北大附中高考数学专题复习导数与微分经点答疑(四)

合集下载

北大附中高考数学专题复习导数与微分判断题训练和填空题训练

北大附中高考数学专题复习导数与微分判断题训练和填空题训练
30.已知y=f(x)有连续的二阶导数,且在x=a点处有拐点(a,f(a)),则
31.函数y=x-ln(x+1)在区间_________内单调减少,在区间_________内单调增加.
32.已知曲线 ,则其水平渐近线方程是____________,垂直渐近线方程是__________.
参考答案
一、判断题
37.√ 提示:在(-∞,0]上单调减少,而(0,+∞)上单调增加.
38.√
39.√ 提示:利用函数的单调性证明不等式.设 ,则 ,f(x)在[1,+∞]上连续,在(1, +∞)内 ,因此[1,+∞)上单调增加,从而当x>1时,f(x)>f(1),由于f(1)=0,故f(x)>f(1)=0,即
40.× 提示: f(x)在(-∞,2)和(2,+∞)内设有极值点,但在(-∞,2)内, ,函数f(x)单调增加,在(2,+∞)内函数单调减少,又f(x)在点x=2连续,故x=2是函数f(x)的极大点.
24.x=sint,y=cos2t,在t=π/6处 的斜率是2.( )
26.函数在每点的切线只与它的图象交于一点.( )
28.设0<α<1,f满足 及f(0)=0,则f在点O是不可导的.( )
32.设f(x)=axsinx+bxcosx+csinx+dcosx,则只有当a=1,b=0,c=0,d=1时, ( )
14.× 提示:考虑函数 ,当x=0时f(x)=0,而
15.√
16.×
17.× 提示:根据导数定义 知,在x=0处左导数与右导数不相等.
18.× 提示: ,所以f(x)在x=0处连续,但
同理 所以 不存在,即f(x)在x=0处不可导.
19.√ 提示:利用复合函数求导公式及

北京高三导数知识点总结

北京高三导数知识点总结

北京高三导数知识点总结高三导数知识点总结一、导数的概念和定义导数是微积分中的重要概念,表示函数在某一点的变化率。

导数的定义如下:设函数y=f(x),在点x0处可导,那么函数y=f(x)在点x0处的导数为:f'(x0) = lim┬(△x->0)⁡((f(x0+△x)-f(x0))/△x)二、导数的计算法则1. 常数法则:设k为常数,则导数f'(x) = 02. 幂函数法则:- 若f(x) = x^n,其中n为常数,则导数f'(x) = nx^(n-1)- 特殊情况:- 当n为负整数时,函数f(x) = x^n在x = 0处无导数- 当n为0时,函数f(x) = x^n在整个定义域上导数恒为03. 指数函数法则:- 若f(x) = a^x,其中a为常数且a>0且a≠1,则导数f'(x) = (ln⁡(a))a^x- 若f(x) = e^x,则导数f'(x) = e^x4. 对数函数法则:- 若f(x) = log┬a⁡(x),其中a为常数且a>0且a≠1,则导数f'(x) = 1/(xln⁡(a))- 若f(x) = ln⁡(x),则导数f'(x) = 1/x5. 三角函数法则:- 若f(x) = sin(x),则导数f'(x) = cos(x)- 若f(x) = cos(x),则导数f'(x) = -sin(x)- 若f(x) = tan(x),则导数f'(x) = sec^2⁡(x)6. 反函数法则:- 若f(x) = y为可逆函数,且y = g(x)的导数在x = b处存在且不为0,则反函数g(x)在y = b处的导数为1/f'(g(b))- 简记为:若y = f(x)的导数不为0,则(dy)/(dx) = 1/(dx)/(dy)三、导数的应用1. 切线和法线:- 切线方程:y = f'(x0)(x - x0) + f(x0)- 法线方程:y = -(1/f'(x0))(x - x0) + f(x0)2. 凹凸性和拐点:- 凹凸性:函数f(x)的二阶导数f''(x)代表函数曲线凹凸性质。

北京高考导数复习知识点

北京高考导数复习知识点

北京高考导数复习知识点导数是微积分中的重要概念,它在数学和物理等学科中都有广泛的应用。

在高考中,导数是必考内容,理解和熟练掌握导数的定义、性质和运算法则对于考生来说非常重要。

本文将对北京高考中涉及的导数知识点进行详细介绍和复习,帮助考生全面了解导数的相关内容。

一、导数的基本定义和概念1. 函数的导数:给定函数y=f(x),在其中一点x处,如果函数在该点附近有定义并存在极限,那么称函数在点x处可导,并将该极限值称为函数在该点的导数,记作f'(x)或dy/dx。

2. 导函数:导函数是函数y=f(x)在其定义域上的每个可导点处的导数所确定的新函数,记作f'(x)或dy/dx。

二、导数的计算和运算1. 基本导数公式:常数的导数为0,幂函数的导数为幂次乘以底数的幂次减一,指数函数的导数为导数等于自身乘以ln(a),对数函数的导数为导数等于自身的导数除以自身。

2.导数的四则运算法则:和的导数等于导数的和,差的导数等于导数的差,常数倍的导数等于常数倍后函数的导数,积的导数等于先导后函数加后导前函数,商的导数等于分母导后函数减后导前函数除以分母的平方。

三、导数的几何意义和应用1.导数的几何意义:在直角坐标系中,函数在其中一点x处的导数f'(x)表示函数的曲线在该点处的切线的斜率。

2.函数的单调性和极值点:若函数在其中一区间上的导数恒大于(或小于)0,则该函数在该区间上单调递增(或递减);函数在其中一点处的导数为0,则该点可能是函数的极值点。

3.函数的凸凹性和拐点:若函数在其中一区间上的导数恒大于(或小于)0,则该函数在该区间上是凸函数(或凹函数);函数在其中一点处的导数的增减性改变,且导数为0,则该点可能是函数的拐点。

4.极限与导数的关系:若函数在其中一点处可导,则函数在该点处一定连续。

四、应用题1.切线方程:已知函数f(x)在点x=a处的导数f'(a),切线方程y=f'(a)(x-a)+f(a)。

北大附中高考数学专题复习概率与统计经点答疑

北大附中高考数学专题复习概率与统计经点答疑

学科:数学教学内容:概率与统计经点答疑(二)5.怎样由总体密度曲线来计算连续型随机变量的概率分布?经过上面几个问题的讨论我们了解了离散型随机变量,并学会了计算离散型随机变量的分布列.但是在解决实际问题时除了应用离散型随机变量,我们还会用到连续型随机变量,这两种不同类型的随机变量在研究的方法上存在巨大差异.什么是连续型随机变量呢?直观地讲,就是这种随机变量的取值不再是一些离散的点而是某些区间,甚至是整个数轴,比如,零件的尺寸、农作物的产量、水库的水位等等.因为连续型随机变量不是可一一列举的,所以其概率规律性也就不能用分布列来刻画.那么怎样去研究连续型随机变量取值的规律性呢?这就引出了课本中讲述的“总体密度曲线”这个概念.设ξ表示一个连续型随机变量,我们的目的是掌握ξ取值的规律性.由于我们不能逐点去讨论它的取值情况,[注:因为连续型随机变量的取值是实数轴的某个区间,而在实数轴上任何两个相异点之间总包含无穷多个点,所以采用逐点讨论的办法就行不通了.]所以我们转向讨论随机变量ξ在某个给定的区间(a,b]上取值的情况.如果对于任何的区间(a,b]我们总能确定出P(a<ξ≤b)的值,我们也就掌握了随机变量ξ的取值规律.在我们还未具备研究连续型随机变量要使用的微分、积分等知识之前,我们只能讨论一些简单的连续型随机变量的概率分布.对于连续型随机变量,我们一般是根据它的概率密度函数f(x)来计算变量ξ在某一区间上取值的概率分布.在具体计算时我们采用函数和函数图象对应的方法.先画出f(x)的图象,然后看f(x)的图象在给定的区间(a,b]上所围的面积.这个面积的数值就是连续型随机变量在给定的区间(a,b)引上取值的概率.常用的连续型随机变量的概率分布有均匀分布、指数分布和正态分布等.这三种分布的概率密度函数及总体密度曲线如图1-l所示:例 已知随机变量ξ的概率密度函数为:()⎪⎩⎪⎨⎧≥<≤<= 1. x 01,x 02x 0, x 0x f(1)画出随机变量ξ的概率密度曲线. (2)求出ξ落在区间(0.2,0.8]内的概率. 思路启迪易知函数f(x)的图像是一条过原点的线段,而ξ落在区间(0.2,0.8]内的概率就是f(x)的图像在区间(0.2,0.8]内包含图形的面积.规范解法 (1)f(x)的图象如图1—2所示.(2)根据f(x)的图象可知P(0.2<ξ≤0.8)是图中阴影部分梯形的面积,易得 P(0.2<ξ≤0.8)()()2.08.028.022.021-⨯⨯+⨯==0.6,所以ξ落在区间(0.2,0.8]内的概率为0.6.6.期望和方差各是什么? 在实际问题中,除了离散型随机变量的分布列之外,我们有时还要了解随机变量更多的特征.期望和方差就是用来刻画随机变量数字特征的重要参数.期望主要用来描述随机变量的平均取值情况,而方差则用来描述随机变量的取值对于平均值的离散程度.作为随机变量重要的数字特征,期望和方差直观、综合地反映出了变量取值的大致情况,在实际中具有广泛的应用.先来看期望,期望有时又称为数学期望或平均数等等.它表明了随机变量取值的平均水平,我们用下面的例子来引出数学期望的数学定义.一个车间共有5台机床,对于这些机床,由于各种原因,时而工作,时而停止.因此任一时刻工作着的机床数目是一个随机变量,为了精确估计该车间的电力负荷,我们需要知道车间中同时工作着的机床的平均数目.表1-13因此,该车间中同时工作着的机床的平均数目为:.35.42011520642023201220012000201156423120100=⨯+⨯+⨯+⨯+⨯+⨯=⨯+⨯+⨯+⨯+⨯+⨯由上面的计算过程可知,所求的平均数实际上就是随机变量的可能取值与取该值时对应的频率乘积之和.由于这个平均值是由观察得来的,所以会带有—些偶然性,这种偶然性主要表现在频率上.如果我们能用概率代替频率,就能从根本上消除这种偶然性,从而在本质上反映出随机变量的平均值.为此,我们将期望定义为如下的值:表1-14我们定义n n 2211p x p x p x E +++=η 为离散型随机变量η的数学期望,简称期望.[注:一个随机变量的期望是一个确定的值,如果它存在的话,应与等号右边的求和顺序无关.]根据数学期望的定义,我们可得关于期望的两条重要的性质:性质一:对于任何常数c ,公式E(c η)=c ·E η恒成立.[注:一般地,随机变量η的期望可以成E(η)简记为E η,但若η前有系数时,必须写成E(k η),k 为常数系数.]性质二:对于多个随机变量k 21,,,ηηη ,若它们的期望都存在,则下式成立.().E E E E k 21k 21η++η+η=η++η+η下面列举几个常用分布的期望值:(1)服从两点分布的随机变量η的期望值为E η=P .(其中P 为η取1时的概率). (2)服从二项分布的随机变量η的期望值为E η=n ·P .(其中P 为事件成功的概率). (3)服从几何分布的随机变量η的期望值为p1E =η.(其中P 为事件成功的概率). 由上面的实例可知,期望在实际应用中很重要.但在不少问题中,仅仅知道了随机变量的期望是不够的.比如,考查射手打靶射击的水平,不仅要看他们各自平均击中的环数,而表1-15容易计算甲、乙二人射击的平均环数都是7环,但很明显击中环数与平均击中环数的偏离程度不一样.从稳定性来看乙要好于甲.把随机变量的这种特性用一个数字表示出来就有了方差的概念.我们来看看方差的定义.对于上述例题我们可以先计算每次击中的环数与平均击中环数的差的平方:()()()()()()()()()() 1.760,771;780;770;77对射手己有:1.769;7100;771;789;74对射手甲有:2222222222=-=-=-=-=-=-=-=-=-=-然后分别对它们求均值:对甲有:(9+1+0+9+1)÷5=4. 对乙有:(0+0+l +0+1)÷5=0.4.显然0.4<4,即乙射手的射击稳定性要优于甲射手.在这里为什么我们要用实际取值与平均取值的差的平方参与运算而不用差本身呢?这是因为差本身可能由于有正有负而相互抵消,那就不能正确反映出偏离程度了,而用差的平方就—定可以避免这种情况发生.上面例中的实际取值与均值的差的平方和的平均值我们叫做方差.方差是用来描述随机变量取值的偏离程度的量.对于随机变量η,方差记为ηD ,显然ηD 表示()2E η-η的平均值,也就是()2E E D η-η=η,这就是方差的数学定义.根据我们已知的期望的运算法则有:()()[]()()()()()()().E E E E E E E E E E E E E E D 22222222222 22ηηηηηηηηηηηηηηηη-=+-=+⋅-=+⋅-=-=在实际计算过程中,我们经常用上面推出的等式:()()22ηηηE E D -=来计算方差.和期望一样,方差也有两条常用的性质:()D η.c ηc ,有D 性质一:对任一常数c 2⋅=⋅性质二:对于互相独立的随机变量k 21,,,ηηη ,成立()=η++η+ηK 21D.D D D k 21η++η+η一些常用概率分布的方差如下:(1)两点分布的随机变量的方差为:D η=p ·(1-p).(2)服从二项分布的随机变量的方差为:D η=n ·p ·(1-p).()2/P p 1η随机变量的方差为:D (3)服从几何分布的-=.[注:除了方差外,我们还可能用到ηD ,一般用希腊字母σ来表示,称为随机变量η的标准差,它也是描述随机变量取值离散程度的重要参数.]7.离散型随机变量的期望和方差是如何计算的?离散型随机变量的数学期望和方差的计算主要有以下三种方法. 方法一:用定义求出.先来回顾一下期望和方差的定义:设η为离散型随机变量,其分布列为:表1-16若和式 +++++k k 332211p x p x p x p x 可以计算,则称之为随机变量η的数学期望,记作ηE ,即 ++++=ηk k 2211p x p x p x E [注:我们一般见到的分布列都为有限项,所以其期望值都是可以计算的.对于无限项的分布列,在计算时要用到级数和极限的内容,我们这里暂不作介绍.]若随机变量η的数学期望ηE 存在,且()2E E η-η也存在(这里的ηE 是一个常数),则称()2E E η-η为η的方差,记为ηD .即()2E E D η-η=η,显然0D ≥η.根据上述期望的定义可得方差的计算公式为:()()++⋅η-+⋅η-=η 222121p E x p E x D() +⋅η-k 2k p E x ,计算随机变量的方差除用上述定义之外,最常用的是下面的简化公式: ()().E p x p x p x E E D 2k 2k 22212122η-⋅++⋅+⋅=η-η=η来看下面的例题:例1 有3只球和4只盒子,盒子的编号为1,2,3,4.将球逐个独立地、随机地放入四个盒子中去.以η表示其中至少有—只球的盒子的最小号码(例如事件{η=3}表示第1号,第2号盒子都是空的,第3号盒子中至少有—只球),试求ηE .思路启迪 因为用公式计算ηE 时必须知道随机变量η的分布列.所以该题的第一步是计算η的分布列.由题述,显然η的可能取值为1,2,3,4.再来看η取各值的概率.当η=1时,表示第1号盒子中至少有一只球,其球的放法共有37C 3C 3C 3323213=+⨯+⨯种,这是因为第l 号盒子仅有一只球的放法为2133C ⨯种,有两只球的放法共有3C 23⨯种,有3只球的放法共有33C 种.当η=2时,表明1号盒子为空,第2号盒子至少有一个球.其球的放法总数有19C 2C 2C 3323213=+⨯+⨯种.这是因为第2号盒子只有一只球的放法有2132C ⨯种,有两只球的放法有2C 23⨯种,有三只球的放法共有33C 种.当η=3时,表示第1号,第2号盒子均为空,第3号盒子中至少有一只球,其球的放法有332313C C C ++=7种,这是因为第3只盒子只有一只球、两只球、三只球的放法分别为:3323213C ,1C ,1C ⨯⨯种.当η=4时,表明第1、2、3号盒子都为空,第4号盒子定有3个球,球的放法只有一种.而3只球,放入4只盒子,盒子装球的个数不限,共有34种放法,所以()()()().6414P ,6473P ,64192P ,64371P ==η==η==η==η因此,按照期望的计算公式可得:641464736419264371E ⨯+⨯+⨯+⨯=η.56.164100≈=例2 从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,且概率都是52.设随机变量η表示途中遇到红灯的次数,求η的分布列和数学期望.思路启迪 因为在每个交通岗只会发生两件事“遇到红灯”与“不遇到红灯”,且两事件相互矛盾,因此遇到红灯的次数η是一随机变量且服从二项分布⎪⎭⎫⎝⎛52,3B .规范解法 随机变量η服从二项分布,即⎪⎭⎫ ⎝⎛η52,3B ~,η的可能取值为0,1,2,3,易求得:()()()().C P ,C P ,C P ,C P 1258523125365215221255452152112527521033322321333=⎪⎭⎫ ⎝⎛===⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛===⎪⎭⎫⎝⎛-⋅⎪⎭⎫ ⎝⎛===⎪⎭⎫⎝⎛-==ηηηη表1-18η的数学期望为.2.15612583125362125541125270E ==⨯+⨯+⨯+⨯=η 方法二:利用常见离散型随机变量的数字特征公式求之.为了方便应用,下面将几种常见离散型随机变量的期望和方差列成表,以备查用.希望[注:计算期望和方差时,应先考查其分布是否是常见分布.属常见分布,其方差与期望可直接利用公式求之.不必像例1那样先求分布列,再用定义计算,那样太麻烦,且容易算错.]例3 某人掷不均匀钱币,出现反面的概率为P ,(0<P<1),求在两次出现反面之间出现正面的次数的概率分布和数学期望.思路启迪 设随机变量η表示两次出现反面之间出现正面的次数,则η的一切可能值为一切非负整数,即0,1,2,…,n ,….设出现m 次正面后出现反面,则()().p p 1m P m⋅-==η规范解法 设η表示两次出现反面之间出现正面的次数,则η服从几何分布,参数为P ,由上表可知η的率分布为()().p p 1m P m⋅-==η其数学期望为p1. 例4 设一次试验成功的概率为p ,进行100次独立重复试验.当P =( )时,成功次数的标准差的值最大,其最大值为( ).思路启迪 设100次独立重复试验中的成功次数为随机变量η.所以η服从二项分布,即η~B(100,P),根据上表中所列公式可得随机变量η的方差为:()P 1p 100D -⋅⋅=η.规范解法 设随机变量η表示100次试验中成功的次数,很明显η~B(100,P),所以η的标准差为().p 1p 100D -⋅⋅=η因(),21p 10025411004121p 2p 100p 1p 10022⎪⎭⎫ ⎝⎛--=⨯+⎪⎭⎫ ⎝⎛+⋅⋅--=-显然当21p =时,100p ·(1—p)达到最大,即ηD 的值最大.其最大值为.52521121100==⎪⎭⎫⎝⎛-⨯⨯[注:常将p(1-p)配成完全平方式:()221p 41p 1p ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--=-来讨论服从二项分布的随机变量其方差的大小问题.]方法三:随机变量分解法.将随机变量η分解成若干个随机变量i η之和,把求E η转化为i E η:()n 21n 21E E E E E η++η+η=η++η+η=η若i E η易于求出,则E η的计算就非常简便,这种处理方法称为随机变量分解法.例5 设随机变量η~B(n ,p)试求E η和D η. 思路启迪 因为η~B(n ,p)设⎩⎨⎧=0,事件A失败事件A成功 1,ηi ()().n ,,,i p p D ,p E ,i i n 21121=-⋅==+++=ηηηηηη则规范解法().p n E E E E E n 21n 21⋅=η++η+η=η++η+η=η()().p 1p n D D n 21-⋅⋅=η++η+η=η8.如何作到真正的随机抽取? 在简单随机抽样的过程中,我们采用了随机抽取的办法.所谓的随机抽取就是要求在抽样过程中各个个体被抽到的概率都相等.但是,如何保证我们的抽取过程是真正随机的呢?在本书中,我们不能随便地使用“随机”这个词,读者可能已经猜到了“随机”这个词是什么意思.然而仔细研究这个问题以后,就会清楚地知道“随机性”不总是容易得到的,并且它实际上也不可能被验证.例如,有这样一个问题,我们想从一群人中选择一个人,检查他有无癌症.假定要你从1000人中随机选出一个人,你怎么选法呢?要知道,如果选取是真正随机的,每一个人被选中的概率必须相等.你可以采用的一种方法是:把每个人的名字(假定1000人中没有重名的)写在一张小纸片上,然后把所有的纸片放在一个大容器中搅抖均匀.让一个蒙住眼睛的小姑娘(她肯定是不作弊的)从中抽取一张.这个办法最明显的问题是搅拌均匀的问题.果真能把1000张写有名字的小纸片搅拌均匀吗?有大量证据说明,搅拌均匀的困难远比一般所想像到的要大得多.另一种办法是做一个旋子,它上面有一个可以旋转的箭头,箭头的一端能在10个数字中的任何一个数字上停下来.然后将这1000个人从000到999编上号.转动旋子3次所得到的三位数字表明选中了哪个人.例如,旋转结果的顺序是3,2,3.则选中了编号为323的那个人.我们用的旋子如图1-3所示.如果下一个被选中的人是333号.你可以怀疑这个旋子不正吗?旋子是否在3这个位置上被什么东西卡住了呢?(某些街头猜奖的小贩会在特定的数字下放一块磁铁来吸引指针指向这个数字)是这样的,如果旋子没有缺陷,333应该和其他数字出现的可能性相同.显然,这种办法的主要困难在于做一个完好无缺的旋子.还有哪些别的办法,能“公平地”或真正随机地从1000个人中选出一个人来呢?我们知道,现在利用计算机运行一种“随机数发生器”的程序就可以产生随机数.但如果你有一定的编程知识的话就会知道,任何“随机数发生器”都依靠—个“种子”值来产生—系列“随机的”数字,我们通常称之为“伪随机数”.计算机作为一种有限状态的机器,是不可能产生真正随机的数字序列的.在学过统计学的科学家中,现在通用的办法是使用随机数表.(如课本附录中所列)随机数表是这样一个数字列,使每一个数字在任何一个位置出现的可能性都相同,即都是101.随机数表在实际的构造中是非常困难的,需要有专门的技术并进行大量的工作.下面所列就是 一张简单的随机数表.列我们利用上表来从1000个人中选择一个人,继续采用上面对人的编号,于是采用表中第—行第1,2,3列上的数字,我们就随机地抽出一个编号为958的人.如果我们要选择一个四人委员会,那么第二人该是327号,第三人是614号,第四人是599号.在这个抽取三位数的过程中,如果某个三位数第二次出现,就略去这个数字,而往下再取一个三位数,因为一个人不能担任四人委员会的两个成员.如果不是选择四人委员会,而是发放四份奖金.并且允许—个人拿到两份或多份奖金,那么就不能略去第二次出现的那个三位数,而是应该把两份奖金发给以它为编号的那个人.假定我们要在本季度的首轮球赛中将八个球队分成四组.将八个球队从1到8编上号,从随机数表的第二行第三列开始(从表中第一个例子结束的地方开始),把8队和1队分成一组,3队和4队分成一组,(跳过第7列的数字4,因为不能把4队分到两个组中),6队和7队分成一组,最后2队和5队分成一组.当然,前三组分好后,最后—组也就确定出来了.如果在表中出现了数字0或9,就直接跳过它,因为0和9不是球队的编号.还可以用随机数表决定某个球队是主队还是客队,考虑这个球队过去的成绩就可以做到这一点.假定在上一赛季中8队赢了15场,1队赢了5场.我们希望在第—场比赛中1队成为主队的机会大于8队,并希望这个机会与它们过去的成绩有关,我们用数字00到14表示1队成为主队,数字15到19表示1队成为客队.在随机数表中上例结束处开始,即从第3行第2列开始,得到数字72,因为72是一个与本问题无关的数字,舍弃它.再查下两个数字,得到10,于是1队在第一场比赛中应为主队.上面讨论了随机数表在随机抽取中的一些应用.使用随机数表应该从左到右读完—行后再读下一行,行间的空隙只是为了便于看清表中数字的位置.另外,从哪一个位置开始读取表中的数字,有时是有一些窍门的,如果正规地使用这个表,应该从头开始,用完之后做下记号,下—次再接着往下用.但是如果试验者用完这个表后注意到下面几个数字,而在下一次试验中又将它回忆起来,那就有可能破坏试验的客观性.同样,在全班都使用随机数表再将结果合并起来时,如果班上所有同学都从表中同一处开始,那么合并的结果就不是随机的了.正确的方法是各人开始于不同的地方,而各人选择起始点时应该采用随机数表进行随机选取.让我们看一下下面的例题.例下表表示上一赛季10个篮球队获胜的场数,利用随机数表将这些队在下一赛季的第一轮比赛进行分组,在每一组中指定一个队为“主队”或“客队”,使得成绩较差的队比战绩较好的队成为主队的可能性比较大,叙述你所采用的分组及指定“主队”和“客队”的思路启迪先将10个球队A、B、C、D、E、F、G、H、I、J从0到9编号.即A队编为0号,B队编为1号,C队编为2号,依此类推,J队被编为第9号.利用上面提供的随机数表,对这10个球队进行分组.从表的第一行第一列开始,得到5个数对,分别为:9和5;8和3;2和7;6和1;4和5;在上述五个数对中,将对应的数字换成表示球队的字母就得到了一种对10个球队随机分组的方法,即J队和F队为一组,I队和D队为一组,C队和H 队分为一组,G队和B队分为一组,剩下的E队和A队分成一组,注意最后一组数中重复出现了数字5,我们将其直接去掉,又因为前4组已分好,故这样做不会影响我们对各组的划分.在每组中指定主队和客队的方法为:以第一组J队和F队为例,因为F队在上一赛季赢了5场而J队则一场也没赢,故我们希望J队获得主场的机会比F队获得主场的机会大.我们用数字0到4表示“J队成为主队”,那么从随机数表的第2行开始,前三个数字9,9,8不在0到4之间,我们跳过这三个数字,第四个数字为1,在0到4之间,故让J队成为主队.再以第2组即I队和D队这一组为例:因为I队在第一赛季中赢了3场而D队在第一赛季中赢了7场,故划分时用数字0到数字6代表“1队成为主队”,而以数字7到数字9代表“D队成为主队”.从随机数表的第2行第5列(即上面用到的数字1后的数字)开始选数字,选到的数字为3.在0到6之间,故令I队成为主队.其他组的主队与客队的划分方法类似,请读者自行决定.规范解法略.11 / 11。

北京高三导数知识点归纳

北京高三导数知识点归纳

北京高三导数知识点归纳导数是数学中的一个重要概念,它在微积分中起着至关重要的作用。

在高三阶段,学生们需要掌握导数的基本概念、性质和应用。

本文将对北京高三阶段学习中的导数知识点进行归纳和总结,帮助学生们更好地理解和应用导数。

一. 导数的基本概念导数是函数变化率的极限,用来描述函数在一点上的变化趋势。

在高三阶段,学生需要掌握导数的定义和求导法则。

具体知识点包括:1.1 导数的定义:导数表示函数f(x)在某一点x处的变化率,记作f'(x)或dy/dx。

导数的定义为:f'(x) = lim┬(Δx→0)⁡〖(f(x+Δx)-f(x))/Δx〗。

1.2 导数的求导法则:学生需要熟练掌握常见函数求导法则,包括常数函数、幂函数、指数函数、对数函数、三角函数等的求导法则。

二. 导数的性质导数具有一些重要的性质,学生需要理解和应用这些性质来解决问题。

具体性质包括:2.1 导数的四则运算:导数具有加减乘除的运算法则,即若f(x)和g(x)都有导数,则其和、差、积、商的导数都可以通过对应的运算得到。

2.2 导数与函数图像的关系:导数可以反映函数图像的特征,如导数大于零表示函数递增,导数小于零表示函数递减,导数等于零表示函数的极值点等。

三. 极值与最值问题导数在极值问题中起着重要的作用。

学生需要了解极值与最值问题的求解方法。

具体知识点包括:3.1 极值点的判断:使用导数的正负性来判断函数的极值点。

当导数变号时,函数可能存在极值点。

3.2 极值的求解:通过求解导数为零的方程来获得函数的极值。

使用极值的求解方法,可以帮助求解优化问题、最大最小值问题等。

四. 曲线的凹凸性导数还可以用来判断函数图像的凹凸性。

学生需要了解曲线的凹凸性与导数的关系。

具体知识点包括:4.1 凹凸性的判断:通过函数的二阶导数来判断函数图像的凹凸性。

二阶导数大于零表示函数图像凹向上,二阶导数小于零表示函数图像凹向下。

4.2 凹凸点的求解:通过求解二阶导数为零的方程来获得函数的凹凸点。

(常考题)北师大版高中数学选修1-1第四章《导数应用》测试(有答案解析)(4)

(常考题)北师大版高中数学选修1-1第四章《导数应用》测试(有答案解析)(4)

一、选择题1.已知函数()()22ln x x t f x x+-=,若对任意的[]2,3x ∈,()()0f x f x x '+>恒成立,则实数t 的取值范围是( )A .(),2-∞B .5,2⎛⎫-∞ ⎪⎝⎭C .103⎛⎫-∞ ⎪⎝⎭,D .()2,+∞2.若函数()3221f x x x mx =+++在()-∞+∞,内单调递增,则m 的取值范围是( ) A .43m ≥B .43m >C .43m ≤D .43<m 3.函数()cos f x x x =⋅的导函数为()f x ',则()f x 与()f x '在一个坐标系中的图象为( )A .B .C .D .4.已知对任意实数x 都有()()2xf x f x e '-=,()01f =-,若()()1f x k x >-恒成立,则k 的取值范围是( ) A .()1,+∞ B .323,42e ⎛⎫⎪⎝⎭C .()121,4eD .()321,4e5.对任意0,2x π⎛⎫∈ ⎪⎝⎭,不等式()()sin cos x f x x f x ⋅⋅'<恒成立,则下列不等式错误的是( )A .234f ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭> B .()2cos113f f π⎛⎫⋅ ⎪⎝⎭>C.()14f f π⎛⎫⋅⎪⎝⎭D.46f f ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭6.设()f x 是定义在R 上的偶函数,()f x '为其导函数,()20f =,当0x >时,有()()'>xf x f x 恒成立,则不等式()0xf x <的解集为( )A .()2,2-B .()(),20,2-∞-C .()()2,00,2-D .()()2,02,-+∞7.若函数()()11xf x e a x =--+在(0,1)上不单调,则a 的取值范围是( ) A .()2,1e + B .[]2,1e + C .(][),21,e -∞⋃++∞ D .()(),21,e -∞⋃++∞8.若函数(1),()21,x x e x a f x x x a⎧-+=⎨-->⎩有最大值,则实数a 的取值范围是( )A .211[,)22e --+∞ B .21[,)2e -+∞ C .[2-,)+∞D .211(2,]22e --- 9.若函数()xx f x ax e e -=+-在R 上单调递减,则实数a 的取值范围为( )A .2a ≤B .1a ≤C .1a ≥D .2a ≥10.已知函数()2x f x =,2()g x x ax =+(其中a R ∈).对于不相等的实数12,x x ,设1212()()f x f x m x x -=-,1212()()g x g x n x x -=-.现有如下命题:(1)对于任意不相等的实数12,x x ,都有0m >;(2)对于任意的a 及任意不相等的实数12,x x ,都有0n >;(3)对于任意的a ,存在不相等的实数12,x x ,使得m n =;(4)对于任意的a ,存在不相等的实数12,x x ,使得m n =-.其中真命题的个数有( ) A .3个 B .2个 C .1个 D .0个11.已知函数()ln f x ax x =-,若()0f x ≥对一切(0,)x ∈+∞恒成立,则a 的取值范围是( ) A .(0,)+∞B .1[,)e+∞C .[1,)+∞D .[),e +∞12.已知函数()xx f x e e ax -=-+(a 为常数)有两个不同极值点,则实数a 的取值范围是( ) A .[)1,+∞B .[)2,+∞C .()2,+∞D .()1,+∞二、填空题13.已知函数2()ln 3mf x x x x x=+-+.若函数()f x 在[1,2]上单调递减,则实数m 的最小值为________.14.已知函数()4,0,0x x e x f x e x x+≤⎧⎪=⎨>⎪⎩,若存在10x ≤,20x >,使得()()12f x f x =,则()12x f x 的取值范围是______.15.若函数()22ln 2f x x x a =++-在()1,e 上有零点,则实数a 的取值范围为______.16.已知函数()x f x e alnx =-+2在[]1,4上单调递增,则a 的取值范围是__.17.已知函数()21ln 2f x a x x =+(0a >),若对任意两个不相等的正实数12,x x 都有()()12124f x f x x x ->-恒成立,则实数a 的取值范围是_____.18.定义在(0,)+∞上的函数()f x 满足()1xf x '<,且(1)1f =,则不等式(31)ln(31)1f x x ->-+的解集是________.19.已知函数18ln ,y a x x e e⎛⎫⎡⎤=+∈ ⎪⎢⎥⎣⎦⎝⎭的图象上存在点P ,函数22y x =--的图象上存在点Q ,且P ,Q 关于x 轴对称,则a 的取值范围为________.20.已知函数()21ln 2f x a x x bx =-+存在极小值,且对于b 的所有可能取值,()f x 的极小值恒大于0,则a 的最小值为__________.三、解答题21.已知函数1()ln1xf x x+=-. (1)求证:当(0,1)x ∈时,3()2()3x f x x >+;(2)设实数k 使得3()()3x f x k x >+对(0,1)x ∈恒成立,求k 的最大值.22.已知函数()2ln 2f x x x =-,函数()212g x x a x=--+. (1)求函数()f x 的单调区间;(2)若对任意1,2x ⎡⎫∈+∞⎪⎢⎣⎭,函数()()f x g x ≥恒成立,求实数a 的取值范围.23.已知函数21()ln 2x f x x x -=-.(1)求()f x 的单调区间; (2)设()*ln 1,1,2,k k a n k n n ⎫⎛=+∈=⋅⋅⋅ ⎪⎝⎭N ,在(1)的条件下,求证:123214n n a a a a ++++⋅⋅⋅+<()*n ∈N . 24.已知函数()()ln f x a x x a =+∈R . (1)当1a =-时,求()f x 的单调区间; (2)求()f x 在[1,4]上的最小值.25.为了美化城市环境,提高市民的精神生活,市政府计划在人民广场一块半径为10米的圆形空地进行种植花草绿化改造.规划如图所示,在中央正六边形区域和六个相同的矩形区域种植鲜花,其余地方种植草地.设OAB θ∠=,正六边形的面积为1S ,六个矩形的面积和为2S .(1)用θ分别表示区域面积1S ,2S ; (2)求种植鲜花区域面积的最大值.(参考数据:3tan 412︒≈,3tan 493︒≈)26.已知函数()ln 2f x x x x =-.(1)求函数()f x 的最小值;(2)求函数()()g x f x x e =+-的单调区间;(3)若函数()()h x f x mx =-在[)1,x ∈+∞单调递增,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】求导函数()f x ',化简()()0f x f x x'+>得10x t x+->在[]2,3x ∈恒成立,参变分离即可求参数范围.∵()2222ln 2x x t f x x -+-'=,∴对任意的[]2,3x ∈,()()0f x f x x'+>恒成立⇔对任意的[]2,3x ∈,()()0xf x f x '+>恒成立, ⇔对任意的[]2,3x ∈,10x t x+->恒成立, ⇔1x t x+>恒成立, 又()1g x x x =+在[]2,3上单调递增,∴()()225min g x g ==, ∴52t <.则实数t 的取值范围是5,2⎛⎫-∞ ⎪⎝⎭.故选:B 【点睛】对于恒成立问题,常用到以下两个结论: (1)()a f x ≥ 恒成立()max a f x ⇔≥; (2) ()a f x ≤ 恒成立()min a f x ⇔≤.2.A解析:A 【分析】由于()f x 在R 上递增得()0f x '≥恒成立,利用参数分离求得参数范围. 【详解】因为()f x 在R 上递增得()0f x '≥恒成立,则()2340f x x x m '=++≥所以234m x x ≥--在R 上恒成立,令()234g x x x =--,则()max m g x ≥因为()g x 为二次函数且图像的对称轴为23x =-,所以()max 2433g x g ⎛⎫=-= ⎪⎝⎭ 故43m ≥故选:A 【点睛】方法点晴:本题利用导数与单调性的关系转化为恒成立问题,结合参数分离法求得参数范围.3.A解析:A分析函数()f x 、()f x '的奇偶性,以及2f π⎛⎫' ⎪⎝⎭、()f π'的符号,利用排除法可得出合适的选项. 【详解】函数()cos f x x x =的定义域为R ,()()()cos cos f x x x x x f x -=--=-=-, 即函数()cos f x x x =为奇函数,()cos sin f x x x x '=-,函数()f x '的定义域为R ,()()()()cos sin cos sin f x x x x x x x f x ''-=-+-=-=,函数()f x '为偶函数,排除B 、C 选项;22f ππ⎛⎫'=- ⎪⎝⎭,()1f π'=-,则()02f f ππ⎛⎫<< ⎪⎝⎭''.对于D 选项,图中的偶函数为()f x ',由02f π⎛⎫'< ⎪⎝⎭,()0f π'<与题图不符,D 选项错误, 故选:A. 【点睛】思路点睛:函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)函数的特征点,排除不合要求的图象.4.D解析:D 【分析】由导数的运算求出()f x ,然后用分离参数法得出1x >时,(21)1x e x k x -<-,1x <时,(21)1x e x k x ->-,再设(21)()1x e x h x x -=-,求出()h x 在1x >时最小值,在1x <时的最大值,从而可得k 的范围. 【详解】因为()()2xf x f x e '-=,所以()()2x f x f x e '-=,即()2x f x e '⎡⎤=⎢⎥⎣⎦,所以()2x f x x c e =+(c 为常数),()(2)x f x e x c =+,由(0)1f c ==-,()(21)x f x e x =-,不等式()()1f x k x >-为(21)(1)x e x k x ->-,1x =时,不等式为0e >,成立,1x >时,(21)1x e x k x -<-,1x <时,(21)1x e x k x ->-, 设(21)()1x e x h x x -=-,则2(23)()(1)x xe x h x x -'=-,当312x <<或01x <<时,()0h x '<,当32x >或0x <时,()0h x '>,所以()h x 在(0,1)和31,2⎛⎫⎪⎝⎭上是减函数,在3,2⎛⎫+∞ ⎪⎝⎭和(,0)-∞上是增函数,1x >时,()h x 在32x =时取得极小值也最小值32342h e ⎛⎫= ⎪⎝⎭,由(21)1x e x k x -<-恒成立得324k e <,1x <时,()h x 在0x =时取得极大值也是最大值(0)1h =,由(21)1xe x k x ->-恒成立得1k >,综上有3214k e <<. 故选:D . 【点睛】本题考查导数的运算,考查用导数研究不等式恒成立问题,用分离参数法转化为求函数的最值是解题关键,解题时注意分类讨论思想的应用.5.D解析:D 【分析】构造函数()()cos g x f x x =,对其求导后利用已知条件得到()g x 的单调性,将选项中的角代入函数()g x 中,利用单调性化简,并判断正误,由此得出选项. 【详解】解:构造函数()()cos g x f x x =,则()()()cos sin g x x f x x f x ='⋅⋅'-, ∵()()sin cos x f x x f x ⋅⋅'<,∴()()()cos sin 0g x x f x x f x =⋅-⋅''>, 即()g x 在0,2x π⎛⎫∈ ⎪⎝⎭上为增函数,由43g g <ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,即cos cos 4433f f ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭<,即12423f f ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭<,故A 正确;()13g g 由<π⎛⎫⎪⎝⎭,即()1cos1cos 33f f ππ⎛⎫ ⎪⎝⎭<,即()2cos113f f π⎛⎫⋅ ⎪⎝⎭>,故B 正确;()14g g π⎛⎫⎪⎝⎭由<,即()cos 1cos144f f <ππ⎛⎫ ⎪⎝⎭()1cos14f f π⎛⎫⎪⎝⎭<,故C 正确;由64g g ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭<,即cos cos 6644f f ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭<64f f ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,即264f f ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭<, 故错误的是D .故选D .【点睛】本小题考查构造函数法,考查利用导数研究函数的单调性,考查化归与转化的数学思想方法.构造函数法主要应用于题目所给已知条件中含有()f x ,也含有其导数()f x '的不等式,根据不等式的结构,构造出相应的函数.如已知是()()0xf x f x -<',可构造()()f x g x x=,可得()()()20xf x f x g x x'-='<.6.B解析:B 【分析】 构造函数()()f xg x x=,易知()g x 在()0,∞+上单调递增,由()f x 是定义在R 上的偶函数可推出()g x 是定义在()(),00,-∞⋃+∞上的奇函数,故()g x 在(),0-∞上也单调递增,且()()220g g =-=.而不等式()0xf x <的解可等价于即()0g x <的解,从而得解. 【详解】解:设()()f x g x x =,0x ≠,则()()()'2xf x f x g x x-'=, ∵当0x >时,有()()'xf x f x >恒成立,∴当0x >时,()0g x '>,()g x 在()0,∞+上单调递增,∵()f x 是定义在R 上的偶函数, ∴()()()()f x f x g x g x x x--===---,即()g x 是定义在()(),00,-∞⋃+∞上的奇函数, ∴()g x 在(),0-∞上也单调递增. 又()20f =,∴()()2202f g ==,∴()20g -=. 不等式()0xf x <的解可等价于即()0g x <的解, ∴02x <<或2x <-, ∴不等式的解集为()(),20,2-∞-.故选:B . 【点睛】本题主要考查函数奇偶性的应用,考查函数的单调性,利用了构造思想,导函数的运用,属于中档题.7.A解析:A 【分析】求导得()1xf x e a '=-+,原问题可转化为()'f x 在(0,1)上有变号零点,由于()'f x 单调递增,只需满足()()010f f ''<,解之即可. 【详解】 解:()(1)1x f x e a x =--+,()1x f x e a '∴=-+,若()f x 在(0,1)上不单调,则()'f x 在(0,1)上有变号零点,又()f x '单调递增,()()010f f ''∴<,即(11)(1)0a e a -+-+<,解得21a e <<+.a ∴的取值范围是(2,e +1).故选:A . 【点睛】本题考查利用导数研究函数的单调性、零点存在定理,理解原函数的单调性与导函数的正负性之间的联系是解题的关键,考查学生的逻辑推理能力和运算能力,属于中档题.8.A解析:A 【分析】由x a >时,()21f x x =--递减,且无最大值,可得x a 时,()f x 取得最大值M ,且21M a --,求出x a 时,()f x 的导数和单调区间、极大值,讨论2a <-,判断单调性,可得最大值,解不等式判断无解,则2a -,求出最大值,解不等式即可得到所求a 的范围. 【详解】解:由x a >时,()21f x x =--递减,可得()21f x a <--,无最大值,函数(1),()21,x x e x af x x x a⎧-+=⎨-->⎩有最大值,可得x a 时,()f x 取得最大值M ,且21M a --,由()(1)xf x x e =-+的导数为()(2)xf x x e '=-+,可得2x >-时,()0f x '<,()f x 递减;2x <-时,()0f x '>,()f x 递增. 即有()f x 在2x =-处取得极大值,且为最大值2e -.若2a <-,则()f x 在(-∞,]a 递增,可得()()f x f a (1)aa e =-+,由题意可得(1)21a a e a -+≥--,即得(1)210aa e a +--≤,令(1))1(2a a e g a a +--=,则()(2)20a g a a e '=+-<,(2)a <-, 则()g a 在(),2-∞-递减,可得2(2)0()3g a g e ->-=-+>,则不等式(1)210a a e a +--≤无实数解.故2a -,此时在2x =-处()f x 取得最大值,为2e --,故221e a ----, 解得21122a e--, 综上可得,a 的范围是211[22e--,)+∞. 故选:A. 【点睛】本题考查了分段函数的最值问题,考查转化思想,以及分类讨论思想方法,注意运用导数,求出单调区间和极值、最值,考查化简整理的运算能力,属于中档题.9.A解析:A 【分析】 由()xx f x ax e e -=+-在R 上单调递减,可得:导函数()0x x f x a e e -'=--≤在R 上恒成立,参变分离后,求最值即可的解.【详解】 由()x x f x ax ee -=+-在R 上单调递减,可得:导函数()0xx f x a e e -'=--≤在R 上恒成立,因为0x e >,参变分离可得:min (+)x xa e e -≤,+2x x e e -≥=2a ≤故选:A 【点睛】本题考查了利用函数单调性求参数范围,考查了恒成立思想和基本不等式的应用,属于中档题.10.B解析:B 【分析】运用指数函数的单调性,即可判断(1);由二次函数的单调性,即可判断(2); 通过函数2()2x h x x ax =+-,求出导数判断单调性,即可判断(3); 通过函数2()2x h x x ax =++,求出导数判断单调性,即可判断(4). 【详解】解:对于(1),由于21>,由指数函数的单调性可得()f x 在R 上递增,即有0m >,则(1)正确;对于(2),由二次函数的单调性可得()g x 在(,)2a -∞-递减,在(2a-,)+∞递增,则0n >不恒成立,则(2)错误;对于(3),由m n =,可得1212()()()()f x f x g x g x -=-,即为1122()()()()g x f x g x f x -=-,考查函数2()2x h x x ax =+-,()222x h x x a ln '=+-, 当a →-∞,()h x '小于0,()h x 单调递减,则(3)错误;对于(4),由m n =-,可得1212()()[()()]f x f x g x g x -=--,考查函数2()2x h x x ax =++,()222x h x x a ln '=++,对于任意的a ,()h x '不恒大于0或小于0,则(4)正确. 故选:B . 【点睛】本题考查函数的单调性及运用,注意运用指数函数和二次函数的单调性,以及导数判断单调性是解题的关键,属于中档题.11.B解析:B 【分析】()ln 0f x ax x =-≥对一切(0,)x ∈+∞恒成立,即ln xa x≥对一切(0,)x ∈+∞恒成立,设()ln g xx x=,求出()g x 的导数,进而求出其最大值,得到答案. 【详解】 ()ln 0f x ax x =-≥对一切(0,)x ∈+∞恒成立,即ln xa x≥对一切(0,)x ∈+∞恒成立 设()ln g x x x=,则()21ln 'xg x x -=由()21ln '0x g x x -=>,则0x e <<,由()21ln '0xg x x -=<,则x e > 所以()g x 在()0e ,上单调递增,在()+∞e ,上单调递减. 当x e =时, ()g x 有最大值()1g e e= 所以1a e≥ 故选:B 【点睛】本题考查恒成立求参数问题,考查分离参数法的应用,属于中档题.12.C解析:C 【分析】由导数与极值的关系知可转化为方程()0f x '=在R 上有两个不等根,结合函数的性质可求. 【详解】函数有两个不同极值点,()0x x f x e e a -'∴=--+=有2个不等的实数根,即x x a e e -=+有2个不等的实数根, 令()xxg x e e-=+,则()xxg x e e '-=-在R 上单调递增且(0)0g '=,当0?x <时 ()0,()g x g x '<单调递减,当0 x >时,()0,()'>g x g x 单调递增, 所以函数有极小值也是最小值(0)2g =,又当x →-∞时,()g x →+∞,x →+∞,()g x →+∞, 所以2a >即可, 故选:C 【点睛】本题主要考查了利用导数研究函数的单调性、极值、最值,转化思想,属于中档题.二、填空题13.6【分析】求导函数令恒成立变量分离转化为求新函数的最大值【详解】可得令若函数在上单调递减即当时单调增所以函数在上单调递增所以故答案为:6【点睛】关键点睛:变量分离转化为不等式恒成立问题进而求又一函数解析:6 【分析】求导函数()f x ',令()0f x '≤恒成立,变量分离转化为求新函数的最大值. 【详解】21()23mf x x x x'=+--,()0f x '≤,可得3223m x x x ≥-+, 令()3223g x x x x =-+,若函数()f x 在[1,2]上单调递减,即()max m g x ≥ 当[1,2]x ∈时,()2661g x x x '=-+单调增,()()266110g x x x g ''=-+≥>,所以函数()g x 在[1,2]上单调递增()()max 26g x g ==,所以6m ≥.故答案为:6关键点睛:变量分离,转化为不等式恒成立问题,进而求又一函数的最值.14.【分析】由得根据的范围得利用导数得可得令将化为关于的二次函数根据二次函数知识可求得结果【详解】因为所以所以因为所以当时由得由得所以在上递减在上递增所以在处取得最小值所以所以令则所以所以当时取得最小值解析:24,0e ⎡⎤-⎣⎦【分析】由()()12f x f x =得2124x e x e x =-,根据1x 的范围得224x e e x ≤,利用导数得22x e e x ≥,可得224x e e e x ≤≤,令22x e t x =,将()12x f x 化为关于t 的二次函数,根据二次函数知识可求得结果. 【详解】因为()()12f x f x =,所以2124x e x e x +=,所以2124x e x e x =-, 因为10x ≤,所以224x e e x ≤, 当0x >时,()x e f x x =,22(1)()x x x e x e e x f x x x'--==, 由()0f x '>得1x >,由()0f x '<得01x <<,所以()f x 在(0,1)上递减,在(1,)+∞上递增,所以()f x 在1x =处取得最小值e ,所以224x e e e x ≤≤, 所以()12x f x 22224x x e e e x x ⎛⎫=- ⎪⎝⎭222224x x e e e x x ⎛⎫=-⋅ ⎪⎝⎭, 令22x e t x =,则4e t e ≤≤,所以()12x f x 24t et =-()2224t e e =--,所以当2t e =时,12()x f x 取得最小值24e -,当4t e =时,12()x f x 取得最大值0, 所以12()x f x 的取值范围是24,0e ⎡⎤-⎣⎦. 故答案为:24,0e ⎡⎤-⎣⎦ 【点睛】关键点点睛:令22x e t x =,将()12x f x 化为关于t 的二次函数,根据二次函数知识求解是解15.【分析】令得构造函数并求值域可得答案【详解】由则令因为在上都递减所以在上是单调递减函数且可得故答案为:【点睛】方法点睛:本题考查由函数零点求参数问题解答时要先将函数的零点问题转化为方程有根的问题进而 解析:21e a -<<【分析】 令0f x 得222ln a x x =--,构造函数2()22ln (0)g x x x x =-->并求值域可得答案. 【详解】由()22ln 20f x x x a =++-=,则222ln a x x =--,令2()22ln (0)g x x x x =-->,因为222ln ,y x y x =-=-在()1,e 上都递减,所以()g x 在()1,e 上是单调递减函数,且()()(1)g e g x g <<, 可得21e a -<<. 故答案为:21e a -<<. 【点睛】方法点睛:本题考查由函数零点求参数问题,解答时要先将函数的零点问题转化为方程有根的问题,进而分离参数,再运用函数思想将问题转化为研究函数图象的性质和最大最小值的问题,考查了分析问题解决问题的能力.16.【分析】由函数在区间上单调递增即在上恒成立即在上恒成立设利用导数求得的单调性与最小值即可求解【详解】由题意函数则因为函数在区间上单调递增即在上恒成立即在上恒成立设则所以当时所以为单调递增函数所以函数 解析:a e ≤【分析】由函数()f x 在区间[]1,4上单调递增,即()0xaf x e x'=-≥在[]1,4上恒成立,即x a xe ≤在[]1,4上恒成立,设()xg x xe =,利用导数求得()g x 的单调性与最小值,即可求解. 【详解】由题意,函数()2xf x e alnx =-+,则()xa f x e x '=-, 因为函数()f x 在区间[]1,4上单调递增,即()0xa f x e x'=-≥在[]1,4上恒成立,即x a xe ≤在[]1,4上恒成立,设()xg x xe =,则()(1)x x xe xe e g x x ='=++,所以当[]1,4x ∈时,()(1)0xg x e x '=+≥,所以()g x 为单调递增函数,所以函数()xg x xe =的最小值为()1g e =,所以a e ≤.【点睛】本题主要考查了利用函数的单调性求参数问题,其中解答中把函数的转化为不等式的恒成立问题,利用导数求得新函数的单调性与最值是解答的关键,着重考查了推理与运算能力,属于基础题.17.【分析】设由题意得令则所以函数是增函数原问题转化为恒成立然后利用参变分离法有恒成立运用配方法求出函数在上的最大值即可【详解】若对任意两个不相等的正实数都有恒成立不妨设所以即令则所以函数在单调递增则恒 解析:[)4,+∞【分析】设12x x >,由题意得()()112244f x x f x x >--,令()()24l 12n 4g x f x x a x x x =-=+-,则()()12g x g x >,所以函数()g x 是增函数,原问题转化为()40,0()a g x x x x'=+-≥>恒成立,然后利用参变分离法,有2,)40(a x x x ≥-+>恒成立,运用配方法求出函数24y x x =-+在(0,)+∞上的最大值即可.【详解】若对任意两个不相等的正实数12,x x 都有()()12124f x f x x x ->-恒成立,不妨设12x x >所以()()121244f x f x x x >--,即()()112244f x x f x x >--,令()()24l 12n 4g x f x x a x x x =-=+-,则()()12g x g x >,所以函数()g x 在(0,)+∞单调递增, 则()40,0()ag x x x x'=+-≥>恒成立,所以2,)40(a x x x ≥-+>恒成立, 又函数()224244y x x x =-+=--+≤,当2x =时,等号成立, 所以4a ≥, 所以实数a 的取值范围是[)4,+∞. 故答案为:[)4,+∞. 【点睛】本题考查了导数在函数单调性中的应用,本题采用参变分离法,将其转化为函数的最值问题是解题的关键,考查学生的转化思想、逻辑推理能力和运算能力,属于中档题.18.【分析】构造函数利用导数判断单调性再利用单调性解不等式即可【详解】构造函数则依题意知即在上是减函数又因为所以所以的解为即即的解为所以的解为即即解集是故答案为:【点睛】本题考查了利用函数单调性解不等式解析:12,33⎛⎫⎪⎝⎭【分析】构造函数()()ln 1(0)g x f x x x =-->,利用导数判断单调性,再利用单调性解不等式即可. 【详解】构造函数()()ln 1(0)g x f x x x =-->,则1()1()()xf x g x f x x x'-''=-=,依题意知()0g x '<,即()()ln 1g x f x x =--在0,上是减函数.又因为(1)1f =,所以(1)(1)ln110g f =--=,所以()(1)g x g >的解为01x <<,即()ln 10f x x -->即()ln 1f x x >+的解为01x <<,所以(31)ln(31)1f x x ->-+的解为0311x <-<,即1233x <<,即解集是12,33⎛⎫⎪⎝⎭.故答案为:12,33⎛⎫⎪⎝⎭. 【点睛】本题考查了利用函数单调性解不等式,属于中档题.19.【分析】设代入解析式得到两个方程联立可得让取值域即可【详解】设则所以联立可得即对于有解令由可得:;由可得:所以在单调递减在上单调递增所以所以值域为即可得的取值范围为故答案为:【点睛】本题主要考查了利解析:2168ln 2,10e ⎡⎤-+⎢⎥⎣⎦【分析】设()00,Q x y 、()00,P x y -代入解析式,得到两个方程联立可得2008ln 2a x x =-+,2000()8ln 2h x x x =-+,1,x e e ⎡⎤∈⎢⎥⎣⎦,让a 取0()h x 值域即可.【详解】设()00,Q x y 、则()00,P x y -所以2002y x =--,008ln y a x -=+,联立可得2008ln 2a x x =-+ 即2008ln 2a x x =-+对于1,x e e⎡⎤∈⎢⎥⎣⎦有解,令2000()8ln 2h x x x =-+,200000288()2x h x x x x -'=-=,由0()0h x '>可得:2x e <<;由0()0h x '<可得:12x e<<,所以0()h x 在1,2e⎡⎤⎢⎥⎣⎦单调递减,在[]2,e 上单调递增,20min ()(2)28ln 2268ln 2h x h ==-+=-,2211118ln 210h e e e e ⎛⎫⎛⎫=-+=+ ⎪ ⎪⎝⎭⎝⎭,()()228ln 26h e e e e =-+=-,所以0max 21()10h x e =+, 所以0()h x 值域为2168ln 2,10e ⎡⎤-+⎢⎥⎣⎦, 即可得a 的取值范围为2168ln 2,10e ⎡⎤-+⎢⎥⎣⎦, 故答案为:2168ln 2,10e ⎡⎤-+⎢⎥⎣⎦. 【点睛】本题主要考查了利用导数解决存在性问题,涉及求函数的值域,属于中档题.20.【解析】因故有解即有解令取得极小值点为则则函数的极小值为将代入可得由题设可知令则由即当时函数取最小值即也即所以即应填答案点睛:本题是一道较为困难的试题求解思路是先确定极小值的极值点为则进而求出函数的解析:3min a e =-【解析】 因()a f x x b x -'=+,故()0af x x b x-+'==有解,即20x bx a --=有解.令取得极小值点为t ,则2bt t a =-,则函数的极小值为21()ln 2f t a t t bt =-+,将2bt t a =-代入可得21()ln 2f t a t t a =+-,由题设可知21ln 02a t t a +->,令21()ln 2h t a t t a =+-,则()a h t t t =+',由2()0ah t t t a t=+'=⇒=-,即当2t a =-时,函数21()ln 2h t a t t a =+-取最小值1()02h a a a =--≥,即3322a a ≥-⇒≤,也即13ln()ln()322a a -≤⇒-≤,所以33a e a e -≤⇒≥-,即3min a e =-,应填答案3min a e =-.点睛:本题是一道较为困难的试题.求解思路是先确定极小值的极值点为t ,则2bt t a =-,进而求出函数的极小值21()ln 2f t a t t bt =-+,通过代入消元将未知数b 消掉,然后求函数21()ln 2h t a t t a =+-的最小值为1()02h a a a =--≥,从而将问题转化为3322a a ≥-⇒≤,然后通过解不等式求出即3min a e =-.三、解答题21.(1)证明见详解;(2)2 【分析】(1)构造新函数利用函数的单调性证明命题成立.(2)对k 进行讨论,利用新函数的单调性求参数k 的取值范围. 【详解】(1)证明:()()1()lnln 1ln 11xf x x x x+==+---, ()2112111f x x x x'=+=+-- 令()3()2()3x g x f x x =-+,则()()()4222211x g x f x x x''=-+=-, 因为()()001g x x '><<,所以()g x 在()0,1上单调递增, 所以()()00g x g >=,()0,1x ∈,即当()0,1x ∈时,3()2()3x f x x >+.(2)由(1)可知,当k 2≤时,3()()3x f x k x >+对(0,1)x ∈恒成立,当2k >时,令()3()()3x h x f x k x =-+,则()()2222()(1)1kx k h x f x k x x--''=-+=-,所以当0x <<()0h x '<,因此()h x 在区间⎛ ⎝上单调递减,当0x <<()()00h x h <=,即3()()3x f x k x <+,所以当2k >时,3()()3x f x k x >+并非对(0,1)x ∈恒成立,综上可知,k 的最大值为2. 【点睛】关键点点睛:本题考查了构造新函数,利用导数判断函数的单调性,证明不等式,利用导数研究不等式恒成立,解题的关键是由(1)确定当k 2≤时,3()()3x f x k x >+对(0,1)x ∈恒成立,考查了运算求解能力.22.(1)单调递增区间是10,2⎛⎫ ⎪⎝⎭,单调递减区间是1,2⎛⎫+∞ ⎪⎝⎭;(2)(],1-∞. 【分析】(1)求导,判断导函数正负,进而判断函数单调区间; (2)()()f x g x ≥恒成立,可转化为不等式1ln a x x ≤+对于1,2x ⎡⎫∈+∞⎪⎢⎣⎭恒成立,设()1ln h x x x=+,求导,判断单调性并求得最小值,()min a h x ≤. 【详解】(1)函数()2ln 2f x x x =-的定义域为0,,则()()()21212114'4x x x f x x x x x-+-=-==, 由题意120x +>,得 当10,2⎛⎫∈ ⎪⎝⎭x 时,()()'0,f x f x >递增, 当1,2⎛⎫∈+∞⎪⎝⎭x 时,令()()'0,f x f x <递减, 所以()f x 的单调递增区间是10,2⎛⎫ ⎪⎝⎭,单调递减区间是1,2⎛⎫+∞⎪⎝⎭; (2)对任意1,2x ⎡⎫∈+∞⎪⎢⎣⎭,函数()()f x g x ≥恒成立, 即不等式1ln a x x ≤+对于1,2x ⎡⎫∈+∞⎪⎢⎣⎭恒成立, 令()1ln h x x x=+, 则()22111'x h x x x x-=-=,当1,12x ⎡⎫∈⎪⎢⎣⎭时,()'0h x <, 函数()h x 单调递减, 当时()1,∈+∞x ,()'0h x >, 函数()h x 单调递增,所以当1x =时,()h x 有最小值()1ln111h =+=, 从而a 的取值范围是(],1-∞. 【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用.23.(1)()f x 单调递增区间为(0,)+∞,无递减区;(2)证明见解析. 【分析】(1)求导数()'f x ,由()0f x '>确定增区间,由()0f x '<得减区间;(2)由(1)得1x >时,()0f x >,即11ln ()2x x x<-,令1,1,2,,k x k n n =+=,代入后得n 个不等式,相加后可得证明题设结论. 【详解】(1)解:函数()f x 的定义域为(0,)+∞由21()ln 2x f x x x -=-,得()ln 1f x x x '=--令1()ln 1()1g x x x g x x'=--⇒=-()0(1,)()0(0,1)g x x g x x ''>⇒∈+∞<⇒∈即()g x 在(0,1)上单调递减,在(1,)+∞上单调递增,故()(1)0f x f '''≥=,于是()f x 单调递增区间为(0,)+∞,无递减区(2)证明:由(1)可知()f x 在(0,)+∞上单调递增函数,又(1)0f =,∴当1x >时,()0f x >,11ln 2x x x ⎫⎛∴<- ⎪⎝⎭1ln 112k k k n k k a n nn k +-⎫⎫⎛⎛∴=+<+- ⎪ ⎪+⎝⎝⎭⎭1(1,2,)2kk k n n n k ⎫⎛=+=⋅⋅⋅ ⎪+⎝⎭123112122111n n n a a a a n n n n n n ⎫⎛∴+++⋅⋅⋅+<++⋅⋅⋅++++⋅⋅⋅+ ⎪+++⎝⎭1121221n n n n ++⋅⋅⋅+++⋅⋅⋅+⎫⎛=+ ⎪+⎝⎭(1)(1)12122214n n n n n n n ++⎫⎛⎪ +=+=⎪ +⎪ ⎝⎭ 于是()*123214n n a a a a n ++++⋅⋅⋅+<∈N 得证. 【点睛】 关键点点睛:本题考查用导数求单调区间,用导数证明数列不等式.这类问题的解决,通常后一小题需要用到前一小题(或前面所有)的结论,通过变形,赋值等手段进行证明求解.如本题第(1)小题函数单调性得出不等式11ln ()2x x x <-,只要在此不等式中对x 赋值1,1,2,,k x k n n =+=,n 个不等式相加即可.24.(1)单调递增区间为(4,)+∞;单调递减区间为(0,4);(2)min 2ln 22,11()2ln(2)2,1211,2a a f x a a a a a ⎧⎪+≤-⎪⎪=---<<-⎨⎪⎪≥-⎪⎩. 【分析】 (1)当1a =-时,2()2f x x '=,进而得4x >时,()0f x '>, 04x <<时,()0f x '<,进而得函数的单调区间;(2)()f x '=,故分1a ≤-,112a -<<-,12a ≥-三种情况讨论即可得答案. 【详解】解:(1)()f x 的定义域为(0,)+∞,当1a =-时,12()2f x x x-'=-= 当4x >时,()0f x '>,则()f x 的单调递增区间为(4,)+∞;当04x <<时,()0f x '<,则()f x 的单调递减区间为(0,4).(2)()a f x x '== 当1a ≤-时,()0,()f x f x '≤在[1,4]上单调递减,此时,()min (4)2ln 22f x f a ==+ 当12a ≥-时,()0,()f x f x '≥在[1,4]上单调递增,此时,()min (1)1f x f == 当112a -<<-时,若214x a <<,则()0,()f x f x '<单调递减; 若244a x <<,则()0,()f x f x '>单调递增此时,()()222min ()4ln 442ln(2)2f x f a a a a a a a ==+=--. 综上所述:min 2ln 22,11()2ln(2)2,1211,2a a f x a a a a a ⎧⎪+≤-⎪⎪=---<<-⎨⎪⎪≥-⎪⎩【点睛】本题考查利用导数求解函数的最小值问题,考查分类讨论思想和运算求解能力,其中第二问解题的关键在于求导得2()x a f x +'=,进而分1a ≤-,112a -<<-,12a ≥-三种情况讨论求解,是中档题.25.(1)216003sin S θ=,221200sin cos 12003sin S θθθ=-;(2)()30073-. 【分析】(1)如图:连接BO 、CO 、OD ,过点O 作BC 的垂线,交BC 于点E ,交AD 于点F ,OAD △为等腰三角形,可得AOF OAB θ∠=∠=即可求出BC 的长,进而可得1S ,求出OBC 的高OE ,AB EF OF OE ==-,26S AB BC =⨯⨯即可求解; (2)将面积之和12S S +用角θ表示出来,在求其求导,利用导数判断单调性即可求最值.【详解】(1)如图:连接BO 、CO 、OD ,过点O 作BC 的垂线,交BC 于点E ,交AD 于点F , 由对称性可知OAD △为等腰三角形,E 、F 分别为BC 、AD 的中点,由AB BC ⊥,OF BC ⊥,可得//AB OF ,所以AOF OAB θ∠=∠=,所以22sin 20sin BC AD AF OA θθ====,所以正六边形的面积2122666400sin 44OBC SBC S θθ==⨯=⨯=, 在OBC中,20sin OE BC θθ===,所以10cos AB EF OF OE θθ==-=-,所以()26610cos 20sin S AB BC θθθ=⨯⨯=-⨯21200sin cos θθθ=-,综上所述:21S θ=,221200sin cos S θθθ=-.(2)求种植鲜花区域面积的最大值即是求12S S +的最大值.设22121200sin cos y S S θθθθ=+=+-21cos21200sin cos 600sin 22θθθθθ-=-=-600sin 2θθ=+-所以1200cos 22y θθ'=-令0y '=,可得tan 23θ=, 当249θ>时,0y '<;当249θ<时,0y '>,所以当249θ=时,y 取得最大值,max 600sin 493003cos 493003y =+- 因为tan 493︒≈,可得22sin 49cos 491sin 49cos 49︒︒︒︒⎧+=⎪⎨=⎪⎩, 解得2sin 49721cos 497⎧=⎪⎪⎨⎪=⎪⎩,所以max 6003007y =+-=-. 【点睛】关键点点睛:本题解题的关键是得出AOF OAB θ∠=∠=,求出2BC AD AF ==,OE =,AB EF OF OE ==-即可将面积1S ,2S 用θ表示出来,利用导数求面积之和的最值.26.(1)e -;(2)单调递减区间为()0,1,单调递增区间为()1,+∞;(3)1m ≤-.【分析】(1)求导可得()ln 1f x x '=-,令'()0f x =得x e =,分别讨论()0,x e ∈和(),x e ∈+∞时导函数的正负,可得()f x 的单调性,即可求得最小值;(2)求导可得()ln g x x e =-',由'()0g x =得1x =,分别讨论()0,1x ∈和()1,x ∈+∞时导函数的正负,可得()g x 单调区间;(3)所求等价于()()h x f x mx =-在[)1,x ∈+∞单调递增,即ln 1m x ≤-恒成立,根据x 的范围,即可求得ln 1x -的最小值,即可得答案.【详解】(1)函数()f x 的定义域为()0,∞+,()ln 1f x x '=-,由'()0f x =得x e =, 所以当()0,x e ∈时,'()0f x <,()f x 单调递减,当(),x e ∈+∞时,'()0f x >,()f x 单调递增,所以函数()f x 的最小值为()f e e =-;(2)()ln g x x x x ex =--,()ln g x x '=,由'()0g x =得1x =,所以当()0,1x ∈时,'()0g x <,()g x 单调递减, 当()1,x ∈+∞时,'()0g x >,()g x 单调递增, 所以()g x 的单调递减区间为()0,1,单调递增区间为()1,+∞;(3)()ln 1h x x m '=--,因为函数()()h x f x mx =-在[)1,x ∈+∞单调递增,所以()ln 10h x x m =--≥'在[)1,x ∈+∞恒成立,即ln 1m x ≤-,因为[)1,x ∈+∞,所以min (ln 1)ln111x -=-=-,所以1m ≤-;【点睛】解题的关键是熟练掌握利用导数求解函数的单调区间、极值(最值)的方法,并灵活应用,在已知单调区间求参数时,可转化为恒成立问题,若()m t x <,需要min ()m t x <,若()m t x >,需max ()m t x >,考查计算化简的能力,属中档题.。

北大附中高考数学专题复习数列、极限、数学归纳法(下)精品文档12页

北大附中高考数学专题复习数列、极限、数学归纳法(下)精品文档12页

学科:数学教学内容:数列、极限、数学归纳法(下)【例题解析】例1 完成下列各选择题(1)“公差为0的等差数列是等比数列”;“公比为21的等比数列一定是递减数列”;“a,b,c 三数成等比数列的充要条件是b 2=ac ”;“a,b,c 三数成等差数列的充要条件是2b=a+c ”,以上四个命题中,正确的有( )A.1个B.2个C.3个D.4个(2)命题1:若数列{a n }的前n 项和S n =a n +b(a ≠1),则数列{a n }是等比数列; 命题2:若数列{a n }的前n 项和S n =an 2+bn+c(a ≠0),则数列{a n }是等差数列;命题3:若数列{a n }的前n 项和S n =na -n ,则数列{a n }既是等差数列,又是等比数列;上述三个命题中,真命题有( )A.0个B.1个C.2个D.3个(3)设{a n }是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是( )A.1B.2C.4D.6解析 (1)四个命题中只有最后一个是真命题。

命题1中未考虑各项都为0的等差数列不是等比数列;命题2中可知a n+1=a n ×21,a n+1<a n 未必成立,当首项a 1<0时,a n <0,则21a n >a n ,即a n+1>a n ,此时该数列为递增数列;命题3中,若a=b=0,c ∈R ,此时有ac b =2,但数列a,b,c 不是等比数列,所以应是必要而不充分条件,若将条件改为b=ac ,则成为不必要也不充分条件。

(2)上述三个命题均涉及到S n 与a n 的关系,它们是a n =⎩⎨⎧--,11n n S S a 时当时当21≥=n n 正确判断数列{a n }是等差数列或等比数列,都必须用上述关系式,尤其注意首项与其他各项的关系。

上述三个命题都不是真命题,选择A 。

由命题1得,a 1=a+b ,当n ≥2时,a n =S n -S n -1=(a -1)·a n -1。

北京北京大学附属中学高考数学高考数学压轴题 导数及其应用多选题分类精编附解析

北京北京大学附属中学高考数学高考数学压轴题 导数及其应用多选题分类精编附解析

一、导数及其应用多选题1.已知函数()sin sin f x ax a x =-,[]0,2x π∈,其中ln 1a a ->,则下列说法中正确的是( )A .若()f x 只有一个零点,则10,2a ⎛⎫∈ ⎪⎝⎭B .若()f x 只有一个零点,则()0f x ≥恒成立C .若()f x 只有两个零点,则31,2a ⎛⎫∈ ⎪⎝⎭D .若()f x 有且只有一个极值点0x ,则()01312a a f x π+--<⋅恒成立【答案】ABD 【分析】利用()00f =以及零点存在定理推导出当1a >时,函数()f x 在[]0,2π上至少有两个零点,结合图象可知当01a <<时,函数()f x 在()0,2π上有且只有一个极值点,利用导数分析函数()f x 在()0,2π上的单调性,可判断A 选项的正误;利用A 选项中的结论可判断B 选项的正误;取12a =,解方程()0f x =可判断C 选项的正误;分析出当()f x 在()0,2π上只有一个极值点时,01a <<,分13a =、103a <<、113a <<三种情况讨论,结合sin x x <可判断D 选项的正误. 【详解】构造函数()ln 1g x x x =--,其中0x >,则()111x g x x x-'=-=. 当01x <<时,()0g x '<,函数()g x 单调递减; 当1x >时,()0g x '>,此时,函数()g x 单调递增. 所以,()()min 10g x g ==.ln 1a a ->,0a ∴>且1a ≠.()sin sin f x ax a x =-,则()00f =.当1a >时,sin sin sin 02222a a f a a ππππ⎛⎫=-=-< ⎪⎝⎭,3333sin sin sin 02222a a f a a ππππ⎛⎫=-=+> ⎪⎝⎭,由零点存在定理可知,函数()f x 在3,22ππ⎛⎫⎪⎝⎭内至少有一个零点, 所以,当1a >时,函数()f x 在区间[]0,2π上至少有两个零点, 所以,当函数()f x 在区间[]0,2π上只有一个零点时,01a <<.对于A 选项,当01a <<时,()()cos cos cos cos f x a ax a x a ax x '=-=-.01a <<,则022a ππ<<,022a ππ<<, cos 022a f a ππ⎛⎫'=> ⎪⎝⎭,()()()2cos2cos2cos210f a a a a ππππ'=-=-<, 由零点存在定理可知,函数()f x 在区间,22ππ⎛⎫⎪⎝⎭上至少有一个极值点, 令()0f x '=,可得cos cos ax x =,当()0,2x π∈时,02ax x π<<<,由()cos cos cos 2ax x x π==-,可得2ax x π=-,解得21x a π=+, 所以,函数()f x 在区间()0,2π上有且只有一个极值点21x a π=+. 作出函数1cos y ax =与函数2cos y x =在区间[]0,2π上的图象如下图所示:由图象可知,函数1cos y ax =与函数2cos y x =在区间()0,2π上的图象有且只有一个交点,记该交点的横坐标为0x ,当00x x <<时,cos cos ax x >,此时()0f x '>; 当02x x π<<时,cos cos ax x <,此时()0f x '<.所以,函数()f x 在区间()00,x 上单调递增,在区间()0,2x π上单调递减. 所以,()()()0max 00f x f x f =>=,又()2sin 2f a ππ=.若函数()f x 在区间[]0,2π上有且只有一个零点,则()2sin 20f a ππ=>.01a <<,则022a ππ<<,所以,02a ππ<<,解得102a <<,A 选项正确;对于B 选项,若函数()f x 在区间[]0,2π上有且只有一个零点时,由A 选项可知,函数()f x 在区间()00,x 上单调递增,在区间()0,2x π上单调递减.()00f =,()2sin 20f a ππ=>,所以,对任意的[]0,2x π∈,()0f x ≥,B 选项正确;对于C 选项,取12a =,则()1sin sin sin sin cos sin 1cos 2222222x x x x x x f x x ⎛⎫=-=-=- ⎪⎝⎭,02x π≤≤,则02x π≤≤,令()0f x =,可得sin 02x =或cos 12x=,可得02x =或2xπ=, 解得0x =或2x π=. 所以,当12a =时,函数()f x 有两个零点,C 选项错误; 对于D 选项,当1a >时,若02x π<<,则02ax a π<<,且22a ππ>,当()0,2x π∈时,令()0f x '=,可得出()()cos cos cos 2ax x k x k Z π==±∈,至少可得出2ax x π=-或2ax x π=+,即函数()f x 在区间()0,2π上至少有两个极值点,不合乎题意,所以,01a <<. 下面证明:当02x π<<时,sin x x <,构造函数()sin h x x x =-,其中02x π<<,则()1cos 0h x x '=->,所以,函数()sin h x x x =-在区间0,2π⎛⎫⎪⎝⎭上为增函数,所以,()()00h x h >=,即sin x x <.分以下三种情况来证明()01312a a f x π+--<⋅恒成立.()()000cos cos 0f x a ax x '=-=,可得00cos cos ax x =,0002ax x π<<<,由00cos cos ax x =可得出002ax x π=-,所以,021x a π=+. 则()000sin sin 2sin ax x x π=-=-. ①当13a =时,032x π=,则()1sin sin 33x f x x =-,31342sin sin 223233f ππππ⎛⎫=-=< ⎪⎝⎭,即()01312a a f x π+--<⋅成立;②当103a <<时,023,212x a πππ⎛⎫=∈ ⎪+⎝⎭, 则()()()0000002sin sin sin sin 1sin 1sin1f x ax a x x a x a x a a π=-=--=-+=-++ ()()()()22221sin 1sin 21sin 121111a a a a a a a a a a a ππππππ⎛⎫⎛⎫=+-=+-=+<+⋅= ⎪ ⎪++++⎝⎭⎝⎭ 1312a a π+--=⋅;③当113a <<时,023,12x a πππ⎛⎫=∈ ⎪+⎝⎭, ()()()()0000000sin sin sin sin 1sin 1sin f x ax a x x a x a x a x =-=--=-+=+-()()()()()()()01121sin 1sin 1sin 1111a a a x a a a a a a πππππ--⎛⎫=+-=+-=+<+⋅ ⎪+++⎝⎭()13112a a a ππ+--=-=.综上所述,当函数()f x 只有一个极值点0x 时,()01312a a f x π+--<恒成立. 故选:ABD. 【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用; (2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.2.已知函数()21xx x f x e+-=,则下列结论正确的是( ) A .函数()f x 存在两个不同的零点 B .函数()f x 既存在极大值又存在极小值C .当0e k -<<时,方程()f x k =有且只有两个实根D .若[),x t ∈+∞时,()2max 5f x e =,则t 的最小值为2【答案】ABC 【分析】首先求函数的导数,利用导数分析函数的单调性和极值以及函数的图象,最后直接判断选项. 【详解】对于A .2()010f x x x =⇒+-=,解得15x -±=,所以A 正确; 对于B .22(1)(2)()x xx x x x f x e e--+-=-=-', 当()0f x '>时,12x -<<,当()0f x '<时,1x <-或2x >,所以(,1),(2,)-∞-+∞是函数的单调递减区间,(1,2)-是函数的单调递增区间, 所以(1)f -是函数的极小值,(2)f 是函数的极大值,所以B 正确.对于C .当x →+∞时,0y →,根据B 可知,函数的最小值是(1)f e -=-,再根据单调性可知,当0e k -<<时,方程()f x k =有且只有两个实根,所以C 正确;对于D :由图象可知,t 的最大值是2,所以D 不正确. 故选:ABC. 【点睛】易错点点睛:本题考查了导数分析函数的单调性,极值点,以及函数的图象,首先求函数的导数,令导数为0,判断零点两侧的正负,得到函数的单调性,本题易错的地方是(2,)+∞是函数的单调递减区间,但当x →+∞时,0y →,所以图象是无限接近轴,如果这里判断错了,那选项容易判断错了.3.已知函数()f x 对于任意x ∈R ,均满足()()2f x f x =-.当1x ≤时()ln ,01,0x x x f x e x <≤⎧=⎨≤⎩,若函数()()2g x m x f x =--,下列结论正确的为( )A .若0m <,则()g x 恰有两个零点B .若32m e <<,则()g x 有三个零点 C .若302m <≤,则()g x 恰有四个零点 D .不存在m 使得()g x 恰有四个零点 【答案】ABC 【分析】设()2h x m x =-,作出函数()g x 的图象,求出直线2y mx =-与曲线()ln 01y x x =<<相切以及直线2y mx =-过点()2,1A 时对应的实数m 的值,数形结合可判断各选项的正误. 【详解】由()()2f x f x =-可知函数()f x 的图象关于直线1x =对称. 令()0g x =,即()2m x f x -=,作出函数()f x 的图象如下图所示:令()2h x m x =-,则函数()g x 的零点个数为函数()f x 、()h x 的图象的交点个数,()h x 的定义域为R ,且()()22h x m x m x h x -=--=-=,则函数()h x 为偶函数,且函数()h x 的图象恒过定点()0,2-,当函数()h x 的图象过点()2,1A 时,有()2221h m =-=,解得32m =. 过点()0,2-作函数()ln 01y x x =<<的图象的切线, 设切点为()00,ln x x ,对函数ln y x =求导得1y x'=,所以,函数ln y x =的图象在点()00,ln x x 处的切线方程为()0001ln y x x x x -=-, 切线过点()0,2-,所以,02ln 1x --=-,解得01x e=,则切线斜率为e , 即当m e =时,函数()y h x =的图象与函数()ln 01y x x =<<的图象相切. 若函数()g x 恰有两个零点,由图可得0m ≤或m e =,A 选项正确; 若函数()g x 恰有三个零点,由图可得32m e <<,B 选项正确; 若函数()g x 恰有四个零点,由图可得302m <≤,C 选项正确,D 选项错误. 故选:ABC. 【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用; (2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.4.函数()()320ax bx d a f x cx =+++≠有两个极值点1x 、()212x x x <,则下列结论正确的是( ) A .230b ac ->B .()f x 在区间()12,x x 上单调递减C .若()10af x <,则()f x 只有一个零点D .存在0x ,使得()()()1202f x f x f x +=【答案】ACD 【分析】利用极值点与导数的关系可判断A 选项的正误;取0a <,利用函数的单调性与导数的关系可判断B 选项的正误;分0a >、0a <两种情况讨论,分析函数()f x 的单调性,结合图象可判断C 选项的正误;计算出函数()f x 的图象关于点,33b b f a a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭对称,可判断D 选项的正误. 【详解】()()320f x ax bx cx d a =+++≠,则()232f x ax bx c '=++.对于A 选项,由题意可知,关于x 的二次方程()23200ax bx c a ++=≠有两个不等的实根,则24120b ac ∆=->,可得230b ac ->,A 选项正确;对于B 选项,当0a <时,且当()12,x x x ∈时,()0f x '>,此时函数()f x 在区间()12,x x 上单调递增,B 选项错误;对于C 选项,当0a >时,由()0f x '>,可得1x x <或2x x >;由()0f x '<,可得12x x x <<.所以,函数()f x 的单调递增区间为()1,x -∞、()2,x +∞,单调递减区间为()12,x x , 由()10af x <,可得()10<f x ,此时,函数()f x 的极大值为()10<f x ,极小值为()2f x ,且()()210f x f x <<,如下图所示:由图可知,此时函数()f x 有且只有一个零点,且零点在区间()2,x +∞内; 当0a <时,由()0f x '<,可得1x x <或2x x >;由()0f x '>,可得12x x x <<. 所以,函数()f x 的单调递减区间为()1,x -∞、()2,x +∞,单调递增区间为()12,x x , 由()10af x <,可得()10f x >,此时,函数()f x 的极小值为()10f x >,极大值为()2f x ,且()()210f x f x >>,如下图所示:由图可知,此时函数()f x 有且只有一个零点,且零点在区间()2,x +∞内,C 选项正确; 对于D 选项,由题意可知,1x 、2x 是方程2320ax bx c ++=的两根, 由韦达定理可得1223bx x a +=-,123c x x a=, ()()()()()()()()3232f t x f t x a t x b t x c t x d a t x b t x c t x d ⎡⎤⎡⎤-++=-+-+-++++++++⎣⎦⎣⎦()()()()()(322322322322332332a t t x tx x b t tx x c t x d a t t x tx x b t tx x c ⎡⎤⎡=-+-+-++-+++++++++⎣⎦⎣()()322223222a t tx b t x ct d =+++++,取3bt a=-,则322223222333333b b b b b b f x f x a x b x c d a a a a a a ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫--+-+=-+⨯-+-++⋅-+⎢⎥⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦32222223333b b b b a b c d fa a a a ⎛⎫⎛⎫⎛⎫⎛⎫=-+⋅-+⋅-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以,函数()f x 的图象关于点,33b b f a a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭对称, 1223bx x a+=-,()()1223b f x f x f a ⎛⎫∴+=- ⎪⎝⎭,D 选项正确.故选:ACD. 【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用; (2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.5.设函数cos 2()2sin cos xf x x x=+,则( )A .()()f x f x π=+B .()f x 的最大值为12C .()f x 在,04π⎛⎫- ⎪⎝⎭单调递增 D .()f x 在0,4π⎛⎫⎪⎝⎭单调递减 【答案】AD 【分析】先证明()f x 为周期函数,周期为π,从而A 正确,再利用辅助角公式可判断B 的正误,结合导数的符号可判断C D 的正误. 【详解】()f x 的定义域为R ,且cos 2()2sin cos xf x x x=+,()()()()cos 22cos 2()2sin cos 2sin cos x xf x f x x x x xππππ++===++++,故A 正确.又2cos 22cos 2()42sin cos 4sin 2x x f x x x x ==++,令2cos 24sin 2xy x=+,则()42cos 2sin 22y x y x x ϕ=-=+,其中cos ϕϕ==1≤即2415y ≤,故1515y -≤≤,当y =时,有1cos 4ϕϕ==,此时()cos 21x ϕ+=即2x k ϕπ=-,故max 15y =,故B 错误.()()()()()22222sin 24sin 22cos 2414sin 2()4sin 24sin 2x x x x f x x x ⎡⎤-+--+⎣⎦'==++,当0,4x π⎛⎫∈ ⎪⎝⎭时,()0f x '<,故()f x 在0,4π⎛⎫⎪⎝⎭为减函数,故D 正确. 当,04x π⎛⎫∈-⎪⎝⎭时,1sin20x -<<,故314sin 21x -<+<, 因为2t x =为增函数且2,02x π⎛⎫∈- ⎪⎝⎭,而14sin y t =+在,02π⎛⎫- ⎪⎝⎭为增函数,所以()14sin 2h x x =+在,04π⎛⎫- ⎪⎝⎭上为增函数, 故14sin 20x +=在,04π⎛⎫-⎪⎝⎭有唯一解0x , 故当()0,0x x ∈时,()0h x >即()0f x '<,故()f x 在()0,0x 为减函数,故C 不正确. 故选:AD 【点睛】方法点睛:与三角函数有关的复杂函数的研究,一般先研究其奇偶性和周期性,而单调性的研究需看函数解析式的形式,比如正弦型函数或余弦型函数可利用整体法来研究,而分式形式则可利用导数来研究,注意辅助角公式在求最值中的应用.6.在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它得名于荷兰数学家鲁伊兹布劳威尔(L.E.Brouwer )简单的讲就是对于满足一定条件的连续函数()f x ,存在一个点0x ,使得()00f x x =,那么我们称该函数为“不动点”函数,而称0x 为该函数的一个不动点,依据不动点理论,下列说法正确的是( ) A .函数()sin f x x =有3个不动点B .函数2()(0)f x ax bx c a =++≠至多有两个不动点C .若定义在R 上的奇函数()f x ,其图像上存在有限个不动点,则不动点个数是奇数 D.若函数()f x =[0,1]上存在不动点,则实数a 满足l a e ≤≤(e 为自然对数的底数) 【答案】BCD 【分析】根据题目中的定义,结合导数、一元二次方程的性质、奇函数的性质进行判断即可. 【详解】令()sin g x x x =-,()1cos 0g x x '=-≥, 因此()g x 在R 上单调递增,而(0)0g =, 所以()g x 在R 有且仅有一个零点, 即()f x 有且仅有一个“不动点”,A 错误;0a ≠,20ax bx c x ∴++-=至多有两个实数根,所以()f x 至多有两个“不动点”,B 正确;()f x 为定义在R 上的奇函数,所以(0)0f =,函数()-y f x x =为定义在R 上的奇函数,显然0x =是()f x 的一个“不动点”,其它的“不动点”都关于原点对称,个数和为偶数, 因此()f x 一定有奇数个“不动点”,C 正确;因为()f x 在[0,1]存在“不动点”,则()f x x =在[0,1]有解,x =⇒2x a e x x =+-在[0,1]有解,令2()xm x e x x =+-,()12x m x e x '=+-,令()12x n x e x '=+-,()20x n x e '=-=,ln 2x =,()n x 在(0,ln 2)单调递减,在(ln 2,1)单调递增,∴min ()(ln 2)212ln 232ln 20n x n ==+-=->, ∴()0m x '>在[0,1]恒成立,∴()m x 在[0,1]单调递增,min ()(0)1m x m ==,max ()(1)m x m e ==,∴1a e ≤≤,D 正确,. 故选:BCD 【点睛】方法点睛:新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.7.某同学对函数()sin e e x xxf x -=-进行研究后,得出以下结论,其中正确的是( )A .函数()y f x =的图象关于原点对称B .对定义域中的任意实数x 的值,恒有()1f x <成立C .函数()y f x =的图象与x 轴有无穷多个交点,且每相邻两交点的距离相等D .对任意常数0m >,存在常数b a m >>,使函数()y f x =在[]a b ,上单调递减 【答案】BD 【分析】由函数奇偶性的定义即可判断选项A ;由函数的性质可知()sin 1x xx f x e e -=<-可得到sin x x x e e -<-,即sin 0x x e e x --->,构造函数()sin 0x x h x e e x x -=-->,求导判断单调性,进而求得最值即可判断选项B ;函数()y f x =的图象与x 轴的交点坐标为()0,πk (k Z ∈,且)0k ≠,可判断选项C ;求导分析()0f x '≤时成立的情况,即可判断选项D. 【详解】对于选项A :函数()sin e e x xxf x -=-的定义域为{}|0x x ≠,且()()sin sin x x x xx xf x f x e e e e ----===--,所以()f x 为偶函数,即函数()y f x =的图象关于y 轴对称,故A 选项错误; 对于选项B :由A 选项可知()f x 为偶函数,所以当0x >时,0x x e e -->,所以()sin 1x xx f x e e -=<-,可得到sin x x x e e -<-,即sin 0x xe e x --->,可设()sin 0x x h x e e x x -=-->,,()cos x x h x e e x -'=+±,因为2x x e e -+>,所以()cos 0x x h x e e x -±'=+>,所以()h x 在()0+∞,上单调递增,所以()()00h x h >=,即()sin 1xxx f x e e-=<-恒成立,故选项B 正确;对于选项C :函数()y f x =的图象与x 轴的交点坐标为()()00k k Z k π∈≠,,且,交点()0π-,与()0π,间的距离为2π,其余任意相邻两点的距离为π,故C 选项错误; 对于选项D :()()()()2cos sin 0xx x x xxe e x e e xf x ee -----+-'=≤,可化为e x (cos x -sin x )()cos sin 0xex x --+≤,不等式两边同除以x e -得,()2cos sin cos sin x e x x x x -≤+,当()32244x k k k Z ππππ⎛⎫∈++∈⎪⎝⎭,,cos sin 0x x -<,cos sin 0x x +>,区间长度为12π>,所以对于任意常数m >0,存在常数b >a >m ,32244a b k k ππππ⎛⎫∈++⎪⎝⎭,,, ()k Z ∈,使函数()y f x =在[]a b ,上单调递减,故D 选项正确;故选:BD 【点睛】思路点睛:利用导数研究函数()f x 的最值的步骤: ①写定义域,对函数()f x 求导()'f x ;②在定义域内,解不等式()0f x '>和()0f x '<得到单调性; ③利用单调性判断极值点,比较极值和端点值得到最值即可.8.下列命题正确的有( )A .已知0,0a b >>且1a b +=,则1222a b -<<B .34a b ==a bab+= C .323y x x x =--的极大值和极小值的和为6-D .过(1,0)A -的直线与函数3y x x =-有三个交点,则该直线斜率的取值范围是1(,2)(2,)4-+∞ 【答案】ACD 【分析】由等式关系、指数函数的性质可求2a b -的范围;利用指对数互化,结合对数的运算法求a b ab+;利用导数确定零点关系,结合原函数式计算极值之和即可;由直线与3y x x =-有三个交点,即可知2()h x x x k =--有两个零点且1x =-不是其零点即可求斜率范围. 【详解】A 选项,由条件知1b a =-且01a <<,所以21(1,1)a b a -=-∈-,即1222a b -<<;B 选项,34a b ==log a =4log b =1212112(log 3log 4)2a b ab a b+=+=+=; C 选项,2361y x x '=--中>0∆且开口向上,所以存在两个零点12,x x 且122x x +=、1213x x =-,即12,x x 为y 两个极值点,所以2212121212121212()[()3]3[()2]()6y y x x x x x x x x x x x x +=++--+--+=-;D 选项,令直线为(1)y k x =+与3y x x =-有三个交点,即2()()(1)g x x x k x =--+有三个零点,所以2()h x x x k =--有两个零点即可∴140(1)20k h k ∆=+>⎧⎨-=-≠⎩,解得1(,2)(2,)4k ∈-+∞故选:ACD 【点睛】本题考查了指对数的运算及指数函数性质,利用导数研究极值,由函数交点情况求参数范围,属于难题.9.已知函数()ln f x x mx =-有两个零点1x 、2x ,且12x x <,则下列结论不正确的是( )A .10m e<<B .21x x -的值随m 的增大而减小C .101x <<D .2x e >【答案】C 【分析】由()0f x =得出ln xm x =,构造函数()ln x g x x=,利用导数分析函数()g x 的单调性与极值,数形结合可判断ACD 选项的正误;任取1m 、210,m e ⎛⎫∈ ⎪⎝⎭,且12m m <,设()()121g g m ξξ==,其中121e ξξ<<<;设()()122g g m ηη==,其中121e ηη<<<,利用函数()g x 的单调性结合不等式的基本性质得出2121ξξηη->-,可判断B 选项的正误. 【详解】令()0f x =,可得ln xm x =,构造函数()ln x g x x=,定义域为()0,∞+,()1ln xg x x-'=. 当0x e <<时, ()0g x '>,此时函数()g x 单调递增; 当x e >时,()0g x '<,此时函数()g x 单调递减. 所以,()()max 1g x g e e==,如下图所示:由图象可知,当10m e <<时,直线y m =与函数()ln x g x x=的图象有两个交点,A 选项正确;当1x >时,()0g x >,由图象可得11x e <<,2x e >,C 选项错误,D 选项正确;任取1m 、210,m e ⎛⎫∈ ⎪⎝⎭,且12m m <,设()()121g g m ξξ==,其中121e ξξ<<<;设()()122g g m ηη==,其中121e ηη<<<.由于函数()g x 在区间()1,e 上单调递增,且()()11g g ξη<,11ξη∴<; 函数()g x 在区间(),e +∞上单调递减,且()()22g g ξη<,22ξη∴>. 由不等式的基本性质可得1212ξξηη-<-,则2121ξξηη->-. 所以,21x x -的值随m 的增大而减小,B 选项正确. 故选:C. 【点睛】在利用导数研究函数的零点问题个数中,可转化为判定()m g x =有两个实根时实数m 应满足的条件,并注意()g x 的单调性、奇偶性、最值的灵活应用.另外还可作出函数()y g x =的大致图象,直观判定曲线交点个数,但应注意严谨性,进行必要的论证.10.对于函数2ln ()xf x x=,下列说法正确的是( )A .()f x 在x =12eB .()f x 有两个不同的零点C .ff f <<D .若()21f x k x<-在()0,∞+上恒成立,则2e k >【答案】ACD 【分析】求得函数的导数312ln ()-'=xf x x,根据导数的符号,求得函数的单调区间和极值,可判定A 正确;根据函数的单调性和()10f =,且x >()0f x >,可判定B 不正确;由函数的单调性,得到f f >,再结合作差比较,得到f f >,可判定C 正确;分离参数得到()221ln 1x k f x x x +>+=在()0,∞+上恒成立,令()2ln 1x g x x +=,利用导数求得函数()g x 的单调性与最值,可判定D 正确. 【详解】由题意,函数2ln ()x f x x=,可得312ln ()(0)xf x x x -'=>,令()0f x '=,即312ln 0xx-=,解得x =当0x <<()0f x '>,函数()f x 在上单调递增;当x >()0f x '<,函数()f x 在)+∞上单调递减,所以当x =()f x 取得极大值,极大值为12f e=,所以A 正确; 由当1x =时,()10f =,因为()f x 在上单调递增,所以函数()f x 在上只有一个零点,当x >()0f x >,所以函数在)+∞上没有零点,综上可得函数在(0,)+∞只有一个零点,所以B 不正确;由函数()f x 在)+∞上单调递减,可得f f >,由于ln ln 2ln ,242f f ππ====,则2ln ln 2ln ln 22444f f ππππππ-=-=-,因为22ππ>,所以0f f ->,即f f >,所以ff f <<,所以C 正确;由()21f x k x<-在()0,∞+上恒成立,即()221ln 1x k f x x x +>+=在()0,∞+上恒成立, 设()2ln 1x g x x +=,则()32ln 1x g x x --'=, 令()0g x '=,即32ln 10x x --=,解得x =所以当0x<<()0g x '>,函数()g x 在上单调递增; 当x>()0g x '<,函数()g x 在)+∞上单调递减, 所以当x=()g x 取得最大值,最大值为22e eg e =-=, 所以2ek >,所以D 正确. 故选:ACD. 【点睛】本题主要考查导数在函数中的综合应用,以及恒成立问题的求解,着重考查了转化与化归思想、逻辑推理能力与计算能力,对于恒成立问题,通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值问题.。

(常考题)北师大版高中数学选修1-1第四章《导数应用》测试题(答案解析)(4)

(常考题)北师大版高中数学选修1-1第四章《导数应用》测试题(答案解析)(4)

一、选择题1.已知函数()()22ln x x t f x x+-=,若对任意的[]2,3x ∈,()()0f x f x x '+>恒成立,则实数t 的取值范围是( )A .(),2-∞B .5,2⎛⎫-∞ ⎪⎝⎭C .103⎛⎫-∞ ⎪⎝⎭,D .()2,+∞2.若函数()3221f x x x mx =+++在()-∞+∞,内单调递增,则m 的取值范围是( ) A .43m ≥B .43m >C .43m ≤D .43<m 3.已知函数21ln 22y x a x x =--在1,2⎡⎫+∞⎪⎢⎣⎭上单调递增,则实数a 的取值范围为( ) A .34a ≤-B .1a ≤-C .1a ≤D .01a ≤≤4.已知曲线1C :()xf x xe =在0x =处的切线与曲线2C :()()ln a xg x a x=∈R 在1x =处的切线平行,令()()()h x f x g x =,则()h x 在()0,∞+上( )A .有唯一零点B .有两个零点C .没有零点D .不确定5.已知函数()f x 的导函数是'()f x ,'()f x 的图象如图所示,下列说法正确的是( )A .函数()f x 在(2,1)--上单调递减B .函数()f x 在3x =处取得极大值C .函数()f x 在(1,1)-上单调递减D .函数()f x 共有4个极值点6.已知函数()()30f x ax bx c ac =++<,则函数()y f x =的图象可能是( ).A .B .C .D .7.对于正数k ,定义函数:()()()(),,f x f x kg x k f x k ⎧≤⎪=⎨>⎪⎩.若对函数()ln 22f x x x =-+,有()()g x f x =恒成立,则( )A .k 的最大值为1ln2+B .k 的最小值为1ln2+C .k 的最大值为ln 2D .k 的最小值为ln 28.已知函数()f x 的定义域为[)2-+∞,,部分对应值如下表;()f x '为()f x 的导函数,函数()y f x '=的图象如下图所示.若实数a 满足()211f a +≤,则a 的取值范围是( ) x2-0 4 ()f x11-1A .33,22⎛⎫-⎪⎝⎭ B .13,22⎛⎫-⎪⎝⎭ C .33,22⎡⎤-⎢⎥⎣⎦D .13,22⎡⎤-⎢⎥⎣⎦9.某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为31812863y x x =-+-,则该生产厂家获取的最大年利润为( )A .300万元B .252万元C .200万元D .128万元10.定义在R 上的函数()f x 满足()()2f x f x '+<,则下列不等式一定成立的是( ) A .(3)2(2)2ef f e +<+ B .(3)2(2)2ef f e +>+ C .(3)2(2)2f e ef +<+D .(3)2(2)2f e ef +>+11.若函数()()11xf x e a x =--+在(0,1)上不单调,则a 的取值范围是( ) A .()2,1e +B .[]2,1e +C .(][),21,e -∞⋃++∞D .()(),21,e -∞⋃++∞12.已知函数()()()2122x x f x m e m R =+++∈有两个极值点,则实数m 的取值范围为( )A .10e ⎡⎤-⎢⎥⎣⎦,B .111e⎛⎫--- ⎪⎝⎭,C .1e ⎛⎫-∞- ⎪⎝⎭,D .()0+∞,二、填空题13.已知()y f x =是定义在R 上的奇函数,()20f -=,且当0x >时()()20f x xf x x '-<,则不等式()()2110x f x -->的解集是______. 14.已知函数()f x 对定义域内R 内的任意x 都有()()4f x f x =-,且当2x ≠,其导数()f x '满足()()2xf x f x ''<,若()30f =,则不等式()0xf x >的解集为__________.15.已知函数21()ln 2f x x x =+,函数()f x 在[1,]e 上的最大值为__________. 16.若函数()()32111562f x x mx n x =-++-+是[]0,1上的单调增函数,其中0m ≥,0n ≥,则()()2268m n +++的最小值为________.17.若函数32()1f x x ax x =-++在()2,+∞上单调递增,则实数a 的取值范围是__________.18.若函数()ln f x ax x =-在区间()0,1上是减函数,则实数a 的取值范围是________.19.使“函数()xe f x x=在区间(0,m ]上单调递减”成立的一个m 值是_____.20.已知函数()()31f x x ax b =---,x ∈R ,其中a 、b ∈R ,若()f x 存在极值点0x ,且()()10f x f x =,其中10x x ≠,则102x x +=_______.三、解答题21.已知函数()3213 1.3f x x x x =+-- (1)求函数()f x 的极值;(2)求函数()f x 在区间[]5,4-上的最大值与最小值. 22.已知函数()()3f x alnx ax a R =--∈. (1)函数()f x 的单调区间;(2)当1a =-时,证明:当()1x ∈+∞,时,()20f x +>. 23.已知函数()2ln f x x a x =+.(1)当2a =-时,求函数()f x 在点()()11f ,处的切线方程;(2)若()()2g x f x x=+在[1,+)∞上是单调增函数,求实数a 的取值范围. 24.已知函数()1ln =--f x x x .(1)证明:()f x 存在唯一的零点; (2)当0x >时,证明:ln x e x x >>. 25.已知函数()11f x x=-. (1)求曲线()y f x =在点()()1,1f 处的切线方程;(2)设函数()()ln g x f x t x =+,当1t ≤时,求()g x 零点的个数. 26.设函数2()cos ,()sin a f x x x g x x=+=. (1)当[0,]x π∈时,判断()f x 的单调性; (2)若当,62x ππ⎡⎤∈⎢⎥⎣⎦时,不等式()()0f x g x -恒成立,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】求导函数()f x ',化简()()0f x f x x'+>得10x t x+->在[]2,3x ∈恒成立,参变分离即可求参数范围. 【详解】∵()2222ln 2x x t f x x-+-'=, ∴对任意的[]2,3x ∈,()()0f x f x x'+>恒成立⇔对任意的[]2,3x ∈,()()0xf x f x '+>恒成立, ⇔对任意的[]2,3x ∈,10x t x+->恒成立, ⇔1x t x+>恒成立, 又()1g x x x =+在[]2,3上单调递增,∴()()225min g x g ==,∴52t <.则实数t 的取值范围是5,2⎛⎫-∞ ⎪⎝⎭.故选:B 【点睛】对于恒成立问题,常用到以下两个结论: (1)()a f x ≥ 恒成立()max a f x ⇔≥; (2) ()a f x ≤ 恒成立()min a f x ⇔≤.2.A解析:A 【分析】由于()f x 在R 上递增得()0f x '≥恒成立,利用参数分离求得参数范围. 【详解】因为()f x 在R 上递增得()0f x '≥恒成立,则()2340f x x x m '=++≥所以234m x x ≥--在R 上恒成立,令()234g x x x =--,则()max m g x ≥因为()g x 为二次函数且图像的对称轴为23x =-,所以()max 2433g x g ⎛⎫=-= ⎪⎝⎭故43m ≥故选:A 【点睛】方法点晴:本题利用导数与单调性的关系转化为恒成立问题,结合参数分离法求得参数范围.3.B解析:B 【分析】 由函数21ln 22y x a x x =--在1,2⎡⎫+∞⎪⎢⎣⎭上单调递增,知'0y ≥在1,2⎡⎫+∞⎪⎢⎣⎭上恒成立,分离参数,求最值得答案. 【详解】 因为函数21ln 22y x a x x =--在1,2⎡⎫+∞⎪⎢⎣⎭上单调递增, 所以22'20a x x ay x x x--=--=≥在1,2⎡⎫+∞⎪⎢⎣⎭上恒成立,所以222(1)1a x x x ≤-=--在1,2⎡⎫+∞⎪⎢⎣⎭上恒成立,所以1a ≤-,【点睛】方法点睛:该题考查的是有关根据函数在给定区间上单调增求你参数的取值范围的问题,解题方法如下:(1)利用函数在给定区间上单调递增,得到其导数大于等于零在给定区间上恒成立; (2)求导;(3)分离参数,求最小值,得结果.4.A解析:A 【分析】先对函数()xf x xe =和()ln a xg x x=求导,根据两曲线在1x =处的切线平行,由导数的几何意义求出a ,得到函数()()()ln xh x f x g x e x ==,对其求导,利用导数的方法判定单调性,确定其在()0,∞+上的最值,即可确定函数零点个数. 【详解】∵()xf x xe =,∴()()1xf x x e '=+,又()ln a x g x x =,∴()2ln a a xg x x-'=, 由题设知,()()01f g '=',即()02ln1101a a e -+=,∴1a =, 则()()()ln ln xx xh x f x g x xe e x x==⋅=, ∴()()ln 1ln xx xx x ee h x e x x x+=='+,0x >, 令()ln 1m x x x =+,0x >,则()ln 1m x x '=+,当10,e x ⎛⎫∈ ⎪⎝⎭时,()0m x '<,即函数()ln 1m x x x =+单调递减;当1,x e ⎛⎫∈+∞ ⎪⎝⎭时,()0m x '>,即函数()ln 1m x x x =+单调递增;∴在()0,∞+上()m x 的最小值为1110m e e⎛⎫=-> ⎪⎝⎭, ∴()0m x >,则()0h x '>,∴()h x 在()0,∞+上单调递增,且()10h =.()h x 在()0,∞+上有唯一零点,故选:A . 【点睛】利用导数的方法判定函数零点个数时,一般需要先对函数求导,利用导数的方法判定函数单调性,确定函数极值和最值,即可确定函数零点个数.(有时也需要利用数形结合的方法进行判断)5.C解析:C 【分析】对于选项A ,函数()f x 在(2,1)--上单调递增,故A 错误;对于选项B ,函数()f x 在(1,3)上单调递增,在(3,)+∞上单调递增,所以3x =不是()f x 的极值点,故B 错误;对于选项C ,函数()f x 在(1,1)-上单调递减,故C 正确;对于选项D ,由导函数的图象得函数()f x 共有3个极值点,故D 错误. 【详解】对于选项A ,由导函数的图象得函数()f x 在(2,1)--上单调递增,故A 错误;对于选项B ,由导函数的图象得函数()f x 在(1,3)上单调递增,在(3,)+∞上单调递增,所以3x =不是()f x 的极值点,故B 错误;对于选项C ,由导函数的图象得函数()f x 在(1,1)-上单调递减,故C 正确; 对于选项D ,由导函数的图象得函数()f x 共有3个极值点,3,1x x =-=是极小值点,1x =-是极大值点,故D 错误. 故选:C. 【点睛】结论点睛:(1)函数()f x 的()0f x '>在(,)a b 上恒成立,则函数()f x 在(,)a b 上单调递增;函数()f x 的()0f x '<在(,)a b 上恒成立,则函数()f x 在(,)a b 上单调递减.(2)如果函数()f x 的极值点是0x ,则0x 附近左右两边的导数符号相反.6.B解析:B 【分析】利用函数()f x 的对称性排除A 选项;然后分0a >和0a <两种情况讨论,利用导数分析函数()f x 的单调性,结合()0f 的符号可得出合适的选项. 【详解】()3f x ax bx c =++,则()3f x ax bx c -=--+,()()2f x f x c ∴+-=,所以,函数()f x 的图象关于点()0,c 对称,排除A 选项;()3f x ax bx c =++,则()23f x ax b '=+,当0a >,x →+∞时,()0f x '>,函数()f x 单调递增, 又0ac <,()00f c ∴=<,排除D 选项;当0a <,x →+∞时,()0f x '<,函数()f x 单调递减, 又0ac <,()00f c ∴=>,排除C 选项. 故选:B . 【点睛】思路点睛:函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)函数的特征点,排除不合要求的图象.7.B解析:B 【分析】利用导数求出函数()f x 的最大值,由函数()g x 的定义结合()()g x f x =恒成立可知()f x k ≤,由此可得出k 的取值范围,进而可得出合适的选项.【详解】对于正数k ,定义函数:()()()(),,f x f x kg x k f x k ⎧≤⎪=⎨>⎪⎩,且()()g x f x =恒成立,则()f x k ≤.函数()ln 22f x x x =-+的定义域为()0,∞+,且()111xf x x x-'=-=. 当01x <<时,()0f x '>,此时,函数()f x 单调递增; 当1x >时,()0f x '<,此时,函数()f x 单调递减. 所以,()()max 11ln 2f x f ==+,1ln 2k ∴≥+. 因此,k 的最小值为1ln2+. 故选:B. 【点睛】解决导数中的新定义的问题,要紧扣新定义的本质,将问题转化为导数相关的问题,本题将问题转为不等式()k f x ≥恒成立,从而将问题转化为求函数()f x 的最大值.8.A解析:A 【分析】由导函数的图象得到导函数的符号,利用导函数的符号与函数单调性的关系得到()f x 的单调性,结合函数的单调性即可求得a 的取值范围. 【详解】由导函数的图象知:()2,0x ∈-时,()0f x '<,()0,x ∈+∞时,()0f x '>, 所以()f x 在()2,0-上单调递减,在()0,∞+上单调递增, 因为()211f a +≤,()21f -=,()41f =, 所以2214a -<+<,可得:3322a -<<, 故选:A. 【点睛】本题主要考查了利用导函数的符号判断原函数的单调性,以及利用函数的单调性解不等式,属于中档题.9.C解析:C 【分析】求得函数的导数,得到函数的单调性,进而求解函数的最大值,即可得到答案. 【详解】由题意,函数31812863y x x =-+-,所以281y x '=-+,当09x <<时,0y '>,函数()f x 为单调递增函数; 当9x >时,0y '<,函数()f x 为单调递减函数,所以当9x =时,y 有最大值,此时最大值为200万元,故选C. 【点睛】本题主要考查了利用导数研究函数的单调性与最值问题,其中解答中熟记函数的导数在函数中的应用,准确判定函数的单调性是解答的关键,着重考查了推理与计算能力,属于基础题.10.A解析:A 【分析】设()()2xxF x e f x e =-,求导并利用()()2f x f x '+<可得()F x 在R 上单调递减,根据(2)(3)F F >可得结果.【详解】设()()2x xF x e f x e =-,则[]()()()2()()2x x x xF x e f x e f x e ef x f x '''=+-=+-,因为()()2f x f x '+<,所以()()()20F x e f x f x ''⎡⎤=+-<⎣⎦,所以()F x 在R 上单调递减,则(2)(3)F F >,即2233(2)2(3)2e f e e f e ->-,故(3)2(2)2ef f e +<+. 故选:A.【点睛】本题考查了构造函数解决导数问题,考查了利用导数研究函数的单调性,利用单调性比较大小,属于中档题.11.A解析:A 【分析】求导得()1xf x e a '=-+,原问题可转化为()'f x 在(0,1)上有变号零点,由于()'f x 单调递增,只需满足()()010f f ''<,解之即可. 【详解】 解:()(1)1x f x e a x =--+,()1x f x e a '∴=-+,若()f x 在(0,1)上不单调,则()'f x 在(0,1)上有变号零点,又()f x '单调递增,()()010f f ''∴<,即(11)(1)0a e a -+-+<,解得21a e <<+.a ∴的取值范围是(2,e +1).故选:A . 【点睛】本题考查利用导数研究函数的单调性、零点存在定理,理解原函数的单调性与导函数的正负性之间的联系是解题的关键,考查学生的逻辑推理能力和运算能力,属于中档题.12.B解析:B 【分析】求导()()1xf x x m e '=++,将问题转化为()()1xf x x m e '=++有两个不同的零点,也即是关于x 的方程1x xm e --=有两个不同的解,构造函数()xx g x e =,求导()1x xg x e-'=,分析导函数取得正负的区间,从而得函数()g x 的单调性和最值,从而可得选项.【详解】函数()f x 的定义域为R ,()()'1x fx x m e =++,因为函数()f x 有两个极值点,所以()()1xf x x m e '=++有两个不同的零点, 故关于x 的方程1xxm e --=有两个不同的解, 令()xx g x e =,则()1x xg x e-'=,当(,1)x ∈-∞时, ()0g x '>,当(1,+)x ∈∞时,()0g x '<,所以函数()g x 在区间(,1)-∞上单调递增,在区间(1,+∞)上单调递减,又当x →-∞时,()g x →-∞;当x →+∞时,()0g x →, 且0,()0x g x >>()11g e=,故101m e <--<,即111m e --<<-. 故选:B. 【点睛】本题考查运用导函数研究函数的单调性、最值、极值,关键在于构造合适的函数,参变分离的方法的运用,属于中档题.二、填空题13.【分析】设则为偶函数由则在是上单调递增在是上单调递减设即求解分和两种情况解不等式和【详解】设由当时即所以在是上单调递增为奇函数则为偶函数在是上单调递减即()设当时即由为奇函数则所以由在是上单调递增所 解析:()()1,13,-+∞【分析】 设()()f x g x x =,则()g x 为偶函数,由()()()2xf x f x g x x'-'=, 则()g x 在()0+∞,是上单调递增,()g x 在()0-∞,是上单调递减,设1x t -=,即求解()0f t >,分0t >和0t <两种情况解不等式()0g t >和()0g t <.【详解】 设()()f x g x x =,由()()()2xf x f x g x x'-'= 当0x >时()()20f x xf x x'-<,即()0g x '>,所以()g x 在()0+∞,是上单调递增. ()y f x =为奇函数,则()()f x g x x=为偶函数,()g x 在()0-∞,是上单调递减 ()()2110x f x -->,即()10f x ->(1x ≠)设1x t -=,当0t >时,()0f t >,即()()0f t g t t=> 由()20f -=,()y f x =为奇函数,则()20f =,所以()20g =由()g x 在()0+∞,是上单调递增,()0g t >,所以2t >,即12x ->,所以3x > 当0t <时,()0f t >,即()()0f t g t t=< 由()20f -=,则()20g -=,根据()g x 在()0-∞,是上单调递减所以当()0g t <时,则20t -<<,即210x -<-<,所以11x -<< 综上所述:不等式()()2110x f x -->的解集是:()()1,13,-+∞故答案为:()()1,13,-+∞【点睛】关键点睛:本题考查构造函数讨论单调性解不等式,解答本题的关键是构造函数()()f x g x x =,由()()()2xf x f x g x x'-'=结合条件和奇偶性得出其单调性, 属于中档题. 14.【分析】由可得对称轴是由可得从而得出判断的单调区间再结合即可得不等式的解集【详解】因为函数对定义域内内的任意都有所以对称轴是因为满足即所以当时单调递增当时单调递减又因为所以时时时当与同号时所以的解集 解析:()(),01,3-∞⋃【分析】由()()4f x f x =-,可得()f x 对称轴是2x =,由()()2xf x f x ''<可得()()20x f x '-<,从而得出判断()f x 的单调区间,再结合()30f =,即可得不等式()0xf x >的解集.【详解】因为函数()f x 对定义域内R 内的任意x 都有()()4f x f x =-, 所以()f x 对称轴是2x =,因为()f x '满足()()2xf x f x ''<,即()()20x f x '-<, 所以当2x <时()0f x '>,()f x 单调递增, 当2x >时()0f x '<,()f x 单调递减, 又因为()()130f f ==,所以1x <时,()0f x <,13,x <<时,()0f x >,3x >时,()0f x <, 当x 与()f x 同号时,()0xf x >, 所以()0xf x >的解集为:()(),01,3-∞⋃, 故答案为:()(),01,3-∞⋃ 【点睛】本题主要考查了函数的对称性和单调性,导数的符号决定原函数的单调性,根据单调性解不等式,属于中档题.15.【分析】根据求导函数根据在上单调性求解【详解】因为函数所以所以在上单调递增所以函数在上的最大值为故答案为:【点睛】本题主要考查导数法求函数的最值还考查了运算求解的能力属于中档题解析:212e +【分析】 根据21()ln 2f x x x =+,求导函数,根据()f x 在[1,]e 上单调性求解. 【详解】 因为函数21()ln 2f x x x =+, 所以1()0f x x x'=+>, 所以()f x 在[1,]e 上单调递增,所以函数()f x 在[1,]e 上的最大值为2()()12e f x f e ==+. 故答案为:212e +【点睛】本题主要考查导数法求函数的最值,还考查了运算求解的能力,属于中档题.16.49【分析】求出函数的导数根据函数的单调性得到关于的不等式组根据两点间的距离公式求出其最小值即可【详解】若在上递增则故满足条件的平面区域如图示:的几何意义表示和阴影部分的点的距离故到阴影部分的最小值解析:49 【分析】求出函数的导数,根据函数的单调性得到关于m ,n 的不等式组,根据两点间的距离公式求出其最小值即可. 【详解】21()(1)2f x x mx n '=-++-,若()f x 在[0,1]上递增, 则(0)10f n '=-,()11102m n f =-++-', 故满足条件001102m n n m n ⎧⎪⎪⎪⎨⎪⎪-+⎪⎩的平面区域如图示:22(6)(8)m n -+-的几何意义表示(6,8)和阴影部分的点的距离,故(6,8)到阴影部分的最小值是自(6,8)向1n =作垂线, 故垂线段是7,故22(6)(8)m n -+-的最小值是49, 故答案为:49. 【点睛】本题考查了函数的单调性问题,考查导数的应用以及简单的线性规划问题,考查了数学运算能力和数形结合思想.17.【分析】求出函数的导函数利用导函数与函数单调性的关系只需在上即可【详解】由函数所以函数在上单调递增则即所以令因为由对勾函数的单调性可知在单调递增故故即实数a 的取值范围是故答案为:【点睛】本题考查了导解析:13,4⎛⎤-∞ ⎥⎝⎦ 【分析】求出函数的导函数()f x ',利用导函数与函数单调性的关系只需在()2,+∞上()0f x '≥即可. 【详解】由函数32()1f x x ax x =-++,所以()2321f x x ax '=-+,函数()f x 在()2,+∞上单调递增, 则()0f x '≥,即23210x ax -+≥,所以3122x a x≤+, 令()13133222x g x x x x ⎛⎫ ⎪=+=⋅+ ⎪ ⎪⎝⎭,因为()2,x ∈+∞,由对勾函数的单调性可知()g x 在()2,+∞单调递增,故()()1324g x g >=,故134a ≤,即实数a 的取值范围是13,4⎛⎤-∞ ⎥⎝⎦故答案为:13,4⎛⎤-∞ ⎥⎝⎦ . 【点睛】本题考查了导函数在函数单调性的应用,考查了分离参数法求参数的取值范围,属于中档题.18.【分析】求出函数的导数问题转化为在区间恒成立求出的范围即可【详解】若函数区间上为减函数则在区间恒成立即因为所以所以故答案为:【点睛】本题主要考查了利用导数研究函数的单调性函数的单调性的性质属于中档题解析:(],1-∞【分析】求出函数的导数,问题转化为10a x-在区间(0,1)恒成立,求出a 的范围即可. 【详解】()f x ax lnx =-,(0)x >, 1()f x a x∴'=-,若函数()f x ax lnx =-区间(0,1)上为减函数, 则10a x-在区间(0,1)恒成立, 即1()min a x ,因为(0,1)x ∈, 所以min11x ⎛⎫>⎪⎝⎭, 所以1a ≤.故答案为:(-∞,1]. 【点睛】本题主要考查了利用导数研究函数的单调性,函数的单调性的性质,属于中档题.19.;【分析】首先有且根据导函数得到的单调区间及对应的单调性使函数在区间(0m 上单调递减成立即(0m 包含于的单调递减区间即可得到一个m 值【详解】由题意知:且∴当且时即单调递减当时即单调递增故要使在区间(解析:12; 【分析】首先有2(1)()xx e f x x-'=且0x ≠,根据导函数得到()f x 的单调区间及对应的单调性,使“函数()xe f x x=在区间(0,m ]上单调递减”成立,即(0,m ]包含于()f x 的单调递减区间,即可得到一个m 值 【详解】由题意,知:2(1)()xx e f x x -'=且0x ≠∴当0x ≠且1x <时,()0f x '<,即()f x 单调递减 当1x >时,()0f x '> ,即()f x 单调递增故,要使()f x 在区间(0,m ]上单调递减,则01m <<即可 ∴12m =符合要求 故答案为:12【点睛】本题考查了根据命题的真假求参数范围,结合导函数研究函数的单调区间,由命题中函数单调的成立条件确定区间的包含关系,进而求参数范围20.【分析】根据得出再根据利用作差因式分解可得出的值【详解】由题意可得则即即故答案为:【点睛】本题考查利用极值点求代数式的值主要考查因式分解考查计算能力属于中等题 解析:3【分析】根据()00f x '=得出()2031a x =-,再根据()()10f x f x =利用作差因式分解可得出102x x +的值.【详解】()()31f x x ax b =---,()()231f x x a '∴=--,由题意可得()()200310f x x a '=--=,则()2031a x =-,10x x ≠,100x x ∴-≠,()()10f x f x =,()()33110011x ax b x ax b ∴---=---,()()()33101011x x a x x ∴---=-,()()()()()()22101100101111x x x x x x a x x ⎡⎤∴--+--+-=-⎣⎦,()()()()()22211000111131x x x x a x ∴-+--+-==-,()()()()221100111210x x x x ∴-+----=,()()()()1010111210x x x x ∴---⋅-+-=⎡⎤⎡⎤⎣⎦⎣⎦,即()()1010230x x x x -+-=,10230x x ∴+-=,即1023x x +=.故答案为:3. 【点睛】本题考查利用极值点求代数式的值,主要考查因式分解,考查计算能力,属于中等题.三、解答题21.(1)答案见解析;(2)最大值是733,最小值是83-.【分析】(1)求得导函数,并计算()0f x '=的根,列表判断极值即可得结果; (2)根据(1)的极值再比较()853f -=-,()7343f =的大小即可得最值. 【详解】解:(1)函数()321313f x x x x =+--的定义域为R . ()()()22331f x x x x x '=+-=+-.令()0f x '=,解得3x =-,或1x =.当x 变化时,()f x ',()f x 的变化情况如下表所示.因此,当3x =-时,函数f x 有极大值,并且极大值为38f -=, 当1x =时,函数()f x 有极小值,并且极小值为()318f =-. (2)由(1)知,函数()f x 在区间[]5,4-上, 极大值为()38f -=,极小值为()318f =-. 又由于()853f -=-,()7343f =, 所以函数()f x 在区间[]5,4-上的最大值是733,最小值是83-.【点晴】方法点晴:求极值的方法步骤:1、求函数定义域;2、求导函数并解方程()0f x '=的根;3、列表判断极值. 22.(1)答案见解析;(2)证明见解析. 【分析】 (1)求导()()1'(0)a x f x x x-=>,0a >,0a <,0a =讨论,令()'0f x >求解.(2)结合(1)将问题转化为()min 2f x >-求解. 【详解】(1)根据题意知,()()1'(0)a x f x x x-=>,当0a >时,当()01x ∈,时,()'0f x >,当()1x ∈+∞,时,()'0f x <, 所以()f x 的单调递增区间为()01,,单调递减区间为()1+∞,; 同理,当0a <时,()f x 的单调递增区间为()1+∞,,单调递减区间为()01,;当0a =时,()3f x =-,不是单调函数,无单调区间. (2)证明:当1a =-时,()ln 3f x x x =-+-, 所以12f ,由(1)知()ln 3f x x x =-+-在()1+∞,上单调递增, 所以当()1x ∈+∞,时,()()1f x f >. 即()2f x >-,所以()20f x +>. 【点睛】方法点睛:利用导数方法证明不等式f (x )>g (x )在区间D 上恒成立的基本方法是构造函数h (x )=f (x )-g (x ),然后根据函数的单调性,或者函数的最值证明函数h (x )>0,其中一个重要技巧就是找到函数h (x )在什么地方可以等于零,这往往就是解决问题的一个突破口. 23.(1)1y =;(2)0a ≥. 【分析】(1)利用导数的几何意义可求得结果; (2)转化为()0g x '≥,即222a x x≥-在[1,+)∞上恒成立,再构造函数求出最大值即可得解.【详解】(1)当2a =-时,()22f x x lnx =-,定义域为(0,)+∞,2222()2x f x x x x -'=-=,所以函数()f x 在点()()11f ,处的切线的斜率为2212(1)01f ⨯-'==,又(1)1201f =-⨯=,所以函数()f x 在点()()11f ,处的切线方程为1y = (2)因为()()2g x f x x=+22ln x a x x =++在[1,+)∞上是单调增函数,所以322222()2a x ax g x x x x x+-'=-+=0≥在[1,+)∞上恒成立, 即222a x x≥-在[1,+)∞上恒成立, 因为222y x x =-在[1,+)∞上为单调递减函数,所以当1x =时,222y x x=-取得最大值0,所以0a ≥. 【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化: ①若()k f x ≥在[,]a b 上恒成立,则max ()k f x ≥; ②若()k f x ≤在[,]a b 上恒成立,则min ()k f x ≤; ③若()k f x ≥在[,]a b 上有解,则min ()k f x ≥; ④若()k f x ≤在[,]a b 上有解,则max ()k f x ≤; 24.(1)证明见解析;(2)证明见解析. 【分析】(1)对()f x 求导,利用导数判断()f x 的单调性,求出()f x 的极值或最值,即可求证;(2)构造函数()xg x e x =-,求导利用单调性证明()0xg x e x =->,再由(1)可知()1ln 0f x x x =--≥即1ln x x ≥+可得ln x x >,进而可证明0x >时, ln x e x x >>.【详解】(1)()1ln =--f x x x 的定义域为()0,∞+,1()1f x x'=-当01x <<时,1()10f x x '=-<,当1x >时,1()10'=->f x x, 所以()f x 在()0,1单调递减,在()1,+∞单调递增,所以1x =时()f x 最小为(1)11ln10f =--=, 所以()f x 存在唯一的零点1x =,(2)令()xg x e x =-,则()1x g x e '=-,当0x >时,()10xg x e '=->,()x g x e x =-在()0,∞+单调递增,所以()()0001g x g e >=-=,即10x e x ->>,即0x e x ->,所以x e x >,由(1)知()1ln =--f x x x 在()0,1单调递减,在()1,+∞单调递增, 所以()f x 最小为(1)11ln10f =--=,所以()1ln 0f x x x =--≥即1ln x x ≥+,所以ln x x >, 综上所述:当0x >时,ln x e x x >>. 【点睛】方法点睛:判断函数零点个数的方法(1)直接法:令()0f x =,如果能求出解,那么有几个不同的解就有几个零点; (2)利用函数的零点存在性定理:利用函数的零点存在性定理时,不仅要求函数的图象在区间[],a b 上是连续不断的曲线,并且()()0f a f b ⋅<,还必须结合函数的图象与性质,(如单调性、奇偶性)才能确定函数有多少个零点;(3)图象法:画出函数()f x 的图象,函数()f x 的图象与x 轴交点的个数就是函数()f x 的零点个数;将函数()f x 拆成两个函数,()h x 和()g x 的形式,根据()()()0f x h x g x =⇔=,则函数()f x 的零点个数就是函数()y h x =和()y g x =的图象交点个数;(4)利用函数的性质:若能确定函数的单调性,则其零点个数不难得到,若所考查的函数是周期函数,则需要求出在一个周期内的零点个数,根据周期性则可以得出函数的零点个数.25.(1)10x y +-=;(2)答案见解析. 【分析】(1)求出()1f 和()1f '的值,结合点斜式可得出曲线()y f x =在点()()1,1f 处的切线方程;(2)求得()21tx g x x-'=,分0t ≤、01t <<、1t =三种情况讨论,由导数分析函数()g x 的单调性与极值,进而可得出实数t 在不同取值下函数()g x 零点的个数.【详解】 (1)因为()11f x x =-,所以()21f x x'=-,所以()10f =,()11f '=-. 所以曲线()y f x =在点()()1,1f 处的切线方程是()1y x =--,即10x y +-=;(2)因为()()ln g x f x t x =+,所以()()1ln 10g x t x x x =+->, 所以()2211t tx g x x x x-'=-+=. ①当0t ≤时,()0g x '≤,所以()g x 在()0,∞+上单调递减.因为()10g =,所以()g x 有且仅有一个零点;②当01t <<时,令()0g x '>,得1x t>,令()0g x '<,得1x t <. 所以()g x 在10,t ⎛⎫ ⎪⎝⎭上单调递减,在1,t ⎛⎫+∞ ⎪⎝⎭上单调递增. 因为()10g =,所以()g x 在10,t ⎛⎫ ⎪⎝⎭上有且仅有一个零点. 因为()110g g t ⎛⎫<= ⎪⎝⎭,即1ln 10t t t +-<,则111ln 1t t t <-<,所以,11t e t >, 则()1110t t g e e =>, 所以01,x t ⎛⎫∃∈+∞ ⎪⎝⎭,使得()00g x =,所以()g x 在1,t ⎛⎫+∞ ⎪⎝⎭上有且仅有一个零点.所以当01t <<时,()g x 有两个零点;③当1t =时,()21x g x x-'=. 令()0g x '>,得1x >,令()0g x '<,得1x <.所以()g x 在()0,1上单调递减,在()1,+∞上单调递增.所以当1x =时,()g x 取得最小值,且()10g =,所以()g x 有且仅有一个零点. 综上所述,当0t ≤或1t =时,()g x 有且仅有一个零点;当01t <<时,()g x 有两个零点.【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用;(2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.26.(1)()f x 单调递增;(2)24aπ. 【分析】(1)求导()'2sin f x x x =-,得出导函数的符号,从而可得函数()f x 单调性.(2)由已知将问题转化为不等式sin ()a x f x ⋅恒成立,令()sin ()k x x f x =⋅,求导''()cos ()sin ()k x x f x x f x =⋅+⋅,分析导函数的符号,得出()k x 单调递增,求得()k x 的最大值,由恒等式的思想可得出a 的取值范围.【详解】解:(1)()'2sin f x x x =-,令()2sin h x x x =-,当[0,]x π∈时,'()2cos 0h x x =->,所以当[0,]x π∈时,()2sin h x x x =-单调递增;所以()(0)0h x h =,即()0f x ',所以()f x 单调递增. (2)因为当,62x ππ⎡⎤∈⎢⎥⎣⎦时,不等式()()0f x g x -恒成立, 所以当,62x ππ⎡⎤∈⎢⎥⎣⎦时,不等式sin ()a x f x ⋅恒成立, 令()sin ()k x x f x =⋅,所以''()cos ()sin ()k x x f x x f x =⋅+⋅,因为当,62x ππ⎡⎤∈⎢⎥⎣⎦时,'cos 0,()0,sin 0,()0x f x x f x >>>>,所以'()0k x >,所以()k x 单调递增,所以2()24k x k ππ⎛⎫≤= ⎪⎝⎭,所以24a π≥. 【点睛】方法点睛:对于不等式恒成立问题,常常采用:()f x a >对一切x I ∈恒成立,等价于min ()f x a >;()f x α<对一切x I ∈恒成立,等价于max ()f x α<.。

北京高考导数复习知识点

北京高考导数复习知识点

导数综合复习一、 高考要求二、 知识点梳理1.导数的有关概念(1)导数:如果当 0→∆x 时,xy∆∆有极限,就说函数)(x f y =在0x x =处可导,并把这个极限叫做)(x f 在0x x =处的导数.记作)(0'x f ,即xx f x x f x yx f x x ∆-∆+=∆∆=→∆→∆)()(lim lim)(00000'.(2)导函数:如果函数)(x f 在开区间),(b a 内每一点都可导,其导数值在),(b a 内构成一个新的函数,叫考试内容 要求层次 A B C 导数概念及其几何意义 导数的概念 √ 导数的几何意义√导数的运算 根据导数定义求函数)的导数√导数的四则运算√ 简单的复合函数(仅限于形如f(ax+b))的导数 √ 导数公式表√导数在研究函数中的应用 利用导数研究函数的单调性(其中多项式函数不超过三次)√函数的极值、最值(其中多项式函数不超过三次) √ 利用导数解决某些实际问题√ 定积分与微积分基本定理定积分的概念 √ 微积分基本定理√做)(x f 在区间),(b a 内的导函数,记作)('x f 或'y . 2.导数的几何意义几何意义:函数 )(x f 在0x 处的导数值就是曲线)(x f y =在点))(,(00x f x 处的切线的斜率. 3.常见函数的导数1.0='C 2.1)(-='n nnx x3.x x cos )(sin =' 4.x x sin )(cos -='5.xxe e =')( 6.1(ln )x x'= 7.a a ax xln )(=' 8.ax e x x a a ln 1log 1)(log ==' 4.导数的四则运算(1)和差:()u v u v '''±=±(2)积:v u v u uv '+'=')((3)商: 2)(v v u v u v u '-'=')0(≠v 5.复合函数的导数运算法则:[])(x u f y =的导数为'''x u u y y •=. 6.利用导数的符号判断函数的单调性(1)导数的单调性)(x f 在区间),(b a 内可导,若)('x f 在),(b a 的任意子区间内都不恒等于0,则 )(0)('x f x f ⇒≥在),(b a 上单调递增. )(0)('x f x f⇒≤在),(b a 上单调递减.7.函数的极值(1)设函数)(x f 在点0x 附近有定义,如果对0x 附近的所有点都有)()(0x f x f <,则)(0x f 是函数)(x f 的一个极大值,记作)(f )(0x x f =极大值;如果对0x 附近的所有点都有)()(0x f x f >,则)(0x f 是函数)(x f 的一个极小值,记作)(f )(0x x f =极小值.(2)判断)(0x f 是极值的方法一般地,当函数)(x f 在0x x =处连续时,如果在0x 附近左侧0)('<x f ,右侧0)('>x f ,那么)(0x f 是极小值. 如果在0x 附近左侧0)('>x f ,右侧0)('<x f ,那么)(0x f 是极大值.8.函数的最值(1) 在闭区间[]b a ,上的连续函数)(x f 在[]b a ,上必有最大值与最小值.(2)设函数)(x f 在区间[]b a ,上连续,在),(b a 内可导,先求)(x f 在),(b a 内的极值;再将各极值与)(a f ,)(b f 比较,其中最大的一个是最大值,最小的一个是最小值.9.定积分概念:如果函数)(x f 在区间[]b a ,上连续,用分点b x x x x x a n n =<<<<<=-1210 将区间[]b a ,等分成n 个小区间,在每个小区间[]i i x x ,1-上任取一点),3,2,1(n i i =ε作和式)()(11i ni ni i f nab x f εε∑∑==-=∆,当∞→n 时,上述和式无限接近某个常数,这个常数叫做函数)(x f 在区间[]b a ,上的定积分. 10.微积分基本定理:一般地,如果)(x f 在区间[]b a ,上连续,并且)()('x f x F =,那么⎰-=baa Fb F dx x f )()()(,这个结论叫做微积分基本定理,又叫牛顿-莱布尼茨公式. 11.常见求定积分公式: 1. ⎰=ba b a C Cx Cdx 是常数)(| 2. )1|111-≠+=+⎰n x n dx x ba n ba n( 3. ⎰-=bab a x xdx |cos sin 4. ⎰=baba x xdx |sin cos5.⎰=baba x dx x|ln 1 6. ⎰=b a b a x x e dx e |。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学科:数学
教学内容:导数与微分经点答疑(四)
11.什么是高阶导数?
我们知道函数2x y =的导数是x 2y ='.而导数x 2y ='仍是可导的,它的导数是()2y =''.这种导数的导数()''y 就称为对y 对x 的二阶导数.一般地我们有:
函数y =f (x )的导数()x f y '='仍是x 的函数,若函数()x f y '='的导数存在,则称
()x f y '='的导数为y =f (x )的二阶导数.记作即或22dx
y d y '' ().dx dy dx d dx y d y y 22⎪⎭⎫ ⎝⎛='
'=''或 相应地,把y =f (x )的导数()x f '叫作函数y =f (x )的一阶导数.
同样,若二阶导数()x f y ''=''的导数存在,则称其导数为y =f (x )的三阶导数.记作
()即或,dx
y d x y 33''' ()()()()().dx y d dx d dx
y d y y ,x f x f ,y y 22333⎪⎪⎭⎫ ⎝⎛=''''''=''''''='''或又记作 ……
一般地,若n -1阶导数()()()x f y 1n 1n --=的导数存在,则称其导数为y =f (x )的n 阶
导数.记作()()即或n n n
n dx y d x f ,y ()()()()()()()().dx y d dx d dx y d x f x f ,y y 1n 1n n n n 1n 1n n ⎪⎪⎭
⎫ ⎝⎛==''=----或 这里的n 称为导数()x f n 的阶数.二阶及二阶以上的导数统称为高阶导数.
若y =f (x )具有n 阶导数,也常说成函数f (x )为n 阶可导.
由以上高阶导数的定义可以看出,要求n 阶导数,需要求出n -1阶导数,要求n -1
阶导数,需要求出n -2阶导数,…,要求二阶导数,需要求出一阶导数,因此要求高阶导数,只需要进行一连串通常求导数的运算即可.
例1 求n 次多项式()n 1n 1n 1n 0a x a x a x a x f ++++=-- 的各阶导数.()0a 0≠. 思路启迪 首先求出f (x )的一阶、二阶、三阶等阶数较低的n 阶导数,从中找出导数与导数阶数的关系.
()()()()()().a x a n n x a n n x f .
a x a n x na x f n n n n n n 231201*********------++--+-=''++-+=' 规范解法
可见,每经一次求导运算,多项式的次数就降低一次.继续求导下去,易知:
()()0n a !n x f =是一个常数,由此有()()()().0x f x f 2n 1n ===++
即n 次多项式的一切阶数高于n 的导数都等于零.
.n e y 2x 阶导数的求例=
()()()().e e .即e y
一般地,可得.
e y ,e y ,e y ,e y 规范解法x n x x n x 4x x x ===='''=''=' .01y y x x 2y 332=+''-=满足关系式证明函数例
思路启迪 要证明这个等式成立,而在此等式的左边含有y '',只要能正确求y 对x 的两阶导数y '',将y 及y ''代入等式左边并验证其为零即可.
规范证法 ()()01y 1y 1y 于是,y ,y
1x 2x 1x 2x x 2x 22x 2x 1x 2x y ,
x
2x x 1x 2x 22x
2y 33332
322
2222=+-⋅=+''-=--=-------=''--=--='
例4 求y =sinx 的n 阶导数.。

相关文档
最新文档