24s t =甲乙相距的最大距离122m 48m 2vs x vt t =+-=(2)乙加速到最大速度所用的时间为m35s v t a== 设乙运动4t 时间追赶上甲,则()2143m 4312x vt at v t t +=+- 解得420.5st1.追及相遇问题两物体在同一直线上一前一后运动,速度相同时它们之间可能出现距离最大、距离最小或者相遇(碰撞)的情况,这类问题称为追及相遇问题.2.分析追及相遇问题的思路和方法(1)讨论追及相遇问题的实质是分析两物体能否在同一时刻到达同一位置,注意抓住一个条件、用好两个关系.一个条件速度相等这是两物体是否追上(或相撞)、距离最大、距离最小的临界点,是解题的切入点两个关系时间关系和位移关系通过画示意图找出两物体位移之间的数量关系,是解题的突破口(2)常用方法物理分析法抓住“两物体能否同时到达同一位置”这一关键,认真审题,挖掘题中的隐含条件,建立物体运动关系的图景,并画出运动情况示意图,找出位移关系图像法将两者的v-t图像画在同一坐标系中,然后利用图像分析求解数学分析法设从开始到相遇的时间为t,根据条件列位移关系方程,得到关于t的一元二次方程,用判别式进行讨论.若Δ>0,即有两个解,说明可以相遇两次;若Δ=0,说明刚好追上或相遇;若Δ<0,说明追不上或不能相碰例题1.平直公路上有甲、乙两辆汽车,甲以0.5 m/s2的加速度由静止开始行驶,乙在甲的前方200 m处以5 m/s的速度做同方向的匀速运动,问:(1)甲何时追上乙?甲追上乙时的速度为多大?此时甲离出发点多远?(2)在追赶过程中,甲、乙之间何时有最大距离?这个距离为多少?【答案】(1)40 s20 m/s400 m(2)10 s225 m【解析】(1)设甲经过时间t 追上乙,则有x 甲=12a 甲t 2,x 乙=v 乙t ,根据追及条件,有12a 甲t 2=x 0+v 乙t ,代入数据解得t =40 s 和t =-20 s(舍去) 这时甲的速度v 甲=a 甲t =0.5×40 m/s =20 m/s 甲离出发点的位移x 甲=12a 甲t 2=12×0.5×402 m =400 m.(2)在追赶过程中,当甲的速度小于乙的速度时,甲、乙之间的距离仍在继续增大;但当甲的速度大于乙的速度时,甲、乙之间的距离便不断减小;当v 甲=v 乙,甲、乙之间的距离达到最大值.由a 甲t ′=v 乙,得t ′=v 乙a 甲=50.5 s =10 s ,即甲在10 s 末离乙的距离最大.x max =x 0+v 乙t ′-12a 甲t ′2=200 m +5×10 m -12×0.5×102 m =225 m.对点训练1. 汽车以20 m/s 的速度在平直公路上行驶时,制动后40 s 停下来.现在同一平直公路上以20 m/s 的速度行驶时发现前方200 m 处有一货车以6 m/s 的速度同向匀速行驶,司机立即制动,则:(1)求汽车刹车时的加速度大小;(2)是否发生撞车事故?若发生撞车事故,在何时发生?若没有撞车,两车最近距离为多少? 【答案】(1)0.5 m/s 2 (2)不会相撞 4 m 【解析】(1)汽车制动加速度大小a =v At =0.5 m/s 2(2)当汽车减速到与货车共速时t 0=v A -v Ba =28 s汽车运动的位移x 1=v A 2-v B 22a =364 m此时间内货车运动的位移为x 2=v B t 0=168 m Δx =x 1-x 2=196 m <200 m ,所以两车不会相撞.此时两车相距最近,最近距离Δs =x 0-Δx =200 m -196 m =4 m.例题2. 甲、乙两汽车在同一条平直公路上同向运动,其速度-时间图像分别为如图所示的甲、乙两条图线。

一般行程问题(相遇与追击问题)-含答案

一般行程问题(相遇与追击问题)-含答案

一.一般行程问题(相遇与追击问题)1.行程问题中的三个基本量及其关系:路程=速度×时间 时间=路程÷速度 速度=路程÷时间2.行程问题基本类型(1)相遇问题: 快行距+慢行距=原距(2)追及问题: 快行距-慢行距=原距1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x 千米,则列方程为 。

解:等量关系 步行时间-乘公交车的时间=3.6小时 列出方程是:6.3408=-x x 2、某人从家里骑自行车到学校。

若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?解:等量关系 ⑴ 速度15千米行的总路程=速度9千米行的总路程⑵ 速度15千米行的时间+15分钟=速度9千米行的时间-15分钟 提醒:速度已知时,设时间列路程等式的方程,设路程列时间等式的方程。

方法一:设预定时间为x 小/时,则列出方程是:15(x -0.25)=9(x +0.25)方法二:设从家里到学校有x 千米,则列出方程是:60159601515-=+x x 3、一列客车车长200米,一列货车车长280米,在平行的轨道上相向行驶,从两车头相遇到两车车尾完全离开经过16秒,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米?提醒:将两车车尾视为两人,并且以两车车长和为总路程的相遇问题。

等量关系:快车行的路程+慢车行的路程=两列火车的车长之和设客车的速度为3x 米/秒,货车的速度为2x 米/秒,则 16×3x +16×2x =200+2804、与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。

行人的速度是每小时3.6km ,骑自行车的人的速度是每小时10.8km 。

如果一列火车从他们背后开来,它通过行人的时间是22秒,通过骑自行车的人的时间是26秒。

相遇追及试题及答案

相遇追及试题及答案

相遇追及试题及答案1. 甲乙两人分别从A、B两地同时出发,相向而行。

甲的速度是每小时5公里,乙的速度是每小时4公里。

如果A、B两地相距20公里,问他们相遇时各自走了多少公里?答案:首先计算两人相遇所需的时间。

由于两人相向而行,他们的相对速度是5公里/小时 + 4公里/小时 = 9公里/小时。

因此,相遇时间是总距离除以相对速度,即20公里÷ 9公里/小时 = 2.22小时(约等于2小时13分钟)。

甲在这段时间内行走的距离是5公里/小时× 2.22小时 = 11.1公里,乙行走的距离是4公里/小时× 2.22小时 = 8.9公里。

2. 一辆汽车以每小时60公里的速度行驶,一辆摩托车以每小时40公里的速度行驶。

如果汽车在摩托车前方100公里处,摩托车开始追赶汽车,问摩托车需要多少时间才能追上汽车?答案:首先计算摩托车追赶汽车所需的时间。

由于汽车在前方,摩托车需要以相对速度追赶。

相对速度是汽车速度减去摩托车速度,即60公里/小时 - 40公里/小时 = 20公里/小时。

因此,摩托车追上汽车所需的时间是距离差除以相对速度,即100公里÷ 20公里/小时 = 5小时。

3. 两列火车从同一车站出发,一列火车以每小时120公里的速度向东行驶,另一列火车以每小时80公里的速度向西行驶。

两列火车出发后2小时,它们之间的距离是多少?答案:由于两列火车是背向而行,它们的相对速度是120公里/小时 + 80公里/小时 = 200公里/小时。

两列火车出发2小时后,它们之间的距离是相对速度乘以时间,即200公里/小时× 2小时 = 400公里。

4. 一艘船以每小时15公里的速度在河中顺流而下,而河水的流速是每小时5公里。

如果船从A点出发,2小时后到达B点,问A点和B点之间的距离是多少?答案:船在河中顺流而下,其有效速度是船的速度加上水流的速度,即15公里/小时 + 5公里/小时 = 20公里/小时。

六年级相遇和追及问题(含答案)

六年级相遇和追及问题(含答案)

一、 相遇甲从A 地到B 地,乙从B 地到A 地,然后两人在途中相遇,实质上是甲和乙一起走了A,B 之间这段路程,如果两人同时出发,那么相遇路程=甲走的路程+乙走的路程=甲的速度×相遇时间+乙的速度×相遇时间 =(甲的速度+乙的速度)×相遇时间=速度和×相遇时间. 一般地,相遇问题的关系式为:速度和×相遇时间=路程和,即=tS V 和和二、 追及有两个人同时行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他.这就产生了“追及问题”.实质上,要算走得快的人在某一段时间内,比走得慢的人多走的路程,也就是要计算两人走的路程之差(追及路程).如果设甲走得快,乙走得慢,在相同的时间(追及时间)内:追及路程=甲走的路程-乙走的路程=甲的速度×追及时间-乙的速度×追及时间 =(甲的速度-乙的速度)×追及时间 =速度差×追及时间.一般地,追击问题有这样的数量关系:追及路程=速度差×追及时间,即=tS V 差差三、 在研究追及和相遇问题时,一般都隐含以下两种条件:(1)在整个被研究的运动过程中,2个物体所运行的时间相同 (2)在整个运行过程中,2个物体所走的是同一路径。

⨯⎧⎪÷⎨⎪÷⎩÷⎧⎪⨯⎨⎪÷⎩n n n n n n n nn n n n n n n n nn n 路程=速度和相遇相遇速度和=路程相遇相遇=路程速度和追及=追及路程速度差追及追及路程=速度差追及速度差=追及路程追及知识框架相遇和追及问题重难点能够解决行程中复杂的相遇与追及问题能够画出多人相遇和追及的示意图并将问题转化多个简单相遇和追及环节进行解题能够利用柳卡图、比例解决多次相遇和追及问题例题精讲一、相遇和追及【例 1】在一条笔直的高速公路上,前面一辆汽车以90千米/小时的速度行驶,后面一辆汽车以108千米/小时的速度行驶.后面的汽车刹车突然失控,向前冲去(车速不变).在它鸣笛示警后5秒钟撞上了前面的汽车.在这辆车鸣笛时两车相距多少米?【巩固】乙二人同时从A地去B地,甲每分钟行60米,乙每分钟行90米,乙到达B地后立即返回,并与甲相遇,相遇时,甲还需行3分钟才能到达B地,A、B两地相距多少米?【例 2】甲、乙二人分别从山顶和山脚同时出发,沿同一山道行进。

六年级相遇和追及问题(含答案)

六年级相遇和追及问题(含答案)

一、 相遇甲从A 地到B 地,乙从B 地到A 地,然后两人在途中相遇,实质上是甲和乙一起走了A,B 之间这段路程,如果两人同时出发,那么相遇路程=甲走的路程+乙走的路程=甲的速度×相遇时间+乙的速度×相遇时间 =(甲的速度+乙的速度)×相遇时间=速度和×相遇时间. 一般地,相遇问题的关系式为:速度和×相遇时间=路程和,即=tS V 和和二、 追及有两个人同时行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他.这就产生了“追及问题”.实质上,要算走得快的人在某一段时间内,比走得慢的人多走的路程,也就是要计算两人走的路程之差(追及路程).如果设甲走得快,乙走得慢,在相同的时间(追及时间)内:追及路程=甲走的路程-乙走的路程=甲的速度×追及时间-乙的速度×追及时间 =(甲的速度-乙的速度)×追及时间 =速度差×追及时间.一般地,追击问题有这样的数量关系:追及路程=速度差×追及时间,即=tS V 差差三、 在研究追及和相遇问题时,一般都隐含以下两种条件:(1)在整个被研究的运动过程中,2个物体所运行的时间相同 (2)在整个运行过程中,2个物体所走的是同一路径。

⨯⎧⎪÷⎨⎪÷⎩÷⎧⎪⨯⎨⎪÷⎩路程=速度和相遇相遇速度和=路程相遇相遇=路程速度和追及=追及路程速度差追及追及路程=速度差追及速度差=追及路程追及知识框架相遇和追及问题重难点能够解决行程中复杂的相遇与追及问题能够画出多人相遇和追及的示意图并将问题转化多个简单相遇和追及环节进行解题能够利用柳卡图、比例解决多次相遇和追及问题例题精讲一、相遇和追及【例 1】在一条笔直的高速公路上,前面一辆汽车以90千米/小时的速度行驶,后面一辆汽车以108千米/小时的速度行驶.后面的汽车刹车突然失控,向前冲去(车速不变).在它鸣笛示警后5秒钟撞上了前面的汽车.在这辆车鸣笛时两车相距多少米?【巩固】乙二人同时从A地去B地,甲每分钟行60米,乙每分钟行90米,乙到达B地后立即返回,并与甲相遇,相遇时,甲还需行3分钟才能到达B地,A、B两地相距多少米?【例 2】甲、乙二人分别从山顶和山脚同时出发,沿同一山道行进。

(word完整版)高中物理必修一追及与相遇问题专题练习及答案.doc

(word完整版)高中物理必修一追及与相遇问题专题练习及答案.doc

追击和相遇问题一、追击问题的分析方法 :A. 根据追逐的两个物体的运动性质, 选择同一参照物 , 列出两个物体的位移方程 ;B.找出两个物体在运动时间上的关系; 相关量的确定C.找出两个物体在位移上 的数量关系 ;D. 联立议程求解 .说明 : 追击问题中常用的临界条件 :⑴速度小者追速度大者 , 追上前两个物体速度相等时 , 有最大距离 ;⑵速度大者减速追赶速度小者 , 追上前在两个物体速度相等时 , 有最小距离 . 即必须在此之前追上 , 否则就不能追上 .1.一车处于静止状态 , 车后距车 S0=25 处有一个人 , 当车以 1 的加速度开始起动时 , 人以 6 的速度匀速追车 , 能否追上 ?若追不上 , 人车之间最小距离是多少答案 .S 人 -S 车 =S 0∴ v 人 t-at2/2=S0即 t 2-12t+50=02× 50=-56<0=b -4ac=122-4方程无解 . 人追不上车 当 v 人=v 车 at 时 , 人车距离最小 t=6/1=6sS min =S 0+S 车 -S 人 =25+1× 62/2-6 × 6=7m2.质点乙由 B 点向东以 10 的速度做匀速运动 , 同时质点甲从距乙 12 远处西侧 A 点以 4 的加速度做初速度为零的匀加速直线运动 . 求 : ⑴当甲、乙速度相等时 , 甲离乙多远 ?⑵甲追上乙需要多长时间?此时甲通过的位移是多大?答案 . ⑴ v 甲 =v 乙 =at 时 , t=2.5sS=S 乙-S 甲+S AB=10× 2.5-4 × 2.5 2/2+12=24.5m ⑵ S 甲 =S 乙 +S AB at 2/2=v 2t+S AB t 2-5t-6=0t=6sS甲=at 2/2=4 × 62/2=72m3. 在平直公路上 , 一辆摩托车从静止出发 , 追赶在正前方100m 处正以 v =10m/s 的速度匀速前进的卡车 . 若摩托车的最大速度为 v m =20m/s, 现要求摩托车在 120s 内追上卡车 , 求摩托车的加速度应满足什么答案 . 摩托车 S 1=at12m 2/2+v tv m =at 1=20 卡车 S 2=v o t=10tS 12=S +100T=t1+t 2t≤ 120s a ≥ 0.18m/s 24. 汽车正以 10m/s 的速度在平直公路上前进, 发现正前方有一辆自行车以4m/s 的速度同方向做匀速直线运动, 汽车应在距离自行车多远时关闭油门, 做加速度为6m/s2的匀减速运动 , 汽车才不至于撞上自行车?答案 .S 汽车≤ S 自行车 +d当v 汽车 =v 自行车时 , 有最小距离v汽车 =v 汽车0-at t=1sd 0=S 汽车 -S 自行车 =v 汽车0t-at 2/2-v 自行车=3m 故 d≥3m解二 : S=S自行车 +d-S 汽车=(v 自行车 t+d)-(v t-at 2汽车 0 /2)=d-6t+3t 2=d-3+3(t-1) 2当 t=1s 时 , S 有极小值S =d-3 S ≥01 1d ≥3m二、相遇问题的分析方法:A.根据两物体的运动性质, 列出两物体的运动位移方程;B.找出两个物体的运动时间之间的关系;C.利用两个物体相遇时必须处于同一位置, 找出两个物体位移之间的关系;D.联立方程求解.5. 高为 h 的电梯正以加速度 a 匀加速上升 , 忽然天花板上一螺钉脱落, 求螺钉落到底板上的时间.答案 .S 梯 -S 钉 =h∴h=vt+at 2/2-(vt-gt 2/2)=(a+g)t2/26. 小球 1 从高 H处自由落下 , 同时球 2 从其正下方以速度v0竖直上抛 , 两球可在空中相遇. 试就下列两种情况讨论的取值范围.⑴在小球 2 上升过程两球在空中相遇;⑵在小球 2 下降过程两球在空中相遇.答案 .h 1+h2=Hh1=gt 2/2 h2=v0t-gt2/2∴t=h/v 0⑴上升相遇t<v /g∴ H/v >v /g v 2 >gH0 0⑵下降相遇t>v 0/g t′ <2v0/g∴H/v 0>v0/g v 02<gH0 0 0 2 >gH/2H/v <2v /g v2即 Hg>v0 >Hg/27. 从同一抛点以 30m/s 初速度先后竖直上抛两物体, 抛出时刻相差 2s, 不计空气阻力 , 取 g=10m/s2, 两个物体何时何处相遇 ? 答案 .S 1=v0(t+2)-g(t+2) 2/22S2=v0t-gt /2当S1=S2时相遇t=2s (第二个物体抛出2s)S1=S2=40m8.在地面上以 2v0竖直上抛一物体后 , 又以初速度 v0在同一地点竖直上抛另一物体 , 若要使两物体在空中相遇 , 则两物体抛出的时间间隔必须满足什么条件 ?( 不计空气阻力 )答案 . 第二个物体抛出时与第一个物体相遇t 1=2× 2v0/g第二个物体落地时与第一个物体相遇t 2=2× 2v0/g-2v 0/g=2v 0/g∴ 2v 0/g ≤Δ t ≤ 4v0/g追及相遇专题练习1.如图所示是A、 B 两物体从同一地点出发,沿相同的方向做直线运动的v-t 图象,由图象可知()图 5A . A 比B 早出发 5 s B .第 15 s 末 A、 B 速度相等C.前 15 s 内A的位移比 B 的位移大50 m D.第20 s末A、B位移之差为25 m 2. a、 b 两物体从同一位置沿同一直线运动,它们的速度图像如图所示,下列说法正确的是()A .a、 b 加速时,物体 a 的加速度大于物体 b 的加速度B. 20 秒时, a、 b 两物体相距最远- 1 υ/(m ·s )C. 60 秒时,物体 a 在物体 b 的前方D .40 秒时, a、 b 两物体速度相等,相距200 m3. 公共汽车从车站开出以 4 m/s 的速度沿平直公路行驶, 2 s 后一辆摩托车从同一车站开出匀加速追赶,加速度为 2 m/s 2,试问:(1)摩托车出发后,经多少时间追上汽车?(2)摩托车追上汽车时,离出发处多远?(3)摩托车追上汽车前,两者最大距离是多少?4. 汽车A在红绿灯前停住,绿灯亮起时起动,以0.4 m/s 2的加速度做匀加速运动,经过30 s后以该时刻的速度做匀速直线运动. 设在绿灯亮的同时,汽车B以8 m/s的速度从A 车旁边驶过,且一直以相同的速度做匀速直线运动,运动方向与 A 车相同,则从绿灯亮时开始()A. A车在加速过程中与B车相遇B. A、B相遇时速度相同C. 相遇时A车做匀速运动D.两车不可能再次相遇5.同一直线上的 A、B两质点,相距 s,它们向同一方向沿直线运动(相遇时互不影响各自的运动),A做速度为 v 的匀速直线运动, B 从此时刻起做加速度为 a、初速度为零的匀加速直线运动.若 A在 B前,两者可相遇几次?若 B在 A前,两者最多可相遇几次?6. 一列货车以28.8 km/h 的速度在平直铁路上运行,由于调度失误,在后面600 m处有一列快车以72 km/h 的速度向它靠近. 快车司机发觉后立即合上制动器,但快车要滑行2000 m 才停止 . 试判断两车是否会相碰7.一列火车以v1的速度直线行驶,司机忽然发现在正前方同一轨道上距车为s 处有另一辆火车正沿着同一方向以较小速度v2做匀速运动,于是他立即刹车,为使两车不致相撞,则 a 应满足什么8. A、B两车沿同一直线向同一方向运动,A车的速度v A=4 m/s, B车的速度v B=10 m/s. 当B车运动至A车前方 7 m 处时,B车以a=2 m/s 2的加速度开始做匀减速运动,从该时刻开始计时,则A车追上B车需要多长时间?在 A 车追上 B 车之前,二者之间的最大距离是多少?9.从同一地点以30 m/s 的速度先后竖直上抛两个物体,抛出时间相差 2 s,不计空气阻力,两物体将在何处何时相遇?10.汽车正以10 m/s 的速度在平直公路上匀速直线运动,突然发现正前方有一辆自行车以 4 m/s 的速度同方向做匀速直线运动,汽车立即关闭油门,做加速度为 6 m/s2的匀减速运动,求汽车开始减速时,他们间距离为多大时恰好不相撞?参考答案1.【答案】 D【解析】首先应理解速度-时间图象中横轴和纵轴的物理含义,其次知道图线的斜率表示加速度的大小,图线与时间轴围成的面积表示该时间内通过的位移的大小.两图线的交点则表示某时刻两物体运动的速度相等.由图象可知, B 物体比 A 物体早出发 5 s ,故 A 选项错; 10 s 末 A、B 速度相等,故 B 选项错;由于位移的数值等于图线与时间轴所围“面积”,所以前15 s 内 B 的位移为150 m, A 的位移为100 m,故 C 选项错;将图线延伸可得,前 20 s 内 A 的位移为 225 m , B 的位移为 200 m ,故 D 选项正确.2.【答案】 C【解析】 υ—t 图像中,图像的斜率表示加速度,图线和时间轴所夹的面积表示位移.当两物体的速度相等时,距离最大. 据此得出正确的答案为 C 。

追及与相遇问题(详解)

追及与相遇问题(详解)

追及与相遇问题两物体在同一直线上追及、相遇或避免碰撞问题中的条件是:两物体能否同时到达空间某位置。

因此应分别对两物体进行研究,列出位移方程,然后利用时间关系、速度关系、位移关系求解。

一、追及问题1、追及问题的特征及处理方法:“追及”主要条件是:两个物体在追赶过程中处在同一位置,常见的情形有三种:⑴初速度比较小(包括为零)的匀加速运动的物体甲追赶同方向的匀速运动的物体乙,一定能追上。

a、追上前,当两者速度相等时有最大距离;b、当两者位移相等时,即后者追上前者。

⑵匀减速运动的物体追赶同向的匀速运动的物体时,存在一个能否追上的问题。

判断方法是:假定速度相等,从位置关系判断。

解决问题时要注意二者是否同时出发,是否从同一地点出发。

a、当两者速度相等时,若追者位移仍小于被追者,则永远追不上,此时两者间有最小距离;b、若两者速度相等时,两者的位移也相等,则恰能追上,也是两者避免碰撞的临界条件;c、若两者速度相等时,追者位移大于被追者,说明在两者速度相等前就已经追上;在计算追上的时间时,设其位移相等来计算,计算的结果为两个值,这两个值都有意义。

即两者位移相等时,追者速度仍大于被追者的速度,被追者还有一次追上追者的机会,其间速度相等时两者间距离有一个较大值。

⑶匀速运动的物体甲追赶同向匀加速运动的物体乙,情形跟⑵类似。

匀速运动的物体甲追赶同向匀减速运动的物体乙,情形跟⑴类似;被追赶的物体做匀减速运动,一定要注意追上前该物体是否已经停止运动。

2、分析追及问题的注意点:⑴要抓住一个条件,两个关系:一个条件是两物体的速度满足的临界条件,如两物体距离最大、最小,恰好追上或恰好追不上等。

两个关系是时间关系和位移关系,通过画草图找两物体的位移关系是解题的突破口。

⑵若被追赶的物体做匀减速运动,一定要注意追上前该物体是否已经停止运动。

⑶仔细审题,充分挖掘题目中的隐含条件,同时注意v t 图象的应用。

二、相遇⑴同向运动的两物体的相遇问题即追及问题,分析同上。

高中物理追击和相遇问题专题(含详解)

高中物理追击和相遇问题专题(含详解)

直线运动中的追及和相遇问题一、相遇和追及问题的实质研究的两物体能否在相同的时刻到达相同的空间位置的问题。

二、 解相遇和追及问题的关键1.画出物体运动的情景图2.理清三大关系(1)时间关系 :0t t t B A ±= (2)位移关系:0A B x x x =± (3)速度关系:v A =v B两者速度相等往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。

三、追及、相遇问题的分析方法:A. 画出两个物体运动示意图,根据两个物体的运动性质,选择同一参照物,列出两个物体的位移方程;B. 找出两个物体在运动时间上的关系C. 找出两个物体在运动位移上的数量关系D. 联立方程求解.说明:追及问题中常用的临界条件:⑴速度小者加速追速度大者,速度在接近,但距离在变大。

追上前两个物体速度相等时,有最大距离; ⑵速度大者减速追赶速度小者, 速度在接近,但距离在变小。

追上前在两个物体速度相等时,有最小距离.即必须在此之前追上,否则就不能追上.四、典型例题分析:(一).匀加速运动追匀速运动的情况(开始时v 1< v 2):2.当v1= v2时,两者距离最大;3.v1>v2时,两者距离变小,相遇时满足x1= x2+Δx,全程只相遇(即追上)一次。

【例1】一小汽车从静止开始以3m/s2的加速度行驶,恰有一自行车以6m/s的速度从车边匀速驶过.求:(1)小汽车从开动到追上自行车之前经过多长时间两者相距最远?此时距离是多少?(2)小汽车什么时候追上自行车,此时小汽车的速度是多少?(二).匀速运动追匀加速运动的情况(开始时v1> v2):1.当v1> v2时,两者距离变小;2.当v1= v2时,①若满足x1< x2+Δx,则永远追不上,此时两者距离最近;②若满足x1=x2+Δx,则恰能追上,全程只相遇一次;③若满足x1>x2+Δx,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。

追及相遇问题

追及相遇问题

(2)匀速运动的物体甲追赶同方向做匀 加速运动的物体乙时,恰好追上或恰好 追不上的临界条件是两物体速度相等, 即v甲=v乙. 判断此种追赶情形能否追上的方法是: 假定在追赶过程中两者在同一位置,比 较此时的速度大小,若v甲>v乙,则能追上; v甲<v乙,则追不上,如果始终追不上,当 两物体速度相等即v甲=v乙时,两物体的 间距最小.
(3)速度大者减速(如匀减速直线运动)追速 度小者(如匀速运动) ①两者速度相等,追者位移仍小于被追者 位移,则永远追不上,此时二者间有最小距 离. ②若速度相等时,有相同位移,则刚好追 上,也是二者相遇时避免碰撞的临界条件. ③若位移相同时追者速度仍大于被追者的 速度,则被追者还能有一次追上追者,二者 速度相等时,二者间距离有一个最大值.
变式训练
3.汽车正以10 m/s 的速度在平直 的公路上前进,突然发现正前方有一 辆自行车以4 m/s的速度做同方向的匀 速直线运动,汽车立即关闭油门做加 速度大小为6 m/s2的匀减速运动,汽车 恰好不碰上自行车,求关闭油门时汽 车离自行车多远?
解析:汽车和自行车运动草图如下:
类型三
例3
追及相遇问题的求解方法
一小汽车从静止开始以3 m/s2的 加速度行驶,恰有一自行车以6 m/s的 速度从车边匀速驶过. (1)汽车从开动后在追上自行车之 前,要经多长时间两者相距最远?最 远距离是多少? (2)什么时候追上自行车,此时汽 车的速度是多少?
(2)由图知,t=2 s以后,若两车位移相 等,即v-t图象与时间轴所夹的“面积”相 等. 由几何关系知,相遇时间为t′=4 s,此 时v汽=2v自=12 m/s. 【答案】 (1)2 s 6 m (2)4 s 12 m/s 【方法总结】 解决追及相遇问题时, 主要从以下三个方面分析:(1)明确每个物 体的运动性质,(2)确定两物体运动时间的 关系,(3)确定两物体的位移关系.

(完整版)高中物理追击和相遇问题专题(含详解)

(完整版)高中物理追击和相遇问题专题(含详解)

直线运动中的追及和相遇问题一、相遇和追及问题的实质研究的两物体能否在相同的时刻到达相同的空间位置的问题。

二、 解相遇和追及问题的关键1.画出物体运动的情景图2.理清三大关系(1)时间关系 :0t t t B A ±= (2)位移关系:0A B x x x =±(3)速度关系:v A =vB两者速度相等往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。

三、追及、相遇问题的分析方法: A. 画出两个物体运动示意图,根据两个物体的运动性质,选择同一参照物,列出两个物体的位移方程; B. 找出两个物体在运动时间上的关系 C. 找出两个物体在运动位移上的数量关系 D. 联立方程求解.说明:追及问题中常用的临界条件:⑴速度小者加速追速度大者,速度在接近,但距离在变大。

追上前两个物体速度相等时,有最大距离; ⑵速度大者减速追赶速度小者, 速度在接近,但距离在变小。

追上前在两个物体速度相等时,有最小距离.即必须在此之前追上,否则就不能追上. 四、典型例题分析:(一).匀加速运动追匀速运动的情况(开始时v 1< v 2): 1.当v 1< v 2时,两者距离变大; 2.当v 1= v 2时,两者距离最大;3.v 1>v 2时,两者距离变小,相遇时满足x 1= x 2+Δx ,全程只相遇(即追上)一次。

【例1】一小汽车从静止开始以3m/s 2的加速度行驶,恰有一自行车以6m/s 的速度从车边匀速驶过.求:(1)小汽车从开动到追上自行车之前经过多长时间两者相距最远?此时距离是多少? (2)小汽车什么时候追上自行车,此时小汽车的速度是多少?(二).匀速运动追匀加速运动的情况(开始时v 1> v 2): 1.当v 1> v 2时,两者距离变小;2.当v 1= v 2时,①若满足x 1< x 2+Δx ,则永远追不上,此时两者距离最近;②若满足x 1=x 2+Δx ,则恰能追上,全程只相遇一次; ③若满足x 1> x 2+Δx ,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。

追及与相遇问题(含答案)

追及与相遇问题(含答案)

追及与相遇问题练习(含答案)一、多选题(本大题共5小题,共20.0分)1. 在一个大雾天,一辆小汽车以的速度行驶在平直的公路上,突然发现正前方处有一辆大卡车以的速度同方向匀速行驶,汽车司机立即刹车,忽略司机的反应时间,后卡车也开始刹车,从汽车司机开始刹车时计时,两者的图象如图所示,下列说法正确的是( )A. 小汽车与大卡车一定没有追尾B. 由于在减速时大卡车的加速度大小小于小汽车的加速度大小,导致两车在时追尾C. 两车没有追尾,两车最近距离为D. 两车没有追尾,并且两车都停下时相距2. 两物体均沿轴正方向从静止开始做匀变速直线运动,时刻两物体同时出发,物体的位置随速率平方的变化关系如图甲所示,物体的位置随运动时间的变化关系如图乙所示,则( )A. 物体的加速度大小为B. 时,两物体相距C. 内物体的平均速度大小为D. 两物体相遇时,物体的速度是物体速度的倍3. 甲乙两车在一平直道路上同向运动,其图象如图所示,图中和的面积分别为和,初始时,甲车在乙车前方处( )A. 若,两车不会相遇B. 若,两车相遇次C. 若,两车相遇次D. 若,两车相遇次4. ,两辆汽车从同一地点同时出发沿同一方向做直线运动,它们的速度的平方随位置的变化规律如图所示,下列判断正确的是( )A. 汽车的加速度大小为B. 汽车、在处的速度大小为C. 从开始到汽车停止前,当时、相距最远D. 从开始到汽车停止前,当时、相距最远二、计算题(本大题共5小题,共50.0分)5. 一辆值勤的警车停在公路边,当警员发现从他旁边以的速度匀速直线行驶的货车有违章行为时,决定前去追赶,经过后警车启动,并以的加速度做匀加速直线运动,试问:警车在追赶货车的过程中,两车间的最大距离是多少若警车能达到的最大速度是,达到最大速度后以该速度匀速运动,则警车启动后要多长时间才能追上货车6. 一辆汽车以的速度在平直公路上行驶,制动后要经过才能停下来。

现在该汽车正以的速度在平直公路上行驶,突然发现正前方处停有一辆摩托车,汽车司机经的反应时间后,立即采取制动措施,汽车开始制动的同时摩托车以的加速度加速启动。

相遇及追及问题(含答案)

相遇及追及问题(含答案)

相遇及追击问题(一)一.填空题(共12小题)1.五羊公共汽车公司的555路车在A,B两个总站间往返行驶,来回均为每隔x分钟发车一次.小宏在大街上骑自行车前行,发现从背后每隔6分钟开过来一辆555路车,而每隔3分钟则迎面开来一辆555路车.假设公共汽车与小宏骑车速度均匀,忽略停站耗费时间,则x=_________分钟.2.在一条街AB上,甲由A向B步行,乙骑车由B向A行驶,乙的速度是甲的速度的3倍,此时公共汽车由始发站A开出向B行进,且每隔x分发一辆车,过了一段时间,甲发现每隔10分有一辆公共汽车追上他,而乙感到每隔5分就碰到一辆公共汽车,那么在始发站公共汽车发车的间隔时间x=_________分钟.3.小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是_________分钟.4.小锋骑车在环城路上匀速行驶,每隔5分钟有一辆公共汽车从对面向后开过,每隔20分钟又有一辆公共汽车从后向前开过,若公共汽车也匀速行驶,不计中途耽误时间,则公交车车站每隔_________分钟开出一辆公共汽车.5.某人在公共汽车上发现一个小偷向反方向步行,10秒钟后他下车去追小偷,如其速度比小偷快一倍,比汽车慢,则追上小偷要(_________)秒.6.某人沿电车路线行走,每12分钟有一辆电车从后面赶上,每4分钟有一辆电车迎面开来,若行人与电车都是匀速前进的,则电车每隔_________分钟从起点开出一辆.7.某公交公司停车场内有15辆车,从上午6时开始发车(6时整第一辆车开出),以后每隔6分钟再开出一辆.第一辆车开出3分钟后有一辆车进场,以后每隔8分钟有一辆车进场,进场的车在原有的15辆车后依次再出车.问到_________点时,停车场内第一次出现无车辆?8.通讯员从队伍末尾追赶至队伍前头时用全速进行,其速度为队伍的3倍,当他从队伍前面返回队伍末尾时每分钟减少100米.在队伍前进过程中,通讯员连续三次往返执行任务,途中花费时间共1小时,其中三次往返队伍末尾时间比三次追赶队伍前头时间共少用12分钟,则队伍的长为_________.9.男女运动员各一名,在环行跑道上练习长跑,男运动员比女运动员速度快,如果他们从同一起跑点沿相反方向同时出发,那么每隔25秒相遇一次,现在他们从同一起跑点沿相同方向同时出发,男运动员经过15分钟追上女运动员,并且比女运动员多跑了16圈,女运动员跑了_________圈.10.有甲、乙两辆小汽车模型,在一个环形轨道上匀速行驶,甲的速度大于乙.如果它们从同一点同时出发沿相反方向行驶,那么每隔1分钟相遇一次.现在,它们从同一点同时出发,沿相同方向行驶,当甲第一次追上乙时,乙已经行驶了4圈,此时它们行驶了_________分钟.11.一路电车的起点和终点分别是甲站和乙站,每隔5分钟有一辆电车从甲站发车开往乙站,全程要走15分钟,有一个人从乙站出发沿电车路线骑车前往甲站,他出发的时候,恰好有一辆电车到达乙站,在路上他又遇到了10辆迎面开来的电车,才到达甲站,到甲站时恰好又有一辆电车从甲站开出,问他从乙站到甲站用了_________分钟.12.如图,在矩形ABCD中,AB=4cm,AD=12cm,点P从点A向点D以每秒1cm的速度运动,Q以每秒4cm的速度从点C出发,在B、C两点之间做往返运动,两点同时出发,点P到达点D为止,这段时间内线段PQ有_________次与线段AB平行.13.(巴蜀初2012级第一次月考16题)某人从甲地走往乙地,甲、乙两地之间有定时的公共汽车往返,且两地发车的时间间隔都相等。

追及和相遇问题

追及和相遇问题
在这段时间里,人、车的位移分别为:
x人=v人t=6×6=36m
x车=at′2/2=1×62/2=18m
△x=x0+x车-x人=25+18-36=7m
结论:速度大者减速追赶速度小者,追上前在两 个物体速度相等时,有最小距离.即必须在此之前
追上,否则就不能追上.
解析:作汽车与人的运动草图如下图甲和v-t图象如下图乙所 示.因v-t图象不能看出物体运动的初位置,故在图乙中标上两 物体的前、后.由图乙可知:在0~6 s时间内后面的人速度大, 运动得快;前面的汽车运动得慢.即0~6 s内两者间距越来越 近.因而速度相等时两者的位置关系,是判断人能否追上汽车
临界条件。
若无解,则不能追上。
代入数据并整理得:t2-12t+50=0 △=b2-4ac=122-4×50×1=-56<0
所以,人追不上车。
在刚开始追车时,由于人的速度大于车的速度, 因此人车间的距离逐渐减小;当车速大于人的 速度时,人车间的距离逐渐增大。因此,当人 车速度相等时,两者间距离最小。
at′= v人 t′=6s
的两个关系:
1.两个物体运动的时间关系; 2.两个物体相遇时必须处于同一位置。
即:两个物体的位移关系
③匀减速直线运动的物体追赶同向匀速(或匀加速)直线运动的 物体时,恰好追上(或恰好追不上)的临界条件为:即追尾时, 追及者速度等于被追及者速度.当追及者速度大于被追及者速度,
例题3:经检测汽车A的制动性能:以标准速度20m/s 在平直公路上行使时,制动后40s停下来。现A在平直 公路上以20m/s的速度行使发现前方180m处有一货车 B以6m/s的速度同向匀速行使,司机立即制动,能否
∵△x=x1-x2=v自t - at(2/2位移关系)

追及相遇问题(含答案)

追及相遇问题(含答案)

追及相遇问题1.两辆完全相同的汽车,沿水平道路一前一后匀速行驶,速度均为υ0.若前车突然以恒定的加速度a 刹车,在它刚停住时,后车以加速度2a 开始刹车.已知前车在刹车过程中所行驶的路程为x ,若要保证两辆车在上述情况中不发生碰撞,则两车在匀速行驶时保持的距离2.汽车驾驶员手册规定:具有良好刹车性能的汽车,以v 1=80km/h 的速度行驶时,应在s 1=56m 的距离内被刹住;以v 2=48km/h 的速度行驶时,应在s 2=24m 的距离内被刹住.假设两种情况下刹车后的加速度大小相同,驾驶员在这两种情况下的反应时间相同,则反应时间约为( ) A . 0.5 s B . 0.7 s C . 0.9 s D . 1.2 s3.在平直公路上,一辆自行车与同方向行驶的汽车同时经过某点,它们的位移随时间的变化关系是自行车:x 1=6t ,汽车:x 2=10t ﹣t 2,由此可知:自行车追赶汽车的过程中,两者4. A 、B 两个物体相距s ,同时同向运动.A 在前面作加速度为a 1、初速度为零的匀加速5.如图为两个物体A 和B 在同一直线上沿同一方向同时作匀加速运动的v ﹣t 图线,已知已知在第3s 末两个物体在途中相遇.则下列说法正确的是( )以该时刻作为计时起点得到两车的位移﹣时间图象如图所示,则下列说法正确的是 ( )21确的是( )8.甲、乙两车在一平直道路上同向运动,其v﹣t图象如图所示,图中△OPQ的面积为S.初始时,甲车在乙车前方S0处,时间足够长,则()A.若S0>S,两车不会相遇B.若S0=S,两车相遇1次C.若S0<S,两车相遇2次D.以上说法都不正确9.如图所示,一辆长为12m的客车沿平直公路以8.0m/s的速度匀速向北行驶,一辆长为10m的货车由静止开始以2.0m/s2的加速度由北向南匀加速行驶,已知货车刚启动时两车相距180m,求两车错车所用的时间.10.在龟兔赛跑的故事,兔子和乌龟的位移图象如图所示,请你依照图象中的坐标,并结合物理学的术语来讲述这个故事.在讲故事之前,先回答下列问题.(1)故事中的兔子和乌龟是否在同一地点同时出发?(2)乌龟做的是什么运动?(3)兔子和乌龟在比赛途中相遇过几次?(4)哪一个先通过预定位移x m到达终点?11.在高速路上,有时会发生“追尾”事故﹣﹣后面的汽车撞上前面的汽车.请分析一下造成“追尾事故的原因有哪些?我国高速公路的最高车速限制为120km/h.设某人驾车正以最高时速沿平直的高速公路行驶,该车刹车时产生的加速度大小为6m/s2,司机的反应时间(从意识到应该刹车至操作刹车的时间)为0.5s﹣﹣0.6s,请分析一下,应该如何计算行驶时的安全距离.12.一辆客车在平直公路上以30m/s的速度行驶,突然发现正前方46m处有一货车正以20m/s 的速度沿同一方向匀速行驶,于是客车司机刹车,以2m/s2的加速度做匀减速直线运动,又知客车司机的反应时间为0.6s(司机从发现货车到采取制动措施经历的时间).问此后的过程中客车能否会撞到货车上?13.甲车在前以10m/s的速度匀速行驶,乙车在后以6m/s的速度行驶.当两车相距12m时,甲车开始刹车,加速度大小为2m/s2,问:(1)经过多长时间两车间距离最大?(2)他们间的最大距离为多少?(3)经多少时间乙车可追上甲车?追及相遇问题参考答案与试题解析一.选择题(共8小题)1.(2014秋•二七区校级期中)两辆完全相同的汽车,沿水平道路一前一后匀速行驶,速度均为υ0.若前车突然以恒定的加速度a刹车,在它刚停住时,后车以加速度2a开始刹车.已知前车在刹车过程中所行驶的路程为x,若要保证两辆车在上述情况中不发生碰撞,则两车,后车以加速度,又2.(2012秋•西安校级月考)汽车驾驶员手册规定:具有良好刹车性能的汽车,以v1=80km/h 的速度行驶时,应在s1=56m的距离内被刹住;以v2=48km/h的速度行驶时,应在s2=24m 的距离内被刹住.假设两种情况下刹车后的加速度大小相同,驾驶员在这两种情况下的反应,所以刹车的位移:3.(2013秋•市中区校级期中)在平直公路上,一辆自行车与同方向行驶的汽车同时经过某点,它们的位移随时间的变化关系是自行车:x1=6t,汽车:x2=10t﹣t2,由此可知:自行tt×4.(2009秋•九原区校级月考)A、B两个物体相距s,同时同向运动.A在前面作加速度为a1、初速度为零的匀加速直线运动,B在后面作加速度为a2、初速度为v的匀加速直线运动.则5.(2015•九江一模)如图为两个物体A和B在同一直线上沿同一方向同时作匀加速运动的v﹣t图线,已知已知在第3s末两个物体在途中相遇.则下列说法正确的是()==6.(2013秋•莲湖区校级月考)甲、乙两车某时刻由同一地点沿同一方向开始做直线运动,若以该时刻作为计时起点得到两车的位移﹣时间图象如图所示,则下列说法正确的是()7.(2015•广东模拟)如图是甲、乙两物体从同一地点沿同一方向运动的v一t图象,其中t2=2t1,下列说法正确的是()8.(2010•济宁二模)甲、乙两车在一平直道路上同向运动,其v﹣t图象如图所示,图中△OPQ 的面积为S.初始时,甲车在乙车前方S0处,时间足够长,则()二.解答题(共5小题)9.(2013秋•利辛县校级期末)如图所示,一辆长为12m的客车沿平直公路以8.0m/s的速度匀速向北行驶,一辆长为10m的货车由静止开始以2.0m/s2的加速度由北向南匀加速行驶,已知货车刚启动时两车相距180m,求两车错车所用的时间.=at10.(2012秋•连州市校级月考)在龟兔赛跑的故事,兔子和乌龟的位移图象如图所示,请你依照图象中的坐标,并结合物理学的术语来讲述这个故事.在讲故事之前,先回答下列问题.(1)故事中的兔子和乌龟是否在同一地点同时出发?(2)乌龟做的是什么运动?(3)兔子和乌龟在比赛途中相遇过几次?(4)哪一个先通过预定位移x m到达终点?11.(2014秋•关岭县月考)在高速路上,有时会发生“追尾”事故﹣﹣后面的汽车撞上前面的汽车.请分析一下造成“追尾事故的原因有哪些?我国高速公路的最高车速限制为120km/h.设某人驾车正以最高时速沿平直的高速公路行驶,该车刹车时产生的加速度大小为6m/s2,司机的反应时间(从意识到应该刹车至操作刹车的时间)为0.5s﹣﹣0.6s,请分析一下,应该如何计算行驶时的安全距离.12.(2015•阜康市校级模拟)一辆客车在平直公路上以30m/s的速度行驶,突然发现正前方46m处有一货车正以20m/s的速度沿同一方向匀速行驶,于是客车司机刹车,以2m/s2的加速度做匀减速直线运动,又知客车司机的反应时间为0.6s(司机从发现货车到采取制动措施经历的时间).问此后的过程中客车能否会撞到货车上?at13.(2014秋•商水县期中)甲车在前以10m/s的速度匀速行驶,乙车在后以6m/s的速度行驶.当两车相距12m时,甲车开始刹车,加速度大小为2m/s2,问:(1)经过多长时间两车间距离最大?(2)他们间的最大距离为多少?(3)经多少时间乙车可追上甲车?==t+=s=5s=t==s)经第11页(共11页)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

追及与相遇问题
1、追及与相遇的实质
研究的两物体能否在相同的时刻到达相同的空间位置的问题。

2、理清两大关系:
时间关系、位移关系。

3、巧用一个条件:
两者速度相等;它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。

4、三种典型类型
(1)同地出发,初速度为零的匀加速直线运动A 追赶同方向的匀速直线运动B
①当 B A v v =时,A 、B 距离最大;
②当两者位移相等时, A 追上B ,且有B A v v 2=
(2)异地出发,匀速直线运动B 追赶前方同方向的初速度为零的匀加速直线运动A
判断B A v v =的时刻,A 、B 的位置情况
①若B 在A 后面,则B 永远追不上A ,此时AB 距离最小
②若AB 在同一处,则B 恰能追上A
③若B 在A 前,则B 能追上A ,并相遇两次
(3)异地出发,匀减速直线运动A 追赶同方向匀速直线运动B
①当B A v v =时,A 恰好追上B ,则A 、B 相遇一次,也是避免相撞刚好追上的临界条件;
②当B A v v =时,A 未追上B ,则A 、B 永不相遇,此时两者间有最小距离;
③当B A v v >时,A 已追上B ,则A 、B 相遇两次,且之后当两者速度相等时,两者间有最大距离。

5、解追及与相遇问题的思路
(1)根据对两物体的运动过程分析,画出物体运动示意图
(2)根据两物体的运动性质,(巧用“速度相等”这一条件)分别列出两个物体的位移方程,注意要将两物体的运动时间的关系反映在方程中
(3)由运动示意图找出两物体位移间的关联方程
(4)联立方程求解
注意:仔细审题,充分挖掘题目中的隐含条件,同时注意t v -图象的应用
【典型习题】
【例1】在十字路口,汽车以0.5m/s 2的加速度从停车线启动做匀加速运动,恰好有一辆自行车以5m/s 的速度匀速驶过停车线与汽车同方向行驶,求:
(1)汽车追上自行车之前,什么时候它们相距最远?最远距离是多少?
(2)在什么地方汽车追上自行车?追到时汽车的速度是多大?
【练习1】一辆值勤的警车停在公路边,当警员发现从他旁边以s m v 80=的速度匀速行驶的货车有违章行为时,决定前去追赶。

经2.5s ,警车发动起来,以加速度2
2s m a =做匀加速运动,试问:
(1)在警车追上货车之前,两车间的最大距离是多大?
(2)警车要多长时间才能追上违章的货车?
【练习2】一辆摩托车行驶的最大速度为30m/s 。

现让该摩托车从静止出发,要在4分钟内追上它前方相距 X 0=1km 、正以25m/s 的速度在平直公路上行驶的汽车,则该摩托车行驶时,至少应具有多大的加速度?
【例2】一车处于静止状态,车后距车x 0=25处有一个人,当车以1m/s 2的加速度开始起动时,人以6m/s 的速度匀速追车,能否追上?若追不上,人车之间最小距离是多少?
【例3】汽车正以10m/s 的速度在平直公路上前进,发现正前方有一辆自行车以4m/s 的速度同方向做匀速直线运动,汽车应在距离自行车多远时关闭油门,做加速度大小为6m/s 2的匀减速运动,汽车才不至于撞上自行车?
【练习3】A火车以v1=20m/s速度匀速行驶,司机发现前方同轨道上相距x0=100m处有另一列火车B正以v2=10m/s速度匀速行驶,A车立即做加速度为a的匀减速直线运动。

要使两车不相撞,a至少为多少?
【选择题】
1、如图所示是A、B两物体从同一地点出发,沿相同的方向做直线运动的v-t图象,由图象可知 ( )
A.A比B早出发5 s
B.第15 s末A、B速度相等
C.前15 s内A的位移比B的位移大50 m
D.第20 s末A、B位移之差为25 m
2、a、b两物体从同一位置沿同一直线运动,它们的速度图像如图所示,下列说法
υ/(m·s−1)
正确的是 ( )
A.a、b加速时,物体a的加速度大于物体b的加速度
B.20秒时,a、b两物体相距最远
C.60秒时,物体a在物体b的前方
D.40秒时,a、b两物体速度相等,相距200 m
追及与相遇问题
【例1】解:(1)经分析可知,当两车速度相等时,它们距离最大
已知自行车的速度为s m v /51=,设经过时间t ,两车速度相等,根据公式at v v +=0,得
s s m a v t 10/5
.005021=-=-= 于是,自行车的位移m m t v x 5010511=⨯== 汽车的位移m m at t v x 25105.02
10212202=⨯⨯+=+= 故最大距离为m x x x m 2512=-=∆
即汽车追上自行车之前,经过10s 它们相距最远;最远距离是25m 。

(2)设经过时间1t 汽车追上自行车,则有21
x x '=' 又自行车的位移111
t v x =';汽车的位移2110221at t v x +=' 故可得2110112
1at t v t v +=,解得:s t 201= 则两车经过的位移都为m m x x 10020521
=⨯='=' 此时汽车速度为s m s m at v /10/205.012=⨯==
即在距离停车线100m 处汽车追上自行车,追到时汽车的速度是10m/s 。

【练习1】解:经t 0=2.5s ,两车之间的距离为m m t v x 205.28000=⨯==
(1)经分析可知,当两车速度相等时,它们距离最大,设此时经过的时间为1t
根据公式at v v +=0得,s s m a v t 4/2
080201=-=-= 则有,货车的位移m m t v x 3248101=⨯== 警车的位移m m at x 16422
1212212=⨯⨯== 故最大距离为m m m x x x x m 36)1632(20)(210=-+=-+=∆
(2)设经过时间2t 警车追上货车,则有21
x x '=' 又货车的位移201
t v x =';警车的位移022221x at x +=' 故可得202
12220+=at t v ,解得:s t 102= 【练习2】解:假设摩托车从静止出发一直做匀加速直线运动到s t 240m in 40==恰好追上汽车,此时摩托
车速度为2v ,又已知汽车速度为s m v /251=,则有摩汽x x =
又汽车的位移01t v x =汽,摩托车的位移022
0t v x +=摩 故可得001022
0x t v t v =-+,解得s m s m v /30/582>= 故摩托车不能一直做匀加速直线运动,只能是先做匀加速直线运动到速度最大值s m v m /30=,然后再做匀速直线运动才追上汽车;设匀加速运动所用时间为1t ,则摩托在两个运动过程的位移分别为21x x 和,有 匀加速运动位移112
t v x m =,匀速运动位移)(102t t v x m -= 其总位移为)(2
101t t v t v x m m -+= 于是得:0x x x =-汽,即
001101)(2x t v t t v t v m m =--+ 代入数据解得:s t 3
401= 根据公式at v v +=0得22/25.2/40
330s m s m t v a m =⨯== 即该摩托车行驶时,至少应具有大小为2/25.2s m 的加速度。

【例2】解:设经过时间t ,车速度与人速度相等
根据公式at v v +=0,得s s a v t 616===
人 此时,车的位移为m m at x 18612
121221=⨯⨯== 人的位移为m m t v x 36662=⨯==人
则位移差m m m m x x x 2518183612<=-=-=∆
故人追不上车
此时的距离是最小距离为m m m x x x 718250min =-=∆-=∆
【例3】解:根据分析可知,汽车速度减小到与自行车速度相等时,若此时还没撞车,接下来永远都不会再撞车
根据公式at v v +=0,得:时间s s a v v t 16
104-=--==汽

在此段时间内汽车的位移m m t v v x 712
4102=⨯+=+=自汽汽 自行车的位移m m t v x 414=⨯==自自
故位移差m x x x 3=-=∆自汽
即汽车应在距离自行车3m 时关闭油门。

【练习3】解:假设A 追上B 时速度恰好相等,所需时间为t , 于是,有:A 的位移t v v x A 2
21+=,B 的位移t v x B 2= 故B A x x x -=0,代入数据,解得s t 20=
根据公式at v v +=0,得加速度2212/5.0/20
2010s m s m t v v a -=-=-= 即要使两车不相撞,a 至少为0.5m/s 2,方向与初速度方向相反。

【选择题】
1、D
2、C。

相关文档
最新文档