(通用版)2019年中考数学总复习 题型集训(17)—函数实际应用题(A.图象类)课件

合集下载

中考数学专题复习--函数--应用题(有答案)

中考数学专题复习--函数--应用题(有答案)

专题复习函数应用题类型之一与函数有关的最优化问题函数是一描述现实世界变量之间关系的重要数学模型,在人们的生产、生活中有着广泛的应用,利用函数的解析式、图象、性质求最大利润、最大面积的例子就是它在最优化问题中的应用.1.(莆田市)枇杷是莆田名果之一,某果园有100棵枇杷树。

每棵平均产量为40千克,现准备多种一些枇杷树以提高产量,但是如果多种树,那么树与树之间的距离和每一棵数接受的阳光就会减少,根据实践经验,每多种一棵树,投产后果园中所有的枇杷树平均每棵就会减少产量0.25千克,问:增种多少棵枇杷树,投产后可以使果园枇杷的总产量最多?最多总产量是多少千克?2.(贵阳市)某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.设每个房间每天的定价增加x元.求:(1)房间每天的入住量y(间)关于x(元)的函数关系式.(2)该宾馆每天的房间收费z(元)关于x(元)的函数关系式.(3)该宾馆客房部每天的利润w(元)关于x(元)的函数关系式;当每个房间的定价为每天多少元时,w有最大值?最大值是多少?例3:某商场经营某种品牌的服装,进价为每件60元,根据市场调查发现,在一段时间内,销售单价是100元时,销售量是200件,而销售单价每降低1元,就可多售出10件(1)写出销售该品牌服装获得的利润y(元)与销售单价x(元)之间的函数关系式。

(2)若服装厂规定该品牌服装销售单价不低于80元,且商场要完成不少于350件的销售任务,则商场销售该品牌服装获得最大利润是多少元?3(2014江苏省常州市)某小商场以每件20元的价格购进一种服装,先试销一周,试销期间每天的销量(件)与每件的销售价x(元/件)如下表所示:假定试销中每天的销售号(件)与销售价x(元/件)之间满足一次函数.(1)试求与x之间的函数关系式;(2)在商品不积压且不考虑其它因素的条件下,每件服装的销售定价为多少时,该小商场销售这种服装每天获得的毛利润最大?每天的最大毛利润是多少?(注:每件服装销售的毛利润=每件服装的销售价-每件服装的进货价)类型之二 图表信息题本类问题是指通过图形、图象、表格及一定的文字说明来提供实际情境的一类应用题,解题时要通过观察、比较、分析,从中提取相关信息,建立数学模型,最终达到解决问题的目的。

九年级数学中考专项复习——函数图像与实际问题应用题(附答案)

九年级数学中考专项复习——函数图像与实际问题应用题(附答案)

中考专项复习——函数与实际问题1. 甲、乙两车从A 城出发前往B 城.在整个行程中,甲车离开A 城的距离1km y 与甲车离开A 城的时间 h x 的对应关系如图所示.乙车比甲车晚出发1h 2,以60 km/h 的速度匀速行驶.(Ⅰ)填空:① A ,B 两城相距km② 当02x ≤≤时,甲车的速度为 km/h ③ 乙车比甲车晚 h 到达B 城 ④ 甲车出发4h 时,距离A 城km⑤ 甲、乙两车在行程中相遇时,甲车离开A 城的时间为 h(Ⅱ)当2053x ≤≤时,请直接写出1y 关于x 的函数解析式.(Ⅲ)当1352x ≤≤时,两车所在位置的距离最多相差多少km ?y 1/ km 53232. 已知聪聪家、体育场、文具店在同一直线上,下面的图象反映的过程是:聪聪从家跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家.图中x 表示过程中聪聪离开家的时间,y 表示聪聪离家的距离.请根据相关信息,解答下列问题: (Ⅰ)填表:离开家的时间/min 6 10 20 46 离家的距离/km12.5(Ⅱ)填空:① 聪聪家到体育场的距离为______km② 聪聪从体育场到文具店的速度为______km/min ③ 聪聪从文具店散步回家的速度为______ km/min④ 当聪聪离家的距离为2 km 时,他离开家的时间为______min (Ⅲ)当10045≤≤x 时,请直接写出y 关于x 的函数解析式.3.同一种品牌的空调在甲、乙两个电器店的标价均是每台3000元.现甲、乙两个电器店优惠促销,甲电器店的优惠方案:如果一次购买台数不超过5台时,价格为每台3000元,如果一次购买台数超过5台时,超过部分按六折销售;乙电器店的优惠方案:全部按八折销售.设某校在同一家电器店一次购买空调的数量为x (x 为正整数). (Ⅰ)根据题意,填写下表: 一次购买台数(台) 2 6 15 … 甲电器店收费(元) 6000 … 乙电器店收费(元)4800…(Ⅱ)设在甲电器店购买收费y 1元,在乙电器店购买收费y 2元,分别写出y 1、y 2关于x 的函数关系式; (Ⅲ)当x > 6时,该校在哪家电器店购买更合算?并说明理由.4.已知小明的家、体育场、文化宫在同一直线上. 下面的图象反映的过程是:小明早上从家跑步去体育场,在那里锻炼了一阵后又走到文化宫去看书画展览,然后散步回家.图中x 表示时间(单位是分钟)y 表示到小明家的距离(单位是千米).请根据相关信息,解答下列问题: (Ⅰ)填表:小明离开家的时间/min 5 10 15 30 45 小明离家的距离/km131(Ⅱ)填空:(i )小明在文化宫停留了_____________min(ii )小明从家到体育场的速度为_______________km /min (iii )小明从文化宫回家的平均速度为_______________km /min(iv )当小明距家的距离为0.6km 时,他离开家的时间为_________________min (Ⅲ)当0≤x ≤45时,请直接写出y 关于x 的函数解析式.5.共享电动车是一种新理念下的交通工具:主要面向的出行市场,现有A 两种品牌的共享电动车,给出的图象反映了收费元与骑行时间min 之间的对应关系,其中品牌收费方式对应,品牌的收费方式对应. 请根据相关信息,解答下列问题:(Ⅰ)填表:骑行时间/min 10 20 25 A 品牌收费/元 8 B 品牌收费/元8(Ⅱ)填空:①B 品牌10分钟后,每分钟收费 元;②如果小明每天早上需要骑行A 品牌或B 品牌的共享电动车去工厂上班,已知两种品牌共享电动车的平均行驶速度均为,小明家到工厂的距离为,那么小明选择 品牌共享电动车更省钱;③直接写出两种品牌共享电动车收费相差3元时的值是 . (Ⅲ)直接写出,关于的函数解析式.3~10km B y x A 1y B 2y 300m /min 9km x 1y 2y x y /元O 10 20 x /min8 66. 小明的父亲在批发市场按每千克1.5元批发了若干千克的西瓜进城出售,为了方便他带了一些零钱备用.他先按市场价售出一些后,又降价出售.售出西瓜千克数x 与他手中持有的钱数y 元(含备用零钱)的关系如图所示,请根据相关信息,解答下列问题:(Ⅰ)填表:售出西瓜x /kg 0 10 20 30 40 80手中持有的钱数y /元 50______120155190 ______(Ⅱ)填空:①降价前他每千克西瓜出售的价格是________元②随后他按每千克下降1元将剩余的西瓜售完,这时他手中的钱(含备用的钱)是450 元, 他一共批发了_________千克的西瓜 (Ⅲ)当0≤x ≤80 时求y 与x 的函数关系式.7. 工厂某车间需加工一批零件,甲组工人加工中因故停产检修机器一次,然后以原来的工作效率继续加工,由于时间紧任务重,乙组工人也加入共同加工零件.设甲组加工时间为t (时),甲组加工零件的数量为 y 甲(个),乙组加工零件的数量为 y 乙(个),其函数图象如图所示. (I )根据图象信息填表:(Ⅱ)填空:①甲组工人每小时加工零件 个 ②乙组工人每小时加工零件 个③甲组加工 小时的时候,甲、乙两组加工零件的总数为480个 (Ⅲ)分别求出 y 甲、y 乙与t 之间的函数关系式.加工时间t (时) 3 4 8 甲组加工零件的数量(个)a =8. 4月23日是“世界读书日”,甲、乙两个书店在这一天举行了购书优惠活动.在甲书店所有书籍按标价总额的折出售.在乙书店一次购书的标价总额不超过元的按标价总额计费,超过元后的部分打折.设在同一家书店一次购书的标价总额为(单位:元,). (Ⅰ)根据题意,填写下表:一次购书的标价总额/元… 在甲书店应支付金额/元 … 在乙书店应支付金额/元…(Ⅱ)设在甲书店应支付金额元,在乙书店应支付金额元,分别写出、关于的函数关系式; (Ⅲ)根据题意填空:① 若在甲书店和在乙书店一次购书的标价总额相同,且应支付的金额相同,则在同一个书店一次购书的标价总额 元;② 若在同一个书店一次购书应支付金额为元,则在甲、乙两个书店中的 书店购书的标价总额多; ③ 若在同一个书店一次购书的标价总额元,则在甲、乙两个书店中的 书店购书应支付的金额少.9. 在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境. 已知小明家、体育场、文具店依次在同一条直线上. 体育场离家,文具店离家.周末小明从家出发,匀速跑步到体育场;在体育场锻炼后,匀速走了到文具店;在文具店停留买笔后,匀速走了返回家.给出的图象反映了这个过程中小明离开家的距离与离开家的时间之间的对应关系.请根据相关信息,解答下列问题: (I )填表:离开家的时间/min离开家的距离/ km(II )填空:① 体育场到文具店的距离为______ ② 小明从家到体育场的速度为______ ③ 小明从文具店返回家的速度为______④ 当小明离家的距离为时,他离开家的时间为______ (III )当时,请直接写出关于的函数解析式.81001006x 0x 501503*********y 2y 1y 2y x 2801203km 1.5km 15min 15min 15min 20min 30min km y min x 6122050701.23km km /min km /min 0.6km min 045x ≤≤y x10. 一个有进水管与出水管的容器,从某时刻开始4分钟内只进水不出水,在随后的8分钟内既进水又出水,12分钟后关闭进水管,放空容器中的水,每分钟的进水量和出水量是两个常数.容器内水量y (单位:L )与时间x (单位:min )之间的关系如图所示.请根据相关信息,解答下列问题: (Ⅰ)填表:(Ⅱ)填空:①每分钟进水______升,每分钟出水______升 ②容器中储水量不低于15升的时长是_________分钟 (Ⅲ)当0≤x ≤12时,请直接写出y 关于x 的函数解析式.11. 明明的家与书店、学校依次在同一直线上,明明骑自行车从家出发去学校上学,当他骑了一段路时,想起要买某本书,于是又返回到刚经过的书店,买到书后继续去学校.下面图象反映了明明本次上学离家距离y (单位:m )与所用时间x (单位:min )之间的对应关系.请根据相关信息,解决下列问题: (Ⅰ)填表:(Ⅱ)填空:①明明家与书店的距离是 m②明明在书店停留的时间是min③明明与家距离900m 时,明明离开家的时间是 min(Ⅲ)当6≤t 14≤时,请直接写出y 与x 的函数关系式. 时间/min23412容器内水量/L1020离开家的时间/min25811离家的距离/m400 60012. 甲,乙两车从A 城出发前往B 城.在整个行程中,甲乙两车都以匀速行驶,汽车离开A 城的距离ykm 与时刻t 的对应关系如下图所示.请根据相关信息,解答下列问题:(I )填表:(II )填空:①A ,B 两城的距离为 km②甲车的速度为 km/h 乙车的速度为 km/h ③乙车追上甲车用了 h 此时两车离开A 城的距离是 km ④当9:00时,甲乙两车相距 km⑤ 当甲车离开A 城120km 时甲车行驶了 h ⑥ 当乙车出发行驶 h 时甲乙两车相距20km13.大部分国家都使用摄氏温度,但美国、英国等国家的天气预报仍然使用华氏温度.两种计量之间有如下对应:(Ⅰ)如果两种计量之间的关系是一次函数,设摄氏温度为x ( °C )时对应的华氏温度为y ( °F ),请你写出华氏温度关于摄氏温度的函数表达式;(Ⅱ)求当华氏温度为0°F 时,摄氏温度是多少°C ?(Ⅲ)华氏温度的值与对应的摄氏温度的值有可能相等吗?若可能求出此值;若不可能请说明理由 .从A 城出发的时刻 到达B 城的时刻甲 5:00 乙9:00摄氏温度/°C 0 10 20 30 40 华氏温度/°F32506886104参考答案1. 解:(Ⅰ)①360 ②60 ③56④6803⑤52或196(Ⅱ)当0≤x ≤2时 160y x =当2223x <≤时 1120y =当222533x <≤时 1280803y x =-(Ⅲ)当1352x ≤≤时由题意,可知甲车在乙车前面,设两车所在位置的距离相差y km则2801908060302033y x x x =---=-()() ∵ 200>∴ y 随x 的增大而增大 ∴ 当5x =时y 取得最大值1103答:两车所在位置的距离最多相差1103km2.解:(Ⅰ) 1.5(Ⅱ)①2.5 ②③ ④12或 (Ⅲ)当时当时3. 解:(Ⅰ)16800 33000 14400 36000(Ⅱ)当0<≤5时当>5时,即;=⎩⎪⎨⎪⎧3000x (0<x ≤5且x 为正整数),1800x +6000(x >5且x 为正整数).(x >0且x 为正整数)531153702756545≤≤x 5.1=y 10065≤<x 730703+-=x y x 13000y x x 1300053000605y x%()118006000y x1y 23000802400y x x %(Ⅲ)设与的总费用的差为元. 则 即. 当时 即 解得.∴当时 选择甲乙两家电器店购买均可 ∵<0∴随的增大而减小∴当6<x <10时1y >2y 在乙家电器店购买更合算 当x >10时<在甲家电器店购买更合算4. 解:(Ⅰ)1 0.5(Ⅱ)填空:(i ) 25 (ii )(iii ) (iv )9或42(ii ) (Ⅲ)y =⎩⎪⎨⎪⎧x (0≤x ≤15),1(15<x ≤30), x +2(30<x ≤ 45).5.解:(Ⅰ)(Ⅱ)①0.2 ②B ③152或35 (Ⅲ)10.4 (0)y x x =≥ 26 0100.24 10x y x x ⎧=⎨+⎩,≤≤.,,>6. 解:(Ⅰ)85 330(Ⅱ)3.5 128(Ⅲ)设y 与x 的函数关系式是)0(≠+=k b kx y ∵图象过),(500和)(330,80∴⎩⎨⎧+==b k b8033050 1y 2y y 180060002400y x x 6006000y x 0y60060000x10x10x 600y x 1y 2y 23115160115130-解得⎩⎨⎧==505.3b k ∴y 与x 的函数关系式为505.3+=x y )800(≤≤x7. (Ⅰ)(II ) ① 40 ② 120 ③ 7 (III ) (1)当时 当时当时∵图象经过(4 120)则 解得:∴ 当时∴(2)设 把 分别代入得解得 ∴与时间t 之间的函数关系式为:8. 解:(Ⅰ)40 240 50 220 (Ⅱ)10.8y x =(0x >) 当0100x <≤时 2y x =当100x >时 21000.6100y x =+⨯-() 即20.640y x =+ (Ⅲ)① 200 ② 乙 ③ 甲03t t y 40=甲43≤t <120=甲y 84≤t <140b t y +=甲1440120b +⨯=401-=b 84≤t <4040-=t y 甲⎪⎩⎪⎨⎧≤-≤≤≤=)84(404043(120)3040t t t t t y <)<(甲2b kt y +=乙(5,0)(8,360)⎩⎨⎧+=+=22836050b k b k ⎩⎨⎧-==6001202b k y 乙)乙85(600120≤≤-=t t y9. 解:(Ⅰ)2.4 1.5 1.25(Ⅱ)①1.5 ②0.2 ③0.05 ④3或83(Ⅲ)当015≤≤x 时 0.2=y x当1530<≤x 时 3=y当3045<≤x 时 0.16=-+y x10. (Ⅰ)填表:(Ⅱ)①5 3.75 ②13(Ⅲ)当04x ≤<时5y x =当412x <≤时5154y x =+11. 解:(Ⅰ)1000 600(Ⅱ)①600 ②4 ③4.5或7或338 (Ⅲ)300300068600812450480014x x y x x x -+≤≤⎧⎪=≤⎨⎪-≤⎩()(<)(12<) 12. 解:(I )甲 10:00 乙 6:00(II )①300 ②60 100 ③1.5 150④60 ⑤2 ⑥ 1或213. 解:(Ⅰ)过程略 ∴华氏温度关于摄氏温度的函数表达式为1832y .x (Ⅱ)令0=y 则0328.1=+x 解得9160-=x ∴当华氏温度为0 °F 时摄氏温度是1609°C (Ⅲ)令x y =则x x =+328.1解得40-=x答:当华氏温度为- 40 °F 时,摄氏温度为-40°C 时,华氏温度的值与对应的摄氏温度的值相等. 时间/min 2 3 4 12 容器内水量/L 10 15 20 30。

中考应用题--函数类应用题(19年真题干货)

中考应用题--函数类应用题(19年真题干货)

函数应用题的分类一次函数【2019天水】天水某景区商店销售一种纪念品,这种商品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种商品的销售价不高于16元/件,市场调查发现,该商品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?【2019安顺】安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y(千元)与每千元降价x(元)(0<x <20)之间满足一次函数关系,其图象如图所示:(1)求y与x之间的函数关系式;(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?【2019齐齐哈尔】甲、乙两地间的直线公路长为400千米。

一辆轿车和一辆货车分别沿该公路从甲、乙两地以各自的速度匀速相向而行,货车比轿车早出发1小时,途中轿车出现了故障,停下维修,货车仍继续行驶,1小时后轿车故障被排除,此时接到通知,轿车立刻掉头按原路原速返回甲地(接到通知及掉头时间不计),最后两车同时到达甲地。

已知两车距各自出发地的距离y(千米)与轿车所用的时间x(小时)的关系如图所示,请结合图象解答下列问题:(1)货车的速度是千米/小时;轿车的速度是千米/小时;t值为;(2)求轿车距其出发地的距离y(千米)与所用时间x(小时)之间的函数关系式,并写出自变量x的取值范围;(3)请直接写出货车出发多长时间两车相距90千米。

【2019绥化】甲、乙两台机器共同加工一批零件,一共用了6小肘.在加工辻程中乙机器因故陣停止工作,排除故障后,乙机器提高了工作效率且保持不变,继续加工.甲机器在加工过程中工作效率保持不变.甲、乙两台机器加工零件的总数y(个)与甲加工时同, x (h之同的函数困象内折线OH-AB-BC,如图所示。

中考应用题--函数类应用题(19年真题干货)

中考应用题--函数类应用题(19年真题干货)

函数应用题的分类一次函数【2019天水】天水某景区商店销售一种纪念品,这种商品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种商品的销售价不高于16元/件,市场调查发现,该商品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?【2019安顺】安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y(千元)与每千元降价x(元)(0<x <20)之间满足一次函数关系,其图象如图所示:(1)求y与x之间的函数关系式;(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?【2019齐齐哈尔】甲、乙两地间的直线公路长为400千米。

一辆轿车和一辆货车分别沿该公路从甲、乙两地以各自的速度匀速相向而行,货车比轿车早出发1小时,途中轿车出现了故障,停下维修,货车仍继续行驶,1小时后轿车故障被排除,此时接到通知,轿车立刻掉头按原路原速返回甲地(接到通知及掉头时间不计),最后两车同时到达甲地。

已知两车距各自出发地的距离y(千米)与轿车所用的时间x(小时)的关系如图所示,请结合图象解答下列问题:(1)货车的速度是千米/小时;轿车的速度是千米/小时;t值为;(2)求轿车距其出发地的距离y(千米)与所用时间x(小时)之间的函数关系式,并写出自变量x的取值范围;(3)请直接写出货车出发多长时间两车相距90千米。

【2019绥化】甲、乙两台机器共同加工一批零件,一共用了6小肘.在加工辻程中乙机器因故陣停止工作,排除故障后,乙机器提高了工作效率且保持不变,继续加工.甲机器在加工过程中工作效率保持不变.甲、乙两台机器加工零件的总数y(个)与甲加工时同, x (h之同的函数困象内折线OH-AB-BC,如图所示。

中考数学函数实际应用综合题(解析版)

中考数学函数实际应用综合题(解析版)

专题03 函数实际应用综合题1.(2019•常德中考)某生态体验园推出了甲、乙两种消费卡,设入园次数为x时所需费用为y元,选择这两种卡消费时,y与x的函数关系如图所示,解答下列问题:(1)分别求出选择这两种卡消费时,y关于x的函数表达式;(2)请根据入园次数确定选择哪种卡消费比较合算.【解析】(1)设y甲=k1x,根据题意得5k1=100,解得k1=20,∴y甲=20x;设y乙=k2x+100,根据题意得:20k2+100=300,解得k2=10,∴y乙=10x+100.(2)①y甲<y乙,即20x<10x+100,解得x<10,当入园次数小于10次时,选择甲消费卡比较合算;②y甲=y乙,即20x=10x+100,解得x=10,当入园次数等于10次时,选择两种消费卡费用一样;③y甲>y乙,即20x>10x+100,解得x>10,当入园次数大于10次时,选择乙消费卡比较合算.2.(2019•山西中考)某游泳馆推出了两种收费方式.方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30元.方式二:顾客不购买会员卡,每次游泳付费40元.设小亮在一年内来此游泳馆的次数为x次,选择方式一的总费用为y1(元),选择方式二的总费用为y2(元).(1)请分别写出y1,y2与x之间的函数表达式.(2)小亮一年内在此游泳馆游泳的次数x在什么范围时,选择方式一比方式二省钱.【解析】(1)当游泳次数为x时,方式一费用为:y1=30x+200,方式二的费用为:y2=40x.(2)由y1<y2得:30x+200<40x,解得x>20时,当x>20时,选择方式一比方式二省钱.3.(2019•台州中考)如图1,某商场在一楼到二楼之间设有上、下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,乙走步行楼梯,甲离一楼地面的高度h (单位:m )与下行时间x (单位:s )之间具有函数关系3610h x =-+,乙离一楼地面的高度y (单位:m )与下行时间x (单位:s )的函数关系如图2所示. (1)求y 关于x 的函数解析式;(2)请通过计算说明甲、乙两人谁先到达一楼地面.【解析】(1)设y 关于x 的函数解析式是y kx b =+,6153b k b =⎧⎨+=⎩,解得,156k b ⎧=-⎪⎨⎪=⎩, 即y 关于x 的函数解析式是165y x =-+. (2)当0h =时,30610x =-+,得20x ,当0y =时,1065x =-+,得30x =, ∵2030<, ∴甲先到达地面.4.(2019•天门中考)某农贸公司销售一批玉米种子,若一次购买不超过5千克,则种子价格为20元/千克,若一次购买超过5千克,则超过5千克部分的种子价格打8折.设一次购买量为x 千克,付款金额为y 元.(1)求y 关于x 的函数解析式;(2)某农户一次购买玉米种子30千克,需付款多少元? 【解析】(1)根据题意,得①当0≤x ≤5时,y =20x ; ②当x >5,y =20×0.8(x -5)+20×5=16x +20. (2)把x =30代入y =16x +20,∴y =16×30+20=500; ∴一次购买玉米种子30千克,需付款500元.5.(2019•天津中考)甲、乙两个批发店销售同一种苹果.在甲批发店,不论一次购买数量是多少,价格均为6元/kg .在乙批发店,一次购买数量不超过元50 kg 时,价格为7元/kg ;一次购买数量超过50kg 时,其中有50kg 的价格仍为7元/kg ,超出50 kg 部分的价格为5元/kg .设小王在同一个批发店一次购买苹果的数量为 kg x (0)x >.(1)根据题意填表:(2)设在甲批发店花费1y 元,在乙批发店花费2y 元,分别求1y ,2y 关于x 的函数解析式; (3)根据题意填空:①若小王在甲批发店和在乙批发店一次购买苹果的数量相同,且花费相同,则他在同一个批发店一次购买苹果的数量为__________kg ;②若小王在同一个批发店一次购买苹果的数量为120 kg ,则他在甲、乙两个批发店中的__________批发店购买花费少;③若小王在同一个批发店一次购买苹果花费了360元,则他在甲、乙两个批发店中的__________批发店购买数量多.【解析】(1)当x =30时,1306180y =⨯=,2307210y =⨯=,当x =150时,11506900y =⨯=,2507515050850y =⨯+-=(), 故答案为:180,900,210,850. (2)16y x =(0)x >. 当050x <≤时,27y x =;当50x >时,27505(50)y x =⨯+-,即25100y x =+. (3)①∵0x >∴6x 7x ≠, ∴当21y y =时,即6x =5x +100,∴x =100, 故答案为:100. ②∵x =12050>,∴16120720y =⨯=;25120100=700y =⨯+, ∴乙批发店购买花费少, 故答案为:乙.③∵当x =50时乙批发店的花费是:350360<, ∵一次购买苹果花费了360元,∴x >50, ∴当1360y =时,6x =360,∴x =60, ∴当2360y =时,5x +100=360,∴x =52, ∴甲批发店购买数量多. 故答案为:甲.6.(2019•湖州中考)某校的甲、乙两位老师同住一小区,该小区与学校相距2400米.甲从小区步行去学校,出发10分钟后乙再出发,乙从小区先骑公共自行车,途经学校义骑行若干米到达还车点后,立即步行走回学校.已知甲步行的速度比乙步行的速度每分钟快5米.设甲步行的时间为x (分),图1中线段OA 和折线B C D --分别表示甲、乙离开小区的路程y (米)与甲步行时间x (分)的函数关系的图象;图2表示甲、乙两人之间的距离s (米)与甲步行时间x (分)的函数关系的图象(不完整).根据图1和图2中所给信息,解答下列问题:(1)求甲步行的速度和乙出发时甲离开小区的路程;(2)求乙骑自行车的速度和乙到达还车点时甲、乙两人之间的距离;(3)在图2中,画出当2530x ≤≤时s 关于x 的函数的大致图象.(温馨提示:请画在答题卷相对应的图上)【解析】(1)由题意,得:甲步行的速度是24003080÷=(米/分), ∴乙出发时甲离开小区的路程是8010800⨯=(米).(2)设直线OA 的解析式为:(0)y kx k =≠, ∵直线OA 过点()30,2400A , ∴302400k =, 解得80k =,∴直线OA 的解析式为:80y x =, ∴当18x =时,80181440y =⨯=,∴乙骑自行车的速度是()14401810180÷-=(米/分). ∵乙骑自行车的时间为251015-=(分), ∴乙骑自行车的路程为180152700⨯=(米).当25x =时,甲走过的路程是8080252000y x ==⨯=(米),∴乙到达还车点时,甲、乙两人之间的距离是27002000700-=(米). (3)乙步行的速度为:80-5=75(米/分),乙到达学校用的时间为:25+(2700-2400)÷75=29(分), 当25≤x ≤30时s 关于x 的函数的大致图象如图所示.7.2019•河南中考)学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A 奖品和2个B 奖品共需120元;购买5个A 奖品和4个B 奖品共需210元. (1)求A ,B 两种奖品的单价;(2)学校准备购买A ,B 两种奖品共30个,且A 奖品的数量不少于B 奖品数量的13.请设计出最省钱的购买方案,并说明理由.【解析】(1)设A 的单价为x 元,B 的单价为y 元,根据题意,得3212054210x y x y +=⎧⎨+=⎩,∴3015x y =⎧⎨=⎩,∴A 的单价30元,B 的单价15元;(2)设购买A 奖品z 个,则购买B 奖品为(30-z )个,购买奖品的花费为W 元, 由题意可知,z ≥13(30-z ), ∴z ≥152, W =30z +15(30-z )=450+15z , ∵15>0,W 随z 的减小而减小 ∴当z =8时,W 有最小值为570元,即购买A 奖品8个,购买B 奖品22个,花费最少.8.(2019•宿迁中考)超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件.设销售单价增加x 元,每天售出y 件.(1)请写出y 与x 之间的函数表达式;(2)当x 为多少时,超市每天销售这种玩具可获利润2250元?(3)设超市每天销售这种玩具可获利w 元,当x 为多少时w 最大,最大值是多少? 【解析】(1)根据题意得,1502y x =-+. (2)根据题意得,()140(50)22502x x +-+=, 解得:150x =,210x =, ∵每件利润不能超过60元, ∴10x =,答:当x 为10时,超市每天销售这种玩具可获利润2250元. (3)根据题意得,()21140(50)30200022w x x x x =+-+=-++()213024502x =--+, ∵102a =-<, ∴当30x <时,w 随x 的增大而增大,∴当20x时,2400w =增大,答:当x 为20时w 最大,最大值是2400元.9.(2019•潍坊中考)扶贫工作小组对果农进行精准扶贫,帮助果农将一种有机生态水果拓宽了市场.与去年相比,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了1元,批发销售总额比去年增加了20%.(1)已知去年这种水果批发销售总额为10万元,求这种水果今年每千克的平均批发价是多少元? (2)某水果店从果农处直接批发,专营这种水果.调查发现,若每千克的平均销售价为41元,则每天可售出300千克;若每千克的平均销售价每降低3元,每天可多卖出180千克,设水果店一天的利润为w 元,当每千克的平均销售价为多少元时,该水果店一天的利润最大,最大利润是多少?(利润计算时,其它费用忽略不计)【解析】(1)由题意,设这种水果今年每千克的平均批发价是x 元,则去年的批发价为()1x +元, 今年的批发销售总额为()10120%12-=万元, ∴12000010000010001x x -=+, 整理得2191200x x --=,解得24x =或5x =-(不合题意,舍去), 故这种水果今年每千克的平均批发价是24元. (2)设每千克的平均售价为m 元,依题意 由(1)知平均批发价为24元,则有()4124(180300)3mw m -=-⨯+260420066240m m =-+-, 整理得()260357260w m =--+, ∵600a =-<, ∴抛物线开口向下,∴当35m =元时,w 取最大值,即每千克的平均销售价为35元时,该水果店一天的利润最大,最大利润是7260元.10.(2019•南充中考)在“我为祖国点赞”征文活动中,学校计划对获得一、二等奖的学生分别奖励一支钢笔,一本笔记本.已知购买2支钢笔和3个笔记本共38元,购买4支钢笔和5个笔记本共70元. (1)钢笔、笔记本的单价分别为多少元?(2)经与商家协商,购买钢笔超过30支时,每增加一支,单价降低0.1元;超过50支,均按购买50支的单价销售,笔记本一律按原价销售,学校计划奖励一、二等奖学生共计100人,其中一等奖的人数不少于30人,且不超过60人,这次奖励一等学生多少人时,购买奖品金额最少,最少为多少元? 【解析】(1)设钢笔、笔记本的单价分别为x 、y 元,根据题意可得23384570x y x y +=⎧⎨+=⎩, 解得:106x y =⎧⎨=⎩. 答:钢笔、笔记本的单价分别为10元,6元.(2)设钢笔单价为a 元,购买数量为b 支,支付钢笔和笔记本总金额为W 元, ①当30≤b ≤50时,100.1(30)0.113a b b =--=-+,w =b (-0.1b +13)+6(100-b )20.17600b b =-++20.1(35)722.5b =--+, ∵当30b =时,W =720,当b =50时,W =700, ∴当30≤b ≤50时,700≤W ≤722.5. ②当50<b ≤60时, a =8,86(100)2600W b b b =+-=+,∵700720W <≤,∴当30≤b ≤60时,W 的最小值为700元,∴当一等奖人数为50时花费最少,最少为700元.11.(2019•梧州中考)我市某超市销售一种文具,进价为5元/件.售价为6元/件时,当天的销售量为100件.在销售过程中发现:售价每上涨0.5元,当天的销售量就减少5件.设当天销售单价统一为x 元/件(x ≥6,且x 是按0.5元的倍数上涨),当天销售利润为y 元. (1)求y 与x 的函数关系式(不要求写出自变量的取值范围); (2)要使当天销售利润不低于240元,求当天销售单价所在的范围;(3)若每件文具的利润不超过80%,要想当天获得利润最大,每件文具售价为多少元?并求出最大利润.【解析】(1)由题意,y =(x -5)(100-60.5x -×5)=-10x 2+210x -800,故y与x的函数关系式为:y=-10x2+210x-800.(2)要使当天利润不低于240元,则y≥240,∴y=-10x2+210x-800=-10(x-10.5)2+302.5=240,解得,x1=8,x2=13,∵-10<0,抛物线的开口向下,∴当天销售单价所在的范围为8≤x≤13.(3)∵每件文具利润不超过80%,∴50.8xx-≤,得x≤9,∴文具的销售单价为6≤x≤9,由(1)得y=-10x2+210x-800=-10(x-10.5)2+302.5,∵对称轴为x=10.5,∴6≤x≤9在对称轴的左侧,且y随着x的增大而增大,∴当x=9时,取得最大值,此时y=-10(9-10.5)2+302.5=280,即每件文具售价为9元时,最大利润为280元.12.(2019•云南中考)某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(元/千克)的函数关系如图所示:(1)求y与x的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润W的最大值.【解析】(1)当6≤x≤10时,设y与x的关系式为y=kx+b(k≠0),根据题意得1000620010k bk b=+⎧⎨=+⎩,解得2002200kb=-⎧⎨=⎩,∴y=-200x+1200,当10<x≤12时,y=200,故y 与x 的函数解析式为:y =2002200(610)200(1012)x x x -+≤≤⎧⎨<≤⎩.(2)由已知得:W =(x -6)y , 当6≤x ≤10时,W =(x -6)(-200x +1200)=-200(x -172)2+1250, ∵-200<0,抛物线的开口向下, ∴x =172时,取最大值, ∴W =1250,当10<x ≤12时,W =(x -6)•200=200x -1200, ∵y 随x 的增大而增大,∴x =12时取得最大值,W =200×12-1200=1200, 综上所述,当销售价格为8.5元时,取得最大利润,最大利润为1250元.13.(2019•成都中考)随着5G 技术的发展,人们对各类5G 产品的使用充满期待,某公司计划在某地区销售一款5G 产品,根据市场分析,该产品的销售价格将随销售周期的变化而变化.设该产品在第x (x 为正整数)个销售周期每台的销售价格为y 元,y 与x 之间满足如图所示的一次函数关系. (1)求y 与x 之间的关系式;(2)设该产品在第x 个销售周期的销售数量为p (万台),p 与x 的关系可以用p =12x +12来描述.根据以上信息,试问:哪个销售周期的销售收入最大?此时该产品每台的销售价格是多少元?【解析】(1)设函数的解析式为:y =kx +b (k ≠0),由图象可得,700055000k b k b +=⎧⎨+=⎩,解得5007500kb=-⎧⎨=⎩,∴y与x之间的关系式:y=-500x+7500.(2)设销售收入为w万元,根据题意得,w=yp=(-500x+7500)(12x+12),即w=-250(x-7)2+16000,∴当x=7时,w有最大值为16000,此时y=-500×7+7500=4000(元).答:第7个销售周期的销售收入最大,此时该产品每台的销售价格是4000元.14.(2019•武汉中考)某商店销售一种商品,童威经市场调查发现:该商品的周销售量y(件)是售价x (元/件)的一次函数,其售价、周销售量、周销售利润w(元)的三组对应值如表:售价x(元/件)50 60 80周销售量y(件)100 80 40周销售利润w(元)1000 1600 1600 注:周销售利润=周销售量×(售价-进价)(1)①求y关于x的函数解析式(不要求写出自变量的取值范围);②该商品进价是__________元/件;当售价是__________元/件时,周销售利润最大,最大利润是__________元.(2)由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求m的值.【解析】(1)①依题意设y=kx+b,则有50100 6080k bk b+=⎧⎨+=⎩,解得2200 kb=-⎧⎨=⎩,所以y关于x的函数解析式为y=-2x+200.②该商品进价是50-1000÷100=40,设每周获得利润w=ax2+bx+c,则有2500501000 3600601600 6400801600a b ca b ca b c++=⎧⎪++=⎨⎪++=⎩,解得22808000 abc=-⎧⎪=⎨⎪=-⎩,∴w=-2x2+280x-8000=-2(x-70)2+1800,∴当售价是70元/件时,周销售利润最大,最大利润是1800元;故答案为:40,70,1800;(2)根据题意得,w=(x-40-m)(-2x+200)=-2x2+(280+2m)x-8000-200m,∵对称轴x=1402m+,∴①当1402m+<65时(舍),②当1402m+≥65时,x=65时,w求最大值1400,解得:m=5.。

2019中考数学试题分类考点训练及中考冲刺集训-题型二-函数的实际应用-试题及解析

2019中考数学试题分类考点训练及中考冲刺集训-题型二-函数的实际应用-试题及解析

题型二函数的实际应用类型1 最优方案问题1.(2019·宁波)某风景区内的公路如图1所示,景区内有免费的班车,从入口处出发,沿该公路开往草甸,途中停靠塔林(上下车时间忽略不计).第一班车上午8点发车,以后每隔10分钟有一班车从入口处发车.小聪周末到该风景区游玩,上午7︰40到达入口处,因还没到班车发车时间,于是从景区入口处出发,沿该公路步行25分钟后到达塔林.离入口处的路程y(米)与时间x(分)的函数关系如图2所示.(1)求第一班车离入口处的路程y(米)与时间x(分)的函数表达式.(2)求第一班车从入口处到达塔林所需的时间.(3)小聪在塔林游玩40分钟后,想坐班车到草甸,则小聪最早能够坐上第几班车?如果他坐这班车到草甸,比他在塔林游玩结束后立即步行到草甸提早了几分钟?(假设每一班车速度均相同,小聪步行速度不变)(第24题图)类型2 分段函数问题2.(2019·淮安)快车从甲地驶向乙地,慢车从乙地驶向甲地,两车同时出发并且在同一条公路上匀速行驶,途中快车休息1.5小时,慢车没有体息.设慢车行驶的时间为x小时,快车行驶的路程为y1千米,慢车行驶的路程为y2千米,下图中折线OAEC表示y1与x之间的函数关系,线段OD表示y2与x之间的函数关系,请解答下列问题:(1)求快车和慢车的速度;(2)求图中线段EC所表示的y1与x之间的函数表达式;(3)线段OD与线段EC相交于点F,直接写出点F的坐标,并解释点F的实际意义.3.(2019·无锡)“低碳生活,绿色出行”是一种环保,健康的生活方式,小丽从甲地出发沿一条笔直的公路骑行前往乙地,她与乙地之间的距离y(km)与出发时间t(h)之间的函数关系式如图①中线段AB所示,在小丽出发的同时,小明从乙地沿同一条公路骑车匀速前往甲地,两人之间的距离x(km)与出发时间t(h)之间的函数关系式如图①中折线段CD-DE-EF所示.(1)小丽和小明骑车的速度各是多少?(2)求点E坐标,并解释点E的实际意义.类型3 利润最值问题4.(2019·广元)某水果商计划购进甲、乙两种水果进行销售,经了解,甲种水果的进价比乙种水果的进价每千克少4元,且用800元购进甲种水果的数量与用1000元购进乙种水果的数量相同.(1)求甲、乙两种水果的单价分别是多少元?(2)该水果商根据该水果店平常的销售情况确定,购进两种水果共200千克,其中甲种水果的数量不超过乙种水果数量的3倍,且购买资金不超过3420元,购回后,水果商决定甲种水果的销售价定为每千克20元,乙种水果的销售价定为每千克25元,则水果商应如何进货,才能获得最大利润,最大利润是多少?5.(2019·通辽)当今,越来越多的青少年在观看影片《流浪地球》后,更加喜欢同名科幻小说,该小说销量也急剧上升.书店为满足广大顾客需求,订购该科幻小说若干本,每本进价为20元.根据以往经验:当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本.书店要求每本书的利润不低于10元且不高于18元.(1)直接写出书店销售该科幻小说时每天的销售量y(本)与销售单价x(元)之间的函数关系式及自变量的取值范围;(2)书店决定每销售1本该科幻小说,就捐赠a(0<a≤6)元给困难职工,每天扣除捐赠后可获得最大利润为1960元,求a的值.类型4 抛物线型问题6.(2019·广安)在广安市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y(米)与水平距离x(米)之间的关系为y=-112x2+23x+53,由此可知该生此次实心球训练的成绩为________米.7.(2019•襄阳)如图,若被击打的小球飞行高度h(单位:m)与飞行时间t(单位:s)之间具有的关系为h=20t﹣5t2,则小球从飞出到落地所用的时间为s.8.(2019·临沂)从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的函数关系如图所示,下列结论:①小球在空中经过的路程是40 m;①小球抛出3秒后,速度越来越快;①小球抛出3秒时速度为0;①小球的高度h=30 m时,t=1.5 s.其中正确的是()A.①① B.①① C.①①① D.①①类型5 图形面积问题9.(2019·连云港)如图,利用一个直角墙角修建一个梯形储料场ABCD,其中①C=120°.若新建墙BC与CD总长为12 m,则该梯形储料场ABCD的最大面积是()A.18 m2B.18 3 m2C.24 3 m2 D.4532m210.(2019·绍兴)有一块形状如图的五边形余料ABCDE,AB=AE=6,BC=5,①A=①B=90°,①C=135°,①E>90°.要在这块余料中截取一块矩形材料,其中一条边在AE上,并使所截矩形材料的面积尽可能大.(1)若所截矩形材料的一条边是BC或AE,求矩形材料的面积.(2)能否截出比(1)中更大面积的矩形材料?如果能,求出这些矩形材料面积的最大值;如果不能,说明理由.题型二 函数的实际应用答案1.思路分析:本题考查了用待定系数法求一次函数解析式,一次函数的生活应用,一元一次不等式,主要考查学生能否把实际问题转化成数学问题.在第(1)小题中,根据(20,0),(38,2700)这两个特殊点,利用待定系数法可以求出y 关于x 的函数关系式.在第(2)小题中,已知函数值求自变量.第(3)小题中,利用一元一次不等式求出最早可以坐的班车,进而求出时差.解题过程:解:(1)由题意得,可设函数表达式为:y =kx +b (k ≠0). 把(20,0),(38,2700)代入y =kx +b ,得020270038k b k b,解得1503000k b.①第一班车离入口处的路程y (米)与时间x (分)的函数表达式为 y =150x -3000(20≤x ≤38).(注:x 的取值范围可省略不写) (2)把y =1500代入,解得x =30,则30-20=10(分). ①第一班车到塔林所需时间10分钟. (3)设小聪坐上第n 班车.30-25+10(n -1)≥40,解得n ≥4.5, ①小聪最早坐上第5班车.等班车时间为5分钟,坐班车所需时间:1200÷150=8(分), 步行所需时间:1200÷(1500÷25)=20(分),20-(8+5)=7(分). ①小聪坐班车去草甸比他游玩结束后立即步行到达草甸提早7分钟. 2.思路分析:(1)根据函数图象中的数据可以求得快车和慢车的速度;(2)根据函数图象中的数据可以求得点E 和点C 的坐标,从而可以求得1y 与x 之间的函数表达式;(3)根据图象可知,点F 表示的是快车与慢车行驶的路程相等,从而以求得点F 的坐标,并写出点F 的实际意义.解题过程:解:(1)快车速度=1802=90(千米/小时),慢车速度=1803=60(千米/小时).(2)点E 坐标(3.5,180),点C 坐标(5.5,360).设直线EC 的表达式为y 1=kx +b (k ≠0),⎩⎪⎨⎪⎧3.5k +b =180,5.5k +b =360,解得⎩⎪⎨⎪⎧k =90,b =-135,即y 1与x 之间的函数表达式为y 1=90x -135. (3)F (4.5,270),F 点的实际意义是出发了4.5小时后两车都行驶了270千米.点拨:直线OD 的表达式为y 2=60x ,⎩⎪⎨⎪⎧y =60x ,y =90x -135,解得⎩⎪⎨⎪⎧x =4.5,y =270.3.思路分析:(1)由点A ,点B ,点D 表示的实际意义,可求解;(2)理解点E 表示的实际意义,则点E 的横坐标为小明从甲地到乙地的时间,点E 纵坐标为小丽这个时间段走的路程,即可求解. 解题过程:解:(1)由题意可得:小丽速度3616(/)2.25km h == 设小明速度为/xkm h 由题意得:1(16)36x ⨯+= 20x ∴=答:小明的速度为20/km h ,小丽的速度为16/km h . (2)由图象可得:点E 表示小明到了甲地,此时小丽没到,∴点E 的横坐标369205==, 点E 的纵坐标91441655=⨯=∴点9(5E ,144)54.思路分析:(1)根据题意可以列出相应的分式方程,求出甲、乙两种水果的单价分别是多少元;(2)根据题意可以得到利润和购买甲种水果数量之间的关系,再根据甲种水果的数量不超过乙种水果数量的3倍,且购买资金不超过3420元,可以求得甲种水果数量的取值范围,最后根据一次函数的性质即可解答本题.解题过程:解:(1)设乙种水果的单价是x 元/千克,则甲种水果的单价是(x -4)元/千克. 根据题意,得800x -4=1000x ,解得x =20.经检验,x =20是原方程的解, 当x =20时,x -4=20-4=16.答:甲、乙两种水果的单价分别是16元/千克,20元/千克. (2)设水果商购进乙种水果m 千克,获得的利润为w 元.⎩⎪⎨⎪⎧200-m ≤3m ,16(200-m )+20m ≤3420,解得50≤m ≤55, w =(20-16)(200-m )+(25-20)m ,即w =m +800. ①1>0,①w 随m 的增大而增大.①50≤m ≤55,①当m =55时,w 有最大值,此时,200-m =200-55=145,w =55+800=855. 答:水果商应购进乙种水果55千克,购进甲种水果145千克,才能获得最大利润,最大利润是855元.5.思路分析:(1)根据题意列函数关系式即可;(2)设每天扣除捐赠后可获得利润为w 元.根据题意得到2(20)(10500)10(10700)50010000(3038)w x a x x a x a x =---+=-++--求得对称轴为1352x a =+,若06a <<,则130352a <+,则当1352x a =+时,w 取得最大值,解方程得到12a =,258a =,于是得到2a =.解题过程:解:①当销售单价是25元时,每天的销售量是250本; 销售单价每上涨1元,每天的销售量就减少10本,①销售量y (本)与销售单价x (元)之间的函数关系式为:y =250-10×x -251,①y =-10x +500.①书店要求每本书的利润不低于10元且不高于18元, ①10≤x -20≤18,①30≤x ≤38,即为所求自变量的取值范围. (2)设每天扣除捐赠后可获得的利润为W 元,则W =(x -20-a )(-10x +500)=-10x 2+(10a +700)x -500a -1000. ①对称轴为x =12a +35,且0<a ≤6,①30<12a +35≤38,①当x =12a +35时,W 有最大值,①1960=⎝⎛⎭⎫12a +35-20-a ⎣⎡⎦⎤-10⎝⎛⎭⎫12a +35+500, ①a 1=2,a 2=58(不符合题意,舍去). ①a =2.6.答案:10.解析:当0y =时,212501233y x x =-++=, 解得,2x =(舍去),10x =.故答案为:10. 7.答案:4.解析:依题意,令h =0得 0=20t ﹣5t 2 得t (20﹣5t )=0 解得t =0(舍去)或t =4即小球从飞出到落地所用的时间为4s 故答案为4.8.答案:D .解析:由图象可知小球竖直向上达到最大高度40 m 后再下落回来,因此小球在空中经过的路程是80 m ,故①错误;小球抛出3秒时,速度为0,然后落回地面,速度越来越快,故①与①均正确;当小球的高度h =30 m 时,即y =30,此时函数图象对称轴两侧各有一点纵坐标为30,也就是说存在两个时间点使小球的高度为30 m(小球上升与回落),故①错误,设抛物线的解析式为y =a (x -3)2+40,把(6,0)代入,得0=9a +40,解得a =-409,①y =-409(x -3)2+40,当y =30时,-409(x -3)2+40=30,解得x 1=1.5,x 2=4.5,即当t =1.5 s 或t =4.5 s 时,小球的高度h =30 m . 9.答案:C .解析:如图,过点C 作CE AB ⊥于E ,则四边形ADCE 为矩形,CD AE x ==,90DCE CEB ∠=∠=︒, 则30BCE BCD DCE ∠=∠-∠=︒,12BC x =-, 在Rt CBE ∆中,90CEB ∠=︒, 11622BE BC x ∴==-,AD CE x ∴==, 116622AB AE BE x x x =+=+-=+,∴梯形ABCD 面积221113()(6)(63)4)222S CD AB CE x x x x =+=++-=++-+,∴当4x =时,S =最大.即CD 长为4m 时,使梯形储料场ABCD 的面积最大为2; 故选:C .10.思路分析:(1)①若所截矩形材料的一条边是BC ,过点C 作CF AE ⊥于F ,得出16530S AB BC ==⨯=;①若所截矩形材料的一条边是AE ,过点E 作//EF AB 交CD 于F ,FG AB ⊥于G ,过点C 作CH FG ⊥于H ,则四边形AEFG 为矩形,四边形BCHG 为矩形,证出CHF ∆为等腰三角形,得出6AE FG ==,5HG BC ==,BG CH FH ==,求出1BG CH FH FG HG ===-=,5AG AB BG =-=,得出26530S AE AG ==⨯=;(2)在CD 上取点F ,过点F 作FM AB ⊥于M ,FN AE ⊥于N ,过点C 作CG FM ⊥于G ,则四边形ANFM 为矩形,四边形BCGM 为矩形,证出CGF ∆为等腰三角形,得出5MG BC ==,BM CG =,FG DG=,设AM x =,则6BM x =-,11FM GM FG GM CG BC BM x =+=+=+=-,得出2(11)11S AM FM x x x x =⨯=-=-+,由二次函数的性质即可得出结果.解题过程:解:(1)①若所截矩形材料的一条边是BC ,如图①所示: 过点C 作CF ①AE 于点F ,S 1=AB ·BC =6×5=30; ①若所截矩形材料的一条边是AE ,如图①所示:过点E 作EF ①AB 交CD 于点F ,过点F 作FG ①AB 于点G ,过点C 作CH ①FG 于点H , 则四边形AEFG 为矩形,四边形BCHG 为矩形, ①①C =135°,①①FCH =45°, ①①CHF 为等腰直角三角形,①AE =FG =6,HG =BC =5,BG =CH =FH , ①BG =CH =FH =FG -HG =6-5=1, ①AG =AB -BG =6-1=5, ①S 2=AE ·AG =6×5=30; (2)能;理由如下:在CD 上取点F ,过点F 作FM ①AB 于点M ,FN ①AE 于点N ,过点C 作CG ①FM 于点G ,则四边形ANFM 为矩形,四边形BCGM 为矩形, ①①C =135°, ①①FCG =45°,①①CGF 为等腰直角三角形, ①MG =BC =5,BM =CG ,FG =CG , 设AM =x ,则BM =6-x ,①FM =GM +FG =GM +CG =BC +BM =11-x ,①S =AM ×FM =x (11-x )=-x 2+11x =-(x -5.5)2+30.25, ①当x =5.5时,S 的最大值为30.25.。

中考数学大题--函数方程应用题

中考数学大题--函数方程应用题

中考数学大题--函数方程应用题1.为了鼓励小强勤做家务,培养他的劳动意识,小强每月的费用都是根据上月他的家务劳动时间所得奖励加上基本生活费从父母那里获取的.若设小强每月的家务劳动时间为x小时,该月可得(即下月他可获得)的总费为y元,则y(元)和x(小时)之间的函数图像如图所示.(1)根据图像,请你写出小强每月的基本生活费为多少元;父母是如何奖励小强家务劳动的?(2)写出当0≤x≤20时,相对应的y与x之间的函数关系式;(3)若小强5月份希望有250元费用,则小强4月份需做家务多少时间?2.某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少?3.某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?4.为表彰在“缔造完美教师”活动中表现积极的同学,老师决定购买文具盒与钢笔作为奖品.已知5个文具盒、2支钢笔共需100元;4个文具盒、7支钢笔共需161元.(1)每个文具盒、每支钢笔各多少元?(2)时逢“五一”,商店举行“优惠促销”活动,具体办法如下:文具盒“九折”优惠;钢笔10支以上超出部分“八折”优惠.若买x个文具盒需要y1元,买x支钢笔需要y2元,求y1、y2关于x的函数关系式;(3)若购买同一种奖品,并且该奖品的数量超过10件,请你分析买哪种奖品省钱.回报社,但报社只按每份0.2元退给小丁,如果小丁平均每天卖出报纸x份,纯收入为y元.(1)求y与x之间的函数关系式(要求写出自变量x的取值范围);(2)如果每月以30天计,小丁每天至少要卖多少份报纸才能保证每月收入不低于2000元?6.某商场销售一种进价为20元/台的台灯,经调查发现,该台灯每天的销售量w(台)与销售单价x(元)满足w=-2x+80,设销售这种台灯每天的利润为y(元)。

2019年中考数学《一次函数的实际应用》总复习训练含答案解析

2019年中考数学《一次函数的实际应用》总复习训练含答案解析

一次函数的实际应用一、利用函数的解析式解决问题1.某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植﹣亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数y(亩)与补贴数额x(元)之间大致满足如图1所示的一次函数关系.随着补贴数额x的不断增大,出口量也不断增加,但每亩蔬菜的收益z(元)会相应降低,且z 与x之间也大致满足如图2所示的一次函数关系.(1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?(2)分别求出政府补贴政策实施后,种植亩数y和每亩蔬菜的收益z与政府补贴数额x 之间的函数关系式;(3)要使全市这种蔬菜的总收益w(元)最大,政府应将每亩补贴数额x定为多少?并求出总收益w的最大值.2.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:x (元)152025…y (件)252015…若日销售量y是销售价x的一次函数.(1)求出日销售量y(件)与销售价x(元)的函数关系式;(2)求销售价定为30元时,每日的销售利润.3.如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:(1)求整齐摆放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式;(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?4.鞋子的“鞋码”和鞋长(cm)存在一种换算关系,下表是几组“鞋码”与鞋长换算的对应数值:(注:“鞋码”是表示鞋子大小的一种号码)鞋长(cm)16192124鞋码(号)22283238(1)设鞋长为x,“鞋码”为y,试判断点(x,y)在你学过的哪种函数的图象上;(2)求x、y之间的函数关系式;(3)如果某人穿44号“鞋码”的鞋,那么他的鞋长是多少?5.某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过20m3时,按2元/m3计费;月用水量超过20m3时,其中的20m3仍按2元/m3收费,超过部分按2.6元/m3计费.设每户家庭用水量为xm3时,应交水费y元.(1)分别求出0≤x≤20和x>20时y与x的函数表达式;(2)小明家第二季度交纳水费的情况如下:月份四月份五月份六月份交费金额30元34元42.6元小明家这个季度共用水多少立方米?6.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1(km),出租车离甲地的距离为y2(km),客车行驶时间为x(h),y1,y2与x的函数关系图象如图所示:(1)根据图象,直接写出y1,y2关于x的函数关系式.(2)分别求出当x=3,x=5,x=8时,两车之间的距离.(3)若设两车间的距离为S(km),请写出S关于x的函数关系式.(4)甲、乙两地间有A、B两个加油站,相距200km,若客车进入A站加油时,出租车恰好进入B站加油.求A加油站到甲地的距离.7.我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一月用水10吨以内(包括10吨)的用户,每吨收水费a元;一月用水超过10吨的用户,10吨水仍按每吨a元收费,超过10吨的部分,按每吨b元(b>a)收费.设一户居民月用水x吨,应收水费y元,y与x之间的函数关系如图所示.(1)求a的值;某户居民上月用水8吨,应收水费多少元;(2)求b的值,并写出当x>10时,y与x之间的函数关系式;(3)已知居民甲上月比居民乙多用水4吨,两家共收水费46元,求他们上月分别用水多少吨?二、利用函数的增减性解决问题8.某饮料厂为了开发新产品,用A种果汁原料和B种果汁原料试制新型甲、乙两种饮料共50千克,设甲种饮料需配制x千克,两种饮料的成本总额为y元.(1)已知甲种饮料成本每千克4元,乙种饮料成本每千克3元,请你写出y与x之间的函数关系式.(2)若用19千克A种果汁原料和17.2千克B种果汁原料试制甲、乙两种新型饮料,下表是试验的相关数据;请你列出关于x且满足题意的不等式组,求出它的解集,并由此分析如何配制这两种饮料,可使y值最小,最小值是多少?甲乙每千克饮料果汁含量果汁A0.5千克0.2千克B0.3千克0.4千克9.某厂工人小王某月工作的部分信息如下:信息一:工作时间:每天上午8:00~12:00,下午14:00~18:00,每月25天;信息二:生产甲、乙两种产品,并且按规定每月生产甲产品的件数不少于60件.生产产品件数与所用时间之间的关系见下表:生产甲产品数(件)生产乙产品数(件)所用时间(分)10103503020850信息三:按件计酬,每生产一件甲产品可得1.50元,每生产一件乙产品可得2.80元.根据以上信息,回答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分;(2)小王该月最多能得多少元此时生产甲、乙两种产品分别多少件.10.“5.12”汶川特大地震灾害发生后,社会各界积极为灾区捐款捐物,某经销商在当月销售的甲种啤酒尚有2万元货款未收到的情况下,先将销售甲种啤酒全部应收货款的70%捐给了灾区,后又将该月销售乙种啤酒所得的全部货款的80%捐给了灾区.已知该月销售甲、乙两种啤酒共5000件,甲种啤酒每件售价为50元,乙种啤酒每件售价为35元,设该月销售甲种啤酒x件,共捐助救灾款y元.(1)该经销商先捐款元,后捐款元;(用含x的式子表示)(2)写出y与x的函数关系式,并求出自变量x的取值范围;(3)该经销商两次至少共捐助多少元?11.为支持四川抗震救灾,重庆市A、B、C三地现在分别有赈灾物资100吨、100吨、80吨,需要全部运往四川重灾地区的D、E两县.根据灾区的情况,这批赈灾物资运往D县的数量比运往E县的数量的2倍少20吨.(1)求这批赈灾物资运往D、E两县的数量各是多少?(2)若要求C地运往D县的赈灾物资为60吨,A地运往D的赈灾物资为x吨(x为整数),B地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍.其余的赈灾物资全部运往E县,且B地运往E县的赈灾物资数量不超过25吨.则A、B两地的赈灾物资运往D、E两县的方案有几种?请你写出具体的运送方案;(3)已知A、B、C三地的赈灾物资运往D、E两县的费用如下表:A地B地C地运往D县的费用(元/吨)220200200运往E县的费用(元/吨)250220210为及时将这批赈灾物资运往D、E两县,某公司主动承担运送这批赈灾物资的总费用,在(2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?12.某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.(1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少此时,哪种方案对公司更有利?13.“5•12”四川汶川大地震的灾情牵动全国人民的心,某市A、B两个蔬菜基地得知四川C、D两个灾民安置点分别急需蔬菜240吨和260吨的消息后,决定调运蔬菜支援灾区.已知A蔬菜基地有蔬菜200吨,B蔬菜基地有蔬菜300吨,现将这些蔬菜全部调往C、D两个灾民安置点.从A地运往C、D两处的费用分别为每吨20元和25元,从B地运往C、D两处的费用分别为每吨15元和18元.设从B地运往C处的蔬菜为x吨.(1)请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x的值;C D总计A200吨B x吨300吨总计240吨260吨500吨(2)设A、B两个蔬菜基地的总运费为w元,写出w与x之间的函数关系式,并求总运费最小的调运方案;(3)经过抢修,从B地到C处的路况得到进一步改善,缩短了运输时间,运费每吨减少m元(m>0),其余线路的运费不变,试讨论总运费最小的调运方案.14.某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:A型利润B型利润甲店200170乙店160150(1)设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W关于x的函数关系式,并求出x的取值范围;(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;(3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润.甲店的B型产品以及乙店的A,B型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?一次函数的实际应用参考答案与试题解析一、利用函数的解析式解决问题1.某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植﹣亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数y(亩)与补贴数额x(元)之间大致满足如图1所示的一次函数关系.随着补贴数额x的不断增大,出口量也不断增加,但每亩蔬菜的收益z(元)会相应降低,且z 与x之间也大致满足如图2所示的一次函数关系.(1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?(2)分别求出政府补贴政策实施后,种植亩数y和每亩蔬菜的收益z与政府补贴数额x 之间的函数关系式;(3)要使全市这种蔬菜的总收益w(元)最大,政府应将每亩补贴数额x定为多少?并求出总收益w的最大值.【考点】二次函数的应用;一次函数的应用.【专题】压轴题.【分析】(1)根据题意可知直接计算这种蔬菜的收益额为3000×800=2400000(元);(2)设种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式分别为:y=kx+800,z=k1x+3000,并根据图象上点的坐标利用待定系数法求函数的解析式即可;(3)表示出蔬菜的总收益w(元)与x之间的关系式,w=﹣24x2+21600x+2400000,利用二次函数最值问题求最大值.【解答】解:(1)政府没出台补贴政策前,这种蔬菜的收益额为3000×800=2400000(元)(2)设种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式分别为:y=kx+800,z=k1x+3000,分别把点(50,1200),(100,2700)代入得,50k+800=1200,100k1+3000=2700,解得:k=8,k1=﹣3,种植亩数与政府补贴的函数关系为:y=8x+800每亩蔬菜的收益与政府补贴的函数关系为z=﹣3x+3000(x>0)(3)由题意:w=yz=(8x+800)(﹣3x+3000)=﹣24x2+21600x+2400000=﹣24(x﹣450)2+7260000,∴当x=450,即政府每亩补贴450元时,总收益额最大,为7260000元.【点评】主要考查利用一次函数和二次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义准确的列出解析式,再把对应值代入求解.利用二次函数的顶点坐标求最值是常用的方法之一.2.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:x (元)152025…y (件)252015…若日销售量y是销售价x的一次函数.(1)求出日销售量y(件)与销售价x(元)的函数关系式;(2)求销售价定为30元时,每日的销售利润.【考点】一次函数的应用.【专题】压轴题;图表型.【分析】(1)已知日销售量y是销售价x的一次函数,可设函数关系式为y=kx+b(k,b为常数,且k≠0),代入两组对应值求k、b,确定函数关系式.(2)把x=30代入函数式求y,根据:(售价﹣进价)×销售量=利润,求解.【解答】解:(1)设此一次函数解析式为y=kx+b(k,b为常数,且k≠0).(1分)则.(2分)解得k=﹣1,b=40(4分)即一次函数解析式为y=﹣x+40(5分)(2)当x=30时,每日的销售量为y=﹣30+40=10(件)(6分)每日所获销售利润为(30﹣10)×10=200(元)(8分)【点评】本题主要考查用待定系数法求一次函数关系式,并会用一次函数研究实际问题.3.如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:(1)求整齐摆放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式;(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?【考点】一次函数的应用.【专题】应用题;压轴题.【分析】(1)可设y=kx+b,因为由图示可知,x=4时y=10.5;x=7时,y=15,由此可列方程组,进而求解;(2)令x=4+7,求出相应的y值即可.【解答】解:(1)设y=kx+b(k≠0).(2分)由图可知:当x=4时,y=10.5;当x=7时,y=15.(4分)把它们分别代入上式,得(6分)解得k=1.5,b=4.5.∴一次函数的解析式是y=1.5x+4.5(x是正整数).(8分)(2)当x=4+7=11时,y=1.5×11+4.5=21(cm).即把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是21cm.(10分)【点评】本题意在考查学生利用待定系数法求解一次函数关系式,并利用关系式求值的运算技能和从情景中提取信息、解释信息、解决问题的能力.而它通过所有学生都熟悉的摞碗现象构造问题,将有关数据以直观的形象呈现给学生,让人耳目一新.从以上例子我们看到,数学就在我们身边,只要我们去观察、发现,便能找到它的踪影;数学是有用的,它可以解决实际生活、生产中的不少问题.4.鞋子的“鞋码”和鞋长(cm)存在一种换算关系,下表是几组“鞋码”与鞋长换算的对应数值:(注:“鞋码”是表示鞋子大小的一种号码)鞋长(cm)16192124鞋码(号)22283238(1)设鞋长为x,“鞋码”为y,试判断点(x,y)在你学过的哪种函数的图象上;(2)求x、y之间的函数关系式;(3)如果某人穿44号“鞋码”的鞋,那么他的鞋长是多少?【考点】一次函数的应用.【专题】压轴题;图表型.【分析】(1)可利用函数图象判断这些点在一条直线上,即在一次函数的图象上;(2)可设y=kx+b,把两个点的坐标代入,利用方程组即可求解;(3)令(2)中求出的解析式中的y等于44,求出x即可.【解答】解:(1)如图,这些点在一次函数的图象上;(2)设y=kx+b,由题意得,解得,∴y=2x﹣10.(x是一些不连续的值.一般情况下,x取16、16.5、17、17.5、26、26.5、27等);(3)y=44时,x=27.答:此人的鞋长为27cm.【点评】本题首先利用待定系数法确定一次函数的解析式,然后利用函数实际解决问题.5.某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过20m3时,按2元/m3计费;月用水量超过20m3时,其中的20m3仍按2元/m3收费,超过部分按2.6元/m3计费.设每户家庭用水量为xm3时,应交水费y元.(1)分别求出0≤x≤20和x>20时y与x的函数表达式;(2)小明家第二季度交纳水费的情况如下:月份四月份五月份六月份交费金额30元34元42.6元小明家这个季度共用水多少立方米?【考点】一次函数的应用.【专题】应用题.【分析】(1)因为月用水量不超过20m3时,按2元/m3计费,所以当0≤x≤20时,y 与x的函数表达式是y=2x;因为月用水量超过20m3时,其中的20m3仍按2元/m3收费,超过部分按2.6元/m3计费,所以当x>20时,y与x的函数表达式是y=2×20+2.6(x﹣20),即y=2.6x﹣12;(2)由题意可得:因为四月份、五月份缴费金额不超过40元,所以用y=2x计算用水量;六月份缴费金额超过40元,所以用y=2.6x﹣12计算用水量.【解答】解:(1)当0≤x≤20时,y与x的函数表达式是:y=2x;当x>20时,y与x的函数表达式是:y=2×20+2.6(x﹣20)=2.6x﹣12;(2)因为小明家四、五月份的水费都不超过40元,故0≤x≤20,此时y=2x,六月份的水费超过40元,x>20,此时y=2.6x﹣12,所以把y=30代入y=2x中得,2x=30,x=15;把y=34代入y=2x中得,2x=34,x=17;把y=42.6代入y=2.6x﹣12中得,2.6x﹣12=42.6,x=21.所以,15+17+21=53.答:小明家这个季度共用水53m3.【点评】本题是贴近社会生活的应用题,赋予了生活气息,使学生真切地感受到“数学来源于生活”,体验到数学的“有用性”.这样设计体现了《新课程标准》的“问题情景﹣建立模型﹣解释、应用和拓展”的数学学习模式.6.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1(km),出租车离甲地的距离为y2(km),客车行驶时间为x(h),y1,y2与x的函数关系图象如图所示:(1)根据图象,直接写出y1,y2关于x的函数关系式.(2)分别求出当x=3,x=5,x=8时,两车之间的距离.(3)若设两车间的距离为S(km),请写出S关于x的函数关系式.(4)甲、乙两地间有A、B两个加油站,相距200km,若客车进入A站加油时,出租车恰好进入B站加油.求A加油站到甲地的距离.【考点】一次函数的应用.【分析】(1)可根据待定系数法来确定函数关系式;(2)可依照(1)得出的关系式,得出结果;(3)要根据图象中自变量的3种不同的取值范围,分类讨论;(4)根据(3)中得出的函数关系式,根据自变量的取值范围分别计算出A加油站到甲地的距离.【解答】解:(1)y1=60x(0≤x≤10),y2=﹣100x+600(0≤x≤6)(2)当x=3时,y1=180,y2=300,∴y2﹣y1=120,当x=5时y1=300,y2=100,∴y1﹣y2=200,当x=8时y1=480,y2=0,∴y1﹣y2=480.(3)当两车相遇时耗时为x,y1=y2,解得x=,S=y2﹣y1=﹣160x+600(0≤x≤)S=y1﹣y2=160x﹣600(<x≤6)S=60x(6<x≤10);(4)由题意得:S=200,①当0≤x≤时,﹣160x+600=200,∴x=,∴y1=60x=150.②当<x≤6时160x﹣600=200,∴x=5,∴y1=300,③当6<x≤10时,60x≥360不合题意.即:A加油站到甲地距离为150km或300km.【点评】本题通过考查一次函数的应用来考查从图象上获取信息的能力.借助函数图象表达题目中的信息,读懂图象是关键.注意自变量的取值范围不能遗漏.7.我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一月用水10吨以内(包括10吨)的用户,每吨收水费a元;一月用水超过10吨的用户,10吨水仍按每吨a元收费,超过10吨的部分,按每吨b元(b>a)收费.设一户居民月用水x吨,应收水费y元,y与x之间的函数关系如图所示.(1)求a的值;某户居民上月用水8吨,应收水费多少元;(2)求b的值,并写出当x>10时,y与x之间的函数关系式;(3)已知居民甲上月比居民乙多用水4吨,两家共收水费46元,求他们上月分别用水多少吨?【考点】一次函数的应用;二元一次方程组的应用;分段函数.【分析】(1)由图中可知,10吨水出了15元,那么a=15÷10=1.5元,用水8吨,应收水费1.5×8元;(2)由图中可知当x>10时,有y=b(x﹣10)+15.把(20,35)代入一次函数解析式即可.(3)应先判断出两家水费量的范围.【解答】解:(1)a=15÷10=1.5.(1分)用8吨水应收水费8×1.5=12(元).(2分)(2)当x>10时,有y=b(x﹣10)+15.(3分)将x=20,y=35代入,得35=10b +15.b=2.(4分) 故当x >10时,y=2x ﹣5.(5分)(3)∵假设甲乙用水量均不超过10吨,水费不超过46元,不符合题意; 假设乙用水10吨,则甲用水14吨,∴水费是:1.5×10+1.5×10+2×4<46,不符合题意; ∴甲、乙两家上月用水均超过10吨.(6分)设甲、乙两家上月用水分别为x 吨,y 吨,则甲用水的水费是(2x ﹣5)元,乙用水的水费是(2y ﹣5)元, 则(8分) 解得:(9分)故居民甲上月用水16吨,居民乙上月用水12吨.(10分)【点评】本题主要考查了一次函数与图形的结合,应注意分段函数的计算方法.二、利用函数的增减性解决问题8.某饮料厂为了开发新产品,用A 种果汁原料和B 种果汁原料试制新型甲、乙两种饮料共50千克,设甲种饮料需配制x 千克,两种饮料的成本总额为y 元.(1)已知甲种饮料成本每千克4元,乙种饮料成本每千克3元,请你写出y 与x 之间的函数关系式.(2)若用19千克A 种果汁原料和17.2千克B 种果汁原料试制甲、乙两种新型饮料,下表是试验的相关数据;请你列出关于x 且满足题意的不等式组,求出它的解集,并由此分析如何配制这两种饮料,可使y 值最小,最小值是多少?每千克饮料果汁含量 果汁 甲 乙A 0.5千克 0.2千克 B0.3千克 0.4千克【考点】一元一次不等式组的应用.【专题】应用题;压轴题.【分析】(1)由题意可知y与x的等式关系:y=4x+3(50﹣x)化简即可;(2)根据题目条件可列出不等式方程组,推出y随x的增大而增大,根据实际求解.【解答】解:(1)依题意得y=4x+3(50﹣x)=x+150;(2)依题意得解不等式(1)得x≤30解不等式(2)得x≥28∴不等式组的解集为28≤x≤30∵y=x+150,y是随x的增大而增大,且28≤x≤30150=178∴当甲种饮料取28千克,乙种饮料取22千克时,成本总额y最小,即y最小=28+元.【点评】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.注意本题的不等关系为:甲种果汁不超过19,乙种果汁不超过17.2.9.某厂工人小王某月工作的部分信息如下:信息一:工作时间:每天上午8:00~12:00,下午14:00~18:00,每月25天;信息二:生产甲、乙两种产品,并且按规定每月生产甲产品的件数不少于60件.生产产品件数与所用时间之间的关系见下表:生产甲产品数(件)生产乙产品数(件)所用时间(分)10103503020850信息三:按件计酬,每生产一件甲产品可得1.50元,每生产一件乙产品可得2.80元.根据以上信息,回答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分;(2)小王该月最多能得多少元此时生产甲、乙两种产品分别多少件.【考点】二元一次方程组的应用;一次函数的应用.【专题】压轴题;阅读型;图表型.【分析】(1)设生产一件甲种产品需x分,生产一件乙种产品需y分,利用待定系数法求出x ,y 的值.(2)设生产甲种产品用x 分,则生产乙种产品用(25×8×60﹣x )分,分别求出甲乙两种生产多少件产品.【解答】解:(1)设生产一件甲种产品需x 分,生产一件乙种产品需y 分.由题意得:(2分)即:解这个方程组得:答:生产一件甲产品需要15分,生产一件乙产品需要20分.(4分)(2)设生产甲种产品共用x 分,则生产乙种产品用(25×8×60﹣x )分.则生产甲种产品件,生产乙种产品件.(5分)∴w 总额===0.1x +1680﹣0.14x =﹣0.04x +1680(7分)又,得x ≥900,由一次函数的增减性,当x=900时w 取得最大值,此时w=0.04×900+1680=1644(元)此时甲有(件),乙有:(件)(9分)答:小王该月最多能得1644元,此时生产甲、乙两种产品分别60,555件.【点评】通过表格当中的信息,我们可以利用列方程组来求出生产甲、乙两种产品的时间,然后利用列函数关系式表示出小王得到的总钱数,然后利用一次函数的增减性求出钱数的最大值.10.“5.12”汶川特大地震灾害发生后,社会各界积极为灾区捐款捐物,某经销商在当月销售的甲种啤酒尚有2万元货款未收到的情况下,先将销售甲种啤酒全部应收货款的70%捐给了灾区,后又将该月销售乙种啤酒所得的全部货款的80%捐给了灾区.已知该月销售甲、乙两种啤酒共5000件,甲种啤酒每件售价为50元,乙种啤酒每件售价为35元,设该月销售甲种啤酒x件,共捐助救灾款y元.(1)该经销商先捐款元,后捐款元;(用含x的式子表示)(2)写出y与x的函数关系式,并求出自变量x的取值范围;(3)该经销商两次至少共捐助多少元?【考点】一次函数的应用.【专题】压轴题.【分析】(1)根据题意可直接得出经销商先捐款50x•70%=35x元,后捐款35(5000﹣x)•80%或(140000﹣28x)元;(2)根据题意可列出式子为y=7x+140000,根据“50x﹣20000≥0”,“5000﹣x>0”求出自变量取值范围为400≤x<5000;(3)当x=400时,y最小值=142800.【解答】解:(1)50x•70%或35x,35(5000﹣x)•80%或(140000﹣28x);(2)y与x的函数关系式为:y=7x+140000,由题意得解得400≤x<5000,∴自变量x的取值范围是400≤x<5000;(3)∵y=7x+140000是一个一次函数,且7>0,400≤x<5000,∴当x=400时,y最小值=142800.答:该经销商两次至少共捐款142800元.【点评】主要考查利用一次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义求解.注意要根据自变量的实际范围确定函数的最值.11.为支持四川抗震救灾,重庆市A、B、C三地现在分别有赈灾物资100吨、100吨、80吨,需要全部运往四川重灾地区的D、E两县.根据灾区的情况,这批赈灾物资运往D县的数量比运往E县的数量的2倍少20吨.(1)求这批赈灾物资运往D、E两县的数量各是多少?(2)若要求C地运往D县的赈灾物资为60吨,A地运往D的赈灾物资为x吨(x为整数),B地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍.其余的赈灾物资全部运往E县,且B地运往E县的赈灾物资数量不超过25吨.则A、B两地的赈灾物资运往D、E两县的方案有几种?请你写出具体的运送方案;(3)已知A、B、C三地的赈灾物资运往D、E两县的费用如下表:A地B地C地运往D县的费用(元/吨)220200200运往E县的费用(元/吨)250220210为及时将这批赈灾物资运往D、E两县,某公司主动承担运送这批赈灾物资的总费用,在(2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?【考点】一元一次不等式组的应用;一次函数的应用.【专题】压轴题;方案型.【分析】(1)设这批赈灾物资运往D县的数量为a吨,运往E县的数量为b吨,得到一个二元一次方程组,求解即可.(2)根据题意得到一元二次不等式,再找符合条件的整数值即可.(3)求出总费用的函数表达式,利用函数性质可求出最多的总费用.【解答】解:(1)设这批赈灾物资运往D县的数量为a吨,运往E县的数量为b吨.(1分)由题意,得(2分)解得(3分)答:这批赈灾物资运往D县的数量为180吨,运往E县的数量为100吨.(4分)(2)由题意,得(5分)解得即40<x≤45.∵x为整数,∴x的取值为41,42,43,44,45.(6分)则这批赈灾物资的运送方案有五种.具体的运送方案是:方案一:A地的赈灾物资运往D县41吨,运往E县59吨;B地的赈灾物资运往D县79吨,运往E县21吨.。

2019年安徽中考数学复习之函数的实际应用(考情、习题解析、解题技巧)

2019年安徽中考数学复习之函数的实际应用(考情、习题解析、解题技巧)

函数的实际应用是安徽中考的高频考点,以一次函数和二次函数为主,一次函数考查形式有:文字型、图象型、表格型;二次函数则常考:面积问题、销售中的最大利润问题、抛物线型问题等。

考情:函数的实际应用均在解答题中考查,重点考二次函数的实际应用,考查形式:①二次函数与一次函数结合的实际应用;②二次函数与一次函数、反比例函数结合的实际应用;③单独考查二次函数的实际应用,类型有:利润最值问题、抛物线型问题、几何图形面积最值问题。

习题解析一、抛物线型问题,关键是把距离转化为点坐标例1:一座隧道的截面由抛物线和长方形构成,长方形的长为8m,宽为1m,隧道最高点P位于AB的中央且距地面5m,建立如图所示的坐标系.(1)求抛物线的解析式;(2)一辆货车高4m,宽3m,能否从该隧道内通过,为什么?【满分技法】(1)根据题意写出A,P两点坐标,即可由顶点式确定二次函数解析式.(2)比较抛物线与直线y=4两个交点之间的距离与3的大小即可.解:(1)设抛物线的解析式为y=a(x-h)2+k,∵∵顶点P(4,5),∴y=a(x-4)2+5,该抛物线过点A(0,1),1 ∴ a(0-4)2+5=1,解得 a =- , 41 1 ∴ + 抛物线的解析式为 y =- (x -4)2+5=- x 2+2x 4 41;(2)能,理由如下:1 令 y =4 时,即- x 2+2x +1=4,解得 x =2,x =6,12 4∵|x -x | =4>3, 1 2∴ 该货车能通过隧道.二、分段问题分段求例 2:为支持农村经济建设,某玉米种子公司对某种 种子的销售价格规定如下:每千克的价格为 5 元, 如果一次购买 2 千克以上的种子,超过 2 千克部分 的种子价格打 8 折,某农户对购买量 x(千克)和付款 金额 y(元)这两个变量的对应关系做了分析,并绘制 出了函数图象,如图所示,其中函数图象中 A 点的 坐标为(2,10),请你结合图象,回答问题:(1)求 y 关于 x 的函数解析式;(2)已知甲农户将 8 元钱全部用于购买该玉米种子, 乙农户购买 4 千克该玉米种子,如果他们两人合起 来购买,可以比分开购买节约多少钱?【 满分技法】(1)OA 表示的是正比例函数,直接把 A 点坐标代入 y =kx 即可.当 x >2 时,已知 A 点坐标, 再求出任意一个大于 2 的 x 的值对应的 y 值,利用待定系数法求解即可.(2)根据题意,8 元钱购买的种子 重量小于 2 千克,所以甲购买的种子每千克价格为 5 元,并可求出甲农户购买的种子的重量.乙购买了 4 千克种子,可以求出乙花了多少钱.根据函数关系 式求出两人合起来购买一共所需的费用即可求出节 约了多少钱.解:(1)当 0≤x ≤2 时,设线段 OA 的解析式为 y =kx , ∵ ∴ ∴ ∵ ∴ y =kx 的图象经过(2,10),2k =10,解得 k =5,y =5x ,当 x >2 时,超过 2 千克部分的种子价格打 8 折, x =3 时,购买 3 千克种子价格为 10+5×0.8=14, 设 y 关于 x 的函数解析式为 y =k x +b(x >2), 1∵ ∴ ∴ y =k x +b 的图象经过(2,10),(3,14), 12 3 k +b =10, k =4, 11 解得 k +b =14, 1 b =2,当 x >2 时,y 关于 x 的函数解析式为 y =4x +2. 综 上 所 述 , y 关 于 x 的 函 数 解 析 式 为 y =5 4 x (0≤x ≤2), x +2(x >2); (2)甲农户将 8 元钱全部用于购买该玉米种子, 5x =,解得 x =1.6, 8即甲农户购买玉米种子 1.6 千克;乙农户购买 4 千克种子,所花费用为 y =4×4+2= 1 8 元,如果他们两人合起来购买,共购买玉米种子(1.6+4) 5.6 千克,这时总费用为 y =4×5.6+2=24.4 元.=∴(8+18)-24.4=1.6元.答:如果他们两人合起来购买,可以比分开购买节约1.6元.三、方案选取问题,分别求,后比较例3:国庆期间,某校准备组织部分教职工到黄山风景区旅游.经市场调研发现,如图,线段CD表示甲旅行社所需总费用y与旅游人数x的函数图象,线甲段AB表示乙旅行社所需总费用y与旅游人数x的乙函数图象,根据图象提供的信息,解答下列问题:(1)分别求出y和y关于x的函数解析式:甲乙(2)该校如何选择旅行社更划算?【满分技法】(1)根据图象可写出AB线段上点A和点B的坐标,CD线段上点C和点D的坐标,分别使用待定系数法即可求出y和y关于x的函数解析甲乙式.(2)函数图象的纵坐标表示的是旅行社的费用,在自变量的不同取值范围内,函数图象在下方的旅行社更划算.解:(1)设y关于x的函数解析式为y=kx+b,将(0,甲甲4000)、(50,10000)代入函数解析式,b=4000,得50k+b=10000,k=120,解得b=4000,y=120x+4000;甲设y关于x的函数解析式为y=cx+d,将(0,3200)、乙乙(40,10000)代入函数解析式,d=3200,得40c+d=10000,c=170,解得d=3200,y=170x+3200;乙(2)当y=y时,120x+4000=170x+3200,甲乙解得x=16,当0<x<16时,选择乙旅行社划算;当x=16时,甲旅行社与乙旅行社都一样;当x>16时,选择甲旅行社划算.四、图形面积问题,从几何图形的性质入手找等量关系例4:如图,用一段100米长的篱笆围成一个一边靠墙(墙足够长),中间用两道篱笆隔开分出三个小的矩形养殖场,设矩形垂直于墙的一边长为x米,矩形ABCD的面积记为y平方米.(1)直接写出y与x的函数关系式及自变量x的取值范围;(2)当x=8,求y的值;(3)当x取何值时,y的值最大,最大值是多少?【满分技法】(1)由4AB+BC=100米,y=AB×BC即可写出y关于x的函数关系式.(2)直接代值计算.(3)利用函数的性质即可求出最值.解:(1)由题意得,y =(100-4x )·x =-4x 2+100x ,(0 x <25) ;(2)当 x =8 时,y =-4×82+100×8=544;00 ×(-4) 最大值,y 最大=-4×12.52+100×12.5=625.故 x 取< 1 (3)∵-4<0,∴当 x =-=12.5 时,y 有 2 1 2.5 时,y 的值最大,最大值是 625.五、利润问题,先求表达式和取值范围,再用函数 性质求解例 5:某商场代销甲、乙两种商品,其中甲种商品的 进价为 120 元/件,售价为 130 元/件.乙种商品的进 价为 100 元/件,售价为 150 元/件.(1)若商场用 36000 元购进这两种商品,销售完后可 获得利润 6000 元,则该商场购进甲、乙两种商品各 多少件?(2)若商场要购进这两种商品共 200 件,设购进甲种 商品 x 件,销售后获得的利润为 W 元.试写出利润 W(元)与 x(件)函数关系式(不要求写出自变量 x 的取 值范围);(3)在(2)的条件下,若甲种商品最少 100 件,请你设 计出使利润最大的进货方案,并求出最大利润.【 满分技法】文字型问题,找等量关系.(1)直接设 未知数,根据甲种商品的总进价+乙种商品的总进 价=36000 元,甲种商品的总利润+乙种商品的总利 润=6000 元,列方程求解即可.(2)已知甲种商品 x 件,则乙种商品(200-x)件,则由利润 W(元)=甲种 商品的利润+乙种商品的利润可列出关系式.(3)根 据函数的性质以及 x 的取值范围即可求出最大利润. 解:(1)设购进甲种商品 a 件,乙种商品 b 件,由题120a+100b=36000,意,得(130-120)a+(150-100)b=6000,a=240,b=72.解得答:该商场购进甲种商品240件,乙种商品72件;(2)已知购进甲种商品x件,则购进乙种商品(200-x)件,根据题意,得W=(130-120)x+(150-100)(200-x)=-40x+10000 ;(3)∵-40<0,∴∵∴W W随x的增大而减小.x≥100 ,当购进甲种商品的件数为100件时利润最大,最大=-40×100+10000=6000.当购进甲种商品100件,乙种商品100件时,利∴润最大,最大利润为6000元.例6:在水果销售旺季,某水果店购进一批优质水果,进价为20元/千克,售价不低于20元/千克,且不超过29元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.销售量y……34.83229.628 22.62425.226……(千克)售价x(元/千克)(1)某天这种水果的售价为25.5元/千克,求当天该水果的销售量;(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?(3)求一天销售这种水果最多获利多少元?此时售价 为多少元/千克?【 满分技法】表格型函数应用题,表格中的数据等 价于函数图象上的点坐标.(1)y 是 x 的一次函数,用 待定系数法即可求出关系式,当 x =25.5 时,y 的值 即是当天水果的销售量.(2)利用销售量×每千克利 润=总利润,列出关于 x 的方程即可求解.其中每千 克的利润为(x -20)元,销售量即是 y.(3)设利润为 W 元,写出 W 关于 x 的函数关系式,利用函数关系式 即可求解.解:(1)设 y 与 x 的函数关系式为 y =kx +b ,由题意 2 2 4k +b =32,6k +b =28, k =-2,b =80,得 解得 即 y 与 x 的函数关系式为 y =-2x +80,将 x =25.5 代入 y =-2x +80,得y =-2×25.5+80=29,答:某天这种水果的售价为 25.5 元/千克时,当天的 销售量是 29 千克;(2)设售价为 x 元,(x -20)×(-2x +80)=150,解得,x =25,x =35(舍去), 1 2答:如果某天销售这种水果获利 150 元,那么该天 水果的售价为 25 元/千克;(3)设利润为 W 元,W =(x -20)(-2x +80)=-2(x -30)2+200, ∵ ∴ -2<0 且 20≤x ≤29,当 x =29 时,W 取得最大值,此时 W =198,答:一天销售这种水果最多获利198元,此时售价为29元/千克.例7:某饭店推出一种早点套餐,每份套餐的成本为5元,试销一段时间后发现,若每份售价不超过10元,每天可销售400份;若每份售价超过10元时,每提高1元,每天的销售量就减少40份,该店每天固定支出费用为600元(不含套餐成本).为了便于结算,每份套餐的售价取整数,设每份套餐的售价为x(x>5)元,该店日销售利润为y元.(1)求y与x的函数关系式并写出自变量x的取值范围;(2)该店要想获得最大日销售利润,又要吸引更多顾客,使每天销售量较大,按此要求,每份套餐的售价应定为多少元?此时日销售利润为多少元?【满分技法】首先找等量关系:利润=销售数量×每份利润-固定支出.以每份售价10元为界,在10元以下和10元以上的销售量情况不同.(1)在5<x ≤10时,销售量固定为400;在x>10时,单价比10元提高了(x-10)元.因为每提高1元,每天的销售量就减少40份,所以销售量减少了40(x-10)份,即销售量变为[400-40(x-10)]份.代入等量关系即可分别求出两段的函数关系式.(2)分别根据自变量x 的取值范围,求出每段函数的最大值即可.解:(1)由题意,得当5<x≤10时,y=400(x-5)-600=400x-2600;当x>10时,y=[400-40(x-10)](x-5)-600=-40x2+1000x-4600;(2)当5<x≤10时,y =400x -2600,当 x =10 时,y 最大=1400, 当 x >10 时,y =-40x 2+1000x -4600=-40(x -12.5)2+1650, 当 x =12 时,y =1640,当 x =13 时,y =1640,∵ 要吸引更多顾客,使每天销售量较大,又要有最 大的日销售利润,每份套餐的售价应定为 12 元,日销售利润为 1640 元.解题技巧. 解决函数的实际应用首先是建模思想:∴ 1 确定实际问题中的函数解析式,要先将实际问题转 化为数学问题,即数学建模.要做到这种转化,首 先要分清哪个量是自变量,哪个量是因变量;其次 建立因变量与自变量之间的关系,注意自变量的取 值范围.2 . 常见的一次函数的实际应用一般涉及:(1)求函数解析式文字型:从题干中,提取两组有关的量(不同的自变 量及对应的函数值),作为一次函数图象上两点,将 其代入解析式中列方程组求解;表格型:从表格中提取对应(通常为同一列)的两组 量,代入解析式中列方程组求解;图象型:任意找出函数图象上的两个点,将其坐标 分别代入解析式中列方程组求出函数解析式;若为 分段函数,要分别求出每一段的解析式,最后记得 加上各段函数图象对应的自变量的取值范围.(2)利润(费用)最值问题此类问题都是利用一次函数增减性来解决,在自变量的实际取值范围内,根据函数图象的增减性,找出自变量为何值时,函数的最大(小)值.3.常见的二次函数的实际应用一般涉及:(1)抛物线型问题解题步骤:①建立平面直角坐标系;②利用待定系数法确定抛物线的解析式;③利用二次函数的性质解决实际问题.(2)销售问题解题步骤:①读懂题意,借助销售问题中的利润等关系式寻找等量关系;②确定函数解析式;③求解二次函数的最值,解决问题.。

(全国通用版)2019年中考数学复习 专题复习(五)函数的实际应用题练习

(全国通用版)2019年中考数学复习 专题复习(五)函数的实际应用题练习

专题复习(五) 函数的实际应用题类型1 一次函数的图象信息题1.求函数解析式的方法有两种:一种是直接利用两个变量之间的等量关系建立函数模型;另一种是采用待定系数法,用待定系数法解题,先要明确解析式中待定系数的个数,再从已知中得到相应个数的独立条件(一般来讲,最直接的条件是点的坐标),最后代入求解.当解析式中的待定系数只有一个时,代入已知条件后会得到一个一元一次方程;当解析式中的待定系数为两个或两个以上时,代入独立条件后会得到方程组.正因如此,能正确地解方程(组)成为运用待定系数法求解析式的前提和基础.2.用函数探究实际中的最值问题,一种是对于一次函数解析式,分析自变量的取值范围,得出最值问题的答案;另一种是对于二次函数解析式,首先整理成顶点式,然后结合自变量取值范围求解,最值不一定是顶点的纵坐标,画出函数在自变量取值范围内的图象,图象上的最高点的纵坐标是函数的最大值,图象上的最低点的纵坐标是函数的最小值.3.在组合函数中,若有一个函数是分段函数,则组合后的函数也必须分段.1.(xx·吉林)小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30 min .小东骑自行车以300 m /min 的速度直接回家,两人离家的路程y(m )与各自离开出发地的时间x(min )之间的函数图象如图所示:(1)家与图书馆之间的路程为4__000 m ,小玲步行的速度为100m /min ; (2)求小东离家的路程y 关于x 的函数解析式,并写出自变量的取值范围; (3)求两人相遇的时间.解:(1)结合题意和图象可知,线段CD 为小东路程与时间的函数图象,折线O —A —B 为小玲路程与时间的函数图象,则家与图书馆之间路程为 4 000m ,小玲步行速度为(4 000-2 000)÷(30-10)=100 m /min .故答案为:4 000,100.(2)∵小东从离家4 000 m 处以300 m /min 的速度返回家, 则x min 时,他离家的路程y =4 000-300x ,自变量x 的范围为0≤x≤403.(3)当x =10时,y 玲=2 000,y 东=1 000,即两人相遇是在小玲改变速度之前, ∴令4 000-300x =200x ,解得x =8. ∴两人相遇时间为第8分钟.2.(xx·成都)为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉,经市场调查,甲种花卉的种植费用y(元)与种植面积x(m2)之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0≤x≤300和x>300时,y与x的函数关系式;(2)广场上甲、乙两种花卉的种植面积共1 200 m2,若甲种花卉的种植面积不少于200 m2,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植总费用最少?最少总费用为多少元?解:(1)y={130x(0≤x≤300),80x+15 000(x>300).(2)设甲种花卉种植为a m2,则乙种花卉种植(1 200-a)m2.∴a≤2(1 200-a),解得a≤800.又a≥200,∴200≤a≤800.当200≤a<300时,W1=130a+100(1 200-a)=30a+120 000.当a=200 时.W min=126 000 元;当300≤a≤800时,W2=80a+15 000+100(1 200-a)=135 000-20a.当a=800时,W min=119 000 元.∵119 000<126 000,∴当a=800时,总费用最少,最少总费用为119 000元.此时乙种花卉种植面积为1 200-800=400(m2).答:应该分配甲、乙两种花卉的种植面积分别是800 m2和400 m2,才能使种植总费用最少,最少总费用为119 000元.类型2 一次函数与方程或不等式的综合运用1.(xx·武汉)用1块A型钢板可制成2块C型钢板和1块D型钢板;用1块B型钢板可制成1块C型钢板和3块D型钢板.现准备购买A,B型钢板共100块,并全部加工成C,D 型钢板.要求C型钢板不少于120块,D型钢板不少于250块,设购买A型钢板x块(x为整数).(1)求A,B型钢板的购买方案共有多少种?(2)出售C型钢板每块利润为100元,D型钢板每块利润为120元.若将C,D型钢板全部出售,请你设计获利最大的购买方案.解:(1)设购买A型钢板x块,则购买B型钢板(100-x)块,根据题意,得{2x+(100-x)≥120,x+3(100-x)≥250,解得20≤x≤25.∵x为整数,∴x=20,21,22,23,24,25共6种方案,即A,B型钢板的购买方案共有6种.(2)设总利润为w,根据题意,得w=100(2x+100-x)+120(x+300-3x)=100x+10 000-240x+36 000=-140x+46 000,∵-140<0,∴w随x的增大而减小.∴当x=20时,w max=-140×20+46 000=43 200.即购买A型钢板20块,B型钢板80块时,获得的利润最大.2.(xx·潍坊)为落实“绿水青山就是金山银山”的发展理念,某市政部门招标一工程队负责在山脚下修建一座水库的土方施工任务.该工程队有A,B两种型号的挖掘机,已知3台A型和5台B型挖掘机同时施工一小时挖土165立方米;4台A型和7台B型挖掘机同时施工一小时挖土225立方米.每台A型挖掘机一小时的施工费用为300元,每台B型挖掘机一小时的施工费用为180元.(1)分别求每台A型,B型挖掘机一小时挖土多少立方米?(2)若不同数量的A型和B型挖掘机共12台同时施工4小时,至少完成1 080立方米的挖土量,且总费用不超过12 960元,问施工时有哪几种调配方案,并指出哪种调配方案的施工费用最低,最低费用是多少元?解:(1)设每台A型,B型挖掘机一小时分别挖土x立方米和y立方米,根据题意,得{3x+5y=165,4x+7y=225,解得{x=30,y=15.答:每台A型挖掘机一小时挖土30立方米,每台B型挖掘机一小时挖土15立方米.(2)设A型挖掘机有m台,总费用为W元,则B型挖掘机有(12-m)台.根据题意,得W=4×300m+4×180(12-m)=480m+8 640.∵{4×30m+4×15(12-m)≥1 080,4×300m+4×180(12-m)≤12 960,∴{m≥6,m≤9.∵m≠12-m,解得m≠6,∴7≤m≤9.∴共有三种调配方案,即方案一:当m=7时,12-m=5,即A型挖掘机7台,B型挖掘机5台;方案二:当m=8时,12-m=4,即A型挖掘机8台,B型挖掘机4台;方案三:当m=9时,12-m=3,即A型挖掘机9台,B型挖掘机3台.∵480>0,由一次函数的性质可知,W随m的减小而减小,∴当m=7时,W小=480×7+8 640=12 000(元).当A型挖掘机7台,B型挖掘机5台时的施工费用最低,最低费用为12 000元.3.(xx·恩施)某学校为改善办学条件,计划采购A,B两种型号的空调,已知采购3台A 型空调和2台B型空调,需费用39 000元;4台A型空调比5台B型空调的费用多6 000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A,B两种型号空调共30台,且A型空调的台数不少于B型空调的一半,两种型号空调的采购总费用不超过217 000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元? 解:(1)设A 型空调和B 型空调每台各需x 元,y 元,根据题意,得 {3x +2y =39 000,4x -5y =6 000,解得{x =9 000,y =6 000. 答:A 型空调和B 型空调每台各需9 000元,6 000元.(2)设购买A 型空调a 台,则购买B 型空调(30-a)台,根据题意,得⎩⎨⎧a ≥12(30-a ),9 000a +6 000(30-a )≤217 000,解得10≤a≤1213.∴a=10,11,12,共有三种采购方案,即方案一:采购A 型空调10台,B 型空调20台; 方案二:采购A 型空调11台,B 型空调19台: 方案三:采购A 型空调12台,B 型空调18台. (3)设总费用为w 元,则w =9 000a +6 000(30-a)=3 000a +180 000, ∴当a =10时,w 取得最小值,此时w =210 000,即采购A 型空调10台,B 型空调20台可使总费用最低,最低费用是210 000元.类型3 二次函数的实际应用1.(xx·衢州)某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合.如图所示,以水平方向为x 轴,喷水池中心为原点建立直角坐标系.(1)求水柱所在抛物线(第一象限部分)的函数表达式;(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?(3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩大到32米,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合,请探究扩建改造后喷水池水柱的最大高度.解:(1)设水柱所在抛物线(第一象限部分)的函数表达式为y =a(x -3)2+5(a≠0),将(8,0)代入y =a(x -3)2+5,得 25a +5=0,解得a =-15.∴水柱所在抛物线(第一象限部分)的函数表达式为y =-15(x -3)2+5(0<x <8).(2)当y =1.8时,有-15(x -3)2+5=1.8,解得x 1=-1,x 2=7.答:为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心7米以内. (3)当x =0时,y =-15(0-3)2+5=165.设改造后水柱所在抛物线(第一象限部分)的函数表达式为y =-15x 2+bx +165,∵该函数图象过点(16,0), ∴0=-15×162+16b +165,解得b =3.∴改造后水柱所在抛物线(第一象限部分)的函数表达式为y =-15x 2+3x +165=-15(x -152)2+28920. ∴扩建改造后喷水池水柱的最大高度为28920米.2.(xx·温州)温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件利润减少2元.设每天安排x 人生产乙产品.(1)根据信息填表:(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润;(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一种产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W(元)的最大值及相应的x 值.解:(2)由题意,得15×2(65-x)=x(130-2x)+550,整理得x 2-80x +700=0,解得x 1=10,x 2=70(不合题意,舍去). ∴130-2x =110.答:每件乙产品可获得的利润是110元. (3)设生产甲产品m 人,则W =x(130-2x)+15×2m+30(65-x -m)=-2(x -25)2+3 200.∵每天甲、丙两种产品的产量相等,∴2m=65-x -m.∴m=65-x3.又∵-2<0,x ,m 都是非负整数, ∴取x =26时,m =13,65-x -m =26. 此时,W 最大=3 198.答:安排26人生产乙产品时,可获得的最大利润为3 198元.类型4 一次函数与二次函数的综合运用1.(xx·河南)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系.关于销售单价,日销售量,日销售利润的几组对应值如表:[((1)求y 关于x 的函数解析式(不要求写出x 的取值范围)及m 的值; (2)根据以上信息,填空:该产品的成本单价是80元,当销售单价x =100元时,日销售利润w 最大,最大值是2__000元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3 750元的销售目标,该产品的成本单价应不超过多少元?解:(1)设y 关于x 的函数解析式为y =kx +b ,根据题意,得⎩⎪⎨⎪⎧85k +b =175,95k +b =125,解得⎩⎪⎨⎪⎧k =-5,b =600. 即y 关于x 的函数解析式是y =-5x +600. 当x =115时,y =-5×115+600=25, 即m 的值是25.(2)设成本为a 元/个,当x =85时,875=175×(85-a),得a =80. w =(-5x +600)(x -80)=-5x 2+1 000x -48 000=-5(x -100)2+2 000,∴当x =100时,w 取得最大值,此时w =2 000. 故答案为:80,100,2 000.(3)设科技创新后成本为b 元/个,当x =90时,(-5×90+600)(90-b)≥3 750, 解得b≤65.答:该产品的成本单价应不超过65元.2.(xx·黔南)某种蔬菜的销售单价y 1与销售月份x 之间的关系如图1所示,成本y 2与销售月份x 之间的关系如图2所示.(图1的图象是线段,图2的图象是抛物线)图1 图2 (1)已知6月份这种蔬菜的成本最低,此时出售每千克的收益是多少元?(收益=售价-成本)(2)哪个月出售这种蔬菜,每千克的收益最大?简单说明理由;(3)已知市场部销售该种蔬菜4、5两个月的总收益为22万元,且5月份的销售量比4月份的销售量多2万千克,求4、5两个月的销售量分别是多少万千克?解:(1)当x =6时,y 1=3,y 2=1. ∵y 1-y 2=3-1=2,∴6月份出售这种蔬菜每千克的收益是2元.(2)设y 1=mx +n ,y 2=a(x -6)2+1. 将(3,5),(6,3)代入y 1=mx +n ,得⎩⎪⎨⎪⎧3m +n =5,6m +n =3,解得⎩⎪⎨⎪⎧m =-23,n =7.∴y 1=-23x +7.将(3,4)代入y 2=a(x -6)2+1, 4=a(3-6)2+1,解得a =13.∴y 2=13(x -6)2+1=13x 2-4x +13.∴y 1-y 2=-23x +7-(13x 2-4x +13)=-13x 2+103x -6=-13(x -5)2+73.∵-13<0,∴当x =5时,y 1-y 2取最大值,最大值为73,即5月份出售这种蔬菜,每千克的收益最大. (3)当x =4时,y 1-y 2=2.设4月份的销售量为t 万千克,则5月份的销售量为(t +2)万千克,根据题意,得 2t +73(t +2)=22,解得t =4.∴t+2=6.答:4月份的销售量为4万千克,5月份的销售量为6万千克.3.(xx·荆门)随着龙虾节的火热举办,某龙虾养殖大户为了发挥技术优势,一次性收购了10 000 kg 小龙虾,计划养殖一段时间后再出售.已知每天养殖龙虾的成本相同,放养10天的总成本为166 000,放养30天的总成本为178 000元.设这批小龙虾放养t 天后的质量为 a kg ,销售单价为y 元/kg ,根据往年的行情预测,a 与t 的函数关系为a =⎩⎪⎨⎪⎧10 000(0≤t≤20),100t +8 000(20<t≤50),y 与t 的函数关系如图所示. (1)设每天的养殖成本为m 元,收购成本为n 元,求m 与n 的值;(2)求y 与t 的函数关系式;(3)如果将这批小龙虾放养t 天后一次性出售所得利润为W 元.问该龙虾养殖大户将这批小龙虾放养多少天后一次性出售所得利润最大?最大利润是多少?(总成本=放养总费用+收购成本;利润=销售总额-总成本)解:(1)依题意,得⎩⎪⎨⎪⎧10m +n =166 000,30m +n =178 000,解得⎩⎪⎨⎪⎧m =600,n =160 000. (2)当0≤t≤20时,设y =k 1t +b 1,由图象得⎩⎪⎨⎪⎧b 1=16,20k 1+b 1=28,解得⎩⎪⎨⎪⎧k 1=35,b 1=16.∴y=35t +16;当20<t≤50时,设y =k 2t +b 2,由图象得⎩⎪⎨⎪⎧20k 2+b 2=28,50k 2+b 2=22,解得⎩⎪⎨⎪⎧k 2=-15b 2=32.∴y=-15t +32.综上,y =⎩⎪⎨⎪⎧35t +16(0≤t≤20),-15t +32(20<t≤50).(3)W =ya -mt -n ,当0≤t≤20时,W =10 000(35t +16)-600t -160 000=5 400t.∵5 400>0,∴当t =20时,W 最大=5 400×20=108 000.当20<t≤50时,W =(-15t +32)(100t +8 000)-600t -160 000=-20t 2+1 000t +96 000=-20(t -25)2+108 500.∵-20<0,抛物线开口向下, ∴当t =25时,W 最大=108 500. ∵108 500>108 000,∴当t =25时,W 取得最大值,该最大值为108 500元.4.(xx·扬州)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y 与x 之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3 600元,试确定该漆器笔筒销售单价的范围.解:(1)设y 与x 之间的函数关系式为y =kx +b ,由题意,得⎩⎪⎨⎪⎧40k +b =300,55k +b =150,解得⎩⎪⎨⎪⎧k =-10,b =700. 故y 与x 之间的函数关系式为y =-10x +700. (2)由题意,得-10x +700≥240,解得x≤46,设利润为w =(x -30)·y=(x -30)(-10x +700)=-10x 2+1 000x -21 000=-10(x -50)2+4 000.∵-10<0,∴x<50时,w 随x 的增大而增大.∴当x =46时,w 最大=-10(46-50)2+4 000=3 840.答:当销售单价为46元时,每天获取的利润最大,最大利润是3 840元.(3)w -150=-10x 2+1 000x -21 000-150=3 600, 解得x 1=55,x 2=45.如图所示,由图象得:当45≤x≤55时,捐款后每天剩余利润不低于3 600元.5.(xx·天门)绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF 、折线ABCD 分别表示该有机产品每千克的销售价y 1(元)、生产成本y 2(元)与产量x(kg )之间的函数关系.(1)求该产品销售价y 1(元)与产量x(kg )之间的函数关系式;(2)直接写出生产成本y 2(元)与产量x(kg )之间的函数关系式;(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?解:(1)设y 1与x 之间的函数关系式为y 1=kx +b ,∵经过点(0,168)与(180,60),根据题意,得∴⎩⎪⎨⎪⎧b =168,180k +b =60,解得⎩⎪⎨⎪⎧k =-35,b =168.∴产品销售价y 1(元)与产量x(kg )之间的函数关系式为y 1=-35x +168(0≤x≤180). (2)由题意,可得当0≤x≤50时,y 2=70;当130≤x≤180时,y 2=54;当50<x <130时,设y 2与x 之间的函数关系式为y 2=mx +n.∵直线y 2=mx +n 经过点(50,70)与(130,54),∴⎩⎪⎨⎪⎧50m +n =70,130m +n =54,解得⎩⎪⎨⎪⎧m =-15,n =80.∴当50<x <130时,y 2=-15x +80. 综上所述,生产成本y 2(元)与产量x(kg )之间的函数关系式为y 2=⎩⎪⎨⎪⎧70(0≤x≤50),-15x +80(50<x <130),54(130≤x≤180).(3)设产量为x kg 时,获得的利润为W 元,①当0≤x≤50时,W =x(-35x +168-70) =-35(x -2453)2+12 0053, ∴当x =50时,W 的值最大,最大值为3 400;②当50<x <130时,W =x[(-35x +168)-(-15x +80)]=-25(x -110)2+4 840, ∴当x =110时,W 的值最大,最大值为4 840;③当130≤x≤180时,W =x(-35x +168-54)=-35(x -95)2+5 415, ∴当x =130时,W 的值最大,最大值为4 680.因此当该产品产量为110 kg 时,获得的利润最大,最大值为4 840元.。

2019年中考数学总复习—应用题经典题型汇总(附答案)

2019年中考数学总复习—应用题经典题型汇总(附答案)

1、某工厂计划生产一种创新产品,若生产一件这种产品需A种原料1.2千克、B种原料1千克.已知A种原料每千克的价格比B种原料每千克的价格多10元.(1)为使每件产品的成本价不超过34元,那么购入的B种原料每千克的价格最高不超过多少元?(2)将这种产品投放市场批发销售一段时间后,为拓展销路又开展了零售业务,每件产品的零售价比批发价多30元.现用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,那么这种产品的批发价是多少元?2、水是人类生命之源.为了鼓励居民节约用水,相关部门实行居民生活用水阶梯式计量水价政策.若居民每户每月用水量不超过10立方米,每立方米按现行居民生活用水水价收费(现行居民生活用水水价=基本水价+污水处理费);若每户每月用水量超过10立方米,则超过部分每立方米在基本水价基础上加价100%,每立方米污水处理费不变.甲用户4月份用水8立方米,缴水费27.6元;乙用户4月份用水12立方米,缴水费46.3元.(注:污水处理的立方数=实际生活用水的立方数)(1)求每立方米的基本水价和每立方米的污水处理费各是多少元?(2)如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水多少立方米?3、某驻村扶贫小组为解决当地贫困问题,带领大家致富.经过调查研究,他们决定利用当地生产的甲乙两种原料开发A,B两种商品,为科学决策,他们试生产A、B两种商品100千克进行深入研究,已知现有甲种原料293千克,乙种原料314千克,生产1千克A商品,1千克B 商品所需要的甲、乙两种原料及生产成本如下表所示.生产成本(单位:元)甲种原料(单位:千克)乙种原料(单位:千克)A商品 3 2 120B商品 2.5 3.5 200设生产A种商品x千克,生产A、B两种商品共100千克的总成本为y元,根据上述信息,解答下列问题:(1)求y与x的函数解析式(也称关系式),并直接写出x的取值范围;(2)x取何值时,总成本y最小?4、某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?5、某车行去年A型车的销售总额为6万元,今年每辆车的售价比去年减少400元.若卖出的数量相同,销售总额将比去年减少20%.(1)求今年A型车每辆车的售价.(2)该车行计划新进一批A型车和B型车共45辆,已知A、B型车的进货价格分别是1100元,1400元,今年B型车的销售价格是2000元,要求B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获得最大利润,最大利润是多少?6、一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.(1)求y关于x的函数关系式;(不需要写定义域)(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?7、某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?8、大学生创业团队抓住商机,购进一批干果分装成营养搭配合理的小包装后出售,每袋成本3元.试销期间发现每天的销售量y(袋)与销售单价x(元)之间满足一次函数关系,部分数据如表所示,其中3.5≤x≤5.5,另外每天还需支付其他费用80元.(1)请直接写出y与x之间的函数关系式;(2)如果每天获得160元的利润,销售单价为多少元?(3)设每天的利润为w元,当销售单价定为多少元时,每天的利润最大?最大利润是多少元?9、为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?10、小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示(1)家与图书馆之间的路程为m,小玲步行的速度为m/min;(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间.11、某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y关于x的函数关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.12、为早日实现脱贫奔小康的宏伟目标,我市结合本地丰富的山水资源,大力发展旅游业,王家庄在当地政府的支持下,办起了民宿合作社,专门接待游客,合作社共有80间客房.根据合作社提供的房间单价x(元)和游客居住房间数y(间)的信息,乐乐绘制出y与x的函数图象如图所示:(1)求y与x之间的函数关系式;(2)合作社规定每个房间价格不低于60元且不超过150元,对于游客所居住的每个房间,合作社每天需支出20元的各种费用,房价定为多少时,合作社每天获利最大?最大利润是多少?13、为响应荆州市“创建全国文明城市”号召,某单位不断美化环境,拟在一块矩形空地上修建绿色植物园,其中一边靠墙,可利用的墙长不超过18m,另外三边由36m长的栅栏围成.设矩形ABCD空地中,垂直于墙的边AB=xm,面积为ym2(如图).(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)若矩形空地的面积为160m2,求x的值;(3)若该单位用8600元购买了甲、乙、丙三种绿色植物共400棵(每种植物的单价和每棵栽种的合理用地面积如下表).问丙种植物最多可以购买多少棵?此时,这批植物可以全部栽种到这块空地上吗?请说明理由.甲乙丙单价(元/棵)14 16 28合理用地(m2/棵)0.4 1 0.414、某班级同学从学校出发去扎龙自然保护区研学旅行,一部分乘坐大客车先出发,余下的几人20min后乘坐小轿车沿同一路线出行,大客车中途停车等候,小轿车赶上来之后,大客车以出发时速度的继续行驶,小轿车保持原速度不变.小轿车司机因路线不熟错过了景点入口,在驶过景点入口6km时,原路提速返回,恰好与大客车同时到达景点入口.两车距学校的路程S(单位:km)和行驶时间t(单位:min)之间的函数关系如图所示.请结合图象解决下面问题:(1)学校到景点的路程为km,大客车途中停留了min,a=;(2)在小轿车司机驶过景点入口时,大客车离景点入口还有多远?(3)小轿车司机到达景点入口时发现本路段限速80km/h,请你帮助小轿车司机计算折返时是否超速?(4)若大客车一直以出发时的速度行驶,中途不再停车,那么小轿车折返后到达景点入口,需等待分钟,大客车才能到达景点入口.15、某市制米厂接到加工大米任务,要求5天内加工完220吨大米,制米厂安排甲、乙两车间共同完成加工任务,乙车间加工中途停工一段时间维修设备,然后改变加工效率继续加工,直到与甲车间同时完成加工任务为止.设甲、乙两车间各自加工大米数量y(吨)与甲车间加工时间s(天)之间的关系如图(1)所示;未加工大米w(吨)与甲加工时间x(天)之间的关系如图(2)所示,请结合图象回答下列问题:(1)甲车间每天加工大米吨,a=.(2)求乙车间维修设备后,乙车间加工大米数量y(吨)与x(天)之间函数关系式.(3)若55吨大米恰好装满一节车厢,那么加工多长时间装满第一节车厢?再加工多长时间恰好装满第二节车厢?16、某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?17、空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长为100米.(1)已知a=20,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩形菜园面积为450平方米.如图1,求所利用旧墙AD的长;(2)已知0<α<50,且空地足够大,如图2.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园ABCD的面积最大,并求面积的最大值.18、一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.设先发车辆行驶的时间为x h,两车之间的距离为y km,图中的折线表示y与x之间的函数关系.根据图象解决以下问题:(1)慢车的速度为km/h,快车的速度为km/h;(2)解释图中点C的实际意义,并求出点C的坐标;(3)求当x为多少时,两车之间的距离为500 km.19、为拓宽学生视野,引导学生主动适应社会,促进书木知识和生活经验的深度融合,我市某中学决定组织部分班级去赤壁开展研学旅行活动.在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4 个学生,现有甲、乙两种大客车,它们的载客量和租金如下表所示:甲种客车乙种客车载客量(人/辆)30 42租金(人/辆)300 400学校计划此次研学旅行活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.(1) 参加此次研学旅行活动的老师和学生各有多少人?(2) 既要保证所有师生都有车坐,又要保证每辆客车上至少要有2 名老师,可知租用客车总数为_____辆;(3) 你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.20、随着龙虾节的火热举办,某龙虾养殖大户为了发挥技术优势,一次性收购了小龙虾,计划养殖一段时间后再出售.已知每天养殖龙虾的成本相同,放养天的总成本为,放养天的总成本为元.设这批小龙虾放养天后的质量为,销售单价为元/,根据往年的行情预测,与的函数关系为,与的函数关系如图所示.(1)设每天的养殖成本为元,收购成本为元,求与的值;(2)求与的函数关系式;(3)如果将这批小龙虾放养天后一次性出售所得利润为元.问该龙虾养殖大户将这批小龙虾放养多少天后一次性出售所得利润最大?最大利润是多少?(总成本=放养总费用+收购成本;利润=销售总额-总成本)21、某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?22、如图1,已知矩形AOCB,,,动点P从点A出发,以的速度向点O运动,直到点O为止;动点Q同时从点C出发,以的速度向点B运动,与点P同时结束运动.点P到达终点O的运动时间是______s,此时点Q的运动距离是______cm;当运动时间为2s时,P、Q两点的距离为______cm;请你计算出发多久时,点P和点Q之间的距离是10cm;如图2,以点O为坐标原点,OC所在直线为x轴,OA所在直线为y轴,1cm长为单位长度建立平面直角坐标系,连结AC,与PQ相交于点D,若双曲线过点D,问k的值是否会变化?若会变化,说明理由;若不会变化,请求出k的值.参考答案1、解:(1)设B种原料每千克的价格为x元,则A种原料每千克的价格为(x+10)元,根据题意得:1.2(x+10)+x≤34,解得:x≤10.答:购入B种原料每千克的价格最高不超过10元.(2)设这种产品的批发价为a元,则零售价为(a+30)元,解得:a=50,经检验,a=50是原方程的根,且符合实际.答:这种产品的批发价为50元.2、解:(1)设每立方米的基本水价是x元,每立方米的污水处理费是y元解得:答:每立方米的基本水价是2.45元,每立方米的污水处理费是1元.(2)设该用户7月份可用水t立方米(t>10)10×2.45+(t﹣10)×4.9+t≤64解得:t≤15答:如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水15立方米3、解:(1)由题意可得:y=120x+200(100﹣x)=﹣80x+20000,,解得:72≤x≤86;(2)∵y=﹣80x+20000,∴y随x的增大而减小,∴x=86时,y最小,则y=﹣80×86+20000=13120(元).4、解:(1)设线段AB解析式为y=k1x+b(k≠0)∵线段AB过点(0,10),(2,14)代入得解得∴AB解析式为:y=2x+10(0≤x<5)∵B在线段AB上当x=5时,y=20∴B坐标为(5,20)∴线段BC的解析式为:y=20(5≤x<10)设双曲线CD解析式为:y=(k2≠0)∵C(10,20)∴k2=200∴双曲线CD解析式为:y=(10≤x≤24)∴y关于x的函数解析式为:y=(2)由(1)恒温系统设定恒温为20°C(3)把y=10代入y=中,解得:x=20∴20﹣10=10答:恒温系统最多关闭10小时,蔬菜才能避免受到伤害.5、解:(1)设今年A型车每辆售价为x元,则去年每辆售价为(x+400)元,根据题意得:=,解得:x=1600,经检验,x=1600是原分式方程的解,∴今年A型车每辆车售价为1600元.(2)设今年新进A型车a辆,销售利润为y元,则新进B型车(45﹣a)辆,根据题意得:y=(1600﹣1100)a+(2000﹣1400)(45﹣a)=﹣100a+27000.∵B型车的进货数量不超过A型车数量的两倍,∴45﹣a≤2a,解得:a≥15.∵﹣100<0,∴y随a的增大而减小,∴当a=15时,y取最大值,最大值=﹣100×15+27000=25500,此时45﹣a=30.答:购进15辆A型车、30辆B型车时销售利润最大,最大利润是25500元.6解:(1)设该一次函数解析式为y=kx+b,将(150,45)、(0,60)代入y=kx+b中,,解得:,∴该一次函数解析式为y=﹣x+60.(2)当y=﹣x+60=8时,解得x=520.即行驶520千米时,油箱中的剩余油量为8升.530﹣520=10千米,油箱中的剩余油量为8升时,距离加油站10千米.∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.7解:(1)设甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,根据题意可得,解得,答:该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)①若购进甲种羽毛球m筒,则乙种羽毛球为(200﹣m)筒,根据题意可得,解得75<m≤78,∵m为整数,∴m的值为76、77、78,∴进货方案有3种,分别为:方案一,购进甲种羽毛球76筒,乙种羽毛球为124筒,方案二,购进甲种羽毛球77筒,乙种羽毛球为123筒,方案一,购进甲种羽毛球78筒,乙种羽毛球为122筒;②根据题意可得W=(60﹣50)m+(45﹣40)(200﹣m)=5m+1000,∵5>0,∴W随m的增大而增大,且75<m≤78,∴当m=78时,W最大,W最大值为1390,答:当m=78时,所获利润最大,最大利润为1390元.8解:(1)设y=kx+b,将x=3.5,y=280;x=5.5,y=120代入,得,解得,则y与x之间的函数关系式为y=﹣80x+560;(2)由题意,得(x﹣3)(﹣80x+560)﹣80=160,整理,得x2﹣10x+24=0,解得x1=4,x2=6.∵3.5≤x≤5.5,∴x=4.答:如果每天获得160元的利润,销售单价为4元;(3)由题意得:w=(x﹣3)(﹣80x+560)﹣80=﹣80x2+800x﹣1760=﹣80(x﹣5)2+240.∵3.5≤x≤5.5,∴当x=5时,w有最大值为240.故当销售单价定为5元时,每天的利润最大,最大利润是240元.9解:(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x 米,根据题意得:﹣=3,解得:x=40,经检验,x=40是原分式方程的解,且符合题意,∴x=×40=60.答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)设安排甲队工作m天,则安排乙队工作天,根据题意得:7m+5×≤145,解得:m≥10.答:至少安排甲队工作10天.10解:(1)结合题意和图象可知,线段CD为小玲路程与时间函数图象,折现O﹣A﹣B为为小东路程与时间图象则家与图书馆之间路程为4000m,小玲步行速度为2000÷10=200m/s故答案为:4000,200(2)∵小东从离家4000m处以300m/min的速度返回家,则xmin时,∴他离家的路程y=4000﹣300x自变量x的范围为0≤x≤(3)由图象可知,两人相遇是在小玲改变速度之前∴4000﹣300x=200x解得x=8∴两人相遇时间为第8分钟.11解:(1)根据题意,y=400x+500(100﹣x)=﹣100x+50000;(2)∵100﹣x≤2x,∴x≥,∵y=﹣100x+50000中k=﹣100<0,∴y随x的增大而减小,∵x为正数,∴x=34时,y取得最大值,最大值为46600,答:该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)据题意得,y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,33≤x≤60①当0<a<100时,y随x的增大而减小,∴当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大.②a=100时,a﹣100=0,y=50000,即商店购进A型电脑数量满足33≤x≤60的整数时,均获得最大利润;③当100<a<200时,a﹣100>0,y随x的增大而增大,∴当x=60时,y取得最大值.即商店购进60台A型电脑和40台B型电脑的销售利润最大.12解:(1)设y与x之间的函数关系式为y=kx+b,,得,即y与x之间的函数关系式是y=﹣0.5x+110;(2)设合作社每天获得的利润为w元,w=x(﹣0.5x+110)﹣20(﹣0.5x+110)=﹣0.5x2+120x﹣2200=﹣0.5(x﹣120)2+5000,∵60≤x≤150,∴当x=120时,w取得最大值,此时w=5000,答:房价定为120元时,合作社每天获利最大,最大利润是5000元.13解:(1)y=x(36﹣2x)=﹣2x2+36x.(2)由题意:﹣2x2+36x=160,解得x=10或8.∵x=8时,36﹣16=20<18,不符合题意,∴x的值为10.(3)∵y=﹣2x2+36x=﹣2(x﹣9)2+162,∴x=9时,y有最大值162,设购买了乙种绿色植物a棵,购买了丙种绿色植物b棵,由题意:14(400﹣a﹣b)+16a+28b=8600,∴a+7b=1500,∴b的最大值为214,此时a=2,需要种植的面积=0.4×(400﹣214﹣2)+1×2+0.4×214=162.8>162,∴这批植物不可以全部栽种到这块空地上.14解:(1)由图形可得:学校到景点的路程为40km,大客车途中停留了5min,小轿车的速度:=1(千米/分),a=(35﹣20)×1=15,(3分)故答案为:40,5,15;(2)由(1)得:a=15,得大客车的速度:=(千米/分),(4分)小轿车赶上来之后,大客车又行驶了:(60﹣35)×=(千米),40﹣﹣15=(千米),(6分)答:在小轿车司机驶过景点入口时,大客车离景点入口还有千米;(3)∵A(20,0),F(60,40),设直线AF的解析式为:S=kt+b,则,解得:,∴直线AF的解析式为:S=t﹣20,(7分)当S=46时,46=t﹣20,t=66,小轿车赶上来之后,大客车又行驶的时间:=35,小轿车司机折返时的速度:6÷(35+35﹣66)=(千米/分)=90千米/时>80千米/时,(8分)∴小轿车折返时已经超速;(4)大客车的时间:=80min,80﹣70=10min,答:小轿车折返后到达景点入口,需等待10分钟,大客车才能到达景点入口.(10分)故答案为:10.15解:(1)由图象可知,第一天甲乙共加工220﹣185=35吨,第二天,乙停止工作,甲单独加工185﹣165=20吨,则乙一天加工35﹣20=15吨.a=15故答案为:20,15(2)设y=kx+b把(2,15),(5,120)代入解得∴y=35x﹣55(3)由图2可知当w=220﹣55=165时,恰好是第二天加工结束.当2≤x≤5时,两个车间每天加工速度为=55吨∴再过1天装满第二节车厢16(1)设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,依题意有,解得:x=30,经检验,x=30是原方程的解,x+10=30+10=40,答:甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)设他们可购买y棵乙种树苗,依题意有30×(1﹣10%)(50﹣y)+40y≤1500,解得y≤11,∵y为整数,∴y最大为11,答:他们最多可购买11棵乙种树苗.17解:(1)设AD=x米,则AB=依题意得,解得x1=10,x2=90∵a=20,且x≤a∴x=90舍去∴利用旧墙AD的长为10米.(2)设AD=x米,矩形ABCD的面积为S平方米①如果按图一方案围成矩形菜园,依题意得:S=,0<x<a∵0<α<50∴x<a<50时,S随x的增大而增大当x=a时,S最大=50a﹣②如按图2方案围成矩形菜园,依题意得S=,a≤x<50+当a<25+<50时,即0<a<时,则x=25+时,S最大=(25+)2=当25+≤a,即时,S随x的增大而减小∴x=a时,S最大=综合①②,当0<a<时,﹣()=>,此时,按图2方案围成矩形菜园面积最大,最大面积为平方米当时,两种方案围成的矩形菜园面积最大值相等.∴当0<a<时,围成长和宽均为(25+)米的矩形菜园面积最大,最大面积为平方米;当时,围成长为a米,宽为(50﹣)米的矩形菜园面积最大,最大面积为()平方米.18(1)80,120;(2)C的实际意义是快车到达乙地,点C坐标为(6,480);(3)当x为或时,两车之间的距离为500 km.19解:(1)设老师有人,学生有人,依题意得,解得答: 此次参加研学旅行活动的老师有16人,学生有284人.(2)8.(3)设乙种客车租辆,则甲种客车租辆.租车总费用不超过3100元,解得.为使300名师生都有车座,,解得为整数)共有3 种租车方案:方案一:租用甲种客车3 辆,乙种客车5 辆,租车费用2900元;方案二:租用甲种客车2 辆,乙种客车6 辆,租车费用3000元;方案三:租用甲种客车1辆,乙种客车7 辆,租车费用3100元;最节省费用的租车方案是:租用甲种客车3 辆,乙种客车5 辆.20(1)依题意得,解得(2)当时,设,由图象得:,解得∴当时,设,由图象得:,解得∴综上,(3)当时,∵,∴当时,当时,∵,抛物线开口向下,∴当,.∵∴当时,取得最大值,该最大值为元.21解:(1)设A型空调和B型空调每台各需x元、y元,,解得,,答:A型空调和B型空调每台各需9000元、6000元;(2)设购买A型空调a台,则购买B型空调(30﹣a)台,,解得,10≤a≤12,∴a=10、11、12,共有三种采购方案,方案一:采购A型空调10台,B型空调20台,方案二:采购A型空调11台,B型空调19台,方案三:采购A型空调12台,B型空调18台;(3)设总费用为w元,w=9000a+6000(30﹣a)=3000a+180000,∴当a=10时,w取得最小值,此时w=210000,即采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.22解:四边形AOCB是矩形,,动点P从点A出发,以的速度向点O运动,,此时,点Q的运动距离是,故答案为,;如图1,由运动知,,,过点P作于E,过点Q作于F,四边形APEB是矩形,,,,根据勾股定理得,,故答案为;设运动时间为t秒时,由运动知,,,同的方法得,,,点P和点Q之间的距离是10cm,,或;的值是不会变化,理由:四边形AOCB是矩形,,,,,直线AC的解析式为,设运动时间为t,,,,,,解析式为,联立解得,,,,是定值.先求出OA,进而求出时间,即可得出结论;构造出直角三角形,再求出PE,QE,利用勾股定理即可得出结论;同的方法利用勾股定理建立方程求解即可得出结论;先求出直线AC解析式,再求出点P,Q坐标,进而求出直线PQ解析式,联立两解析式即可得出结论.。

2019年全国中考数学真题分类汇编:二次函数的实际应用(含解析)(2021年整理精品文档)

2019年全国中考数学真题分类汇编:二次函数的实际应用(含解析)(2021年整理精品文档)

2019年全国中考数学真题分类汇编:二次函数的实际应用(含解析)(可编辑修改word版)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019年全国中考数学真题分类汇编:二次函数的实际应用(含解析)(可编辑修改word版))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019年全国中考数学真题分类汇编:二次函数的实际应用(含解析)(可编辑修改word版)的全部内容。

2019年全国中考数学真题分类汇编:二次函数的实际应用一、选择题1。

(2019年湖北省襄阳市)如图,若被击打的小球飞行高度h(单位:m)与飞行时间t(单位:s)之间具有的关系为h=20t﹣5t2,则小球从飞出到落地所用的时间为s.【考点】二次函数的实际应用【解答】解:依题意,令h=0得0=20t﹣5t2得t(20﹣5t)=0解得t=0(舍去)或t=4即小球从飞出到落地所用的时间为4s故答案为4.二、填空题1。

(2019年四川省广安市)在广安市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y(米)与水平距离x(米)之间的关系为y=﹣x2+x+,由此可知该生此次实心球训练的成绩为米.【考点】二次函数的应用、自变量与函数的实际意义【解答】解:当y=0时,y=﹣x2+x+=0,解得,x=2(舍去),x=10.故答案为:10.三、解答题1. (2019年四川省攀枝花市)攀枝花得天独厚,气候宜人,农产品资源极为丰富,其中晚熟芒果远销北上广等大城市.某水果店购进一批优质晚熟芒果,进价为10元/千克,售价不低于15元/千克,且不超过40元/每千克,根据销售情况,发现该芒果在一天内的销售量y (千克)与该天的售价x (元/千克)之间的数量满足如下表所示的一次函数关系。

2019届初三数学中考复习 一次函数的应用 专项训练含答案

2019届初三数学中考复习 一次函数的应用 专项训练含答案

2019届初三数学中考复习 一次函数的应用 专项训练含答案1. 大剧院举行专场音乐会,成人票每张20元,学生票每张5元,暑假期间,为了丰富广大师生的业余文化生活,大剧院制定了两种优惠方案,方案①:购买一张成人票赠送一张学生票;方案②:按总价的90%付款,某校有4名老师与若干名(不少于4人)学生听音乐会.(1)设学生人数为x(人),付款总金额为y(元),分别求出两种优惠方案中y 与x 的函数关系式;(2)请计算并确定出最节省费用的购票方案.2. 小李是某服装厂的一名工人,负责加工A ,B 两种型号服装,他每月的工作时间为22天,月收入由底薪和计件工资两部分组成,其中底薪900元,加工A 型服装1件可得20元,加工B 型服装1件可得12元.已知小李每天可加工A 型服装4件或B 型服装8件,设他每月加工A 型服装的时间为x 天,月收入为y 元. (1)求y 与x 的函数关系式;(2)根据服装厂要求,小李每月加工A 型服装数量应不少于B 型服装数量的35,那么他的月收入最高能达到多少元?3. 某汽车运输公司根据实际需要计划购买大、中型两种客车共20辆,已知大型客车每辆62万元,中型客车每辆40万元,设购买大型客车x(辆),购车总费用为y(万元).(1)求y与x的函数关系式;(不要求写出自变量x的取值范围)(2)若购买中型客车的数量少于大型客车的数量,请你给出一种费用最省的方案,并求出该方案所需费用.4. 昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回,如图,是小明昨天出行的过程中,他距西安的距离y(千米)与他离家的时间x(时)之间的函数图象.根据下面图象,回答下列问题:(1)求线段AB所表示的函数关系式;(2)已知昨天下午3点时,小明距西安112千米,求他何时到家?5. 胡老师计划组织朋友暑假去革命圣地延安两日游,经了解,现有甲、乙两家旅行社比较合适,报价均为每人640元,且提供的服务完全相同,针对组团两日游的游客,甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按七五折收费,假设组团参加甲、乙两家旅行社两日游的人数均为x人.(1)请分别写出甲、乙两家旅行社收取组团两日游的总费用y(元)与x(人)之间的函数关系式;(2)若胡老师组团参加两日游的人数共有32人,请你计算,在甲、乙两家旅行社中,帮助胡老师选择收取总费用较少的一家.6. 科学研究发现,空气含氧量y(克/立方米)与海拔高度x(米)之间近似地满足一次函数关系.经测量,在海拔高度为0米的地方,空气含氧量约为299克/立方米;在海拔高度为2000米的地方,空气含氧量约为235克/立方米.(1)求出y与x的函数关系式;(2)已知某山的海拔高度为1200米,请你求出该山山顶处的空气含氧量约为多少?7. 小李从西安通过某快递公司给在南昌的外婆寄一盒樱桃,快递时,他了解到这个公司除收取每次6元的包装费外,樱桃不超过1 kg收费22元,超过1 kg,则超出部分按每千克10元加收费用.设该公司从西安到南昌快递樱桃的费用为y(元),所寄樱桃为x(kg).(1)求y与x之间的函数关系式;(2)已知小李给外婆快寄了2.5 kg樱桃,请你求出这次快寄的费用是多少元?8. “十一节”期间,申老师一家自驾游去了离家170千米的某地,下面是他们离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.(1)求他们出发半小时时,离家多少千米?(2)求出AB段图象的函数表达式;(3)他们出发2小时时,离目的地还有多少千米?9. 由于持续高温和连日无雨,某水库的蓄水量随时间的增加而减少,已知原有蓄水量y1(万m3)与干旱持续时间x(天)的关系如图中线段l1所示,针对这种干旱情况,从第20天开始向水库注水,注水量y2(万m3)与时间x(天)的关系如图中线段l2所示(不考虑其他因素).(1)求原有蓄水量y1(万m3)与时间x(天)的函数关系式,并求当x=20时的水库总蓄水量;(2)求当0≤x≤60时,水库的总蓄水量y(万m3)与时间x(天)的函数关系式(注明x 的范围),若总蓄水量不多于900万m3为严重干旱,直接写出发生严重干旱时x 的范围.10. 周末,小芳骑自行车从家出发到野外郊游,从家出发0.5小时到达甲地,游玩一段时间后按原速前往乙地,小芳离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,行驶10分钟时,恰好经过甲地,如图是她们距乙地的路程y(km)与小芳离家时间x(h)的函数图象.(1)小芳骑车的速度为____km/h,H点坐标为__________________;(2)小芳从家出发多少小时后被妈妈追上?此时距家的路程多远?(3)相遇后,妈妈载上小芳和自行车同时到达乙地(彼此交流时间忽略不计),求小芳比预计时间早几分钟到达乙地?11. 根据卫生防疫部门要求,游泳池必须定期换水、清洗.某游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完.游泳池内的水量Q(m3)和开始排水后的时间t(h)之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间?排水孔排水速度是多少?(2)当2≤t≤3.5时,求Q关于t的函数表达式.12. 小明和爸爸从家步行去公园,爸爸先出发一直匀速前行,小明后出发.家到公园的距离为2500 m,如图是小明和爸爸所走的路程s(m)与小明的步行时间t(min)的函数图象.(1)直接写出小明所走路程s与时间t的函数关系式;(2)小明出发多少时间与爸爸第三次相遇?(3)在速度都不变的情况下,小明希望比爸爸早20 min到达公园,则小明在步行过程中停留的时间需作怎样的调整?13. 某物流公司引进A,B两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A种机器人于某日0时开始搬运,过了1小时,B种机器人也开始搬运,如图,线段OG表示A种机器人的搬运量y A(千克)与时间x(时)的函数图象,根据图象提供的信息,解答下列问题:(1)求y B关于x的函数解析式;(2)如果A,B两种机器人连续搬运5个小时,那么B种机器人比A种机器人多搬运了多少千克?14. 某学校计划组织500人参加社会实践活动,与某公交公司接洽后,得知该公司有A,B型两种客车,它们的载客量和租金如表所示:经测算,租用A,B型客车共13辆较为合理,设租用A型客车x辆,根据要求回答下列问题:(1)用含x的代数式填写下表:(2)采用怎样的租车方案可以使总的租车费用最低,最低为多少?15. 为了节约资源,科学指导居民改善居住条件,小强向房管部门提出了一个购买商品房的政策性方案:设一个3口之家购买商品房的人均面积为x平方米,缴纳房款y万元.(1)请求出y关于x的函数关系式;(2)若某3口之家欲购买120平方米的商品房,求其应缴纳的房款.16. 保障我国海外维和部队官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:(1)设从甲仓库运送到A港口的物资为x吨,求总运费y(元)与x(吨)之间的函数关系式,并写出x的取值范围;(2)求出最低费用,并说明费用最低时的调配方案. 参考答案:1. 解:(1)按优惠方案①可得y 1=20×4+(x -4)×5=5x +60(x ≥4),按优惠方案②可得y 2=(5x +20×4)×90%=4.5x +72(x ≥4) (2)因为y 1-y 2=0.5x -12(x ≥4),①当y 1-y 2=0时,得0.5x -12=0,解得x =24,∴当x =24时,两种优惠方案付款一样多.②当y 1-y 2<0时,得0.5x -12<0,解得x <24,∴4≤x <24时,y 1<y 2,优惠方案①付款较少.③当y 1-y 2>0时,得0.5x -12>0,解得x >24,当x >24时,y 1>y 2,优惠方案②付款较少2. 解:(1)由题意得y =20×4x +12×8×(22-x)+900,即y =-16x +3012 (2)依题意得4x ≥35×8×(22-x),∴x ≥12.在y =-16x +3012中,∵-16<0,∴y 随x 的增大而减小.∴当x =12时,y 取最大值,此时y =-16×12+3012=2820.答:当小李每月加工A 型服装12天时,月收入最高,可达2820元3. 解:(1)因为购买大型客车x 辆,所以购买中型客车(20-x)辆.y =62x +40(20-x)=22x +800(2)依题意得20-x <x.解得x >10,∵y =22x +800,y 随着x 的增大而增大,x 为整数,∴当x =11时,购车费用最省,为22×11+800=1042(万元),此时需购买大型客车11辆,中型客车9辆,答:购买大型客车11辆,中型客车9辆时,购车费用最省为1042万元4. 解:(1)设线段AB 所表示的函数关系式为y =kx +b ,依题意有⎩⎨⎧b =192,2k +b =0,解得⎩⎨⎧k =-96,b =192.故线段AB 所表示的函数关系式为:y =-96x +192(0≤x ≤2)(2)12+3-(7+6.6)=1.4(小时),112÷1.4=80(千米/时),(192-112)÷80=1(小时),3+1=4(时).答:他下午4时到家5. 解:(1)甲旅行社的总费用:y 甲=640×0.85x =544x ;乙旅行社的总费用:当0≤x ≤20时,y 乙=640×0.9x =576x ;当x >20时,y 乙=640×0.9×20+640×0.75(x -20)=480x +1920(2)当x =32时,y 甲=544×32=17408(元),y 乙=480×32+1920=17280,因为y 甲>y 乙,所以胡老师选择乙旅行社6. 解:(1)设y =kx +b(k ≠0),则⎩⎨⎧b =299,2000k +b =235,解得⎩⎪⎨⎪⎧k =-4125,b =299,∴y =-4125x +299(2)当x =1200时,y =-4125×1200+299=260.6(克/立方米),答:该山山顶处的空气含氧量约为260.6克/立方米7. 解:(1)由题意得,当0<x ≤1时,y =22+6=28;当x >1时,y =28+10(x-1)=10x +18.∴y =⎩⎨⎧28(0<x ≤1)10x +18(x >1)(2)当x =2.5时,y =10×2.5+18=43,∴这次快寄的费用是43元8. 解:(1)设OA 段图象的函数表达式为y =kx ,∵当x =1.5时,y =90,∴1.5k=90,∴k =60,∴y =60x(0≤x ≤1.5),∴当x =0.5时,y =60×0.5=30,故他们出发半小时时,离家30千米(2)设AB 段图象的函数表达式为y =k ′x +b ,∵A(1.5,90),B(2.5,170)在AB 上,∴⎩⎨⎧1.5k ′+b =90,2.5k ′+b =170,解得⎩⎨⎧k ′=80,b =-30,∴y =80x -30(1.5≤x ≤2.5) (3)∵当x =2时,y =80×2-30=130,∴170-130=40,故他们出发2小时时,离目的地还有40千米9. 解:(1)设y 1=k 1x +b 1,把(0,1200)和(60,0)代入到y 1=k 1x +b 1,得⎩⎨⎧b 1=1200,60k 1+b 1=0,解得⎩⎨⎧k 1=-20,b 1=1200.∴y 1=-20x +1200,当x =20时,y 1=-20×20+1200=800(2)设y 2=k 2x +b 2,把(20,0)和(60,1000)代入到y 2=k 2x +b 2中,得⎩⎨⎧20k 2+b 2=0,60k 2+b 2=1000, 解得⎩⎨⎧k 2=25,b 2=-500,∴y 2=25x -500,当0≤x ≤20时,y =-20x +1200,当20<x ≤60时,y =y 1+y 2=-20x +1200+25x -500=5x +700,y ≤900,则5x +700≤900,x ≤40,当y 1=900时,900=-20x +1200,x =15,∴发生严重干旱时x 的范围为15≤x ≤4010. 解:(1)由函数图象可以得出,小芳家距离甲地的路程为10 km ,花费时间为0.5 h ,故小芳骑车的速度为:10÷0.5=20(km/h),由题意可得出,点H 的纵坐标为20,横坐标为:43+16=32,故点H 的坐标为(32,20)(2)设直线AB 的解析式为:y 1=k 1x +b 1,将点A(0,30),B(0.5,20)代入得:y 1=-20x +30,∵AB ∥CD ,∴设直线CD 的解析式为:y 2=-20x +b 2,将点C(1,20)代入得:b 2=40,故y 2=-20x +40,设直线EF 的解析式为:y 3=k 3x +b 3,将点E(43,30),H(32,20)代入得:k 3=-60,b 3=110,∴y 3=-60x +110,解方程组⎩⎨⎧y =-60x +110,y =-20x +40,得⎩⎨⎧x =1.75,y =5,∴点D 坐标为(1.75,5),30-5=25(km ),所以小芳出发1.75小时候被妈妈追上,此时距家25 km (3)将y =0代入直线CD 的解析式有:-20x +40=0,解得x =2,将y =0代入直线EF 的解析式有:-60x +110=0,解得x =116,2-116=16(h )=10(分钟),故小芳比预计时间早10分钟到达乙地11. 解:(1)暂停排水需要的时间为:2-1.5=0.5(小时).∵排水时间为:3.5-0.5=3(小时),一共排水900 m 3,∴排水孔排水速度是:900÷3=300(m 3/h )(2)当2≤t ≤3.5时,设Q 关于t 的函数表达式为Q =kt +b ,易知图象过点(3.5,0).∵ t =1.5时,排水300×1.5=450,此时Q =900-450=450(m 3),∴(2,450)在直线Q =kt +b 上.把(2,450),(3.5,0)代入Q =kt +b ,得⎩⎨⎧2k +b =450,3.5k +b =0,解得⎩⎨⎧k =-300,b =1050,∴Q 关于t 的函数表达式为Q =-300t +1050 12. 解:(1)s =⎩⎪⎨⎪⎧ 50t (0≤t ≤20),1000(20<t ≤30),50t -500(30<t ≤60)(2)设小明的爸爸所走的路程s 与小明的步行时间t 的函数关系式为:s =kt +b ,则⎩⎨⎧25k +b =1000,b =250,解得,⎩⎨⎧k =30,b =250,则小明的爸爸所走的路程与小明的步行时间的关系式为:s =30t +250,当50t -500=30t +250,即t =37.5 min 时,小明与爸爸第三次相遇(3)30t +250=2500,解得t =75,则小明的爸爸到达公园需要75 min ,∵小明到达公园需要的时间是60 min ,∴小明希望比爸爸早20 min 到达公园,则小明在步行过程中停留的时间需减少5 min13. 解:(1)设y B 关于x 的函数解析式为y B =kx +b(k ≠0).将点(1,0),(3,180)代入得⎩⎨⎧k +b =0,3k +b =180.解得k =90,b =-90.所以y B 关于x 的函数解析式为y B =90x -90(1≤x ≤6)(2)设y A 关于x 的解析式为y A =k 1x.根据题意得3k 1=180.解得k 1=60.所以y A =60x.当x =5时,y A =60×5=300(千克);x =6时,y B =90×6-90=450(千克).450-300=150(千克).答:如果A,B两种机器人各连续搬运5小时,B种机器人比A种机器人多搬运了150千克14. (1) 28(13-x) 250(13-x)(2) 解:设租车的总费用为W元,则有:W=400x+250(13-x)=150x+3250.由已知得:45x+28(13-x)≥500,解得:x≥8.∵在W=150x+3250中150>0,∴当x=8时,W取最小值,最小值为4450元.故租A型车8辆,B型车5辆时,总的租车费用最低,最低为4450元15. 解:(1)当0≤x≤30时,y=3×0.4x=1.2x;当x>30时,y=3×0.9×(x-30)+3×0.4×30=2.7x-45(2)由题意知:该3口之家人均住房面积为:120÷3=40>30,在y=2.7x-45中,令x=40,则y=2.7×40-45=63.∴应缴纳的房款为63万元16. 解:(1)设从甲仓库运x吨往A港口,则从甲仓库运往B港口的有(80-x)吨,从乙仓库运往A港口的有(100-x)吨,运往B港口的有50-(80-x)=(x-30)吨,所以y=14x+20(100-x)+10(80-x)+8(x-30)=-8x+2560,x的取值范围是30≤x≤80(2)由(1)得y=-8x+2560,y随x的增大而减少,所以当x=80时总运费最小,当x=80时,y=-8×80+2560=1920,此时方案为:把甲仓库的物资全部运往A港口,再从乙仓库运20吨往A港口,乙仓库余下的物资全部运往B港口。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)∵小东从离家 4000 m 处以 300 m/min 的速度返回家, 则 x min 时,他离家的路程 y=4000-300x,自变量 x 的范围 为 0≤x≤430;
(3)由图象可知,两人相遇是在小玲改变速度之前, ∴4000-300x=200x,解得 x=8 ∴两人相遇时间为第 8 分钟.
2.(2018·黑龙江)某市制米厂接到加工大米任务,要求 5 天
内加工完 2一段时间维修设备,然后改变 加工效率继续加工,直到与甲车间同时完成加工任务为止.设 甲、乙两车间各自加工大米数量 y(吨)与甲车间加工时间 x(天) 之间的关系如图(1)所示;未加工大米 w(吨)与甲加工时间 x(天) 之间的关系如图(2)所示,请结合图象回答下列问题:
间的关系如图 1 所示,成本 y2 与销售月份 x 之间的关系如图 2 所示(图 1 的图象是线段,图 2 的图象是抛物线)
(1)已知 6 月份这种蔬菜的成本最低,此时出售每千克的 收益是多少元?(收益=售价-成本)
(2)哪个月出售这种蔬菜,每千克的收益最大?简单说明 理由.
(3)已知市场部销售该种蔬菜 4,5 两个月的总收益为 22 万 元,且 5 月份的销售量比 4 月份的销售量多 2 万千克,求 4,5 两个月的销售量分别是多少万千克?
1.(2018·吉林)小玲和弟弟小东分别从家和图书馆同时出
发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达
图书馆恰好用 30 min.小东骑自行车以 300 m/min 的速度直接
回家,两人离家的路程 y(m)与各自离开出发地的时间 x(min)
之间的函数图象如图所示.
(1)家与图书馆之间的路程为
请根据图中信息解答下列问题:
(1)求这天的温度 y 与时间 x(0≤x≤24)的函数关系式; (2)求恒温系统设定的恒定温度; (3)若大棚内的温度低于 10℃时,蔬菜会受到伤害.问这天 内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到 伤害?
解:(1)设线段 AB 解析式为 y=k1x+b(k≠0),∵线段 AB


(0,10)

(2,14)




b=10, 2k1+b=14,


k1=2, b=10,
∴AB 解析式为:y=2x+10(0≤x<5),∵B 在线段 AB 上,
当 x=5 时,y=20,∴B 坐标为(5,20),
∴线段 BC 的解析式为:y=20(5≤x<10),
设双曲线 CD 解析式为:y=kx2(k2≠0),∵C(10,20),∴k2=200, ∴双曲线 CD 解析式为:y=20x0(10≤x≤24),∴y 关于 x 的
(3)由图 2 可知,当 w=220-55=165 时,恰好是第二天加工 结束.当 2≤x≤5 时,两个车间每天加工速度为51-652=55 吨, ∴再过 1 天装满第二节车厢.
3.(2018·乐山)某蔬菜生产基地的气温较低时,用装有恒温
系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温 系统从开启到关闭后,大棚内的温度 y(℃)与时间 x(h)之间的 函数关系,其中线段 AB,BC 表示恒温系统开启阶段,双曲 线的一部分 CD 表示恒温系统关闭阶段.
m,小玲步行的速
度为
m/min;
(2)求小东离家的路程 y 关于 x 的函数解析式,并写出自 变量的取值范围;
(3)求两人相遇的时间.
解:(1)结合题意和图象可知,线段 CD 为小东路程与时 间函数图象,折现 O-A-B 为小玲路程与时间图象,则家与 图书馆之间路程为 4000 m,小玲步行速度为 2000÷20= 100(m/min);
解:(1)当 x=6 时,y1=3,y2=1,∵y1-y2=3-1=2,∴6 月份出售这种蔬菜每千克的收益是 2 元; (2)设 y1=mx+n,y2=a(x-6)2+1.将(3,5),(6,3)代入 y1=mx
+n,36mm++nn==53,,
解得:m=-23, n=7,
∴y1=-23x+7;
将(3,4)代入 y2=a(x-6)2+1,4=a(3-6)2+1,解得:a=13,
∴y2= 13(x - 6)2+ 1 = 13x 2- 4x + 13.∴y1- y2= - 23x + 7 - ( 13x 2 -4x+13)=-13x2+130x-6=-13(x-5)2+73.∵-13<0, ∴当 x=5 时,y1-y2 取最大值,最大值为73,即 5 月份出售 这种蔬菜,每千克的收益最大;
函数解析式为:y=22x0+(5≤10x(0<≤1x0<),5), 20x0(10≤x≤24);
(2)由(1)恒温系统设定恒温为 20℃; (3)把 y=10 代入 y=20x0中,解得,x=20,∴20-10=10, 答:恒温系统最多关闭 10 小时,蔬菜才能避免受到伤害.
4.(2018·黔南州)某种蔬菜的销售单价 y1 与销售月份 x 之
(1)甲车间每天加工大米
吨,a=

(2)求乙车间维修设备后,乙车间加工大米数量 y(吨)与
x(天)之间函数关系式;
(3)若 55 吨大米恰好装满一节车厢,那么加工多长时间装
满第一节车厢?再加工多长时间恰好装满第二节车厢?
解:(1)由图象可知,第一天甲乙共加工 220-185=35 吨, 第二天,乙停止工作,甲单独加工 185-165=20 吨, 则乙一天加工 35-20=15 吨.a=15; (2)设 y=kx+b,把(2,15),(5,120)代入11520==2k5k++bb,, 解得kb==3-5,55, ∴y=35x-55;
相关文档
最新文档