第五章 相交线与平线寒假预习及解析

合集下载

第五章相交线和平行线章节复习总结

第五章相交线和平行线章节复习总结

七年级下学期数学复习第五章相交线与平行线一、知识结构图相交线相交线垂线同位角、内错角、同旁内角平行线平行线及其判定平行线的判定平行线的性质平行线的性质命题、定理平移二、知识定义邻补角:两条直线相交所构成的四个角中,有且有的两个角是邻补角。

邻补角的性质:邻补角。

对顶角:一个角的两边分别是另一个叫的两边的,像这样的两个角互为对顶角。

对顶角的性质:对顶角。

例1如图,直线AB,CD,EF相交于点O,∠AOE=54°,∠EOD=90°,求∠EOB,∠COB的度数。

O CBA 1ODC BA212.平面内三条直线交点的个数有个。

3.如下图,O为直线AB上一点,∠COB=26°30′,则∠1=4.如上图,直线AB,CD相交于O,∠1-∠2=85°,∠AOC=垂线:垂线:两条直线相交成两条直线相交成时,叫做互相垂直,其中一条叫做另一条的。

形成的角称为直角,直角。

垂线的性质:性质1:。

性质2:最短。

例1.如果直线b⊥a,c⊥a,那么b c。

2.与一条已知直线垂直的直线有条。

E ODCBA3.A 村正南有一条公路MN ,由A 村到公路最近的路线是经过点A 作AD ⊥MN ,垂足为点D ,这种设计的理由是 ;B 村与A 村相邻,两村村民来往的最短路线是线段AB 的长,理由是 。

4.已知∠AOB 与∠BOC 互为邻补角,OD 是∠AOB 的平分线,OE 在∠BOC内,∠BOE=21∠EOC ,∠DOE=72°,求∠EOC 的度数。

平行线:平行线:在在 内, 的两条直线叫做平行线。

平行公理: 。

平行的传递性: 。

例1.在同一平面内,过直线l 外的两点A ,B 所作直线与直线l 的位置关系30°北北BA是 同位角、内错角、同旁内角:结合右边图形,哪些是同位角,内错角和同旁内角 同位角: 内错角: 同旁内角:例.1.一个人从A 点出发向北偏东60°方向走到B 点,再从B 点出发向南偏西15°方向走到C 点,则∠ABC 等于( )A.135°B.105°C.75°D.45° 2.由点A 测得点B 的方向是平行线的判定:判定1: 。

初中数学第五章 相交线与平行线知识点-+典型题附解析

初中数学第五章 相交线与平行线知识点-+典型题附解析

初中数学第五章 相交线与平行线知识点-+典型题附解析一、选择题1.如图,直线a ,b 被直线c 所截,且a//b ,若∠1=55°,则∠2等于( )A .35°B .45°C .55°D .125°2.如图,直角三角形ABC 的直角边AB =6,BC =8,将直角三角形ABC 沿边BC 的方向平移到三角形DEF 的位置,DE 交AC 于点G ,BE =2,三角形CEG 的面积为13.5,下列结论:①三角形ABC 平移的距离是4;②EG =4.5;③AD ∥CF ;④四边形ADFC 的面积为6.其中正确的结论是A .①②B .②③C .③④D .②④ 3.如图,在ABC 中,//EF BC ,ED 平分BEF ∠,且70∠︒=DEF ,则B 的度数为( )A .70°B .60°C .50°D .40°4.如图,已知AB ∥CD, EF ∥CD ,则下列结论中一定正确的是( )A .∠BCD= ∠DCE;B .∠ABC+∠BCE+∠CEF=360︒;C .∠BCE+∠DCE=∠ABC+∠BCD;D .∠ABC+∠BCE -∠CEF=180︒.5.下列说法中正确的是( )A.两条射线组成的图形叫做角B.小于平角的角可分为锐角和钝角两类C.射线就是直线D.两点之间的所有连线中,线段最短6.如下图,在下列条件中,能判定AB//CD的是( )A.∠1=∠3 B.∠2=∠3 C.∠1=∠4 D.∠3=∠47.下列语句是命题的是 ( )(1)两点之间,线段最短;(2)如果两个角的和是180度,那么这两个角互补;(3)请画出两条互相平行的直线;(4)一个锐角与一个钝角互补吗?A.(1)(2)B.(3)(4)C.(2)(3)D.(1)(4)8.下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容,则回答正确的是()已知:如图,∠BEC=∠B+∠C,求证:AB∥CD证明:延长BE交__※__于点F,则∠BEC=__⊙__+∠C又∵∠BEC=∠B+∠C,∴∠B=▲∴AB∥CD(__□__相等,两直线平行)A.⊙代表∠FEC B.□代表同位角C.▲代表∠EFC D.※代表AB 9.下列各命题中,属于假命题的是()A.若0a b->,则a b>B.若0a b-=,则0ab≥C.若0a b-<,则a b<D.若0a b-≠,则0ab≠10.如图,给出下列条件:①∠1=∠2:②∠3=∠4:③AB∥CE,且∠ADC=∠B:④AB∥CE,且∠BCD=∠BAD.其中能推出BC∥AD的条件为()A.①②B.②④C.②③D.②③④二、填空题11.如图,//AB CD,GF与AB相交于点H,与CD 于F,FE平分HFD∠,若50EHF ∠=︒,则HFE ∠的度数为______.12.一副三角尺按如图所示叠放在一起,其中点,B D 重合,若固定三角形AOB ,将三角形ACD 绕点A 顺时针旋转一周,共有 _________次 出现三角形ACD 的一边与三角形AOB 的某一边平行.13.设a 、b 、c 为平面上三条不同直线,(1)若//,//a b b c ,则a 与c 的位置关系是_________;(2)若,a b b c ⊥⊥,则a 与c 的位置关系是_________;(3)若//a b ,b c ⊥,则a 与c 的位置关系是________.14.如图,把直角梯形ABCD 沿AD 方向平移到梯形EFGH ,28HG cm =,5MG cm =,4MC cm =,则阴影部分的面积是___15.如图,直线a ∥b ∥c ,直角∠BAC 的顶点A 在直线b 上,两边分别与直线a ,c 相交于点B ,C ,则∠1+∠2的度数是___________.16.如果一张长方形的纸条,如图所示折叠,那么∠α等于____.17.如图,AB ∥CD ,∠B =75°,∠E =27°,则∠D 的度数为_____.18.如图,AD ∥BC ,∠D=100°,CA 平分∠BCD ,则∠DAC=________度.19.如图,CB ∥OA ,∠B =∠A =100°,E 、F 在CB 上,且满足∠FOC =∠AOC ,OE 平分∠BOF ,若平行移动AC ,当∠OCA 的度数为_____时,可以使∠OEB =∠OCA .20.如图,直线////a b c ,直角三角板的直角顶点落在直线b 上,若135∠=︒,则2∠等于_______.三、解答题21.(感知)如图①,AB ∥CD ,点E 在直线AB 与CD 之间,连结AE 、BE ,试说明∠BAE+∠DCE=∠AEC ;(探究)当点E 在如图②的位置时,其他条件不变,试说明∠AEC+∠BAE+∠DCE=360°; (应用)点E 、F 、G 在直线AB 与CD 之间,连结AE 、EF 、FG 和CG ,其他条件不变,如图③,若∠EFG=36°,则∠BAE+∠AEF+∠FGC+∠DCG=______°.22.已知:直线l 分别交AB 、CD 与E 、F 两点,且AB ∥CD .(1) 说明:∠1=∠2;(2) 如图2,点M 、N 在AB 、CD 之间,且在直线l 左侧,若∠EMN +∠FNM =260°, ①求:∠AEM +∠CFN 的度数;②如图3,若EP 平分∠AEM ,FP 平分∠CFN ,求∠P 的度数;(3) 如图4,∠2=80°,点G 在射线EB 上,点H 在AB 上方的直线l 上,点Q 是平面内一点,连接QG 、QH ,若∠AGQ =18°,∠FHQ =24°,直接写出∠GQH 的度数.23.问题情境:如图1,AB CD ,130PAB ∠=,120PCD ∠=.求 APC ∠ 度数. 小明的思路是:如图2,过 P 作 PE AB ,通过平行线性质,可得5060110APC ∠=+=.问题迁移:(1)如图3,AD BC ,点 P 在射线 OM 上运动,当点 P 在 A 、 B 两点之间运动时,ADP α∠=∠,BCP β∠=∠.CPD ∠ 、 α∠ 、 β∠ 之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点 P 在 A 、 B 两点外侧运动时(点 P 与点 A 、 B 、 O 三点不重合),请你直接写出 CPD ∠ 、 α∠ 、 β∠ 间的数量关系.24.问题情境:如图1,AB CD ∥,130PAB ∠=︒,120PCD ∠=︒,求APC ∠的度数.小明的思路是:如图2,过P 作PE AB ,通过平行线性质,可得APC ∠=______. 问题迁移:如图3,AD BC ∥,点P 在射线OM 上运动,ADP α∠=∠,BCP β∠=∠.(1)当点P 在A 、B 两点之间运动时,CPD ∠、α∠、β∠之间有何数量关系?请说明理由.(2)如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你直接写出CPD ∠、α∠、β∠之间有何数量关系.25.将一副三角板中的两个直角顶点C 叠放在一起(如图①),其中30A ∠=︒,60B ∠=︒,45D E ∠=∠=︒.(1)猜想BCD ∠与ACE ∠的数量关系,并说明理由;(2)若3BCD ACE ∠=∠,求BCD ∠的度数;(3)若按住三角板ABC 不动,绕顶点C 转动三角DCE ,试探究BCD ∠等于多少度时//CE AB ,并简要说明理由.26.如图1,已知直线PQ ∥MN ,点A 在直线PQ 上,点C 、D 在直线MN 上,连接AC 、AD ,∠PAC =50°,∠ADC =30°,AE 平分∠PAD ,CE 平分∠ACD ,AE 与CE 相交于E . (1)求∠AEC 的度数;(2)若将图1中的线段AD 沿MN 向右平移到A 1D 1如图2所示位置,此时A 1E 平分∠AA 1D 1,CE 平分∠ACD 1,A 1E 与CE 相交于E ,∠PAC =50°,∠A 1D 1C =30°,求∠A 1EC 的度数.(3)若将图1中的线段AD 沿MN 向左平移到A 1D 1如图3所示位置,其他条件与(2)相同,求此时∠A 1EC 的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】试题分析:根据图示可得:∠1和∠2是同位角,根据两直线平行,同位角相等可得:∠2=∠1=55°.考点:平行线的性质2.B解析:B【解析】分析:(1)对应线段的长度即是平移的距离;(2)根据EC 的长和△CEG 的面积求EG ;(3)平移前后,对应点的连线平行且相等;(4)根据平行四边形的面积公式求.详解:(1)因为点B ,E 是对应点,且BE =2,所以△ABC 平行的距离是2,则①错误; ②根据题意得,13.5×2=(8-2)EG ,解得EG =4.5,则②正确;③因为A ,D 是对应点,C ,F 是对应点,所以AD ∥CF ,则③正确;④平行四边形ADFC 的面积为AB ·CF =AB ·BE =6×2=12,则④错误.故选B .点睛:本题考查了平移的性质,平移的性质有:①平移只改变图形的位置,不改变图形的形状和大小;②平移得到的图形与原图形中的对应线段平行(或在同一条直线上)且相等,对应角相等;对应点连线平行(或在同一条直线上)且相等.3.D解析:D【分析】由角平分线的定义求出∠BEF=140°,再根据平行线的性质“两直线平行,同旁内角互补”求出∠B 的度数即可.【详解】∵ED 平分BEF ∠,且70∠︒=DEF ,∴70DEB ∠=︒∴270140BEF ︒=∠=⨯︒∵//EF BC∴180B BEF ∠+∠=︒∴180********B BEF ∠=︒-∠=︒-︒=︒故选D【点睛】此题主要考查了平行线的性质和角平分的性质,此题难度不大,注意掌握相关性质的运用4.D解析:D【解析】分析:根据平行线的性质,找出图形中的同旁内角、内错角即可判断.详解:延长DC 到H∵AB ∥CD ,EF ∥CD∴∠ABC+∠BCH=180°∠ABC=∠BCD∠CE+∠DCE=180°∠ECH=∠FEC∴∠ABC+∠BCE+∠CEF=180°+∠FEC∠ABC+∠BCE -∠CEF=∠ABC+∠BCH+∠ECH-∠CEF=180°.故选D.点睛:此题主要考查了平行线的性质,关键是熟记平行线的性质:两直线平行,内错角相等,同旁内角互补,同位角相等.5.D解析:D【解析】根据真假命题的概念,可知:A 、有公共端点的两条射线组成的图形叫做角,选项错误;B 、小于平角的角可分为锐角、钝角,还应包含直角,选项错误.C 、射线是直线的一部分,选项错误;D 、两点之间的所有连线中,线段最短,选项正确;故选:D .6.C解析:C【解析】根据平行线的判定,可由∠2=∠3,根据内错角相等,两直线平行,得到AD ∥BC ,由∠1=∠4,得到AB∥CD.故选C.7.A解析:A【分析】根据命题的定义对四句话进行判断.【详解】解:(1)两点之间,线段最短,它是命题;(2)如果两个角的和是90度,那么这两个角互余,它是命题;(3)请画出两条互相平行的直线,它不是命题;(4)一个锐角与一个钝角互补吗?,它不是命题.所以,是命题的为(1)(2),故选:A.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成如果…那么…形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.8.C解析:C【分析】延长BE交CD于点F,利用三角形外角的性质可得出∠BEC=∠EFC+∠C,结合∠BEC=∠B+∠C可得出∠B=∠EFC,利用“内错角相等,两直线平行”可证出AB∥CD,找出各符号代表的含义,再对照四个选项即可得出结论.【详解】证明:延长BE交CD于点F,则∠BEC=∠EFC+∠C.又∵∠BEC=∠B+∠C,∴∠B=∠EFC,∴AB∥CD(内错角相等,两直线平行).∴※代表CD,⊙代表∠EFC,▲代表∠EFC,□代表内错角.故选:C.【点睛】本题考查了平行线的判定以及三角形外角的性质,利用各角之间的关系,找出∠B=∠EFC 是解题的关键.9.D解析:D【分析】根据不等式的性质对各选项进行逐一判断即可.【详解】A、正确,符合不等式的性质;B、正确,符合不等式的性质.C、正确,符合不等式的性质;D、错误,例如a=2,b=0;故选D.【点睛】考查了命题与定理的知识,解题的关键是了解不等式的性质,难度不大.10.D解析:D【分析】根据平行线的判定条件,逐一判断,排除错误答案.【详解】解:①∵∠1=∠2,∴AB∥CD,不符合题意;②∵∠3=∠4,∴BC∥AD,符合题意;③∵AB∥CD,∴∠B+∠BCD=180°,∵∠ADC=∠B,∴∠ADC+∠BCD=180°,由同旁内角互补,两直线平行可得BC∥AD,故符合题意;④∵AB∥CE,∴∠B+∠BCD=180°,∵∠BCD=∠BAD,∴∠B+∠BAD=180°,由同旁内角互补,两直线平行可得BC∥AD,故符合题意;故能推出BC∥AD的条件为②③④.故选:D.【点睛】本题考查了平行线的判定,关键是掌握判定定理:同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.二、填空题11.65°【分析】由AB//CD可得∠HFD=130︒,再由FE平分∠HFD可求出∠HFE.【详解】∵∴∠EHF+∠HFD=180°∵∴∠HFD=130°∵平分,∴∠HFE=∠HFD=解析:65°【分析】由AB//CD 可得∠HFD=130︒,再由FE 平分∠HFD 可求出∠HFE .【详解】∵//AB CD∴∠EHF+∠HFD=180°∵50EHF ∠=︒∴∠HFD=130°∵FE 平分HFD ∠,∴∠HFE=12∠HFD=1130652⨯︒=︒ 故答案为:65°.【点睛】此题主要考查了平行线的性质以及角平分线的定义,熟练掌握平行线的性质以及角平分线的定义是解题的关键.12.【分析】要分类讨论,不要漏掉任何一种情况,也可实际用三角板操作找到它们之间的关系,再计算.【详解】解:分8种情况讨论:(1)如图1,AD 边与OB 边平行时,∠BAD=45°;(2)如图2,解析:8【分析】要分类讨论,不要漏掉任何一种情况,也可实际用三角板操作找到它们之间的关系,再计算.【详解】解:分8种情况讨论:(1)如图1,AD 边与OB 边平行时,∠BAD =45°;(2)如图2,当AC 边与OB 平行时,∠BAD =90°+45°=135°;(3)如图3,DC 边与AB 边平行时,∠BAD =60°+90°=150°,(4)如图4,DC 边与OB 边平行时,∠BAD =135°+30°=165°,(5)如图5,DC 边与OB 边平行时,∠BAD =45°﹣30°=15°;(6)如图6,DC 边与AO 边平行时,∠BAD =15°+90°=105°(7)如图7,DC 边与AB 边平行时,∠BAD =30°,(8)如图8,DC边与AO边平行时,∠BAD=30°+45°=75°;综上所述:∠BAD的所有可能的值为:15°,30°,45°,75°,105°,135°,150°,165°.故答案为:8.【点睛】本题考查了平行线的性质及判定,画出所有符合题意的示意图是解决本题的关键.13.平行平行垂直【解析】根据平行公理的推论,可由,得出a∥c;根据垂直的性质以及平行线的判定,可由,得到a∥c;根据,,得到a⊥c.故答案为平行,平行,垂直.点睛:由平解析:平行 平行 垂直【解析】根据平行公理的推论,可由//,//a b b c ,得出a ∥c ;根据垂直的性质以及平行线的判定,可由,a b b c ⊥⊥,得到a∥c;根据//a b ,b c ⊥,得到a⊥c.故答案为平行,平行,垂直.点睛:由平行于同一条直线的两条直线互相平行,可求解(1),因为在同一平面内,垂直于同一条直线的两条直线互相平行,可求解(2),再根据平行线的性质可求解(3). 14.130cm2.【分析】根据平移的性质可知梯形EFGH≌梯形ABCD ,那么GH=CD ,BC=FG ,观察可知梯形EFMD 是两个梯形的公共部分,那么阴影部分的面积就等于梯形MGHD ,再根据梯形的面积计解析:130cm 2.【分析】根据平移的性质可知梯形EFGH ≌梯形ABCD ,那么GH=CD ,BC=FG ,观察可知梯形EFMD 是两个梯形的公共部分,那么阴影部分的面积就等于梯形MGHD ,再根据梯形的面积计算公式计算即可.【详解】解:∵直角梯形EFGH 是由直角梯形ABCD 平移得到的,∴梯形EFGH ≌梯形ABCD ,∴GH=CD ,BC=FG ,∵梯形EFMD 是两个梯形的公共部分,∴S 梯形ABCD -S 梯形EFMD =S 梯形EFGH -S 梯形EFMD ,∴S 阴影=S 梯形MGHD =12(DM+GH )•GM=12(28-4+28)×5=130(cm 2). 故答案是130cm 2.【点睛】本题考查了图形的平移,解题的关键是知道平移前后的两个图形全等.15.270°【分析】根据题目条件可知∠1+∠3=∠2+∠4=180°,再结合∠BAC 是直角即可得出结果.【详解】解:如图所示,∵a∥b,∴∠1+∠3=180°,则∠3=180°-∠1,∵解析:270°【分析】根据题目条件可知∠1+∠3=∠2+∠4=180°,再结合∠BAC是直角即可得出结果.【详解】解:如图所示,∵a∥b,∴∠1+∠3=180°,则∠3=180°-∠1,∵b∥c∴∠2+∠4=180°,则∠4=180°-∠2,∵∠BAC是直角,∴∠3+∠4=180°-∠1+180°-∠2,∴90°=360°-(∠1+∠2),∴∠1+∠2=270°.故答案为:270°【点睛】本题主要考查的是平行线的性质,掌握平行线的性质是解题的关键.16.70°.【分析】依据平行线的性质,可得∠BAE=∠DCE=140°,依据折叠即可得到∠α=70°.【详解】解:如图,∵AB∥CD,∴∠BAE=∠DCE=140°,由折叠可得:,∴∠解析:70°.【分析】依据平行线的性质,可得∠BAE=∠DCE=140°,依据折叠即可得到∠α=70°.【详解】解:如图,∵AB∥CD,∴∠BAE=∠DCE=140°,由折叠可得:12DCF DCE ∠=∠,∴∠α=70°.故答案为:70°.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.17.48°【分析】将BE与CD交点记为点F,由两直线平行同位角相等得出∠EFC度数,再利用三角形外角的性质可得答案.【详解】解:如图所示,将BE与CD交点记为点F,∵AB∥CD,∠B=75°解析:48°【分析】将BE与CD交点记为点F,由两直线平行同位角相等得出∠EFC度数,再利用三角形外角的性质可得答案.【详解】解:如图所示,将BE与CD交点记为点F,∵AB∥CD,∠B=75°,∴∠EFC=∠B=75°,又∵∠EFC=∠D+∠E,且∠E=27°,∴∠D=∠EFC﹣∠E=75°﹣27°=48°,故答案为:48°.【点睛】本题考查平行线的性质和三角形外角性质,解题的关键是掌握两直线平行,同位角相等这一性质.18.40°【分析】本题主要利用两直线平行,同旁内角互补、两直线平行,内错角相等以及角平分线的定义进行做题.【详解】∵AD∥BC,∴∠BCD=180°-∠D=80°,又∵CA平分∠BCD,∴解析:40°【分析】本题主要利用两直线平行,同旁内角互补、两直线平行,内错角相等以及角平分线的定义进行做题.【详解】∵AD∥BC,∴∠BCD=180°-∠D=80°,又∵CA平分∠BCD,∴∠ACB=12∠BCD=40°,∴∠DAC=∠ACB=40°.【点睛】本题重点考查了平行线的性质及角平分线的定义,是一道较为简单的题目.19.60°【分析】设∠OCA=a,∠AOC=x,利用三角形外角,内角和定理,平行线定理即可解答. 【详解】解:设∠OCA=a,∠AOC=x,已知CB∥OA,∠B=∠A=100°,即a+x=80解析:60°【分析】设∠OCA=a,∠AOC=x,利用三角形外角,内角和定理,平行线定理即可解答.【详解】解:设∠OCA=a,∠AOC=x,已知CB∥OA,∠B=∠A=100°,即a+x=80°,又因为∠OEB=∠EOC+∠ECO=40°+x.当∠OEB=∠OCA,a=80°-x,40°+x=a,解得∠OCA=60°.【点睛】本题考查角度变换和平行线定理的综合运用,熟悉掌握是解题关键.20.【分析】如图,利用平行线的性质得出∠3=35°,然后进一步得出∠4的度数,从而再次利用平行线性质得出答案即可.【详解】如图所示,∵,,∴,∴∠4=90°−∠3=55°,∵,∴∠2解析:55︒【分析】如图,利用平行线的性质得出∠3=35°,然后进一步得出∠4的度数,从而再次利用平行线性质得出答案即可.【详解】如图所示,∵//a b ,135∠=︒,∴335∠=︒,∴∠4=90°−∠3=55°,∵////a b c ,∴∠2=∠4=55°.故答案为:55°.【点睛】本题主要考查了平行线的性质,熟练掌握相关概念是解题关键.三、解答题21.【感知】见解析;【探究】∠BAE+∠AEC+∠DCE=360°;【应用】396°.【分析】感知:如图①,过点E作EF∥AB.利用平行线的性质即可解决问题;探究:如图2中,作EG∥AB,利用平行线的性质即可解决问题;应用:作FH∥AB,利用平行线的性质即可解决问题;【详解】解:理由如下,【感知】过E点作EF//AB∵AB//CD∴EF//CD∵AB//CD∴∠BAE=∠AEF∵EF//CD∴∠CEF=∠DCE∴∠BAE+∠DCE=∠AEC.【探究】过E点作AB//EG.∵AB//CD∴EG//CD∵AB//CD∴∠BAE+∠AEG=180°∵EG//CD∴∠CEG+∠DCE=180°∴∠BAE+∠AEC+∠DCE=360°【应用】过点F作FH∥AB.∵AB ∥CD ,∴FH ∥CD ,∴∠BAE+∠AEF+∠EFH=360°,∠HFG+∠FGC+∠GCD=360°,∴∠BAE+∠AEF+∠EFH+∠HFG+∠FGC+∠GCD=720°,∴∠BAE+∠AEF+∠EFH+∠HFG+∠FGC+∠GCD+∠EFG=720°+36°,∴∠BAE+∠AEF+∠FGC+∠DCG=720°-360°+36°=396°故答案为396°.【点睛】本题考查平行线的性质,解题的关键是学会添加辅助线构造平行线解决问题,属于中考常考题型.22.(1)理由见解析;(2)①80°,②40°;(3)38°、74°、86°、122°.【分析】(1)根据平行线的性质及对顶角的性质即可得证;(2)①过拐点作AB 的平行线,根据平行线的性质推理即可得到答案;②过点P 作AB 的平行线,根据平行线的性质及角平分线的定义求得角的度数; (3)分情况讨论,画出图形,根据三角形的内角和与外角的性质分别求出答案即可.【详解】(1)//AB CD1EFD ∴∠=∠,2EFD ∠=∠12∠∠∴=; (2)①分别过点M ,N 作直线GH ,IJ 与AB 平行,则//////AB CD GH IJ ,如图:AEM EMH ∴∠=∠,CFN FNJ ∠=∠,180HMN MNJ ∠+∠=︒,()80AEM CFN EMH FNJ EMN MNF HMN MNJ ∴∠+∠=∠+∠=∠+∠-∠+∠=︒;②过点P 作AB 的平行线,根据平行线的性质可得:3AEP ∠=∠,4CFP ∠=∠, ∵EP 平分∠AEM ,FP 平分∠CFN , ∴11344022AEP CFP AEM CFM ∠+∠=∠+∠=∠+∠=︒, 即40P ∠=︒;(3)分四种情况进行讨论:由已知条件可得80BEH ∠=︒,①如图:118082EPG BEH AGQ ∠=︒-∠-∠=︒182HPQ EPG ∴∠=∠=︒11118074GQ H EHQ HPQ ∴∠=︒-∠-∠=︒ ②如图:104 BPH FHP BEH∠=∠+∠=︒,22122BQ H BPH AGQ∴∠=∠+∠=︒;③如图:56BPH BEH FHP∠=∠-∠=︒,3338BQ H BPH AGQ∴∠=∠-∠=︒;④如图:104BPH BEH FHP ∠=∠+∠=︒ ,4486GQ H BPH AGQ ∴∠=∠-∠=︒;综上所述,∠GQH 的度数为38°、74°、86°、122°.【点睛】本题考查平行线的性质,三角形外角的性质等内容,解题的关键是掌握辅助线的作法以及分类讨论的思想.23.(1)∠CPD=∠α+∠β,理由见解析;(2)①当点P 在A 、M 两点之间时,∠CPD=∠β−∠α;②当点P 在B 、O 两点之间时,∠CPD=∠α−∠β【分析】(1)过点P 作PE ∥AD 交CD 于点E ,根据题意得出AD ∥PE ∥BC ,从而利用平行线性质可知α∠=∠DPE ,β∠=∠CPE ,据此进一步证明即可;(2)根据题意分当点P 在A 、M 两点之间时以及当点P 在B 、O 两点之间时两种情况逐一分析讨论即可.【详解】(1)∠CPD=αβ∠+∠,理由如下:如图3,过点P 作PE ∥AD 交CD 于点E ,∵AD ∥BC ,PE ∥AD ,∴AD ∥PE ∥BC ,∴α∠=∠DPE ,β∠=∠CPE ,∴∠CPD=∠DPE +∠CPE=αβ∠+∠;(2)①当点P 在A 、M 两点之间时,∠CPD=βα∠-∠,理由如下:如图4,过点P 作PE ∥AD 交CD 于点E ,∵AD ∥BC ,PE ∥AD ,∴AD ∥PE ∥BC ,∴α∠=∠EPD ,β∠=∠CPE ,∴∠CPD=∠CPE −∠EPD=βα∠-∠;②当点P 在B 、O 两点之间时,∠CPD=αβ∠-∠,理由如下:如图5,过点P 作PE ∥AD 交CD 于点E ,∵AD ∥BC ,PE ∥AD ,∴AD ∥PE ∥BC ,∴α∠=∠DPE ,β∠=∠CPE ,∴∠CPD=∠DPE −∠CPE=αβ∠-∠,综上所述,当点P 在A 、M 两点之间时,∠CPD=∠β−∠α;当点P 在B 、O 两点之间时,∠CPD=∠α−∠β.【点睛】本题主要考查了在平行线性质及判定的综合运用,熟练掌握相关概念是解题关键.24.110︒;(1)CPD αβ∠=∠+∠;理由见解析;(2)当点P 在B 、O 两点之间时,CPD αβ∠=∠-∠;当点P 在射线AM 上时,CPD βα∠=∠-∠.【分析】问题情境:理由平行于同一条直线的两条直线平行得到 PE ∥AB ∥CD ,通过平行线性质来求∠APC .(1)过点P 作PQ AD ,得到PQ AD BC 理由平行线的性质得到ADP DPQ ∠=∠,BCP CPQ ∠=∠,即可得到CPD DPQ CPQ ADP BCP αβ∠=∠+∠=∠+∠=∠+∠(2)分情况讨论当点P 在B 、O 两点之间,以及点P 在射线AM 上时,两种情况,然后构造平行线,利用两直线平行内错角相等,通过推理即可得到答案.【详解】解:问题情境:∵AB ∥CD ,PE AB∴PE ∥AB ∥CD , ∴∠A+∠APE=180°,∠C+∠CPE=180°,∵∠PAB=130°,∠PCD=120°,∴∠APE=50°,∠CPE=60°,∴∠APC=∠APE+∠CPE=50°+60°=110°;(1)CPD αβ∠=∠+∠过点P 作PQ AD .又因为AD BC ∥,所以PQ AD BC则ADP DPQ ∠=∠,BCP CPQ ∠=∠所以CPD DPQ CPQ ADP BCP αβ∠=∠+∠=∠+∠=∠+∠(2)情况1:如图所示,当点P 在B 、O 两点之间时过P 作PE ∥AD ,交ON 于E ,∵AD ∥BC ,∴AD ∥BC ∥PE ,∴∠DPE=∠ADP=∠α,∠CPE=∠BCP=∠β,∴∠CPD=∠DPE-∠CPE=∠α-∠β情况2:如图所示,当点P 在射线AM 上时,过P 作PE ∥AD ,交ON 于E ,∵AD ∥BC ,∴AD ∥BC ∥PE ,∴∠DPE=∠ADP=∠α,∠CPE=∠BCP=∠β,∴∠CPD=∠CPE-∠DPE=∠β-∠α【点睛】本题主要借助辅助线构造平行线,利用平行线的性质进行推理.25.(1)180BCD ACE ∠+∠=︒,理由详见解析;(2)135°;(3)BCD ∠等于150︒或30时,//CE AB .【分析】(1)依据∠BCD=∠ACB+∠ACD=90°+∠ACD ,即可得到∠BCD+∠ACE 的度数;(2)设∠ACE=α,则∠BCD=3α,依据∠BCD+∠ACE=180°,即可得到∠BCD 的度数; (3)分两种情况讨论,依据平行线的性质,即可得到当∠BCD 等于150°或30°时,CE//4B.【详解】解:(1)180BCD ACE ∠+∠=︒,理由如下:90BCD ACB ACD ACD ∠=∠+∠=︒+∠,∴90BCD ACE ACD ACE ∠+∠=︒+∠+∠9090180=︒+︒=︒;(2)如图①,设ACE α∠=,则3BCD α∠=,由(1)可得180BCD ACE ∠+∠=︒,∴3180αα+=︒,∴45α=,∴3135BCD α∠==︒;(3)分两种情况:①如图1所示,当//AB CE 时,180120BCE B ∠=︒-∠=︒, 又90DCE ∠=︒,∴36012090150BCD ∠=︒-︒-︒=︒;②如图2所示,当//AB CE 时,60BCE B ∠=∠=︒, 又90DCE ∠=︒,∴906030BCD ∠=︒-︒=︒.综上所述,BCD ∠等于150︒或30时,//CE AB .【点睛】本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.熟练掌握定理并且能够准确识图是解题的关键.26.(1)∠AEC =130°;(2)∠A 1EC =130°;(3)∠A 1EC =40°.【解析】【分析】(1)由直线PQ ∥MN ,∠ADC=∠QAD=30°,可得∠PAD=150°,再求∠PAE=75°,可得∠CAE=25°;由∠PAC=∠ACN,求得∠ECA=25°,故∠AEC=180°﹣25°﹣25°;(2)先求出∠QA1D1=30°,∠PA1D1=150°,再求出∠PA1E=∠EA1D1=75°,再求出∠CAQ=130°,∠ACN=50°,根据平分线定义得∠ACE=25°,再利用四边形内角和性质可求∠CEA1;(3)根据平行线性质和角平分线定义可求得∠QA1E=∠2=15°,∠ACE=∠ECN=∠1=25°,再由∠CEA1=∠1+∠2即可求得答案.【详解】(1)如图1所示:∵直线PQ∥MN,∠ADC=30°,∴∠ADC=∠QAD=30°,∴∠PAD=150°,∵∠PAC=50°,AE平分∠PAD,∴∠PAE=75°,∴∠CAE=25°,可得∠PAC=∠ACN=50°,∵CE平分∠ACD,∴∠ECA=25°,∴∠AEC=180°﹣25°﹣25°=130°;(2)如图2所示:∵∠A1D1C=30°,线段AD沿MN向右平移到A1D1,PQ∥MN,∴∠QA1D1=30°,∴∠PA1D1=150°,∵A1E平分∠AA1D1,∴∠PA1E=∠EA1D1=75°,∵∠PAC=50°,PQ∥MN,∴∠CAQ=130°,∠ACN=50°,∵CE平分∠ACD1,∴∠ACE=25°,∴∠CEA1=360°﹣25°﹣130°﹣75°=130°;(3)如图3所示:过点E作FE∥PQ,∵∠A1D1C=30°,线段AD沿MN向左平移到A1D1,PQ∥MN,∴∠QA1D1=30°,∵A1E平分∠AA1D1,∴∠QA1E=∠2=15°,∵∠PAC=50°,PQ∥MN,∴∠ACN=50°,∵CE平分∠ACD1,∴∠ACE=∠ECN=∠1=25°,∴∠CEA1=∠1+∠2=15°+25°=40°.【点睛】本题考查了平行线性质,角平分线定义,熟练运用平行线性质和角平分线定义推出角的度数是解题的关键.。

(完整版)相交线与平行线复习知识点总结

(完整版)相交线与平行线复习知识点总结

第五章 相交线与平行线复习 5.1.1相交线(详见课本第2页)1、相交线的概念:在同一平面内,如果两条直线只有一个 点,那么这两条直线叫做相交线,公共点称为两条直线的交点. 如图1所示,直线AB 与直线CD 相交于点O.2、对顶角的概念:若一个角的两条边分别是另一个角的两条边的 延长线, 那么这两个角叫做对顶角. 如图2所示,∠1与∠3、∠2与∠4都是对顶角. 3、对顶角的性质:对顶角 .4、邻补角的概念:如果把一个角的一边 延长,这条反向延长线与这个角的另一边构成一个角,此时就说这两个角互为邻补角. 如图3所示,∠1与∠2互为邻补角,由平角定义可知∠1+∠2=180°.5.1.2垂线(详见课本第3-5页)1、垂线的概念:当两条直线相交所成的四个角中,有一个角是 角时,就说这两条直线互相 ,其中一条直线叫做另一条直线的 ,它们的交点叫做 .2、垂线的性质 (1)(垂直公理)性质1:在同一平面内,经过直线外或直线上一点,有且只有 条直线与已知直线垂直,即过一点有且只有 条直线与已知直线 . (2)(垂直推理)性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短. 即垂线段最 . 3、点到直线的距离:直线外一点到这条直线的 线段的长度,叫做点到直线的 . 如图5所示,l 的垂线段PO 的长度叫做点P 到 直线l 的距离. 4、 垂线的画法(工具:三角板或量角器)画法指点:⑴一靠:用三角尺一条直角边靠在已知直线上,⑵二移:移动三角尺使一点落在它的另一边直角边上, ⑶三画:沿着这条直角边画线,不要画成给人的印象是线段的线.5.1.3同位角、内错角、同旁内角(详见课本第6-7页) 1、三线八角两条直线被第 条直线所截形成 个角,它们构成了同位角、内错角与同旁内角. 如图5,直线b a ,被直线l 所截①∠1与∠5在截线l 的同侧,同在被截直线b a ,的上方,叫做 角(位置相同)同位角是“F ”型 ②∠5与∠3在截线l 的两旁(交错),在被截直线b a ,之间(内),叫做 角(位置在内且交错)内 错角是“Z ”型③∠5与∠4在截线l 的同侧,在被截直线b a ,之间(内),叫做 角. 同旁内角是“U ”型 2、如何判别三线八角判别同位角、内错角或同旁内角的关键是找到构成这两个角的“三线”,有时需要将有关的部分“抽出”或把无关的线略去不看,有时又需要把 图形补全. 如上图6 5.2.1平行线(详见课本第11-12页)1、 平行线的概念:在同一平面内,不 的两条直线叫做平行线.2、两条直线的位置关系在同一平面内,两条直线的位置关系只有两种:⑴ ;⑵ .(通常把 的两直线看成一条直线)判断同一平面内两直线的位置关系时,可以根据它们的公共点的个数来确定:AB CD 14321A BC DO 图2 OD C BA 图1 图5图6 21OC B A图3图4 623 4 5 78 9BA D EC13、平行线的表示方法平行用“ ”表示,如图7所示,直线AB 与直线CD 平行,记作AB ∥CD ,读作AB 平行于CD .4、平行线的画法:5、平行线的基本性质 (1)平行公理:经过直线 一点,有且只有 条直线与已知直线 .(2)平行推理:如果两条直线都和第 条直线平行,那么这两条直线也 .如上图8所示 5.2.2平行线的判定(详见课本第12-14页)1、平行线的判定方法:(1)判定1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称:同位角 ,两直线 .(2)判定2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简称:内错角 ,两直线 .(3)判定3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简称:同旁内角 ,两直线 .(4)平行线的概念:同一平面内,如果两条直线没有交点(不 ),那么两直线平行.(5)两条直线都和第三条直线平行,那么这两条直线 .(平行于同一条直线的两条直线也 ) (6)在同一平面内,如果两条直线同时垂直于同一条直线, 那么这两条直线 .(垂直于同一条直线的两条直线 )5.3.1平行线的性质(详见课本第18-19页) 1、平行线的性质:(1)两条平行线被第三条直线所截,同位角相等. 简记:两直线 ,同位角 . (2)两条平行线被第三条直线所截,内错角相等. 简记:两直线 ,内错角 .(3)两条平行线被第三条直线所截,同旁内角互补. 简记:两直线 ,同旁内角 . 2、两条平行线的距离如图10,直线AB ∥CD ,EF ⊥AB 于E ,EF ⊥CD 于F , 则称线段EF 的长度为两平行线AB 与CD 间的距离. 3.平行线的性质与判定是互逆的关系: ○1两直线平行 同位角相等;○2两直线平行 内错角相等; ○3两直线平行 同旁内角互补.5.3.2命题、定理(详见课本第20页) 1、命题的概念: 一件事情的语句,叫做命题.2、命题的组成:每个命题都是 、 两部分组成. (1)题设是 事项; (2)结论是由已知事项 的事项.3、命题的表述句式:命题常写成“ ……, ……”的形式. 具有这种形式的命题中,用“如果”开始的部分是 ,用“那么”开始的部分是 . 5.4平移(详见课本第28-29页)1、平移变换的概念:把一个图形 沿某一 方向移动,会得到一个新图形的平移变换.2、平移的特征:①大小: ; ②形状: ; ③位置: ; ④对应点的连线: 且 . (1的形状与大小都没有发生变化. (2)经过平移后,对应点所连的线段平行(或在同一直线上)且相等.AD EBC 1 2图7 D C BA a b c 图8A EG B C F H D图10 性质判定性质性质判定判定A D BE CF 图12A B C DEF1 2 34自我检测1.如果两个角是互为邻补角,那么一个角是锐角,另一个角是钝角.( )2.同一平面内,一条直线不可能与两条相交直线都平行.( )3.两条直线被第三条直线所截,内错角的对顶角一定相等.( )4.互为邻补角的两个角的平分线互相垂直.( )5.两条直线都与同一条直线相交,这两条直线必相交.( )6.如右下图,,8,6,10,BC AC CB cm AC cm AB cm ⊥===那么点A 到BC 的距离是_____,点B 到AC 的距离是_______,点A 、B 两点的距离是_____,点C 到AB 的距离是________.7.设a 、b 、c 为同一平面上三条不同直线,a) 若//,//a b b c ,则a 与c 的位置关系是_________; b) 若,ab bc ⊥⊥,则a 与c 的位置关系是_________; c)若//a b ,b c ⊥,则a 与c 的位置关系是________.8.如图,已知AB 、CD 、EF 相交于点O ,AB ⊥CD ,OG 平分∠AOE ,∠FOD =28°,求∠COE 、∠AOE 、∠AOG 的度数.9.如图,AOC ∠与BOC ∠是邻补角,OD 、OE 分别是AOC ∠与BOC ∠的平分线,试判断OD 与OE 的位置关系,并说明理由.10.如图,AB ∥DE ,试问∠B 、∠E 、∠BCE 有什么关系.解:∠B +∠E =∠BCE 过点C 作CF ∥AB ,则B ∠=∠____( ) 又∵AB ∥DE ,AB ∥CF ,∴____________( ) ∴∠E =∠____( ) ∴∠B +∠E =∠1+∠2 即∠B +∠E =∠BCE .11.⑴如图,已知∠1=∠2 求证:a ∥b .⑵直线//a b ,求证:12∠=∠.12.阅读理解并在括号内填注理由:如图,已知AB ∥CD ,∠1=∠2,试说明EP ∥FQ . 证明:∵AB ∥CD ,∴∠MEB =∠MFD ( ) 又∵∠1=∠2, ( )∴∠MEB -∠1=∠MFD -∠2, ( ) 即 ∠MEP =_______∴EP ∥_____.( )13.已知DB ∥FG ∥EC ,A 是FG 上一点,∠ABD =60°,∠ACE =36°,AP 平分∠BAC ,求:⑴∠BAC 的大小; ⑵∠P AG 的大小.14.如图,已知ABC ∆,AD BC ⊥于D ,E 为AB 上一点,EF BC ⊥于F ,//DG BA 交CA 于G .求证12∠=∠.15.已知:如图∠1=∠2,∠C =∠D ,问∠A 与∠F 相等吗?试说明理由.。

人教版初中七年级数学下册第五章《相交线与平行线》知识点总结(含答案解析)

人教版初中七年级数学下册第五章《相交线与平行线》知识点总结(含答案解析)

一、选择题1.下面的语句,不正确的是()A.对顶角相等B.相等的角是对顶角C.两直线平行,内错角相等D.在同一平面内,经过一点,有且只有一条直线与已知直线垂直B解析:B【分析】根据对顶角的性质、平行线的性质和垂线的基本性质逐项进行分析,即可得出答案.【详解】A、根据对顶角的性质可知,对顶角相等,故本选项正确;B、相等的角不一定是对顶角,故本选项错误;C、两直线平行,内错角相等,故本选项正确;D、根据垂线的基本性质可知在同一平面内,过直线上或直线外的一点,有且只有一条直线和已知直线垂直.故本选项正确.故选:B.【点睛】本题主要考查了对顶角的性质、平行线的性质和垂线的基本性质等知识点,解题的关键是了解垂线的性质、对顶角的定义、平行线的性质等知识,难度不大.2.关于平移后对应点所连的线段,下列说法正确的是()①对应点所连的线段一定平行,但不一定相等;②对应点所连的线段一定相等,但不一定平行,有可能相交;③对应点所连的线段平行且相等,也有可能在同一条直线上;④有可能所有对应点的连线都在同一条直线上.A.①③B.②③C.③④D.①②C解析:C【分析】根据平移的性质,对应点所连的线段一定平行或在一条直线上,对应点所连的线段一定相等,分别求解即可.【详解】①的说法“对应点所连的线段一定相等,但不一定平行”错误;②的说法“对应点所连的线段一定相等,但不一定平行,有可能相交”错误;③的说法“对应点所连的线段平行且相等,也有可能在同一条直线上”正确;④的说法“有可能所有对应点的连线都在同一条直线上”正确;故正确的说法为③④.故选:C.【点睛】本题主要考查了平移的性质:①把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.②新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行或在一条直线上且相等.3.现有以下命题:①斜边中线和一个锐角分别对应相等的两个直角三角形全等;②一组对边平行,另一组对边相等的四边形是平行四边形;③在圆中,平分弦的直径垂直于弦;④平行于同一条直线的两直线互相平行.其中真命题的个数为( )A .1个B .2个C .3个D .4个B 解析:B【分析】根据全等三角形的判定、平行四边形的判定、垂径定理、平行线的性质一一判断即可.【详解】①斜边中线和一个锐角分别对应相等的两个直角三角形全等,是真命题;②一组对边平行,另一组对边相等的四边形是平行四边形,是假命题,比如等腰梯形; ③在圆中,平分弦的直径垂直于弦,是假命题(此弦非直径);④平行于同一条直线的两直线互相平行,是真命题;故选B .【点睛】本题考查命题与定理、全等三角形的判定、平行四边形的判定、垂径定理、平行线的性质等知识,解题的关键是熟练掌握基本概念.4.如图,A 是直线l 外一点,过点A 作AB l ⊥于点B ,在直线l 上取一点C ,连接AC ,使2AC AB =,P 在线段BC 上,连接AP .若3AB =,则线段AP 的长不可能是( )A .4B .5C .2D .5.5C解析:C【分析】 根据题意计算出AC 的长度,由垂线段最短得出AP 的范围,选出AP 的长度不可能的选项即可.【详解】3AB =,26AC AB cm ∴==,结合垂线段最短,得:36AP ≤≤.故选:C .【点睛】本题主要考查直线外一点与直线上各点连接的所有线段中,垂线段最短,熟记概念并求出对应线段的范围是解题关键.5.已知//AB CD ,∠EAF=13∠EAB ,∠ECF=13∠ECD ,若∠E=66°,则∠F 为( )A .23°B .33°C .44°D .46°C解析:C【分析】 如图(见解析),先根据平行线的性质、角的和差可得66EAB EC C D AE ∠+∠=∠=︒,同样的方法可得F FAB FCD ∠=∠+∠,再根据角的倍分可得,2323FAB EAB FCD ECD ∠=∠∠=∠,由此即可得出答案. 【详解】如图,过点E 作//EG AB ,则////EG AB CD ,,EAB CE C A D G G E E ∴∠=∠∠∠=,66AEG EAB ECD CE A C G E ∴∠+=∠+=∠=∠∠︒,同理可得:F FAB FCD ∠=∠+∠,11,33EAF EAB ECF ECD ∠=∠∠=∠, ,2323FAB EAB FCD ECD ∴∠=∠∠=∠, ()266443333222F FAB FCD EAB ECD EAB ECD ∴∠=∠+∠=∠+∠=∠+∠=⨯︒=︒,故选:C .【点睛】本题考查了平行线的性质、角的和差倍分,熟练掌握平行线的性质是解题关键. 6.如图,直线l 与直线AB 、CD 分别相交于点E 、点F ,EG 平分BEF ∠交直线CD 与点G ,若168BEF ∠=∠=︒,则EGF ∠的度数为( ).A.34°B.36°C.38°D.68°A 解析:A【分析】由角平分线的性质可得∠GEB=12∠BEF=34°,由同位角相等,两直线平行可得CD∥AB,即可求解.【详解】∵EG平分∠BEF,∴∠GEB=12∠BEF=34°,∵∠1=∠BEF=68°,∴CD∥AB,∴∠EGF=∠GEB=34°,故选:A.【点睛】本题考查了平行线的判定和性质,角平分线的定义,灵活运用这些性质进行推理是本题的关键.7.下列四个说法:①两点之间,线段最短;②连接两点之间的线段叫做这两点间的距离;③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.其中正确的个数有()A.1个B.2个C.3个D.4个C解析:C【分析】根据线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识一一判断即可.【详解】解:①两点之间,线段最短,正确.②连接两点之间的线段叫做这两点间的距离,错误,应该是连接两点之间的线段的距离叫做这两点间的距离.③经过直线外一点,有且只有一条直线与这条直线平行,正确.④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.正确.故选C.【点睛】本题考查线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.下列命题是假命题的是()A.等腰三角形底边上的高是它的对称轴B.有两个角相等的三角形是等腰三角形C.等腰三角形底边上的中线平分顶角D.等边三角形的每一个内角都等于60°A解析:A【分析】分别分析各题设是否能推出结论,不能推出结论的既是假命题,从而得出答案.【详解】A.等腰三角形底边上的高所在的直线是它的对称轴,故该选项错误,是假命题,B.有两个角相等的三角形是等腰三角形,正确,是真命题,C.等腰三角形底边上的中线平分顶角,正确,是真命题,D.等边三角形的每一个内角都等于60°,正确,是真命题,故选:A.【点睛】本题考查了命题与定理,判断命题的真假,关键是分析各题设是否能推出结论.9.如图,A、P是直线m上的任意两个点,B、C是直线n上的两个定点,且直线m∥n.则下列说法正确的是()A.AC=BP B.△ABC的周长等于△BCP的周长C.△ABC的面积等于△ABP的面积D.△ABC的面积等于△PBC的面积D解析:D【分析】根据平行线之间的距离及三角形的面积即可得出答案.【详解】解:∵A、P是直线m上的任意两个点,B、C是直线n上的两个定点,且直线m∥n,根据平行线之间的距离相等可得:△ABC与△PBC是同底等高的三角形,故△ABC的面积等于△PBC的面积.故选D.【点睛】本题考查平行线之间的距离;三角形的面积.10.如图,∠1=20º,AO⊥CO,点B、O、D在同一条直线上,则∠2的度数为()A.70º B.20º C.110º D.160ºC解析:C【分析】由AO⊥CO和∠1=20º求得∠BOC=70º,再由邻补角的定义求得∠2的度数.【详解】∵AO⊥CO和∠1=20º,∴∠BOC=90 º-20 º=70º,又∵∠2+∠BOC=180 º(邻补角互补),∴∠2=110º.故选:C.【点睛】考查了邻补角和垂直的定义,解题关键是利用角的度数之间的和差的关系求未知的角的度数.二、填空题11.用一组a,b的值说明命题“若a b>,则22>”是错误的,这组值可以是a=____,a bb= ____1(答案不唯一)-2(答案不唯一)【分析】举出一个反例:a=1b=-2说明命题若a>b则a2>b2是错误的即可【详解】解:当a=1b=-2时满足a>b但是a2=1b2=4a2<b2∴命题若a>b则a解析:1(答案不唯一) -2(答案不唯一)【分析】举出一个反例:a=1,b=-2,说明命题“若a>b,则a2>b2”是错误的即可.【详解】解:当a=1,b=-2时,满足a>b,但是a2=1,b2=4,a2<b2,∴命题“若a>b,则a2>b2”是错误的.故答案为:1、-2.(答案不唯一)【点睛】此题主要考查了命题与定理,要熟练掌握,解答此题的关键是要明确:任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.12.如图,AC⊥AB,AC⊥CD,垂足分别是点A、C,如果∠CDB=130°,那么直线AB与BD 的夹角是________度.50【分析】先根据平行线的判定可得再根据平行线的性质两直线的夹角的定义即可得【详解】∵∴∵∴∴直线AB 与BD 的夹角是50度故答案为:50【点睛】本题考查了平行线的判定与性质两直线的夹角的定义熟练掌握解析:50【分析】先根据平行线的判定可得//AB CD ,再根据平行线的性质、两直线的夹角的定义即可得.【详解】∵AC AB ⊥,AC CD ⊥,∴//AB CD ,∵130CDB ∠=︒,∴18050ABD CDB ∠=︒-∠=︒,∴直线AB 与BD 的夹角是50度,故答案为:50.【点睛】本题考查了平行线的判定与性质、两直线的夹角的定义,熟练掌握平行线的判定与性质是解题关键.13.如图,长方形ABCD 的周长为30,则图中虚线部分总长为____________.15【分析】由长方形的性质和平移的性质即可求出答案【详解】解:根据题意虚线部分的总长为:故答案为:15【点睛】本题考查了长方形的性质平移变换等知识解题的关键是理解题意灵活运用所学知识解决问题属于中考解析:15【分析】由长方形的性质和平移的性质,即可求出答案.【详解】解:根据题意, 虚线部分的总长为:130152AB BC +=⨯=. 故答案为:15.本题考查了长方形的性质,平移变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.14.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B 到C 的方向平移到△DEF 的位置,AB =10,DO =4,平移距离为6,则阴影部分面积为__【分析】根据平移的性质得出BE=6DE=AB=10则OE=6则阴影部分面积=S 四边形ODFC=S 梯形ABEO 根据梯形的面积公式即可求解【详解】解:由平移的性质知BE =6DE =AB =10∴OE =DE ﹣解析:【分析】根据平移的性质得出BE=6,DE=AB=10,则OE=6,则阴影部分面积=S 四边形ODFC =S 梯形ABEO ,根据梯形的面积公式即可求解.【详解】解:由平移的性质知,BE =6,DE =AB =10,∴OE =DE ﹣DO =10﹣4=6,∴S 四边形ODFC =S 梯形ABEO 12=(AB+OE )•BE 12=×(10+6)×6=48. 故答案为48.【点睛】本题主要考查了平移的性质及梯形的面积公式,得出阴影部分和梯形ABEO 的面积相等是解题的关键.15.如图,ABC ∆沿着由点B 到点E 的方向,平移到DEF ∆.若10BC =,6EC =,则平移的距离为__________. 4【分析】观察图象发现平移前后BE对应CF 对应根据平移的性质易得平移的距离为BE=BC-EC=4进而可得答案【详解】由题意平移的距离为BE=BC-EC=10-6=4故答案为:4【点睛】本题考查了平移解析:4【分析】观察图象,发现平移前后,B 、E 对应,C 、F 对应,根据平移的性质,易得平移的距离为BE=BC-EC=4,进而可得答案.由题意平移的距离为BE=BC-EC=10-6=4,故答案为:4.【点睛】本题考查了平移的性质,经过平移,对应点所连的线段平行(或在同一直线上)且相等,对应线段平行(或在同一直线上)且相等,对应角相等.本题关键要找到平移的对应点.任何一对对应点所连线段的长度都等于平移的距离.16.命题“若a2>b2则a>b”是_____命题(填“真”或“假”),它的逆命题是_____.假若a >b则a2>b2【分析】a2大于b2则a不一定大于b所以该命题是假命题它的逆命题是若a>b则a2>b2【详解】①当a=-2b=1时满足a2>b2但不满足a>b所以是假命题;②命题若a2>b2则解析:假若a>b则a2>b2【分析】a2大于b2则a不一定大于b,所以该命题是假命题,它的逆命题是“若a>b则a2>b2”.【详解】①当a=-2,b=1时,满足a2>b2,但不满足a>b,所以是假命题;②命题“若a2>b2则a>b”的逆命题是若“a>b则a2>b2”;故答案为:假;若a>b则a2>b2.【点睛】本题主要考查判断命题真假、逆命题的概念以及平方的计算,熟记相关概念取特殊值代入是解题关键.17.如图,将直角三角形ABC沿斜边AC的方向平移到三角形DEF的位置,DE交BC于点G,BG=4,EF=12,△BEG的面积为4,下列结论:①DE⊥BC;②△ABC平移的距离是4;③AD=CF;④四边形GCFE的面积为20,其中正确的结论有________(只填写序号).①③④【分析】根据平移的性质分别对各个小题进行判断:①利用平移前后对应线段是平行的即可得出结果;②平移距离指的是对应点之间的线段的长度;③根据平移前后对应线段相等即可得出结果;④利用梯形的面积公式即解析:①③④【分析】根据平移的性质分别对各个小题进行判断:①利用平移前后对应线段是平行的即可得出结果;②平移距离指的是对应点之间的线段的长度;③根据平移前后对应线段相等即可得出结果;④利用梯形的面积公式即可得出结果.解:∵直角三角形ABC沿斜边AC的方向平移到三角形DEF的位置,∴AB∥DE,∴∠ABC=∠DGC=90°,∴DE⊥BC,故①正确;△ABC平移距离应该是BE的长度,BE>4,故②错误;由平移前后的图形是全等可知:AC=DF,∴AC-DC=DF-DC,∴AD=CF,故③正确;∵△BEG的面积是4,BG=4,∴EG=4×2÷4=2,∵由平移知:BC=EF=12,∴CG=12-4=8,四边形GCFE的面积:(12+8)×2÷2=20,故④正确;故答案为:①③④【点睛】本题主要考查的是平移的性质,正确的掌握平移的性质是解题的关键.18.如图所示,在长为50米,宽为30米的长方形地块上,有纵横交错的几条小路(图中阴影部分),宽均为1米,其他部分均种植花草,则道路的面积是________平方米.79【分析】可以根据平移的性质此小路相当于一条横向长为50米与一条纵向长为30米的小路道路的面积=横纵小路的面积-小路交叉处的面积计算即可【详解】由题意可得道路的面积为:(30+50)×1−1=79解析:79【分析】可以根据平移的性质,此小路相当于一条横向长为50米与一条纵向长为30米的小路,道路的面积=横纵小路的面积-小路交叉处的面积,计算即可.【详解】由题意可得,道路的面积为:(30+50)×1−1=79(m2).故答案为79.【点睛】此题考查生活中的平移现象,解题关键在于掌握运算公式.19.如图,已知∠1=(3x+24)°,∠2=(5x+20)°,要使m∥n,那么∠1=_____75【分析】直接利用邻补角的定义结合平行线的性质得出答案【详解】如图所示:∠1+∠3=180°∵m∥n∴∠2=∠3∴∠1+∠2=180°∴3x+24+5x+20=180解得:x=17则∠1=(3x+解析:75【分析】直接利用邻补角的定义结合平行线的性质得出答案.【详解】如图所示:∠1+∠3=180°,∵m∥n,∴∠2=∠3,∴∠1+∠2=180°,∴3x+24+5x+20=180,解得:x=17,则∠1=(3x+24)°=75°.故答案为75.【点睛】此题主要考查了平行线的判定与性质,正确得出∠1+∠2=180°是解题关键.20.假设一家旅馆一共有30个房间,分别编以1~30三十个号码,现在要在每个房间的钥匙上刻上数字,要求所刻的数字必须使服务员很容易辨认是哪一个房间的钥匙,而使局外人不容易猜到.现在有一种编码的方法是:在每把钥匙上刻上两个数字,左边的一个数字是这把钥匙原来的房间号码除以5所得的余数,而右边的一个数字是这把钥匙原来的房间号码除以7所得的余数.那么刻的数是25的钥匙所对应的原来房间应该是__________号.12【分析】根据编码的方法分析在1~30中除以5余2的数有712172227而其中除以7余5的数只有12故可求得答案【详解】解:∵1~30中除以5余2的数有712172227而其中除以7余5的数只有解析:12根据编码的方法分析,在1~30中,除以5余2的数有7,12,17,22,27,而其中除以7余5的数只有12,故可求得答案.【详解】解:∵1~30中,除以5余2的数有7,12,17,22,27,而其中除以7余5的数只有12,∴刻的数是25的钥匙所对应的原来房间应该是12,故答案为:12.【点睛】此题考查了带余数除法的知识.此题难度适中,解题的关键是理解题意,抓住1~30中,除以5余2的数有7,12,17,22,27,而其中除以7余5的数只有12.三、解答题21.如图,AD平分∠BAC,点E,F分别在边BC,AB上,且∠BFE=∠DAC,延长EF,CA 交于点G,求证:∠G=∠AFG.解析:见解析【分析】先利用角平分线的定义得到∠BAD=∠DAC,结合已知条件∠BFE=∠DAC,可得∠BFE=∠BAD,根据平行线的判定可证EG∥AD,再由平行线的性质得∠G=∠DAC,∠AFG=∠BAD,则利用等量代换即可证得结论.【详解】证明:∵AD平分∠BAC,∴∠BAD=∠DAC,∵∠BFE=∠DAC,∴∠BFE=∠BAD,∴EG∥AD,∴∠G=∠DAC,∠AFG=∠BAD,∴∠G=∠AFG.【点睛】本题考查了平行线的判定与性质,掌握平行线的判定的方法及利用性质证明角相等是解答此题的关键.22.定义:一个三位数,如果它的各个数位上的数字互不相等且都不为0,同时满足十位上的数字为百位与个位数字之和,则称这个三位数为“西西数”.A是一个“西西数”,从A 各数位上的数字中任选两个组成一个两位数,由此我们可以得到6个不同的两位数.我们把这6个数之和与44的商记为()h A ,如:132A =,133112212332(132)344h +++++==. (1)求()187h ,()693h 的值. (2)若A ,B 为两个“西西数”,且()()35h A h B =,求B A 的最大值. 解析:(1)8,9;(2)671.154B A 【分析】(1)根据新定义的法则进行运算即可得到答案;(2)先由(1)的运算发现并总结规律,可得()h A 的值等于A 的十位数字,再运用规律结合()()35h A h B =进行合理的分类讨论,分4种情况:()()5,7h A h B ==或()()7,5,h A h B == ()()35,1h A h B ==或()()1,35h A h B ==,再根据新定义可得答案.【详解】解:(1)由定义可得:()18+81+17+71+78+87352===84417448h , ()699663369339396=9.4444693h +++++== (2)探究: 133112212332(132)344h +++++==, ()18+81+17+71+78+87352===84417448h , ()699663369339396=9.4444693h +++++==发现并总结规律:()h A 的值等于A 的十位数字,A ,B 为两个“西西数”,且()()35h A h B =, ()()5,7h A h B ∴==或()()7,5,h A h B ==而()()35,1h A h B ==或()()1,35h A h B ==不合题意舍去,BA的值最大,则B 最大,A 最小, ()()5,7,h A h B ∴==当()5h A =时,154A =或451A =或253A =或352A =,当()7h B =时,671B =或176B =或572B =或275B =或374B =或473.B =A ∴最小为154,B 最大为671, 此时B A 的值最大为 671.154B A 【点睛】本题考查的是新定义运算,同时考查了规律探究,弄懂新定义的运算法则,理解并运用规律,掌握合理的分类讨论是解题的关键.23.如图,已知AC BC ⊥,CD AB ⊥,DE AC ⊥,1∠与2∠互补,判断HF 与AB 是否垂直,并说明理由(填空).解:垂直,理由如下:∵DE AC ⊥,AC BC ⊥,∴90AED ACB ==︒∠∠(垂直的意义)∴//DE BC (_____)∴1DCB ∠=∠(_____)∵1∠与2∠互补(已知)∴DCB ∠与2∠互补∴_________//________(_____)∴BFH CDB ∠=∠(_____)∵CD AB ⊥∴90CDB ∠=︒∴90HFB ︒∠=∴HF AB ⊥.解析:同位角相等,两直线平行;两直线平行,内错角相等;CD ;FH ;同旁内角互补,两直线平行;两直线平行,同位角相等.【分析】根据平行线的性质及平行线的判定解答.【详解】解:垂直,理由如下:∵DE AC ⊥,AC BC ⊥,∴90AED ACB ==︒∠∠(垂直的意义)∴//DE BC (同位角相等,两直线平行)∴1DCB ∠=∠(两直线平行,内错角相等)∵1∠与2∠互补(已知)∴DCB ∠与2∠互补∴CD //FH (同旁内角互补,两直线平行)∴BFH CDB ∠=∠(两直线平行,同位角相等)∵CD AB ⊥∴90CDB ∠=︒∴90HFB ︒∠=∴HF AB ⊥.故答案为:同位角相等,两直线平行;两直线平行,内错角相等;CD ;FH ;同旁内角互补,两直线平行;两直线平行,同位角相等.【点睛】此题考查平行线的判定及性质定理,熟记定理并熟练应用解决问题是解题的关键. 24.如图,直线AB ,CD 相交于O ,OE ⊥CD 于O ,OF 是∠BOE 的平分线,∠DOF =25°. 求∠AOC 的度数.解析:∠AOC =40°.【分析】利用垂直定义结合条件可得∠EOF =65°,然后再利用角平分线定义可得∠BOF =∠EOF =65°,然后再计算∠BOD 的度数,进而可得∠AOC 的度数.【详解】解:∵OE ⊥CD 于O ,∴∠EOD =90°,∵∠DOF =25°,∴∠EOF =65°,∵OF 是∠BOE 的平分线,∴∠BOF =∠EOF =65°,∴∠BOD =65°﹣25°=40°,∴∠AOC =40°.【点睛】此题主要考查了垂线,关键是理清图中角之间和差的关系.25.如图,直线AB 和CD 相交于点O .(1)∠1的邻补角是____________,对顶角是___________;(2)若∠1=40°,求出∠2,∠3,∠4的度数.解析:(1)∠2和∠4,∠3(2)∠2=140°,∠3=40°,∠4=140°【分析】(1)根据对顶角和邻补角的定义解答即可;(3)根据邻补角的定义列式求出∠2,再根据对顶角相等解答.【详解】(1)∠1的邻补角是∠2和∠4,对顶角是∠3;(2)∵∠1=40°,∴∠2=180°−∠1=180°−40°=140°,∴∠3=∠1=40°,∠4=∠2=140°.【点睛】本题考查了对顶角、邻补角,是基础题,熟记概念是解题的关键,要注意一个角的邻补角有两个.26.已知,//BC OA ,108B A ∠=∠=°,试解答下列问题:(1)如图①,则O ∠=__________,则OB 与AC 的位置关系为__________(2)如图②,若点E 、F 在线段BC 上,且始终保持FOC AOC ∠=∠,BOE FOE ∠=∠.则EOC ∠的度数等于__________;(3)在第(2)题的条件下,若平行移动AC 到图③所示①在AC 移动的过程中,OCB ∠与OFB ∠的数量关系是否发生改变,若不改变,求出它们之间的数量关系;若改变,请说明理由.②当OCA OEB ∠=∠时,求OCA ∠的度数.解析:(1)72°,平行;(2)36°;(3)①∠OCB=12∠OFB ;②∠OCA=54°. 【分析】(1)根据平行线的性质得出∠B+∠O=180°,求出∠O=72°,求出∠O+∠A=180°,根据平行线的判定得出即可; (2)根据角平分线定义求出1362EOC BOA ︒∠=∠=,即可得出答案; (3)①不变,求出∠OFB=2∠OCB ,即可得出答案; ②设∠BOE=∠EOF=α,∠FOC=∠COA=β,求出∠OCA=∠BOC=2α+β,α=β=18°,即可得出答案.【详解】解:(1)∵BC ∥OA ,∴∠B+∠O=180°,∵∠B=108°,∴∠O=72°,∵∠A=108°,∴∠O+∠A=180°,∴OB ∥AC ,故答案为:72°,平行;(2)∵∠FOC=∠AOC , BOE FOE ∠=∠,∠BOA=72°, ∴11136222EOC EOF FOC BOF FOA BOA ︒∠=∠+∠=∠+∠=∠=, 故答案为:36°;(3)①不变,∵BC ∥OA ,∴∠OCB=∠AOC ,又∵∠FOC=∠AOC ,∴∠FOC=∠OCB ,又∵BC ∥OA ,∴∠OFB=∠FOA=2∠FOC ,∴∠OFB=2∠OCB ,即∠OCB :∠OFB=1:2.即∠OCB=12∠OFB ; ②由(1)知:OB ∥AC ,∴∠OCA=∠BOC,由(2)可以设:∠BOE=∠EOF=α,∠FOC=∠COA=β,∴∠OCA=∠BOC=2α+β由(1)知:BC∥OA,∴∠OEB=∠EOA=α+β+β=α+2β∵∠OEB=∠OCA∴2α+β=α+2β∴α=β∵∠AOB=72°,∴α=β=18°∴∠OCA=2α+β=36°+18°=54°.【点睛】本题考查了平行线的性质,与角平分线有关的证明.能灵活运用平行线的性质和判定进行推理是解此题的关键.27.求证:顶角是锐角的等腰三角形腰上的高与底边夹角等于其顶角的一半(1)在图中按照下面“已知”的要求,画出符合题意的图形,并根据题设和结论,结合图形,用符号语言补充写出“己知”和“求证”.已知:在锐角ABC中,AB AC,______求证:______(2)证明上述命题解析:(1 )BD⊥AC于点D,∠DBC=12∠A;(2)见解析【分析】(1)先根据命题内容确定命题的题设和结论,画出符合条件的图形,并写出已知,根据结论写出求证内容;(2)根据等腰三角形的性质,可得出底角与顶角的数量关系,再由内角和定理证明出结论.【详解】(1)解:已知:如图,在锐角△ABC中,AB=AC,BD⊥AC于点D.求证:∠DBC=12∠A.故答案为:BD⊥AC于点D,∠DBC=12∠A.(2)证明:∵AB=AC,∴∠ABC=∠C.∵∠A+∠ABC+∠C=180°,∴2∠C=180°-∠A.即∠C=12(180°-∠A).∵BD⊥AC,∴∠DBC+∠C=90°.∴∠DBC=90°-∠C=90°-12(180°-∠A)=12∠A.即等腰三角形腰上的高与底边的夹角等于顶角的一半.【点睛】本题考查了命题与证明,掌握命题的证明方法和基本步骤,并结合题设和结论画出符合条件的图形是解题的关键.28.如图,已知∠1+∠2=180°,∠B=∠DEF,求证:DE∥BC.请将下面的推理过程补充完整.证明:∵∠1+∠2=180(已知)∠2=∠3(对顶角相等)∴∠1+∠3=180°∴AB∥EF(),∴∠B=∠EFC()∵∠B=∠DEF(),∴∠DEF=()∴DE∥BC()解析:见解析【分析】根据平行的性质和判定定理填空.【详解】解:证明:∵∠1+∠2=180(已知),∠2=∠3(对顶角相等),∴∠1+∠3=180°,∴AB∥EF(同旁内角互补,两直线平行),∴∠B=∠EFC(两直线平行,同位角相等),∵∠B=∠DEF(已知),∴∠DEF=∠EFC(等量代换),∴DE∥BC(内错角相等,两直线平行).【点睛】本题考查平行的性质和判定,解题的关键是掌握平行的性质和判定定理.。

七年级数学下册第5章相交线与平行先5.3.3平行线的性质(图文详解)

七年级数学下册第5章相交线与平行先5.3.3平行线的性质(图文详解)
判断一件事情的句子,叫做命题。
七年级数学第5章相交线与平行线
命题的定义包括两层涵义:
1、命题必须是一个完整的句子;
2、这个句子必须对某件事情做出肯定或否 定的判断。
七年级数学第5章相交线与平行线
练习1:下列语句中,那些是命题,那些不是命题?
(1)两直线平行,同位角相等;(是) (2)正数大于负数; (是)
② 如果a>b,b>c,那么a=c .
题设是: a>b,b>c 结论是: a=c
七年级数学第5章相交线与平行线
例3:指出下列命题中的题设和结论,并将 其改写成“如果…那么…”的形式。
1、平行于同一直线的两条直线平行. 题设是:两条直线平行于同一条直线
结论是:这两条直线平行
如果两条直线平行于同一条直线, 那么这两条直线平行. 2、对顶角相等.
。 a2≠b2
七年级数学第5章相交线与平行线
课堂练习
4、下列命题中,真命题是( A ) A 互补的两个角相等,则此两角都是直角; B 直线是一平角; C 不相交的两直线叫做平行线; D 和为180O的两个角叫做邻补角。
七年级数学第5章相交线与平行线
小结
1、命题的概念: 判断一件事情的句子 2. 命题的组成: 题设和结论
练习2:观察下面几个句子是否命题 ,是否真命题.
(1)如果a//b,b//c,那么a//c; (2)画线段AB=3cm; (3)直角都相等; (4)两条直线相交,有几个交点? (5)相等的角都是直角; (6)如果两个角不相等,那么这两个角不是对顶角;
答:(1),(3),(5),(6)是命题;(2),(4)不是命题 真命题的是(1),(3),(6) 假命题的是(5)
“那么”引出的部分是结论.

七年级数学第五章相交线平行线的知识要点解析

七年级数学第五章相交线平行线的知识要点解析

七年级数学第五章相交线平行线的知识要点解析一、同一平面内两直线的位置关系:相交与平行二、二直线相交的性质:1、同一平面内两相交直线形成如下角的关系:L123 14 L2∠1与∠2,∠1与∠4,∠3与∠4,∠3与∠2相互构成邻补角,∠1与∠3,∠2与∠4相互构成对顶角.对顶角性质:对顶角相等2、垂线:当两直线相交的角度为90°时,我们把他们的位置关系称为垂直,一条直线叫做另外一条的垂线。

性质1:过一点只能有一条直线垂直于已知直线。

性质2:连接直线外一点与直线上所有的点线段中,垂线段最短,我们把直线外一点到直线的垂线段的长度叫做这点到直线的距离。

三、一条直线与另外两条直线相交形成的角的关系:如下三线八角图以∠3为例:∠3与∠4、∠2构成邻补角,与∠1形成对顶角,与∠6组成同旁内角,与∠5组成内错角∠1与∠7的位置关系称为外错角。

四、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

推论:如果两条直线都与第三条直线平行,那么这两条直线平行。

五、平行线的判定:同一平面内,两条直线被第三条直线所截(如图:a、b被c相切)判定1:同位角相等,二直线平行. ∠1=∠5=>a//b判定2:内错角相等,二直线平行. ∠3=∠5 => a//b判定3:同旁内角互补,二直线平行∠4+∠5=180°=>a//b c推论:垂直于同一条直线的二直线平行 ab六、平行线的性质:性质1:二直线平行.,同位角相等a//b=>∠1=∠5性质2:二直线平行,内错角相等a//b=>∠3=∠5性质3:二直线平行,同旁内角互补a//b=>∠4+∠5=180°推论:垂直于二直线平行中一条直线的直线,必垂直于另外一条直线七、命题与定理1、命题:判断一件事情的语句,叫做命题,命题由题设和结论两部分组成,题设是已知事项,结论是由已知项推出的事项,命题常可以写成“如果……那么……”的形式,这时“如果”后接的部分是题设,“那么”后接的部分是结论2、真命题:如果题设成立,那么结论一定成立.像这样的命题叫做真命题3、假命题:如果题设成立时,不能保证结论一定成立,像这样的命题叫做假命题定理都是真命题.4、公理:人们在长期实践中总结出来的基本数学知识并作为判定其它命题真假的根据,它不需要证明。

相交线与平行线知识点总结

相交线与平行线知识点总结

相交线与平行线知识点总结相交线和平行线是几何学中的重要概念,它们在解决平面几何问题中起着重要作用。

本文将对相交线和平行线的基本概念、性质以及相关定理进行总结。

通过深入理解这些知识点,我们可以更好地应用它们解决几何问题。

1. 相交线的基本概念和性质相交线是指在平面上有一个或多个公共点的线段。

对于两条相交线,有以下基本性质:- 相交线的交点称为交点,两条相交线的交点只有一个。

- 相交线之间不存在夹角大小的关系,夹角的大小取决于相交线的具体角度。

2. 平行线的基本概念和性质平行线是指在同一个平面内不相交且永远也不会相交的两条直线。

对于平行线,有以下基本性质:- 平行线之间的距离始终保持相等。

- 平行线之间不存在夹角,夹角大小为0°。

- 平行线的斜率相等。

3. 相交线与平行线的关系相交线与平行线之间存在一些重要的关系:- 若两条线段相交于一点,并且这两条线段中至少有一条是平行线,则其他线段也必然是平行线。

- 若两条直线与同一条直线相交而呈同侧内角,且这两条直线之一与另一条平行线,则这两条直线也必然平行。

- 若两条直线都与同一条直线相交,并且两直线的内角和为180°,则这两条直线是平行线。

4. 相关定理在相交线与平行线的研究中,存在一些重要的定理:- 同一侧内角定理:如果一条直线与另外两条直线相交,形成的两个内角,那么这两个内角要么同时是锐角,要么同时是钝角。

- 交叉线定理:如果两条平行线分别与某一第三条直线相交,那么这两条交线的内外角之和为180°。

- 锐角平分线定理:如果射线是一条直线的角平分线且与这条直线的另一射线相交,那么这两条交线将构成一对平行线。

5. 解决几何问题的应用相交线与平行线的知识在解决几何问题时起着重要作用,常见的应用包括:- 判断两条线段是否相交,并找到相交点的坐标。

- 判断两条线段是否平行或垂直。

- 证明两条线段的平行性、垂直性等。

总之,相交线与平行线是解决平面几何问题的基础概念。

2022年七年级数学下册 第五章 相交线与平行线知识点归纳 (新版)新人教版

2022年七年级数学下册 第五章 相交线与平行线知识点归纳 (新版)新人教版

第五章相交线与平行线5.1 相交线一、相交线两条直线相交,形成4个角。

1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。

性质是对顶角相等。

①邻补角:两个角有一条公共边,它们的另一条边互为反向延长线。

具有这种关系的两个角,互为邻补角。

如:∠1、∠2。

②对顶角:两个角有一个公共顶点,并且一个角的两条边,分别是另一个角的两条边的反向延长线,具有这种关系的两个角,互为对顶角。

如:∠1、∠3。

③对顶角相等。

二、垂线1.垂直:如果两条直线相交成直角,那么这两条直线互相垂直。

2.垂线:垂直是相交的一种特殊情形,两条直线垂直,其中一条直线叫做另一条直线的垂线。

3.垂足:两条垂线的交点叫垂足。

4.垂线特点:过一点有且只有一条直线与直线垂直。

5.点到直线的距离:直线外一点到这条直线的垂线段的长度,叫点到直线的距离。

连接直线外一点与直线上各点的所有线段中,垂线段最短。

三、同位角、内错角、同旁内角两条直线被第三条直线所截形成8个角。

1.同位角:〔在两条直线的同一旁,第三条直线的同一侧〕在两条直线的上方,又在直线EF的同侧,具有这种位置关系的两个角叫同位角。

如:∠1和∠5。

2.内错角:〔在两条直线内部,位于第三条直线两侧〕在两条直线之间,又在直线EF的两侧,具有这种位置关系的两个角叫内错角。

如:∠3和∠5。

3.同旁内角:〔在两条直线内部,位于第三条直线同侧〕在两条直线之间,又在直线EF的同侧,具有这种位置关系的两个角叫同旁内角。

如:∠3和∠6。

5.2 平行线及其判定(一) 平行线1.平行:两条直线不相交。

互相平行的两条直线,互为平行线。

a∥b〔在同一平面内,不相交的两条直线叫做平行线。

〕2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

3.平行公理推论:平行于同一直线的两条直线互相平行。

七年级下册数学第五章相交线与平行线

七年级下册数学第五章相交线与平行线

七年级下册数学第五章相交线与平行线
以下是七年级下册数学第五章相交线与平行线的知识点:
1. 相交线:相交线是指两条直线在同一个平面内交于一点。

在相交线中,我们主要研究的是对顶角和邻补角。

对顶角相等,邻补角互补。

同时,我们还学习到了垂线,即直线与给定直线垂直,且交于一点。

2. 平行线:平行线是指两条直线在同一平面内,且不相交。

平行线具有传递性,即如果a平行于b且b平行于c,那么a平行于c。

此外,我们还学习了平行线的性质和判定方法。

3. 平行线的性质:平行线的性质包括同位角相等、内错角相等、同旁内角互补等。

这些性质是平行线的基本性质,也是解决相关问题的关键。

4. 平行线的判定方法:平行线的判定方法包括同位角相等、内错角相等、同旁内角互补等。

通过这些判定方法,我们可以确定两条直线是否平行。

5. 平行线的应用:平行线在几何学中有着广泛的应用,如证明两个三角形相似或全等、解决角度和距离的问题等。

同时,在现实生活中,平行线也有很多应用,如建筑、道路规划等。

以上是关于七年级下册数学第五章相交线与平行线的主要知识点,掌握这些知识点有助于更好地理解几何学中的基本概念和性质,提高解决问题的能力。

七年级数学下册第五章相交线与平行线重点归纳笔记(带答案)

七年级数学下册第五章相交线与平行线重点归纳笔记(带答案)

七年级数学下册第五章相交线与平行线重点归纳笔记单选题1、如图,直线AB、CD相交于点O,EO⊥CD,下列说法错误的是()A.∠AOD=∠BOC B.∠AOE+∠BOD=90°C.∠AOC=∠AOE D.∠AOD+∠BOD=180°答案:C分析:根据对顶角性质、邻补角定义及垂线的定义逐一判断可得.A、∠AOD与∠BOC是对顶角,所以∠AOD=∠BOC,此选项不符合题意;B、由EO⊥CD知∠DOE=90°,所以∠AOE+∠BOD=90°,此选项不符合题意;C、∠AOC与∠BOD是对顶角,所以∠AOC=∠BOD,此选项符合题意;D、∠AOD与∠BOD是邻补角,所以∠AOD+∠BOD=180°,此选项不符合题意;故选C.小提示:本题主要考查垂线、对顶角与邻补角,解题的关键是掌握对顶角性质、邻补角定义及垂线的定义.2、将一副直角三角板ABC和EDF如图放置(其中∠A=60°,∠F=45°),使点E落在AC边上,且ED//BC,则∠AEF的度数为( )A.145°B.155°C.165°D.170°答案:C分析:根据直角三角形两锐角互余求出∠1,再根据两直线平行,内错角相等求出∠2,然后根据∠CEF=∠DEF -∠2计算出∠CEF,即可求出∠AEF.解:∵∠A=60°,∠F=45°,∴∠1=90°-60°=30°,∠DEF=90°-45°=45°,∵ED∥BC,∴∠2=∠1=30°,∠CEF=∠DEF-∠2=45°-30°=15°,∴∠AEF=180°-15°=165°.故选C.小提示:本题考查了平行线的性质,直角三角形两锐角互余的性质是基础题,熟记性质是解题的关键.3、下列说法错误的是( )A.如果两条直线被第三条直线所截,那么内错角相等B.在同一平面内过一点有且仅有一条直线与已知直线垂直C.经过直线外一点有且只有一条直线与已知直线平行D.连接直线外一点与直线上各点的所有线段中,垂线段最短答案:A分析:分别利用平行线的性质以及垂线的性质分别判断得出答案.A、如果两条直线平行时,被第三条直线所截时,内错角才会是相等,故A选项错误,符合题意;B、在同一平面内过一点有且仅有一条直线与已知直线垂直,正确,不合题意;C、经过直线外一点有且只有一条直线与已知直线平行,正确,不合题意;D、联结直线外一点与直线上各点的所有线段中,垂线段最短,正确,不合题意;故选A.小提示:考查了平行公理及推论和垂线的性质,正确把握相关定义是解题关键.4、下列命题正确的是()A.绝对值等于本身的数是正数B.绝对值等于相反数的数是负数C.互为相反数的两个数的绝对值相等D.绝对值相等的两个数互为相反数答案:C分析:根据绝对值和相反数的概念分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.解:A、绝对值等于本身的数是非负数,原命题是假命题;B、绝对值等于相反数的数是非正数,原命题是假命题;C、互为相反数的两个数的绝对值相等,是真命题;D、绝对值相等的两个数相等或互为相反数,原命题是假命题;故选:C.小提示:此题借助绝对值和相反数的概念考查了命题与定理,命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.5、如图,小明从A处出发沿北偏东40°方向行走至B处,又从B处沿南偏东70°方向行走至C处,则∠ABC等于()A.130°B.120°C.110°D.100°答案:C分析:根据方位角和平行线性质求出∠ABE,再求出∠EBC即可得出答案.解:如图:∵小明从A处沿北偏东40°方向行走至点B处,又从点B处沿南偏东70°方向行走至点C处,∴∠DAB=40°,∠CBE=70°,∵向北方向线是平行的,即AD∥BE,∴∠ABE=∠DAB=40°,∴∠ABC=∠ABE+∠EBC=40°+70°=110°,故选:C.小提示:本题考查了方向角及平行线的性质,熟练掌握平行线的性质:两直线平行,内错角相等是解题的关键.6、对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2B.a=-3,b=2C.a=3,b=-1D.a=-1,b=3答案:B试题解析:在A中,a2=9,b2=4,且3>2,满足“若a2>b2,则a>b”,故A选项中a、b的值不能说明命题为假命题;在B中,a2=9,b2=4,且-3<2,此时虽然满足a2>b2,但a>b不成立,故B选项中a、b的值可以说明命题为假命题;在C中,a2=9,b2=1,且3>-1,满足“若a2>b2,则a>b”,故C选项中a、b的值不能说明命题为假命题;在D中,a2=1,b2=9,且-1<3,此时满足a2<b2,得出a<b,即意味着命题“若a2>b2,则a>b”成立,故D 选项中a、b的值不能说明命题为假命题;故选B.考点:命题与定理.7、下列说法中,正确的是().A.两直线不相交则平行B.两直线不平行则相交C.若两线段平行,那么它们不相交D.两条线段不相交,那么它们平行答案:C分析:根据平面内两直线的位置关系:平行或者相交,逐一判断选项即可.A选项,在同一平面内,两直线不相交则平行,不正确,不符合题意;B选项,在同一平面内,两直线不平行则相交,不正确,不符合题意;C选项,若两线段平行,那么它们不相交,正确,符合题意;D选项,两条线段不相交,那么它们不一定平行,不正确,不符合题意,故选:C.小提示:本题主要考查平面内两直线的位置关系:平行或者相交,属于基础题,掌握平面内两直线的位置关系是解题关键.8、如图,AB和CD相交于点O,则下列结论正确的是()A.∠1=∠2B.∠2=∠3C.∠1>∠4+∠5D.∠2<∠5答案:A分析:根据对顶角性质、三角形外角性质分别进行判断,即可得到答案.解:由两直线相交,对顶角相等可知A正确;由三角形的一个外角等于它不相邻的两个内角的和可知B选项为∠2>∠3,C选项为∠1=∠4+∠5,D选项为∠2>∠5.故选:A.小提示:本题考查了三角形的外角性质,对顶角性质,解题的关键是熟练掌握三角形的外角性质进行判断.9、如图所示,l1∥l2,∠1=105°,∠2=140°,则∠3的度数为( )A.55°B.60°C.65°D.70°答案:C分析:首先过点A作AB∥l1,由l1∥l2,即可得AB∥l1∥l2,然后根据两直线平行,同旁内角互补,即可求得∠4与∠5的度数,又由平角的定义,即可求得∠3的度数.解:过点A作AB∥l1,∵l1∥l2,∴AB∥l1∥l2,∴∠1+∠4=180°,∠2+∠5=180°,∵∠1=105°,∠2=140 °,∴∠4=75°,∠5=40°,∵∠4+∠5+∠3=180°,∴∠3=65°.故选:C.小提示:本题考查的知识点是平行线的性质,解题的关键是熟练的掌握平行线的性质.10、如图,直线AB与CD相交于点O,∠AOC=75°,∠1=25°,则∠2的度数是()A.25°B.30°C.40°D.50°答案:D分析:根据对顶角相等可得∠BOD=75°,之后根据∠1=25°,即可求出∠2.解:由题可知∠BOD=∠AOC=75°,∵∠1=25°,∴∠2=∠BOD−∠1=75°−25°=50°.故选:D.小提示:本题主要考查对顶角和角的和与差,掌握对顶角相等是解决问题的关键.填空题11、如图,将△ABC沿BC方向平移至△DEF处.若EC=2BE=2,则CF的长为_____.答案:1分析:利用平移的性质得到BE=CF,再用EC=2BE=2得到BE的长,从而得到CF的长.解:∵△ABC沿BC方向平移至△DEF处.∴BE=CF,∵EC=2BE=2,∴BE=1,∴CF=1.故答案为1.小提示:本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行(或共线)且相等.12、如图6,已知直线a∥b,∠BAC=90°,∠1=50°,则∠2=______.答案:40°##40度分析:根据平行线的性质可以得到∠3的度数,进一步计算即可求得∠2的度数.解:∵a∥b,∴∠1=∠3=50°,∵∠BAC=90°,∴∠2+∠3=90°,∴∠2=90°-∠3=40°,所以答案是:40°.小提示:本题考查平行线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.13、命题“如果x2=4,那么x=2”是__________命题(填“真”或“假”).答案:假分析:直接两边开平方求得x的值即可确定是真命题还是假命题;∵如果x2=4,那么x=±2,∴命题“如果x2=4,那么x=2”是假命题,故答案为假.小提示:本题考查了命题与定理的知识,解题的关键是能够确定x的值,属于基础题,难度不大.14、已知在同一个平面内,一个角的度数是70°,另一个角的两边分别与它的两边垂直,则另一个角的度数是___________.答案:70°或110°分析:由两个角的两边互相垂直,即可得这两个角互补或相等,又由其中一角度数,即可求另一角的度数.解:∵同一平面内的两个角的两边互相垂直(如图所示),∵这两个角互补或相等,∵其中一个角为70°,∵另一角的度数为:70°或110°.所以答案是:70°或110°.小提示:此题考查了垂线的意义,熟练运用画图分析以及分类讨论是此题的难点,也是解决此题的关键.15、命题“如果a+b=0,那么a、b互为相反数”的逆命题是______命题(填“真”或“假”).答案:真分析:交换命题的题设和结论后判断正误即可.解:命题“如果a+b=0,那么a,b互为相反数”的逆命题为:如果a,b互为相反数,那么a+b=0.所以逆命题是真命题.所以答案是:真.小提示:考查了命题与定理的知识,解题的关键是了解如何写出一个命题的逆命题,难度不大.解答题16、完成下列推理过程:已知:如图,∠1+∠2=180°,∠3=∠B求证:∠EDG+∠DGC=180°证明:∵∠1+∠2=180°(已知)∠1+∠DFE=180°()∴∠2=()∴EF∥AB()∴∠3=()又∵∠3=∠B(已知)∴∠B=∠ADE()∴DE∥BC()∴∠EDG+∠DGC=180°()答案:邻补角定义;∠DFE,同角的补角相等;内错角相等,两直线平行;∠ADE,两直线平行,内错角相等;等量代换;同位角相等,两直线平行;两直线平行,同旁内角互补分析:依据∠1+∠2=180°,∠1+∠DFE=180°,即可得到∠2=∠DFE,由内错角相等,两直线平行证明EF∥AB,则∠3=∠ADE,再根据∠3=∠B,由同位角相等,两直线平行证明DE∥BC,故可根据两直线平行,同旁内角互补,即可得出结论.∵∠1+∠2=180°(已知)∠1+∠DFE=180°(邻补角定义)∴∠2=∠DFE(同角的补角相等)∴EF∥AB(内错角相等,两直线平行)∴∠3=∠ADE(两直线平行,内错角相等)又∵∠3=∠B(已知)∴∠B=∠ADE(等量代换)∴DE∥BC(同位角相等,两直线平行)∴∠EDG+∠DGC=180°(两直线平行,同旁内角互补)小提示:本题考查了平行线的性质和判定.正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.17、请根据题目中的逻辑关系填空:已知:如图,∠1+∠AFE=180°,∠A=∠2,求证:∠A=∠C+∠AFC证明:∵∠1+∠AFE=180°∴CD∥EF(①)∵∠A=∠2∴②(③)∴AB∥CD∥EF.∴∠A= ④,∠C= ⑤,(⑥)∵∠AFE=∠EFC+∠AFC,∴⑦.(等量代换)答案:同旁内角互补两直线平行,AB∵CD,同位角相等两直线平行,∠AFE,∠EFC,两直线平行内错角相等,∠A=∠C+∠AFC分析:根据平行线的判定可判定CD∵EF,AB∵CD,则AB∵CD∵EF,再由平行线性质可得:∠C=∠CFE,∠A=∠AFE,最后等量代换即可求解.证明:∵∠1+∠AFE=180°∴CD∥EF(同旁内角互补,两直线平行),∵∠A=∠2∴AB∵CD(同位角相等,两直线平行)∴AB∥CD∥EF.∴∠A=∠AFE,∠C=∠EFC(两直线平行内错角相等)∵∠AFE=∠EFC+∠AFC,∴∠A=∠C+∠AFC(等量代换).所以答案是:同旁内角互补两直线平行,AB∵CD,同位角相等两直线平行,∠AFE,∠EFC,两直线平行内错角相等,∠A=∠C+∠AFC.小提示:本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质定理是解题的关键.18、如图,O是直线AB上一点,∠BOC=3∠AOC,OC平分∠AOD(1)求∠AOC的度数.(2)试猜想OD与AB的位置关系,并说明理由.答案:(1)∠AOC的度数为45°(2)OD⊥AB,理由见解析分析:(1)设∠AOC=x,根据题意得∠BOC=3x,再根据平角的定义进而求解即可;(2)根据角平分线的定义即可得到解答.(1)解:设∠AOC=x,∵∠BOC=3∠AOC,∴∠BOC=3x,∵直线AB,∴x+3x=180°,解得x=45°,∴∠AOC的度数为45°;(2)解:OD⊥AB,理由如下,∵OC平分∠AOD,∴∠COD=∠AOC=45°.∴∠AOD=∠AOC+∠COD=90°,∴OD⊥AB.小提示:此题考查了垂线,平角的定义以及角平分线的定义,对定义的熟练掌握是解题的关键.平角:等于180°的角叫做平角;角平分线:从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线.。

相交线与平行线知识点总结

相交线与平行线知识点总结

相交线与平行线知识点总结在我们的数学世界中,相交线和平行线是非常基础且重要的概念。

它们不仅在几何中频繁出现,对于我们理解空间和图形的关系也有着至关重要的作用。

接下来,让我们一起深入了解一下相交线与平行线的相关知识点。

一、相交线1、对顶角两条直线相交,会形成四个角。

其中相对的两个角,即顶点相对,角的两边互为反向延长线的两个角,叫做对顶角。

对顶角的性质是:对顶角相等。

比如,直线 AB 和直线 CD 相交于点 O,形成了∠AOC 和∠BOD,∠AOD 和∠BOC,这两组对顶角,它们的度数是相等的。

2、邻补角两条直线相交,有公共顶点和一条公共边,另一边互为反向延长线的两个角叫做邻补角。

邻补角的特点是:邻补角互补,即它们的和为180°。

以刚才的直线 AB 和直线 CD 相交于点 O 为例,∠AOC 和∠AOD 就是一组邻补角,∠AOC +∠AOD = 180°。

3、垂线当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

垂线的性质:(1)在同一平面内,过一点有且只有一条直线与已知直线垂直。

(2)连接直线外一点与直线上各点的所有线段中,垂线段最短。

垂线段的长度叫做点到直线的距离。

二、平行线1、平行线的定义在同一平面内,不相交的两条直线叫做平行线。

2、平行线的表示通常用“//”表示平行,例如直线 a 与直线 b 平行,可以记作 a//b 。

3、平行线的判定(1)同位角相等,两直线平行。

同位角是指两条直线被第三条直线所截,在截线同旁,且在被截两直线同一侧的角。

(2)内错角相等,两直线平行。

内错角是指两条直线被第三条直线所截,在截线两旁,且在被截两直线之间的角。

(3)同旁内角互补,两直线平行。

同旁内角是指两条直线被第三条直线所截,在截线同旁,且在被截两直线之间的角。

4、平行线的性质(1)两直线平行,同位角相等。

(2)两直线平行,内错角相等。

相交线与平行线篇(解析版)--中考数学必考考点总结+题型专训

相交线与平行线篇(解析版)--中考数学必考考点总结+题型专训

知识回顾微专题相交线与平行线--中考数学必考考点总结+题型专训考点一:相交线与平行线之邻补角、对顶角1.邻补角:①定义:两条相交之间构成的四个角中,有公共顶点且有一条公共边,另一边互为反向延长线的两个角是邻补角。

②性质:邻补角互补。

2.对顶角:①定义:有公共顶点,两边均互为反向延长线的两个角是对顶角。

②性质:对顶角相等。

1.(2022•北京)如图,利用工具测量角,则∠1的大小为()A .30°B .60°C .120°D .150°【分析】根据对顶角的性质解答即可.【解答】解:根据对顶角相等的性质,可得:∠1=30°,故选:A .2.(2022•苏州)如图,直线AB 与CD 相交于点O ,∠AOC =75°,∠1=25°,则∠2的度数是()A .25°B .30°C .40°D .50°【分析】先求出∠BOD 的度数,再根据角的和差关系得结论.【解答】解:∵∠AOC=75°,∴∠AOC=∠BOD=75°.∵∠1=25°,∠1+∠2=∠BOD,∴∠2=∠BOD﹣∠1=75°﹣25°=50°.故选:D.3.(2022•自贡)如图,直线AB、CD相交于点O,若∠1=30°,则∠2的度数是()A.30°B.40°C.60°D.150°【分析】根据对顶角相等可得∠2=∠1=30°.【解答】解:∵∠1=30°,∠1与∠2是对顶角,∴∠2=∠1=30°.故选:A.4.(2022•桂林)如图,直线l1,l2相交于点O,∠1=70°,则∠2=°.【分析】根据对顶角的性质解答即可.【解答】解:∵∠1和∠2是一对顶角,∴∠2=∠1=70°.故答案为:70.考点二:相交线与平行线之垂直知识回顾微专题1.垂直的定义:两条直线相交形成的四个角中,若其中有一个角是90°,则此时我们说这两条直线垂直。

七年级数学下册第五章相交线知识点总结

七年级数学下册第五章相交线知识点总结

第五章 相交线与平行线5.1相交线 5.1.1相交线 练习:1.在同一平面内,两条直线如果不平行,一定 。

2.如图1,直线AD 、BC 相交于O ,则∠AOB 的对顶角是 ,∠BOD 的邻补角为 。

AB A DO OC 图1D C 图2 B3.如图2所示,若∠AOC=33°,则∠BOD=∠ = °,理由是。

4.如图3,直线AB 、CD 相交于点O ,∠1=90°,则∠AOC 和∠DOB 是 角,∠COE 和∠DOE 互为 角,∠DOB 和∠BOC 互为 角。

E F EC D A 1 B A O BOD 图3 C 图45.如图4所示,直线AB、CD相交于点O,作∠DOB=∠DOE,OF平分∠AOE,若∠AOC=36°,则∠EOF= °6.下列语句正确的是().A、相等的角是对顶角B、相等的两个角是邻补角C、对顶角相等D、邻补角不一定互补,但可能相等7.平面上三条直线两两相交最多能构成对顶角的对数是()A、7B、6C、5D、48.下列语句错误的有()个.(1)两个角的两边分别在同一条直线上,这两个角互为对顶角,(2)有公共顶点并且相等的两个角是对顶角,(3)如果两个角相等,那么这两个角互补,(4)如果两个角不相等,那么这两个角不是对顶角。

A、1B、2C、3D、49.如果两个角的平分线相交成90°的角,那么这两个角一定是().A、对顶角B、互补的两个角C、互为邻补角D、以上答案都不对10.已知∠1与∠2是邻补角,∠2是∠3的邻补角,那么∠1与∠3的关系是().A、对顶角B、相等但不是对顶角C、邻补角D、互补但不是邻补角解答题:1.如图5,三条直线AB 、CD 、EF 相交于点O ,∠1=75°,∠2=68°,求∠COE 的度数。

E D OA B C F 图5 2.如图6,OE ⊥OF ,∠EOD 和∠FOH 互补,求∠DOH 的度数。

人教版七年级数学下册第五章相交线与平行线知识整理复习(含答案)

人教版七年级数学下册第五章相交线与平行线知识整理复习(含答案)

⼈教版七年级数学下册第五章相交线与平⾏线知识整理复习(含答案)七年级数学下册第五章知识整理知识梳理1.两个⾓有⼀条公共边,它们的另⼀条边互为反向延长线,具有这样位置关系的两个⾓,互为___________.2.两个⾓有⼀个公共顶点,并且⼀个⾓的两边分别是另⼀个⾓两边的反向延长线,具有这种位置关系的⾓,互为___________.对顶⾓的性质:___________.3.垂直是相交的⼀种特殊情形,两条直线互相垂直,其中的⼀条直线叫做另⼀条直线的___________,它们的交点叫做___________。

4.在同⼀平⾯内,过⼀点有且只有___________直线与已知直线垂直。

5.连接直线外⼀点与直线上各点的所有线段中,___________最短,简单说成:___________。

6.直线外⼀点到这条直线的垂线段的长度,叫做___________。

7.如图,∠1和∠4,这两个⾓分别在直线AB,CD的同⼀⽅(上⽅),并且都在直线EF的同侧(右侧),具有这种位置关系的⼀对⾓叫做_______;∠2和∠4,这两个⾓都在直线AB,CD之间,并且分别在直线EF两侧,具有这种位置关系的⼀对⾓叫做_______;∠2和∠3也都在直线AB,CD之间,但它们在直线EF的同⼀旁,具有这种位置关系的⼀对⾓叫做_______;8.在同⼀平⾯内不相交的两条直线(a与b)互相_______,记作_______.9.平⾏线的基本事实(平⾏公理):经过直线外⼀点,有且只有_______直线与这条直线平⾏.10.如果两条直线都与第三条直线平⾏,那么这两条直线也_______.11.平⾏线的判定⽅法:(1)_______相等,两直线平⾏;(2)_______相等,两直线平⾏;(3)_______互补,两直线平⾏。

12.平⾏线的性质:(1)两直线平⾏,同位⾓_______;(2)两直线平⾏,内错⾓_______;(3)两直线平⾏,同旁内⾓_______.13.判断⼀件事情的语句,叫做_______.经过推理证实的真命题叫做_______.14.在很多情况下,⼀个命题的正确性需要经过推理才能作出判断,这个推理过程叫做_______.15.平移得到的新图形与原图形的形状和⼤⼩_______.知识反馈★知识点1;邻补⾓与对顶⾓1.下列说法正确的是( )A.和为180°的⾓为邻补⾓B和为180°的两个⾓为邻补⾓C,有公共顶点,和为90°的⾓为邻补⾓D.有公共顶点和⼀条公共边,它们的另⼀边互为反向廷长线的两个⾓为邻补⾓2.如图,∠1和∠2是对顶⾓的是( )3.如图,直线AB、CD相交于点O,若∠AOC=(3x+10°),∠BOC=(2x-10°),求∠AOD的度数.★知识点2:垂线与垂线段4.过直线AB外⼀点P画直线AB的垂线,则( )A.能画⽆数条B只能画2条 C.只能画1条 D.不能画成5.在数学课上,同学们在练习过点B作线段AC所在直线的垂线段时,有⼀部分同学画出下列四种图形,请你数⼀数,错误的个数为( )A.1个B.2个C.3个D.4个6.如图,在体育测试中,裁判员测量某同学的跳远成绩,在直线l上的A、B、C三点中,点________到沙坑中脚印点P的距离为该同学的成绩.7.如图,在三⾓形ABC中,∠BCA=90°,CD⊥AB,垂⾜为点D.线段AB,BC,CD的⼤⼩关系如何?并说明理由.★知识点3:同位⾓、内错⾓、同旁内⾓8.如图,下⾯说法中正确的是( )A.∠2和∠3是同位⾓B.∠3和∠4是同旁内⾓C,∠1和∠2是内错⾓ D.∠1和∠3是同旁内⾓9.如图所⽰,直线DE、BC被直线AB所截,∠1与∠4是_________,∠2与∠4是_________,∠1与∠2是_________,∠3与∠4是_________.★知识点4:平⾏线的定义及画法10.下列⽣活中的线是平⾏线的有( )①铁路上并排的两条铁轨;②上体育课时,双杠的两个横杠;③滑雪时两只雪撬滑动轨迹;④操场上的升旗杆与教室屋梁。

第五章相交线与平行线小结与复习课件人教版数学七年级下册

第五章相交线与平行线小结与复习课件人教版数学七年级下册

精讲精练
知识点三
平行线的性质和判定
典例精讲
【例3】(1)如图所示,∠1=72º,∠2=72º,∠3=60º,求∠4的度数.
解:∵∠1=∠2=72º,
∴a∥b(内错角相等,两直线平行).
∴∠3+∠4=180º.(两直线平行,同旁内角互补) ∵∠3=60º,∴∠4=120º.
4 3
2
1
b
a
知识点三
平行线的性质和判定
四个直角.
【迁移应用1】如图,AB,CD相交于点O,∠AOC=70º,EF平分∠COB,求∠COE
的度数. 答案:∠COE=125º.
F B
C
O
D
AE
知识要点
01
相交线
02 点到直线的距离
03 平行线的性质和判定
04
平移
05 相交线中的方程思想
精讲精练
知识点二
点到直线的距离
典例精讲
【例2】如图,AD为三角形ABC的高,能表示点到直线(线段)的距离的线段
平行线的性质和判定
要点归纳
【归纳拓展】平行线的性质和判定经常结合使用,由角之间的关系得出
直线平行,进而再得出其他角之间的关系,或是由直线平行得到角之间
的关系,进而再由角的关系得出其他直线平行.
【迁移应用3】如图所示,把一张长方形纸片ABCD沿EF折叠,若∠EFG=50,
求∠DEG的度数. 答案:100º.
A
E
D
G B
M
FC N
知识要点
01
相交线
02 点到直线的距离
03 平行线的性质和判定
04
平移
05 相交线中的方程思想
精讲精练

【寒假提前学】数学七年级下册-第五章相交线与平行线-点到直线的距离-寒假预习题

【寒假提前学】数学七年级下册-第五章相交线与平行线-点到直线的距离-寒假预习题

【考点训练】点到直线的距离-1一、选择题(共5小题)2.下列说法中正确的有()①射线AB和射线BA是两条射线②连接A、B两点的线段的长度叫A、B两点间的距离③有公共顶点且相等的两个角叫对顶角4.如图,点P在直线AB外,在过P点的四条线段中表示点P到直线AB距离的是线段()5.如图,点C到直线AB的距离是指()二、填空题(共3小题)(除非特别说明,请填准确值)6.如图,点D在AC上,点E在AB上,且BD⊥CE,垂足为点M.下列说法:①BM的长是点B到CE的距离;②CE 的长是点C到AB的距离;③BD的长是点B到AC的距离;④CM的长是点C到BD的距离.其中正确的是_________(填序号).7.如图,已知AC⊥BC,CD⊥AB,AC=3,BC=4,则点B到直线AC的距离等于_________;点C到直线AB 的垂线段是线段_________.8.(2000•江西)在测量跳远成绩时,从落地点拉向起跳线的皮尺,应当与起跳线_________.三、解答题(共2小题)(选答题,不自动判卷)9.如图,点P是∠AOB的边OB上的一点过点P画OB的垂线,交OA于点C;(1)过点P画OA的垂线,垂足为H;(2)线段PH的长度是点P到_________的距离,_________是点C到直线OB的距离.线段PC、PH、OC这三条线段大小关系是_________(用“<”号连接)10.已知点C在直线a外,点A在直线a上,且AC=2厘米.(1)设d是点C到直线a的距离,求d的取值范围;(2)若直线BD垂直于直线a,垂足为B.则直线BD与直线AC有怎样的位置关系,请画示意图表示(每种位置关系画一个示意图).【考点训练】点到直线的距离-1参考答案与试题解析一、选择题(共5小题)2.下列说法中正确的有()①射线AB和射线BA是两条射线②连接A、B两点的线段的长度叫A、B两点间的距离③有公共顶点且相等的两个角叫对顶角4.如图,点P在直线AB外,在过P点的四条线段中表示点P到直线AB距离的是线段()5.如图,点C到直线AB的距离是指()二、填空题(共3小题)(除非特别说明,请填准确值)6.如图,点D在AC上,点E在AB上,且BD⊥CE,垂足为点M.下列说法:①BM的长是点B到CE的距离;②CE 的长是点C到AB的距离;③BD的长是点B到AC的距离;④CM的长是点C到BD的距离.其中正确的是①④(填序号).7.如图,已知AC⊥BC,CD⊥AB,AC=3,BC=4,则点B到直线AC的距离等于4;点C到直线AB的垂线段是线段CD.8.(2000•江西)在测量跳远成绩时,从落地点拉向起跳线的皮尺,应当与起跳线垂直.三、解答题(共2小题)(选答题,不自动判卷)9.如图,点P是∠AOB的边OB上的一点过点P画OB的垂线,交OA于点C;(1)过点P画OA的垂线,垂足为H;(2)线段PH的长度是点P到OA的距离,线段CP是点C到直线OB的距离.线段PC、PH、OC这三条线段大小关系是PH<PC<OC(用“<”号连接)10.已知点C在直线a外,点A在直线a上,且AC=2厘米.(1)设d是点C到直线a的距离,求d的取值范围;(2)若直线BD垂直于直线a,垂足为B.则直线BD与直线AC有怎样的位置关系,请画示意图表示(每种位置关系画一个示意图).,关注中学生习题网官方微信公众号,免费学习资源、学习方法、学习资讯第一时间掌握。

相交线与平行线知识点总结及例题解析

相交线与平行线知识点总结及例题解析

相交线与平行线知识点总结、例题解析知识点1【相交线】在同一平面内,不重合的两条直线的位置关系有两种:平行和相交1、相交线相交线的定义:两条直线交于一点,我们称这两条直线相交.相对的,我们称这两条直线为相交线.知识点2【对顶角和邻补角】两条相交线在形成的角中有对顶角和邻补角两类,它们具有特殊的数量关系和位置关系。

1、邻补角(1)邻补角的概念:两个角有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角叫做互为邻补角.如图,∠1与∠2有一条公共边OD,它们的另一条边OA、OB互为反向延长线,则∠1与∠2互为邻补角(2)邻补角的性质:邻补角互补,即和为180°。

例如:若∠1与∠2互为邻补角,则∠1+∠2=180°注意:①互为邻补角的两个角一定互补,但互补的两个角不一定互为邻补角;②相交的两条直线会产生4对邻补角。

2、对顶角(1)对顶角的概念:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.如图,∠3与∠4有一个公共顶点O,并且∠3的两边OB、OC分别是∠4的两边OA、OD的反向延长线,则∠1与∠2互为对顶角.(2)对顶角的性质:对顶角相等.注意:两条相交的直线,会产生2对对顶角。

3、邻补角、对顶角成对出现,在相交直线中,一个角对顶角只有一个,但邻补角有两个.邻补角、对顶角都是相对与两个角而言,是指的两个角的一种位置关系.它们都是在两直线相交的前提下形成的.注意:如果多条直线相交于同一点,那么产生的邻补角的数量是对顶角的2倍。

【例题1】如图所示,∠1的邻补角是( )A、∠BOCB、∠BOE和∠AOFC、∠AOFD、∠BOC和∠AOF【解析】】据相邻且互补的两个角互为邻补角进行判断,∠1是直线AB、EF相交于点O形成的角,所以它的邻补角与直线CD无关,即它的邻补角是∠BOE和∠AOF,故选B【答案】B【例题2】下面四个图形中,∠1与∠2是邻补角的是( )【答案】D【例题3】如图所示,∠1和∠2是对顶角的图形有( )A、1个B、2个C、3个D、4个【解析】考察对顶角的概念【答案】A【例题4】下列说法中:①因为∠1与∠2是对顶角,所以∠1=∠2;②因为∠1与∠2是邻补角,所以∠1=∠2;③因为∠1与∠2不是对顶角,所以∠1≠∠2;④因为∠1与∠2不是邻补角,所以∠1+∠2≠180,其中正确的有________ (填序号)【解析】对顶角、邻补角【答案】①【例题5】如图1,直线AB、CD、EF都经过点O,图中有几对对顶角?几对邻补角?【解析】考察对顶角的概念。

第5章 相交线与平行线 知识清单 2023--2024学年人教版七年级数学下册

第5章 相交线与平行线  知识清单  2023--2024学年人教版七年级数学下册

第5章相交线与平行线5.1相交线5.1.1 相交线【知识点】(一)邻补角和对顶角1.只有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角.2.有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.3.对顶角形成的前提条件是两条直线相交;邻补角、对顶角成对出现;每个角的对顶角只有一个,而每个角的邻补角有两个.(一个角的补角可以有无数个)4.邻补角与补角有什么关系?邻补角是一种特殊的补角,邻补角是两个具有公共边且互补的角. 互为邻补角的两个角一定互补,但互补的两个角不一定是邻补角.5.性质:邻补角互补;对顶角相等.6.【易错】相等的两个角不一定是对顶角;两个角的和等于180°,这两个角不一定是邻补角.7.【拓展】若两个角互为邻补角,则它们的角平分线所夹的角为90°.8.【拓展】n条不同的直线相交于一点,会产生n(n-1)对对顶角.5.1.2 垂线【知识点】(一)垂线的定义、画法1.当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫另一条的垂线,它们的交点叫做垂足. 垂直用符号“⊥”表示,如:直线AB 与直线CD垂直,记作AB⊥CD.2.在平面内,过一点有且只有一条直线与已知直线垂直.(一条直线的垂线有无数条)3.【判断】(1)两条直线互相垂直,则所有的邻补角都相等;(2)根据两条直线相交所成的角都相等,也能判断两条直线垂直;(3)一条直线不可能与两条相交直线都垂直;(4)两条直线相交所成的四个角中,如果有三个角相等,那么这两条直线互相垂直;(5)两条直线相交有一组对顶角互补,那么这两条直线互相垂直.4.过一点画已知直线的垂线根据垂直的定义,直角的两边是互相垂直的,因此画一条直线的垂线就是作直角,一般有如下两种画法:(1)利用三角尺的两直角边.它的基本步骤是:一靠:将三角尺的一条边紧靠在已知直线AB上;二过:使三角尺的另一直角边经过已知点C;沿已知点所在的直角边画出的直线就是所画直线AB经过点C的垂线.(2)利用量角器,它的基本步骤是:让量角器的0°线紧靠在已知直线上,再让90°的射线经过已知点,即可画出已知直线过已知点的垂线.(在画线段的垂线时,有时需先把线段延长,再画线段所在直线的垂线,所以垂足可能在线段上,也可能在其延长线上)5.【当前超纲:涉及全等三角形、圆知识】过一点作已知直线AB的垂线【方法一】点在直线上或点在直线外均适用(1)任意取一点K,使点K和点C在AB的两旁(若点C在直线上,则跳过第一步)(2)以点C为圆心,CK长为半径作弧,交AB于点D和E(若点C在直线上,以任意半径作弧,只要保证C点为DE中点即可)(3)分别以点D和点E为圆心,大于1DE的长为半径作弧,两弧相交于点F2(4)作直线CF,CF即为直线AB的垂线(利用全等三角形SSS可以证明)(底层思想:作线段DE的中垂线)【方法二】仅适用点在直线外(1)在直线l上任取两点A,B(2)分别以点A,B为圆心,AC,BC长为半径作弧,两弧相交于点D;(3)作直线CD,CD即为直线AB的垂线(直线l是线段CD的中垂线)(二)垂线性质的应用1.连接直线外一点与直线上各点的所有线段中,垂线段最短,简单说成垂线段最短.2.直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.(解决最短路线问题,往往需要运用“两点间线段最短”和“垂线段最短”的数学结论.)5.1.3 同位角、内错角、同旁内角【知识点】1.两条直线被第三条直线所截,没有公共顶点的两个角有同位角、内错角、同旁内角.2.同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样的一对角叫做同位角,“F”字型,“同旁同侧”(截线同侧,被截线的同方向)内错角:两条直线被第三条直线所截形成的角中,若两个角都在两条直线之间,并且在第三条直线(截线)的两旁,则这样的一对角叫做内错角,“Z”字型,“之间两侧”(截线两侧,被截两线之间)同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两条直线之间,并且在第三条直线(截线)的同旁,则这样的一对角叫做同旁内角,“C”字型,“之间同侧”(截线同侧,被截两线之间)3.判断“三线八角”中两个角的位置时,应先找出这两个角的公共边,公共边所在的直线就是截线,另外两条直线就是被截线.4.在复杂图形中,一个角的同位角,或内错角,或同旁内角可能不止一个.5.2 平行线及其判定5.2.1平行线【知识点】1.在同一平面内,两条不相交的直线叫做平行线. 平行线用符号“//”表示,如AB//CD,读作直线AB平行于直线CD.2.在同一平面内,两条直线的位置关系是相交或平行.3.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.(有无数条直线与已知直线平行)4.如果两条直线都与第三条直线平行,那么这两条直线也互相平行.5.在同一平面内,任意三条直线有四种不同的位置关系:(1)三条直线平行(2)三条直线交于一点(3)三条直线两两相交但不交于一点(4)只有两条直线平行5.2.2平行线的判定【知识点】1.判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.(同位角相等,两直线平行).2.判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.(内错角相等,两直线平行).3.判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.(同旁内角互补,两直线平行).4.在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行(可以直接使用).5.证平行线的方法:找出要证两直线被第三条直线所截,看是否满足同位角相等或内错角相等或同旁内角互补即可.6.判定两条直线平行的5种方法:(1)定义法:在同一平面内,不相交的两条直线是平行线.(没有公共点的两条直线)(2)平行公理推论:如果两条直线都和第三条直线平行,那么这两条直线平行.(3)同位角相等,两直线平行(4)内错角相等,两直线平行(5)同旁内角互补,两直线平行5.3 平行线的性质5.3.1平行线的性质【知识点】1.两条平行线被第三条直线所截,同位角相等.2.两条平行线被第三条直线所截,内错角相等.3.两条平行线被第三条直线所截,同旁内角互补.4.【链接240408】平行线间拐角模型5.3.2命题、定理、证明【知识点】1.判断一件事情的语句,叫做命题,命题由题设和结论两部分组成. 题设(条件)是已知事项,结论是由已知事项推出的事项.2.任何一个命题都可以写成“如果……那么……”(“若……则……”)的形式,正确的命题叫真命题,错误的命题叫假命题.3.一个命题是真命题,它的正确性是经过推理证实的,这样的真命题叫做定理.4.命题“对顶角相等”的题设是有两个角是对顶角,结论是这两个角相等.5.若a2=b2,则a=b. 这个命题是假命题.6.在很多情况下,一个命题的正确性需要经过推理,才能作出判断,这个推理的过程叫做证明. 证明的根据可以是已知条件,也可以是定义、基本事实、定理等.7.判断一个命题是假命题,只要举出一个例子(反例),它符合命题的假设,但不满足结论就可以了.5.4 平移【知识点】1.在平面内,把一个图形整体沿某一方向移动,会得到一个新的图形,图形的这种移动,叫做平移.【平移概念中的“平”字指:不翻、不转、平稳过度,保持原来的姿势沿着一定方向运动】2.决定平移的因素有两个,即平移的方向和平移的距离.3.把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.(平移改变的是图形的位置)4.经过平移所得的图形与原来的图形的对应线段相等,对应角相等,对应点所连的线段平行(或在同一条直线上)且相等.5.在平移过程中,新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点,连接各对对应点的线段平行(或在同一条直线上)且相等.6.平移三角形ABC,使A移动到点A′. 画出平移后的三角形A′B′C′.解:如图,连接AA′,过点B作AA′的平行线l,在l上截取BB′=AA′,点B′就是点B 的对应点.类似地,作出点C的对应点C′. 连接A′B′,B′C′,A′C′,则三角形A′B′C′就是平移后的三角形.7.平移作图步骤总结:(1)分析题目要求,找出平移的方向和距离;(2)分析所作图形,找出构成图形的关键点;(3)沿平移方向,按平移的距离平移各个关键点;(作相关的平行(或在同一直线上)且相等的线段)(4)按照原来图形的连接方式连接所作的各个关键点,并标上字母,就可得到平移后的图形.8.对于一些不规则的图形可通过平移,将其转化为规则图形进行求解. 如:求不规则的线段的长度通过平移转化为规则线段的长度,不规则图形的面积转化为规则图形的面积和或差计算.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

O D A B C第五章 相交线与平线寒假预习基础部分1.如果 有一条边是公共边,另一边互为反向延长线 具有这种关系的两个角,互为邻补角,其中一个角是另一个角的邻补角.2.两直线相交,如果 有公共的顶点,没有公共的边 具有这种关系的两个角,互为对顶角,其中一个角是另一个角的对顶角.3.对顶角的性质 对顶角相等 .4.如图,直线AB 和CD 交于点O ,完成下列问题:⑴.∠AOC 的邻补角是 ∠BOC 和∠AOD .⑵.∠BOC 的对顶角是 ∠AOD .5.两直线交于一点,如果所得四个角中,有一个角等于 90° ,那么这两条直线互相 垂直 ,这个交点叫 垂足 ,其中的一条直线叫做另一条直线的 垂线 ,用 ⊥ 表示两直线互相垂直.6.垂线的性质一: 过一点有且只有一条直线与已知直线垂直 .7.画一条线段或射线的垂线,就是画它们所在 直线 的垂线.8.如图,AB ⊥CD ,垂足为D ,自CD 上任意一点作直线AB 的垂线,那么所画垂线均与CD 重合,这是因为: 过一点有且只有一条直线与已知直线垂直 .9.如果两条直线相交所成的四个角相等,则这两条直线互相 垂直 .10.过点作直线的垂线, 点与垂足之间的线段 叫垂线段.11.垂线的性质二 连接直线外一点与直线上任意各点的所有线段中,垂线段最短 简单说成 垂线段最短 .12.直线外一点到 这条直线的垂线段的长度 叫做点到直线的距离.13.点到直线的距离是指( D )A .从直线外一点到这条直线的垂线;B .从直线外一点到这条直线的垂线段;C .从直线外一点到这条直线的垂线的长度;D .从直线外一点到这条直线的垂线段的长度.14.两直线被第三直线所截,所构成的八个角中,如果 两个角分别在两直线的同一方,并且都在第三直线的同侧 ,具有这种关系的一对角叫做同位角.15.两直线被第三直线所截,所构成的八个角中,如果 两个角都在两直线之间,并且在第三直线的异A B CDD E F CAB 1 2 3 4 5 6 8 7 ⑴. 直线AB 、CD 叫截线,直线EF 叫 被截线 . ⑵.∠1和∠5是 同位角 ,同位角还有 ∠4和∠8、∠2和∠6、∠3和∠7. ⑶.内错角有 ∠2和∠8、∠3和∠5. ⑷.同旁内角有 ∠2和∠5、∠3和∠8. BC AD E侧 具有这种关系的一对角叫做内错角.16.两直线被第三直线所截,所构成的八个角中,如果 两个角都在两直线的之间,并且都在第三直线的同旁 具有这种关系的一对角叫做同旁内角17.如图,直线EF 与直线AB 、CD 都相交,完成下列问题:18.在同一平面内, 不相交的两条直线 叫平行线,直线AB 、CD 平行表示为 AB ∥CD .19.在同一平面内,两直线的位置关系有: 相交和平行 .20.平行公理: 经过直线外一点,有且只有一条直线与这条直线平行 .21.平行线的传递性: 如果两条直线都与第三直线平行,那么这两条直线平行 .22.下列说法中:①.在同一平面内两条直线不平行就相交;②.过一点,有且只有一条直线与这条直线平行;③.两条射线或线段平行是指它们所在的直线平行;④.两条不相交的直线是平行线.其中,正确的个数有( B )A .1个B .2个C .3个D .4个23.两直线被第三直线所截,如果 同位角 相等,那么 这两直线平行 ,简单说成 同位角相等,两直线平行 .24.如果两条直线都与第三直线平行,那么这两条直线 平行 .25.如图,直线AB 、CD 交于点M ,点P 是直线AB 外一点,过点P 作∠PNM =∠BMD ,那么PN 与AB 的位置关系是 平行 ,理由是: 同位角相等,两直线平行 .26.如图,在四边形ABCD 中,CE 是边DC 的延长线,如果∠D =∠BCE ,那么能够判定直线 AD 和BC 平行,理由是: 同位角相等,两直线平行 .27.两直线被第三直线所截,如果 内错角 相等,那么 这两直线平行 ,简单说成 内错角相等,两直线平行 .c12 43 m a b a cb 1 2 3 4 28.两直线被第三直线所截,如果 同旁内角互补 ,那么 这两直线平行 ,简单说成 同旁内角互补,两直线平行 .29.如图,由∠1=∠3,得 a ∥ c ,理由是: 同位角相等,两直线平行 ; 由∠2=∠4,得 b ∥ c ,理由是: 内错角相等,两直线平行 ;由∠2+∠3=180º,得 b ∥ c ,理由是: 同旁内角互补,两直线平行 ;提高部分30.下列说法:①.有一条公共边,且和为180°的两个角互为邻补角;②.相等的角是对顶角;③.对顶角相等;④.两个对顶角的余角相等;⑤.两条直线相交所成的四个角中,不相邻的两个角是对顶角.其中正确的有( C )A .1个B .2个C .3个D .4个31.下列三种说法:①.一条直线只有一条垂线;②.过一点有且只有一条直线与已知直线垂直;③.当两条直线相交,所成的四个角都相等,那么这两条直线互相垂直.其中正确的说法的个数有( C )A .0个B .1个C .2个D .3个32.如图,直线a 、b 、c 两两相交,下列说法:①.∠3与∠4是同位角;②.∠1与∠4是内错角;③.∠2与∠4是同旁内角;④.∠1与∠3是对顶角;⑤.∠1与∠2是邻补角.其中正确说法的个数为( D )A .2个B .3个C .4个D .5个33.在同一平面内,下列说法:①.过两点有且只有一条直线;②.两条不相同的直线有且只有一个公共点;③.经过一点有且只有一条直线与已知直线垂直;④.经过直线外一点有且只有一条直线与已知直线平行.O D A 1 2 B C E F A BC O E F 其中正确的个数为( C )A .1个B .2个C .3个D .4个34.如图,直线AB 和CD 相交于点O ,EF 平分∠AOC ,如果∠1=67°.求:∠2的度数.解:∵直线AB 和CD 相交于点O ,∴∠AOC=∠BOD∵EF 平分∠AOC ,∴∠AOC=2∠1,∠BOD=2∠2∴∠2=∠1∵∠1=67°,∴∠2=67°.35.一个角的补角比这个角的对顶角的3倍多20°,求这个角的度数.解:设这个角为x °,那么它的补角为180°-x °,它的对顶角为x °.由于一个角的补角比这个角的对顶角的3倍多20°所以180-x=3x+20解得:x °=40°答:这个角的度数是40°.36.已知:如图,点O 是直线AB 上的一点,OE 平分∠BOC ,OF ⊥OE ,如果∠COF =3∠BOE ,求∠AOF 的度数.解:设∠BOE =x °∵OE 平分∠BOC∴∠COE =∠BOE =x °∵∠COF =3∠BOE∴∠COF =3x °∵OF ⊥OE∴∠EOF =90°∴x °+3x °=90°∴x °=22.5°AB CDa bc12435687∵∠AOF=180°-∠BOE-∠EOF=180°-22.5°-90°=67.5°答:∠AOF的度数是67.5°.37.如图,∠ACB=90º,∠BDC=90º,AC=2.5cm,BC=4.1cm.⑴.图中互相垂直的线段有几对?⑵.指出∠ACD、∠DCB的等角?⑶.指出∠ACD、∠CBA的余角?⑷.点B到AC的距离是多少?点A到BC的距离是多少?解:⑴.∵∠ACB=90º∴AC⊥BC∵∠BDC=90º∴CD⊥AB∴互相垂直的线段有2对.⑵.∠ACD=∠B,∠DCB=∠A⑶.∠ACD的余角是∠A和∠DCB,∠CBA的余角是∠A和∠DCB.⑷.∵AC⊥BC∴点B到AC的距离是线段BC的长,即点B到AC的距离是4.1cm.∴点A到BC的距离是线段AC的长,即点A到BC的距离是2.5cm. 38.如图,直线a、b被直线c所截,有下列条件:①.∠2=∠6②.∠1=∠7A CD E 2 1 C D A B E 1 2 3 4 5 ③.∠5+∠6=180º④.∠3=∠8请你说明哪些条件可以判定直线a 和b 平行?解:条件①和②可以判定直线a 和b 平行.∵∠2和∠6是直线a 、b 被直线c 所截得到的同位角,∵∠2=∠6∴a ∥b (同位角相等,两直线平行)∴条件①可以判定直线a 和b 平行.∵∠1=∠3(对顶角相等)∵∠1=∠7∴∠3=∠7∴a ∥b (同位角相等,两直线平行)∴条件②可以判定直线a 和b 平行.∵条件③:∠5+∠6=180º是两邻补角的数量关系,与直线a 无关,无法判断直线a 和b 平行. ∵条件④:∠3=∠8,∠6=∠8(对顶角相等)∴∠3=∠6∵∠3和∠6是两同旁内角,而同旁内角相等无法判断直线a 和b 平行.∴只有条件①和②可以判定直线a 和b 平行.39.如图,BE 是∠ABD 的角平分线,DE 是∠BDC 的角平分线,且∠1+∠2=90º,请说明直线AB 、CD 的位置关系.解:∵BE 是∠ABD 的角平分线,∴∠ABD =2∠1∵DE 是∠BDC 的角平分线,∴∠CDB =2∠2∵∠1+∠2=90º∴∠ABD+∠CDB =2(∠1+∠2)=180º∴AB ∥CD (同旁内角互补,两直线平行)40.如图,在三角形ABC 中,点D 、E 分别在AB 和BC 上,连接DE 、AE.完成下列各题:①.∵∠1=∠2,∴AB∥DE(内错角相等,两直线平行)②.∵∠B=∠3,∴AB∥DE(同位角相等,两直线平行)③.∵∠5=∠CAB,∴AB∥DE(同位角相等,两直线平行)④.∵∠4+∠CAB=180º,∴AB∥DE(同旁内角互补,两直线平行)⑤.∵∠B+∠BED=180º,∴AB∥DE(同旁内角互补,两直线平行)。

相关文档
最新文档