七年级(下)数学单元测试卷(整式的运算)
整式的运算单元试卷

整式的运算测试卷一、填空题(每小题2分,共20分)1.多项式-abx2+51x3-21ab+3中,是次四项式。
2.计算:100×103×104=;3.-2a3b4÷12a3b2=。
4.(8xy2-6x2y)÷(-2x)=5.一个正方体的棱长为2×102毫米,则它的体积是毫米3。
6.(-3x-4y) ·( ) =9x2-16y2。
7.5x2-6x+1-( )=7x+8;8.有一单项式的系数是2,次数为3,这个单项式可能是_______;9.已知正方形的边长为a,如果它的边长增加4,那么它的面积增加。
10.如果x+y=6, xy=7, 那么x2+y2=。
二、选择题(每小题3分,共18分)11. 下列3,121,,,41,431,4232322xyxyxxbaxxabax--+---+--各式中多项式有()个A. 34B. 5C. 6D. 712.若(2x+a)( x-1)的结果中不含x的一次项,则a等于…………………………………….( )(A) a=2 (B) a=-2 (C) a=1 (D) a=-113.若( x+3) 2=x2+ax+9 ,则a的值为……………………………………………( )(A) 3 (B) ±3 (C) 6 (D)±614.用小数表示3×10-2的结果为()A. -0.03B.-0.003C. 0.03D. 0.00315.下列运算正确的是()A. a5·a5=a25B. a5+a5=a10C. a5·a5=a10D. a5·a3=a1516.下列计算 ① (-1)0=-1 ② (-1)-1=-1 ③ 2×2-2=21 ④ 3a -2 ⑤(-a 2)m =(-a m )2正确的有 ( )(A) 2个 (B) 3个 (C) 4个 (D) 5个三、知识应用(共62分)17.利用乘法公式计算:(每题4分,共8分)(1)205×195 (2)98218.计算:(每题4分,共16分)(1)()()3223332a a a a -+-+⋅ (2)()()z y x z y x -+++(3)()()2234232-+--x x x x (4)x(x-3)-(x +2)(x-1)19.先化简,再求值:(3a -7)(3a +7)-2a(2a 3-1) , 其中a =-3 (5分)22.用两种不同的方法求下面图形的总面积(本题5分) aa 3a23.观察例题,然后回答: 例:x+1x =3,则x 2+21x = .(本题6分) 解:由x+1x =3,得(x+1x )2=9,即x 2+21x+2=9 所以:x 2+21x =9-2=7 通过你的观察你来计算:当x=6时,①x 2+21x= ; ②(x-1x)2= ;③(x 4-2x 2+1)÷x= .25.请先观察下列算式,再填空:181322⨯=-, 283522⨯=-.①=-22578× ;②29-( )2=8×4;③( )2-92=8×5;④213-( )2=8× ;………⑴通过观察归纳,你知道上述规律的一般形式吗?请把你的猜想写出来.⑵你能运用本章所学的平方差公式来说明你的猜想的正确性吗?(本题6分)3a3a。
七年级(下)数学整式的乘除单元测验卷(一)

荷城中学七年级(下)数学单元测试卷(一)整 式 的 乘 除姓名 _____________ 班级 ____________ 学号 _______ 成绩 _______一、选择题。
(3分×10=30分)1、下列3、下列运算正确的是 【 】226()x x x -⋅= B 、32()x x x -÷= C 、236(2)8x x = D 、2224(2)2x x x -= 2、下面运算正确的是 【 】 5322x x x =+ B .632x x x =⋅ C .623)(x x -=- D .336x x x =÷ 3、下列计算结果正确的是【 】A .ab a a 532=+B .222)(y x y x -=-C .b a b a -=-4)2(2D .22))((y x y x y x -=-+4、433287a b a b -÷等于 【 】A .24abB .24ab -C .44a b -D .4ab -5、下列各式的计算中,结果正确的是 【 】A .2232)32)(32(y x y x y x -=-+B .242216)4)(4(a b a b a b -=-+-C .24)2)(2(x x x -=+- D .222))((c b a ab c c ab -=---6、3106-⨯米写成小数是 【 】A .6000米B .6000-米C .006.0米D .006.0-米7、下列各题计算正确的是 【 】A .ab a a b a 186)6)(3(2--=--B .13)19)(31(232+=+--y x xy y xC .432224)4()21(b a ab b a =-⋅- D .x x x x x x 336)12(3232-+-=+--8、下列结果正确的是 【 】 A. 91312-=⎪⎭⎫ ⎝⎛- B. 0590=⨯ C. ()17530=-. D. 8123-=-9、下列结果正确的是 【 】A .222)(y x y x +=+B .2222)(y xy x y x --=-C .222)2)(2(b a b a b a -=-+ D .2222)(y xy x y x +-=+- 10、已知1222=+b a ,3-=ab ,则2)(b a +的值是 【 】A .6B .18C .3D .12二、耐心填一填(分1553=⨯)11、(-a 2)5+(-a 5)2= ;12、=÷a a 3)2( ;13、2200620052007-⨯=14、若b ax x x x ++=+-2)4)(2(,则a = ,b = .15、已知49)(2=+b a ,9)(2=-b a ,则22b a += ,ab =三、精心做一做 (每题6分,共36分) 16、12)31()3(2)2(-+-⨯+-17、215(2)(12)36a a a ---18、4222111()3366a b a b ab ab --÷19、)2()2)(2(---+x x x x20、222)())((n n m n m n m +--+-21、()()532532-+++y x y x四、解答题(22~25题每题8分,26题7分,共39分)22、xy y x y x 2])2()2[(22÷--+23、化简,求值2(54)4(54)(5)x y y x y x ⎡⎤+-+÷-⎣⎦,其中x=-1,y=3.24、若4=m x,8=n x ,求n m x -3的值。
七年级数学下第一单元(整式运算)测试题

七年级(下)数学单元测试卷 整 式 的 运 算姓名 _____________ 班级 ____________ 学号 _______ 成绩 _______A 、22=-a aB 、326m m m =÷C 、2008200820082x x x =+D 、632t t t =⋅2、下列语句中错误的是( )A 、数字 0 也是单项式B 、单项式 a 的系数与次数都是 1C 、32ab -的系数是 32- D 、2221y x 是二次单项式 3、代数式 2008 ,π1,xy 2 ,x 1 ,y 21- ,)(20081b a + 中是单项式的个数有( )A 、2个B 、3个C 、4个D 、5个4、一个整式减去22b a -等于22b a +则这个整式为 (A 、22b B 、22a C 、22b - D 、22a -5、下列计算正确的是:( ) A 、2a 2+2a 3=2a 5 B 、2a -1=12aC 、(5a 3)2=25a 5D 、(-a 2)2÷a=a 36、下列计算错误的是:( )①、(2x+y )2=4x 2+y 2 ②、(3b-a)2=9b 2-a 2 ③、(-3b-a)(a-3b)=a 2-9b 2④、(-x-y )2=x 2-2xy+y 2 ⑤、(x-12 )2=x 2-2x+14A 、1个B 、2个C 、3个D 、4个7、黎老师做了个长方形教具,其中一边长为b a +2,另一边为b a -,则该长方形周长为( )A 、b a +6B 、a 6C 、a 3D 、b a -108、下列多项式中是完全平方式的是 ( )A 、142++x xB 、1222+-y xC 、2222y xy y x ++D 、41292+-a a 9、饶老师给出:1=+b a ,222=+b a , 你能计算出 ab 的值为 ( )A 、1-B 、3C 、23-D 、21-10、已知552=a ,443=b ,334=c , 则a 、b 、c 、的大小关系为:( )A 、c b a >>B 、b c a >>C 、c a b >>D 、a c b >>二、填空题。
七年级数学下册《整式的乘除》单元测试卷(附答案)

七年级数学下册《整式的乘除》单元测试卷(附答案)一.选择题(共8小题,满分40分)1.已知a+b﹣2=0,则3a•3b的值是()A.6 B.9 C.D.﹣92.若8x=21,2y=3,则23x﹣y的值是()A.7 B.18 C.24 D.633.如果2(5﹣a)(6+a)=100,那么a2+a+1的值为()A.19 B.﹣19 C.69 D.﹣694.已知25a•52b=56,4b÷4c=4,则代数式a2+ab+3c值是()A.3 B.6 C.7 D.85.已知4x2+mx+9是完全平方式,则m的值是()A.8 B.±6 C.±12 D.±166.若x+y=3,xy=1,则(1﹣2x)(1﹣2y)的值是()A.1 B.﹣1 C.2 D.﹣27.已知2a=5,2b=10,2c=50,那么a、b、c之间满足的等量关系是()A.ab=c B.a+b=cC.a:b:c=1:2:10 D.a2b2=c28.若(mx+3)(x2﹣x﹣n)的运算结果中不含x2项和常数项,则m,n的值分别为()A.m=0,n=0 B.m=0,n=3 C.m=3,n=1 D.m=3,n=0二.填空题(共8小题,满分40分)9.若(x+m)(x﹣3)=x2+nx﹣12,则n=.10.直接写出计算结果:(﹣3x2y3)4(﹣xy2)2=.11.当a=时,多项式x2﹣2(a﹣1)x+25是一个完全平方式.12.已知(x+y)2=2,(x﹣y)2=8,则x2+y2=.13.计算:(﹣)2022×(﹣1)2021=.14.(1)已知x+y=4,xy=3,则x2+y2的值为.(2)已知(x+y)2=25,x2+y2=17,则(x﹣y)2的值为.(3)已知x满足(x﹣2020)2+(2022﹣x)2=12,则(x﹣2021)2的值为.15.已知(x+3)2﹣x=1,则x的值可能是.16.如图,小颖用4张长为a、宽为b(a>b)的长方形纸片,按如图的方式拼成一个边长为(a+b)的正方形,图中空白部分的面积为S1,阴影部分的面积为S2.若a=2b,则S1、S2之间存在的数量关系是.三.解答题(共5小题,满分40分)17.计算:(x﹣2y+3)(x+2y﹣3).18.计算(1)(﹣5x)2﹣(3x+5)(5x﹣3);(2)(2x﹣3y)2﹣(﹣x+3y)(3y+x);(3)先化简,再求值:[(xy﹣2)2﹣2x(xy﹣2y)﹣4]÷(﹣2xy),其中,y=3.19.规定两数a,b之间的一种运算,记作(a,b):如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(4,64)=,(﹣2,4)=,(,﹣8)=;(2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4);他给出了如下的证明:设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n;∴3x=4,即(3,4)=x.∴(3n,4n)=(3,4).请你尝试运用上述这种方法说明下面这个等式成立的理由.(4,5)+(4,6)=(4,30).(3)拓展应用:计算(3,9)×(3,20)﹣(3,5).20.数学活动课上,老师准备了图1中三种不同大小的正方形与长方形,拼成了一个如图2所示的正方形.(1)请用两种不同的方法表示图2中阴影部分的面积和.方法1:;方法2:.(2)请你直接写出三个代数式:(a+b)2,a2+b2,ab之间的等量关系.(3)根据(2)题中的等量关系,解决如下问题:①已知m+n=5,m2+n2=20,求mn和(m﹣n)2的值;②已知(x﹣2021)2+(x﹣2023)2=34,求(x﹣2022)2的值.21.阅读、理解、应用.例:计算:20223﹣2021×2022×2023.解:设2022=x,则原式=x3﹣(x﹣1)•x•(x+1)=x3﹣x(x2﹣1)=x=2022.请你利用上述方法解答下列问题:(1)计算:1232﹣124×122;(2)若M=123456789×123456786,N=123456788×123456787,请比较M,N的大小;(3)计算:.参考答案与解析一.选择题(共8小题,满分40分)1.【答案】解:∵a+b﹣2=0;∴a+b=2;∴3a•3b=3a+b=32=9.故选:B.2.【答案】解:∵8x=21,2y=3;∴23x=21;∴23x﹣y=23x÷2y=21÷3=7.故选:A.3.【答案】解:∵2(5﹣a)(6+a)=100;∴﹣a2+5a﹣6a+30=50;∴a2+a=﹣20;∴a2+a+1=﹣20+1=﹣19.故选:B.4.【答案】解:∵25a•52b=56,4b÷4c=4;∴52a•52b=56,4b﹣c=4;∴2a+2b=6,b﹣c=1;即a+b=3,b﹣1=c;∴a2+ab+3c=a(a+b)+3(b﹣1)=3a+3b﹣3=3(a+b)﹣3=3×3﹣3=9﹣3=6.故选:B.5.【答案】解:∵(2x±3)2=4x2±12x+9;∴m=±12;故选:C.6.【答案】解:原式=1﹣2y﹣2x+4xy =1﹣2(x+y)+4xy;当x+y=3,xy=1时;原式=1﹣2×3+4=1﹣6+4=﹣1;故选:B.7.【答案】解:∵5×10=50;∴2a•2b=2c;∴2a+b=2c;∴a+b=c;故选:B.8.【答案】解:(mx+3)(x2﹣x﹣n)=mx3﹣mx2﹣nmx+3x2﹣3x﹣3n=mx3+(﹣m+3)x2+(﹣nm﹣3)x﹣3n;∵(mx+3)(x2﹣x﹣n)的乘积中不含x2项和常数项;∴﹣m+3=0,﹣3n=0;解得:m=3,n=0;故选:D.二.填空题(共8小题,满分40分)9.【答案】解:(x+m)(x﹣3)=x2﹣3x+mx﹣3m=x2+(m﹣3)x﹣3m;∴m﹣3=n,3m=12;解得:m=4,n=1;故答案为:1.10.【答案】解:原式=81x8y12•x2y4=81x10y16.故答案为:81x10y16.11.【答案】解:因为x2﹣2(a﹣1)x+25=x2﹣2(a﹣1)x+52是完全平方式;属于﹣2(a﹣1)x=±2•x•5;解得:a=﹣4或6.故答案为:﹣4或6.12.【答案】解:∵(x+y)2=2,(x﹣y)2=8;∴x2+2xy+y2=2①,x2﹣2xy+y2=8②;①+②得:2(x2+y2)=10;∴x2+y2=5.故答案为:5.13.【答案】解:原式=[(﹣)×(﹣)]2021×(﹣)=12021×(﹣)=1×(﹣)=﹣;故答案为:﹣.14.【答案】解:(1)∵x+y=4,xy=3;∴x2+y2=(x+y)2﹣2xy=16﹣6=10.故答案为:10;(2)∵(x+y)2=25,x2+y2=17;∴x2+y2+2xy﹣(x2+y2)=8;∴xy=4;∴(x﹣y)2=x2+y2﹣2xy=17﹣8=9.故答案为:9;(3)∵(x﹣2020)2+(x﹣2022)2=12;∴[(x﹣2021)+1]2+[(x﹣2021)﹣1]2=12;∴(x﹣2021)2+2(x﹣2021)+1+(x﹣2021)2﹣2(x﹣2021)+1=12;∴(x﹣2021)2=5.故答案为:5.15.【答案】解:当x+3=1时;解得:x=﹣2;故(x+3)2﹣x=(﹣2+3)2﹣(﹣2)=14=1;当x+3=﹣1时;解得:x=﹣4;故(x+3)2﹣x=(﹣4+3)6=1;当2﹣x=0时;解得:x=2;故(x+3)2﹣x=(2+3)0=1;综上所述,x的值可能是﹣2或﹣4或2.故答案为:﹣2或﹣4或2.16.【答案】解:S1=b(a+b)×2+ab×2+(a﹣b)2=a2+2b2;S2=(a+b)2﹣S1=(a+b)2﹣(a2+2b2)=2ab﹣b2;∵a=2b;∴S1=a2+2b2=6b2,S2=2ab﹣b2=3b2∴S1=2S2.故答案为:S1=2S2.三.解答题(共5小题,满分40分)17.【答案】解:原式=x2﹣(2y﹣3)2=x2﹣(4y2﹣12y+9)=x2﹣4y2+12y﹣9.18.【答案】解:(1)原式=25x2﹣(15x2﹣9x+25x﹣15)=25x2﹣15x2+9x﹣25x+15=10x2﹣16x+15;(2)原式=4x2﹣12xy+9y2﹣(9y2﹣x2)=4x2﹣12xy+9y2﹣9y2+x2=5x2﹣12xy;(3)[(xy﹣2)2﹣2x(xy﹣2y)﹣4]÷(﹣2xy)=(x2y2﹣4xy+4﹣2x2y+4xy﹣4)÷(﹣2xy)=(x2y2﹣2x2y)÷(﹣2xy)=﹣xy+x;把,y=3代入得:﹣xy+x=﹣×(﹣)×3+(﹣)=﹣=.19.【答案】解:(1)∵43=64,(﹣2)2=4,(﹣)﹣3=﹣8;∴(4,64)=3,(﹣2,4)=2,(﹣,﹣8)=﹣3.故答案为:3,2,﹣3.(2)设(4,5)=x,(4,6)=y,(4,30)=z;则4x=5,4y=6,4z=30;∴4x×4y=5×6=30;∴4x×4y=4z;∴x+y=z,即(4,5)+(4,6)=(4,30).(3)设(3,20)=a,(3,5)=b;∴3a=20,3b=5;∵(3,9)=2;∴(3,9)×(3,20)﹣(3,5)=2a﹣b;∵32a﹣b=(3a)2÷3b=202÷5=80;∴2a﹣b=(3,80),即(3,9)×(3,20)﹣(3,5)=(3,80).20.【答案】解:(1)阴影两部分求和为a2+b2,用总面积减去空白部分面积为(a+b)2﹣2ab;故答案为:a2+b2,(a+b)2﹣2ab;(2)由题意得,a2+b2=(a+b)2﹣2ab;(3)①由(2)题结论a2+b2=(a+b)2﹣2ab可得ab=;∴m+n=5,m2+n2=20时;mn===;(m﹣n)2=m2﹣2mn+n2;=20﹣2×=20﹣5=15;②设a=x﹣2021,b=x﹣2023;可得a+b=(x﹣2021)+(x﹣2023)=x﹣2021+x﹣2023=2x﹣4044=2(x﹣2022);由(2)题结论a2+b2=(a+b)2﹣2ab可得;(a+b)2=a2+2ab+b2;又∵(a﹣b)2=[(x﹣2021)﹣(x﹣2023)]2=22=4;且由(a﹣b)2=a2﹣2ab+b2,可得2ab=(a2+b2)﹣(a﹣b)2=(x﹣2021)2+(x﹣2023)2﹣[(x﹣2021)﹣(x﹣2023)]2=34﹣4=30;∴(x﹣2022)2=()2====16.21.【答案】解:(1)设123=x;∴1232﹣124×122=x2﹣(x+1)(x﹣1)=x2﹣x2+1=1;(2)设123456786=x;∴M=123456789×123456786=(x+3)•x=x2+3x;N=123456788×123456787=(x+2)(x+1)=x2+3x+2;∴M<N;(3)设++...+=x;∴=(x+)(1+x)﹣(1+x+)•x=x+x2++x﹣x﹣x2﹣x =.。
七年级数学整式单元测试卷

七年级数学整式单元测试卷一、选择题(每题3分,共30分)1. 下列式子中,整式为()A. (1)/(x)B. x + yC. √(x)D. (1)/(x + y)2. 单项式-3xy^2的系数和次数分别是()A. -3,3B. -3,2C. 3,3D. 3,2.3. 多项式2x^2-3x + 1的次数是()A. 2B. 3C. 1D. 0.4. 下列运算中,正确的是()A. x^2+x^3=x^5B. x^3· x^2=x^6C. (x^2)^3=x^6D. x^6÷ x^2=x^35. 化简-2a + 3a的结果是()A. -aB. aC. 5aD. -5a.6. 一个多项式与x^2-2x + 1的和是3x - 2,则这个多项式为()A. -x^2+5x - 3B. -x^2+x - 1C. x^2-5x + 3D. x^2-x + 17. 若单项式3x^my^3与-2x^2y^n是同类项,则m + n的值为()A. 5B. 4C. 3D. 2.8. 计算(a - 2b)(a + 2b)的结果是()A. a^2-4b^2B. a^2+4b^2C. a^2-2b^2D. a^2+2b^29. 当 a = -2时,代数式a^2-2a + 1的值为()A. 9B. 1C. -1D. -9.10. 已知 A = 2x^2+3xy - 2x - 1,B=-x^2+xy - 1,则 A - 3B等于()A. 5x^2+10xy - 2x - 4B. 5x^2+10xy - 2x + 2C. 5x^2-10xy - 2x - 4D.5x^2-10xy - 2x + 2二、填空题(每题3分,共15分)11. 单项式(2)/(3)π r^2的系数是___。
12. 多项式3x^2y - 5xy^2+y - 2x是___次___项式。
13. 若x^2+mx + 9是一个完全平方式,则m =___。
(完整版)整式的乘除(单元测试卷及答案)

整式的乘除单元测试卷一、选择题(共10小题,每小题3分,共30分)1.下列运算正确的是( )A. B. C. D. 954a a a =+33333a a a a =⋅⋅954632a a a =⨯()743aa=- ( ) =⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-20122012532135.2 A. B. 1 C. 0 D. 19971- 3.设,则A=( )()()A b a b a +-=+223535 A. 30 B. 60 C. 15 D. 12ab ab ab ab 4.已知则( ) ,3,5=-=+xy y x =+22y x A. 25. B C 19 D 、25-19- 5.已知则( ),5,3==bax x =-ba x 23 A 、B 、C 、D 、522527109536. .如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式:①(2a +b )(m +n ); ②2a (m +n )+b (m +n );③m (2a +b )+n (2a +b ); ④2am +2an +bm +bn ,你认为其中正确的有A 、①②B 、③④C 、①②③D 、①②③④ ( )7.如(x+m)与(x+3)的乘积中不含x 的一次项,则m 的值为( )A 、 –3B 、3C 、0D 、18.已知.(a+b)2=9,ab= -1,则a²+b 2的值等于( )A 、84B 、78C 、12D 、69.计算(a -b )(a+b )(a 2+b 2)(a 4-b 4)的结果是( )A .a 8+2a 4b 4+b 8 B .a 8-2a 4b 4+b 8 C .a 8+b 8 D .a 8-b 810.已知(m 为任意实数),则P 、Q 的大小关系为( )m m Q m P 158,11572-=-=A 、B 、C 、D 、不能确定Q P >Q P =Q P <二、填空题(共6小题,每小题4分,共24分)11.设是一个完全平方式,则=_______。
七年级数学《整式的加减》单元测试卷

七年级数学《整式的加减》单元测试卷班级: ____ 座位: ___ 姓名: __________ 成绩: ______一、填空题(每题2分,共30分)1、教室里有x人,走了y人,此时教室里有____________ 人。
2、比a和b差的平方大9的数是________________ .3、细胞在分裂过程中,一个细胞第一次分裂成两个,第二次分裂成4个,第三次分裂成8个,那么第n次时细胞分裂的个数为__________ 个。
4、单项式—4x^的系数是,次数是。
55、整式_6x3-乞• y2・x-3是次项式,三次项的系数是。
5 —&如果lx2v|m|-(m -1)v+1是三次三项式,则m= 。
5 37、多项式ab3 _3a2b2 _a3b _3按a 的升幕排列是_________________________________________________________________________ 。
8、(a - 2b c)(a 2b - c)二[a -()][ a ( )]9、单项式_4ab,3ab, -b2的和是_______________ .10、某商品进价为a元,零售时要加价20%则它的零售价为____________ .11、十位数字是m,个位数字比m小2,百位数字是m的一半,则这个三位数是。
12、-ax m y2是关于x、y的一个单项式,且系数是4,次数是5,则a =_____ m= ____13、一个多项式加上-2 • x - x2得到x2 -1,则这个多项式是—一14、在代数式4x2 -8x,5-3x2,6x-2中,—8x和_________ 是同类项,合并后的结果是_______ . _____15、一个多项式A减去多项式2x2 5^3,马虎的同学将减号抄成加号,运算结果得-x2+3x-7,多项式A是 _______________________ 。
二、选择题(每题3分,共24分)16、若ac0,abc0,贝U b—a+1+|a—b—5 的值( )A .等于4B .等于-4C .- 2a 2b 6D .不能确定17、与a 2b 是同类项的是A. x y z B . x-y z C 19、将(x y) 2(x - y^4(x y)合并同类项得A. (x y)B. -(x y)C. -x yD. x -y 20、已知-x - 3y = 5,则 5(x-3y)2「8(x 「3y)「5 的值为A . 80B . -170C . 160D . 60 21、若A=4x 2 —3x -2 , B=4x 2 -3x -4,则A与B 的大小关系是A . A>B B . A<BC . A=BD .无法确定3 2-(m - 5)x (n -1 )x -5x 3不含C.不高于七次多项式或单项式D.六次多项式三、化简(本题共4小题,每题4分,共16分) 24、(5x 「3y 2xy)_(6x 4y_3xy) 25、x 2^3xy 2 2yx^y 2x26、3(5m-6n) 2(3m-4n) 27、5(a 2b-2ab 2 c)-4(2c 3a 2b-ab 2)A. b 2aB. a 2bc C.18、3、对 -{Jx-(y-z)]}去括号,巫D.5结果是(ab)222、已知:关于x 的多项式3x 4x 3和 x 2 ()A. m=-5 ,n=-1B. m=5 ,n=1C. m=-5 ,n=1D. m=5 ,n=-123、若A 是一个七次多项式, B 也是一个七次多项式,则 A - B 一定是( )A.十四次多项式B. 七次多项式四、解答题(本题共5小题,每题6分,共30 分)29、已知:x 4y - -1, xy = 5,求(6xy 7y) [8x 一(5xy 一y 6x)]的值。
七年级数学下册单元测试全套及答案

最新北师大版七年级数学下册单元测试全套及答案北师大版七年级下册 第一章 整式的运算单元测试题一、精心选一选(每小题3分,共21分)1.多项式892334+-+xy y x xy 的次数是 ( )A. 3B. 4C. 5D. 62.下列计算正确的是( )A. 8421262x x x =⋅B. ()()m m m y y y =÷34C. ()222y x y x +=+D. 3422=-a a3.计算()()b a b a +-+的结果是 ( )A. 22a b -B. 22b a -C. 222b ab a +--D. 222b ab a ++- 4. 1532+-a a 与4322---a a 的和为 ( )A.3252--a aB. 382--a aC. 532---a aD. 582+-a a5.下列结果正确的是( ) A. 91312-=⎪⎭⎫ ⎝⎛- B. 0590=⨯ C. ()17530=-. D. 8123-=- 6. 若()682b a b a n m =,那么n m 22-的值是 ( )A. 10B. 52C. 20D. 327.要使式子22259y x +成为一个完全平方式,则需加上 ( )A. xy 15B. xy 15±C. xy 30D. xy 30±二、耐心填一填(第1~4题每空1分,第5、6题每空2分,共28分)1.在代数式23xy , m ,362+-a a , 12 ,22514xy yz x - , ab32中,单项式有 个,多项式有 个。
2.单项式z y x 425-的系数是 ,次数是 。
3.多项式5134+-ab ab 有 项,它们分别是 。
4. ⑴ =⋅52x x 。
⑵ ()=43y 。
⑶ ()=322b a 。
⑷ ()=-425y x 。
⑸ =÷39a a 。
⑹=⨯⨯-024510 。
5.⑴=⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛325631mn mn 。
整式的运算单元测试卷

数学单元测试卷整式的运算(姓名___________ _ )一、选择题(每题3分,共24分)1、下列计算正确的是( ) A 、2a-a=2 B 、x 3+x 3=x 6 C 、3m 2+2n=5m 2n D 、2t 2+t 2=3t 22、下列语句中错误的是 ( ) A 、数字 0 也是单项式 B 、单项式 a 的系数与次数都是 1 C 、21x 2 y 2是二次单项式 C 、-32ab的系数是 -32 3、下列计算正确的是( ) A 、(-a 5)5=-a 25 B 、(4x 2)3=4x 6 C 、y 2·y 3-y 6=0 D 、(ab 2c)3=ab 2c 3 4、(x+5)(x-3)等于()A 、x 2 -15 B 、x 2 + 15 C 、x 2 + 2x -15 D 、 x 2 - 2x - 15 5、下列整式加减正确的是【 】A 、2x -(x 2+2x )= x 2 B 、2x -(x 2-2x )= x 2 C 、2x +(y +2x )= y D 、2x -(x 2-2x )= x 26、减去x 2-后,等于4x 2-3x -5的代数式是 【 】 A 、4x 2-5x -5 B 、-4x 2+5x +5 C 、4x 2-x -5 D 、4x 2-57、下列运算正确的是 【 】A 、954a a a =+ B 、954632a a a =⨯ C 、33333a a a a =⨯⨯ D 、743)(a a =-8、下列计算结果错误的是 【 】 A 、437)()()(ab ab ab =÷B 、xx x =÷2332)()( C 、224323232⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-m m m D 、24625)5()5(a a a =-÷二、填空题(每题3分,共27分)1、代数式4πxy 3是__项式,次数是__,系数是____________2、代数式x x a x a 5154323+-是__项式,次数是__3、(2x 2y+3xy 2)-(6x 2y -3xy 2)=____________4、43)()(b a b a -⋅-=_____________5、(7y+3x)·(-7y+3x)=________________6、(x+2)2-(x+1)(x -1)=______________7、=-⨯-32)3()3( ,=⨯-3255 。
北师大七年级下整式的运算单元试题

七年级数学(下)整式的运算----单元测试一、选择题1.下列说法正确的是( ) A .z y x 32没有系数 B .2a的系数是2 C .2009π是一次单项式 D .1234++y x x 是五次三项式 2.下列计算正确的是( ) A .1)1(0-=- B .91312-=- C .22313aa =- D .100)1.0(2=--6、下列计算错误的是: ①、(2x+y )2=4x 2+y 2②、(3b-a)2=9b 2-a 2③、(-3b-a)(a-3b)=a 2-9b 2④、(-x-y )2=x 2-2xy+y 2⑤、(x-12 )2=x 2-2x+14A 、1个B 、2个C 、3个D 、4个3、下列语句中错误的是( )A 、数字 0 也是单项式B 、单项式 a 的系数与次数都是 1C 、32ab -的系数是 32- D 、2221y x 是二次单项式 4.下列式子中是完全平方式的是( )A .22b ab a ++ B .222++a a C .222b b a +- D .122++a a 5、下列多项式中是完全平方式的是 ( )A 、142++x x B 、1222+-y x C 、2222y xy y x ++ D 、41292+-a a6.按下列程序计算,最后输出的答案是( )A .3a B . 12+a C .2a D .a7下列计算 (1) (-1)0=-1 (2) (-1)-1=-1 (3) 2×2-2=21(4)3a -2=a31(a 0) (5) ( -a 2)m =(-a m )2正确的有……………………( ) (A) 2个 (B) 3个 (C) 4个 (D) 5个8、下列计算正确的是:( )A 、2a 2+2a 3=2a 5B 、2a -1=12aC 、(5a 3)2=25a 5D 、(-a 2)2÷a=a 39、下列计算错误的是:( )①、(2x+y )2=4x 2+y 2 ②、(3b-a)2=9b 2-a 2 ③、(-3b-a)(a-3b)=a 2-9b 2④、(-x-y )2=x 2-2xy+y 2⑤、(x--12 )2=x 2-2x+14A 、2个B 、3个C 、4个D 、5个10、长方形一边长为2a +b ,另一边为a -b ,则长方形周长为( )A.3aB.6a +bC.6aD.10a -b 11、计算:=-x x x n32( ) A 、n x 6 B 、23+-n xC 、33+n xD 、33+-n x12、已知a=255,b=344,c=433则a 、b 、c 、的大小关系为:( )A 、b>c>aB 、a>b>cC 、c>a>bD 、a<b<c13、如果一个多项式的次数是6,则这个多项式的任何一项的次数都( )A.小于6B.等于6C.不大于6D.不小于6 14、若 4a 2-2ka+9是一个完全平方的展开形式,试求k 的值:( )A 、12B 、±6C 、6D 、±12 15.计算=-⨯-20052005)522()125(( ) (A )-1 (B )1 (C )0 (D )1997二、填空题 1.多项式-abx 2+51x 3-21ab +3中,是 次四项式2.5x 2-6x+1-( )=7x+8;3.有一单项式的系数是2,次数为3,这个单项式可能是______;4.若单项式232mn x y x y 1与-3是同类项,则m n += 。
初一数学下册第一章单元测试卷与答案

贵阳市普通中学2009——2010学年度第二学期测评与监控试题七年级数学第一章整式的运算班级230姓名学号评价等级一、选择题1.下面说法中,正确的是()(A)x的系数为0(B)x的次数为0(C)x的系数为1(D)3x的次数为132.下列合并同类项正确的个数是()①aaa;②224 3xy2xy1;③123;④3ab3ab ab;22⑤2m3m1.2424(A)①③(B)②③(C)③(D)③④3.下列计算正确的是()(A)x23(B)yxy4 y(C)5kk2y235(D)-a2-4a2=-5a24.在下列多项式乘法中,不能用平方差公式计算的是().(A)(mn)(mn)(B)(m n)(mn)(C)(mn)(mn)(D)(m n)(mn)5.计算a b的结果是().122()(A)212a2abb4(B)212aabb4(C)212 aabb 2(D)212 ab46.如图,有长方形面积的mnab四种表示法:①(m n)(ab)②m(ab)n(ab)③a(mn)b(mn)④mambna nb其中()(A)只有①正确(B)只有④正确(C)有①④正确(D)四个都正确5.计算3 2010·(1)2008的结果是()3(A)2(B)1 3(C)9(D)1 96.某天数学课上老师讲了整式的加减运算,小颖回到家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的内容,她突然发现一道题目:a=2abba2abb22 (23)(35) 5a26b,2空格的地方被墨水弄脏了,请问空格中的一项是()(A)+2 ab(B)+3ab(C)+4 ab(D)-ab 9.如下图,用黑白两种颜色的正方形纸片,按黑色纸片数逐渐加1的规律拼成一列图案,那么,第n个图案中有白色纸片()张。
(A)3n(B)3n+1(C)3n―1(D)3(n+1)10.若三角形的一边长为2(ab),这边上的高为(a b),则此三角形的面积是().(A)2a2b(B)22ab(C)1122222ab(D)2222 ab二、填空题11.整式3x,-3 中,单项式有_________,多项式有_________12.一个十位数字是a,个位数字是b的两位数表示为10a+b,交换这个两位数的十位数字和个位数字,又得一个新的两位数,前后两个数的差是。
七年级数学下册各单元测试试卷含答案

北师大版七年级数学下册第一章 整式的乘除 单元测试卷(一)班级 姓名 学号 得分一、精心选一选(每小题3分,共21分)1.多项式892334+-+xy y x xy 的次数是 ( ) A. 3 B. 4 C. 5 D. 62.下列计算正确的是 ( ) A. 8421262x x x =⋅ B. ()()m mm y y y =÷34C. ()222y x y x +=+ D. 3422=-a a3.计算()()b a b a +-+的结果是 ( ) A. 22a b - B. 22b a - C. 222b ab a +-- D. 222b ab a ++- 4. 1532+-a a 与4322---a a 的和为 ( ) A.3252--a a B. 382--a a C. 532---a a D. 582+-a a 5.下列结果正确的是 ( )A. 91312-=⎪⎭⎫ ⎝⎛- B. 0590=⨯ C. ()17530=-. D. 8123-=-6. 若()682b a b a nm =,那么n m 22-的值是 ( )A. 10B. 52C. 20D. 32 7.要使式子22259y x +成为一个完全平方式,则需加上 ( ) A. xy 15 B. xy 15± C. xy 30 D. xy 30±二、耐心填一填(第1~4题每空1分,第5、6题每空2分,共28分)1.在代数式23xy , m ,362+-a a , 12 ,22514xy yz x -, ab32中,单项式有 个,多项式有 个。
2.单项式z y x 425-的系数是 ,次数是 。
3.多项式5134+-ab ab 有 项,它们分别是 。
4. ⑴ =⋅52x x 。
⑵ ()=43y 。
⑶ ()=322ba 。
⑷ ()=-425y x 。
⑸ =÷39a a 。
⑹=⨯⨯-024510 。
(好题)初中数学七年级数学下册第一单元《整式的乘除》测试卷(含答案解析)(1)

一、选择题1.定义运算(1)a b a b ⊗=-,下面给出了关于这种运算的四个结论: ①2(2)6⊗-=; ②a b b a ⊗=⊗;③若0a b ⊗=,则0a =; ④若0a b +=,则()()2a a b b ab ⊗+⊗=. 其中正确结论的个数是( ) A .1 B .2 C .3 D .4 2.若6a b +=,4ab =,则22a ab b ++的值为() A .40B .36C .32D .303.下列计算正确的是( )A .326a a a ⋅=B .()()2122a a a +-=- C .()333ab a b = D .623a a a ÷=4.若1x x -的值为1,则2215x x++的值为( ) A .7B .8C .9D .10 5.已知:2m a =,2n b =,则232m n +用a ,b 可以表示为( ) A .6abB .23a b +C .23a b +D .23a b6.如图,矩形ABCD 的周长是10cm ,以AB ,AD 为边向外作正方形ABEF 和正方形ADGH ,若正方形ABEF 和ADGH 的面积之和为17cm 2,那么矩形ABCD 的面积是( )A .3cm 2B .4cm 2C .5cm 2D .6cm 2 7.下列计算正确的是( )A .248a a a •=B .352()a a =C .236()ab ab =D .624a a a ÷= 8.如果249x mx -+是一个完全平方式,则m 的值是( ) A .12±B .9C .9±D .129.已知3x y +=,1xy =,则23x xy y -+的值是()A .7B .8C .9D .1210.如图:用四个全等的长方形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是144,小正方形的面积是4,若用a ,b 分别表示矩形的长和宽(a b >),则下列关系中不正确的是( )A .12a b +=B .2a b -=C .35ab =D .2284a b +=11.多项式291x 加上一个单项式后﹐使它成为一个整式的完全平方,那么加上的单项式可以是( ) A .6x ± B .-1或4814x C .29x - D .6x ±或1-或29x -或4814x 12.下列运算正确的是( ) A .3515x x x ⋅= B .()3412x x -=C .()32628y y = D .623x x x ÷=二、填空题13.计算:(﹣2x )3(﹣xy 2)=_____,(﹣23a 5b 7)÷32a 5b 5=_____. 14.已知x 满足()()22201820208x x -+-=,则()22019x -的值是___________. 15.计算35232()()()a a a ⎡⎤-÷-⋅-⎣⎦=__.16.若2421x kx ++是完全平方式,则k=_____________. 17.2(56)x x -+÷___________=3x -.18.已知29x mx ++是完全平方式,则m =_________.19.已知8m a =,2n a =.则m n a -=___________,m 与n 的数量关系为__________. 20.如果5a b +=,1ab =,则22a b +=______.三、解答题21.先化简,再求值:()322484(2)(2)ab a bab a b a b -÷++-,其中a ,b 满足2(2)|1|0a b -+-=.22.甲、乙两个长方形的边长如图所示(m 为正整数),其面积分别为1S ,2S . (1)请比较1S 和2S 的大小;(2)若一个正方形的周长等于甲、乙两个长方形的周长之和,求该正方形的面积(用含m 的代数式表示).23.先化简,再求值:()()()()()2442225x y x y x y x y x y x ⎡⎤+--+-+-÷⎣⎦,其中x ,y 满足()2320x y ++-=.24.阅读下面材料,完成任务.多项式除以多项式可以类比于多位数的除法进行计算,先把多项式按照某个字母的降幂进行排列,缺少的项可以看做系数为零,然后类比多位数的除法利用竖式进行计算.∴26445123215÷= ∴()()32223133x x x x x +-÷-=++请用以上方法解决下列问题:(计算过程要有竖式) (1)计算:()()3223102x x x x +--÷-(2)若关于x 的多项式43225x x ax b +++能被二项式2x +整除,且a ,b 均为自然数,求满足以上条件的a ,b 的值. 25.化简:2(3)3(2)m n m m n +-+. 26.观察下列各式:2(1)(1)1x x x -+=-;()23(1)11x x x x -++=-;()324(1)11x x x x x -+++=-;请根据这一规律计算: (1)()12(1)1n n n x x xx x ---+++⋅⋅⋅++;(2)1514132222221+++⋅⋅⋅+++.【参考答案】***试卷处理标记,请不要删除一、选择题1.B 解析:B 【分析】直接利用新定义求解即可判断选项的正误. 【详解】解:运算a ⊗b=a (1-b ), 所以2⊗(-2)=2(1+2)=6,所以①正确; a ⊗b=a (1-b ),b ⊗a=b (1-a ),∴②不正确;若a ⊗b=0,a ⊗b=a (1-b )=0,可得a=0,或b=1.所以③不正确; 若a+b=0,则(a ⊗a )+(b ⊗b )=a (1-a )+b (1-b )=a+b-(a 2+b 2)=-(a+b )2+2ab=2ab ,所以④正确,正确的两个, 故选B . 【点睛】本题考查了命题的真假的判断与应用,新定义的理解与应用,基本知识的考查.2.C解析:C 【分析】根据a+b=6,ab=4,应用完全平方公式,求出a 2+ab+b 2的值为多少即可. 【详解】解:∵a+b=6,ab=4, ∴a 2+ab+b 2 =(a+b )2-ab =36-4 =32 故选:D . 【点睛】此题主要考查了完全平方公式的应用,要熟练掌握,应用完全平方公式时,要注意:①公式中的a ,b 可是单项式,也可以是多项式;②对形如两数和(或差)的平方的计算,都可以用这个公式;③对于三项的可以把其中的两项看做一项后,也可以用完全平方公式.3.C解析:C 【分析】分别用同底数幂的乘法法则、多项式与多项式的乘法、积的乘方以及同底数幂的除法公式来进行判断即可; 【详解】A 、325a a a = ,故该选项错误;B 、()()2212222a a a a a a a +-=-+-=-- ,故该选项错误;C 、()333ab a b = ,故该选项正确; D 、624a a a ÷= ,故该选项错误; 故选:C . 【点睛】本题考查了同底数幂的乘法法则、多项式与多项式的乘法、积的乘方以及同底数幂的除法公式,正确掌握公式是解题的关键;4.B解析:B 【分析】把1x x-进行完全平方,展开计算221x x +的值即可.【详解】∵1x x-=1, ∴21()x x-=1, ∴221x x +-2=1, ∴221x x+=3, ∴2215x x++=8, 故选B. 【点睛】本题考查了完全平方公式的展开计算,熟练运用完全平方公式是解题的关键.5.D解析:D 【分析】根据同底数幂的乘法和幂的乘方计算即可; 【详解】()()23232322222+=⨯=⨯m n m n m n ,∵2m a =,2n b =, ∴原式23a b =; 故答案选D . 【点睛】本题主要考查了幂的运算,准确计算是解题的关键.6.B解析:B 【分析】设AB =x ,AD =y ,根据题意列出方程x 2+y 2=17,2(x +y )=10,利用完全平方公式即可求出xy 的值. 【详解】解:设AB =x ,AD =y ,∵正方形ABEF 和ADGH 的面积之和为17cm 2 ∴x 2+y 2=17,∵矩形ABCD 的周长是10cm ∴2(x +y )=10, ∵(x +y )2=x 2+2xy +y 2, ∴25=17+2xy , ∴xy =4,∴矩形ABCD 的面积为:xy =4cm 2, 故选:B . 【点睛】本题考查了正方形面积、矩形面积和完全平方公式,恰当的设未知数,建立方程,设而不求,只求xy 的值是解题关键.7.D解析:D 【分析】分别根据同底数幂的乘法,幂的乘方,积的乘方法则以及同底数幂的除法法则逐一计算判断即可. 【详解】解:A 、a 2∙a 4=a 6,故选项A 不合题意; B 、(a 2)3=a 6,故选项不B 符合题意; C 、(ab 2)3=a 3b 6,故选项C 不符合题意; D 、a 6÷a 2=a 4,故选项D 符合题意. 故选:D . 【点睛】本题主要考查了幂的运算,熟练掌握幂的运算法则是解答本题的关键.8.A解析:A 【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m 的值. 【详解】解:∵()22249=23x mx x mx -+-+, ∴223mx x -=±⨯⨯ ,解得m=±12. 故选:A . 【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.9.A解析:A 【分析】先把3x y +=代入原式,可得23x xy y -+=22xy +,结合完全平方公式,即可求解.【详解】 ∵3x y +=,∴23x xy y -+=2()x xy x y y -++=22x xy xy y -++=22x y +,∵1xy =,∴23x xy y -+=22x y +=22()23217x y xy +-=-⨯=,故选A . 【点睛】本题主要考查代数式求值,熟练掌握完全平方公式及其变形公式,是解题的关键.10.D解析:D 【分析】能够根据大正方形和小正方形的面积分别求得正方形的边长,再根据其边长分别求解,根据4个矩形的面积和等于两个正方形的面积的式求解即可. 【详解】解:A 、根据大正方形的面积求得该正方形的边长是12,则12a b +=,故A 选项不符合题意;B 、根据小正方形的面积可以求得该正方形的边长是2,则2a b -=,故B 选项不符合题意;C 、根据4个矩形的面积和等于大正方形的面积减去小正方形的面积,即41444140ab ,35ab =,故 C 选项不符合题意;D 、222()2144a b a b ab +=++=,所以 221442351447074a b ,故 D 选项符合题意. 故选:D . 【点睛】本题考查了代数式和图形的面积公式正确运算,熟悉相关性质是解题的关键.11.D解析:D 【分析】根据完全平方公式计算解答. 【详解】解:添加的方法有5种,分别是: 添加6x ,得9x 2+1+6x=(3x+1)2; 添加﹣6x ,得9x 2+1﹣6x=(3x ﹣1)2; 添加﹣9x 2,得9x 2+1﹣9x 2=12; 添加﹣1,得9x 2+1﹣1=(3x )2,添加4814x ,得242819+91142x x x ⎛⎫+=+ ⎪⎝⎭, 故选:D . 【点睛】此题考查添加一个整式得到完全平方式,熟记完全平方式的特点是解题的关键.12.C解析:C 【分析】根据整式的同底数幂相乘法则、幂的乘方法则、积的乘方法则、同底数幂相除法则进行计算并判断. 【详解】A 、358⋅=x x x ,故该项错误;B 、()3412x x -=-,故该项错误;C 、()32628y y =,故该项正确;D 、624x x x ÷=,故该项错误; 故选:C .【点睛】本题考查了整式的计算,熟记整式的同底数幂相乘法则、幂的乘方法则、积的乘方法则、同底数幂相除法则是解题的关键.二、填空题13.8x4y2【分析】直接利用积的乘方运算法则以及整式的除法运算法则分别计算得出答案【详解】解:(﹣2x )3(﹣xy2)=﹣8x3•(﹣xy2)=8x4y2(﹣a5b7)÷a5b5=a5﹣5b7﹣5=故解析:8x 4y 2 249b - 【分析】直接利用积的乘方运算法则以及整式的除法运算法则分别计算得出答案. 【详解】解:(﹣2x )3(﹣xy 2)=﹣8x 3•(﹣xy 2) =8x 4y 2, (﹣23a 5b 7)÷32a 5b 5 =2233-⨯a 5﹣5b 7﹣5 =249b -. 故答案为:8x 4y 2;249b -. 【点睛】本题考查了整式的乘除运算,掌握相关运算法则是关键.14.3【分析】题目求(x-2019)2把方程中的x-2018x-2020转化为含有(x-2019)利用换元法求解即可【详解】解:方程可变形为:(x-2019)+12+(x-2019-1)2=8设x-20解析:3 【分析】题目求(x-2019)2,把方程中的x-2018、x-2020转化为含有(x-2019),利用换元法求解即可. 【详解】解:方程()()22201820208x x -+-=可变形为: [(x-2019)+1]2+[(x-2019-1)]2=8 设x-2019=y则原方程可转化为:(y+1)2+(y-1)2=8 ∴y 2+2y+1+y 2-2y+1=8 即2y 2=6 ∴y 2=3即(x-2019)2=3. 故答案为:3. 【点睛】本题考查了完全平方公式,把x-2018、x-2020转化为(x-2019+1)、(x-2019-1)是解决本题的关键.15.【分析】首先计算积的乘方再计算中括号内的同底数幂的乘法最后计算单项式除以单项式即可得出答案【详解】解:===故答案为:【点睛】此题主要考查了同底数幂的乘法以及单项式除以单项式熟练掌握运算法则是解答此解析:7a . 【分析】首先计算积的乘方,再计算中括号内的同底数幂的乘法,最后计算单项式除以单项式即可得出答案. 【详解】解:35232()()()a a a ⎡⎤-÷-⋅-⎣⎦ =1526()a a a -÷- =158()a a -÷- =7a . 故答案为:7a . 【点睛】此题主要考查了同底数幂的乘法以及单项式除以单项式,熟练掌握运算法则是解答此题的关键.16.±2【分析】根据完全平方式的结构特征解答即可【详解】解:∵是完全平方式∴∴故答案为:±2【点睛】本题考查了完全平方式的知识属于基础题目熟练掌握完全平方式的结构特征是解题关键解析:±2 【分析】根据完全平方式的结构特征解答即可. 【详解】解:∵2421x kx ++是完全平方式, ∴24k =±,∴2k =±. 故答案为:±2. 【点睛】本题考查了完全平方式的知识,属于基础题目,熟练掌握完全平方式的结构特征是解题关键.17.【分析】设要填的式子为根据题意可得利用整式的乘法计算左边各项对应即可得到答案【详解】解:设要填的式子为根据题意可得即可得解得故答案为:【点睛】本题考查整式的乘法掌握多项式乘多项式是解题的关键 解析:2x -【分析】设要填的式子为ax b +,根据题意可得()()2356ax b x x x +-=-+,利用整式的乘法计算左边,各项对应即可得到答案. 【详解】解:设要填的式子为ax b +,根据题意可得()()2356ax b x x x +-=-+, 即()223356ax a b x b x x +-+-=-+,可得1a =,36b -=, 解得1a =,2b =-,故答案为:2x -.【点睛】本题考查整式的乘法,掌握多项式乘多项式是解题的关键.18.【分析】根据完全平方公式的形式可得答案【详解】解:∵x2+mx+9是完全平方式∴m=故答案为:【点睛】本题考查了完全平方公式注意符合条件的答案有两个以防漏掉解析:6±【分析】根据完全平方公式的形式,可得答案.【详解】解:∵x 2+mx+9是完全平方式,∴m=2136±⨯⨯=±,故答案为:6±.【点睛】本题考查了完全平方公式,注意符合条件的答案有两个,以防漏掉.19.【分析】由同底数的除法可得:从而可得:的值由可得可得从而可得答案【详解】解:故答案为:【点睛】本题考查的是幂的乘方运算同底数幂的除法运算掌握以上知识是解题的关键解析:3m n =【分析】由同底数的除法可得:m n m n a a a -=÷,从而可得:m n a -的值,由2n a =,可得38,n a =可得3,m n a a =从而可得答案.【详解】 解:8m a =,2n a =∴ 824,m n m n a a a -=÷=÷=2n a =,()3328,n a ∴== 38,n a ∴=3,m n a a ∴=3.m n ∴=故答案为:43m n =,.【点睛】本题考查的是幂的乘方运算,同底数幂的除法运算,掌握以上知识是解题的关键. 20.23【分析】将a+b=5两边平方利用完全平方公式化简将ab 的值代入计算即可求出a2+b2的值【详解】解:将a+b=5两边平方得:(a+b )2=a2+2ab+b2=25将ab=1代入得:a2+2+b2解析:23【分析】将a+b=5两边平方,利用完全平方公式化简,将ab 的值代入计算即可求出a 2+b 2的值.【详解】解:将a+b=5两边平方得:(a+b )2=a 2+2ab+b 2=25,将ab=1代入得:a 2+2+b 2=25,则a 2+b 2=23.故答案为:23.【点睛】本题考查完全平方公式,熟练掌握完全平方公式是解题关键.三、解答题21.242a ab -,当21a b ==,时,12.【分析】先计算整式混合运算,利用非负数求出a b ,的值,在代入求值即可.【详解】解:322(48)4(2)(2)ab a b ab a b a b -÷++-,22224b ab a b =-+-,242a ab =-,∵2(2)|1|0a b -+-=,2(2),100||a b --≥≥,∴20,10a b -=-=,当21a b ==,时,原式24222116412=⨯-⨯⨯=-=.【点睛】本题考查了整式的混合运算及化简求值,非负数性质,准确进行整式混合运算是解题关键.22.(1)12S S <;(2)42m +24m+36.【分析】(1)先计算两个长方形的面积,再利用作差法比较它们面积的大小;(2)先计算两个长方形的周长,再计算该正方形的边长和面积.【详解】解:(1)1S =(m+1)(m+5)=2m +6m+5,2S =(m+2)(m+4)=2m +6m+8,∵1S -2S=2m +6m+5﹣(2m +6m+8)=2m +6m+5﹣2m ﹣6m ﹣8=﹣3<0,∴12S S <.即甲的面积小于乙的面积;(2)甲乙两个长方形的周长和为:2(m+1+m+5+m+4+m+2)=8m+24,正方形的边长为:(8m+24)÷4=2m+6.该正方形的面积为:2(26)m +=42m +24m+36.答:该正方形的面积为:42m +24m+36.【点睛】本题考查了多项式乘多项式,整式的加减,作差法比较大小,完全平方公式的展开,熟练掌握矩形,正方形的性质,灵活使用作差法,完全平方公式是解题的关键.23.22x y -+,10【分析】首先利用平方差公式、完全平方公式、多项式乘以多项式计算中括号里面的式子,再合并同类项,化简后,计算括号外的除法,最后代入x 、y 的值即可.【详解】解:原式()()222222164425210x y x xy y x xy xy y x ⎡⎤=--++--+-÷⎣⎦()2222221644210420x y x xy y x xy xy y x =-----+-+÷()222x xy x =-+÷22x y =-+.∵()2320x y +-=,∴30x +=,20y -=,∴3x =-,2y =.∴原式()23226410=-⨯-+⨯=+=.【点睛】本题主要考查了整式的混合运算,关键是掌握整式乘、除、加、减的各种运算法则.24.(1)()()3222310245x x x x x x +--÷-=++;(2)0a =,8b =;1a =,4b =;2a =,0b =【分析】(1)直接利用竖式计算即可;(2)竖式计算,根据整除的意义,利用对应项的系数对应倍数求得答案即可.【详解】解:(1)列竖式如下:()()3222310245x x x x x x +--÷-=++ (2)列竖式如下:∵多项式43225x x ax b +++能被二项式2x +整除∴余式()420b a +-=∵a ,b 均为自然数∴0a =,8b =;1a =,4b =;2a =,0b =【点睛】此题考查利用竖式计算整式的除法,解题时要注意同类项的对应.25.226m n +【分析】先根据完全平方公式及单项式乘以多项式法则去括号,再合并同类项即可.【详解】解:2(3)3(2)m n m m n +-+ 2229636m mn n m mn =++--226m n =+.【点睛】此题考查整式的混合运算,掌握完全平方公式及单项式乘以多项式法则,去括号法则,合并同类项法则是解题的关键.26.(1)11n x +-;(2)1621-.【分析】(1)观察题中所给的三个等式,可知等式右边第一项的次数等于左边第二个括号内最高次项的次数加1,等式右边第二项均为1,据此可解;(2)根据(1)中所得的规律,可将原式左边乘以(2-1),再按照(1)中规律计算即可.【详解】(1)()12(1)1n n n x x x x x ---+++⋅⋅⋅++11n x +=-;(2)1514132222221+++⋅⋅⋅+++1514132(21)(222221)=-+++⋅⋅⋅+++1621=-.【点睛】本题考查了平方差公式和多项式乘法公式在计算中的应用,熟练掌握相关计算法则是解题的关键.。
七年级数学《整式的乘除》单元测试题(含答案)

第六章 《整式的乘除》单元测试题(后附答案)班级:_________ 姓名:___________题号 一 二 17 18 19 20 21 22 附加 总分 分数一、选择题(每小题3分,共30分)1. PM2.5是指大气中直径小于或等于2.5 μm (0.000 002 5 m )的颗粒物,含有大量有毒、有害物质,也称可入肺颗粒物. 数据0.000 002 5用科学记数法可表示为 ( ) A. 2.5×10-6 B. -2.5×106 C. 2.5×10-7 D. 2.5×10-5 2.下列计算正确的是 ( ) A. a 3•a 2=a 6 B. (2x 5)2=2x 10 C. (-3)-2=91D.(6×104)÷(-3×104)=0 3.若(-8x m y 3)÷(nx 2y )=-16x 3y 2,则m ,n 的值分别为 ( ) A. 6, B. 6,2 C. 5, D. 5,2 4. 若a 2-2a -2=0,则(a -1)2的值为( ) A. 1 B. 2 C . 3 D. 45. 若一个正方体的棱长为2×102,则该正方体的体积为 ( ) A. 6×106 B. 8×106 C. 6×108 D. 9×1066. 下列计算正确的是 ( ) A.(x -1)(x+2)=x 2-x -2 B.(x -1)(x -2)=x 2-2x+2 C.(x+1)(x+2)=x 2+2x+2 D.(x+1)(x -2)=x 2-x -27. 利用图1所示的两个图形的面积关系,可以验证的乘法公式是( ) A.(a+b )(a -b )=a 2-b 2 B. a 2-b 2=(a+b )(a -b ) C.(a -b )2=a 2-2ab+b 2 D.(a+b )2=a 2+2ab+b 28. 如图2,在一个长为3m+n ,宽为m+3n 的长方形地面上,四个角各有一个边长n 的正方形草坪,其中阴影部分为花坛,则花坛的面积为 ( )A. 3m 2+10mn+n 2B. 3m 2+10mn -n 2C. 3m 2+10mn+7n 2D. 3m 2+10mn -7n 2 9.计算(-)2018×(-0.8)2017的结果是 ( ) A. 1 B. -1 C .- D. -10. 已知a+b=3,ab=-4,有下列结论:①(a -b )2=25;①a 2+b 2=17;①a 2+b 2+3ab=5;a 2+b 2-ab=-3,其中正确的有 ( )A. ①①①①B. 仅①①①C. 仅①①①D. 仅①①①二、填空题(每小题3分,共18分)11. 计算(2×103)2×106÷1000=_________.12. 若(m-2)0无意义,则m的值为__________.13. 如果单项式-x3y a+b与6x2a-b y2是同类项,则这两个单项式的积为__________.14. 已知梯形的上底长为2m+n,高为2m,面积为10m2+6mn,则梯形的下底长为_________15. 规定一种新运算:a c =ac÷bd,则-4x2y 8x6=___________b d -2x3-x16. 若2x=5,2y=3,则4x-2y×(-32)2=________.三、解答题(共52分)17.(每小题3分,共6分)用整式的乘法公式计算:(1)10012-2000;(2)50×49.18.(每小题4分,共8分)计算:(1)(x-y+1)(x+y-1)-6x2y3÷3x2y2.(2)(m+1)(m-5)-m(m-6);19.(8分)先化简,再求值:[(2x-y)2+(x+y)(x-y)-x(2y-x)]÷(-2x),其中x=-1,y=-2.20.(8分)在一节数学课上,刘老师请同学心里想一个非零的有理数,然后把这个数按照下面的程序进行计算后,刘老师立刻说出计算结果.(1)小明同学心里想的数是8,列出了下面的算式,请你计算出最后的结果:[(8+2)2-(8-2)2]×(-25)÷8.(2)小明又试了几个数进行计算,发现结果都相等,于是小明把心里想的这个数记作a(a≠0),并按照程序通过计算进行验证,请你写出这个验证过程.21.(10分)边长分别为a,b的两块正方形地砖按图3所示放置,其中点D,C,E在同一条直线上,连接BD,BF,DF,求阴影部分的面积.22.(12分)观察以下等式:(x+1)(x2-x+1)=x3+1;(x+3)(x2-3x+9)=x3+27;(x+6)(x2-6x+36)=x3+216;…(1)按以上等式的规律填空:(a+b)(_____________)=a3+b3.(2)利用多项式的乘法法则,说明(1)中的等式成立.(3)利用(1)中的公式化简:(x+y)(x2-xy+y2)-(x+2y)(x2-2xy+4y2).附加题(20分,不计入总分)23.(8分)已知(2x+m)(x+2)的结果中不含关于字母x的一次项,求(-2m+1)2-4(m-1)(m+2)的值.24. (12分)若x满足(9-x)(x-4)=4,求(4-x)2+(x-9)2的值.解:设9-x=a,x-4=b,则(9-x)(x-4)=ab=4,a+b=9-x+x-4=5,所以(9-x)2+(x-4)2=a2+b2=(a+b)2-2ab=52-2×4=17.请仿照上面的解题思路求解下面问题:(1)若x满足(5-x)(x-2)=2,求(5-x)2+(x-2)2的值.(2)如图4,已知正方形ABCD的边长为x,E,F分别是AD,DC上的点,且AE=1,CF=3,长方形EMFD的面积是48,分别以MF,DF为边作正方形,求阴影部分的面积.参考答案一、1. A 2. B 3. C 4. C 5. D 6. C 7. A 8. B 9. D 10. B二、11. 2 12. 4×10913. -3x6y414. 8m+5n 15. -16x4y 16. 25三、17. 解:(1)原式=(1000+1)2-2000=10002+2000+1-2000=1 000 001.(2)原式=(50+)(50-)=502-()2=2500-=2499.18.解:(1)(m+1)(m-5)-m(m-6)=m2-5m+m-5-m2+6m=2m-5.(2)(x-y+1)(x+y-1)-6x2y3÷3x2y2=[x-(y-1)][x+(y-1)]-2y=x2-(y-1)2-2y=x2-y2+2y-1-2y=x2-y2-1.19. 解:原式=(4x2-4xy+y2+x2-y2-2xy+x2)÷(-2x)=(6x2-6xy)÷(-2x)=-3x+3y.当x=-1,y=-2时,原式=-3×(-1)+3×(-2)=3-6=-3.20.解:(1)原式=(100-36)×(-25)÷8=64×(-25)÷8=-200;(2)根据题意得[(a+2)2-(a-2)2]×(-25)÷a=8a×(-25)÷a=-200.21. 解:S三角形BDF=S正方形ABCD+S正方形CEFG-S三角形DEF-S三角形ABD-S三角形BGF=a2+b2-DE·EF-AB·AD-GF·BG=a2+b2-(a+b)b-a·a-b(b-a)=a2+b2-ab-b2-a2-b2+ab=a2.22.解:(1)a2-ab+b2(2)(a+b)(a2-ab+b2)=a3-a2b+ab2+ba2-ab2+b3=a3+b3.(3)原式=(x3+y3)-(x3+8y3)=-7y3.附加题23. 解:(2x+m)(x+)=2x2+(1+m)x+m.因为(2x+m)(x+2)的结果中不含关于字母x的一次项,所以1+m=0,解得m=-1.所以(-2m+1)2-4(m-1)(m+2)=4m2-4m+1-4m2-4m+8=-8m+9=-8×(-1)+9=17.24.解:(1)设5-x=a,x-2=b,则(5-x)(x-2)=ab=2,a+b=5-x+x-2=3.所以(5-x)2+(x-2)2=(a+b)2-2ab=32-2×2=5.(2)因为正方形ABCD的边长为x,AE=1,CF=3,所以MF=DE=x-1,DF=x-3.所以(x-1)(x-3)=48,所以(x-1)-(x-3)=2.所以阴影部分的面积=FM2+FG2=(x-1)2+(x-3)2.设x-1=a,x-3=b,则(x-1)(x-3)=ab=48,a-b=x-1-(x-3)=2.由(a-b)2=a2-2ab+b2,得a2+b2=(a-b)2+2ab=4+96=100,即阴影部分的面积是100.。
七年级数学下册 第一章《整式的运算》单元综合测试3 (2012新版)北师大版

整式的运算一、精心选一选1.下列说法正确的是( )A.32xyz 与32xy 是同类项 B.x 1和21x 是同类项C.0.523y x 和732y x 是同类项 D.5n m 2与-42nm 是同类项2.下面计算正确的事( )A.32x -2x =3 B.32a +23a =55aC.3+x =3x D.-0.25ab +41ba =03.下面各题去括号错误的是( )A.x -(6y -21)=x -6y +21B.2m +(-n +31a -b )=2m -n +31a -b C.-21(4x -6y +3)=-2x +3y +3D.(a +21b )-(-31c +72)=a +21b +31c -724.两个四次多项式的和的次数是( )A.八次 B.四次 C.不低于四次 D.不高于四次 5.下列说法正确的是( )A.平方是它本身的数是0 B.立方等于本身的数是±1 C.绝对值是本身的数是正数 D.倒数是本身的数是±1 6.一个五次多项式,他任何一项的次数( )A.都小于5 B.都等于5 C.都不小于5 D.都不大于57.如果a -b =12,那么-3(b -a )的值时( ) A.-35 B.23 C.32 D.168.一个多项式与2x -2x +1的和是3x -2,则这个多项式为( ) A、2x -5x +3 B、-2x +x -1 C、-2x +5x -3 D、2x -5x -13 9.五个连续奇数,中间一个是2n+1 (n 为正整数),那么这五个数的和是 ( )。
A.10n+10; B.10n+5; C.5n+5; D.5n -510.用代数式表示:每件上衣a 元,降价10%以后的售价是 ( )。
A.a ﹒10%; B.a(1+10%); C.a(1-10%); D.a(1+90%)11.a 、b 互为倒数,x 、y 互为相反数且y 0≠,那么代数式(a+b)(x+y)-ab -y x的值为 ( )。
七年级数学整式的运算单元测试题及答案

七年级数学整式的运算单元测试题及答案以下是查字典数学网为您推荐的七年级数学整式的运算单元测试题及答案,希望本篇文章对您学习有所帮助。
七年级数学整式的运算单元测试题及答案一、选择题。
1、下列判断中不正确的是( )①单项式m的次数是0②单项式y的系数是1③,-2a都是单项式④ +1是二次三项式2、如果一个多项式的次数是6次,那么这个多项式任何一项的次数( )A、都小于6B、都等于6C、都不小于6D、都不大于63、下列各式中,运算正确的是( )A、B、C、D、4、下列多项式的乘法中,可以用平方差公式计算的有( )A、B、C、D、5、在代数式中,下列结论正确的是( )A、有3个单项式,2个多项式B、有4个单项式,2个多项式C、有5个单项式,3个多项式D、有7个整式6、关于计算正确的是( )A、0B、1C、-1D、27、多项式中,最高次项的系数和常数项分别为( )A、2和8B、4和-8C、6和8D、-2和-88、若关于的积中常数项为14,则的值为( )A、2B、-2C、7D、-79、已知,则的值是( )A、9B、49C、47D、110、若,则的值为( )A、-5B、5C、-2D、2二、填空题11、=_________。
12、若,则。
13、若是关于的完全平方式,则。
14、已知多项多项式除以多项式A得商式为,余式为,则多项式A为________________。
15、把代数式的共同点写在横线上_______________。
16、利用_____公式可以对进行简便运算,运算过程为:原式=_________________。
17、。
18、,则P=______,=______。
三、解答题19、计算:(1)(2)(3)20、解方程:21、先化简后求值:,其中。
参考答案一、选择题1、B2、D3、D4、B5、A6、B7、D8、B9、C 10、C 二填空题11、12、2;4 13、或7 14、15、(1)都是单项式(2)都含有字母、;(3)次数相同16、平方差;17、18、;三、解答题19、(1)1 (2) (3)单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。
【精选】北师大版七年级下册数学第一章《整式的运算》综合测试卷(含答案)

【精选】北师大版七年级下册数学第一章《整式的运算》综合测试卷(含答案)一、选择题(每题3分,共30分)1.计算(-a 2)3的结果是( )A .a 5B .a 6C .-a 5D .-a 62.计算:20·2-3等于( )A .-18 B.18 C .0 D .83.斑叶兰的一粒种子重约0.000 000 5 g ,将0.000 000 5用科学记数法表示为( )A .5×107B .5×10-7C .0.5×10-6D .5×10-64.【2022·长沙】下列计算正确的是( )A .a 7÷a 5=a 2B .5a -4a =1C .3a 2·2a 3=6a 6D .(a -b )2=a 2-b 25.【教材P 32习题T 3变式】已知一个计算程序:n →平方→+n →÷n →-n →?若输入n =-3,则输出的“?”为( )A .1B .-1C .7D .-76.下列四个算式:① 5x 2y 4÷15xy =xy 3; ② 16a 6b 4c ÷8a 3b 2=2a 3b 2c ; ③ 9x 8y 2÷3x 2y =3x 4y ; ④(12m 3-6m 2-4m )÷(-2m )=-6m 2+3m +2.其中正确的有( )A .0个B .1个C .2个D .3个7.如图,将一块边长为x (x >7)的正方形木块的一边截去7,另一边截去6,则剩余部分(图中阴影部分)的面积是( )A .x 2-13x -42B .x 2+13x +42C .x 2+13x -42D .x 2-13x +428.【2022·上海交大附中闵行分校模拟】若(a +2b )2=(a -2b )2+A ,则A 等于( )A .8abB .-8abC .8b 2D .4ab 9.若a =-0.32,b =-3-2,c =⎝ ⎛⎭⎪⎫-13-2,d =⎝ ⎛⎭⎪⎫-130,则a ,b ,c ,d 的大小关系是( ) A .a <b <c <d B .b <a <d <c C .a <d <c <b D .c <a <d <b10.【直观想象】如图,在边长为2a 的正方形中央剪去一个边长为a +2的小正方形(a >2),将剩余部分沿虚线剪开密铺成一个平行四边形,则该平行四边形的面积为( )A .a 2+4B .2a 2+4aC .3a 2-4a -4D .4a 2-a -2二、填空题(每题3分,共24分)11.【2022·甘肃】计算:3a 3·a 2=________.12.【2022·遵义】已知a +b =4,a -b =2,则a 2-b 2的值为________.13.【2022·大庆】已知代数式a 2+(2t -1)ab +4b 2是一个完全平方式,则t 的值为__________.14.计算:(-13xy 2)2·[xy (2x -y )+xy 2]=__________. 15.计算:(7x 2y 3z +8x 3y 2)÷4x 2y 2=______________.16.若x +y -3=0,则2y ×2x 的值为________.17.【教材P 35复习题T 12变式】如图,一个长方形花园ABCD ,AB =a ,AD =b ,该花园中建有一条长方形小路L MPQ 和一条平行四边形小路RSTK ,若L M =RS =c ,则该花园中可绿化部分(即除去小路后剩余部分)的面积为________________.18.【传统文化】《数书九章》中的秦九韶算法是我国南宋时期的数学家秦九韶提出的一种多项式简化算法.在现代,利用计算机解决多项式的求值问题时,秦九韶算法依然是最优的算法.例如,计算“当x =8时,多项式3x 3-4x 2-35x +8的值”,按照秦九韶算法,可先将多项式3x 3-4x 2-35x +8一步步地进行改写:3x 3-4x 2-35x +8=x (3x 2-4x -35)+8=x [x (3x -4)-35]+8.按改写后的方式计算,它一共做了3次乘法,3次加法,与直接计算相比节省了乘法次数,使计算量减少.计算当x =8时,多项式的值为1 008.请参考上述方法,将多项式x 3+2x 2+x -1改写为________________;当x =8时,多项式的值为________.三、解答题(19,23,24题每题12分,其余每题10分,共66分)19.计算:(1)(-12ab )(23ab 2-2ab +43b );(2)(a +b )(a -b )+4ab 3÷4ab ;(3)(2x -y -z )(y -2x -z );(4)(2x +y )(2x -y )+(x +y )2-2(2x 2-xy ).20.【教材P 34复习题T 8变式】用简便方法计算:(1)102×98;(2)112×92.21.先化简,再求值:(1)(x +y )(x -y )-(4x 3y -8xy 3)÷2xy ,其中x =-1,y =1;(2)(x -1)2-x (x -3)+(x +2)(x -2),其中x 2+x -5=0.22.有这样一道题:计算⎣⎢⎡⎦⎥⎤3x (2xy +1)-26x 2y 2÷2y +⎝ ⎛⎭⎪⎫72xy 2·47y -1÷3x 的值,其中x =2 022,y=-2 023,甲同学把x=2 022,y=-2 023错抄成x=2 002,y=-2 013,但他的计算结果也是正确的.请你解释一下这是为什么.23.【教材P17习题T2变式】如图,一块半圆形钢板,从中挖去直径分别为x,y的两个半圆形.(1)求剩下钢板的面积;(2)当x=2,y=4时,剩下钢板的面积是多少?(π取3.14)24.【新考法题】【2022·河北】发现两个已知正整数之和与这两个正整数之差的平方和一定是偶数,且该偶数的一半也可以表示为两个正整数的平方和.验证如,(2+1)2+(2-1)2=10为偶数,请把10的一半表示为两个正整数的平方和;探究设“发现”中的两个已知正整数为m,n,请说明“发现”中的结论正确.。
人教版七年级数学下册第一章《整式的乘除》单元测试卷含答案

七年级数学下册第一章《整式的乘除》单元测试卷满分:150分题号一二三四总分得分一、选择题(本大题共15小题,共45.0分)1.下列计算正确的是()A. b3⋅b3=2b3B. (ab2)3=ab6C. (a3) 2⋅a4=a9D. (a5)2=a102.数学家赵爽公元3~4世纪在其所著的《勾股圆方图注》中记载如下构图,图中大正方形的面积等于四个全等长方形的面积加上中间小正方形的面积.若大正方形的面积为100,小正方形的面积为25,分别用x,y(x>y)表示小长方形的长和宽,则下列关系式中不正确的是A. x+y=10B. x−y=5C. xy=15D. x2−y2=503.若x2+(m−3)x+16是完全平方式,则m=()A. 11或−7B. 13或−7C. 11或−5D. 13或−54.计算(2a2b)2÷(ab)2的结果是()A. 4a3B. 4abC. a3D. 4a25.若x+y=7,xy=10,则x2−xy+y2的值为()A. 30B. 39C. 29D. 196.如图,对一个正方形进行了分割,通过面积恒等,能够验证下列哪个等式()A. x2−y2=(x−y)(x+y)B. (x−y)2=x2−2xy+y2C. (x+y)2=x2+2xy+y2D. (x−y)2+4xy=(x+y)27.下列计算正确的是A. a2·a3=a6B. (a2)3=a6C. (2a)3=2a3D. a10÷a2=a58.如图,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成一矩形如图,通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是()A. (a−b)(a+2b)=a2−2b2+abB. (a+b)2=a2+2ab+b2C. (a−b)2=a2−2ab+b2D. (a−b)(a+b)=a2−b29.观察下面图形,从图1到图2可用式子表示为()A. (a+b)(a−b)=a2−b2B. a2−b2=(a+b)(a−b)C. (a+b)2=a2+2ab+b2D. a2+2ab+b2=(a+b)210.下列语句中正确的是()A. (−1)−2是负数B. 任何数的零次幂都等于1C. 一个不为0的数的倒数的−p次幂(p是正整数)等于它的p次幂D. (23−8)0=111.下列四个算式: ①2a3−a3=1; ②(−xy2)⋅(−3x3y)=3x4y3; ③(x3)3⋅x=x10; ④2a2b3⋅2a2b3=4a2b3.其中正确的有()A. 1个B. 2个C. 3个D. 4个12.如果一个数等于两个连续奇数的平方差,那么我们称这个数为“幸福数”.下列数中为“幸福数”的是()A. 205B. 250C. 502D. 52013.下列运算正确的是()A. (−2ab)⋅(−3ab)3=−54a4b4B. 5x2⋅(3x3)2=15x12×10n)=102nC. (−0.1b)⋅(−10b2)3=−b7D. (3×10n)(1314.已知多项式x2+kx+36是一个完全平方式,则k=()A. 12B. 6C. 12或−12D. 6或−615.与(a−b)3[(b−a)3]2相等的是()A. (a−b)8B. −(b−a)8C. (a−b)9D. (b−a)9二、填空题(本大题共5小题,共25.0分)16.若单项式3x2y与−2x3y3的积为mx5y n,则m+n=.17.定义a※b=a(b+1),例如2※3=2×(3+1)=2×4=8.则(x−1)※x的结果为.18.计算:(1)8m÷4m=;(2)27m÷9m÷3=.19.计算:2019×1981=.20.已知31=3,32=9,33=27,34=81,35=243,36=729⋯⋯,设A=(3+1)×(32+1)×(34+1)×(38+1)×(316+1)×(332+1)×2+1,则A的个位数字是.三、计算题(本大题共2小题,共18.0分)计算:(1)(−2)8⋅(−2)5;(2)(a−b)2⋅(a−b)⋅(a−b)5;(3)x m⋅x n−2⋅(−x2n−1)21. 先化简,再求值:(2x +3y)2−(2x +y)(2x −y),其中x =13,y =−12.四、解答题(本大题共5小题,共62.0分)22. 某中学为了响应国家“发展体育运动,增强人民体质”的号召,决定建一个长方体游泳池,已知游泳池长为(4a 2+9b 2)m ,宽为(2a +3b)m ,深为(2a −3b)m ,请你计算一下这个游泳池的容积是多少⋅23. 形如|acb d |的式子叫做二阶行列式,它的运算法则用公式表示为|acb d |=ad −bc ,比如:|2513|=2×3−1×5=1.请你按照上述法则,计算|−2ab a 2b−3ab 2(−ab)|的结果.24.如图,甲长方形的两边长分别为m+1,m+7;乙长方形的两边长分别为m+2,m+4.(其中m为正整数)(1)图中的甲长方形的面积S1,乙长方形的面积S2,比较:S1S2;(填“<”“=”或“>”)(2)现有一正方形,其周长与图中的甲长方形的周长相等,试探究:该正方形的面积S与图中的甲长方形的面积S1的差(即S−S1)是一个常数,求出这个常数.25.小明想把一张长为60cm、宽为40cm的长方形硬纸片做成一个无盖的长方体盒子,于是在长方形纸片的四个角各剪去一个相同的小正方形.(1)若设小正方形的边长为x cm,求图中阴影部分的面积;(2)当x=5时,求这个盒子的体积.26.小红家有一块L型的菜地,如图所示,要把L型的菜地按图那样分成面积相等的梯形,种上不同的蔬菜,这两个梯形的上底都是a m,下底都是b m,高都是(b−a)m,请你帮小红家算一算这块菜地的面积共有多少,并求出当a=10,b=30时,L型菜地的总面积.答案1.D2.C3.C4.D5.D6.C7.B8.D9.A10.C11.B12.D13.D14.C15.C16.−217.x2−118.2m3m−119.399963920.121.解:(1)原式=−28×25=−213;(2)原式=(a−b)2+1+5=(a−b)8;(3)原式=−x m+n−2+2n−1=−x m+3n−3.22.解:(2x+3y)2−(2x+y)(2x−y)=(4x2+12xy+9y2)−(4x2−y2)=4x2+12xy+9y2−4x2+y2=12xy+10y2,当x =13,y =−12时,原式=12×13×(−12)+10×(−12)2=12.23.解:这个游泳池的容积是(16a 4−81b 4)m 3.24.解:|−2ab a 2b −3ab 2(−ab )|=−2ab ⋅(−ab )−a 2b ·(−3ab 2)=2a 2b 2+3a 3b 3.25.解:(1)>(2)图中的甲长方形的周长为2(m +7+m +1)=4m +16.所以该正方形的边长为m +4.所以S −S 1=(m +4)2−(m 2+8m +7)=9.所以这个常数为9.26.解:(1)阴影部分的面积为(4x 2−200x +2400)cm 2.(2)这个盒子的体积为7500cm 3.27.解:这块菜地的面积共有(b 2−a 2)m 2,当a =10,b =30时,L 型菜地的总面积为800m 2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
)
解方程:3x+1·2x+1=62x-3
培人家教网 /
Page 3 of 4
版权所有,转载必究,如需修改,联系本站
培人家教网制作 欢迎访问 /
12、(1)化简:(2-1)(2+1) (22+1) (24+1)…(232+1)+1 (2)请写出上式结果的个位数字。
培人家教网制作 欢迎访问 /
七年级(下)数学单元测试卷
整式的运算
班级____________ 姓名_____________ 座号_______
一、 选择题(2×4=8) 1、下列计算正确的是 ( ) 3 3 6 2 2 2 2 2 A、2a-a=2 B、x +x =x C、3m +2n=5m n D、2t +t =3t 2、下列语句中错误的是 ( ) B、单项式 a 的系数与次数都是 1 A、数字 0 也是单项式 1 2ab 2 C、 x2 y2 是二次单项式 C、- 的系数是 - 2 3 3 3、下列计算正确的是 ( ) 5 5 25 2 3 6 2 3 6 2 3 A、(-a ) =-a B、(4x ) =4x C、y ·y -y =0 D、(ab c) =ab2c3 4、 x+5)(x-3)等于 ( ( ) A、x2 -15 B、x2 + 15 C、x2 + 2x -15 D、 x2 - 2x - 15 二、 填空题(3×7=21) 1、代数式 4xy3 是__项式,次数是__ 4 1 2、代数式 a 3 x − a 2 x 3 + x 是__项式,次数是__ 5 5 2 2 2 3、(2x y+3xy )-(6x y-3xy2)=________________
4、 (a − b) 3 ⋅ (a − b) 4 =__________________ 5、(3x+7y)·(3x-7y)=________________ 6、(x+2)2-(x+1)(x-1)=______________ 7、在括号里填入适当的代数式:2-[2(x+3y)-3(
)]=x+2
三、 解答题(6×10+5+6=71) , 1、把一张边长为 4a 的正方形纸板的四个角分别剪一个边长为 a 正方形(如图) 使得可以做成一个无盖的长方体,求剪完后所得图形的总面积
a 3a
a
1 2、 x 2 y − 2 xy + y 2 ⋅ 3 xy 2
培人家教网 / Page 1 of 4
3、 (3a+2b) -b
2
2
版权所有,转载必究,如需修改,联系本站
培人家教网制作 欢迎访问 /
版权所有,转载必究,如需修改,联系本站
培人家教网制作 欢迎访问 /
9、(3mn+1)(3mn-1)-8m n
2 2
10、(2x ) -6x (x +2x +x)
2 3
3
3
2
11、在括号内填上适当的数;
53×63=30(
)
5n×6n=30(
)
;若 105=10n,则 n=(
4、用完全平方公式计算 20012
5、用平方差公式计算 2004×1996
6、(3x+9)(6x+8)
7、(a-b+2)(a-b-2)
3 3 8、 a + b − a − b + 5 5
培人家教网 /
Page 2 of 4
更多试卷下载请访问: 更多试卷下载请访问:/
Hale Waihona Puke 培人家教网 /Page 4 of 4
版权所有,转载必究,如需修改,联系本站