山东省费县梁邱一中2014-2015学年九年级数学上期末模拟测试题(一)及答案

合集下载

2014-2015学年九年级第一次质量模拟试卷及答案

2014-2015学年九年级第一次质量模拟试卷及答案

2015年九年级第一次质量预测数学模拟试卷(一)(满分120分,考试时间100分钟)学校:___________ 班级:_________ 姓名:________ 分数:__________一、选择题(每小题3分,共24分)1.与-3的差为0的数是()A.3 B.-3 C.1 3D.13-2.下列图形中,不是轴对称图形的是()A.B. C. D.3.国家统计局公布2013年中国国内生产总值568 845亿元,同比增长7.7%,完成了年初设定的7.5%的目标.请你以亿元为单位用科学记数法表示2013年我国的国内生产总值为(结果保留两个有效数字)()A.5.6×1013B.5.7×1013C.5.7×105D.5.6×1054.过正方体上底面的对角线和下底面一顶点的平面截去一个三棱锥所得到的几何体如图所示,则它的俯视图为()A.B.C.D.5.不等式4-3x≥2x-6的非负整数解有()A.1个B.2个C.3个D.4个6.如图,双曲线myx=与直线y kx b=+相交于点M,N,且点M的坐标为(1,3),点N的纵坐标为-1.根据图象信息可得关于x的方程mkx bx=+的解为()A.-3,1 B.-3,3 C.-1,1 D.-1,37.如图,正方形OABC的两边OA,OC分别在x轴、y轴的正半轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D'的坐标是()A.(2,10)B.(-2,0) C.(2,10)或(-2,0)D.(10,2)或(-2,0)8.如图,⊙O的半径OD⊥弦AB于点C,连接AO并延长,交⊙O于点E,连接CE.若AB=8,CD=2,则CE的长为()A.215B.8C.210D.213二、填空题(每小题3分,共21分)9.当x=_______时,分式55xx--无意义.10.菱形ABCD中,若对角线AC=8cm,BD=6cm,则边长AB=_______cm.11.已知圆锥的底面半径为1,全面积为4π,则圆锥的母线长为_______.12.甲、乙、丙三位同学打乒乓球,想通过“手心手背”游戏来决定其中哪两个人先打,规则如下:三个人同时各用一只手随机出示手心或手背,若只有两个人手势相同(都是手心或都是手背),则这两人先打;若三人手势相同,则重新决定.那么通过一次“手心手背”游戏能决定甲打乒乓球的概率是_______.13.如图,平行四边形OABC的顶点O在坐标原点,顶点A,C在反比例函数kyx=(0x>)的图象上,点A的横坐标为4,点B的横坐标为6,且平行四边形OABC的面积为9,则k的值为_________.yxOABCFED CBANMEDCBA第13题图第14题图第15题图14.如图,在△ABC中,∠BAC=30°,AB=AC,AD是BC边上的中线,∠ACE=12∠BAC,CE交AB于点E,交AD于点F.若BC=2,则EF的长为_________.15.如图,在矩形ABCD中,AD AB>,将矩形ABCD折叠,使点C与点A重合,折痕为MN,连接CN.若△CDN的面积与△CMN的面积之比为1:4,则MNBM的值为_________.三、解答题(本大题共8小题,满分75分)16.(8分)先化简,再求值:2311221x xx x x x-⎛⎫-÷-⎪+++⎝⎭,其中x满足x2-x-1=0.NMxyOxyODC BAEDC BAO第6题图第7题图第8题图O EDC BA P x y O F ED CBA GP ABC DE H Oy x17. (9分)为了推广阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用.现从各年级随机抽取了部分学生的鞋号,绘制出如下的统计图1和图2,请根据有关信息,解答下列问题:m %10%20%30%25%38号37号34号35号36号图18106412人数鞋号1224610838号37号34号35号36号图2(1)本次接受随机抽样调查的学生人数为_______,图1中m 的值是_____; (2)求本次调查获取的样本数据的众数和中位数;(3)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双? 18. (9分)如图,矩形ABCD 的对角线AC ,BD 相交于 点O ,DE ∥AC ,CE ∥BD .(1)求证:四边形OCED 为菱形;(2)连接AE ,BE ,AE 与BE 相等吗?请说明理由.19. (9分)如图,将透明三角形纸片P AB 的直角顶点P 落在第四象限,顶点A ,B 分别落在反比例函数ky x=图象的两支上,且PB ⊥x 轴于点C ,P A ⊥y 轴于点D ,AB 分别与x 轴,y 轴相交于点F ,E .已知B (1,3). (1)k =_________;(2)试说明AE =BF ; (3)当四边形ABCD 的面积为214时,求点P 的坐标.20. (9分)钓鱼岛是我国固有领土,为测量钓鱼岛东西两端A ,B 的距离,如图,勘测飞机在距海平面垂直高度为1公里的点C 处,测得端点A 的俯角为45°,然后沿着平行于AB 的方向飞行3.2公里到点D ,并测得端点B 的俯角为37°,求钓鱼岛两端A ,B 的距离.(结果精确到0.1公里,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,2≈1.41)37°45°NCDBMA21. (10分)某工程机械厂根据市场需求,计划生产A ,B 两种型号的大型挖掘机共100台,该厂所筹生产资金不少于22 400万元,但不超过22 500万元,且所筹资金全部用于生产此两型挖掘机,所生产的此两型挖掘机可全部售出,此两型挖掘机的生产成本和售价如下表:型号A B 成本(万元/台) 200 240 售价(万元/台)250300(1)该厂对这两型挖掘机有哪几种生产方案?(2)该厂如何生产能获得最大利润?(3)根据市场调查,每台B 型挖掘机的售价不会改变,每台A 型挖掘机的售价将会提高 m 万元(m >0),该厂应该如何生产获得最大利润?(注:利润=售价-成本) 22. (10分)如图,在△ABC 中,∠B =45°,O 为AC 上一个动点,过O 作∠POQ =135°,且∠POQ与AB 交于P ,与BC 交于Q .(1)如图1,若11AB AOBC CO ==,,则OP OQ=______. (2)如图2,若1132AB AO BC CO ==,,求OP OQ 的值,写出求解过程. (3)如图3,若1325AB OP BC OQ ==,,则AOCO =_____.图3图2图1A COPQ B ACO PQB Q POCBA23. (11分)如图,在平面直角坐标系中,抛物线243y x bx c =-++与x 轴交于A ,D 两点,与y轴交于点B ,四边形OBCD 是矩形,点A 的坐标为(1,0),点B 的坐标为(0,4).已知点E (m ,0)是线段DO 上的动点,过点E 作PE ⊥x 轴交抛物线于点P ,交BC 于点G ,交BD 于点H . (1)求该抛物线的解析式.(2)当点P 在直线BC 上方时,请用含m 的代数式表示PG 的长度.(3)在(2)的条件下,是否存在这样的点P ,使得以P ,B ,G 为顶点的三角形与△DEH 相似?若存在,求出此时m 的值;若不存在,请说明理由.。

2014~2015学年度九年级数学上册期末考试

2014~2015学年度九年级数学上册期末考试

2014~2015学年度九年级数学上册期末考试一、选择题(每小题3分,共45分)1、若已知m 是方程 012=--x x 的一个根,则代数式m m -2的值等于( ) A、-1 B、0 C、1 D、22、下列方程中,是关于x 的一元二次方程的是( )A、)1(2)1(2+=+x x B、05112=-+xx C、0)1(2=++-c bx x a D、1222-=+x x x3、若关于x 的方程0)1(222=+-+k x k x 有实数根,则k 的取值范围是( )21<k A 、 21≤k B 、 21>k C、 21≥k D、 4、方程0252=+-x x 的两个实数根为1x 和2x ,则21x x +-21x x 的值是( )7-、A 3-、B 7C、 3D、5、若关于x 的方程的两个根为11=x ,22=x ,则这个方程是( )0232=-+x x A 、 0232=--x x B 、0322=+-x x C、 0322=++x x D、 6、用换元法解方程716)1(222=+++x x x x 时,如果设xx y 12+=,那么将原方程化为关于y 的一元二次方程的一般形式是( )06722=+-y y A 、 06722=++y y B 、0672=+-y y C、 0672=++y y D、7、若一元二次方程022=--m x x 无实数根,则一次函数1)1(-++=m x m y 图像不经过( )A、第一像限 B、第二像限 C、第三像限 D、第四像限8、某超市一月份的营业额是100万元,第一季度的营业额共800万元,如果平均每月的增涨率为x ,那么所列的方程应为( ) 800)1(1002=+x A 、 8002100100=⨯+x B 、8003100100=⨯+x C、 []800)1()1(11002=++++x x D、 9、二次函数322+-=x x y 化为k h x y +-=2)(的形式,的结果是( )4)1(2++=x y A 、 4)1(2+-=x y B 、2)1(2++=x y C 、 2)1(2+-=x y D 、10、下列四个函数中,y 随x 增大而增大的是( )11、如图24-2所示, o 是△ABC 的外接圆,已知∠B=60º,则∠CAO=( ) A、15º B、30º C、45º D、60º 12、如图24-3所示,⊙o 的外切梯形ABCD 中,若AD ∥BC,则∠DOC=( ) A、45º B、60º C、70º D、90º13、函数b ax y +=与函数c bx ax y ++=2,在同一平面坐标系里面的图像是( )14、如图24-4所示,O是△ABC 的内心,过点O作EF ∥AB,与AC,BC 交于E,F,则( ) A、EF>AE+BF B、EF<AE+BF C、EF=AE+BF D、EF ≤AE+BF15、如图24-5所示,在⊙o 中有拆线OABC,其中OA=8,AB=12, ∠A=∠B=60º,则弦BC的长为( )A、19 B、16 C、18 D、20二、填空题(每空4分,共28分) 16、方程01)1()1(22=-++-x m x m ,当m 满足 时,方程为关于x 的一元二次方程,当m 满足 时,方程为一元一次方程。

2014~2015第一学年度初三数学上期末测试卷 含答案

2014~2015第一学年度初三数学上期末测试卷 含答案

BC2014-2015学年度第一学期期末初三数学试卷 2015.1一、选择题 (本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..选项是符合题意的. 1. 已知34m n=,那么下列式子中一定成立的是 A .43m n = B .34m n = C .4m n = D . 12mn =2. 如图,△ABC 中,DE ∥BC ,13AD AB =,2cm AE =, 则AC 的长是X k B 1 . c o m A .2cmB .4cmC .6cmD .8cm3. 如图,⊙O 是ABC ∆的外接圆,50A ∠=︒ ,则BOC ∠的度数为A .40︒B .50︒C .80︒D .100︒4. 将抛物线22y x =向右平移1个单位,再向上平移3个单位,得到的抛物线是A .22(1)3y x =++B .22(1)3y x =-+C .22(1)3y x =+- D .22(1)3y x =--5.如图,在Rt ABC ∆ ,90C ∠=︒ ,8AC =,6BC =,则sin B 的值等于A .34B . 34C .45D . 356. 如图,AB 是O 的直径,C D 、是圆上两点,70CBA ∠=︒,则D ∠的度数为A .10︒B .20︒C .70︒D .90︒7. 在平面直角坐标系xOy 中,以(3,4)M 为圆心,半径为5的圆与x 轴的位置关系是A .相离B .相交C .相切D .无法确定 8. 如图,ABC ∆ 中,4AB AC ==,120BAC ∠=︒. 点O 是BC 中点,点D 沿B →A →C 方向从B 运动 到C .设点D 经过的路径长为x ,OD 长为y .则函数y 的图象大致为A ABDCBADCBA二、填空题(本题共16分,每小题4分)9. 若两个相似三角形对应边的比是3:2,那么这两个相似三角形面积的比是 . 10. 若反比例函数1m y x-=的图象分布在第二、四象限,则m 的取值范围是______. 11. 若扇形的圆心角为120°,半径为3cm ,那么扇形的面积是____2cm . 12. 如图,边长为1的正方形ABCD 放置在平面直角坐标系中,顶点A 与坐标原点O 重合,点B 在x 轴上.将正方形ABCD 沿x 轴正方向作无滑动滚动,当点D 第一次落在x 轴上时,D 点的坐标是________,D 点经过的路径的总长度是________;当点D 第2014次落在x 轴上时,D 点经过的路径的总长度是_______.三、解答题(本题共50分,每小题5分) 13. 计算:sin 60cos3045tan 45︒︒+︒-︒14. 如图,在ABC ∆中,点D 在边AB 上,ACD ABC ∠=∠,1,3AD AB ==.求AC 的长.15. 已知二次函数243y x x =-+ .(1)求二次函数与x 轴的交点坐标; (2)求二次函数的对称轴和顶点坐标;(3)写出y 随x 增大而减小时自变量x 的取值范围.16. 如图,在DEF ∆中,2,4,120EF DE DEF ==∠=︒,EOD CBA17. 如图,AB 是⊙O 的弦,CD 是⊙O 的直径,CD AB ⊥,垂足为E .1,3CE ED == ,求AB 长.18. 如图,某数学兴趣小组想测量一棵树CD 的高度,他们先在点A 处测得树顶C 的仰角为30︒,然后沿AD 方向前行10m ,到达B 点,在B 处测得树顶C 的仰角高度为60︒ (A 、B 、D 三点在同一直线上)。

2014 ~2015学年第一学期期末模拟试卷(九年级数学)

2014 ~2015学年第一学期期末模拟试卷(九年级数学)
(3)若M为线段AB上一个动点,过点M作MN平行于y轴交抛物线于点N.
①是否存在这样的点M,使得四边形OMNB恰为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.
②当点肘运动到何处时,四边形CBNA的面积最大?求 出此时点M的坐标及四边形CBNA面积的最大值.
②求出y与x之间的函数关系式,当x取何值时,商场获利润最大?并求最大利润值.
28.(本题满分14分)如图,抛物线y= x2- x-12与x轴交于A、C两点,与y轴交于B点.
(1)△AOB的外接圆的面积;
(2)若动点P从点A出发,以每秒2个单位沿射线AC方向运 动;同时点Q从点B出发,以每秒1个单位沿射线BA方向运动,当点P到达点C处时,两点同时停止运动,问当t为何值时,以A、P、Q为顶点的三角形与△OAB相似?
18.若 、 、 为二次函数 的图象上的三点,则 、 、 的大小关系是.
19.如图,在平面直角坐标系中,二次函数y=ax2+c(a≠0)的图象过面积为 的正方形ABOC的三个顶点A、B、C,则a的值为.
20.直线y=- x+3与x轴、y轴分别交于A、B两点,已知点C(0,-1)、D(0,k),以点D为圆心、DC为半径作⊙D,当⊙D与直线AB相切时,k的值为.
2014~2015学年第一学期期末模拟试卷
九年级数学
本试卷共3大题,28小题,满分120分,考试用时90分钟.
一、选择题:本大题共10小题;每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的答案填涂在答题卷相应的位置上.
1.若 是同学恰好抽到“立定跳远”、“耐久跑”两项的概率是多少?
(2)据统计,九(2)班共12名男生参加了“立定跳远”的测试,他们的成绩如下:

2014—2015学年山东省费县梁邱镇第一初级中学九年级数学上期中复习题(一)【新课标人教版】

2014—2015学年山东省费县梁邱镇第一初级中学九年级数学上期中复习题(一)【新课标人教版】

期中复习题 一一、选择题1.如果代数式x 2+4x+4的值是16,则x 的值一定是( )A .-2B .32,32-C .2,-6D .30,-342.若c (c ≠0)为关于x 的一元二次方程x 2+bx+c=0的根,则c+b 的值为( )A .1B .-1C .2D .-23.方程x 2+3x-6=0与x 2-6x+3=0所有根的乘积等于( )A .-18B .18C .-3D .34.利用墙的一边,再用13m 的铁丝网,围成一个面积为202m 的长方形场地,求这个长方形场地的两边长,设墙的对边长为xm ,可列方程为( ) A .(13)20x x -= B .13202x x -∙= C.1(13)202x x -= D.132202x x -∙=5.如图所示,△ABC 中,AC=5,中线AD=7,△EDC 是由△ADB 旋转1800所得,则AB 边的取值范围是 .( )A.1<AB <29B.4<AB <24C.5<AB <19D.9<AB <196.一个小组有若干人,新年互送贺年卡,已知全组共送出72张,则这个小组有 ( )A.12人B.18人C.9人D.10人7.如图所示,在直角三角形ABC 中,∠C =90°,AC =6,BC =8,将△ABC 绕点B 旋转90°,得到关于点A 的对称点D ,则AD 的长是 .( ) A.20 B.10 C.102 D.2028.如图,在正方形ABCD 中,E 为DC 边上的点,连结BE ,将△BCE 绕点C 顺时针方向旋转900得到△DCF ,连结EF ,若∠BEC=600,则∠EFD 的度数为( )A.100B.150C.200D.2509.如图,C 是线段BD 上一点,分别以BC 、CD 为边在BD 同侧作等边△ABC 和等边△CDE,AD 交CE 于F ,BE 交AC 于G ,则图中可通过旋转而相互得到的三角形对数有( ).A.1对B.2对C.3对D.4对10.如图,O 是锐角三角形ABC 内一点,∠AOB=∠BOC=∠COA=120°,P 是△ABC 内不同于O 的另一点;△A ′BO ′、△A ′BP ′分别由△AOB 、△APB 旋转而得,旋转角都为60°,则下列结论中正确的有( ). ①△O ′BO 为等边三角形,且A ′、O ′、O 、C 在一条直线上.②A ′O ′+O ′O =AO +BO .③A ′P ′+P ′P =PA +PB .④PA +PB +PC>AO +BO +CO .A .1个B .2个C .3个D .4个二、填空题11.如图,设P 是等边三角形ABC 内任意一点,△ACP ′是由△ABP 旋转得到的,则PA_______PB +PC(填“>”、“<”或“=”).12.已知a 、b 是方程2250x x +-=的两个实数根,则22a ab a ++的值为________13.P 是等边三角形ABC 内一点,将△ABP 绕点B 顺时针方向旋转60°,得到△CBP ′,若PB=3,则PP ′=14.如图,以△ABC 中AB 、AC 为边分别作正方形ADEB 与ACGF ,连接DC 、BF 。

2015年初三一模数学试卷及 答 案

2015年初三一模数学试卷及 答 案
2
2
21.已知关于 x 的一元二次方程 x 2 x 3 m 0 有两个实数根.
2
(1)求 m 的取值范围; (2)若 m 为符合条件的最小整数,求此方程的根. 22.列方程或方程组解应用题: 小辰和小丁从学校出发,到离学校 2 千米的“首钢篮球馆”看篮球比赛.小丁 步行 16 分钟后,小辰骑自行车出发,结果两人同时到达.已知小辰的速度是 小丁速度的 3 倍,求两人的速度. 四、解答题(本题共 20 分,每小题 5 分) 23.如图,菱形 ABCD 中, E , F 分别为 AD ,
2014—2015 学年初三统一练习暨毕业考试
数 学 试 卷
学校
考 生 须 知
班级
姓名
1.本试卷共 7 页,共五道大题,29 道小题.满分 120 分,考试时间 120 分钟. 2.在试卷和答题卡上准确填写学校名称、姓名和准考证号. 3.试卷答案一律填涂或书写在答题卡上,在试卷上作答无效.在答题卡上, 选择题、作图题用 2B 铅笔作答,其他试题用黑色字迹签字笔作答. 4.考试结束,将本试卷和答题卡一并交回. 一、选择题(本题共 30 分,每小题 3 分) 下面各题均有四个选项,其中只有一个 是符合题意的. .. 1. 3 的绝对值是 A. 3 B.
10.在平面直角坐标系 xOy 中,四边形 OABC 是矩形,且 A , C 在坐标轴上,满 足 OA 3 ,OC 1 . 将矩形 OABC 绕原点 O 以每秒 15 的速度逆时针旋 转.设运动时间为 t 秒 0 t 6 ,旋 转过程中矩形在第二象限内的面积为
S 3 3 2
E
A F G B
D
AB 上的点,且 AE AF ,连接 EF 并延
水费为
元.

2014-2015学年九年级上数学期末试卷及答案解析

2014-2015学年九年级上数学期末试卷及答案解析

2014-2015九年级第一学期数学期末测试卷一.选择题(共10小题)1.已知实数a,b分别满足a2﹣6a+4=0,b2﹣6b+4=0,且a≠b,则的值是()23.已知m,n是关于x的一元二次方程x2﹣3x+a=0的两个解,若(m﹣1)(n﹣1)=﹣6,则a的值4.如图①是3×3正方形方格,将其中两个方格涂黑,并且使涂黑后的整个图案是轴对称图形,约定绕正方形ABCD的中心旋转能重合的图案都视为同一种图案,例如图②中的四幅图就视为同一种图案,则得到的不同图案共有()5.如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是()6.在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,7.已知二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二28.如图,二次函数y=ax2+bx+c的图象经过点(0,﹣2),与x轴交点的横坐标分别为x1,x2,且﹣19.如图,在平行四边形ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于E ,交DC 的延长线于F ,BG ⊥AE 于G ,BG=,则△EFC 的周长为( )10.如图,在△ABC 中,以BC 为直径的圆分别交边AC 、AB 于D 、E 两点,连接BD 、DE .若BD 平分∠ABC ,则下列结论不一定成立的是( )二.填空题(共8小题) 11.如果(2x+2y+1)(2x+2y ﹣1)=63,那么x+y 的值是 _________ . 12.若,且一元二次方程kx 2+ax+b=0有两个实数根,则k 的取值范围是_________ .13.如图,在平面直角坐标系中,点A ,B ,C 的坐标分别为(1,0),(0,1),(﹣1,0).一个电动玩具从坐标原点0出发,第一次跳跃到点P 1.使得点P 1与点O 关于点A 成中心对称;第二次跳跃到点P 2,使得点P 2与点P 1关于点B 成中心对称;第三次跳跃到点P 3,使得点P 3与点P 2关于点C 成中心对称;第四次跳跃到点P 4,使得点P 4与点P 3关于点A 成中心对称;第五次跳跃到点P 5,使得点P 5与点P 4关于点B 成中心对称;…照此规律重复下去,则点P 2013的坐标为 _________ .14.一副扑克牌52张(不含鬼牌),分为黑桃、红心、方块、及梅花4种花色,每种花色各有13张,分别标有字母A 、K 、Q 、J 和数字10、9、8、7、6、5、4、3、2.从这副牌中任意抽取一张,则这张牌是标有字母的概率是 _________ . A . a <0B .a ﹣b+c <0 C . ﹣D . 4ac ﹣b 2<﹣8a15.二次函数y=﹣x2+bx+c的图象如图所示,则一次函数y=bx+c的图象不经过第_________象限.16.如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线y=x2+k与扇形OAB的边界总有两个公共点,则实数k的取值范围是_________.17.如图,已知抛物线y=x2+bx+c经过点(0,﹣3),请你确定一个b的值,使该抛物线与x轴的一个交点在(1,0)和(3,0)之间.你确定的b的值是_________.18.如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足=,连接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF=3.给出下列结论:①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF=4.其中正确的是_________(写出所有正确结论的序号).三.解答题(共10小题)19.随着铁路客运量的不断增长,重庆火车北站越来越拥挤,为了满足铁路交通的快速发展,该火车站去年开始启动了扩建工程,其中某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.(1)求甲、乙两队单独完成这项工程各需几个月?(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元.在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程,在完成这项工程中,甲队施工时间是乙队施工时间的2倍,那么,甲队最多施工几个月才能使工程款不超过1500万元?(甲、乙两队的施工时间按月取整数)20如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的长方形CEFD拼在一起,(2)如图2,G为BC中点,且0°<a<90°,求证:GD′=E′D;(3)小长方形CEFD绕点C顺时针旋转一周的过程中,△DCD′与△CBD′能否全等?若能,直接写出旋转角a的值;若不能说明理由.21.如图,△ABC内接与⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC 于AC点E,交PC于点F,连接AF.(1)判断AF与⊙O的位置关系并说明理由;(2)若⊙O的半径为4,AF=3,求AC的长.22.如图,AD是⊙O的切线,切点为A,AB是⊙O的弦.过点B作BC∥AD,交⊙O于点C,连接AC,过点C作CD∥AB,交AD于点D.连接AO并延长交BC于点M,交过点C的直线于点P,且∠BCP=∠ACD.(1)判断直线PC与⊙O的位置关系,并说明理由;(2)若AB=9,BC=6.求PC的长.23.如图,对称轴为直线x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(﹣3,0).(1)求点B的坐标;(2)已知a=1,C为抛物线与y轴的交点.①若点P在抛物线上,且S△POC=4S△BOC.求点P的坐标;②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.24.为迎接中国森博会,某商家计划从厂家采购A,B两种产品共20件,产品的采购单价(元/件)是采购数量(件)的一次函数,下表提供了部分采购数据.(1)设A产品的采购数量为x(件),采购单价为y1(元/件),求y1与x的关系式;(2)经商家与厂家协商,采购A产品的数量不少于B产品数量的,且A产品采购单价不低于1200元,求该商家共有几种进货方案;(3)该商家分别以1760元/件和1700元/件的销售单价售出A,B两种产品,且全部售完,在(2)的条件下,求采购A种产品多少件时总利润最大,并求最大利润.25.如图①,若二次函数y=x2+bx+c的图象与x轴交于A(﹣2,0),B(3,0)两点,点A关于正比例函数y=x的图象的对称点为C.(1)求b、c的值;(2)证明:点C在所求的二次函数的图象上;(3)如图②,过点B作DB⊥x轴交正比例函数y=x的图象于点D,连结AC,交正比例函数y=x 的图象于点E,连结AD、CD.如果动点P从点A沿线段AD方向以每秒2个单位的速度向点D运动,同时动点Q从点D沿线段DC方向以每秒1个单位的速度向点C运动.当其中一个点到达终点时,另一个点随之停止运动,连结PQ、QE、PE.设运动时间为t秒,是否存在某一时刻,使PE平分∠APQ,同时QE平分∠PQC?若存在,求出t的值;若不存在,请说明理由.26.在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD交于点G,点F在BC上.(1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.(2)如图2,AC:AB=1:,EF⊥CE,求EF:EG的值.27.如图,在平面直角坐标系xOy中,矩形OABC的边OA、OC分别在y轴和x轴的正半轴上,且长分别为m、4m(m>0),D为边AB的中点,一抛物线l经过点A、D及点M(﹣1,﹣1﹣m).(1)求抛物线l的解析式(用含m的式子表示);(2)把△OAD沿直线OD折叠后点A落在点A′处,连接OA′并延长与线段BC的延长线交于点E,若抛物线l与线段CE相交,求实数m的取值范围;(3)在满足(2)的条件下,求出抛物线l顶点P到达最高位置时的坐标.28.如图,直线x=﹣4与x轴交于点E,一开口向上的抛物线过原点交线段OE于点A,交直线x=﹣4于点B,过B且平行于x轴的直线与抛物线交于点C,直线OC交直线AB于D,且AD:BD=1:3.(1)求点A的坐标;(2)若△OBC是等腰三角形,求此抛物线的函数关系式.2014-2015学年九年级[上]数学期末测试卷参考答案与试题解析一.选择题(共10小题)1.(2013•烟台)已知实数a,b分别满足a2﹣6a+4=0,b2﹣6b+4=0,且a≠b,则的值是()=2≤3.(2013•鄂州)已知m,n是关于x的一元二次方程x2﹣3x+a=0的两个解,若(m﹣1)(n﹣1)=﹣6,则a的值4.(2013•盐城)如图①是3×3正方形方格,将其中两个方格涂黑,并且使涂黑后的整个图案是轴对称图形,约定绕正方形ABCD的中心旋转能重合的图案都视为同一种图案,例如图②中的四幅图就视为同一种图案,则得到的不同图案共有()5.(2013•天津)如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是()6.(2013•资阳)在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则估计盒子中÷=127.(2013•苏州)已知二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二2.8.(2013•济南)如图,二次函数y=ax2+bx+c的图象经过点(0,﹣2),与x轴交点的横坐标分别为x1,x2,且﹣1<x1<0,1<x2<2,下列结论正确的是()﹣<最小值:9.(2013•自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=,则△EFC的周长为()BG=4AG==210.(2013•日照)如图,在△ABC中,以BC为直径的圆分别交边AC、AB于D、E两点,连接BD、DE.若BD 平分∠ABC,则下列结论不一定成立的是()∴==,二.填空题(共8小题)11.如果(2x+2y+1)(2x+2y﹣1)=63,那么x+y的值是4或﹣4.12.(2013•兰州)若,且一元二次方程kx2+ax+b=0有两个实数根,则k的取值范围是k≤4且k≠0.解:∵,13.(2013•威海)如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,0),(0,1),(﹣1,0).一个电动玩具从坐标原点0出发,第一次跳跃到点P1.使得点P1与点O关于点A成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B成中心对称;…照此规律重复下去,则点P2013的坐标为(0,﹣2).∵14.(2013•永州)一副扑克牌52张(不含鬼牌),分为黑桃、红心、方块、及梅花4种花色,每种花色各有13张,分别标有字母A、K、Q、J和数字10、9、8、7、6、5、4、3、2.从这副牌中任意抽取一张,则这张牌是标有字母的概率是.从这副牌中任意抽取一张,则这张牌是标有字母的概率是=故答案为:=15.(2013•营口)二次函数y=﹣x2+bx+c的图象如图所示,则一次函数y=bx+c的图象不经过第四象限.16.(2013•兰州)如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线y=x2+k与扇形OAB的边界总有两个公共点,则实数k的取值范围是﹣2<k<.时,抛物线与,×x<<17.(2011•湖州)如图,已知抛物线y=x2+bx+c经过点(0,﹣3),请你确定一个b的值,使该抛物线与x轴的一个交点在(1,0)和(3,0)之间.你确定的b的值是在﹣2<b<2范围内的任何一个数.18.(2013•宜宾)如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足=,连接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF=3.给出下列结论:①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF=4.其中正确的是①②④(写出所有正确结论的序号).,根据垂径定理可得:=由=E=∴,∵,AG===E=AD=,×=3∴(∴,,;三.解答题(共10小题)19.(2013•重庆)随着铁路客运量的不断增长,重庆火车北站越来越拥挤,为了满足铁路交通的快速发展,该火车站去年开始启动了扩建工程,其中某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.(1)求甲、乙两队单独完成这项工程各需几个月?(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元.在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程,在完成这项工程中,甲队施工时间是乙队施工时间的2倍,那么,甲队最多施工几个月才能使工程款不超过1500万元?(甲、乙两队的施工时间按月取整数)x个月,则乙队施工)20.(2013•潍坊)如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD绕点C顺时针旋转至CE′F′D′,旋转角为a.(1)当点D′恰好落在EF边上时,求旋转角a的值;(2)如图2,G为BC中点,且0°<a<90°,求证:GD′=E′D;(3)小长方形CEFD绕点C顺时针旋转一周的过程中,△DCD′与△CBD′能否全等?若能,直接写出旋转角a的值;若不能说明理由.=﹣21.(2013•铁岭)如图,△ABC内接与⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于AC 点E,交PC于点F,连接AF.(1)判断AF与⊙O的位置关系并说明理由;(2)若⊙O的半径为4,AF=3,求AC的长.AE=CE=•AE=.22.(2013•南京)如图,AD是⊙O的切线,切点为A,AB是⊙O的弦.过点B作BC∥AD,交⊙O于点C,连接AC,过点C作CD∥AB,交AD于点D.连接AO并延长交BC于点M,交过点C的直线于点P,且∠BCP=∠ACD.(1)判断直线PC与⊙O的位置关系,并说明理由;(2)若AB=9,BC=6.求PC的长.BC=3AM=6r=6r=CE=2r=OM=6﹣BE=2OM=BM=CM=BC=3=6,r=6﹣r=CE=2r=OM=6﹣BE=2OM=,∴,.23.(2013•重庆)如图,对称轴为直线x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(﹣3,0).(1)求点B的坐标;(2)已知a=1,C为抛物线与y轴的交点.①若点P在抛物线上,且S△POC=4S△BOC.求点P的坐标;②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.∴∴××,解得,x++时,有最大值24.(2013•义乌市)为迎接中国森博会,某商家计划从厂家采购A,B两种产品共20件,产品的采购单价(元/件)y1(元/件),求y1与x的关系式;(2)经商家与厂家协商,采购A产品的数量不少于B产品数量的,且A产品采购单价不低于1200元,求该商家共有几种进货方案;(3)该商家分别以1760元/件和1700元/件的销售单价售出A,B两种产品,且全部售完,在(2)的条件下,求采购A种产品多少件时总利润最大,并求最大利润.,=11时,25.(2013•盐城)如图①,若二次函数y=x2+bx+c的图象与x轴交于A(﹣2,0),B(3,0)两点,点A关于正比例函数y=x的图象的对称点为C.(1)求b、c的值;(2)证明:点C在所求的二次函数的图象上;(3)如图②,过点B作DB⊥x轴交正比例函数y=x的图象于点D,连结AC,交正比例函数y=x的图象于点E,连结AD、CD.如果动点P从点A沿线段AD方向以每秒2个单位的速度向点D运动,同时动点Q从点D沿线段DC方向以每秒1个单位的速度向点C运动.当其中一个点到达终点时,另一个点随之停止运动,连结PQ、QE、PE.设运动时间为t秒,是否存在某一时刻,使PE平分∠APQ,同时QE平分∠PQC?若存在,求出t的值;若不存在,请说明理由.y=y=∴﹣x,FH=FOB==x×,×=1,﹣﹣,=,AD==2xCD=AD=2,∠AC=∴,即:﹣t=或t=,故舍去)t=26.(2013•绍兴)在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD交于点G,点F在BC 上.(1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.(2)如图2,AC:AB=1:,EF⊥CE,求EF:EG的值.BE EH=:B==EQ=AEH==,EH=BE::27.(2013•珠海)如图,在平面直角坐标系xOy中,矩形OABC的边OA、OC分别在y轴和x轴的正半轴上,且长分别为m、4m(m>0),D为边AB的中点,一抛物线l经过点A、D及点M(﹣1,﹣1﹣m).(1)求抛物线l的解析式(用含m的式子表示);(2)把△OAD沿直线OD折叠后点A落在点A′处,连接OA′并延长与线段BC的延长线交于点E,若抛物线l与线段CE相交,求实数m的取值范围;(3)在满足(2)的条件下,求出抛物线l顶点P到达最高位置时的坐标.,解得,mN=N=mON==点坐标为(m×≤,,,当≤(+,到达最高位置时的坐标为()28.(2013•无锡)如图,直线x=﹣4与x轴交于点E,一开口向上的抛物线过原点交线段OE于点A,交直线x=﹣4于点B,过B且平行于x轴的直线与抛物线交于点C,直线OC交直线AB于D,且AD:BD=1:3.(1)求点A的坐标;(2)若△OBC是等腰三角形,求此抛物线的函数关系式.==∴=,即==362)代入,解得x=36(负值舍去))代入,解得xx x y=31。

2014-2015学年九年级上下学期数学期末测试题(含答案)

2014-2015学年九年级上下学期数学期末测试题(含答案)

人教版2014-2015学年九年级上下学期测试数学试卷注:(1)全卷共三个大题,23个小题,共4页;满分:100分;考试时间:120分钟。

(2)答题内容一定要做在答卷..上,且不能超过密封线答题,否则视为无效。

一、选择:(每小题3分,共24分)1. 在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A .B .C .D . 2.如图是某个几何体的三视图,该几何体是( )A. 正方体B. 圆柱C. 圆锥D. 球3.某药品经过两次降价,每瓶零售价由168元降为128元.已知两次降价的百分率相同,每4.已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为( ) A .B . 2πC . 3πD . 12π5.若ab >0,则一次函数y=ax+b 与反比例函数y=在同一坐标系数中的大致图象是( )A .B .C .D .6.如图,在Rt △ABC 中,∠C=90°,BC=3,AC=4, 那么cosA 的值等于( ) 3A.4 4B.3 3C.5 4.5D 7.已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示, 则下列结论中正确的是( )A .a >0B .3是方程ax 2+bx+c=0的一个根C .a+b+c=0D .当x <1时,y 随x 的增大而减小 8.如图,CD 是⊙O 的直径,弦AB ⊥CD 于E ,连接 = 二、填空:(每小题3分,共18分)9.方程22x x =的根为 .10.抛物线213y x =(﹣)﹣的对称轴是 .11.已知3,a b ab b+==则 . 12.如图,在△ABC 中,D 是AB 的中点, DE ∥BC.则:ADE ABC S S ∆∆= . 13.直径为10cm 的⊙O 中,弦AB=5cm ,则弦AB 所对的圆周角是 .14.为了求1+2+22+23+…+2100的值,可令S=1+2+22+23+…+2100,则2S=2+22+23+24+…+2101,因此2S ﹣S=2101﹣1,所以S=2101﹣1,即1+2+22+23+…+2100=2101﹣1,仿照以上推理计算1+3+32+33+…+32014的值是 三、解答:(共58分)15.(5分)计算:0201511(21)(1)()2sin 303-+-+-.16.(5分)化简求值:•(),其中x =.17.(8分)已知:如图,AB 是⊙O 的直径,AB =6,延长AB 到点C ,使BC =AB ,D 是⊙O 上一点,DC =26. 求证:(1)△CDB ∽△CAD ;(2)CD 是⊙O 的切线. 18.(4分)在平面直角坐标系中,△ABC 的三个顶点坐标分别为A(﹣2,1),B (﹣4,5), C (﹣5,2).(1)画出△ABC 关于y 轴对称的△A 1B 1C 1;(2)画出△ABC 关于原点O 成中心对称的△A 2B 2C 2. 19.(6分)如图,△ABC是一块锐角三角形余料,边BC=120mm ,高AD=80mm ,要把它加工成长方形零件PQMN ,使长方形PQMN 的边QM在BC上,其余两个项点P,N 分别在AB,AC 上.求这个长方形零件PQMN 面积S 的最大值。

2014~2015学年度第一学期期末考试九年级数学试卷答案

2014~2015学年度第一学期期末考试九年级数学试卷答案

2014——2015学年度第一学期期末测试九 年 级 数 学参考答案一、选择题:本大题共 小题,每小题 分,共 分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的代号填入题后括号内.. . .C . . . . . . . 二、填空题:本大题共 小题,每小题 分,共 分.请把最后结果填在题中横线上.. . . .52 .277.( , ) .- < < .②④三、解答题:本大题共 小题,共 分.解答时应写出文字说明、证明过程或演算步骤..(本小题满分 分)每图 分 .(本小题满分 分)解:由表可以看出,随机地摸取一个小球然后放回,再随机地摸出一个小球,可能出现的结果有 个,它们出现的可.能性相等.………… 分( )满足两次取的小球的标号相同的结果有 个,所以 ( ) 164 41.…… 分( )满足两次取的小球的标号的和等于 的结果有 个,所以 ( ) 163.… 分.(本小题满分 分)( ) π ( 分) ( )( 分)( )③( 分) .(本小题满分 分)证明:连接 .……………………………………………… 分 , .……………………… 分 切 于点 , .…………………… 分,,即 + , ∥ ,…………………………………………… 分 ,…………………………… 分 平分∠ .…………………………………… 分.(本小题满分 分)解:设所围成圆锥的底面半径和高分别为 和 .∵扇形半径为 ㎝,圆心角为 °, 12032180r ππ⋅⋅=,…………………………………………………………………… 分BCDO.(第,…………………………………………………………………………………… 分h ==.………………………………………………………………… 分.(本小题满分 分)解:( )令 ,得2230x x --=,……………………………………………………… 分解得 , - ,……………………………………………………………… 分 ∴抛物线与 轴交点坐标为( , )和(- , ).…………………………… 分 ( )令 ,得 - ,∴抛物线与 轴交点坐标为( ,- ),………………………………………… 分 ∴将此抛物线向上平移 个单位后可以经过原点.…………………………… 分 平移后抛物线解析式为22y x x =-.……………………………………… 分.(本小题满分 分)( )证明: , , , ,…………… 分 .……………………………………………………………… 分( )解: ,AD DEEF FC=.………………………… 分 , , , 52.…………………………………… 分, , 四边形 是平行四边形, ,…… 分 52 152.……………………………………………………… 分.(本小题满分 分)( )证明: 四边形 是正方形, , .…分, , ,…………………………… 分 ,…………………………………………………………………… 分 .…………………………………………………………………… 分 ( )解: 正方形的边长为 , x , -x . , DA AEEB BF=,…………………………………………… 分 44x x y =-, 2(4)144x x y x x -==-+,………………………………… 分.(本小题满分 分) 解:( )由题意得1060xy -=.………………………………………………………… 分( )由题意得1200040101)200)(1060()200(2++-=+-=+=x x x x x y z . 分 ( )由题意得)1060(201200040101202xx x y z w --++-=-=10800421012++-=x x .………………………………………… 分当每个房间的定价2102=-=abx (元)时, 有最大值,最大值是 .………分.(本小题满分 分)解:( )∵点 坐标为( , ),∴ .∵矩形 面积为 ,∴ ,…… 分∴抛物线的对称轴为直线 .………………………………………………… 分 ( ) , , ,MOMD MD AM =, MO AM MD ⋅=2.设 ,则 - . )3(4-=x x , 41=x ,12-=x , , 点坐标为( , ).… 分设抛物线的解析式为4)2(2+-=x a y . 将点 ( , )代入得443+=a , 41-=a , 抛物线的解析式为4)2(412+--=x y .…………………………… 分 ( )∵⊙ 在 轴上截得线段长为 , , 点纵坐标为 或 .…… 分在4)2(412+--=x y 中,令 或 得 4)2(4122+--=x 或4)2(4142+--=x ,……………………………… 分解得2221+=x ,2222-=x ,23=x ,点坐标为(222+, )、(222-, )或( , ).……………… 分。

人教版2014-2015学年度第一学期九年级数学期末试题及答案

人教版2014-2015学年度第一学期九年级数学期末试题及答案

2014-2015学年度第一学期九年级数学期末试题亲爱的同学:寒假快要到了,祝贺你又完成了一个学期的学习,为了使你度过一个丰富多彩的寒假生活,过一个愉快、幸福的春节,请你认真思考、细心演算,尽情发挥,向一直关心你的人们递交一份满意的答卷,祝你成功!★ 本试卷满分150分,考试时间120分钟,可以使用计算器一、选择题(本大题共有10个小题,每小题4分,共40分.每小题只有一个正确选项,请把正确选项的字母代号填在题后的括号内).1.下列图形中,是轴对称图形又是中心对称图形的是 ( )2.如图,AB 为半圆的直径,且AB=4,半圆绕点B 顺时针旋转45°, 点A 旋转到A′的位置,则图中阴影部分的面积为 ( )A .πB. 2π C .2π D . 4π3.若关于x 的方程312=+-x x m 是一元二次方程,则m 的取值范围是( )A .1≥mB . 1-≥mC .1->mD .1>m4.已知关于x 的一元二次方程022)1(2=-+-x x k 有两个不相等的实数根,则k 的取值范围是 ( )A .21>kB .21≥kC .121≠>k k 且D .121≠≥k k 且 5.如图,线段AB 是⊙O 的直径,弦CD 丄AB ,∠CAB =20°,则∠AOD 等于 ( )A .160°B .150°C .140°D .120°6.如图,圆锥体的高h =,底面圆半径r 2cm =,则圆锥体的全面积为( )cm 2A. π12B.π8C. π34D. π)434(+7.掷一枚质地均匀的硬币10次,下列说法正确的是 ( )A .可能有5次正面朝上B .必有5次正面朝上C .掷2次必有1次正面朝上D .不可能10次正面朝上8.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是 ( )A .12 B .14 C .16 D .1129.已知抛物线y=x 2﹣x ﹣1与x 轴的一个交点为(m ,0),则代数式m 2﹣m+2014的值( )A .2012B .2013C .2014D .201510.二次函数y=ax 2+bx+c (a≠0)的图象如图所示,下列结论正确的是 ( )A .a <0B .b 2﹣4ac <0C .当﹣1<x <3时,y >0D .b 12a-=二、填空题(本大题共有8小题,每小题4分,共32分.请把答案填在题中的横线上.)11.若1+x 与1-x 互为倒数,则x 的值是 。

2014-2015学年九年级上期末(上、下册)模拟考试题及答案

2014-2015学年九年级上期末(上、下册)模拟考试题及答案

2014-2015学年九年级上期末(上、下册)模拟考试题说明:1、本试题满分120分,考试时间120分钟。

2、本试题分卷I和卷II两部分,卷I为选择题,请将正确选项填写到卷II上方答题卡上,卷II为非选择题。

卷I(选择题,共30分)一、选择题(每题只有一个正确的答案,每题3分,共 30分)1、(2014年贵州安顺)下列四个图形中,既是轴对称图形又是中心对称图形的是()A1个B.2个 C 3个 D 4个2.(2014•陕西)若x=﹣2是关于x的一元二次方程x2﹣ax+a2=0的一个根,则a的值为()A.1, 4 B.﹣1, ﹣4 C﹣1, 4 D.1,﹣43.(2014•贵州黔西南州)在一个不透明的盒子中装有12个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球是白球的概率是,则黄球的个数为()A 18B 20C 24D 284.(2014年湖北黄石)学校团委在“五四青年节”举行“感动校园十大人物”颁奖活动中,九(4)班决定从甲、乙、丙、丁四人中随机派两名代表参加此活动,则甲乙两人恰有一人参加此活动的概率是()A. B C D5.(2014•湖北荆门)将抛物线y=x2﹣6x+5向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线解析式是()A.y=(x﹣4)2﹣6 B.y=(x﹣4)2﹣2 C.y=(x﹣2)2﹣2 D.y=(x﹣1)2﹣3 6.(2014•黑龙江绥化)如图,过点O作直线与双曲线y=(k≠0)交于A、B两点,过点B作BC⊥x轴于点C,作BD⊥y轴于点D.在x轴上分别取点E、F,使点A、E、F在同一条直线上,且AE=AF.设图中矩形ODBC的面积为S1,△EOF的面积为S2,则S1、S2的数量关系是()A S1=S2B 2S1=S2C 3S1=S2D 4S1=S27.(2014年贵州安顺)如图,在Rt△ABC中,∠C=90°,∠A=30°,E为AB上一点且AE:EB=4:1,EF⊥AC 于F,连接FB,则tan∠CFB的值等于()A B C D8.(2014•莱芜)如图,AB为半圆的直径,且AB=4,半圆绕点B顺时针旋转45°,点A旋转到A′的位置,则图中阴影部分的面积为()A πB 2πCD 4π9.(2014•湖北荆门,)如图,AB是半圆O的直径,D,E是半圆上任意两点,连结AD,DE,AE与BD相交于点C,要使△ADC与△ABD相似,可以添加一个条件.下列添加的条件其中错误的是()A.∠ACD=∠DAB B.AD=DEC.AD2=BD•CD D AD•AB=AC•BD10.(2014•江西)已知反比例函数kyx=的图像如右图所示,则二次函数2224y kx x k=-+的图像大致为().卷II(非选择题,共90分)二、填空题(每题3分,共 18分)11.如果(2x+2y+1)(2x+2y﹣1)=63,那么x+y的值是___.12.若,且一元二次方程kx2+ax+b=0有两个实数根,则k 的取值范围是________13.(2014哈尔滨)如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为14.(2014•湖北黄石,)一般地,如果在一次实验中,结果落在区域D中每一个点都是等可能的,用A表示“实验结果落在D中的某个小区域M中”这个事件,那么事件A发生的概率P A=.如图,现在等边△ABC 内射入一个点,则该点落在△ABC内切圆中的概率是.15.(2014•莱芜,)已知二次函数y=ax2+bx+c的图象如图所示.下列结论:①abc>0;②2a﹣b<0;③4a﹣2b+c<0;④(a+c)2<b2其中正确的有16.如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足=,连接AF并延长交⊙O 于点E,连接AD、DE,若CF=2,AF=3.给出下列结论:①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF=4.其中正确的是_________(写出所有正确结论的序号).三、解答题(本大题共72分)17.(本题7分)(2014•攀枝花)在一个不透明的口袋里装有分别标有数字﹣3、﹣1、0、2的四个小球,除数字不同外,小球没有任何区别,每次试验先搅拌均匀.(1)从中任取一球,求抽取的数字为正数的概率;(2)从中任取一球,将球上的数字记为a,求关于x的一元二次方程ax2﹣2ax+a+3=0有实数根的概率;(3)从中任取一球,将球上的数字作为点的横坐标记为x(不放回);在任取一球,将球上的数字作为点的纵坐标,记为y,试用画树状图(或列表法)表示出点(x,y)所有可能出现的结果,并求点(x,y)落在第二象限内的概率.18.(本题7分)((2014年贵州安顺,第21题10分)天山旅行社为吸引游客组团去具有喀斯特地貌特征的黄果树风景区旅游,推出了如下收费标准某单位组织员工去具有喀斯特地貌特征的黄果树风景区旅游,共支付给旅行社旅游费用27000元,请问该单位这次共有多少名员工去具有喀斯特地貌特征的黄果树风景区旅游?19.(本题7分)(2014湖南衡阳)将一副三角尺(在Rt△ABC,∠ACB=90°,∠B=60°;在Rt△DEF中,∠EDF=90°,∠E=45°)如图①摆放,点D为AB的中点,DE交AC于点P,DF经过点C.(1)求∠ADE的度数(2)如图②,将△DEF绕点D顺时针方向旋转角α(0°<α<60°),此时的等腰直角三角尺记为△DE′F′,DE′交AC于点M,DF′交BC于点N,试判断的值是否随着α的变化而变化?如果不变,请求出的值;反之,请说明理由.4.(本题7分)((2014•四川绵阳)如图,已知反比例函数y=(k>0)的图象经过点A(1,m),过点A作AB⊥y轴于点B,且△AOB的面积为1.(1)求m,k的值;(2)若一次函数y=nx+2(n≠0)的图象与反比例函数y=的图象有两个不同的公共点,求实数n的取值范围.21.(本题7分)((2014年广西钦州,第24题9分)如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6米的B处安置高为1.5米的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长(结果保留小数点后一位,参考数据:≈1.41,≈1.73).22.(本题7分)((2014•安徽省,)如图,在同一平面内,两条平行高速公路l1和l2间有一条“Z”型道路连通,其中AB段与高速公路l1成30°角,长为20km;BC段与AB、CD段都垂直,长为10km,CD段长为30km,求两高速公路间的距离(结果保留根号).23.(本题8分)((2014•攀枝花)如图,△ABC的边AB为⊙O的直径,BC与圆交于点D,D为BC的中点,过D作DE⊥AC于E.(1)求证:AB=AC;(2)求证:DE为⊙O的切线;(3)若AB=13,sinB=,求CE的长.24.(本题10分)(2014•青岛,第22题10分)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)25(本题12分)如图,抛物线y=﹣x2﹣2x+3 的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1)求A、B、C的坐标;(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形PQMN的周长最大时,求△AEM的面积;(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=2DQ,求点F的坐标.九年级上期末复习训练题一、选择题1、(2014年贵州安顺)下列四个图形中,既是轴对称图形又是中心对称图形的是(B)A1个B.2个 C 3个 D 4个2.(2014•陕西)若x=﹣2是关于x的一元二次方程x2﹣ax+a2=0的一个根,则a的值为(B)A.1, 4 B.﹣1, ﹣4 C﹣1, 4 D.1,﹣43.(2014•贵州黔西南州)在一个不透明的盒子中装有12个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球是白球的概率是,则黄球的个数为(C)A 18B 20C 24D 284.(2014年湖北黄石)学校团委在“五四青年节”举行“感动校园十大人物”颁奖活动中,九(4)班决定从甲、乙、丙、丁四人中随机派两名代表参加此活动,则甲乙两人恰有一人参加此活动的概率是(A)A. B C D5.(2014•湖北荆门,第4题3分)将抛物线y=x2﹣6x+5向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线解析式是()A.y=(x﹣4)2﹣6 B.y=(x﹣4)2﹣2 C.y=(x﹣2)2﹣2 D.y=(x﹣1)2﹣36.(2014•黑龙江绥化)如图,过点O作直线与双曲线y=(k≠0)交于A、B两点,过点B作BC⊥x轴于点C,作BD⊥y轴于点D.在x轴上分别取点E、F,使点A、E、F在同一条直线上,且AE=AF.设图中矩形ODBC的面积为S1,△EOF的面积为S2,则S1、S2的数量关系是(B)A.S1=S2B. 2S1=S2C. 3S1=S2D. 4S1=S27.(2014年贵州安顺)如图,在Rt△ABC中,∠C=90°,∠A=30°,E为AB上一点且AE:EB=4:1,EF⊥AC 于F,连接FB,则tan∠CFB的值等于(C)A B C D8.(2014•莱芜)如图,AB为半圆的直径,且AB=4,半圆绕点B顺时针旋转45°,点A旋转到A′的位置,则图中阴影部分的面积为(B)A πB 2πCD 4π(2014•湖北荆门,第6题3分)如图,AB是半圆O的直径,D,E是半圆上任意两点,连结AD,DE,AE 与BD相交于点C,要使△ADC与△ABD相似,可以添加一个条件.下列添加的条件其中错误的是(D)A.∠ACD=∠DAB B.AD=DE C. AD2=BD•CD D AD•AB=AC•BD解:D、∵AD•AB=AC•BD,∴AD:BD=AC:AB,但∠ADC=∠ADB不是公共角,故本选项错误.10.(2014•江西)已知反比例函数kyx=的图像如右图所示,则二次函数2224y kx x k=-+的图像大致为(D. )解:∵函数kyx=的图像的图象经过二、四象限,∴k<0,由图知,当x=-1时,y=-k>1,∴k<-1,∴抛物线y=2kx2-4x+k2开口向下,∵对称轴为411x=1022k k k-=--⨯,<<,∴对称轴在-1与0之间,故选D.二、填空题11.如果(2x+2y+1)(2x+2y﹣1)=63,那么x+y的值是___.12.若,且一元二次方程kx2+ax+b=0有两个实数根,则k的取值范围是________13.(2014哈尔滨)如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为 614.(2014•湖北黄石,)一般地,如果在一次实验中,结果落在区域D中每一个点都是等可能的,用A表示“实验结果落在D中的某个小区域M中”这个事件,那么事件A发生的概率P A=.如图,现在等边△ABC 内射入一个点,则该点落在△ABC内切圆中的概率是π.15.(2014•莱芜,)已知二次函数y=ax2+bx+c的图象如图所示.下列结论:①abc>0;②2a﹣b<0;③4a﹣2b+c<0;④(a+c)2<b2其中正确的有都正确∵当x=﹣1时,y>0,∴a﹣b+c>0,∵当x=1时,y<0,∴a+b+c<0,∴(a﹣b+c)(a+b+c)<0,即(a+c ﹣b)(a+c+b)<0,∴(a+c)2﹣b2<0,所以④正确.16.如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足=,连接AF并延长交⊙O 于点E,连接AD、DE,若CF=2,AF=3.给出下列结论:①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF=4.其中正确的是_________(写出所有正确结论的序号).三、解答题17.(2014•攀枝花)在一个不透明的口袋里装有分别标有数字﹣3、﹣1、0、2的四个小球,除数字不同外,小球没有任何区别,每次试验先搅拌均匀.(1)从中任取一球,求抽取的数字为正数的概率;(2)从中任取一球,将球上的数字记为a,求关于x的一元二次方程ax2﹣2ax+a+3=0有实数根的概率;(3)从中任取一球,将球上的数字作为点的横坐标记为x(不放回);在任取一球,将球上的数字作为点的纵坐标,记为y,试用画树状图(或列表法)表示出点(x,y)所有可能出现的结果,并求点(x,y)落在第二象限内的概率.解:(1)根据题意得:抽取的数字为正数的情况有1个,则P=;(2)方程ax2﹣2ax+a+3=0,△=4a2﹣4a(a+3)=﹣12a≥0,即a≤0,则方程ax2﹣2ax+a+3=0有实数根的概率为;所有等可能的情况有12种,其中点(x,y)落在第二象限内的情况有2种,则P==.18.(2014年贵州安顺,第21题10分)天山旅行社为吸引游客组团去具有喀斯特地貌特征的黄果树风景区旅游,推出了如下收费标准(如图所示):某单位组织员工去具有喀斯特地貌特征的黄果树风景区旅游,共支付给旅行社旅游费用27000元,请问该单位这次共有多少名员工去具有喀斯特地貌特征的黄果树风景区旅游?解:设该单位去具有喀斯特地貌特征的黄果树旅游人数为x人,则人均费用为1000﹣20(x﹣25)元由题意得x[1000﹣20(x﹣25)]=27000整理得x2﹣75x+1350=0,解得x1=45,x2=30.当x=45时,人均旅游费用为1000﹣20(x﹣25)=600<700,不符合题意,应舍去.当x=30时,人均旅游费用为1000﹣20(x﹣25)=900>700,符合题意.19.(2014•湖南衡阳,第26题8分)将一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°;在Rt△DEF中,∠EDF=90°,∠E=45°)如图①摆放,点D为AB的中点,DE交AC于点P,DF经过点C.(1)求∠ADE的度数;(2)如图②,将△DEF绕点D顺时针方向旋转角α(0°<α<60°),此时的等腰直角三角尺记为△DE′F′,DE′交AC于点M,DF′交BC于点N,试判断的值是否随着α的变化而变化?如果不变,请求出的值;反之,请说明理由.解:(1)∵∠ACB=90°,点D为AB的中点,∴CD=AD=BD=AB,∴∠ACD=∠A=30°,∴∠ADC=180°﹣30°×2=120°,∴∠ADE=∠ADC﹣∠EDF=120°﹣90°=30°;(2)∵∠EDF=90°,∴∠PDM+∠E′DF=∠CDN+∠E′DF=90°,∴∠PDM=∠CDN,∵∠B=60°,BD=CD,∴△BCD是等边三角形,∴∠BCD=60°,∵∠CPD=∠A+∠ADE=30°+30°=60°,∴∠CPD=∠BCD,在△DPM和△DCN中,,∴△DPM∽△DCN,∴=,∵=tan∠ACD=tan30°,∴的值不随着α的变化而变化,是定值.20.(2014•四川绵阳)如图,已知反比例函数y=(k>0)的图象经过点A(1,m),过点A作AB⊥y轴于点B,且△AOB的面积为1.(1)求m,k的值;(2)若一次函数y=nx+2(n≠0)的图象与反比例函数y=的图象有两个不同的公共点,求实数n的取值范围.解:(1)由已知得:S△AOB=×1×m=1,解得:m=2,把A(1,2)代入反比例函数解析式得:k=2;(2)由(1)知反比例函数解析式是y=,则=nx+2有两个不同的解,方程去分母,得:nx2+2x﹣2=0,则△=4+8n>0,解得:n>﹣且n≠0.21.(2014年广西钦州,第24题9分)如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE 和地面所成的角∠CED=60°,在离电线杆6米的B处安置高为1.5米的测角仪AB,在A处测得电线杆上C 处的仰角为30°,求拉线CE的长(结果保留小数点后一位,参考数据:≈1.41,≈1.73).解:过点A作AH⊥CD,垂足为H,由题意可知四边形ABDH为矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6,在Rt△ACH中,tan∠CAH=,∴CH=AH•tan∠CAH,∴CH=AH•tan∠CAH=6tan30°=6×(米),∵DH=1.5,∴CD=2+1.5,在Rt△CDE中,∵∠CED=60°,sin∠CED=,∴CE==4+≈5.7答:拉线CE的长约为5.7米.22.(2014•安徽省,第18题8分)如图,在同一平面内,两条平行高速公路l1和l2间有一条“Z”型道路连通,其中AB段与高速公路l1成30°角,长为20km;BC段与AB、CD段都垂直,长为10km,CD段长为30km,求两高速公路间的距离(结果保留根号).解:过B点作BE⊥l1,交l1于E,CD于F,l2于G.在Rt△ABE中,BE=AB•sin30°=20×=10km,在Rt△BCF中,BF=BC÷cos30°=10÷=km,CF=BF•sin30°=×=km,DF=CD﹣CF=(30﹣)km,在Rt△DFG中,FG=DF•sin30°=(30﹣)×=(15﹣)km,∴EG=BE+BF+FG=(25+5)km.故两高速公路间的距离为(25+5)km.23.(2014•攀枝花)如图,△ABC的边AB为⊙O的直径,BC与圆交于点D,D为BC的中点,过D作DE⊥AC于E.(1)求证:AB=AC;(2)求证:DE为⊙O的切线;(3)若AB=13,sinB=,求CE的长.(1)证明:连接AD,∵AB是⊙O的直径,∴∠ADB=90°∴AD⊥BC,又D是BC的中点,∴AB=AC;(2)证明:连接OD,∵O、D分别是AB、BC的中点,∴OD∥AC,∴∠ODE=∠DEC=90°,∴OD⊥DE,∴DE是⊙O的切线;(3)解:∵AB=13,sinB=,∴=,∴AD=12,∴由勾股定理得BD=5,∴CD=5,∵∠B=∠C,∴=,∴DE=,∴根据勾股定理得CE=.24.(2014•青岛,第22题10分)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)解:(1)y=(x﹣50)[50+5(100﹣x)]=(x﹣50)(﹣5x+550)=﹣5x2+800x﹣27500∴y=﹣5x2+800x﹣27500(50≤x≤100);(2)y=﹣5x2+800x﹣27500=﹣5(x﹣80)2+4500∵a=﹣5<0,∴抛物线开口向下.∵50≤x≤100,对称轴是直线x=80,∴当x=80时,y最大值=4500;(3)当y=4000时,﹣5(x﹣80)2+4500=4000,解得x1=70,x2=90.∴当70≤x≤90时,每天的销售利润不低于4000元.由每天的总成本不超过7000元,得50(﹣5x+550)≤7000,解得x≥82.∴82≤x≤90,∵50≤x≤100,∴销售单价应该控制在82元至90元之间.25题12分)如图,抛物线y=﹣x2﹣2x+3 的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1)求A、B、C的坐标;(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形PQMN的周长最大时,求△AEM的面积;(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=2DQ,求点F的坐标.解:(1)由抛物线y=﹣x2﹣2x+3可知,C(0,3),令y=0,则0=﹣x2﹣2x+3,解得x=﹣3或x=1,∴A(﹣3,0),B(1,0).(2)由抛物线y=﹣x2﹣2x+3可知,对称轴为x=﹣1,设M点的横坐标为m,则PM=﹣m2﹣2m+3,MN=(﹣m﹣1)×2=﹣2m﹣2,∴矩形PMNQ的周长=2(PM+MN)=(﹣m2﹣2m+3﹣2m﹣2)×2=﹣2m2﹣8m+2=﹣2(m+2)2+10,∴当m=﹣2时矩形的周长最大.∵A(﹣3,0),C(0,3),设直线AC解析式为;y=kx+b,解得k=1,b=3,∴解析式y=x+3,当x=﹣2时,则E(﹣2,1),∴EM=1,AM=1,∴S=•AM•EM=.(3)∵M点的横坐标为﹣2,抛物线的对称轴为x=﹣1,∴N应与原点重合,Q点与C点重合,∴DQ=DC,把x=﹣1代入y=﹣x2﹣2x+3,解得y=4,∴D(﹣1,4)∴DQ=DC=,∵FC=2DQ,∴FG=4,设F(n,﹣n2﹣2n+3),则G(n,n+3),∴|﹣n2﹣2n+3|﹣|n+3|=4,即n2+2n﹣3+n+3=4,解得:n=﹣4或n=1,∴F(﹣4,﹣5)或(1,0).。

2014-2015学年度九年级上学期期末考试数学模拟试卷

2014-2015学年度九年级上学期期末考试数学模拟试卷

2014-2015学年度九年级上学期期末考试数学模拟试卷一、精心选一选(本大题共有8个小题,每小题3分,共24分.每小题只有一个正确选项,请把正确选项的字母代号填在下面的表格内).1.下列美丽的图案,既是轴对称图形又是中心对称图形的个数是A .1个B . 2个C . 3个D . 4个2.要得到y=-2(x+2)2-3的图象,需将抛物线y=-2x 2作如下平移 A.向右平移2个单位,再向上平移3个单位 B.向右平移2个单位,再向下平移3个单位 C.向左平移2个单位,再向上平移3个单位 D.向左平移2个单位,再向下平移3个单位3.一个不透明的袋子中有3个红球和2个黄球,这些球除颜色外完全相同.从袋子中随机摸 出1个球,这个球是黄球的概率为A. 31B.52 C.21 D. 534.某药品经过两次降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同,设 每次降价的百分率为x,根据题意列方程得 A.168(1+x)2=108B.168(1-x)2=108C.168(1-2x)=108D.168(1-x 2)=1085.若方程0132=--x x 的两根为1x 、2x ,则2121x x x x +的值为( )A .-3B . 3C .31D . 31-6.在学校组织的实践活动中,小新同学用纸板制作了一个圆锥模型,它的底面半径为1,高 为22,则这个圆锥的侧面积是 A.4πB.3πC.22πD.2π7.如图☉O 中,半径OD ⊥弦AB 于点C,连接AO 并延长交☉O 于点E, 连接EC,若AB=8,CD=2, 则EC 的长度为 A.25B.8C.210D.2138.在同一平面直角坐标系中,函数y=mx+m 和函数y=-mx 2+2x+2(m 是常数,且m ≠0)的图 象可能是二、填空题(每小题3分,共24分) 9.若方程032)1(12=-+-+mx x m m是关于x 的一元二次方程,则m= .10.函数c bx x y -+=2的图象经过点(1,2),则b-c 的值为 .11.一只不透明的布袋中有三种小球(除颜色以外没有任何区别),分别是2个红球,3 个白球和5个黑球,每次只摸出一只小球,观察后均放回搅匀.在连续9次摸出的都是 黑球的情况下,第10次摸出红球的概率是 。

2014-2015学年九年级上学期期末考试试卷

2014-2015学年九年级上学期期末考试试卷

秘密★启用前2014-2015学年九年级上学期期末模拟考试数 学 试 卷第Ⅰ卷 选择题 (共40分) 一、选择题(每小题4分,共40分)1、函数y =x 2-2x +3的图象的顶点坐标是A .(1,-4)B .(-1,2)C .(1,2)D .(0,3) 2、下列方程中,一元二次方程共①3x 2+x =20; ②x 2+y 2=5; ③412=-x x; ④x 2=1; ⑤.0332=+-xx A .5个 B .4个 C .3个 D .2个3.下列图形中,既是轴对称图形,又是中心对称图形的是ABC D 4.下列事件中是必然事件的是A .从一个装有蓝.白两色球的缸里摸出一个球,摸出的球是白球B .小丹的自行车轮胎被钉子扎坏C .小红期末考试数学成绩一定得满分D .将油滴入水中,油会浮在水面上5.若关于x 的一元二次方程3x 2+k =0有实数根,则A .k 0>B .k 0<C .k 0≥D .k 0≤6.一扇形的半径为24cm ,若此扇形围成的圆锥的底面半径为10cm ,那么这个扇形的面积是A .120πcm 2B .240πcm 2C .260πcm 2D .480πcm 2 7.如图,⊙P 内含于⊙O ,⊙O 的弦AB 切⊙P 于点C ,且AB ∥OP ,若阴影部分的面积为9π,则弦AB 的长为 A .3 B .4 C .2 D .38.下列说法中,①平分弦的直径垂直于弦;②直角所对的弦是直径;③相等的弦所对的弧相等;④等弧所对的弦相等;⑤圆周角等于圆心角的一半;⑥x 2-5x +7=0两根之和为5。

其中正确命题的个数为A .0个B .1个C .2个D .3个 9.小军从所给的二次函数图象中观察得出了下面的信息:①a <0;②c =0;③函数的最小值是∠3;④当x <0时y >0;⑤当0<x 1<x 2<2时y 1>y 2。

你认为其中正确的个数为A .2个B .3个C .4个D .5个10.如图,在△ABC 中,AB =10,AC =8,BC =6,经过点C 且与边AB 相切的动圆与CA 、CB 分别相交于点P .Q ,则线段PQ 长度的最小值是A .4.8B .4.75C .5D .24第Ⅱ卷 非选择题( 共110分)二、填空题(共5个小题,每小题4分,共20分)11.已知关于x 的方程x 2+3x +k 2=0的一个根是-1,则k = .12.当实验次数很大时,同一事件发生的频率稳定在相应的 附近,所以我们可以通过多次实验,用同一事件发生的 来估计这事件发生的概率.(填“频率”或“概率”) 13.已知点A (2a +3b ,-2)和B (0,3a +2b )关于原点对称,则a +b = .14.把抛物线y =2(x -1)2+3的图象先向左平移3个单位长度后再向下平移4个单长度得到的新抛物线A CBOPAB QPC的解析式为 .15.用两个全等的含30°角的直角三角形制作如图①所示的两种卡片,两种卡片中扇形的半径均为1,且扇形所在圆的圆心分别为长直角边的中点和30°角的顶点,按先A 后B 的顺序交替摆放A 、B 两张卡片得到图②所示的图案,若摆放这个图案共用两种卡片8张,则这个图案中阴影部分的面积之和为 ;若摆放这个图案共用两种卡片(2n +1)张(n 为正整数),则这个图中阴影部分的面积之和为 .(结果保留π)三、解答题(共2个题,每题8分,共16分) 16.解下列一元二次方程:(1)(x -2)2 =2x -4 (2)2x 2 -4x -1=017.已知二次函数y =2x 2+bx +c 的图象经过A (0,1)、B (-2,1)两点。

2014—2015学年度第一学期期末学业质量评估九年级数学试题(含答案)

2014—2015学年度第一学期期末学业质量评估九年级数学试题(含答案)

九年级数学试题注意事项:1. 本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷2页,为选择题,共36分.第Ⅱ卷2页,为非选择题,共84分.全卷满分120分,考试时间120分钟.2.答卷前,务必将答题卡上面的项目填涂清楚.所有答案都必须涂、写在答题卡相应的位置,答在本试卷上一律无效.第Ⅰ卷一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,多选、不选、错选均记零分.)1. 下列说法中正确的是()A. 平分弦的直径垂直于弦,并且平分弦所对的两条弧;B. 圆是轴对称图形,每一条直径都是它的对称轴;C. 弦的垂直平分线过圆心;D. 相等的圆心角所对的弧也相等.2. 如图,A、B、P是⊙O上的三点,∠APB=40°,则弧AB的度数为()A.50°B.80°C.280°D.80°或280°3. 如图,在直径为AB的半圆O上有一动点P从O点出发,以相同的速度沿O-A-B-O的路线运动,线段OP的长度d与运动时间t之间的函数关系用图象描述大致是()4. 下列命题中的假命题是()A. 正方形的半径等于正方形的边心距的2倍;B. 三角形任意两边的垂直平分线的交点是三角形的外心;C. 用反证法证明命题“三角形中至少有一个内角不小于60°”时,第一步应该“假设每一个内角都小于60°”;D. 过三点能且只能作一个圆.5. 如图,⊙O的半径是4,点P是弦AB延长线上的一点,连接OP,若OP=6,∠APO=30°,则弦AB的长为()A .27B .7C .5D .526. 如图所示,在△ABC 中D 为AC 边上一点,若∠DBC =∠A ,BC =3,AC =6,则CD 的长为( ) A .1 B .2 C .23 D .25 7. 下列方程中:①x 2-2x -1=0, ②2x 2-7x +2=0, ③x 2-x +1=0 两根互为倒数有( ) A. 0个 B. 1个 C. 2个 D. 3个 8. 一次函数y 1=3x +3与y 2=-2x +8在同一直角坐标系内的交点坐标 为(1,6).则当y 1>y 2时,x 的取值范围是( )A. x ≥1B. x =1C. x <1D. x >1 9. 在△ABC 中,若()21cosA 1tanB 02-+-=,则∠C 的度数是( ) A. 45° B. 60° C. 75° D. 105°10. 如图,热气球的探测器显示,从热气球A 看一栋高楼顶部B 的仰角为30°,看这栋高楼底部C 的俯角为60°,热气球A 与高楼的水平距离为120m ,这栋高楼BC 的高度为( ) A .1603m B .803 m C .()12031- m D .()12031+m11. 已知反比例函数y =xk的图像经过点P (-1,2),则这个函数图像位于( ) A .第二、三象限 B .第一、三象限 C .第三、四象限 D .第二、四象限 12. 已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列4个结论:①abc <0;②b >a +c ;③2a -b =0;④b 2-4ac <0.其中正确的结论个数是( ) A.1个 B.2个 C.3个 D.4个第Ⅱ卷二、填空题(本题共6小题,要求将每小题的最后结果填写在横线上. 每小题3分,满分18分) 13. 已知一元二次方程ax 2+bx +c =0的两根为x 1=2,x 2=-3,则二次三项式ax 2+bx +c 可分解因式为 .14. ⊙O 的半径为10cm ,AB ,CD 是⊙O 的两条弦,且AB ∥CD ,AB =16cm ,CD =12cm .则AB 与CD 之间的距离是 cm .15. 如图所示,△ABC 中,E 、F 、D 分别是边AB 、AC 、BC 上的点,且满足12AE AF EB FC ==,则△EFD 与△ABC 的面积比为 .16. 如图,M 是Rt △ABC 的斜边BC 上异于B 、C 的一定点,过M 点作直线MN 截△ABC交AC 于点N ,使截得的△CMN 与△ABC 相似. 已知AB =6,AC =8,CM =4,则CN = .17. 一个足球从地面上被踢出,它距地面高度y (米)可以用二次函数x x y 6.199.42+-=刻画,其中x (秒)表示足球被踢出后经过的时间. 则足球被踢出后到离开地面达到最高点所用的时间是 秒. 18. 在△ABC 中,AB =AC =5,tanB =34.若⊙O 的半径为10,且⊙O 经过点B 、C ,那么线段OA 的长等于 .三、解答题(本题共6小题,解答应写出文字说明、证明过程或推演步骤. 共66分) 19. (本题满分10分)市某楼盘准备以每平方米6 000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4 860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?如图,晚上小明站在路灯P的底下观察自己的影子时发现,当他站在F点的位置时,在地面上的影子为BF,小明向前走2米到D点时,在地面上的影子为AD,若AB=4米,∠PBF=60°,∠PAB=30°,通过计算,求出小明的身高.(结果保留根号).21. (本题满分11分)如图,四边形ABCD内接于⊙O,BC是直径,∠BAD=120°,AB=AD.(1)求证:四边形ABCD是等腰梯形;(2)已知AC=6,求阴影部分的面积.如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE =∠B .(1)求证:△ADF ∽△DEC ;(2)若AB =8,AD =63,AF =43,求sinB 的值.23. (本题满分12分)已知关于x 的一元二次方程()2kx 4k 1x 3k 30-+++=. (1)试说明:无论k 取何值,方程总有两个实数根;(2)若△ABC 的两边AB 、AC 的长是方程的两个实数根,第三边BC 的长为5. 当△ABC 是等腰三角形时,求k 的值.AB是⊙O的直径,AD与⊙O相交,点C是⊙O上一点,经过点C的直线交AD于点E.⑴如图1 ,若AC平分∠BAD,CE⊥AD于点E,求证:CE是⊙O的切线;⑵如图2,若CE是⊙O的切线,CE⊥AD于点E,AC是∠BAD的平分线吗?说明理由;⑶如图3,若CE是⊙O的切线,AC平分∠BAD,AB=8,AC=6,求AE的长度.试题答案及评分标准一、选择题(每小题选对得3分,满分36分. 多选、不选、错选均记零分.)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CBBDACBDCADB二、填空题(每小题3分,满分18分)13. a (x -2)(x +3) 14. 214或 15. 2:9 16. 1655或17.2 18. 3或5 三、解答题(本题共6小题,解答应写出文字说明、证明过程或推演步骤.共66分) 19. (本题满分10分)解:解:(1)设平均每次下调的百分率为x , 则6000(1-x )2=4860, 解得:x 1=0.1=10%, x 2=1.9(舍).故平均每周下调的百分率为10%.……………………6分 (2)方案1优惠:4860×100×(1-0.98)=9720(元); 方案2可优惠:80×100=8000(元). 故方案1优惠.…………………………10分20. (本题满分10分)解:设小明的身高为x 米,则CD =EF =x 米. 在Rt △ACD 中,∠ADC =90°,tan ∠CAD =ADCD,即tan 30°=x /AD ,AD =3x --2分 在Rt △BEF 中,∠BFE =90°,tan ∠EBF =EF /BF ,即tan 60°=x /BF ,BF =x 33---4分 由题意得DF =2,∴BD =DF -BF =2-x 33,∵AB =AD +BD =4,∴3x +2-x 33=4 --8分即x =3.答:小明的身高为3米.------------------------------------------------------------------------10分 21. (本题满分11分)⑴证明:∵∠BAD =120°,AB =AD ∴∠ABD =∠ADB =30° ∴弧AB 和弧AD 的度数都等于60°又 ∵BC 是直径 ∴弧CD 的度数也是60° ------------------ --------------2分 ∴AB =CD 且∠CAD =∠ACB =30° ∴BC ∥AD∴四边形ABCD 是等腰梯形. --------------------------------------------------5分⑵∵BC 是直径 ∴∠BAC =90°∵∠ACB =30°,AC =6∴0cos 30AC BC ===R =∵弧AB 和弧AD 的度数都等于60° ∴∠BOD =120° ---------------------------6分 连接OA 交BD 于点E ,则OA ⊥BD 在Rt △BOE中:0sin30OE OB =⋅=0cos 330BE OB =⋅=,BD =2BE =6----------------------------------------------------8分∴(21201-63602BOD BODS S S⨯⨯=-=⨯阴影扇形ππ ----------------------------------------------------11分 22. (本题满分11分)⑴证明:∵∠AFE =∠B ,∠AFE 与∠AFD 互补,∠B 与∠C 互补∴∠AFD =∠C --------------------------------------------------2分 ∵AD ∥BC ∴∠ADF =∠DEC -------------------------------------------4分 ∴△ADF ∽△DEC ----------------------------------------------------5分 ⑵解:∵△ADF ∽△DEC ∴AD AFDE CD== 解得:DE =12 ----------------------------------------------------7分 ∵AE ⊥BC , AD ∥BC ∴AE ⊥AD∴6AE ==----9分在Rt △ABE 中,63sin 84AE B AB === -------------------------------------------------11分 23. (本题满分12分)解:⑴△=()()243341k k k -++ =2216181212k k k k ++--=2441k k -+ =()221k -≥0 --------------------------------------------------4分∴无论k 取何值,方程总有两个实数根. -------------------------------------------------5分 ⑵若AB =AC 则方程()2kx 4k 1x 3k 30-+++=有两个相等的实数根此时△=0,即:()221k -=0 解得:12k =当12k =时,AB =AC =3,此时AB 、AC 、BC 满足三边关系. -------------------------8分 若BC =5为△ABC 的一腰,则方程()2kx 4k 1x 3k 30-+++=有一根是5,将5x =代入方程()2kx 4k 1x 3k 30-+++=解得:14k = 当14k =时,解得方程两根为5和3,此时AB 、AC 、BC 满足三边关系. ----------11分 综上:当△ABC 是等腰三角形时,k 的值为1124或. -----------------------------12分24. (本题满分12分) ⑴证明:连接OC∵OA =OC ∴∠OAC =∠OCA ∵AC 平分∠BAD ∴∠OCA =∠CAD ∴OC ∥AD∵CE ⊥AD ∴CE ⊥OC -----------------------------------------------3分 又OC 是半径 ∴CE 是⊙O 的切线。

【解析版】梁邱一中2014-2015年九年级上期末数学模拟试卷(一)

【解析版】梁邱一中2014-2015年九年级上期末数学模拟试卷(一)
26.如图,一天,我国一渔政船航行到 A 处时,发现正东方向的我领海区域 B 处有一可疑 渔船,正在以 12海里∕小时的速度向西北方向航行,我渔政船立即沿北偏东 60°方向航 行,1.5小时后,在我领海区域的 C 处截获可疑渔船.问我渔政船的航行路程是多少海 里?(结果保留根号)
27.已知,如图二次函数 y=ax2+bx+c(a≠0)的图象与 y 轴交于点 C(0,4),与 x 轴交于 点 A,B,点 B(4,0),抛物线的对称轴为 x=1,直线 AD交抛物线于点 D(2,m). (1)求二次函数的解析式并写出 D 点坐标; (2)点 E 是 BD中点,点 Q 是线段 AB上一动点,当△QBE和△ABD相似时,求点 Q 的坐 标.
2014-2015 学年山东省临沂市费县梁邱一中九年级(上)期末 数学模拟试卷(一)
一、选择题(每小题 3 分,共 30 分) 1.下列方程中是关于 x 的一元二次方程的是( )
A.
B.ax2+bx+c=0
C.(x﹣1)(x+2)=1 D.3x2﹣2xy﹣5y2=0
2.下列几个图形是国际通用的交通标志,其中不是中心对称图形的是( )
A. B. C. D.
5.⊙O 的半径 r=5cm,圆心到直线 l 的距离 OM=4cm,在直线 l 上有一点 P,且 PM=3cm,则 点 P( ) A.在⊙O 内 B.在⊙O 上 C.在⊙O 外 D.可能在⊙O 上或在⊙O 内
6.反比例函数 的图象如图所示,点 M 是该函数图象上一点,MN垂直于 x 轴,垂足是 点 N,如果 S△MON=2,则 k 的值为( )
A.9 米 B.28米 C.
米 2+k(k≠0)在同一直角坐标系中的图象可能是( )

2014-2015学年九年级上下学期数学期末测试题(含答案)

2014-2015学年九年级上下学期数学期末测试题(含答案)

人教版2014-2015学年九年级上下学期测试数学试卷注:(1)全卷共三个大题,23个小题,共4页;满分:100分;考试时间:120分钟。

(2)答题内容一定要做在答卷..上,且不能超过密封线答题,否则视为无效。

一、选择:(每小题3分,共24分)1. 在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A .B .C .D .2.如图是某个几何体的三视图,该几何体是( )A. 正方体B. 圆柱C. 圆锥D. 球3.某药品经过两次降价,每瓶零售价由168元降为128元.已知两次降价的百分率相同,每4.已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为( ) A .B . 2πC . 3πD . 12π5.若ab >0,则一次函数y=ax+b 与反比例函数y=在同一坐标系数中的大致图象是( )A .B .C .D . 6.如图,在Rt △ABC 中,∠C=90°,BC=3,AC=4, 那么cosA 的值等于( ) 3A.4 4B.3 3C.5 4.5D 7.已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示, 则下列结论中正确的是( )A .a >0B .3是方程ax 2+bx+c=0的一个根C .a+b+c=0D .当x <1时,y 随x 的增大而减小 8.如图,CD 是⊙O 的直径,弦AB ⊥CD 于E ,连接 BC 、BD ,下列结论中不一定正确的是( )=C 二、填空:(每小题3分,共18分) 9.方程22x x =的根为 .10.抛物线213y x =(﹣)﹣的对称轴是.11.已知3,a b ab b+==则 . 12.如图,在△ABC 中,D 是AB 的中点, DE ∥BC.则:ADE ABC S S ∆∆= . 13.直径为10cm 的⊙O 中,弦AB=5cm ,则弦AB 所对的圆周角是 .14.为了求1+2+22+23+…+2100的值,可令S=1+2+22+23+…+2100,则2S=2+22+23+24+…+2101,因此2S ﹣S=2101﹣1,所以S=2101﹣1,即1+2+22+23+…+2100=2101﹣1,仿照以上推理计算1+3+32+33+…+32014的值是 三、解答:(共58分)15.(5分)计算:02015111)(1)()2sin 303-+-+-.16.(5分)化简求值:•(),其中x =.17.(8分)已知:如图,AB 是⊙O 的直径,AB =6,延长AB 到点C ,使BC =AB ,D 是⊙O 上一点,DC =26. 求证:(1)△CDB ∽△CAD ;(2)CD 是⊙O 的切线. 18.(4分)在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (﹣2,1),B (﹣4,5), C (﹣5,2).(1)画出△ABC 关于y 轴对称的△A 1B 1C 1;(2)画出△ABC 关于原点O 成中心对称的△A 2B 2C 2.19.(6分)如图,△ABC 是一块锐角三角形余料,边BC=120mm ,高AD=80mm ,要把它加工成长方形零件PQMN ,使长方形PQMN 的边QM 在BC 上,其余两个项点P,N 分别在AB,AC 上.求这个长方形零件PQMN 面积S 的最大值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学上学期期末模拟测试题(一)
班级 姓名 得分
一、选择题(每小题3分,共30分)
1.下列关于x 的方程中,是一元二次方程的为( ) A .22
1x
x +
B .02
=++c bx ax C .()()121=+-x x D .052322=--y xy x
2.下列几个图形是国际通用的交通标志,其中不是中心对称图形的是( )
A B C D
3.抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( ) A.23(1)2y x =-- B. 23(1)2y x =+- C. 23(1)2y x =++ D. 23(1)2y x =-+
4.有6张写有数字的卡片,它们的背面都相同,现将它们背面朝上(如下图),从中 任意一张是数字3的概率是( ) A 、
61 B 、31 C 、21 D 、3
2
5.⊙O 的半径r =5 cm ,圆心到直线l 的距离OM =4 cm ,在直线l 有一点P ,且PM =3 cm ,则点P ( )
A .在⊙O 内
B .在⊙O 上
C .在⊙O 外
D .可能在⊙O 上或在⊙O 内 6.反比例函数x
k
y =
的图象如下图所示,点M 是该函数图象上一点,MN 垂直于x 轴, 垂足是点N ,如果S △MON =2,则k 的值为( ) (A)2 (B)-2 (C)4 (D)-4
7. 图甲是某零件的直观图,则它的主视图为( )
B
C
8.如下图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC 相似的是( )
9.小阳发现电线杆AB 的影子落在土坡的坡面CD 和地面BC 上,量得CD=8米,BC=20米,CD 与地面成30º角,且此时测得1米杆的影长为2米,则电线杆的高度为( ) A .9米 B .28米 C .()37+米 D.()
3214+米 10.函数y=与y=﹣kx 2
+k (k≠0)在同一直角坐标系中的图象可能是
B
二、填空题(每小题3分,共30分)
11.方程(2x-1)(3x+1)=x 2
+2
化为一般形式为____________ ,其中a =__ _,b =__ __, c =____.
12.方程 x 2
= x 的解是______________________
13.若点A (-2,a )关于y 轴的对称点是B (b ,-3),则b a
的值是________.
14.如图,在平行四边形纸片上作随机扎针实验,针头扎在阴影区域的概率为
15.正六边形的外接圆的半径与内切圆的半径之比为 .
16
.若方程kx 2
–6x+1=0
有两个实数根,则k 的取值范围是 .
17.已知一条弧的长是3π厘米, 弧的半径是6厘米,则这条弧所对的圆心角是 度. 18.如上图(右),在Rt △ABC 中,∠C=90°,CA=CB=2。

分别以A 、B 、C 为圆心,以
2
1AC 为半径画弧,三条弧与边AB 所围成的阴影部分的面积是______.
19.大矩形的周长是与它位似的小矩形的2倍,小矩形的面积是5cm 2
,大矩形的长为5cm,则大矩形的宽为 cm.
20如图,是抛物线y=ax 2
+bx+c (a≠0)图象的一部分.已知抛物线的对称轴为x=2,与x
轴的一个交点是(﹣1,0).有下列结论:
①abc>0;②4a﹣2b+c <0;③4a+b=0;④抛物线与x 轴的另一个交点是(5,0);⑤点 (﹣3,y 1),(6,y 2)都在抛物线上,则有y 1<y 2. 其中正确的是 。

(填序号即可)
三.解答题(共60分)
21(每小题3分,共6分)
(1)解方程(3x-1)2=(x+1)2
(2)计算:2
)31(45
tan 60sin 12)13(-+-- +cos30°
22.(6分)一张圆桌旁有四个座位,A 先坐在如图所示的座位上,B 、C 、D 三人随机坐到其他三个座位上。

求A 与B
不相邻而坐的概率。

23.(8分)如图,四边形ABCD 内接于⊙O ,并且AD 是⊙O 的
直径,C 是弧BD 的中点,AB 和DC 的延长线交⊙O 外一点E.求
证:BC=EC.
24.(8分)某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%, 5月份的营业额达到633.6万元.求3月份到5月份营业额的月平均增长率.
A 圆桌
25(10分)如图,一次函数y=kx+b与反比例函数y=的图象相较于A(2,3),
B(﹣3,n)两点.
(1)求一次函数与反比例函数的解析式;
(2)根据所给条件,请直接写出不等式kx+b>的解集;
(3)过点B作BC⊥x轴,垂足为C,求S△ABC.
26(10分)如图,一天,我国一渔政船航行到A处时,发现正东方向的我领海区域B处有一可疑渔船,正在以12海里∕小时的速度向西北方向航行,我渔政船立即沿北偏东60º方向航行,1.5小时后,在我领海区域的C处截获可疑渔船。

问我渔政船的航行路程是多少海里?(结果保留根号)
27(12分)已知,如图二次函数y=ax2+bx+c(a≠0)的图象与y轴交于点C(0,4)与x轴交于点A、B,点B(4,0),抛物线的对称轴为x=1.直线AD交抛物线于点D(2,m).
(1)求二次函数的解析式并写出D点坐标;
(2)点E是BD的中点,点Q是线段AB上一动点,当△QBE和△ABD相似时,求点Q的坐标;
参考答案:
九年级数学上学期期末模拟测试题(一)
一、选择题
1-------5C D A B B 6-------10D A B D B 二、填空题
11.0352
=--x x 5 —1 —3 12.1,021==x x 13.1/8 14.1/4
15.2√3:3 16.k ≤9且k ≠0 17.90 18.2

-
19.4 20.①③④ 三、解答题
21.(1)x 1=0 x 2=1 (2)7+√3/2 22、P(A 与B 不相邻而坐)=1/3 23.证明:连接AC 。

∵AD 是⊙O 的直径 , ∴∠ACD=90°=∠ACE 。

∵四边形ABCD 内接于⊙O ,
∴∠EBC=∠D 。

C 是弧B
D 的中点,
12∴∠=∠,
1290E D ∴∠+∠=∠+∠=, E D ∴∠=∠,
∴∠EBC=∠E , ∴BC=EC 。

24.解:设3月份到5月份营业额的月平均增长率为x ,由题意列方程得
6.633)1%)(101(4002=++x ,
解得),(2.1%,1202.121舍去不合题意-===x x 。

答:3月份到5月份营业额的月平均增长率为120%。

25. 解:(1)∵点A (2,3)在y=的图象上, ∴m=6,
∴反比例函数的解析式为:
y=,
∴n==﹣2,
∵A(2,3),B(﹣3,﹣2)两点在y=kx+b上,
∴,
解得:,
∴一次函数的解析式为:y=x+1;
(2)﹣3<x<0或x>2;
(3)以BC为底,则BC边上的高为3+2=5,
∴S△ABC=×2×5=5.
26解:如图:作CD⊥AB于点D,∵在Rt△BCD中,BC=12×1.5=18海里,∠CBD=45°,
∴CD=BC•sin45°=18(海里)。

∴在Rt△ACD中,AC=CD÷sin30°=
答:我渔政船的航行路程是
27.解:(1)设二次函数的解析式为:y=ax2+bx+c.
2
2
1a c 4216a 4b c 0b 1b c 4,12a 1y x x 4.
21D(2m)m 224 4.
2
⎧⎧
=-⎪⎪=⎪⎪
++==⎨⎨⎪⎪=⎪⎪-=⎩⎩
=-++=-⨯++=,,由题意有:,解得:,
,所以,二次函数的解析式为:点,在抛物线上,即 ∴点D 的坐标为(2,4);
(2)作DG 垂直于x 轴,垂足为G ,因为D (2,4),B (4,0), 由勾股定理得
:BD= ∵E 是BD 的中点, ∴
BE BQ 1QBE ABD BD BA 2
AB 2BQ Q 10BQ BE QBE DBA BD BA 6
57
BQ OQ 633
7
Q 0.
3
==∴=∴==∴=⨯==∴当≌时,,

点的坐标为(,);
当≌时,,
,则,
点的坐标(,)。

相关文档
最新文档