高考复习专题:追及相遇问题(共20张)

合集下载

高考复习追及相遇问题精品PPT课件

高考复习追及相遇问题精品PPT课件

1 2
(20 10)t0
100
t0 20 s
v/ms-1
20
A
10
B
a tan 20 10 0.5 o
t0
t/s
20
则当a≥0.5m/s2时不相撞
物体的v-t图像的斜率表示加 速度,面积表示位移。
例3:某人骑自行车,v1=4m/s,某时刻在他 前面7m处有一辆以v2=10m/s行驶的汽车开始 关闭发动机,a=2m/s2,问此人多长时间追上
2 当两个物体在同一条直线上运动时,由于两物体的运动情况不同,所以两物体之间的距离会不断发生变化,两物体间距离越来越大或越来
越小,这时就会涉及追及、相遇或避免碰撞等问题。
且之后当两者速度相等时,两者间有最大距离。
由A、B 位移关系: ①若A没追上B,则A、B永不相遇,
①若A没追上B,则A、B永不相遇,
2x0
2 100
则当a≥0.5m/s2时不相撞
解2:(图像法)
在同一个v-t图中画出A车和B车的速度—时间图像图线, 根据图像面积的物理意义,两车位移之差等于图中梯 形的面积与矩形面积的差,当t=t0时梯形与矩形的面积 之差最大,为图中阴影部分三角形的面积.根据题意,阴 影部分三角形的面积不能超过100 m .
3. 两种典型情况
(1)速度小者追速度大者(如:初速度为零的 匀加速追匀速)
A
a
v1=0
B
v2
①一定能追 一辆汽车在十字路口等候绿灯,当绿灯亮时 汽车以3m/s2的加速度开始由静止加速行驶,恰在这 时一辆自行车以6m/s的速度匀速驶来,从后边超过 汽车。试求:汽车从路口开动后,在追上自行车之 前经过多长时间两车相距最远?此时距离是多少?

高一物理追击和相遇专题(含详解)

高一物理追击和相遇专题(含详解)

追及和相遇问题专题研究一、追及和相遇问题的实质研究的两物体能否在相同的时刻到达相同的空间位置的问题。

二、 解决追及和相遇问题的关键1.画出物体运动的情景图2.理清三大关系(1)时间关系 :0t t t B A ±= (2)位移关系:0A B x x x =±(3)速度关系:v A =v B两者速度相等往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。

三、追及、相遇问题的分析方法:A. 画出两个物体运动示意图,根据两个物体的运动性质,选择同一参照物,列出两个物体的位移方程;B. 找出两个物体在运动时间上的关系C. 找出两个物体在运动位移上的数量关系D. 联立方程求解.说明:追及问题中常用的临界条件:⑴速度小者加速追速度大者,速度在接近,但距离在变大。

追上前两个物体速度相等时,有最大距离;⑵速度大者减速追赶速度小者, 速度在接近,但距离在变小。

追上前在两个物体速度相等时,有最小距离.即必须在此之前追上,否则就不能追上.四.典型例题分析:【例1】一小汽车从静止开始以3 m/s 2的加速度行驶,恰有一自行以6 m/s 的速度从车边匀速驶过。

(1)汽车从开动后到追上自行车之前,要经多长时间两者相距最远?此时距离是多少?(2)汽车什么时候追上自行车,此时汽车的速度是多少?【例2】汽车正以10m/s 的速度在平直公路上前进,突然发现正前方有一辆自行车以4m/s 的速度做同方向的匀速直线运动,汽车立即关闭油门做加速度大小为 6 m/s 2的匀减速运动,汽车恰好不碰上自行车。

求关闭油门时汽车离自行车多远?【例3】一列客运列车以20m/s 的速度行驶,突然发现同轨前方120m 处有一列货运列车正以6m/s 的速度匀速前进。

于是该客运列车紧急刹车,以0.8m/s 2的加速度匀减速运动,是判断两车是否相撞。

【例4】甲、乙两车同时从同一地点出发,甲以8m/s的初速度、1m/s2的加速度做匀减速直线运动,乙以2m/s的初速度、0.5 m/s2的加速度和甲同向做匀加速直线运动,求两车再次相遇前两车相距的最大距离和再次相遇时两车运动的时间。

追及与相遇问题(20张PPT)

追及与相遇问题(20张PPT)
追及与相遇问题
目录
考点回扣 典例解析 变式训练
考 点 回 扣ຫໍສະໝຸດ 讨论追及、相遇的问题,其实质就是分析讨论两物体在 相同时间内能否到达相同的空间位置的问题。 1、两个关系:时间关系和位移关系
2、一个条件:两者速度相等
两者速度相等,往往是物体间能否追上,或两者距离最 大、最小的临界条件,是分析判断的切入点。
方法一:公式法 两车恰不相撞的条件是两车速度相同时相遇。 由A、B 速度关系: v1
1 2 由A、B位移关系: v1t at v2t x0 2
at v2
(v1 v2 ) 2 (20 10) 2 a m/s2 0.5m/s2 2 x0 2 100
则a 0.5m / s
3 2 t 4s x 6t t 0 2 1 2 s at 24 m 2
v at 12m / s
方法四:相对运动法
选自行车为参照物,则从开始运动到两车相距最远这段过程中, 以汽车相对地面的运动方向为正方向,汽车相对此参照物的各个 物理量的分别为:v0=-6m/s,a=3m/s2,vt=0
(1)画清行程草图,找出两物体间的位移关系 (2)仔细审题,挖掘临界条件,联立方程 (3)利用二次函数求极值、图像法、相对运动知识求解
返回目录
典 例 解 析
[例1]:一辆汽车在十字路口等候绿灯,当绿灯亮时汽车以 3m/s2的加速度开始加速行驶,恰在这时一辆自行车以6m/s的 速度匀速驶来,从后边超过汽车。试求:汽车从路口开动后, 在追上自行车之前经过多长时间两车相距最远?此时距离是 多少?
2
则a 0.5m / s 2
方法四:相对运动法 以B车为参照物, A车的初速度为v0=10m/s,以加 速度大小a减速,行驶x=100m后“停下”,末速度为 vt=0 2 2

高考物理《追及和相遇问题》真题练习含答案

高考物理《追及和相遇问题》真题练习含答案

高考物理《追及和相遇问题》真题练习含答案1.[2024·湖南省衡阳市月考](多选)如图,一颗松子沿倾斜冰面AB 从顶端A 由静止匀加速滑下,1 s 后,松鼠从倾斜冰面的顶端A 以1.5 m/s 的初速度、3 m/s 2的加速度匀加速追赶松子.追赶过程中,松鼠与松子相隔的最远距离为98 m ,且松鼠恰好在底端B 处追上松子,则( )A .松子沿冰面下滑的加速度大小为2 m/s 2B .冰面AB 的长度为8 mC .松鼠从顶端A 出发后,经过2 s 就追上了松子D .在松鼠与松子相隔最远时,松鼠的速度大小为2 m/s 答案:AC解析:设松子运动的加速度为a ,经过时间t ,松鼠与松子相隔最远,此时松鼠与松子的速度均为v .根据位移—时间公式有v 2 t -v +1.52 (t -1)=98m ,根据匀变速直线运动公式有v =32 +3(t -1),解得t =1.5 s ,v =3 m/s ,故a =v t =2 m/s 2,A 正确,D 错误;设松子运动的时间为t ′时,松鼠追上松子,根据12 ×2t ′2=32 (t ′-1)+12 ×3(t ′-1)2,解得t ′=3 s ,松鼠经过2 s 追上松子,C 正确;倾斜冰面AB 的长度L =12×2t ′2=9 m ,B 错误.2.如图所示,一辆轿车和一辆卡车在同一公路上均由静止开始同时相向做匀加速直线运动,加速度大小分别为7 m/s 2和3 m/s 2,刚开始运动时两车车头相距20 m ,轿车车身全长为5 m ,卡车车身全长为20 m ,则从开始运动到两车分离的时间为( )A .1.0 sB .2.0 sC .3.0 sD .3.5 s 答案:C解析:设经过时间t 后,轿车和卡车车尾分离,轿车的位移x 1=12 a 1t 2,卡车的位移x 2=12a 2t 2,x 1+x 2=45 m. 联立解得t =3.0 s . 3.[2024·广东省广州市月考](多选)某公司为了测试摩托车的性能,让两驾驶员分别驾驶摩托车在一平直路面上行驶,利用速度传感器测出摩托车A 、B 的速度随时间变化的规律并描绘在计算机中,如图所示,发现两摩托车在t =25 s 时同时到达目的地.则下列叙述正确的是( )A .摩托车B 的加速度为摩托车A 的5倍B .两辆摩托车从同一地点出发,且摩托车B 晚出发10 sC .在0~25 s 时间内,两辆摩托车间的最远距离为400 mD .在0~25 s 时间内,两辆摩托车间的最远距离为180 m 答案:AC解析:v ­t 图像的斜率表示加速度,则A 、B 两车的加速度分别为a A =ΔvΔt =0.4 m/s 2,a B =Δv ′Δt ′ =2 m/s 2,因为a B a A =20.4 =51 ,所以摩托车B 的加速度为摩托车A 的5倍,A 正确;由题图可知,在t =25 s 时两车达到相同的速度,在此之前摩托车A 速度一直大于摩托车B 速度,两辆摩托车距离一直在缩小,所以在t =0时刻,两辆摩托车距离最远,不是从同一地点出发的,B 错误;速度图像和坐标轴围成的面积代表摩托车行驶的位移,因此两辆摩托车间的最远距离Δx =x A -x B =12 ×(20+30)×25 m -12 ×30×(25-10) m =400 m ,C 正确,D 错误.4.[2024·辽宁省朝阳市建平实验中学期中考试]在某次遥控车挑战赛中,若a 、b 两个遥控车从同一地点向同一方向做直线运动,它们的v ­t 图像如图所示,则下列说法不正确的是( )A .b 车启动时,a 车在其前方2 m 处B .运动过程中,b 车落后a 车的最大距离为1.5 mC .b 车启动3 s 后恰好追上a 车D .b 车超过a 车后,两车不会再相遇答案:A解析:b 车启动时,a 车在其前方距离Δx =12 ×2×1 m =1 m ,A 错误;运动过程中,当两车速度相等时,b 车落后a 车的距离最大,最大距离为Δx m =1+32 ×1 m -12×1×1 m=1.5 m ,B 正确;b 车启动3 s 后,a 车的位移x a =12 ×2×1 m +3×1 m =4 m ,b 车的位移x b =1+32 ×2 m =4 m ,即b 车恰好追上a 车,C 正确;b 车超过a 车后,因b 车速度大于a车,则两车不会再相遇,D 正确.5.[2024·湖南省衡阳市月考](多选)如图,小球a 自地面高h 处做自由落体运动,同时位于小球a 正下方的小球b 自地面以初速度v 0竖直上抛,b 球上升到最高点时恰与a 球相遇,a 、b 均可视为质点,则( )A .a 、b 两球经过时间hv 0 相遇B .a 、b 两球相遇点距地面高度为h2C .a 、b 两球在相遇过程中速度变化量的大小不相等D .a 、b 两球在相遇过程中速度变化量的方向不相同 答案:AB解析:设两者经过时间t 相遇,对小球a ,有h 1=12 gt 2;对小球b ,有h 2=v 0t -12 gt 2,t =v 0g ,且h 1+h 2=h ,联立解得t =h v 0 ,h 1=h 2=h2 ,A 、B 正确;两球在相遇过程中,均做加速度为g 的匀变速运动,速度变化量的大小和方向均相同,C 、D 错误.6.[2024·福建省龙岩市一级校联盟联考]电子设备之间在一定距离范围内可以通过蓝牙连接进行数据交换,已经配对过的两电子设备,当距离小于某一值时,会自动连接;一旦超过该值时,蓝牙信号便会立即中断,无法正常通信.如图所示,甲、乙两辆汽车并排沿平直路面向前行驶,两车车顶O1、O2两位置都装有蓝牙设备,这两个蓝牙设备在5 m以内时能够实现通信.t=0时刻,甲、乙两车刚好位于图示位置,此时甲车的速度为5 m/s,乙车的速度为2 m/s,O1、O2的距离为3 m.从该时刻起甲车以1 m/s2的加速度做匀减速运动直至停下,乙车保持原有速度做匀速直线运动.(忽略信号传递及重新连接所需的时间)求:(1)从t=0时刻起,甲车的运动时间;(2)在甲车停下来之前,两车在前进方向上的最大距离;(3)从t=0时刻起两车能够进行蓝牙通信的总时间.答案:(1)5 s(2)4.5 m(3)6.25 s解析:(1)甲车运动到停止0=v甲+a甲t其中a甲=-1 m/s2,代入数据得t=5 s(2)两车共速时,沿前进方向的距离最大:即v乙=v甲+a甲t′t′=3 s根据位移—时间公式有x甲=v甲t′+12a甲t′2,x乙=v乙t′Δx=x甲-x乙解得Δx=4.5 m(3)根据几何知识可知,当甲车在乙车前方且O1O2=5 m时,有x甲-x乙=4 m根据运动学公式有x甲=v甲t-12at2,x乙=v乙t解得t1=2 s,t2=4 s当0<t<2 s时,有O1O2<5 m,当2 s<t<4 s时,有O1O2>5 mt=t2=4 s时,甲车的速度为v甲1=v甲-at2=1 m/s<v乙t=4 s之后,甲、乙两车的距离不断减小,且甲车能够继续行驶的距离为x甲1=v2甲12a=0.5 m根据几何关系可知,从t=4 s开始到乙车行驶至甲车前方4 m的过程中,O1O2<5 m,这段过程经历的时间为t′=2×4 m+0.5 mv乙=4.25 s所以甲、乙两车能利用蓝牙通信的时间为t总=2 s+4.25 s=6.25 s。

追及相遇问题(高中物理一轮复习)

追及相遇问题(高中物理一轮复习)

考点一 追及相遇问题
方法一:物理分析法 假设再经t4时间两车第二次相遇(两车一直在运动),由位移关系得vt4 - 12a2t42=v0t4 解得t4=15 s 赛车停下来的时间 t′=av2=440 s=10 s 所以t4=15 s不符合实际,两车第二次相遇时赛车已停止运动
考点一 追及相遇问题
设再经时间 t5 两车第二次相遇,应满足2va22=v0t5,解得 t5=20 s。 方法二:图像法 赛车和安全车的v-t图像如图。由图知t=10 s, 赛车停下时,安全车的位移小于赛车的位移, 由v0t5=2va22 ,得t5=20 s。
考点二 图像中的追及相遇问题
当两车速度相等时,两车相距最远,由题图可知, 第 10 s 末时,两车速度相等,之间的距离最大。 0~10 s 内两车运动的位移分别为 x 甲′=0+2 6× 10 m=30 m,x 乙′=4+2 6×10 m=50 m,所以第 10 s 末两车相距 Δx′ =x 乙′-x 甲′+x0=45 m,故 C 错误;
返回
< 考点二 >
图像中的追及相遇问题
考点二 图像中的追及相遇问题
1.x-t图像、v-t图像中的追及相遇问题: (1)利用图像中斜率、面积、交点的含义进行定性分析或定量计算。 (2)有时将运动图像还原成物体的实际运动情况更便于理解。 2.利用v-t图像分析追及相遇问题:在有些追及相遇情景中可根据两个物 体的运动状态作出v-t图像,再通过图像分析计算得出结果,这样更直 观、简捷。 3.若为x-t图像,注意交点的意义,图像相交即代表两物体相遇;若为a -t图像,可转化为v-t图像进行分析。
考点二 图像中的追及相遇问题
例3 (多选)(2024·广东省四校联考)两车在不同的行车道上同向行驶,t= 0时刻,乙车在甲车前方25 m。两车速度—时间(v-t)图像分别为图中直 线甲和直线乙,交点坐标图中已标出,则 A.乙车的加速度是0.6 m/s2

高中物理复习 专题强化二 追及相遇问题

高中物理复习 专题强化二 追及相遇问题
法正确的是( D )
A.0~4 s内,甲做正向匀减速直线运动 B.甲的加速度为-2 m/s2 C.甲、乙相遇时,乙的速度为2 m/s D.5 s时乙的速度为12 m/s
图2
目录
研透核心考点
解析 x-t 图像的切线斜率表示物体的速度,由图像 可知,0 时刻甲图像的切线斜率为负,则甲的初速度 为负,t1=4 s 时甲图像的切线斜率为 0,则速度为 0, 即 0~4 s 内,甲的速度沿负方向减小,又 x-t 图像 为抛物线,则可知甲做负向匀减速直线运动,A 错误; 0~4 s 内,甲的位移为 x 甲 1=4 m-20 m=-16 m, 由逆向思维可得-x 甲 1=12a 甲 t21,解得 a 甲=2 m/s2,B 错误;t2=6 s 时甲、乙的图像相切即相遇,此时速度
01 02 03 04 05 06 07 08 09
目录
提升素养能力
2.两辆完全相同的汽车,沿水平直路一前一后同向匀速行驶,速度均为v0,若前 车突然以恒定的加速度刹车,在它刚停住时,后车以前车刹车时的加速度开始 刹车。已知每辆车在刹车过程中所行驶的距离均为s,若要保证两车在上述情
况中不相撞,则两车在匀速行驶时保持的距离至少为( B )
题 干
目录
研透核心考点
函数分析法讨论相遇问题的思路 设运动时间为 t,根据条件列方程,得到关于二者之间的距离 Δx 与时间 t 的二 次函数关系,Δx=0 时,表示两者相遇。若 Δ>0,即有两个解,说明可以相遇 两次;若 Δ=0,即有一个解,说明刚好追上或相遇;若 Δ<0,无解,说明追不 上或不能相遇。当 t=-2ba时,函数有极值,代表两者距离的最大值或最小值。
01 02 03 04 05 06 07 08 09
目录

追及与相遇问题(20张PPT)

追及与相遇问题(20张PPT)
追及与相遇问
• 追及与相遇问题概述 • 追及问题的解决方法 • 相遇问题的解决方法 • 追及与相遇问题的实际应用 • 练习题与解析
目录
Part
01
追及与相遇问题概述
定义与特点
定义
追及与相遇问题是一种常见的数学问题,主要研究两个或多个运动物体在同一直线上或 在不同路径上运动,其中一个物体追赶另一个物体或两者相遇的问题。
01
02
03
确定追及条件
当两物体速度相等时,是 追及的临界条件。
建立数学模型
根据题意,列出两物体的 位移方程,并找出时间关 系。
求解方程
解方程求出两物体的位移 和时间,判断是否追上。
Part
03
相遇问题的解决方法
直线上的相遇问题
确定参考系
选择一个合适的参考系,以便简 化问题。
检验解的合理性
根据实际情况检验解的合理性, 确保答案符合实际情况。
特点
这类问题通常涉及到速度、时间、距离等基本概念,需要运用数学模型和公式进行求解。
问题背景与重要性
问题背景
追及与相遇问题在日常生活和实际工程中有着广泛的应用,如交通、物流、航 天等领域。这类问题的解决有助于提高对物体运动规律的认识,为实际问题的 解决提供理论支持。
重要性
追及与相遇问题在数学教育和科学教育中也占有重要地位,是培养学生逻辑思 维和数学应用能力的重要素材。
行星运动中的追及与相遇
卫星轨道
天体碰撞
人造卫星在地球轨道上运行时,需要 考虑其他卫星或物体的影响,避免追 及和碰撞。
在宇宙中,天体之间的碰撞是相对罕 见的,但仍然需要关注小行星、彗星 等对地球的潜在威胁。
行星探测器
探测器在飞往行星的过程中,需要进 行精确的轨道设计和计算,确保能够 成功追及目标行星。

高中物理 追及相遇问题 专题练习 (含详细答案)

高中物理 追及相遇问题 专题练习 (含详细答案)

第八弹:那些年我们追过的小怪物1、如下图所示,小球甲从倾角θ=30°的光滑斜面上高h=5 cm的A点由静止释放做匀加速运动(加速度a=gsin30°),同时小球乙自C点以速度v0沿光滑水平面向左匀速运动,C点与斜面底端B处的距离L=0.4 m.甲滑下后能沿斜面底部的光滑小圆弧平稳地朝乙匀速追去,甲释放后经过t=1 s刚好追上乙,求乙的速度v0.2.汽车A在红绿灯前停住,绿灯亮起时起动,以0.4 m/s2的加速度做匀加速运动,经过30 s后以该时刻的速度做匀速直线运动.设在绿灯亮的同时,汽车B以8 m/s的速度从A 车旁边驶过,且一直以相同的速度做匀速直线运动,运动方向与A车相同,则从绿灯亮时开始()A.A车在加速过程中与B车相遇B. A、B相遇时速度相同C.相遇时A车做匀速运动D. 两车不可能再次相遇3.同一直线上的A、B两质点,相距s,它们向同一方向沿直线运动(相遇时互不影响各自的运动),A做速度为v的匀速直线运动,B从此时刻起做加速度为a、初速度为零的匀加速直线运动.若A在B前,两者可相遇______次,若B在A前,两者最多可相遇______次.4、一辆汽车在十字路口等候绿灯,当绿灯亮时汽车以3 m/s2的加速度开始加速行驶,恰在这时一辆自行车以6 m/s 的速度匀速驶来,从后边超过汽车.试求:汽车从路口启动后,在追上自行车之前经过多长时间两车相距最远?此时距离是多少?(请分别用公式法、图像法、二次函数极值法、相对运动法尝试解答)5、一列货车以28.8 km/h的速度在平直铁路上运行,由于调度失误,在后面600 m处有一列快车以72 km/h的速度向它靠近.快车司机发觉后立即合上制动器,但快车要滑行2000 m才停止.试判断两车是否会相碰.6、两辆完全相同的汽车,沿水平直路一前一后匀速行驶,速度均为v0.若前车突然以恒定的加速度刹车,在它刚停住时,后车以前车刹车的加速度开始刹车.已知前车在刹车过程中所行驶的距离为x,若要保证两辆车在上述情况中不相撞,则两车在匀速行驶时保持的距离至少应为( )A.1xB.2xC.3xD.4x7、A、B两车沿同一直线向同一方向运动,A车的速度v A=4 m/s,B车的速度v B=10 m/s.当B车运动至A车前方7 m 处时,B车以a=2 m/s2的加速度开始做匀减速运动,从该时刻开始计时,则A车追上B车需要的时间是_____s ,在A 车追上B车之前,二者之间的最大距离是______m.8.如图1-2-1所示,A、B两物体相距s=7 m,A正以v1=4 m/s的速度向右做匀速直线运动,而物体B此时速度v2=10 m/s,方向向右,做匀减速直线运动(不能返回),加速度大小a=2 m/s2,求:①从图示位置开始计时,经多少时间A追上B.②若A、B两物体初始相距s=8 m,A以v1=8 m/s的速度向右做匀速直线运动,其他条件不变,求A追上B时间9、在水平轨道上有两列火车A和B相距x,A车在后面做初速度为v0、加速度大小为2a的匀减速直线运动,而B车同时做初速度为零、加速度为a的匀加速直线运动,两车运动方向相同.要使两车不相撞,求A车的初速度v0满足什么条件.10.火车甲以速度V1向前行驶,发现前方S米处另一辆火车乙正以速度V2(V2<V1)做匀减速运动,加速度的大小为2α,火车甲为了避免与火车乙相撞,也开始做减速运动,则加速度1α的大小至少为多少?11.A、B两物体从同一地点,以相同初速度30 m/s,相同加速度a=10m/s2,间隔2 s时间先后出发,做匀减速运动(可以折返), 求两物体将在何处、何时相遇?12.从相距30 km的甲、乙两站每隔15 min同时以30 km/h的速率向对方开出一辆汽车.若首班车为早晨5时发车,则6时从甲站开出的汽车在途中会遇到多少辆从乙站开出的汽车?★13. A球自距地面高h处开始自由下落(以初速度为零,加速度为10m/s2做匀加速运动),同时B球以初速度v0正对A球竖直上抛(加速度向下,大小为10m/s2,做匀减速运动)空气阻力不计. 问:(1)要使两球在B球上升过程中相遇,则v0应满足什么条件?(2)要使两球在B球下降过程中相遇,则v0应满足什么条件?14—16题为选做题:14.甲、乙两车相距为s,同时同向运动,乙在前面做加速度为a1、初速度为零的匀加速运动,甲在后面做加速度为a2、初速度为v0的匀加速运动,试讨论两车在运动过程中相遇次数与加速度的关系。

高中物理专题复习【追及、相遇问题】

高中物理专题复习【追及、相遇问题】

高中物理专题复习【追及、相遇问题】1.xt图象中两图线交点表示相遇、vt图象在已知出发点的前提下,可由图象面积判断相距最远、最近及相遇.2.“慢追快”型(如:匀加速追匀速、匀速追匀减速、匀加速追匀减速):两者间距先增加,速度相等时达到最大,后逐渐减小,相遇一次.追匀减速运动的物体时要注意判断追上时是否已停下.3.“快追慢”型(如:匀减速追匀速、匀速追匀加速、匀减速追匀加速):两者间距先减小,速度相等时相距最近,此时追上是“恰好不相撞”.此时还没追上就追不上了.若在此之前追上,则此后还会相遇一次.1.(多选)A、B两辆汽车在平直公路上朝同一方向运动,如图所示为两车运动的vt图象,下列对阴影部分的说法不正确的是( )A.若两车从同一点出发,它表示两车再次相遇前的最大距离B.若两车从同一点出发,它表示两车再次相遇前的最小距离C.若两车从同一点出发,它表示两车再次相遇时离出发点的距离D.表示两车出发时相隔的距离2.如图所示,直线a和曲线b分别是在平行的平直公路上行驶的汽车a和b的速度—时间(vt)图线,在t1时刻两车刚好在同一位置(并排行驶),在t1到t3这段时间内,下列说法正确的是( )A.在t2时刻,两车相距最远B.在t3时刻,两车相距最远C.a车加速度均匀增大D.b车加速度先增大后减小3.甲、乙两物体同时开始运动,它们的xt图象如图所示,下列说法正确的是( )A.乙物体做曲线运动B.甲、乙两物体从同一地点出发C.当甲、乙两物体两次相遇时,二者的速度大小相等D.从第一次相遇到第二次相遇,二者的平均速度相同4.甲、乙两车从同一地点沿相同方向由静止开始做直线运动,它们运动的加速度随时间变化的图象如图所示,关于两车的运动情况,下列说法正确的是( ) A.在0~4 s内甲车做匀加速直线运动,乙车做匀减速直线运动B.在0~2 s内两车间距逐渐增大,2~4 s内两车间距逐渐减小C.在t=2 s时甲车速度为3 m/s,乙车的速度为4.5 m/sD.在t=4 s时甲车恰好追上乙车5.甲、乙两辆汽车沿同一方向做直线运动,两车在某一时刻刚好经过同一位置,此时甲的速度为5 m/s,乙的速度为10 m/s,甲车的加速度大小恒为1.2 m/s2.以此时作为计时起点,它们的速度随时间变化的关系如图所示,根据以上条件可知( )A.乙车做加速度先增大后减小的变加速运动B.在前4 s的时间内,甲车运动位移为29.6 mC.在t=4 s时,甲车追上乙车D.在t=10 s时,乙车又回到起始位置6.树德中学运动会上,4×100 m接力赛是最为激烈的比赛项目,有甲、乙两运动员在训练交接棒的过程中发现,甲短距离加速后能保持9 m/s的速度跑完全程为了确定乙起跑的时机,甲在接力区前s0处作了标记,当甲跑到此标记时向乙发出起跑口令,乙在接力区的前端听到口令时立即起跑(忽略声音传播的时间及人的反应时间),先做匀加速运动,速度达到最大后,保持这个速度跑完全程,已知接力区的长度为L=20 m.(1)若s0=13.5 m,且乙恰好在速度达到与甲相同时被甲追上,完成交接棒,则在完成交接棒时乙离接力区末端的距离为多大?(2)若s0=16 m.乙的最大速度为8 m/s,要使甲、乙能在接力区完成交接棒,且比赛成绩最好,则乙在加速阶段的加速度应为多少?答案与解析1.BCD 在vt图象中,图线与时间轴所包围的图形的“面积”表示位移,两条线的交点表示二者速度相等,若两车从同一点出发,则图中阴影部分的“面积”就表示两车再次相遇前的最大距离,故A正确,B、C、D错误.2.B 在t1~t3时间段内,b车速度都小于a车速度,两者间距一直增大,所以在t3时刻,两车相距最远,选项B正确,选项A错误.a车做匀加速直线运动,a车加速度不变,选项C错误,根据速度—时间图象的斜率表示加速度可知,b车加速度一直在增大,选项D 错误.3.D 乙物体的位移一直为正,并且在增大,所以乙物体一直朝着正方向运动,做直线运动,A错误;甲从坐标原点出发,乙从x0处开始出发,不是从同一地点出发,B错误;图象的斜率表示物体运动的速度,两者在相遇时,斜率不同,所以两者的运动速度不同,C 错误;从第一次相遇到第二次相遇,两者发生的位移相同,所用时间相同,根据公式v=Δx可得两者的平均速度相同,D正确.Δt4.C 根据图象可知,甲车的加速度不变,乙车的加速度减小,即在0~4 s 内甲车做匀加速直线运动,乙车做加速度逐渐减小的变加速直线运动,选项A错误;根据at图线与时间轴所围图形的面积表示速度变化量可知,在t =2 s 时甲车速度为3 m/s ,乙车速度为4.5 m/s ,选项C 正确;在0~2 s 内两车的速度差逐渐增大,2~4 s 内两车的速度差逐渐减小,4 s 末两车速度相等,故两车间距一直在增大,4 s 末间距最大,乙车在前,选项B 、D 错误.5.B 速度—时间图象的斜率代表加速度,据此判断乙的运动过程加速度先减小再增大最后减小,选项A 错误.速度—时间图象与时间轴围成的面积代表位移,0~4 s 内,乙图象面积大于甲图象面积,所以乙的位移大于甲的位移,在t =4 s 时甲不可能追上乙车,选项C 错误.前10秒,乙图象面积一直在增大,位移在增大,速度一直沿同一方向,所以乙不可能回到初始位置,选项D 错误.在前4 s 的时间内,甲车运动位移x =v 0t +12at 2=5 m/s ×4 s +12×1.2 m/s 2×(4 s)2=29.6 m ,选项B 正确. 6.解析 (1)设经过时间t ,甲追上乙,根据题意有vt -vt 2=s 0, 将v =9 m/s ,s 0=13.5 m 代入得t =3 s ,此时乙离接力区末端距离为Δs =L -vt 2=6.5 m.(2)因为甲、乙的最大速度v 甲>v 乙,所以在完成交接棒时甲跑过的距离越长,成绩越好,故应在接力区的末端完成交接,且乙达到最大速度v 乙,设乙的加速度为a ,加速的时间t 1=v 乙a,在接力区的运动时间t =L +s 0v 甲,L =12at 21+v 乙(t -t 1) 联立以上式子,代入数据解得a =83m/s 2. 答案 (1)6.5 m (2)83m/s 2。

高考物理专题复习——追及、相遇模型

高考物理专题复习——追及、相遇模型

高考物理专题复习——追及、相遇模型一、追及、相遇模型(同一直线上)【模型概述】追及和相遇问题是一类常见的运动学问题,从时间和空间的角度来讲,相遇是指同一时刻到达同一位置。

可见,相遇的物体必然存在以下两个关系:一是相遇位置与各物体的初始位置之间存在一定的位移关系。

若同地出发,相遇时位移相等为空间条件。

二是相遇物体的运动时间也存在一定的关系。

若物体同时出发,运动时间相等;若甲比乙早出发△t ,则运动时间关系为t t t ∆+=乙甲。

要使物体相遇就必须同时满足位移关系和运动时间关系。

【模型讲解】1. 利用不等式求解例1:甲、乙两物体相距s ,在同一直线上同方向做匀减速运动,速度减为零后就保持静止不动。

甲物体在前,初速度为v 1,加速度大小为a 1。

乙物体在后,初速度为v 2,加速度大小为a 2且知v 1<v 2,但两物体一直没有相遇,求甲、乙两物体在运动过程中相距的最小距离为多少? 解析:若是2211a v a v ≤,说明甲物体先停止运动或甲、乙同时停止运动。

在运动过程中,乙的速度一直大于甲的速度,只有两物体都停止运动时,才相距最近,可得最近距离为22212122a v a v s s -+=∆ 若是2221a v a v >,说明乙物体先停止运动那么两物体在运动过程中总存在速度相等的时刻,此时两物体相距最近,根据t a v t a v v 2211-=-=共,求得1212a a v v t --= 在t 时间内 甲的位移t v v s 211+=共乙的位移t v v s 222+=共代入表达式21s s s s -+=∆ 求得)(2)(1212a a v v s s ---=∆ 评点:本题是一个比较特殊的追及问题(减速追减速)。

求解时要对各种可能的情况进行全面分析,先要建立清晰的物理图景。

本题的特殊点在于巧妙地通过比较两物体运动时间的长短寻找两物体相距最近的临界条件。

2. 巧用图象法求解例2:如图1所示,声源S 和观察者A 都沿x 轴正方向运动,相对于地面的速率分别为S v 和A v 。

高中物理高考复习课件:竖直上抛运动、追及和相遇问题

高中物理高考复习课件:竖直上抛运动、追及和相遇问题
竖直上抛运动、追及和相遇问题
目标要求
1. 知道什么是竖直上抛运动,理解竖直上抛运动是匀变速直线运
动.
2.会分析竖直上抛运动的运动规律.会利用分段法或全程法求解竖
直上抛运动的有关问题.
3.知道竖直上抛运动的对称性.
4.会分析追及相遇问题,理解两者速度相等为临界条件.
5.会根据位移关系、时间关系列方程求解.
(1)在什么条件下,两物体在B的最高点相遇?
(2)在什么条件下,两物体在地面相遇?
(3)在什么条件下,B正在上升途中两物体相遇?
(4)在什么条件下,B正在下降途中两物体相遇?
拓展2
追及、相遇问题
【归纳】
1.追及、相遇问题是常见的运动学问题,其实质是研究两物体能否
在相同的时刻到达相同的空间位置的问题.
即做加速度大小为a的匀减速直线运动.要使两火车不相撞,a应满足
什么条件?
例 4 两玩具车在两条平它们在四次比赛中的v-t图像如图所示.在0~3 s内哪幅图对应
的比赛中两车可能再次相遇(
)
答案:C
例 5 [2023·山东济南高一上检测]某天,小明在上学途中沿人行道以v1=1 m/s的
5.竖直上抛运动的特点
(1)对称性
①时间对称性:对同一段距离,上升过程和下降过程
所用时间相等,tAB=tBA,tOC=tCO.
②速度对称性:上升过程和下降过程通过同一点时速
度大小相等,方向相反,vB =-v′B ,vA =−vA′ .(如图所
示)
(2)多解性
通过某一点可能对应两个时刻,即物体可能处于上升
阶段,也可能处于下降阶段.
6.竖直上抛运动的处理方法
分段分 上升阶段是初速度为v0、a=-g的匀减速直线运动;

追及相遇问题专题总结含答案

追及相遇问题专题总结含答案

追及相遇问题专题总结一、 解相遇和追及问题的关键 (1)时间关系 :0t t t B A ±=(2)位移关系:0A B x x x =±(3)速度关系:两者速度相等。

它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。

二、追及问题中常用的临界条件:1、速度小者追速度大者,追上前两个物体速度相等时,有最大距离;2、速度大者减速追赶速度小者,追上前在两个物体速度相等时,有最小距离.即必须在此之前追上,否则就不能追上:(1)当两者速度相等时,若追者仍没有追上被追者,则永远追不上,此时两者之间有最小距离。

(2)若两者速度相等时恰能追上,这是两者避免碰撞的临界条件。

(3)若追者追上被追者时,追者速度仍大于被追者的速度,则被追者还有一次追上追者的机会,即会相遇两次。

二.几种典型的追击、相遇问题在讨论A 、B 两个物体的追击问题时,先定义几个物理量,0x 表示开始追击时两物体之间的距离,x ∆表示开始追及以后,后面的物体因速度大而比前面物体多运动的位移;1v 表示运动方向上前面物体的速度,2v 表示后面物体的速度。

下面分为几种情况:1. 特殊情况:同一地点出发,速度小者(初速度为零,匀加速运动)追击速度大者(匀速运动)。

(1)当12v v =,A 、B 距离最大。

(2)当两者位移相等时,有 122v v =且A 追上B 。

(3)A 追上B 所用的时间等于它们之间达到最大距离时间的两倍,122t t =。

(4)两者运动的速度时间图像2. 速度小者(2v )追击速度大者(1v )的一般情况3. 速度大者(2v )追速度小者(1v )的一般情况追击与相遇问题专项典型例题分析类型图象 说明匀加速追匀速①t =t 0以前,后面物体与前面物体间距离增大②t =t 0时,两物体相距最远为x 0+Δx③t =t 0以后,后面物体与前面物体间距离减小④当两者的位移相同时,能追及且只能相遇一次。

高考物理一轮复习课件追及与相遇问题

高考物理一轮复习课件追及与相遇问题
共速


速度相同时相遇,说明B恰好能追上A!
类型2
速度大者追速度小者规律总结:
判断vA=vB的时刻A、B的位置情况
①若B在A前,则追上,并相遇两次
②若A、B在同一处,则B恰能追上A
③若B在A后面,则B追不上A,

此时vA=vB是相距最______的时候
比较
练2 a、b两车在两条平行的直车道上行驶,它们的v-t图
现在B开始以大小为a=2m/s2的加速度匀减速刹车,问
B能否追上A?
对吗?
A
B
第1S内
4m
9m
第2S内
4m
7m
第3S内
4m
5m
第4S内
4m
3m
第5S内
4m
1m
共速





直接
共速

正解:
②若S0=9m
③若S0>9m还能追上吗?
A
B
第1s内 4m 9m
第2s内 4m 7m
第3s内 4m 5m
第4s内 4m 3m
汽车以v0=20m/s的速度同向做匀速直线运动,汽车在
同学前方S=28m处,突然以a=2m/s2的加速度刹车。试
求:(1)人何时追上车?(2)人和车最远距离为多
少?
汽车

注意:刹车陷阱!!!
类型2 速度大者追速度小者
例2 A、B两车在同一直线上运动,t=0时刻A车在B
车前s0=8m处,A的速度vA=4m/s,B的速度vB=10m/s。
当两物体速度相等时,即t=t0时刻:
①若Δx=x0,则恰能追上,两物体只能相遇
匀速追

高中物理追击和相遇问题专题(含详解)

高中物理追击和相遇问题专题(含详解)

直线运动中的追及和相遇问题一、相遇和追及问题的实质研究的两物体能否在相同的时刻到达相同的空间位置的问题。

二、 解相遇和追及问题的关键1.画出物体运动的情景图2.理清三大关系(1)时间关系 :0t t t B A ±= (2)位移关系:0A B x x x =±(3)速度关系:v A=v B两者速度相等往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。

三、追及、相遇问题的分析方法: A. 画出两个物体运动示意图,根据两个物体的运动性质,选择同一参照物,列出两个物体的位移方程; B. 找出两个物体在运动时间上的关系 C. 找出两个物体在运动位移上的数量关系 D. 联立方程求解.说明:追及问题中常用的临界条件:⑴速度小者加速追速度大者,速度在接近,但距离在变大。

追上前两个物体速度相等时,有最大距离; ⑵速度大者减速追赶速度小者, 速度在接近,但距离在变小。

追上前在两个物体速度相等时,有最小距离.即必须在此之前追上,否则就不能追上. 四、典型例题分析:(一).匀加速运动追匀速运动的情况(开始时v 1< v 2): 1.当v 1< v 2时,两者距离变大; 2.当v 1= v 2时,两者距离最大;3.v 1>v 2时,两者距离变小,相遇时满足x 1= x 2+Δx ,全程只相遇(即追上)一次。

【例1】一小汽车从静止开始以3m/s 2的加速度行驶,恰有一自行车以6m/s 的速度从车边匀速驶过.求:(1)小汽车从开动到追上自行车之前经过多长时间两者相距最远?此时距离是多少? (2)小汽车什么时候追上自行车,此时小汽车的速度是多少?(二).匀速运动追匀加速运动的情况(开始时v 1> v 2): 1.当v 1> v 2时,两者距离变小;2.当v 1= v 2时,①若满足x 1< x 2+Δx ,则永远追不上,此时两者距离最近;②若满足x 1=x 2+Δx ,则恰能追上,全程只相遇一次; ③若满足x 1> x 2+Δx ,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。

高中物理《追及与相遇问题》复习课件高一全册物理课件

高中物理《追及与相遇问题》复习课件高一全册物理课件
间的距离最大。设经时间t两
车之间的距离最大。则:
x汽
x x自
v汽atv自 tv自/a2s
xmx自 x汽 v自 t1 2a2t6m
那么,汽车经过多少时间能追上自行车?此时(cǐ shí)
汽车的速度是多大?汽车运动的位移又是多大?
12 v T aT 自
2 12/9/2021
T 2v自 4s a
第十八页,共三十页。
上,并相遇两次;②若甲乙在同一 处,则甲恰能追上乙;③若甲在乙 后面,则甲追不上乙,此时是相距 最近的时候。
第五页,共三十页。
(1)追及
12/9/2021
甲一定能追上乙,v甲=v乙 的时刻(shíkè)为甲、乙有最大距离的 时刻
判断v甲=v乙的时刻甲乙的 位置情况: ①若甲在乙前,则
追上,并相遇两次;②若甲乙
∵不相撞(xiānɡ <0 ∴△ zhuànɡ)
12/9/2021
10041a1000 2
则a0.5m/2s
第二十八页,共三十页。
[方法 三] (fāngfǎ) 图象法
12(2010)t0 100 t0 20s a20100.5
20
则a0.5m/2s
12/9/2021
v/ms-1
20 A
10
0
t0
空间位置的问题。
1. 两个(liǎnɡ ɡè)关系:时间关系和位移关系
2. 一个条件:两者速度相等 两者速度相等,往往是物体间能否(nénɡ 追 fǒu)
上,或两者距离最大、最小的临界条件,是
分析12/9/判2021 断的切入点。
第十二页,共三十页。
二、例题(lìtí)分析
【例1】一辆汽车在十字路口等候绿灯, 当绿灯亮时汽车以3m/s2的加速度开始加速行 驶,恰在这时一辆自行车以6m/s的速度匀速 驶来,从后边超过汽车。试求:汽车从路口

追及相遇问题专题

追及相遇问题专题

题型1:追及和相遇的运动图象分析
ABC
v

Q

PHale Waihona Puke OTt题型2:追及与相遇问题的多种解法
题型3:临界问题的分析与求解
羚羊从静止开始奔跑,经过50m的距离能加速到最大速度25m/s,并能维持一 段较长的时间。猎豹从静止开始奔跑,经过60m的距离能加速到最大速度 30m/s,以后只能维持这个速度4.0s。设猎豹距离羚羊xm时开始攻击,羚羊则 从猎豹攻击1.0s后才开始奔跑,假设羚羊和猎豹在加速阶段分别做匀加速运动 且均沿同一直线。求: (1)猎豹要在加速阶段追上羚羊,x应在什么范围内取值? (2)猎豹要在从最大速度减速前追上羚羊,x应在什么范围内取值?

2021年高考物理专题复习:追及与相遇问题

2021年高考物理专题复习:追及与相遇问题

2021年高考物理专题复习:追及与相遇问题一、单选题1.某司机驾驶一辆空出租车正以10m/s的速度匀速向前行驶,某时刻在车后方10m处的乘客招手示意司机停车并立即以5m/s的速度匀速追赶,司机看到乘客招手后经1.5s 的反应时间后开始刹车,加速度大小为2m/s2.下列说法正确的是()A.从司机看到乘客招手到出租车速度减到零所用时间为5sB.从司机看到乘客招手到出租车速度减到零出租车的总位移为25mC.出租车停止时,乘客还没有追上D.司机看到乘客招手经4.5s乘客与出租车相距最远2.如图所示,A、B两物体相距s=11m,物体A以v A=4m/s的速度向右匀速运动。

而物体B此时的速度v B=10m/s,向右做匀减速运动,加速度a =-2m/s2 。

那么物体A追上物体B所用的时间为()A.7s B.8s C.9s D.10s3.在一个大雾天,一辆小汽车以20 m/s的速度行驶在平直的公路上,突然发现正前方x0=20m处有一辆大卡车以10 m/s的速度同方向匀速行驶,汽车司机立即刹车,忽略司机的反应时间,3s 后卡车也开始刹车,从小汽车司机开始刹车时计时,两者的v-t图象如图所示,下列说法正确的是()A.小汽车与大卡车一定会追尾B.由于在减速时大卡车的加速度大小小于小汽车的加速度大小,导致两车在t=4 s时追尾C.两车没有追尾,两车最近距离为10 mD.两车没有追尾,并且两车都停下时相距5 m4.A 、B 两辆汽车从同一地点同时出发沿同一方向做直线运动,它们的速度的平方(v 2)随位置(x )的变化规律如图所示,下列判断正确的是( )A .汽车A 经过8s 刚好停下B .汽车A 、B 在6m x =处的速度大小为6m /sC .汽车B 的加速度为6m/s 2,初速度为0D .从开始到汽车A 停止前,当x A =6m 时A 、B 相距最远5.物体甲以大小为4m/s 的速度做匀速直线运动,物体乙从距离甲后方5m 处,从静止开始朝着甲做加速度为22m/s 的匀加速直线运动,历时t 追上甲,则t 等于( )A .5sB .4sCD .5s 46.在平直公路上有甲、乙两辆汽车同时从同一位置沿着同一方向做匀加速直线运动,它们速度的平方随位移变化的图像如图所示,则下列说法错误的是( )A .甲车的加速度比乙车的加速度大B .在0.5m x =处甲乙两车的速度相等C .在0.5m x =处甲乙两车相遇D .在2s t =末甲乙两车相遇7.在平直公路上,一辆自行车与同方向行驶的汽车同时经过某点,它们的位移随时间的变化关系是:自行车:x 1=6t ,汽车:x 2=10t -14t 2,由此可知:自行车追赶汽车的过程中,两者间的最大距离为( )A .16mB .14mC .12mD .10m8.如图为a、b两物体同时开始运动的图像,下列说法正确的是()A.若图像为位置-时间图像,则两物体在M时刻相遇B.若图像为速度-时间图像,则两物体在M时刻相距最远C.若图像为加速度-时间图像,则两物体在M时刻速度相同D.以上说法均不正确二、多选题9.A、B两质点在同一条直线上沿同方向做匀变速直线运动,t=0时刻A在前、B在后,相距s0=4.5m。

追及相遇问题 2023年高考物理一轮复习(新高考新教材)

追及相遇问题    2023年高考物理一轮复习(新高考新教材)
由位移时间关系公式有:vBt-12at2=x0+vAt,解得 t1=(3- 2) s,t2= (3+ 2) s.
考向2 速度大者追速度小者
内容 索引
题型一 追及相遇问题 题型二 图像法在追及相遇问题中的应用 课时精练
题型一
追及相遇问题
考向1 速度小者追速度大者
例1 一辆汽车在十字路口等候绿灯,当绿灯亮时汽车以a=3 m/s2的加 速度开始加速行驶,恰在这时一辆自行车以6 m/s的速度匀速驶过,从后 边超过汽车.则汽车从路口பைடு நூலகம்动后,在追上自行车之前经过多长时间两车 相距最远?此时两车的距离是多少? 答案 2 s 6 m
由二次函数求极值的条件知:t=2 s时,Δx有最大值6 m
所以t=2 s时两车相距最远,为Δx=6 m.
解法三(图像法):自行车和汽车的v-t图像如图所示,由图可以看出, 在相遇前,t1时刻两车速度相等,两车相距最远,此时的距离为阴影 三角形的面积,
v1=6 m/s 所以有 t1=va1=63 s=2 s, Δx=v21t1=6×2 2 m=6 m.
4.常用分析方法 (1)物理分析法:抓住“两物体能否同时到达空间某位置”这一关键,认 真审题,挖掘题目中的隐含条件,建立物体运动关系的情境图. 能否追上的判断方法(临界条件法) 物体B追赶物体A:开始时,两个物体相距x0,当vB=vA时,若xB>xA+x0, 则能追上;若xB=xA+x0,则恰好追上;若xB<xA+x0,则不能追上.
第一章 运动的描述 匀变速直线运动
大一轮复习讲义
专题强化二 追及相遇问题
目标 1.掌握处理追及相遇问题的方法和技巧.2.会在图像中分析追及相遇问题.3.熟练运用运动学公式 要求 结合运动图像解决追及相遇的综合问题.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档