三角形全章教案
《第12章 全等三角形》全章教案
课题§12.1 全等三角形序号12备课时间8.27 授课时间主备人王暖清授课班级8.1 8.2课标要求理解全等三角形的概念,能识别全等三角形中的对应边、对应角.1.理解全等形和全等三角形的概念,能识别全等三角形中的对应边、对应角.教学目标2.掌握全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等.教学重点全等三角形的性质.掌握两个全等三角形的对应边、对应角的寻找规律,能迅速正确地指出两个全等三角教学难点形的对应元素.课型新授课教学准备PPT课件教学过程(一)观察实践,得到概念问题1:观察下列图案,找出这些图案中形状、大小相同的图形.师生活动:学生说出图案中形状、大小相同的图形.追问1:你能再举出一些类似的例子吗?师生活动:学生根据生活实际举出类似的例子.追问2:如果把这些形状、大小相同的图形放在一起,能够完全重合吗?问题2:把一块三角尺按在纸板上,画下图形,照图形裁下来的纸板和三角尺的形状、大小完全一样吗?把三角尺和裁得的纸板放在一起能够完全重合吗?师生活动:学生动手操作,通过实践说明形状、大小相同的图形放在一起是完全重合的.教师顺势说出概念:能够完全重合的两个图形叫做全等形.能够完全重合的两个三角形叫做全等三角形.(板书课题)【设计意图】学生通过生活经验判断、猜想,进而动手实际操作,得到这些图形是能够完全重合的.培养学生观察、动手能力.(二)图形变换,加深理解图1 图2 图3问题3:(如图1)把△ABC平移,得到△DEF.(如图2)把△ABC沿直线BC翻折180°,得到△DBC.(如图3)把△ABC绕点A旋转,得到△ADE.追问:平移、翻折、旋转前后的图形,什么变化了,什么没有变化?它们全等吗?师生活动:学生分组根据要求操作,小组讨论得到平移、翻折、旋转前后的图形位置变化了,形状和大小没变,它们依然全等.教师巡回指导,并利用多媒体动画展示给学生看,加深印象.问题4:全等用符号“≌”表示,读作“全等于”.如,△ABC≌△DEF.把两个全等的三角形重合在一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.追问1:你能把图2和图3中全等三角形用符号表示出来,并说出它们的对应顶点、对应边和对应角吗?师生活动:教师讲解两个三角形全等的符号表示,结合图1讲解找两个全等三角形的对应顶点、对应边、对应角的方法.学生完成图2、图3中全等三角形的符号表示,并说出它们的对应顶点、对应边和对应角.追问2:上述几对全等三角形,它们的对应边和对应角有什么关系?为什么?师生活动:学生很容易得到全等三角形的对应边相等,全等三角形的对应角相等.教师板书指出这是全等三角形的性质.追问3:全等三角形的性质怎样用几何语言表示?因为△ABC≌△DEF所以 AB=DE,AC=DF,BC=EF (全等三角形的对应边相等)∠A=∠D,∠C=∠F,∠B=∠E (全等三角形的对应角相等)【设计意图】利用三角形的平移、翻折、旋转的不变性,让学生通过具体操作直观感知,进一步理解全等三角形的概念.通过观察,猜测并验证全等三角形的性质,这种效果是抽象的讲授难以达到的.利用基本三角形变换出各种图形,然后观察它们的对应边、对应角的变化,有利于提高学生识别图形的能力.(三)习题练习,巩固新知问题5:练习:教科书第32页练习第2题.如图4,△OCA≌△OBD,点C和点B,点A和点D是对应顶点.说出这两个三角形中相等的边和角.解:AC=DB, OA=OD, OC=OB;∠A=∠D, ∠C=∠B, ∠AOC=∠DOB.师生活动:学生回答图中相等的边和角.问题6:如图5,将△ABC沿直线BC平移,得到△DEF,说出图中相等的量.解:可能的结论有:对应角方面:∠A=∠D, ∠B =∠DEF, ∠ACB=∠F;对应边方面:AB=DE, AC=DF, BC=EF;间接的其他结论:AB∥DE, AC∥DF, BE=CF, 四边形ABEG与四边形FDGC面积相等.师生活动:学生独立完成后,分组讨论答案,教师巡回指导.【设计意图】通过练习,加强学生找全等三角形中对应边和对应角的能力,提高学生识别图形的能力.(四)小结与反思1.什么是全等形?什么是全等三角形?2.什么是全等三角形的对应顶点、对应边和对应角?3.全等三角形的性质是什么?4.怎样找全等三角形的对应边和对应角?【设计意图】通过小结,梳理本节课所学内容,总结方法,体会找全等三角形的对应边和对应角的一些具体方法.(五)布置作业A类:教科书第33页习题12.1第1题,B类:教科书第33页习题12.1第2题.板书设计§12.1 全等三角形1.全等形:能够完全重合的两个图形叫做全等形.例:2.全等三角形:能够完全重合的两个三角形叫做全等三角形.对应顶点、对应边、对应角3.全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等.(二)构建三角形全等判定的探索思路追问1:如果两个三角形满足上述六个条件中的一个可以判定两个三角形全等吗?(1)一条边相等.(2)一个角相等.追问2:如果两个三角形满足上述六个条件中的两个可以判定两个三角形全等吗?(1)一条边和一个角相等.(2)两个角相等.(3)两条边相等.追问3:如果两个三角形满足上述六个条件中的三个可以判定两个三角形全等吗?满足三个条件又有哪些情况呢?师生活动:教师引导学生分析,满足一个条件、两个条件分别有哪些情况.学生通过画图说明均不能判定两个三角形全等,接着分析满足三个条件有哪几种情况.【设计意图】让学生通过思考、实践形成认知,渗透分类讨论的思想.(三)尺规作图,探究“边边边”判定方法问题2我们先研究两个三角形满足三边分别相等的情况.任意画出一个△ABC,再画一个△A′B′C′,使A′B′=AB,B′C′= BC,A′C′= AC,把画好的△A′B′C′剪下来,放到△ABC上,它们全等吗?画法:(1)画B′C′= BC;(2)分别以B′、C′为圆心,线段AB、AC长为半径画弧,两弧相交于点A′;(3)连接线段A′B′、A′C′.追问:作图的结果反映了什么规律?你能用文字语言和符号语言概括吗?文字语言:三边分别相等的两个三角形全等(简写成“边边边”或“SSS”).符号语言:在△ABC与△A′B′C′中,∴△ABC≌△A′B′C′(SSS).师生活动:师生共同进行尺规作图,学生操作、观察是否全等.然后引导学生得出“边边边”判定方法,掌握文字和符号语言.【设计意图】通过作图、剪图、比较图的过程让学生感悟到基本事实的正确性,获得“边边边”的判定方法,培养学生发现问题的能力,锻炼学生使用数学语言的能力.(四)应用新知,解决问题问题3如图:AB=AD,BC=DC,△ABC与△ADC全等吗?为什么?师生活动:学生先口述理由,然后写出完整的证明过程,教师规范步骤.【设计意图】让学生初步掌握证明两个三角形全等的一般程序,并善于从具体问题中发现隐含条件,比如公共边等.问题4例1 在如图所示的三角形钢架中,AB=AC,AD是连接点A与BC中点D的支架,求证:△ABD≌△ACD.师生活动:学生分析解题思路,然后写出完整的证明过程.【设计意图】巩固新知,培养学生规范的解题步骤.问题5:作一个角等于已知角.已知:∠AOB.求作:∠A′O′B′,使∠A′O′B′=∠AOB.师生活动:学生在教师的指导下进行作图,并掌握画法.学生思考:为什么画出的角等于已知角?【设计意图】为了作一个角等于已知角,实际上是先作出了一对全等的三角形,由全等三角形的对应角相等可知所作出的角等于已知角,这也启发学生:如果得到了全等的三角形,就能得到相等的角,当然也能得到相等的边,这为证明角相等、线段相等提供了全新的思路.师生活动:教师画一个△ABC,学生先讨论画法,再给出正确的画法.操作:(1)把画好的三角形剪下和原三角形重叠,观察能重合在一起吗?(2)上面的探究说明什么规律?总结:判定两个三角形全等的方法:两边和它们的夹角分别相等的两个三角形全等.简写成“边角边”或“SAS”.【设计意图】坚持让学生动手发现,在学习三角形画法的基础上探索全等条件.三、实际应用例2 如图,有一池塘,要测池塘两端A,B的距离,可先在平地上取一个点C不经过池塘可以直接到达A和B。
新人教版八年级数学第11章全等三角形教案(全章)
第1课时全等三角形第2课时三角形全等的判定(1)第3课时三角形全等的判定(2)只用无刻度的直尽和圆规作图的方法称为尺规作图。
问:你能验证你所作的角与已知角相等吗?【问题2】作一个已知角∠AOB的平分线OC。
分析:假如∠AOB的平分线OC已经画出,在前面角的平分线的研究中,我们用折线的实验,在于怎样才能找到起关键作用的点C?点,必须先找点E、D.以O为圆心,,那么OD=OE吗?再分别以D、E为那么CD=CE吗?而D、E为圆心,第4课时三角形全等的判定(3)第5课时三角形全等的判定(4)第6课时三角形全等的判定(5)综合探究则可得到OD=OE,∠AEO=OBE≌△OCD,而由上可知(等角的补角相等),则可证得△COD,由外角的关系,可,BC=DC,将仪器,使它们落在角的两边上,沿AC第7课时三角形全等的判定(6)斜边和一条直角边对应相等的两个直角三角形全等(简写成“斜边、直角【想一想】你能够用几种方法说明两个直角三角形全等?直角三角形是特殊的三角形,所以不仅有一般三角形判定全等的方下面是三个同学的思考过程,你能明白他们的意思吗? ,90EF AC DF FDE ==∠=︒→△ABC ≌△→∠DEF →∠ABC+∠DEF=90有一条直角边和斜边对应相等,所以△DEF 全等.这样∠ABC=ABC+∠DEF=90°.ABC 和Rt △DEF 中,BC=EF DEF ,所以∠ABC 与∠DEF 是互余的.第8课时角的平分线的性质(1)的长”这个条件行吗?的内部吗?探究得到了角平分线仪器的操作原理,由此归纳出角的平分线的尺规画法,并进一步探究到角平分线的性质.第9课时角的平分线的性质(2)【探究】小组合作学习,动手操作探究,获得问题结论.从实践中可知:角平分到角的两边的距离相等的点也,垂足为D、E、F.第10-11课时《全等三角形》小结与复习OED CBAGF。
数学全等三角形教案8篇
数学全等三角形教案8篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作汇报、述职报告、发言致辞、心得体会、规章制度、应急预案、合同协议、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work reports, job reports, speeches, insights, rules and regulations, emergency plans, contract agreements, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!数学全等三角形教案8篇下面是本店铺收集的数学全等三角形教案8篇(全等三角形的讲课教案),供大家赏析。
初中数学《全等三角形》教案优秀6篇
教学过程
一、创设情境,导入新课
1.复习:(1)三角形中已知三个元素,包括哪几种情况?
三个角、三个边、两边一角、两角一边。
(2)到目前为止,可
2.两角和其中一角的对边。
做一做:
三角形的两个内角分别是60°和80°,它们的夹边为4cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?
2、把下列各式化成最简二次根式:
六、作业
教材P、187习题11、4;A组1;B组1、
七、板书设计
数学全等三角形教案篇四
教材内容分析:
本节课内容是全章学习的开篇课,也是本章学习的主线,主要介绍全等三角形的概念和性质。通过对生活中的全等图形和抽象的几何图形的观察,使学生对全等有一个感性的认识,建立对应的概念,掌握寻找全等三角形中对应元素的方法,理解全等三角形的性质,为学习判定两个三角形全等以及第十六章轴对称图形提供了必要的理论基础。
1、被开方数的因数是整数,因式是整式、
2、被开方数中不含能开得尽方的'因数或因式、
例1?指出下列根式中的最简二次根式,并说明为什么、
分析:
说明:这里可以向学生说明,前面两小节化简二次根式,就是要求化成最简二次根式、前面二次根式的运算结果也都是最简二次根式、
例2?把下列各式化成最简二次根式:
说明:引导学生观察例2题中二次根式的特点,即被开方数是整式或整数,再启发学生总结这类题化简的方法,先将被开方数或被开方式分解因数或分解因式,然后把开得尽方的因数或因式开出来,从而将式子化简、
(二)新课
由以上例子可以看出,遇到一个二次根式将它化简,为解决问题创
这两个二次根式化简前后有什么不同,这里要引导学生从两个方面考虑,一方面是被开方数的因数化简后是否是整数了,另一方面被开方数中还有没有开得尽方的因数、
全等三角形教学设计优秀4篇
全等三角形教学设计优秀4篇全等三角形教案篇一一、教学内容分析本节课选自北师大版《七年级数学下册》第五章第四节探索三角形全等的条件第一课时,本节课探索第一种判定方法—边边边,为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验,为以后的证明打下基础。
二、学生学习情况分析学生的知识技能基础:学生在前几节中,已经了解了三角形的有关概念(内角、外角、中线、高、角平分线),以及三角形三边之间的关系、图形的全等,对本节课要学习的三角形全等条件中的“边边边”和三角形的稳定性来说已经具备了一定的知识技能基础。
学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些探索图形全等的活动,通过拼图、折纸等方式解决了一些简单的现实问题,获得了一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
三、设计思想我们所在的学校处于市区,教学设备齐全,学生学习基础较好,在这之前他们已了解了图形全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。
另外,学生也基本具备了利用已知条件拼出三角形的能力,具备探索的热情和愿望,这使学生能主动参与本节课的操作、探究。
遵循启发式教学原则,采用引探式教学方法。
用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法。
四、教学目标1.知识与技能目标:掌握三角形全等的“边边边”条件,了解三角形的稳定性。
2.过程与方法目标:在探索三角形全等的条件及其运用的过程中,体会利用操作、归纳获得数学结论的过程,初步形成解决问题的基本策略。
认识三角形教案(优秀8篇)
认识三角形教案(优秀8篇)《三角形认识》教案篇一教学目标(一)使学生理解三角形的意义,掌握三角形的特征,学会按角的特征给三角形分类.(二)培养学生观察能力、识图能力和归纳概括能力.教学重点和难点使学生理解三角形的意义和特征,会按角的特征给三角形进行分类,既是教学的重点,也是学习的难点.教学过程设计(一)复习准备1.指出下面各是什么图形?(投影)说出长方形、正方形的边是直线、射线还是线段?2.指出下面各是什么角?说出什么叫直角、锐角、钝角?组成角的两条边是什么线?3.请大家在本子上画出直角(用三角板)、锐角、钝角各一个.小结:我们已经学习了线段和角,如果把角的两条边改为线段,把角的两个端点连起来会出现什么图形?(三角形)我们今天就来研究和认识三角形.(板书课题:三角形的认识)(二)学习新课1.理解三角形的意义.(1)我们已学过三角形,你能举例说出哪些物体的面是三角形吗?(红领巾、三角板、小红旗等)(2)结合复习题,思考讨论:①三角形是几条线段围成的?②什么样的图形叫三角形?在讨论的基础上,引导学生概括:三角形是由三条线段围成的,由三条线段围成的图形叫做三角形.(3)巩固概念.①找一找,哪些是三角形?(投影)②用三条线段组成的图形叫做三角形.这句话对不对?为什么?在学生回答的基础上,教师强调,看一个图形是不是三角形,要从两方面看:一是看只有三条线段,二是要看是否围成的封闭图形.2.掌握三角形的特征.刚才大家找出这么多三角形,它们的形状各不相同,进一步观察一下,这些三角形有没有共同的地方?启发学生明确:它们都是三条线段围成的,它们都有三个角,都有三个顶点.再引导学生概括:围成三角形的每条线段叫做三角形的边,每两条线段的交点叫做三角形的顶点.3.教学三角形的特性.我们学习的三角形在日常生活中有很多地方要用到,像自行车的车架、房梁架等.为什么要用三角形的呢?我们来做一次实验.教师用事先准备好的木框,让同学们拉一拉.先拉五边形木框.(变形)再拉四边形木框.(变形)后拉三角形木框.(拉不动,三角形不变).提问:通过三角形木框拉不动,你明白了什么道理?可以得出什么结论?引导学生明确:三角形的三条边长度固定,三角形的形状和大小就固定不变了.因而三角形具有稳定性.这就是三角形的特征.你能举出生活中有哪些用到三角形的特性吗?(椅子腿松动了,可以固定一个三角形铁架)4.教学三角形的分类.三角形是多种多样的,我们可以根据三角形中角的不同进行分类.怎样分?(1)出示投影片,观察每个三角形内角的度数.(2)比较这三个三角形的三个角,它们有什么相同点和不同点?引导学生明确:相同点是每个三角形都至少有两个锐角;不同点是还有一个角分别是锐角、钝角和直角.(3)分类.根据上边三个三角形三个角的特点的分析,可以把三角形分成三类.图①,三个角都是锐角,它就叫锐角三角形.(板书)提问:图②、图③只有两个锐角,能叫锐角三角形吗?(不能)引导学生根据另一个角来区分.图②还有一个角是直角,它就叫直角三角形,图③还有一个钝角,它就叫钝角三角形.请同学再概括一下,根据三角形角的特征可以把三角形分成几类?分别叫做什么三角形?教师板书:三个角都是锐角的三角形叫做锐角三角形;有一个角是直角的三角形叫做直角三角形;有一个角是钝角的三角形叫做钝角三角形.(4)三角形的关系.我们可以用集合图表示这种三角形之间的关系.把所有三角形看作一个整体,用一个圆圈表示.(画圆圈)好像是一个大家庭,因为三角形分成三类,就好象是包含三个小家庭.(边说边把集合图补充完整.)每种三角形就是这个整体的一部分.反过来说,这三种三角形正好组成了所有的三角形.(5)怎样判断三角形的类型呢?填表后观察.(投影)由上表可以看出,三角形中至少要有两个锐角,所以判断三角形的类型,应看它最大的内角.……(三)巩固反馈1.说说三角形的意义、特征.2.三角形有什么特性?3.三角形按角分,可以分为哪几类?4.判断题.(1)由三条线段组成的图形叫三角形.(2)锐角三角形中最大的角一定小于90°.(3)看到三角形中一个锐角,可以断定这是一个锐角三角形.(4)三角形中能有两个直角吗?为什么?(四)作业练习三十一第1~3题.课堂教学设计说明三角形是常见的一种图形,也是最基本的多边形,是学习研究其它几何图形的基础,在实践中有着广泛的应用.因此这部分内容很重要.本课教学既重视概念教学,又重视学生实践,不仅教知识,还要注意培养学生能力.新课第一部分,首先让学生理解三角形的概念.通过学生自己举例,观察,讨论后引导学生概括出什么样的图形叫做三角形.第二部分,让学生通过对各种形状三角形的观察、比较、找出它们的共同点,从而概括出三角形的特征,有三条边、三个角、三个顶点.第三部分,学习三角形的特性.让学生自己动手拉一拉五边形、四边形、三角形的木框,从而发现三角形的特性,即具有稳定性.第四部分,学习三角形的分类.学生在观察比较各种不同的三角形中的相同点和不同点的基础上,把三角形按角分类,可以分成锐角三角形、钝角三角形、直角三角形,概括出各种三角形的定义,并掌握它们之间的关系.通过不同形式的练习,让学生在思维中分辨,在观察中思维,使学生进一步理解概念,提高观察、概括能力.板书设计由三条线段围成的图形叫做三角形.三条边、三个角、三个顶点特性:稳定性按角分类三个角都是锐角的三角形叫做锐角三角形;有一个角是直角的三角形叫做直角三角形;有一个角是钝角的三角形叫做钝角三角形.《三角形认识》教案篇二【教材分析】本课是苏教版四年级下册第七单元第一课时的内容。
全等三角形教案6篇
全等三角形教案6篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!全等三角形教案6篇我们的教案需要定期更新以反映新的教育趋势,教师编写教案不仅促进了自我管理,还增强了他们的教育专业素养,以下是本店铺精心为您推荐的全等三角形教案6篇,供大家参考。
全等三角形教案(精选3篇)
全等三角形教案(精选3篇)全等三角形教案1课题:三角形全等的判定(三)教学目标:1、知识目标:(1)掌握已知三边画三角形的方法;(2)掌握边边边公理,能用边边边公理证明两个三角形全等;(3)会添加较明显的辅助线。
2、能力目标:(1)通过尺规作图使学生得到技能的训练;(2)通过公理的初步应用,初步培养学生的逻辑推理能力。
3、情感目标:(1)在公理的形成过程中渗透:实验、观察、归纳;(2)通过变式训练,培养学生“举一反三”的学习习惯。
教学重点:SSS公理、灵活地应用学过的各种判定方法判定三角形全等。
教学难点:如何根据题目条件和求证的结论,灵活地选择四种判定方法中最适当的方法判定两个三角形全等。
教学用具:直尺,微机教学方法:自学辅导教学过程:1、新课引入投影显示问题:有一块三角形玻璃窗户破碎了,要去配一块新的,你最少要对窗框测量哪几个数据?如果你手头没有测量角度的仪器,只有尺子,你能保证新配的玻璃恰好不大不小吗?这个问题让学生议论后回答,他们的答案或许只是一种感觉。
于是教师要引导学生,抓住问题的本质:三角形的三个元素――三条边。
2、公理的获得问:通过上面问题的分析,满足什么条件的两个三角形全等?让学生粗略地概括出边边边的公理。
然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。
(这里用尺规画图法)公理:有三边对应相等的两个三角形全等。
应用格式:(略)强调说明:(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。
(2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边)。
(3)、此公理与前面学过的公理区别与联系。
(4)、三角形的稳定性:演示三角形的稳定性与四边形的不稳定性。
在演示中,其实可以去掉组成三角形的一根小木条,以显示三角形条件不可减少,这也为下面总结“三角形全等需要有3全独立的条件”做好了准备,进行了沟通。
全等三角形教案【7篇】
全等三角形教案【优秀7篇】在教学工开展教学活动前,时常会需要准备好教案,教案是教学活动的总的组织纲领和行动方案。
那么优秀的教案是什么样的呢?这次帅气的我为您整理了7篇《全等三角形教案》,希望朋友们参阅后能够文思泉涌。
数学《全等三角形》教案篇一教学目标一、知识与技能1、了解全等形和全等三角形的概念,掌握全等三角形的性质。
2、能正确表示两个全等三角形,能找出全等三角形的对应元素。
二、过程与方法通过观察、拼图以及三角形的平移、旋转和翻折等活动,来感知两个三角形全等,以及全等三角形的性质。
三、情感态度与价值观通过全等形和全等三角形的学习,认识和熟悉生活中的全等图形,认识生活和数学的关系,激发学生学习数学的兴趣。
教学重点1、全等三角形的性质。
2、在通过观察、实际操作来感知全等形和全等三角形的基础上,形成理性认识,理解并掌握全等三角形的对应边相等,对应角相等。
教学难点正确寻找全等三角形的对应元素。
教学关键通过拼图、对三角形进行平移、旋转、翻折等活动,让学生在动手操作的过程中,感知全等三角形图形变换中的对应元素的变化规律,以寻找全等三角形的对应点、对应边、对应角。
课前准备:教师——————课件、三角板、一对全等三角形硬纸版学生——————白纸一张、硬纸三角形一个教学过程设计一、全等形和全等三角形的概念(一)导课:教师————(演示课件)庐山风景,以诗“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中”指出大自然中庐山的唯一性,但是我们可以通过摄影把庐山的美景拍下来,可以洗出千万张一模一样的庐山相片。
(二)全等形的定义象这样的图片,形状和大小都相同。
你还能说一说自己身边还有哪些形状和大小都相同的图形吗?[学生举例,集体评析]动手操作1———在白纸上任意撕一个图形,观察这个图形和纸上的空心部分的图形有什么关系?你怎么知道的?[板书:能够完全重合]命名:给这样的图形起个名称————全等形。
[板书:全等形]刚才大家所举的各种各样的形状大小都相同的图形,放在一起也能够完全重合,这样的图形也都是全等形。
第12章《全等三角形》全章教案(11页,含反思)
第十二章全等三角形12.1全等三角形1.了解全等形及全等三角形的概念.2.理解全等三角形的性质.重点探究全等三角形的性质.难点掌握两个全等三角形的对应边、对应角的寻找规律,能迅速正确地指出两个全等三角形的对应元素.一、情境导入一位哲人曾经说过:“世界上没有完全相同的叶了”,但是在我们的周围却有着好多形状、大小完全相同的图案.你能举出这样的例子吗?二、探究新知1.动手做(1)和同桌一起将两本数学课本叠放在一起,观察它们能重合吗?(2)把手中三角板按在纸上,画出三角形,并裁下来,把三角板和纸三角形放在一起,观察它们能够重合吗?得出全等形的概念,进而得出全等三角形的概念.能够完全重合的两个图形叫做全等形,能够完全重合的两个三角形叫做全等三角形.2.观察观察△ABC与△A′B′C′重合的情况.总结知识点:对应顶点、对应角、对应边.全等的符号:“≌”,读作:“全等于”.如:△ABC≌△A′B′C′.3.探究(1)在全等三角形中,有没有相等的角、相等的边呢?通过以上探索得出结论:全等三角形的性质.全等三角形的对应边相等,对应角相等.(2)把△ABC沿直线BC平移、翻折,绕定点旋转,观察图形的大小形状是否变化.得出结论:平移、翻折、旋转只能改变图形的位置,而不能改变图形的大小和形状.把两个全等三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.如△ABC和△DEF全等,记作△ABC≌△DEF,其中点A和点D,点B 和点E,点C和点F是对应顶点;AB和DE,BC和EF,AC和DF是对应边;∠A和∠D,∠B和∠E,∠C和∠F是对应角.三、应用举例例1如图,△ADE≌△BCF,AD=6 cm,CD=5 cm,求BD的长.分析:由全等三角形的性质可知,全等三角形的对应边相等,找出对应边即可.解:∵△ADE≌△BCF,∴AD=BC.∵AD=6 cm,∴BC=6 cm.又∵CD=5 cm,∴BD=BC-CD=6-5=1(cm).四、巩固练习教材练习第1题.教材习题12.1第1题.补充题:1.全等三角形是()A.三个角对应相等的三角形B.周长相等的三角形C.面积相等的两个三角形D.能够完全重合的三角形2.下列说法正确的个数是()①全等三角形的对应边相等;②全等三角形的对应角相等;③全等三角形的周长相等;④全等三角形的面积相等.A.1B.2C.3D.43.如图,已知△ABC≌△DEF,∠A=85°,∠B=60°,AB=8,EF=5,求∠DFE 的度数与DE的长.补充题答案:1.D2.D3.∠DFE=35°,DE=8五、小结与作业1.全等形及全等三角形的概念.2.全等三角形的性质.作业:教材习题12.1第2,3,4,5,6题.本节课通过学生在做模型、画图、动手操作等活动中亲身体验,加深对三角形全等、对应含义的理解,即培养了学生的画图识图能力,又提高了逻辑思维能力.12.2三角形全等的判定(4课时)第1课时“边边边”判定三角形全等1.掌握“边边边”条件的内容.2.能初步应用“边边边”条件判定两个三角形全等.3.会作一个角等于已知角.重点“边边边”条件.难点探索三角形全等的条件.一、复习导入多媒体展示,带领学生复习全等三角形的定义及其性质,从而得出结论:全等三角形的对应边相等,对应角相等.反之,这六个元素分别相等,这样的两个三角形一定全等.思考:三角形的六个元素分别相等,这样的两个三角形一定全等吗?二、探究新知根据上面的结论,提出问题:两个三角形全等,是否一定需要六个条件呢?如果只满足上述六个条件中的一部分,是否也能保证两个三角形全等呢?出示探究1:先任意画出一个△ABC,再画一个△A′B′C′,使△ABC与△A′B′C′满足上述六个条件中的一个或两个.你画出的△A′B′C′与△ABC一定全等吗?(1)三角形的两个角分别是30°,50°.(2)三角形的两条边分别是4 cm,6 cm.(3)三角形的一个角为30°,一条边为3 cm.学生剪下按不同要求画出的三角形,比较三角形能否和原三角形重合.引导学生按条件画三角形,再通过画一画,剪一剪,比一比的方式得出结论:只给出一个或两个条件时,都不能保证所画出的三角形一定全等.出示探究2:先任意画出一个△A′B′C′,使A′B′=AB,B′C′=BC,C′A′=CA.把画好的△A′B′C′剪下,放到△ABC上,它们全等吗?让学生充分交流后,教师明确已知三边画三角形的方法,并作出△A′B′C′,通过比较得出结论:三边分别相等的两个三角形全等.强调在应用时的简写方法:“边边边”或“SSS”.实物演示:由三根木条钉成的一个三角形的框架,它的大小和形状是固定不变的.明确:三角形的稳定性.三、举例分析例1如右图,△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架.求证:△ABD≌△ACD.引导学生应用条件分析结论,寻找两个三角形的已有条件,学会观察隐含条件.让学生独立思考后口头表达理由,由教师板演推理过程.教师引导学生作图.已知∠AOB,求作∠A′O′B′,使∠A′O′B′=∠AOB.讨论尺规作图法,作一个角等于已知角的理论依据是什么?教师归纳:(1)什么是尺规作图;(2)作一个角等于已知角的依据是“边边边”.四、巩固练习教材第37页练习第1,2题.学生板演.教师巡视,给出个别指导.五、小结与作业回顾反思本节课对知识的研究探索过程,小结方法及结论,提炼数学思想,掌握数学规律.进一步明确:三边分别相等的两个三角形全等.布置作业:教材习题12.2第1,9题.本节课的重点是探索三角形全等的“边边边”的条件;运用三角形全等的“边边边”的条件判别两个三角形是否全等.在课堂上让学生参与到探索的活动中,通过动手操作、实验、合作交流等过程,学会分析问题的方法.通过三角形稳定性的实例,让学生产生学数学的兴趣,学会用数学的眼光去观察、分析周围的事物,为下一节内容的学习打下基础.第2课时“边角边”判定三角形全等1.掌握“边角边”条件的内容.2.能初步应用“边角边”条件判定两个三角形全等.重点“边角边”条件的理解和应用.难点指导学生分析问题,寻找判定三角形全等的条件.一、复习引入1.什么是全等三角形?2.全等三角形有哪些性质?3.“SSS”具体内容是什么?二、新知探究已知△ABC ,画一个三角形△A′B′C′,使AB =A′B′∠B =∠B ′,BC =B′C′. 教师画一个三角形△ABC.先让学生按要求讨论画法,再给出正确的画法.操作:(1)把画好的三角形剪下和原三角形重叠,观察能重合在一起吗?(2)上面的探究说明什么规律?总结:判定两个三角形全等的方法:两边和它们的夹角分别相等的两个三角形全等,简写成“边角边”或“SAS ”.三、举例分析多媒体出示教材例2.例2 如图,有一池塘,要测池塘两端A ,B 的距离,可先在平地上取一个点C ,从点C 不经过池塘可以直接到达点A 和B.连接AC 并延长到点D ,使CD =CA.连接BC 并延长到点E ,使CE =CB.连接DE ,那么量出DE 的长就是A ,B 的距离,为什么?分析:如果证明△ABC ≌△DEC ,就可以得出AB =DE. 证明:在△ABC 和△DEC 中,⎩⎨⎧CA =CD ,∠1=∠2,CB =CE ,∴△ABC ≌△DEC(SAS ). ∴AB =DE.归纳解决实际问题的一般方法是:分析实际问题,按要求画出图形,根据图形及已知条件选择对应的方法.四、课堂练习如图,已知AB =AC ,点D ,E 分别是AB 和AC 上的点,且DB =EC.求证:∠B =∠C.学生先独立思考,然后讨论交流,用规范的书写完成证明过程. 五、小结与作业 1.师生小结:(1)“边角边”判定两个三角形全等的方法.(2)在判定两个三角形全等时,要注意使用公共边和公共角. 2.布置作业:教材习题12.2第3,4题.本节课的重点是让学生认识掌握运用“边角边”判定两个三角形全等的方法,让学生自己动手操作,合作交流,通过学生之间的质疑讨论,发现此定理中角必为夹角,从而得出“边角边”的判定方法.不仅学习了知识,也训练了思维能力,对三角形全等的判定(SAS)掌握的也好,但要强调书写的格式的规范,同时让学生感受到在证明分别属于两个三角形的线段或角相等的问题时,通常通过证明这两个三角形全等来解决.第3课时“角边角”和“角角边”判定三角形全等1.掌握“角边角”及“角角边”条件的内容.2.能初步应用“角边角”及“角角边”条件判定两个三角形全等.重点“角边角”条件及“角角边”条件.难点分析问题,寻找判定两个三角形全等的条件.一、复习导入1.复习旧知:(1)三角形中已知三个元素,包括哪几种情况?三个角、三个边、两边一角、两角一边.(2)到目前为止,可以作为判定两三角形全等的方法有几种?各是什么?2.[师]在三角形中,已知三个元素的四种情况中,我们研究了三种,我们接着探究已知两角一边是否可以判定两三角形全等.二、探究新知1.[师]三角形中已知两角一边有几种可能?[生](1)两角和它们的夹边;(2)两角和其中一角的对边.做一做:三角形的两个内角分别是60°和80°,它们的夹边为4 cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?学生活动:自己动手操作,然后与同伴交流,发现规律.教师活动:检查指导,帮助有困难的同学.活动结果展示:以小组为单位将所得三角形重叠在一起,发现完全重合,这说明这些三角形全等.提炼规律:两角和它们的夹边分别相等的两个三角形全等.(可以简写成“角边角”或“ASA”) [师]我们刚才做的三角形是一个特殊三角形,随意画一个△ABC,能不能作一个△A′B′C′,使∠A=∠A′,∠B=∠B′,AB=A′B′呢?[生]能.学生口述画法,教师进行多媒体课件演示,使学生加深对“ASA”的理解.[生](1)先用量角器量出∠A与∠B的度数,再用直尺量出AB的边长;(2)画线段A′B′,使A′B′=AB;(3)分别以A′,B ′为顶点,A ′B ′为一边作∠DA′B′,∠EB ′A ′,使∠DA′B′=∠CAB ,∠EB ′A ′=∠CBA ;(4)射线A′D 与B′E 交于一点,记为C′.即可得到△A′B′C′.将△A′B′C′与△ABC 重叠,发现两三角形全等. [师]于是我们发现规律:两角和它们的夹边分别相等的两三角形全等.(可以简写成“角边角”或“ASA ”) 这又是一个判定两个三角形全等的条件. 2.出示探究问题:如图,在△ABC 和△DEF 中,∠A =∠D ,∠B =∠E ,BC =EF ,△ABC 与△DEF 全等吗?能利用角边角条件证明你的结论吗?证明:∵∠A +∠B +∠C =∠D +∠E +∠F =180°, ∠A =∠D ,∠B =∠E , ∴∠A +∠B =∠D +∠E. ∴∠C =∠F.在△ABC 和△DEF 中,⎩⎨⎧∠B =∠E ,BC =EF ,∠C =∠F ,∴△ABC ≌△DEF(ASA ). 于是得规律:两角和其中一个角的对边分别相等的两个三角形全等.(可以简写成“角角边”或“AAS ”) 例 如下图,点D 在AB 上,点E 在AC 上,AB =AC ,∠B =∠C.求证:AD =AE.[师生共析]AD 和AE 分别在△ADC 和△AEB 中,所以要证AD =AE ,只需证明△ADC ≌△AEB 即可.学生写出证明过程.证明:在△ADC 和△AEB 中,⎩⎨⎧∠A =∠A ,AC =AB ,∠C =∠B ,∴△ADC ≌△AEB(ASA ). ∴AD =AE.[师]到此为止,在三角形中已知三个条件探索两个三角形全等问题已全部结束.请同学们把两个三角形全等的判定方法作一个小结.学生活动:自我回忆总结,然后小组讨论交流、补充.三、随堂练习1.教材第41页练习第1,2题. 学生板演. 2.补充练习图中的两个三角形全等吗?请说明理由.四、课堂小结有五种判定两个三角形全等的方法: 1.全等三角形的定义 2.边边边(SSS ) 3.边角边(SAS ) 4.角边角(ASA ) 5.角角边(AAS )推证两个三角形全等,要学会联系思考其条件,找它们对应相等的元素,这样有利于获得解题途径.五、课后作业教材习题12.2第5,6,11题.在前面研究“边边边”和“边角边”两个判定方法的前提下,本节研究“角边角”和“角角边”对于学生并不困难,让学生通过直观感知、操作确认的方式体验数学结论的发现过程,在这节课的教学中,学生也了解了分类思想和类比思想.第4课时 “斜边、直角边”判定三角形全等1.探索和了解直角三角形全等的条件:“斜边、直角边”. 2.会运用“斜边、直角边”判定两个直角三角形全等.重点探究直角三角形全等的条件.难点灵活运用直角三角形全等的条件进行证明.一、情境引入(显示图片)舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住无法测量.(1)你能帮他想个办法吗?(2)如果他只带了一个卷尺,能完成这个任务吗?方法一:测量斜边和一个对应的锐角(AAS );方法二:测量没遮住的一条直角边和一个对应的锐角(ASA 或AAS ). 工作人员测量了每个三角形没有被遮住的直角边和斜边,发现它们分别相等,于是他就肯定“两个直角三角形是全等的”.你相信他的结论吗? 二、探究新知多媒体出示教材探究5.任意画出一个Rt △ABC ,使∠C =90°.再画一个Rt △A ′B ′C ′,使∠C′=90°,B ′C ′=BC ,A ′B ′=AB.把画好的Rt △A ′B ′C ′剪下来,放到Rt △ABC 上,它们全等吗?画一个Rt △A ′B ′C ′,使∠C′=90°,B ′C ′=BC ,A ′B ′=AB. 想一想,怎么样画呢?按照下面的步骤作一作: (1)作∠MC′N =90°;(2)在射线C′M 上截取线段B′C′=BC ;(3)以B′为圆心,AB 为半径画弧,交射线C′N 于点A′;(4)连接A′B′.△A ′B ′C ′就是所求作的三角形吗?学生把画好的△A′B′C′剪下放在△ABC 上,观察这两个三角形是否全等.由探究5可以得到判定两个直角三角形全等的一个方法:斜边和一条直角边分别相等的两个直角三角形全等.简写成“斜边、直角边”或“HL ”. 多媒体出示教材例5如图,AC ⊥BC ,BD ⊥AD ,垂足分别为C ,D ,AC =BD.求证:BC =AD.证明:∵AC ⊥BC ,BD ⊥AD , ∴∠C 与∠D 都是直角.在Rt △ABC 和Rt △BAD 中,⎩⎨⎧AB =BA ,AC =BD , ∴Rt △ABC ≌Rt △BAD(HL ). ∴BC =AD.想一想:你能够用几种方法判定两个直角三角形全等?直角三角形是特殊的三角形,所以不仅有一般三角形判定全等的方法:SAS,ASA,AAS,SSS,还有直角三角形特殊的判定全等的方法——“HL”.三、巩固练习如图,两根长度为12米的绳子,一端系在旗杆上,另一端分别固定在地面两个木桩上,两个木桩离旗杆底部的距离相等吗?请说明你的理由.学生独立思考完成.教师点评.四、小结与作业1.判定两个直角三角形全等的方法:斜边、直角边.2.直角三角形全等的所有判定方法:定义,SSS,SAS,ASA,AAS,HL.思考:两个直角三角形只要知道几个条件就可以判定其全等?3.作业:教材习题12.2第7题.本节课教学,主要是让学生在回顾全等三角形判定的基础上,进一步研究特殊的三角形全等的判定的方法,让学生充分认识特殊与一般的关系,加深他们对公理的多层次的理解.在教学过程中,让学生充分体验到实验、观察、比较、猜想、归纳、验证的数学方法,一步步培养他们的逻辑推理能力.12.3角的平分线的性质掌握角的平分线的性质和判定,能灵活运用角的平分线的性质和判定解题.重点角的平分线的性质和判定,能灵活运用角的平分线的性质和判定解题.难点灵活运用角的平分线的性质和判定解题.一、复习导入1.提问角的平分线的定义.2.给定一个角,你能不用量角器作出它的平分线吗?二、探究新知(一)角的平分线的画法教师出示:已知∠AOB.求作:∠AOB的平分线.然后让学生阅读教材第48页上方思考.(教师演示画图)通过对分角仪原理的探究,得出用直尺和圆规画已知角的平分线的方法,师生共同完成具体作法.(二)角的平分线的性质试验:(1)让学生在已经画好的角的平分线上任取一点P;(2)分别过点P作PD⊥OA,PE⊥OB,垂足为D,E;(3)测量PD和PE的长,观察PD与PE的数量关系;(4)再换一个新的位置看看情况怎样?归纳总结得到角的平分线的性质.分析讨论PD=PE的理由.(三)角平分线的判定教师指出:角的内部到角的两边的距离相等的点在角的平分线上.(1)写出已知、求证.(2)画出图形.(3)分析证明过程.巩固应用:解决教材第49页思考(四)三角形的三个内角的平分线相交于一点1.例题:教材第50页例题.2.针对例题的解答,提出:P点在∠A的平分线上吗?通过例题明确:三角形的三个内角的平分线相交于一点.练习:教材第50页练习.三、归纳总结引导学生小组合作交流:(1)本节课学到了哪些知识?(2)你有什么收获?四、布置作业教材习题12.3第1~4题.教学始终围绕着角平分线及其性质、判定的问题而展开,先从出示问题开始,鼓励学生思考,探索问题中所包含的数学知识,让学生经历了知识的形成与应用的过程,从而更好的理解掌握角平分线的性质。
初中数学三角形教案(7篇)
初中数学三角形教案(7篇)一、教材分析本节教材是学生对小学阶段三角形有初步了解的根底上进一步熟悉三角形的特点和性质。
三角形是最简洁、最根本,很常见的一种几何图形,在工农业生产和日常生活中有广泛的应用价值。
对学生更好地熟悉现实世界,拓展空间观念都有特别重要的作用,同时对今后学习三角形全等、相像和解直角三解形,解决相关的实际问题,都有不行低估的作用。
二、教学目标1、结合实物和图形理解三角形定义2、找到全部三角形的共同特点。
3、会用三角形顶点的三个大写字母和形象符号(“△”)来记一个三角形。
4、初步了解任意三角形三边之间的大小关系。
5、能应用所学学问解决日常生活中与三角形有关的实际问题。
6、初步感受三角形简洁、广泛地适用性。
7、培育学生动手、动脑、合作、沟通、探究意识。
三、教学重难点重点:三角形共同特点的理解及三角形三边关系性质的理解。
难点:应用三边关系性质解决简章的实际问题。
四、教具及材料预备三角板、实物的三角形、包装带、剪刀、头钉、白纸、透亮胶等(师生同备)五、学生状况及教学构思七年级学生年龄较小,思维正处在由详细形象思维向抽象规律思维转化的阶段,针对这一特点,在教学中设计了以下教学环节:从实际动身说三角形、找三角形、记三角形、画三角形、算三角形、感悟三角形、剪三角形、做三角形、小结三角形的教学环节。
六、教学实施1、师:在小学我们进一步了解了三角形,今日我们在一起进一步熟悉三角形的定义、记法及其相关性质,随之在黑板上板书课题(1熟悉三角形)哪位同学能列举日常生活中与三角形有关的实例(同学们争先举手答问)。
生:像铁塔,空调器支架、铁桥、教室里饮水机支架、屋顶支架等都是由很多三角形构成的。
师:在黑板上画出同学熟识的屋顶框架图。
2、师:既然小到生活小事,大到交通、建筑等随处可见三角形的图形,那么三角形有哪些共同特点呢?甲生:每一个三角形都有三个内角,三个顶点。
乙生:每一个三角形都由三条线段组成。
丙生:任意三角形的三内角之和都等于180°。
全等三角形教案六篇
全等三角形教案六篇全等三角形教案范文1同学的学问技能基础:同学通过前面的学习已经了解了全等三角形的概念,把握了全等三角形的对应边、对应角的关系,这为探究三角形全等的条件做好了学问上的预备。
同学活动阅历基础:同学也具备了利用直尺、量角器作三角形的基本作图力量,这将使同学能够主动参加本节课的操作、探究成为可能。
二、教学任务分析全等三角形是两个三角形间最简洁,最常见的关系,它不仅是学习后面学问的基础,还是证明线段相等、角相等以及两线相互平行、垂直的重要依据。
因此必需娴熟地把握全等三角形的判定方法,并且能够敏捷应用。
《探究三角形全等的条件》共三课时,本节课探究第一种判定方法―边边边,为了使同学更好地把握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导同学操作、观看、探究、沟通、发觉、思维,真正把同学放到主置,进展同学的空间观念,体会分析问题、解决问题的方法,积累数学活动阅历,为以后的证明打下基础。
为此,本节课的教学目标是:1.学问与技能:经受探究三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程,把握三角形全等的“边边边”条件,了解三角形的稳定性,在探究的过程中,能够进行有条理的思索并进行简洁的推理。
2.方法与过程:争论、引导教学法。
3.情感、态度、价值观:使同学在自主探究三角形全等的过程中,经受画图、观看、比较、推理、沟通等环节,从而获得正确的学习方式和良好的情感体验,让同学体验数学源于生活,服务于生活的辨证思想。
三、教学设计分析本节课设计了五个教学环节:学问回顾引入新知、创设情境提出问题、建立模型探究发觉、巩固运用及其推广、反思小结布置作业。
第一环节学问回顾引入新知活动内容:回顾全等三角形的定义及其性质。
全等三角形的定义:两个能够重合的三角形称为全等三角形。
全等三角形的性质:全等三角形的对应边、对应角相等。
活动目的:回忆前面学习过的学问,为探究新学问作预备。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1三角形【教学目标】1、知识与技能、理解三角形的表示法,分类法以及三边存在的关系,发展空间观念。
2、过程与方法:⑴经历探索三角形中三边关系的过程,认识三角形这个最简单,最基本的几何图形,提高推理能力。
⑵培养学生数学分类讨论的思想。
3、情感态度与价值观:⑴培养学生的推理能力,运用几何语言有条理的表达能力,体会三角形知识的应用价值。
⑵通过师生共同活动,促进学生在学习活动中培养良好的情感,合作交流,主动参与的意识,在独立思考的同时能够认同他人。
【重点】掌握三角形三边关系【难点】三角形三边关系的应用【课型】新授课【学习方法】自学与小组合作学习相结合的方法【学习过程】一、目标导入课件展示图片,学生欣赏并从中抽象出三角形。
问题:你能举出日常生活中三角形的实际例子吗?二、自主学习(1):1.自学内容:教材第42页.2.自学要求:学生理解边、角、顶点的意义而不是背其定义;让学生感受数学语言的逻辑性,严密性。
三、交流展示(1):1:三角形定义:____________________________________________________ 2:怎样用几何符号表示你所画的三角形?什么是三角形的顶点、边、角?3、现实生活中,你看到一些形状不同的三角形,你能画出吗?四、自主学习(2):1.自学内容:课本43页2.自学要求:学生会对三角形分类;学生明白对于同一事物可采用几种不同的分类标准.五、交流展示(2)1. 三角形可采用几种不同的分类标准?如何分类?2.如何给你所画的这些形状各异的?六、自主学习(3):1.自学内容:课本43页动脑筋到例题1;2.自学要求:学生理解三角形三边之间的关系,能进行简单说理.七、交流展示(3)1、三角形三边之间的关系定理:_________________________________,理论依据是__________________________.2、记住:三角形三边之间的关系定理的推论:三角形的两边之差大于第三边;3、下列长度的三条线段能否围成三角形?为什么?⑴ 2,4,7 ⑵ 6,12,6 ⑶ 7,8,134、现有两根木棒,它们的长分别为40cm和50cm,若要钉成一个三角形木架(•不计接头),则在下列四根木棒中应选取()A.10cm长的木棒 B.40cm长的木棒 C.90cm长的木棒 D.100cm 长的木棒5.已知一个三角形的两边长分别是3cm和4cm,则第三边长x的取值范围是____.•若x是奇数,则x的值是______;这样的三角形有______个;•若x•是偶数,•则x•的值是______;这样的三角形又有________个.八、自主学习(4):1.自学内容:课本43页例题;2.自学要求:让学生体会数学的严密性。
1能否利用代数中方程思想解决几何问题。
2能否用分类讨论方法解决问题。
3求出三边后还需用三角形三边之间关系检验。
九、交流展示(4)1、已知一个等腰三角形两边长是4cm和9cm,求它的周长?2、已知一个等腰三角形两边长是5cm和9cm,求它的周长?十、巩固练习课本:44页练习十一、小结1、三角形定义:_________________________2、三角形进行分类:3、三角形三边之间的关系定理:_____________________,理论依据是___________________.三角形三边之间的关系定理的推论:_______________。
十二、拓展与探究已知a、b、c为△ABC的三边长,b、c满足(b-2)2+│c-3│=0,且a为方程│x-4│=2的解,求△ABC的周长,判断△ABC的形状.十三、达标检测1.下图中有几个三角形?用符号表示这些三角形.2.下列说法:(1)等边三角形是等腰三角形;(2)三角形按边分类可分为等腰三角形、等边三角形和不等边三角形;(3)三角形的两边之差大于第三边;(4)三角形按角分类应分为锐角三角形、直角三角形和钝角三角形.其中正确的有()A.1个 B.2个 C.3个 D.4个3.下列长度的各组线段中,能组成三角形的是()A.3cm,12cm,8cm B.6cm,8cm,15cmC.2.5cm,3cm,5cm D.6.3cm,6.3cm,12.6cm4、已知等腰三角形的两边长分别是3和6,则它的周长等于()A.12 B.12或15 C.15 D.15或185、已知等腰三角形的一边长等于5,周长为16,求另一边长.十四、布置作业:第二课时三角形的高、中线与角平分线【学习目标】1、知识目标:认识三角形的高、中线与角平分线.2、能力目标:会用工具准确画出三角形的高、中线与角平分线, 通过画图了解三角形的三条高(及所在直线)交于一点,三角形的三条中线,三条角平分线等都交于一点.3、情感目标:采用自学与小组合作学习相结合的方法,培养自己主动参与、勇于探究的精神。
【重点难点】重点:(1)了解三角形的高、中线与角平分线的概念, 会用工具准确画出三角形的高、中线与角平分线.(2)了解三角形的三条高、三条中线与三条角平分线分别交于一点.难点:(1)三角形平分线与角平分线的区别,三角形的高与垂线的区别.(2)钝角三角形高的画法.(3)不同的三角形三条高的位置关系.【课型】新授课【学习方法】自学与小组合作学习相结合的方法【教学用具】电脑、投影仪【学习过程】EB CDA一、复习巩固:1、图中有几个三角形?用符号表示这些三角形。
2、如果三角形的两边长为2和9,且周长为奇数,那么满足条件的三角形共有()个。
3、以下列长度的三条线段为边,能构成三角形的是()A.3,3,3 B.3,3,6 C.3,2,5 D.3,2,64、等腰三角形的两边长分别为12cm和8cm,这个等腰三角形的周长是.二、自主学习:1.自学内容:课本44页 ----45页2.自学要求:阅读课本内容,仔细观察上表中的内容,并回答下面问题.(1)什么叫三角形的高?三角形的高与垂线有何区别和联系?(2)什么叫三角形的中线?连结两点的线段与过两点的直线有何区别和联系?(3)什么叫三角形的角平分线?三角形的角平分线与角平分线有何区别和联三、交流展示:1.三角形的高、中线和角平分线是代表线段还是代表射线或直线?2.如图,AF 是ΔABC 的角平分线,AE 是BC 边上的中线,选择“>”、“<”或“=”号填空:(1)BE___EC(2)∠CAF___21∠BAC(3)∠AFB___∠C+∠FAB (4)∠AEC___∠B 四、巩固练习:1.在练习本上画出三角形,并在这个三角形中画出它的三条高.( 如果所画的是锐角三角形,接着提出在直角三角形的三条高在哪里?钝角三角形的三条高在那里?)观察这三条高所在的直线的位置有何关系?三角形的三条高____________,锐角三角形三条高交点在锐角三角形_____,直角三角形三条高线交点在直角三角形________,而钝角三角形的三条高的交点在钝角三角形__________.2.在练习本上画三角形,并在这个三角形中画出它的三条中线.( 如果所画的是锐角三角形,接着让他们画出直角三角形和钝角三角形,看看这些三角形的中线在哪里)?观察这三条中线的位置有何关系?三角形的三条中线都在三角形________,它们__________,这个交点在______________.3.在练习本上画一个三角形,并在这三角形中画出它的三条角平分线,观察这三条角平分线的位置有何关系?无论是锐角三角形还是直角三角形或钝角三角形, 它们的三条角平分线都在_________________,并且________.4.课本45页 练习1.2题五、探究拓展如图,在△ABC 中,AE,AD 分别是BC 边上中线和高, (1)说明△ABE 的面积与△AEC 的面积有何关系?(2)你有什么发现?同高等底的两个三角形的面积________.三角形的中线把三角形分成两个面积_______的三角形。
六、课堂小结:本节课你有何收获? 七、布置作业:E F CB A B DE第三课时三角形的内角和【学习目标】1、了解三角形的内角;2、会用平行线的性质与平角的定义证明三角形内角和等于180度;3、学会解决与求角有关的实际问题;4、初步培养学生的说理能力。
【重点难点】重点:了解三角形的内角和性质,学会解决简单的实际问题。
难点:说明三角形内角和等于180度。
【课型】新授课【学习方法】自学与小组合作学习相结合的方法【教学用具】三角尺、铅画纸、小剪刀、量角器。
电脑、投影仪【学习过程】一、动手操作,初步感知问题:1、三角形的内角和等于多少度?2、在纸上画一个三角形将将它的内角剪下,试着拼拼看。
3、在同伴交流有哪些不同的拼合方法。
设计意图:从丰富的拼图活动中发展学思维的灵活性,创造性,为下一环节“说理”做准备。
二、实践说理,深入新知问题:1、由刚才拼合而成的图形,你能想出说明“三角形内角和等于180度"这个结论的正确方法吗?2、把你的想法与同伴交流.3、各小组派代表展示说理方法.4、请同学们归纳上述各种不同的方法。
设计意图:在说理过程中,更加深刻地理解多种拼图方法,创设不同说理方法的表达情境。
三、应用新知在△ABC中,(1)已知∠A =080,能否知道∠B,∠C的度数?(2)已知∠A =052,则∠C =80,∠B=0(3)已知∠A =040,则∠C80,∠B-∠C=0(4)已知∠A +∠B=0100,∠C =2∠A,能否求∠A、∠B、∠C的度数?(5)已知∠A:∠B:∠C=1:3:5,能否求∠A、∠B、∠C的度数?2、出示教科书46页例。
设计3个问题:(1)请你解释一下这些方位角。
(2)∠ACB是哪个三角形的内角?(3)有不同解法请你的同伴交流。
设计意图:向学生展示分析问题的基本方法,培养学生思维的广阔性。
四、练习1、完成教科书48页练习1、2.2、已知△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数。
设计意图:增加第2小题,一方面巩固了前面的已学知识(高),另一方面进一步提高学生的说理能力。
五、总结归纳采用让学生归纳、补充,然后教师补充的方式进行。
1、本节课我们学了什么知识?2、你有什么收获?设计意图:发挥学生主体意识,培养学生语言概括能力。
六、布置作业1、必做题:教科书49页第1、3、4题。
2、选做题:(1)在∠C中,CD⊥AB,垂足是D,∠A=056,求∠B,∠ACB54,∠BCD=0的度数。
(2)在△ABC中,∠A+∠B=0110,∠C=2∠B,∠C=50度,分别求∠A、∠B 的度数。
(3)在△ABC中,∠ACB=90度,CD⊥AB,垂足为D,∠BCD=27度,求∠ACD 的度数,且探索∠BCD与∠A,∠B与∠ACD的关系。