湖北省2013年七地市高考备考(押注)冲刺卷(一)数学(理)试卷
2013年湖北省高考数学试卷(理科)
2013年湖北省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)在复平面内,复数z=(i为虚数单位)的共轭复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)已知全集为R,集合A={x|()x≤1},B={x|x2﹣6x+8≤0},则A∩(∁R B)=()A.{x|x≤0}B.{x|2≤x≤4}C.{x|0≤x<2或x>4} D.{x|0<x≤2或x≥4} 3.(5分)在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为()A.(¬p)∨(¬q)B.p∨(¬q)C.(¬p)∧(¬q)D.p∨q 4.(5分)将函数y=cosx+sinx(x∈R)的图象向左平移m(m>0)个单位长度后,所得到的图象关于y轴对称,则m的最小值是()A.B.C.D.5.(5分)已知0<θ<,则双曲线与C2:﹣=1的()A.实轴长相等B.虚轴长相等C.焦距相等D.离心率相等6.(5分)已知点A(﹣1,1),B(1,2),C(﹣2,﹣1),D(3,4),则向量在方向上的投影为()A.B.C.D.7.(5分)一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度的单位:s,v的单位:m/s)行驶至停止,在此期间汽车继续行驶的距离(单位:m)是()A.1+25ln5 B.8+25ln C.4+25ln5 D.4+50ln28.(5分)一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为V1,V2,V3,V4,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有()A.V1<V2<V4<V3B.V1<V3<V2<V4C.V2<V1<V3<V4D.V2<V3<V1<V4 9.(5分)如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X,则X的均值E(X)=()A. B.C. D.10.(5分)已知a为常数,函数f(x)=x(lnx﹣ax)有两个极值点x1,x2(x1<x2)()A. B.C. D.二、填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.(一)必考题(11-14题)(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B铅笔涂黑.如果全选,则按第15题作答结果计分.)11.(5分)从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图所示:(Ⅰ)直方图中x的值为;(Ⅱ)在这些用户中,用电量落在区间[100,250)内的户数为.12.(5分)阅读如图所示的程序框图,运行相应的程序,输出的结果i=.13.(5分)设x,y,z∈R,且满足:,则x+y+z=.14.(5分)古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n个三角形数为.记第n个k边形数为N(n,k)(k≥3),以下列出了部分k边形数中第n个数的表达式:三角形数,正方形数N(n,4)=n2,五边形数,六边形数N(n,6)=2n2﹣n,…可以推测N(n,k)的表达式,由此计算N(10,24)=.15.(5分)(选修4﹣1:几何证明选讲)如图,圆O上一点C在直径AB上的射影为D,点D在半径OC上的射影为E.若AB=3AD,则的值为.16.(选修4﹣4:坐标系与参数方程)在直角坐标系xOy中,椭圆C的参数方程为为参数,a>b>0).在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,直线l与圆O的极坐标方程分别为为非零常数)与ρ=b.若直线l经过椭圆C的焦点,且与圆O相切,则椭圆C的离心率为.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(12分)在△ABC中,角A,B,C对应的边分别是a,b,c,已知cos2A﹣3cos(B+C)=1.(Ⅰ)求角A的大小;(Ⅱ)若△ABC的面积S=5,b=5,求sinBsinC的值.18.(12分)已知等比数列{a n}满足:|a2﹣a3|=10,a1a2a3=125.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)是否存在正整数m,使得?若存在,求m的最小值;若不存在,说明理由.19.(12分)如图,AB是圆O的直径,点C是圆O上异于A,B的点,直线PC ⊥平面ABC,E,F分别是PA,PC的中点.(Ⅰ)记平面BEF与平面ABC的交线为l,试判断直线l与平面PAC的位置关系,并加以证明;(Ⅱ)设(Ⅰ)中的直线l与圆O的另一个交点为D,且点Q满足.记直线PQ与平面ABC所成的角为θ,异面直线PQ与EF所成的角为α,二面角E ﹣l﹣C的大小为β.求证:sinθ=sinαsinβ.20.(12分)假设每天从甲地去乙地的旅客人数X是服从正态分布N(800,502)的随机变量.记一天中从甲地去乙地的旅客人数不超过900的概率为p0.(Ⅰ)求p0的值;(参考数据:若X~N(μ,σ2),有P(μ﹣σ<X≤μ+σ)=0.6826,P(μ﹣2σ<X ≤μ+2σ)=0.9544,P(μ﹣3σ<X≤μ+3σ)=0.9974.)(Ⅱ)某客运公司用A,B两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次,A,B两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1600元/辆和2400元/辆.公司拟组建一个不超过21辆车的客运车队,并要求B型车不多于A型车7辆.若每天要以不小于p0的概率运完从甲地去乙地的旅客,且使公司从甲地去乙地的营运成本最小,那么应配备A 型车、B型车各多少辆?21.(13分)如图,已知椭圆C1与C2的中心在坐标原点O,长轴均为MN且在x 轴上,短轴长分别为2m,2n(m>n),过原点且不与x轴重合的直线l与C1,C2的四个交点按纵坐标从大到小依次为A,B,C,D,记,△BDM和△ABN 的面积分别为S1和S2.(Ⅰ)当直线l与y轴重合时,若S1=λS2,求λ的值;(Ⅱ)当λ变化时,是否存在与坐标轴不重合的直线l,使得S1=λS2?并说明理由.22.(14分)设n是正整数,r为正有理数.(Ⅰ)求函数f(x)=(1+x)r+1﹣(r+1)x﹣1(x>﹣1)的最小值;(Ⅱ)证明:;(Ⅲ)设x∈R,记[x]为不小于x的最小整数,例如.令的值.(参考数据:.2013年湖北省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)在复平面内,复数z=(i为虚数单位)的共轭复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】将复数z=的分母实数化,求得z=1+i,即可求得,从而可知答案.【解答】解:∵z====1+i,∴=1﹣i.∴对应的点(1,﹣1)位于第四象限,故选:D.【点评】本题考查复数的代数表示法及其几何意义,将复数z=的分母实数化是关键,属于基础题.2.(5分)已知全集为R,集合A={x|()x≤1},B={x|x2﹣6x+8≤0},则A∩(∁R B)=()A.{x|x≤0}B.{x|2≤x≤4}C.{x|0≤x<2或x>4} D.{x|0<x≤2或x≥4}【分析】利用指数函数的性质可求得集合A,通过解一元二次不等式可求得集合B,从而可求得A∩C R B.【解答】解:∵≤1=,∴x≥0,∴A={x|x≥0};又x2﹣6x+8≤0⇔(x﹣2)(x﹣4)≤0,∴2≤x≤4.∴B={x|2≤x≤4},∴∁R B={x|x<2或x>4},∴A∩∁R B={x|0≤x<2或x>4},故选:C.【点评】本题考查指数函数的性质与元二次不等式,考查交、并、补集的混合运算,属于中档题.3.(5分)在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为()A.(¬p)∨(¬q)B.p∨(¬q)C.(¬p)∧(¬q)D.p∨q【分析】由命题P和命题q写出对应的¬p和¬q,则命题“至少有一位学员没有降落在指定范围”即可得到表示.【解答】解:命题p是“甲降落在指定范围”,则¬p是“甲没降落在指定范围”,q是“乙降落在指定范围”,则¬q是“乙没降落在指定范围”,命题“至少有一位学员没有降落在指定范围”包括“甲降落在指定范围,乙没降落在指定范围”或“甲没降落在指定范围,乙降落在指定范围”或“甲没降落在指定范围,乙没降落在指定范围”三种情况.所以命题“至少有一位学员没有降落在指定范围”可表示为(¬p)V(¬q).故选:A.【点评】本题考查了复合命题的真假,解答的关键是熟记复合命题的真值表,是基础题.4.(5分)将函数y=cosx+sinx(x∈R)的图象向左平移m(m>0)个单位长度后,所得到的图象关于y轴对称,则m的最小值是()A.B.C.D.【分析】函数解析式提取2变形后,利用两角和与差的正弦函数公式化为一个角的正弦函数,利用平移规律得到平移后的解析式,根据所得的图象关于y轴对称,即可求出m的最小值.【解答】解:y=cosx+sinx=2(cosx+sinx)=2sin(x+),∴图象向左平移m(m>0)个单位长度得到y=2sin[(x+m)+]=2sin(x+m+),∵所得的图象关于y轴对称,∴m+=kπ+(k∈Z),则m的最小值为.故选:B.【点评】此题考查了两角和与差的正弦函数公式,以及函数y=Asin(ωx+φ)的图象变换,熟练掌握公式是解本题的关键.5.(5分)已知0<θ<,则双曲线与C2:﹣=1的()A.实轴长相等B.虚轴长相等C.焦距相等D.离心率相等【分析】根据双曲线的标准方程求出双曲线的几何性质同,即可得出正确答案.【解答】解:双曲线的实轴长为2cosθ,虚轴长2sinθ,焦距2,离心率,双曲线的实轴长为2sinθ,虚轴长2sinθtanθ,焦距2tanθ,离心率,故它们的离心率相同.故选:D.【点评】本题主要考查了双曲线的标准方程、双曲线的简单性质等,属于基础题.6.(5分)已知点A(﹣1,1),B(1,2),C(﹣2,﹣1),D(3,4),则向量在方向上的投影为()A.B.C.D.【分析】先求出向量、,根据投影定义即可求得答案.【解答】解:,,则向量方向上的投影为:•cos<>=•===,故选:A.【点评】本题考查平面向量数量积的含义与物理意义,考查向量投影定义,属基础题,正确理解相关概念是解决问题的关键.7.(5分)一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度的单位:s,v的单位:m/s)行驶至停止,在此期间汽车继续行驶的距离(单位:m)是()A.1+25ln5 B.8+25ln C.4+25ln5 D.4+50ln2【分析】令v(t)=0,解得t=4,则所求的距离S=,解出即可.【解答】解:令v(t)=7﹣3t+,化为3t2﹣4t﹣32=0,又t>0,解得t=4.∴由刹车行驶至停止,在此期间汽车继续行驶的距离s===4+25ln5.故选:C.【点评】熟练掌握导数的运算法则和定积分的几何意义是解题的关键.8.(5分)一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为V1,V2,V3,V4,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有()A.V1<V2<V4<V3B.V1<V3<V2<V4C.V2<V1<V3<V4D.V2<V3<V1<V4【分析】利用三视图与已知条件判断组合体的形状,分别求出几何体的体积,即可判断出正确选项.【解答】解:由题意以及三视图可知,该几何体从上到下由:圆台、圆柱、正四棱柱、正四棱台组成,体积分别记为V1==.V2=12×π×2=2π,V3=2×2×2=8V4==;∵,∴V2<V1<V3<V4故选:C.【点评】本题考查简单组合体的三视图与几何体的体积的求法,正确判断几何体的形状与准确利用公式求解体积是解题的关键.9.(5分)如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X,则X的均值E(X)=()A. B.C. D.【分析】由题意可知:X所有可能取值为0,1,2,3.①8个顶点处的8个小正方体涂有3面,②每一条棱上除了两个顶点处的小正方体,还剩下3个,一共有3×12=36个小正方体涂有2面,③每个表面去掉四条棱上的16个小正方形,还剩下9个小正方形,因此一共有9×6=54个小正方体涂有一面,④由以上可知:还剩下125﹣(8+36+54)=27个内部的小正方体的6个面都没有涂油漆,根据上面的分析即可得出其概率及X 的分布列,利用数学期望的计算公式即可得出.【解答】解:由题意可知:X所有可能取值为0,1,2,3.①8个顶点处的8个小正方体涂有3面,∴P(X=3)=;②每一条棱上除了两个顶点处的小正方体,还剩下3个,一共有3×12=36个小正方体涂有2面,∴P(X=2)=;③每个表面去掉四条棱上的16个小正方形,还剩下9个小正方形,因此一共有9×6=54个小正方体涂有一面,∴P(X=1)=.④由以上可知:还剩下125﹣(8+36+54)=27个内部的小正方体的6个面都没有涂油漆,∴P(X=0)=.故X的分布列为因此E(X)==.故选:B.【点评】正确找出所涂油漆的面数的正方体的个数及古典概型的概率计算公式、分布列与数学期望是解题的关键.10.(5分)已知a为常数,函数f(x)=x(lnx﹣ax)有两个极值点x1,x2(x1<x2)()A. B.C. D.【分析】先求出f′(x),令f′(x)=0,由题意可得lnx=2ax﹣1有两个解x1,x2⇔函数g(x)=lnx+1﹣2ax有且只有两个零点⇔g′(x)在(0,+∞)上的唯一的极值不等于0.利用导数与函数极值的关系即可得出.【解答】解:∵f′(x)=lnx+1﹣2ax,(x>0)令f′(x)=0,由题意可得lnx=2ax﹣1有两个解x1,x2⇔函数g(x)=lnx+1﹣2ax 有且只有两个零点⇔g′(x)在(0,+∞)上的唯一的极值不等于0..①当a≤0时,g′(x)>0,f′(x)单调递增,因此g(x)=f′(x)至多有一个零点,不符合题意,应舍去.②当a>0时,令g′(x)=0,解得x=,∵x,g′(x)>0,函数g(x)单调递增;时,g′(x)<0,函数g(x)单调递减.∴x=是函数g(x)的极大值点,则>0,即>0,∴ln(2a)<0,∴0<2a<1,即.故当0<a<时,g(x)=0有两个根x1,x2,且x1<<x2,又g(1)=1﹣2a >0,∴x1<1<<x2,从而可知函数f(x)在区间(0,x1)上递减,在区间(x1,x2)上递增,在区间(x2,+∞)上递减.∴f(x1)<f(1)=﹣a<0,f(x2)>f(1)=﹣a>﹣.故选:D.【点评】本题考查了利用导数研究函数极值的方法,考查了分类讨论的思想方法,考查了推理能力与计算能力,属于难题.二、填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.(一)必考题(11-14题)(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B铅笔涂黑.如果全选,则按第15题作答结果计分.)11.(5分)从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图所示:(Ⅰ)直方图中x的值为0.0044;(Ⅱ)在这些用户中,用电量落在区间[100,250)内的户数为70.【分析】(I)根据频率分布直方图中,各组的频率之和为1,我们易得到一个关于x的方程,解方程即可得到答案.(II)由已知中的频率分布直方图,利用[100,250)之间各小组的纵坐标(矩形的高)乘以组距得到[100,250)的频率,利用频率乘以样本容量即可求出频数.【解答】解:(Ⅰ)依题意及频率分布直方图知,0.0024×50+0.0036×50+0.0060×50+x×50+0.0024×50+0.0012×50=1,解得x=0.0044.(II)样本数据落在[100,150)内的频率为0.0036×50=0.18,样本数据落在[150,200)内的频率为0.006×50=0.3.样本数据落在[200,250)内的频率为0.0044×50=0.22,故在这些用户中,用电量落在区间[100,250)内的户数为(0.18+0.30+0.22)×100=70.故答案为:0.0044;70.【点评】根据新高考服务于新教材的原则,作为新教材的新增内容﹣﹣频率分布直方图是新高考的重要考点.对于“频率分布直方图学习的关键是学会画图、看图和用图.12.(5分)阅读如图所示的程序框图,运行相应的程序,输出的结果i=5.【分析】框图首先给变量a和变量i赋值,然后对a是否等于4进行判断,不等于4,继续判断a是否为奇数,是执行路径a=3a+1,否执行路径,再执行i=i+1,依次循环执行,当a等于4时跳出循环,输出i的值.【解答】解:框图首先给变量a和变量i赋值,a=4,i=1.判断10=4不成立,判断10是奇数不成立,执行,i=1+1=2;判断5=4不成立,判断5是奇数成立,执行a=3×5+1=16,i=2+1=3;判断16=4不成立,判断16是奇数不成立,执行,i=3+1=4;判断8=4不成立,判断8是奇数不成立,执行,i=4+1=5;判断4=4成立,跳出循环,输出i的值为5.故答案是5.【点评】本题考查了程序框图,循环结构中含有条件结构,外面的循环结构为直到型,即不满足条件执行循环,直到条件满足跳出循环.是基础题.13.(5分)设x,y,z∈R,且满足:,则x+y+z=.【分析】根据柯西不等式,算出(x+2y+3z)2≤14(x2+y2+z2)=14,从而得到x+2y+3z恰好取到最大值,由不等式的等号成立的条件解出x=、y=且z=,由此即可得到x+y+z的值.【解答】解:根据柯西不等式,得(x+2y+3z)2≤(12+22+32)(x2+y2+z2)=14(x2+y2+z2)当且仅当时,上式的等号成立∵x2+y2+z2=1,∴(x+2y+3z)2≤14,结合,可得x+2y+3z恰好取到最大值∴=,可得x=,y=,z=因此,x+y+z=++=故答案为:【点评】本题给出x、y、z的平方和等于1,在x+2y+3z恰好取到最大值的情况下求x+y+z的值.着重考查了运用柯西不等式求最值的方法,属于中档题.抓住柯西不等式的等号成立的条件,是本题得以解决的关键.14.(5分)古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n个三角形数为.记第n个k边形数为N(n,k)(k≥3),以下列出了部分k边形数中第n个数的表达式:三角形数,正方形数N(n,4)=n2,五边形数,六边形数N(n,6)=2n2﹣n,…可以推测N(n,k)的表达式,由此计算N(10,24)=1000.【分析】观察已知式子的规律,并改写形式,归纳可得,把n=10,k=24代入可得答案.【解答】解:原已知式子可化为:,,,,由归纳推理可得,故=1100﹣100=1000故答案为:1000【点评】本题考查归纳推理,观察已知式子的规律并改写形式是解决问题的关键,属基础题.15.(5分)(选修4﹣1:几何证明选讲)如图,圆O上一点C在直径AB上的射影为D,点D在半径OC上的射影为E.若AB=3AD,则的值为8.【分析】设圆O的半径为3x,根据射影定理,可以求出OD2=OE•OC=x2,CD2=CE•OC=8x2,进而得到的值.【解答】解:设圆O的半径OA=OB=OC=3x,∵AB=3AD,∴AD=2x,BD=4x,OD=x又∵点C在直径AB上的射影为D,在△ABC中,由射影定理得:CD2=AD•BD=8x2,在△ODC中,由射影定理得:OD2=OE•OC=x2,CD2=CE•OC=8x2,故==8故答案为:8【点评】本题考查的知识点是直角三角形射影定理,射影定理在使用时一定要注意其使用范围…“双垂直”.16.(选修4﹣4:坐标系与参数方程)在直角坐标系xOy中,椭圆C的参数方程为为参数,a>b>0).在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,直线l与圆O的极坐标方程分别为为非零常数)与ρ=b.若直线l经过椭圆C的焦点,且与圆O相切,则椭圆C的离心率为.【分析】先根据极坐标与直角坐标的转换关系将直线l的极坐标方程分别为为非零常数)化成直角坐标方程,再利用直线l经过椭圆C的焦点,且与圆O相切,从而得到c=b,又b2=a2﹣c2,消去b后得到关于a,c的等式,即可求出椭圆C的离心率.【解答】解:直线l的极坐标方程分别为为非零常数)化成直角坐标方程为x+y﹣m=0,它与x轴的交点坐标为(m,0),由题意知,(m,0)为椭圆的焦点,故|m|=c,又直线l与圆O:ρ=b相切,∴,从而c=b,又b2=a2﹣c2,∴c2=2(a2﹣c2),∴3c2=2a2,∴=.则椭圆C的离心率为.故答案为:.【点评】本题考查了椭圆的离心率,考查了参数方程化成普通方程,点的极坐标和直角坐标的互化,考查提高学生分析问题的能力.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(12分)在△ABC中,角A,B,C对应的边分别是a,b,c,已知cos2A﹣3cos(B+C)=1.(Ⅰ)求角A的大小;(Ⅱ)若△ABC的面积S=5,b=5,求sinBsinC的值.【分析】(I)利用倍角公式和诱导公式即可得出;(II)由三角形的面积公式即可得到bc=20.又b=5,解得c=4.由余弦定理得a2=b2+c2﹣2bccosA=25+16﹣20=21,即可得出a.又由正弦定理得即可得到即可得出.【解答】解:(Ⅰ)由cos2A﹣3cos(B+C)=1,得2cos2A+3cosA﹣2=0,即(2cosA﹣1)(cosA+2)=0,解得(舍去).因为0<A<π,所以.(Ⅱ)由S===,得到bc=20.又b=5,解得c=4.由余弦定理得a2=b2+c2﹣2bccosA=25+16﹣20=21,故.又由正弦定理得.【点评】熟练掌握三角函数的倍角公式和诱导公式、三角形的面积公式、余弦定理得、正弦定理是解题的关键.18.(12分)已知等比数列{a n}满足:|a2﹣a3|=10,a1a2a3=125.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)是否存在正整数m,使得?若存在,求m的最小值;若不存在,说明理由.【分析】(I)设等比数列{a n}的公比为q,结合等比数列的通项公式表示已知条件,解方程可求a1,q,进而可求通项公式(Ⅱ)结合(I)可知是等比数列,结合等比数列的求和公式可求,即可判断【解答】解:(Ⅰ)设等比数列{a n}的公比为q,则由已知可得解得故.(Ⅱ)若,则,故是首项为,公比为的等比数列,从而.若,则是首项为,公比为﹣1的等比数列,从而故.综上,对任何正整数m,总有.故不存在正整数m,使得成立.【点评】本题主要考查了等比数列的通项公式及求和公式的综合应用,还考查了一定的逻辑推理与运算的能力19.(12分)如图,AB是圆O的直径,点C是圆O上异于A,B的点,直线PC ⊥平面ABC,E,F分别是PA,PC的中点.(Ⅰ)记平面BEF与平面ABC的交线为l,试判断直线l与平面PAC的位置关系,并加以证明;(Ⅱ)设(Ⅰ)中的直线l与圆O的另一个交点为D,且点Q满足.记直线PQ与平面ABC所成的角为θ,异面直线PQ与EF所成的角为α,二面角E ﹣l﹣C的大小为β.求证:sinθ=sinαsinβ.【分析】(I)直线l∥平面PAC.连接EF,利用三角形的中位线定理可得,EF∥AC;利用线面平行的判定定理即可得到EF∥平面ABC.由线面平行的性质定理可得EF∥l.再利用线面平行的判定定理即可证明直线l∥平面PAC.(II)综合法:利用线面垂直的判定定理可证明l⊥平面PBC.连接BE,BF,因为BF⊂平面PBC,所以l⊥BC.故∠CBF就是二面角E﹣l﹣C的平面角,即∠CBF=β.已知PC⊥平面ABC,可知CD是FD在平面ABC内的射影,故∠CDF就是直线PQ 与平面ABC所成的角,即∠CDF=θ.由BD⊥平面PBC,有BD⊥BF,知∠BDF=α,分别利用三个直角三角形的边角关系即可证明结论;向量法:以点C为原点,向量所在直线分别为x,y,z轴,建立如图所示的空间直角坐标系,利用两个平面的法向量的夹角即可得出二面角.【解答】解:(Ⅰ)直线l∥平面PAC,证明如下:连接EF,因为E,F分别是PA,PC的中点,所以EF∥AC,又EF⊄平面ABC,且AC⊂平面ABC,所以EF∥平面ABC.而EF⊂平面BEF,且平面BEF∩平面ABC=l,所以EF∥l.因为l⊄平面PAC,EF⊂平面PAC,所以直线l∥平面PAC.(Ⅱ)(综合法)如图1,连接BD,由(Ⅰ)可知交线l即为直线BD,且l∥AC.因为AB是⊙O的直径,所以AC⊥BC,于是l⊥BC.已知PC⊥平面ABC,而l⊂平面ABC,所以PC⊥l.而PC∩BC=C,所以l⊥平面PBC.连接BE,BF,因为BF⊂平面PBC,所以l⊥BF.故∠CBF就是二面角E﹣l﹣C的平面角,即∠CBF=β.由,作DQ∥CP,且.连接PQ,DF,因为F是CP的中点,CP=2PF,所以DQ=PF,从而四边形DQPF是平行四边形,PQ∥FD.连接CD,因为PC⊥平面ABC,所以CD是FD在平面ABC内的射影,故∠CDF就是直线PQ与平面ABC所成的角,即∠CDF=θ.又BD⊥平面PBC,有BD⊥BF,知∠BDF=α,于是在Rt△DCF,Rt△FBD,Rt△BCF中,分别可得,从而.(Ⅱ)(向量法)如图2,由,作DQ∥CP,且.连接PQ,EF,BE,BF,BD,由(Ⅰ)可知交线l即为直线BD.以点C为原点,向量所在直线分别为x,y,z轴,建立如图所示的空间直角坐标系,设CA=a,CB=b,CP=2c,则有.于是,∴=,从而,又取平面ABC的一个法向量为,可得,设平面BEF的一个法向量为,所以由可得取=(0,c,b),于是,从而.故,即sinθ=sinαsinβ.【点评】本题综合考查了线面平行的判定定理和性质定理、线面垂直的判定与性质定理、平行四边形的判定与性质定理、线面角、二面角、异面直线所成的角、通过建立空间直角坐标系利用法向量的夹角求二面角等基础知识与方法,需要较强的空间想象能力、推理能力和计算能力.20.(12分)假设每天从甲地去乙地的旅客人数X是服从正态分布N(800,502)的随机变量.记一天中从甲地去乙地的旅客人数不超过900的概率为p0.(Ⅰ)求p0的值;(参考数据:若X~N(μ,σ2),有P(μ﹣σ<X≤μ+σ)=0.6826,P(μ﹣2σ<X ≤μ+2σ)=0.9544,P(μ﹣3σ<X≤μ+3σ)=0.9974.)(Ⅱ)某客运公司用A,B两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次,A,B两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1600元/辆和2400元/辆.公司拟组建一个不超过21辆车的客运车队,并要求B型车不多于A型车7辆.若每天要以不小于p0的概率运完从甲地去乙地的旅客,且使公司从甲地去乙地的营运成本最小,那么应配备A 型车、B型车各多少辆?【分析】(I)变量服从正态分布N(800,502),即服从均值为800,标准差为50的正态分布,适合700<X≤900范围内取值即在(μ﹣2σ,μ+2σ)内取值,其概率为:95.44%,从而由正态分布的对称性得出不超过900的概率为p0.(II)设每天应派出A型x辆、B型车y辆,根据条件列出不等式组,即得线性约束条件,列出目标函数,画出可行域求解.【解答】解:(Ⅰ)由于随机变量X服从正态分布N(800,502),故有μ=800,σ=50,P(700<X≤900)=0.9544.由正态分布的对称性,可得p0=(P(X≤900)=P(X≤800)+P(800<X≤900)=(Ⅱ)设A型、B型车辆的数量分别为x,y辆,则相应的营运成本为1600x+2400y.依题意,x,y还需满足:x+y≤21,y≤x+7,P(X≤36x+60y)≥p0.由(Ⅰ)知,p0=P(X≤900),故P(X≤36x+60y)≥p0等价于36x+60y≥900.于是问题等价于求满足约束条件且使目标函数z=1600x+2400y达到最小值的x,y.作可行域如图所示,可行域的三个顶点坐标分别为P(5,12),Q(7,14),R (15,6).由图可知,当直线z=1600x+2400y经过可行域的点P时,直线z=1600x+2400y在y轴上截距最小,即z取得最小值.故应配备A型车5辆,B型车12辆.【点评】本题考查正态分布曲线的特点及曲线所表示的意义,考查简单线性规划.本题解题的关键是列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数,将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.21.(13分)如图,已知椭圆C1与C2的中心在坐标原点O,长轴均为MN且在x 轴上,短轴长分别为2m,2n(m>n),过原点且不与x轴重合的直线l与C1,C2的四个交点按纵坐标从大到小依次为A,B,C,D,记,△BDM和△ABN 的面积分别为S1和S2.(Ⅰ)当直线l与y轴重合时,若S1=λS2,求λ的值;(Ⅱ)当λ变化时,是否存在与坐标轴不重合的直线l,使得S1=λS2?并说明理由.【分析】(Ⅰ)设出两个椭圆的方程,当直线l与y轴重合时,求出△BDM和△ABN的面积S1和S2,直接由面积比=λ列式求λ的值;(Ⅱ)假设存在与坐标轴不重合的直线l,使得S1=λS2,设出直线方程,由点到直线的距离公式求出M和N到直线l的距离,利用数学转化思想把两个三角形的面积比转化为线段长度比,由弦长公式得到线段长度比的另一表达式,两式相等得到,换元后利用非零的k值存在讨论λ的取值范围.【解答】解:以题意可设椭圆C1和C2的方程分别为,.其中a>m>n>0,>1.(Ⅰ)如图1,若直线l与y轴重合,即直线l的方程为x=0,则,,所以.在C1和C2的方程中分别令x=0,可得y A=m,y B=n,y D=﹣m,于是.若,则,化简得λ2﹣2λ﹣1=0,由λ>1,解得.故当直线l与y轴重合时,若S1=λS2,则.(Ⅱ)如图2,若存在与坐标轴不重合的直线l,使得S1=λS2,根据对称性,不妨设直线l:y=kx(k>0),点M(﹣a,0),N(a,0)到直线l的距离分别为d1,d2,则,所以d1=d2.又,所以,即|BD|=λ|AB|.由对称性可知|AB|=|CD|,所以|BC|=|BD|﹣|AB|=(λ﹣1)|AB|,|AD|=|BD|+|AB|=(λ+1)|AB|,于是.将l的方程分别与C1和C2的方程联立,可求得根据对称性可知x C=﹣x B,x D=﹣x A,于是②从而由①和②可得③令,则由m>n,可得t≠1,于是由③可得.因为k≠0,所以k2>0.于是③关于k有解,当且仅当,等价于,由λ>1,解得,即,由λ>1,解得,所以当时,不存在与坐标轴不重合的直线l,使得S1=λS2;当时,存在与坐标轴不重合的直线l,使得S1=λS2.【点评】本题考查了三角形的面积公式,考查了点到直线的距离公式,考查了直线与圆锥曲线的关系,该题重点考查了数学转化思想方法和分类讨论的数学思想方法,(Ⅱ)中判断λ的存在性是该题的难题,考查了灵活运用函数和不等式的思想方法.22.(14分)设n是正整数,r为正有理数.(Ⅰ)求函数f(x)=(1+x)r+1﹣(r+1)x﹣1(x>﹣1)的最小值;(Ⅱ)证明:;。
2013年湖北省高考数学试卷(理科)答案及解析
2013年湖北省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2013•湖北)在复平面内,复数(i为虚数单位)的共轭复数对应的点位于()A .第一象限B.第二象限C.第三象限D.第四象限2.(5分)(2013•湖北)已知全集为R,集合,则A∩∁R B=()A .{x|x≤0}B.{x|2≤x≤4}C.{x|0≤x<2或x>4}D.{x|0<x≤2或x≥4}3.(5分)(2013•湖北)在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为()A .(¬p)∨(¬q)B.p∨(¬q)C.(¬p )∧(¬q)D.p∨q4.(5分)(2013•湖北)将函数的图象向左平移m(m >0)个单位长度后,所得到的图象关于y轴对称,则m的最小值是()A .B.C.D.5.(5分)(2013•湖北)已知,则双曲线的()A .实轴长相等B.虚轴长相等C.焦距相等D.离心率相等6.(5分)(2013•湖北)已知点A(﹣1,1),B(1,2),C(﹣2,﹣1),D (3,4),则向量在方向上的投影为()A B C D7.(5分)(2013•湖北)一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度的单位:s,v的单位:m/s)行驶至停止,在此期间汽车继续行驶的距离(单位:m)是()A .1+25ln5B.8+25ln C.4+25ln5D.4+50ln28.(5分)(2013•湖北)一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为V1,V2,V3,V4,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有()A .V1<V2<V4<V3B.V1<V3<V2<V4C.V2<V1<V3<V4D.V2<V3<V1<V49.(5分)(2013•湖北)如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X ,则X的均值E(X)=()A .B.C.D.10.(5分)(2013•湖北)已知a为常数,函数f(x)=x(lnx ﹣ax)有两个极值点x1,x2(x1<x2)()A B C D二、填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.(一)必考题(11-14题)(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B铅笔涂黑.如果全选,则按第15题作答结果计分.)11.(5分)(2013•湖北)从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图所示:(Ⅰ)直方图中x的值为_________;(Ⅱ)在这些用户中,用电量落在区间[100,250)内的户数为_________.12.(5分)(2013•湖北)阅读如图所示的程序框图,运行相应的程序,输出的结果i=_________.13.(5分)(2013•湖北)设x,y,z∈R,且满足:,则x+y+z=_________.14.(5分)(2013•湖北)古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n个三角形数为.记第n个k边形数为N(n,k)(k≥3),以下列出了部分k边形数中第n 个数的表达式:三角形数,正方形数N(n,4)=n2,五边形数,六边形数N(n,6)=2n2﹣n,…可以推测N(n,k)的表达式,由此计算N(10,24)=_________.15.(5分)(2013•湖北)(选修4﹣1:几何证明选讲)如图,圆O上一点C在直径AB上的射影为D,点D在半径OC上的射影为E.若AB=3AD,则的值为_________.16.(2013•湖北)(选修4﹣4:坐标系与参数方程)在直角坐标系xOy中,椭圆C的参数方程为为参数,a>b>0).在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,直线l与圆O的极坐标方程分别为为非零常数)与ρ=b.若直线l经过椭圆C的焦点,且与圆O相切,则椭圆C的离心率为_________.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(12分)(2013•湖北)在△ABC中,角A,B,C对应的边分别是a,b,c,已知cos2A﹣3cos(B+C)=1.(Ⅰ)求角A的大小;(Ⅱ)若△ABC的面积,求sinBsinC的值.18.(12分)(2013•湖北)已知等比数列{a n}满足:|a2﹣a3|=10,a1a2a3=125.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)是否存在正整数m,使得?若存在,求m的最小值;若不存在,说明理由.19.(12分)(2013•湖北)如图,AB是圆O的直径,点C是圆O上异于A,B的点,直线PC⊥平面ABC,E,F 分别是PA,PC的中点.(Ⅰ)记平面BEF与平面ABC的交线为l,试判断直线l与平面PAC的位置关系,并加以证明;(Ⅱ)设(Ⅰ)中的直线l与圆O的另一个交点为D,且点Q满足.记直线PQ与平面ABC所成的角为θ,异面直线PQ与EF所成的角为α,二面角E﹣l﹣C的大小为β.求证:sinθ=sinαsinβ.20.(12分)(2013•湖北)假设每天从甲地去乙地的旅客人数X是服从正态分布N(800,502)的随机变量.记一天中从甲地去乙地的旅客人数不超过900的概率为p0.(Ⅰ)求p0的值;(参考数据:若X~N(μ,σ2),有P(μ﹣σ<X≤μ+σ)=0.6826,P(μ﹣2σ<X≤μ+2σ)=0.9544,P(μ﹣3σ<X≤μ+3σ)=0.9974.)(Ⅱ)某客运公司用A,B两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次,A,B两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1600元/辆和2400元/辆.公司拟组建一个不超过21辆车的客运车队,并要求B型车不多于A型车7辆.若每天要以不小于p0的概率运完从甲地去乙地的旅客,且使公司从甲地去乙地的营运成本最小,那么应配备A型车、B型车各多少辆?21.(13分)(2013•湖北)如图,已知椭圆C1与C2的中心在坐标原点O,长轴均为MN且在x轴上,短轴长分别为2m,2n(m>n),过原点且不与x轴重合的直线l与C1,C2的四个交点按纵坐标从大到小依次为A,B,C,D,记,△BDM和△ABN的面积分别为S1和S2.(Ⅰ)当直线l与y轴重合时,若S1=λS2,求λ的值;(Ⅱ)当λ变化时,是否存在与坐标轴不重合的直线l,使得S1=λS2?并说明理由.22.(14分)(2013•湖北)设n是正整数,r为正有理数.(Ⅰ)求函数f(x)=(1+x)r+1﹣(r+1)x﹣1(x>﹣1)的最小值;(Ⅱ)证明:;(Ⅲ)设x∈R,记[x]为不小于x的最小整数,例如.令的值.(参考数据:.2013年湖北省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)考点:复数的代数表示法及其几何意义.专题:计算题.分析:将复数z=的分母实数化,求得z=1+i,即可求得,从而可知答案.解答:解:∵z====1+i,∴=1﹣i.∴对应的点(1,﹣1)位于第四象限,故选D.点评:本题考查复数的代数表示法及其几何意义,将复数z=的分母实数化是关键,属于基础题.2.(5分)考点:其他不等式的解法;交、并、补集的混合运算.专题:计算题;不等式的解法及应用.分析:利用指数函数的性质可求得集合A,通过解一元二次不等式可求得集合B,从而可求得A∩C R B.解答:解:∵≤1=,∴x≥0,∴A={x|x≥0};又x2﹣6x+8≤0⇔(x﹣2)(x﹣4)≤0,∴2≤x≤4.∴B={x|2≤x≤4},∴∁R B={x|x<2或x>4},∴A∩∁R B={x|0≤x<2或x>4},故选C.点评:本题考查指数函数的性质与元二次不等式,考查交、并、补集的混合运算,属于中档题.3.(5分)考点:复合命题的真假.专题:阅读型.分析:由命题P和命题q写出对应的¬p和¬q,则命题“至少有一位学员没有降落在指定范围”即可得到表示.解答:解:命题p是“甲降落在指定范围”,则¬p是“甲没降落在指定范围”,q是“乙降落在指定范围”,则¬q是“乙没降落在指定范围”,命题“至少有一位学员没有降落在指定范围”包括“甲降落在指定范围,乙没降落在指定范围”或“甲没降落在指定范围,乙降落在指定范围”或“甲没降落在指定范围,乙没降落在指定范围”三种情况.所以命题“至少有一位学员没有降落在指定范围”可表示为(¬p)V(¬q).故选A.点评:本题考查了复合命题的真假,解答的关键是熟记复合命题的真值表,是基础题.4.(5分)考点:两角和与差的正弦函数;函数y=Asin(ωx+φ)的图象变换.专三角函数的图像与性质.分析:函数解析式提取2变形后,利用两角和与差的正弦函数公式化为一个角的正弦函数,利用平移规律得到平移后的解析式,根据所得的图象关于y轴对称,即可求出m的最小值.解答:解:y=cosx+sinx=2(cosx+sinx)=2sin (x+),∴图象向左平移m(m >0)个单位长度得到y=2sin[(x+m)+]=2sin(x+m+),∵所得的图象关于y轴对称,∴m+=kπ+(k∈Z),则m的最小值为.故选B点评:此题考查了两角和与差的正弦函数公式,以及函数y=Asin(ωx+φ)的图象变换,熟练掌握公式是解本题的关键.5.(5分)考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:根据双曲线的标准方程求出双曲线的几何性质同,即可得出正确答案.解答:解:双曲线的实轴长为2cosθ,虚轴长2sinθ,焦距2,离心率,双曲线的实轴长为2sinθ,虚轴长2sinθtanθ,焦距2tanθ,离心率,故它们的离心率相同.故选D.点评:本题主要考查了双曲线的标准方程、双曲线的简单性质等,属于基础题.6.(5分)考平面向量数量积的含义与物理意义.专题:平面向量及应用.分析:先求出向量、,根据投影定义即可求得答案.解答:解:,,则向量方向上的投影为:•cos<>=•===,故选A.点评:本题考查平面向量数量积的含义与物理意义,考查向量投影定义,属基础题,正确理解相关概念是解决问题的关键.7.(5分)考点:定积分.专题:导数的综合应用.分析:令v(t)=0,解得t=4,则所求的距离S=,解出即可.解答:解:令v(t)=7﹣3t+,化为3t2﹣4t ﹣32=0,又t>0,解得t=4.∴由刹车行驶至停止,在此期间汽车继续行驶的距离s===4+25ln5.故选C.点评:熟练掌握导数的运算法则和定积分的几何意义是解题的关键.8.(5分)考点:由三视图求面积、体积.专题:计算题.分析:利用三视图与已知条件判断组合体的形状,分别求出几何体的体积,即可判断出正确选项.解答:解:由题意以及三视图可知,该几何体从上到下由:圆台、圆柱、正四棱柱、正四棱台组成,体积分别记λ为V1==.V2=12×π×2=2π,V3=2×2×2=8V4==;∵,∴V2<V1<V3<V4故选C.点评:本题考查简单组合体的三视图与几何体的体积的求法,正确判断几何体的形状与准确利用公式求解体积是解题的关键.9.(5分)考点:离散型随机变量的期望与方差.专题:压轴题;概率与统计.分析:由题意可知:X所有可能取值为0,1,2,3.①8个顶点处的8个小正方体涂有3面,②每一条棱上除了两个顶点处的小正方体,还剩下3个,一共有3×12=36个小正方体涂有2面,③每个表面去掉四条棱上的16个小正方形,还剩下9个小正方形,因此一共有9×6=54个小正方体涂有一面,④由以上可知:还剩下125﹣(8=36+54)=27个内部的小正方体的6个面都没有涂油漆,根据上面的分析即可得出其概率及X的分布列,利用数学期望的计算公式即可得出.解答:解:由题意可知:X所有可能取值为0,1,2,3.①8个顶点处的8个小正方体涂有3面,∴P(X=3)=;②每一条棱上除了两个顶点处的小正方体,还剩下3个,一共有3×12=36个小正方体涂有2面,∴P (X=2)=;③每个表面去掉四条棱上的16个小正方形,还剩下9个小正方形,因此一共有9×6=54个小正方体涂有一面,∴P(X=1)=.④由以上可知:还剩下125﹣(8+36+54)=27个内部的小正方体的6个面都没有涂油漆,∴P(X=0)=.X0123P故X的分布列为因此E(X)==.故选B.点评:正确找出所涂油漆的面数的正方体的个数及古典概型的概率计算公式、分布列与数学期望是解题的关键.10.(5分)考点:利用导数研究函数的极值;函数在某点取得极值的条件.专题:压轴题;导数的综合应用.分析:先求出f′(x),令f′(x)=0,由题意可得lnx=2ax﹣1有两个解x1,x2⇔函数g(x)=lnx+1﹣2ax有且只有两个零点⇔g′(x)在(0,+∞)上的唯一的极值不等于0.利用导数与函数极值的关系即可得出.解答:解:∵=lnx+1﹣2ax,(x>0)令f′(x)=0,由题意可得lnx=2ax﹣1有两个解x1,x2⇔函数g(x)=lnx+1﹣2ax有且只有两个零点⇔g′(x)在(0,+∞)上的唯一的极值不等于0..①当a≤0时,g′(x)>0,f′(x)单调递增,因此g(x)=f′(x)至多有一个零点,不符合题意,应舍去.②当a>0时,令g′(x)=0,解得x=,∵x,g′(x)>0,函数g(x )单调递增;时,g′(x )<0,函数g(x )单调递减.∴x=是函数g(x)的极大值点,则>0,即>0,∴ln(2a)<0,∴0<2a<1,即.∵,f′(x1)=lnx1+1﹣2ax1=0,f′(x2)=lnx2+1﹣2ax2=0.且f(x1)=x1(lnx1﹣ax1)=x1(2ax1﹣1﹣ax 1)=x 1(ax1﹣1)=﹣<0,f(x2)=x2(lnx2﹣ax2)=x2(ax 2﹣1)>=﹣.().故选D.点评:熟练掌握利用导数研究函数极值的方法是解题的关键.二、填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.(一)必考题(11-14题)(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B铅笔涂黑.如果全选,则按第15题作答结果计分.)11.(5分)考点:频率分布直方图.专题:图表型.分析:(I)根据频率分布直方图中,各组的频率之和为1,我们易得到一个关于x的方程,解方程即可得到答案.(II)由已知中的频率分布直方图,利用[100,250)之间各小组的纵坐标(矩形的高)乘以组距得到[100,250)的频率,利用频率乘以样本容量即可求出频数.解答:解:(Ⅰ)依题意及频率分布直方图知,0.0024×50+0.0036×50+0.0060×50+x×50+0.0024×50+0.0012×50=1,解得x=0.0044.(II)样本数据落在[100,150)内的频率为0.0036×50=0.18,样本数据落在[150,200)内的频率为0.006×50=0.3.样本数据落在[200,250)内的频率为0.0044×50=0.22,故在这些用户中,用电量落在区间[100,250)内的户数为(0.18+0.30+0.22)×100=70.故答案为:0.0044;70.点根据新高考服务于新教材的原则,作为新教材的新增内容﹣﹣频率分布直方图是新高考的重要考点.对评:于“频率分布直方图学习的关键是学会画图、看图和用图.12.(5分)考点:程序框图.分析:框图首先给变量a和变量i赋值,然后对a是否等于4进行判断,不等于4,继续判断a是否为奇数,是执行路径a=3a+1,否执行路径,再执行i=i+1,依次循环执行,当a等于4时跳出循环,输出i 的值.解答:解:框图首先给变量a和变量i赋值,a=4,i=1.判断10=4不成立,判断10是奇数不成立,执行,i=1+1=2;判断5=4不成立,判断5是奇数成立,执行a=3×5+1=16,i=2+1=3;判断16=4不成立,判断16是奇数不成立,执行,i=3+1=4;判断8=4不成立,判断8是奇数不成立,执行,i=4+1=5;判断4=4成立,跳出循环,输出i的值为5.故答案是5.点评:本题考查了程序框图,循环结构中含有条件结构,外面的循环结构为直到型,即不满足条件执行循环,直到条件满足跳出循环.是基础题.13.(5分)考点:一般形式的柯西不等式;进行简单的合情推理.专题:计算题;不等式的解法及应用.分析:根据柯西不等式,算出(x+2y+3z)2≤14(x2+y2+z2)=14,从而得到x+2y+3z恰好取到最大值,由不等式的等号成立的条件解出x=、y=且z=,由此即可得到x+y+z的值.解答:解:根据柯西不等式,得(x+2y+3z)2≤(12+22+32)(x2+y 2+z 2)=14(x2+y2+z 2)当且仅当时,上式的等号成立∵x2+y2+z2=1,∴(x+2y+3z)2≤14,结合,可得x+2y+3z恰好取到最大值∴=,可得x=,y=,z=因此,x+y+z=++=故答案为:点评:本题给出x、y、z 的平方和等于1,在x+2y+3z恰好取到最大值的情况下求x+y+z的值.着重考查了运用柯西不等式求最值的方法,属于中档题.抓住柯西不等式的等号成立的条件,是本题得以解决的关键.14.(5分)考点:归纳推理.专题:计算题.分析:观察已知式子的规律,并改写形式,归纳可得,把n=10,k=24代入可得答案.解答:解:原已知式子可化为:,,,,由归纳推理可得,故=1100﹣100=1000故答案为:1000点评:本题考查归纳推理,观察已知式子的规律并改写形式是解决问题的关键,属基础题.15.(5分)考点:与圆有关的比例线段;直角三角形的射影定理.专题:压轴题;选作题.分析:设圆O的半径为3x,根据射影定理,可以求出OD2=OE•OC=x2,CD 2=CE•OC=8x2,进而得到的值.解解:设圆O的半径OA=OB=OC=3x,答:∵AB=3AD,∴AD=2x,BD=4x,OD=x又∵点C在直径AB上的射影为D,在△ABC中,由射影定理得:CD2=AD•BD=8x2,在△ODC中,由射影定理得:OD2=OE•OC=x2,CD2=CE•OC=8x2,故==8故答案为:8点评:本题考查的知识点是直角三角形射影定理,射影定理在使用时一定要注意其使用范围…“双垂直”.16.(2013•湖北)考点:参数方程化成普通方程;椭圆的简单性质;点的极坐标和直角坐标的互化.专题:压轴题;圆锥曲线的定义、性质与方程.分析:先根据极坐标与直角坐标的转换关系将直线l的极坐标方程分别为为非零常数)化成直角坐标方程,再利用直线l经过椭圆C的焦点,且与圆O相切,从而得到c=b,又b2=a2﹣c2,消去b后得到关于a,c的等式,即可求出椭圆C的离心率.解答:解:直线l的极坐标方程分别为为非零常数)化成直角坐标方程为x+y﹣m=0,它与x轴的交点坐标为(m,0),由题意知,(m ,0)为椭圆的焦点,故|m|=c,又直线l与圆O:ρ=b相切,∴,从而c=b,又b2=a2﹣c2,∴c2=2(a2﹣c2),∴3c2=2a2,∴=.则椭圆C的离心率为.故答案为:.点评:本题考查了椭圆的离心率,考查了参数方程化成普通方程,点的极坐标和直角坐标的互化,考查提高学生分析问题的能力.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(12分)考点:余弦定理;正弦定理.专题:解三角形.分析:(I)利用倍角公式和诱导公式即可得出;(II)由三角形的面积公式即可得到bc=20.又b=5,解得c=4.由余弦定理得a 2=b2+c2﹣2bccosA=25+16﹣20=21,即可得出a .又由正弦定理得即可得到即可得出.解答:解:(Ⅰ)由cos2A﹣3cos(B+C)=1,得2cos2A+3cosA﹣2=0,即(2cosA﹣1)(cosA+2)=0,解得(舍去).因为0<A<π,所以.(Ⅱ)由S===,得到bc=20.又b=5,解得c=4.由余弦定理得a2=b2+c2﹣2bccosA=25+16﹣20=21,故.又由正弦定理得.点评:熟练掌握三角函数的倍角公式和诱导公式、三角形的面积公式、余弦定理得、正弦定理是解题的关键.18.(12分)考点:数列的求和;等比数列的通项公式;数列与不等式的综合.专题:计算题;等差数列与等比数列.分析:(I)设等比数列{a n}的公比为q,结合等比数列的通项公式表示已知条件,解方程可求a1,q,进而可求通项公式(Ⅱ)结合(I)可知是等比数列,结合等比数列的求和公式可求,即可判断解答:解:(Ⅰ)设等比数列{a n}的公比为q ,则由已知可得解得故.(Ⅱ)若,则,故是首项为,公比为的等比数列,从而.若,则是首项为,公比为﹣1的等比数列,从而故.综上,对任何正整数m,总有.故不存在正整数m,使得成立.点评:本题主要考查了等比数列的通项公式及求和公式的综合应用,还考查了一定的逻辑推理与运算的能力19.(12分)考点:用空间向量求平面间的夹角;空间中直线与平面之间的位置关系;直线与平面平行的判定;二面角的平面角及求法.专题:空间位置关系与距离;空间角.分析:(I)直线l∥平面PAC.连接EF,利用三角形的中位线定理可得,EF∥AC;利用线面平行的判定定理即可得到EF∥平面ABC.由线面平行的性质定理可得EF∥l.再利用线面平行的判定定理即可证明直线l∥平面PAC.(II)综合法:利用线面垂直的判定定理可证明l⊥平面PBC.连接BE,BF,因为BF⊂平面PBC,所以l⊥BC.故∠CBF就是二面角E﹣l﹣C的平面角,即∠CBF=β.已知PC⊥平面ABC,可知CD是FD在平面ABC内的射影,故∠CDF就是直线PQ与平面ABC所成的角,即∠CDF=θ.由BD⊥平面PBC,有BD⊥BF,知∠BDF=α,分别利用三个直角三角形的边角关系即可证明结论;向量法:以点C为原点,向量所在直线分别为x,y,z轴,建立如图所示的空间直角坐标系,利用两个平面的法向量的夹角即可得出二面角.解答:解:(Ⅰ)直线l∥平面PAC,证明如下:连接EF,因为E,F分别是PA,PC的中点,所以EF∥AC,又EF⊄平面ABC,且AC⊂平面ABC,所以EF∥平面ABC.而EF⊂平面BEF,且平面BEF∩平面ABC=l,所以EF∥l.因为l⊄平面PAC,EF⊂平面PAC,所以直线l∥平面PAC.(Ⅱ)(综合法)如图1,连接BD,由(Ⅰ)可知交线l即为直线BD,且l∥AC.因为AB是⊙O的直径,所以AC⊥BC,于是l⊥BC.已知PC⊥平面ABC,而l⊂平面ABC,所以PC⊥l .而PC∩BC=C,所以l ⊥平面PBC.连接BE,BF,因为BF⊂平面PBC,所以l⊥BF.故∠CBF就是二面角E﹣l﹣C的平面角,即∠CBF=β.由,作DQ∥CP,且.连接PQ,DF,因为F是CP的中点,CP=2PF,所以DQ=PF,从而四边形DQPF是平行四边形,PQ∥FD.连接CD,因为PC⊥平面ABC,所以CD是FD在平面ABC 内的射影,故∠CDF就是直线PQ与平面ABC所成的角,即∠CDF=θ.又BD⊥平面PBC ,有BD⊥BF,知∠BDF=α,于是在Rt△DCF,Rt△FBD,Rt△BCF中,分别可得,从而.(Ⅱ)(向量法)如图2,由,作DQ∥CP,且.连接PQ,EF,BE,BF,BD,由(Ⅰ)可知交线l即为直线BD.以点C为原点,向量所在直线分别为x,y,z轴,建立如图所示的空间直角坐标系,设CA=a,CB=b,CP=2c,则有.于是,∴=,从而,又取平面ABC的一个法向量为,可得,设平面BEF 的一个法向量为,所以由可得.于是,从而.故,即sinθ=sinαsinβ.点评:本题综合考查了线面平行的判定定理和性质定理、线面垂直的判定与性质定理、平行四边形的判定与性质定理、线面角、二面角、异面直线所成的角、通过建立空间直角坐标系利用法向量的夹角求二面角等基础知识与方法,需要较强的空间想象能力、推理能力和计算能力.20.(12分)考点:简单线性规划;正态分布曲线的特点及曲线所表示的意义.专题:不等式的解法及应用;概率与统计.分析:(I)变量服从正态分布N(800,502),即服从均值为800,标准差为50的正态分布,适合700<X≤900范围内取值即在(μ﹣2σ,μ+2σ)内取值,其概率为:95.44%,从而由正态分布的对称性得出不超过900的概率为p0.(II)设每天应派出A型x辆、B型车y辆,根据条件列出不等式组,即得线性约束条件,列出目标函数,画出可行域求解.解答:解:(Ⅰ)由于随机变量X服从正态分布N(800,502),故有μ=800,σ=50,P(700<X≤900)=0.9544.由正态分布的对称性,可得p0=(P(X≤900)=P(X≤800)+P(800<X≤900)=(Ⅱ)设A型、B型车辆的数量分别为x,y辆,则相应的营运成本为1600x+2400y.依题意,x,y还需满足:x+y≤21,y≤x+7,P(X≤36x+60y)≥p0.由(Ⅰ)知,p0=P(X≤900),故P(X≤360x+60y)≥p0等价于36x+60y≥900.于是问题等价于求满足约束条件且使目标函数z=1600x+2400y达到最小值的x,y.作可行域如图所示,可行域的三个顶点坐标分别为P(5,12),Q(7,14),R(15,6).由图可知,当直线z=1600x+2400y经过可行域的点P时,直线z=1600x+2400y在y轴上截距最小,即z取得最小值.故应配备A型车5辆,B型车12辆.点评:本题考查正态分布曲线的特点及曲线所表示的意义,考查简单线性规划.本题解题的关键是列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数,将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.21.(13分)考点:直线与圆锥曲线的关系;三角形的面积公式;点到直线的距离公式.专题:压轴题;圆锥曲线的定义、性质与方程.分(Ⅰ)设出两个椭圆的方程,当直线l与y轴重合时,求出△BDM和△ABN的面积S1和S2,直接由面析:积比=λ列式求λ的值;(Ⅱ)假设存在与坐标轴不重合的直线l,使得S1=λS2,设出直线方程,由点到直线的距离公式求出M 和N到直线l的距离,利用数学转化思想把两个三角形的面积比转化为线段长度比,由弦长公式得到线段长度比的另一表达式,两式相等得到,换元后利用非零的k值存在讨论λ的取值范围.解答:解:以题意可设椭圆C1和C2的方程分别为,.其中a >m>n >0,.(Ⅰ)如图1,若直线l与y轴重合,即直线l的方程为x=0,则,,所以.在C1和C2的方程中分别令x=0,可得y A=m,y B=n ,y D=﹣m,于是.若,则,化简得λ2﹣2λ﹣1=0,由λ>1,解得.故当直线l与y轴重合时,若S1=λS2,则.(Ⅱ)如图2,若存在与坐标轴不重合的直线l,使得S1=λS2,根据对称性,不妨设直线l:y=kx(k >0),点M(﹣a ,0),N(a,0)到直线l的距离分别为d1,d2,则,所以d1=d2.又,所以,即|BD|=λ|AB|.由对称性可知|AB|=|CD|,所以|BC|=|BD|﹣|AB|=(λ﹣1)|AB|,|AD|=|BD|+|AB|=(λ+1)|AB|,于是.将l的方程分别与C1和C2的方程联立,可求得根据对称性可知x C =﹣x B,x D=﹣x A,于是②从而由①和②可得③令,则由m>n,可得t≠1,于是由③可得.因为k≠0,所以k 2>0.于是③关于k有解,当且仅当,等价于,由λ>1,解得,即,由λ>1,解得,所以当时,不存在与坐标轴不重合的直线l,使得S1=λS2;当时,存在与坐标轴不重合的直线l,使得S1=λS2.点评:本题考查了三角形的面积公式,考查了点到直线的距离公式,考查了直线与圆锥曲线的关系,该题重点考查了数学转化思想方法和分类讨论的数学思想方法,(Ⅱ)中判断λ的存在性是该题的难题,考查了灵活运用函数和不等式的思想方法.22.(14分)考点:导数在最大值、最小值问题中的应用;利用导数研究函数的单调性;数列的求和;不等式的证明.专题:压轴题;导数的综合应用;不等式的解法及应用.分析:(Ⅰ)先求出函数f (x)的导函数f′(x),令f'(x)=0,解得x=0,再求出函数的单调区间,进而求出最小值为f(0)=0;(Ⅱ)根据(Ⅰ)知,即(1+x)r+1≥1+(r+1)x,令代入并化简得,再令得,,即结论得到证明;(Ⅲ)根据(Ⅱ)的结论,令,n分别取值81,82,83,…,125,分别列出不等式,再将各式相加得,,再由参考数据和条件进行求解.解答:解;(Ⅰ)由题意得f'(x)=(r+1)(1+x)r﹣(r+1)=(r+1)[(1+x)r﹣1],令f'(x)=0,解得x=0.当﹣1<x<0时,f'(x)<0,∴f(x)在(﹣1,0)内是减函数;当x>0时,f'(x)>0,∴f(x)在(0,+∞)内是增函数.故函数f(x)在x=0处,取得最小值为f (0)=0.(Ⅱ)由(Ⅰ),当x∈(﹣1,+∞)时,有f (x)≥f(0)=0,即(1+x)r+1≥1+(r+1)x,且等号当且仅当x=0时成立,故当x>﹣1且x≠0,有(1+x)r+1>1+(r+1)x,①在①中,令(这时x>﹣1且x≠0),得.上式两边同乘n r+1,得(n+1)r+1>n r+1+n r(r+1),即,②当n>1时,在①中令(这时x>﹣1且x≠0),类似可得,③且当n=1时,③也成立.综合②,③得,④(Ⅲ)在④中,令,n 分别取值81,82,83, (125)得,,,…,将以上各式相加,并整理得.代入数据计算,可得由[S]的定义,得[S]=211.点评:本题考查了利用导数研究函数的单调性和求最值,以及学生的创新精神,是否会观察,会抽象概括,会用类比的方法得出其它结论,难度较大,注意利用上一问的结论.。
2013年普通高等学校招生全国统一考试湖北卷(数学理)word版含答案
2013年普通高等学校招生全国统一考试(湖北卷)数 学(理工类)一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,复数2i1iz =+(i 为虚数单位)的共轭复数对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限2.已知全集为R ,集合1{()1}2x A x =≤,2{680}B x x x =-+≤,则A B =R ðA .{0}x x ≤B .{24}x x ≤≤C .{024}x x x ≤<>或D .{024}x x x <≤≥或3.在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为 A .()p ⌝∨()q ⌝ B .p ∨()q ⌝C .()p ⌝∧()q ⌝D .p ∨q4.将函数sin ()y x x x +∈R 的图象向左平移(0)m m >个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是A .π12B .π6C .π3D .5π65.已知π04θ<<,则双曲线1C :22221cos sin x y θθ-=与2C :222221sin sin tan y xθθθ-=的 A .实轴长相等 B .虚轴长相等 C .焦距相等 D .离心率相等6.已知点(1,1)A -、(1,2)B 、(2,1)C --、(3,4)D ,则向量AB 在CD 方向上的投影为 ABC.D.7.一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度25()731v t t t=-++(t 的单位:s ,v 的单位:m/s )行驶至停止. 在此期间汽车继续行驶的距离(单位:m )是A .125ln 5+B .11825ln 3+C .425ln 5+D .450ln 2+第8题图8.一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为1V ,2V ,3V ,4V ,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有A .1243V V V V <<<B .1324V V V V <<<C .2134V V V V <<<D .2314V V V V <<<9.如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体. 经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X ,则X 的均值()E X = A .126125 B .65C .168125 D .7510.已知a 为常数,函数()(ln )f x x x ax =-有两个极值点1x ,212()x x x <,则A .1()0f x >,21()2f x >-B .1()0f x <,21()2f x <-C .1()0f x >,21()2f x <-D .1()0f x <,21()2f x >-二、填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分. 请将答案填在答题卡对应题......号.的位置上. 答错位置,书写不清,模棱两可均不得分. (一)必考题(11—14题)11.从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图所示.(Ⅰ)直方图中x 的值为_________;(Ⅱ)在这些用户中,用电量落在区间[100,250)内的户数为_________.第11题图12.阅读如图所示的程序框图,运行相应的程序,输出的结果i =_________.第9题图14.古希腊毕达哥拉斯学派的数学家研究过各种多边形数. 如三角形数1,3,6,10, ,第n 个三角形数为2(1)11222n n n n +=+. 记第n 个k 边形数为(,)(3)N n k k ≥,以下列出 了部分k 边形数中第n 个数的表达式:三角形数 211(,3)22N n n n =+,正方形数 2(,4)N n n =,五边形数 231(,5)22N n n n =-,六边形数 2(,6)2N n n n =-, ………………………………………可以推测(,)N n k 的表达式,由此计算(10,24)N =_________.(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B铅笔涂黑. 如果全选,则按第15题作答结果计分.)15.(选修4-1:几何证明选讲)如图,圆O 上一点C 在直径AB 上的射影为D ,点D 在半径OC 上的射影为E .若3AB AD =,则CEEO的值为_________. 16.(选修4-4:坐标系与参数方程)在直角坐标系xOy 中,椭圆C 的参数方程为cos ,sin x a y b ϕϕ=⎧⎨=⎩(ϕ为参数,0a b >>). 在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴 为极轴)中,直线l 与圆O 的极坐标方程分别为πsin()4ρθ+=(m 为非零常数) 与b ρ=. 若直线l 经过椭圆C 的焦点,且与圆O 相切,则椭圆C 的离心率为_________.三、解答题:本大题共6小题,共75分. 解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c . 已知cos23cos()1A B C -+=. (Ⅰ)求角A 的大小;(Ⅱ)若△ABC 的面积S =5b =,求sin sin B C 的值. 18.(本小题满分12分)已知等比数列{}n a 满足:23||10a a -=,123125a a a =. (Ⅰ)求数列{}n a 的通项公式;D E OBA第15题图C(Ⅱ)是否存在正整数m ,使得121111ma a a +++≥ ?若存在,求m 的最小值;若不存在,说明理由. 19.(本小题满分12分)如图,AB 是圆O 的直径,点C 是圆O 上异于,A B 的点,直线PC ⊥平面ABC ,E ,F 分别是PA ,PC 的中点.(Ⅰ)记平面BEF 与平面ABC 的交线为l ,试判断直线l 与平面PAC 的位置关系,并加以证明;(Ⅱ)设(Ⅰ)中的直线l 与圆O 的另一个交点为D ,且点Q满足12D Q C P =. 记直线PQ 与平面ABC 所成的角为θ,异面直线PQ 与EF 所成的角为α,二面角E l C --的大小为β,求证:s i n s i n s i n θαβ=.20.(本小题满分12分)假设每天从甲地去乙地的旅客人数X 是服从正态分布2(800,50)N 的随机变量. 记一天中从甲地去乙地的旅客人数不超过900的概率为0p . (Ⅰ)求0p 的值;(参考数据:若X ~2(,)N μσ,有()0.6826P X μσμσ-<≤+=,(22)0.9544P X μσμσ-<≤+=,(33)0.9974P X μσμσ-<≤+=.)(Ⅱ)某客运公司用A 、B 两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次. A 、B 两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1600元/辆和2400元/辆. 公司拟组建一个不超过21辆车的客运车队,并要求B 型车不多于A 型车7辆. 若每天要以不小于0p 的概率运完从甲地去乙地的旅客,且使公司从甲地去乙地的营运成本最小,那么应配备A 型车、B 型车各多少辆?第19题图21.(本小题满分13分)如图,已知椭圆1C 与2C 的中心在坐标原点O ,长轴均为MN且在x 轴上,短轴长分别为2m ,2()n m n >,过原点且不与x 轴重合的直线l 与1C ,2C 的四个交点按纵坐标从大到小依次为A ,B ,C ,D .记mnλ=,△B D M 和△ABN 的面积分别为1S 和2S .(Ⅰ)当直线l 与y 轴重合时,若12S S λ=,求λ的值;(Ⅱ)当λ变化时,是否存在与坐标轴不重合的直线l ,使得12S S λ=?并说明理由. 22.(本小题满分14分)设n 是正整数,r 为正有理数.(Ⅰ)求函数1()(1)(1)1(1)r f x x r x x +=+-+->-的最小值;(Ⅱ)证明:1111(1)(1)11r r r r rn n n n n r r ++++--+-<<++; (Ⅲ)设x ∈R ,记x ⎡⎤⎢⎥为不小于...x 的最小整数,例如22=⎡⎤⎢⎥,π4=⎡⎤⎢⎥,312⎡⎤-=-⎢⎥⎢⎥.令S + S ⎡⎤⎢⎥的值.(参考数据:4380344.7≈,4381350.5≈,43124618.3≈,43126631.7≈)2013年普通高等学校招生全国统一考试(湖北卷)数学(理工类)试题参考答案一、选择题1.D 2.C 3.A 4.B 5.D 6.A 7.C 8.C 9.B 10.D 二、填空题11.(Ⅰ)0.0044 (Ⅱ)70 12.5 1314.1000 15.8 16三、解答题 17. (Ⅰ)由cos23cos()1A B C -+=,得22cos 3cos 20A A +-=, 即(2cos 1)(cos 2)0A A -+=,解得1cos 2A =或cos 2A =-(舍去).第21题图因为0πA <<,所以π3A =.(Ⅱ)由11sin 22S bc A bc ====得20bc =. 又5b =,知4c =. 由余弦定理得2222cos 25162021,a b c bc A =+-=+-=故a =又由正弦定理得222035sin sin sin sin sin 2147b c bc B C A A A a a a =⋅==⨯=.18.(Ⅰ)设等比数列{}n a 的公比为q ,则由已知可得331211125,||10,a q a q a q ⎧=⎪⎨-=⎪⎩ 解得15,33,a q ⎧=⎪⎨⎪=⎩ 或15,1.a q =-⎧⎨=-⎩ 故1533n n a -=⋅,或15(1)n n a -=-⋅-. (Ⅱ)若1533n n a -=⋅,则1131()53n n a -=⋅,故1{}n a 是首项为35,公比为13的等比数列,从而131[1()]191953[1()]111031013mmm n na =⋅-==⋅-<<-∑.若1(5)(1)n n a -=-⋅-,则111(1)5n n a -=--,故1{}n a 是首项为15-,公比为1-的等比数列,从而11,21(),1502().mn n m k k a m k k +=+⎧-=-∈⎪=⎨⎪=∈⎩∑N N , 故111mn n a =<∑.综上,对任何正整数m ,总有111mn na =<∑.故不存在正整数m ,使得121111ma a a +++≥ 成立.19.(Ⅰ)直线l ∥平面PAC ,证明如下:连接EF ,因为E ,F 分别是PA ,PC 的中点,所以EF ∥AC . 又EF ⊄平面ABC ,且AC ⊂平面ABC ,所以EF ∥平面ABC . 而EF ⊂平面BEF ,且平面BEF 平面ABC l =,所以EF ∥l .因为l ⊄平面PAC ,EF ⊂平面PAC ,所以直线l ∥平面PAC .(Ⅱ)(综合法)如图1,连接BD ,由(Ⅰ)可知交线l 即为直线BD ,且l ∥AC . 因为AB 是O 的直径,所以AC BC ⊥,于是l BC ⊥.已知PC ⊥平面ABC ,而l ⊂平面ABC ,所以PC l ⊥. 而PC BC C = ,所以l ⊥平面PBC .连接BE ,BF ,因为BF ⊂平面PBC ,所以l BF ⊥.故CBF ∠就是二面角E l C --的平面角,即CBF β∠=.由12DQ CP = ,作DQ ∥CP ,且12DQ CP =.连接PQ ,DF ,因为F 是CP 的中点,2CP PF =,所以DQ PF =, 从而四边形DQPF 是平行四边形,PQ ∥FD .连接CD ,因为PC ⊥平面ABC ,所以CD 是FD 在平面ABC 内的射影, 故CDF ∠就是直线PQ 与平面ABC 所成的角,即CDF θ∠=. 又BD ⊥平面PBC ,有BD BF ⊥,知BDF ∠为锐角,故BDF ∠为异面直线PQ 与EF 所成的角,即BDF α∠=, 于是在Rt △DCF ,Rt △FBD ,Rt △BCF 中,分别可得sin CF DF θ=,sin BF DF α=,sin CF BFβ=, 从而sin sin sin CF BF CFBF DF DFαβθ=⋅==,即sin sin sin θαβ=. (Ⅱ)(向量法)如图2,由12DQ CP = ,作DQ ∥CP ,且12DQ CP =.连接PQ ,EF ,BE ,BF ,BD ,由(Ⅰ)可知交线l 即为直线BD . 以点C 为原点,向量,,CA CB CP所在直线分别为,,x y z 轴,建立如图所示的空间直角坐标系,设,,2CA a CB b CP c ===,则有(0,0,0),(,0,0),(0,,0),(0,0,2),(,,)C A a B b P c Q a b c ,1(,0,),(0,0,)2E a cF c .于是1(,0,0)2FE a = ,(,,)QP a b c =-- ,(0,,)BF b c =- ,所以||cos ||||FE QP FE QP α⋅==⋅sin α=.又取平面ABC 的一个法向量为(0,0,1)=m,可得||sin ||||QP QP θ⋅==⋅ m m设平面BEF 的一个法向量为(,,)x y z =n ,所以由0,0,FE BF ⎧⋅=⎪⎨⋅=⎪⎩n n 可得10,20.ax by cz ⎧=⎪⎨⎪-+=⎩ 取(0,,)c b =n . 第19题解答图1第19题解答图2于是|||cos |||||β⋅==⋅m n m n,从而sin β==.故sin sin sin αβθ===,即sin sin sin θαβ=.20.(Ⅰ)由于随机变量X 服从正态分布2(800,50)N ,故有800μ=,50σ=(700900)0.9544P X <≤=.由正态分布的对称性,可得0(900)(800)(800900)p P X P X P X =≤=≤+<≤11(700900)0.977222P X =+<≤=. (Ⅱ)设A 型、B 型车辆的数量分别为, x y 辆,则相应的营运成本为16002400x y +.依题意, , x y 还需满足:021, 7, (3660)x y y x P X x y p +≤≤+≤+≥.由(Ⅰ)知,0(900)p P X =≤,故0(3660)P X x y p ≤+≥等价于3660900x y +≥. 于是问题等价于求满足约束条件21,7,3660900,, 0, ,x y y x x y x y x y +≤⎧⎪≤+⎪⎨+≥⎪⎪≥∈⎩N ,且使目标函数16002400z x y =+达到最小的,x y . 作可行域如图所示, 可行域的三个顶点坐标分别为(5,12), (7,14), (15,6)P Q R .由图可知,当直线16002400z x y =+经过可行域的点P 时,直线16002400z x y =+在y 轴上截距2400z 最小,即z 取得最小值.故应配备A 型车5辆、B 型车12辆.21. 依题意可设椭圆1C 和2C 的方程分别为1C :22221x y a m +=,2C :22221x y a n+=. 其中0a m n >>>, 1.m n λ=>(Ⅰ)解法1:如图1,若直线l 与y 轴重合,即直线l 的方程为0x =,则 111||||||22S BD OM a BD =⋅=,211||||||22S AB ON a AB =⋅=,所以12||||S BD S AB =. 在C 1和C 2的方程中分别令0x =,可得A y m =,B y n =,D y m =-, 于是||||1||||1B D A B y y BD m n AB y y m n λλ-++===---. 第20题解若12S S λ=,则11λλλ+=-,化简得2210λλ--=. 由1λ>,可解得1λ=. 故当直线l 与y 轴重合时,若12S S λ=,则1λ. 解法2:如图1,若直线l 与y 轴重合,则||||||BD OB OD m n =+=+,||||||AB OA OB m n =-=-;111||||||22S BD OM a BD =⋅=,211||||||22S AB ON a AB =⋅=.所以12||1||1S BD m n S AB m n λλ++===--. 若12S S λ=,则11λλλ+=-,化简得2210λλ--=. 由1λ>,可解得1λ=. 故当直线l 与y 轴重合时,若12S S λ=,则1λ.(Ⅱ)解法1:如图2,若存在与坐标轴不重合的直线l ,使得12S S λ=. 根据对称性, 不妨设直线l :(0)y kx k =>,点(,0)M a -,(,0)N a 到直线l 的距离分别为1d ,2d ,则因为1d ==,2d ==12d d =.又111||2S BD d =,221||2S AB d =,所以12||||S BD S AB λ==,即||||BD AB λ=. 由对称性可知||||AB CD =,所以||||||(1)||BC BD AB AB λ=-=-, ||||||(1)||AD BD AB AB λ=+=+,于是||1||1AD BC λλ+=-. ① 将l 的方程分别与C 1,C 2的方程联立,可求得A x =B x =.根据对称性可知C B x x =-,D A x x =-,于是2||||2A B x AD BC x == ② 从而由①和②式可得第21题解答图1第21题解答图2令1(1)t λλλ+=-,则由m n >,可得1t ≠,于是由③可解得222222(1)(1)n t k a tλ-=-.因为0k ≠,所以2k >. 于是③式关于k 有解,当且仅当22222(1)0(1)n t a t λ->-, 等价于2221(1)()0t t λ--<. 由1λ>,可解得11t λ<<,即111(1)λλλλ+<<-,由1λ>,解得1λ>,所以当11λ<≤+l ,使得12S S λ=; 当1λ>l 使得12S S λ=.解法2:如图2,若存在与坐标轴不重合的直线l ,使得12S S λ=. 根据对称性, 不妨设直线l :(0)y kx k =>,点(,0)M a -,(,0)N a 到直线l 的距离分别为1d ,2d ,则 因为1d==,2d ==12d d =.又111||2S BD d =,221||2S AB d =,所以12||||S BD S AB λ==. 因为||||A B A Bx x BD AB x x λ+==-,所以11A B x x λλ+=-. 由点(,)A A A x kx ,(,)B B B x kx 分别在C 1,C 2上,可得222221A A x k x a m +=,222221B B x k x a n +=,两式相减可得22222222()0A B A B x x k x x a m λ--+=, 依题意0A B x x >>,所以22AB x x >.所以由上式解得22222222()()A B B A m x x k a x x λ-=-. 因为20k >,所以由2222222()0()A B B A m x x a x x λ->-,可解得1A B x x λ<<. 从而111λλλ+<<-,解得1λ> 当11λ<≤+l ,使得12S S λ=; 当1λ>l 使得12S S λ=.22. (Ⅰ)因为()(1)(1)(1)(1)[(1)1]r r f x r x r r x '=++-+=++-,令()0f x '=,解得0x =.当10x -<<时,()0f x '<,所以()f x 在(1,0)-内是减函数; 当0x >时,()0f x '>,所以()f x 在(0,)+∞内是增函数.故函数()f x 在0x =处取得最小值(0)0f =. (Ⅱ)由(Ⅰ),当(1,)x ∈-+∞时,有()(0)0f x f ≥=,即世纪金榜 圆您梦想 第11页(共11页) 山东世纪金榜科教文化股份有限公司 1(1)1(1)r x r x ++≥++,且等号当且仅当0x =时成立,故当1x >-且0x ≠时,有1(1)1(1)r x r x ++>++. ① 在①中,令1x n =(这时1x >-且0x ≠),得111(1)1r r n n+++>+. 上式两边同乘1r n +,得11(1)(1)r r r n n n r +++>++,即11(1).1r r rn n n r +++-<+ ② 当1n >时,在①中令1x n =-(这时1x >-且0x ≠),类似可得 11(1).1r r rn n n r ++-->+ ③ 且当1n =时,③也成立. 综合②,③得1111(1)(1).11r r r r r n n n n n r r ++++--+-<<++ ④ (Ⅲ)在④中,令13r =,n 分别取值81,82,83,…,125,得44443333338180(8281)44--(),44443333338281(8382)44-<-(),44443333338382(8483)44-<<-(), ………4444333333125124(126125)44-<-(. 将以上各式相加,并整理得444433333312580(12681)44S -<<-(). 代入数据计算,可得4433312580210.24-≈(),4433312681210.94-≈(). 由S ⎡⎤⎢⎥的定义,得211S =⎡⎤⎢⎥.。
2013年湖北高考理科数学压轴题
2013年湖北高考理科数学压轴题17.在ABC ∆中,角A ,B ,C 对应的边分别是a ,b ,c 。
已知()cos23cos 1A B C -+=。
(I )求角A 的大小;(II )若ABC ∆的面积53S =,5b=,求sin sin B C 的值。
18.已知等比数列{}n a 满足:2310a a -=,123125a a a =。
(I )求数列{}n a 的通项公式; (II )是否存在正整数m ,使得121111ma a a +++≥L ?若存在,求m 的最小值;若不存在,说明理由。
19.如图,AB 是圆O 的直径,点C 是圆O 上异于,A B 的点,直线PC ⊥平面ABC ,E ,F 分别是PA ,PC 的中点。
(I )记平面BEF 与平面ABC 的交线为l ,试判断直线l 与平面PAC 的位置关系,并加以证明;(II )设(I )中的直线l 与圆O 的另一个交点为D ,且点Q 满足12DQ CP =u u u r u u u r。
记直线PQ 与平面ABC 所成的角为θ,异面直线PQ 与EF 所成的角为α,二面角E l C --的大小为β,求证:sin sin sin θαβ=。
20.假设每天从甲地去乙地的旅客人数X 是服从正态分布()2800,50N 的随机变量。
记一天中从甲地去乙地的旅客人数不超过900的概率为0p 。
(I )求0p 的值;(参考数据:若()2,X N μσ:,有()0.6826P X μσμσ-<<+=,()220.9544P X μσμσ-<<+=,()330.9974P X μσμσ-<<+=。
)(II )某客运公司用A .B 两种型号的车辆承担甲.乙两地间的长途客运业务,每车每天往返一次,A .B 两种车辆的载客量分别为36人和60人,从甲地去乙地的运营成本分别为1600元/辆和2400元/辆。
公司拟组建一个不超过21辆车的客运车队,并要求B 型车不多于A 型车7辆。
2013年湖北省高考数学试卷(理科)答案及解析
2013年湖北省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2013•湖北)在复平面内,复数(i为虚数单位)的共轭复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)(2013•湖北)已知全集为R,集合,则A∩∁R B=()A.{x|x≤0} B.{x|2≤x≤4} C.{x|0≤x<2或x>4} D.{x|0<x≤2或x≥4}3.(5分)(2013•湖北)在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为()A.(¬p)∨(¬q)B.p∨(¬q)C.(¬p)∧(¬q)D.p∨q4.(5分)(2013•湖北)将函数的图象向左平移m(m>0)个单位长度后,所得到的图象关于y轴对称,则m的最小值是()A.B.C.D.5.(5分)(2013•湖北)已知,则双曲线的()A.实轴长相等B.虚轴长相等C.焦距相等D.离心率相等6.(5分)(2013•湖北)已知点A(﹣1,1),B(1,2),C(﹣2,﹣1),D(3,4),则向量在方向上的投影为()A.B.C.D.7.(5分)(2013•湖北)一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度的单位:s,v的单位:m/s)行驶至停止,在此期间汽车继续行驶的距离(单位:m)是()A.1+25ln5 B.C.4+25ln5 D.4+50ln28+25ln8.(5分)(2013•湖北)一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为V1,V2,V3,V4,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有()A.V1<V2<V4<V3B.V1<V3<V2<V4C.V2<V1<V3<V4D.V2<V3<V1<V49.(5分)(2013•湖北)如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X,则X的均值E(X)=()A.B.C.D.10.(5分)(2013•湖北)已知a为常数,函数f(x)=x(lnx﹣ax)有两个极值点x1,x2(x1<x2)()A.B.C.D.二、填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.(一)必考题(11-14题)(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B铅笔涂黑.如果全选,则按第15题作答结果计分.)11.(5分)(2013•湖北)从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图所示:(Ⅰ)直方图中x的值为_________;(Ⅱ)在这些用户中,用电量落在区间[100,250)内的户数为_________.12.(5分)(2013•湖北)阅读如图所示的程序框图,运行相应的程序,输出的结果i=_________.13.(5分)(2013•湖北)设x,y,z∈R,且满足:,则x+y+z=_________.14.(5分)(2013•湖北)古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n个三角形数为.记第n个k边形数为N(n,k)(k≥3),以下列出了部分k边形数中第n个数的表达式:三角形数,正方形数N(n,4)=n2,五边形数,六边形数N(n,6)=2n2﹣n,…可以推测N(n,k)的表达式,由此计算N(10,24)=_________.15.(5分)(2013•湖北)(选修4﹣1:几何证明选讲)如图,圆O上一点C在直径AB上的射影为D,点D在半径OC上的射影为E.若AB=3AD,则的值为_________.16.(2013•湖北)(选修4﹣4:坐标系与参数方程)在直角坐标系xOy中,椭圆C的参数方程为为参数,a>b>0).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,直线l与圆O的极坐标方程分别为为非零常数)与ρ=b.若直线l经过椭圆C的焦点,且与圆O相切,则椭圆C的离心率为_________.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(12分)(2013•湖北)在△ABC中,角A,B,C对应的边分别是a,b,c,已知cos2A﹣3cos(B+C)=1.(Ⅰ)求角A的大小;(Ⅱ)若△ABC的面积,求sinBsinC的值.18.(12分)(2013•湖北)已知等比数列{a n}满足:|a2﹣a3|=10,a1a2a3=125.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)是否存在正整数m,使得?若存在,求m的最小值;若不存在,说明理由.19.(12分)(2013•湖北)如图,AB是圆O的直径,点C是圆O上异于A,B的点,直线PC⊥平面ABC,E,F 分别是PA,PC的中点.(Ⅰ)记平面BEF与平面ABC的交线为l,试判断直线l与平面PAC的位置关系,并加以证明;(Ⅱ)设(Ⅰ)中的直线l与圆O的另一个交点为D,且点Q满足.记直线PQ与平面ABC所成的角为θ,异面直线PQ与EF所成的角为α,二面角E﹣l﹣C的大小为β.求证:sinθ=sinαsinβ.20.(12分)(2013•湖北)假设每天从甲地去乙地的旅客人数X是服从正态分布N(800,502)的随机变量.记一天中从甲地去乙地的旅客人数不超过900的概率为p0.(Ⅰ)求p0的值;(参考数据:若X~N(μ,σ2),有P(μ﹣σ<X≤μ+σ)=0.6826,P(μ﹣2σ<X≤μ+2σ)=0.9544,P(μ﹣3σ<X≤μ+3σ)=0.9974.)(Ⅱ)某客运公司用A,B两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次,A,B两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1600元/辆和2400元/辆.公司拟组建一个不超过21辆车的客运车队,并要求B型车不多于A型车7辆.若每天要以不小于p0的概率运完从甲地去乙地的旅客,且使公司从甲地去乙地的营运成本最小,那么应配备A型车、B型车各多少辆?21.(13分)(2013•湖北)如图,已知椭圆C1与C2的中心在坐标原点O,长轴均为MN且在x轴上,短轴长分别为2m,2n(m>n),过原点且不与x轴重合的直线l与C1,C2的四个交点按纵坐标从大到小依次为A,B,C,D,记,△BDM和△ABN的面积分别为S1和S2.(Ⅰ)当直线l与y轴重合时,若S1=λS2,求λ的值;(Ⅱ)当λ变化时,是否存在与坐标轴不重合的直线l,使得S1=λS2?并说明理由.22.(14分)(2013•湖北)设n是正整数,r为正有理数.(Ⅰ)求函数f(x)=(1+x)r+1﹣(r+1)x﹣1(x>﹣1)的最小值;(Ⅱ)证明:;(Ⅲ)设x∈R,记[x]为不小于x的最小整数,例如.令的值.(参考数据:.2013年湖北省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)考点:复数的代数表示法及其几何意义.专题:计算题.分析:将复数z=的分母实数化,求得z=1+i,即可求得,从而可知答案.解答:解:∵z====1+i,∴=1﹣i.∴对应的点(1,﹣1)位于第四象限,故选D.点评:本题考查复数的代数表示法及其几何意义,将复数z=的分母实数化是关键,属于基础题.2.(5分)考点:其他不等式的解法;交、并、补集的混合运算.专题:计算题;不等式的解法及应用.分析:利用指数函数的性质可求得集合A,通过解一元二次不等式可求得集合B,从而可求得A∩C R B.解答:解:∵≤1=,∴x≥0,∴A={x|x≥0};又x2﹣6x+8≤0⇔(x﹣2)(x﹣4)≤0,∴2≤x≤4.∴B={x|2≤x≤4},∴∁R B={x|x<2或x>4},∴A∩∁R B={x|0≤x<2或x>4},故选C.点评:本题考查指数函数的性质与元二次不等式,考查交、并、补集的混合运算,属于中档题.3.(5分)考点:复合命题的真假.专题:阅读型.分析:由命题P和命题q写出对应的¬p和¬q,则命题“至少有一位学员没有降落在指定范围”即可得到表示.解答:解:命题p是“甲降落在指定范围”,则¬p是“甲没降落在指定范围”,q是“乙降落在指定范围”,则¬q是“乙没降落在指定范围”,命题“至少有一位学员没有降落在指定范围”包括“甲降落在指定范围,乙没降落在指定范围”或“甲没降落在指定范围,乙降落在指定范围”或“甲没降落在指定范围,乙没降落在指定范围”三种情况.所以命题“至少有一位学员没有降落在指定范围”可表示为(¬p)V(¬q).故选A.点评:本题考查了复合命题的真假,解答的关键是熟记复合命题的真值表,是基础题.4.(5分)考点:两角和与差的正弦函数;函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:函数解析式提取2变形后,利用两角和与差的正弦函数公式化为一个角的正弦函数,利用平移规律得到平移后的解析式,根据所得的图象关于y轴对称,即可求出m的最小值.解答:解:y=cosx+sinx=2(cosx+sinx)=2sin(x+),∴图象向左平移m(m>0)个单位长度得到y=2sin[(x+m)+]=2sin(x+m+),∵所得的图象关于y轴对称,∴m+=kπ+(k∈Z),则m的最小值为.故选B点评:此题考查了两角和与差的正弦函数公式,以及函数y=Asin(ωx+φ)的图象变换,熟练掌握公式是解本题的关键.5.(5分)考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:根据双曲线的标准方程求出双曲线的几何性质同,即可得出正确答案.解答:解:双曲线的实轴长为2cosθ,虚轴长2sinθ,焦距2,离心率,双曲线的实轴长为2sinθ,虚轴长2sinθtanθ,焦距2tanθ,离心率,故它们的离心率相同.故选D.点评:本题主要考查了双曲线的标准方程、双曲线的简单性质等,属于基础题.6.(5分)考点:平面向量数量积的含义与物理意义.专题:平面向量及应用.分析:先求出向量、,根据投影定义即可求得答案.解答:解:,,则向量方向上的投影为:•cos<>=•===,故选A.点评:本题考查平面向量数量积的含义与物理意义,考查向量投影定义,属基础题,正确理解相关概念是解决问题的关键.7.(5分)考点:定积分.专题:导数的综合应用.分析:令v(t)=0,解得t=4,则所求的距离S=,解出即可.解答:解:令v(t)=7﹣3t+,化为3t2﹣4t﹣32=0,又t>0,解得t=4.∴由刹车行驶至停止,在此期间汽车继续行驶的距离s===4+25ln5.故选C.点评:熟练掌握导数的运算法则和定积分的几何意义是解题的关键.8.(5分)考点:由三视图求面积、体积.专题:计算题.分析:利用三视图与已知条件判断组合体的形状,分别求出几何体的体积,即可判断出正确选项.解答:解:由题意以及三视图可知,该几何体从上到下由:圆台、圆柱、正四棱柱、正四棱台组成,体积分别记λ为V1==.V2=12×π×2=2π,V3=2×2×2=8V4==;∵,∴V2<V1<V3<V4故选C.点评:本题考查简单组合体的三视图与几何体的体积的求法,正确判断几何体的形状与准确利用公式求解体积是解题的关键.9.(5分)考点:离散型随机变量的期望与方差.专题:压轴题;概率与统计.分析:由题意可知:X所有可能取值为0,1,2,3.①8个顶点处的8个小正方体涂有3面,②每一条棱上除了两个顶点处的小正方体,还剩下3个,一共有3×12=36个小正方体涂有2面,③每个表面去掉四条棱上的16个小正方形,还剩下9个小正方形,因此一共有9×6=54个小正方体涂有一面,④由以上可知:还剩下125﹣(8=36+54)=27个内部的小正方体的6个面都没有涂油漆,根据上面的分析即可得出其概率及X的分布列,利用数学期望的计算公式即可得出.解答:解:由题意可知:X所有可能取值为0,1,2,3.①8个顶点处的8个小正方体涂有3面,∴P(X=3)=;②每一条棱上除了两个顶点处的小正方体,还剩下3个,一共有3×12=36个小正方体涂有2面,∴P(X=2)=;③每个表面去掉四条棱上的16个小正方形,还剩下9个小正方形,因此一共有9×6=54个小正方体涂有一面,∴P(X=1)=.④由以上可知:还剩下125﹣(8+36+54)=27个内部的小正方体的6个面都没有涂油漆,∴P(X=0)=.X 0 1 2 3P故X的分布列为因此E(X)==.故选B.点评:正确找出所涂油漆的面数的正方体的个数及古典概型的概率计算公式、分布列与数学期望是解题的关键.考点:利用导数研究函数的极值;函数在某点取得极值的条件.专题:压轴题;导数的综合应用.分析:先求出f′(x),令f′(x)=0,由题意可得lnx=2ax﹣1有两个解x1,x2⇔函数g(x)=lnx+1﹣2ax有且只有两个零点⇔g′(x)在(0,+∞)上的唯一的极值不等于0.利用导数与函数极值的关系即可得出.解答:解:∵=lnx+1﹣2ax,(x>0)令f′(x)=0,由题意可得lnx=2ax﹣1有两个解x1,x2⇔函数g(x)=lnx+1﹣2ax有且只有两个零点⇔g′(x)在(0,+∞)上的唯一的极值不等于0..①当a≤0时,g′(x)>0,f′(x)单调递增,因此g(x)=f′(x)至多有一个零点,不符合题意,应舍去.②当a>0时,令g′(x)=0,解得x=,∵x,g′(x)>0,函数g(x)单调递增;时,g′(x)<0,函数g(x)单调递减.∴x=是函数g(x)的极大值点,则>0,即>0,∴ln(2a)<0,∴0<2a<1,即.∵,f′(x1)=lnx1+1﹣2ax1=0,f′(x2)=lnx2+1﹣2ax2=0.且f(x1)=x1(lnx1﹣ax1)=x1(2ax1﹣1﹣ax1)=x1(ax1﹣1)=﹣<0,f(x2)=x2(lnx2﹣ax2)=x2(ax2﹣1)>=﹣.().故选D.点评:熟练掌握利用导数研究函数极值的方法是解题的关键.二、填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.(一)必考题(11-14题)(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B铅笔涂黑.如果全选,则按第15题作答结果计分.)11.(5分)考点:频率分布直方图.专题:图表型.分析:(I)根据频率分布直方图中,各组的频率之和为1,我们易得到一个关于x的方程,解方程即可得到答案.(II)由已知中的频率分布直方图,利用[100,250)之间各小组的纵坐标(矩形的高)乘以组距得到[100,250)的频率,利用频率乘以样本容量即可求出频数.解答:解:(Ⅰ)依题意及频率分布直方图知,0.0024×50+0.0036×50+0.0060×50+x×50+0.0024×50+0.0012×50=1,解得x=0.0044.(II)样本数据落在[100,150)内的频率为0.0036×50=0.18,样本数据落在[150,200)内的频率为0.006×50=0.3.样本数据落在[200,250)内的频率为0.0044×50=0.22,故在这些用户中,用电量落在区间[100,250)内的户数为(0.18+0.30+0.22)×100=70.故答案为:0.0044;70.点评:根据新高考服务于新教材的原则,作为新教材的新增内容﹣﹣频率分布直方图是新高考的重要考点.对于“频率分布直方图学习的关键是学会画图、看图和用图.考点:程序框图.分析:框图首先给变量a和变量i赋值,然后对a是否等于4进行判断,不等于4,继续判断a是否为奇数,是执行路径a=3a+1,否执行路径,再执行i=i+1,依次循环执行,当a等于4时跳出循环,输出i的值.解答:解:框图首先给变量a和变量i赋值,a=4,i=1.判断10=4不成立,判断10是奇数不成立,执行,i=1+1=2;判断5=4不成立,判断5是奇数成立,执行a=3×5+1=16,i=2+1=3;判断16=4不成立,判断16是奇数不成立,执行,i=3+1=4;判断8=4不成立,判断8是奇数不成立,执行,i=4+1=5;判断4=4成立,跳出循环,输出i的值为5.故答案是5.点评:本题考查了程序框图,循环结构中含有条件结构,外面的循环结构为直到型,即不满足条件执行循环,直到条件满足跳出循环.是基础题.13.(5分)考点:一般形式的柯西不等式;进行简单的合情推理.专题:计算题;不等式的解法及应用.分析:根据柯西不等式,算出(x+2y+3z)2≤14(x2+y2+z2)=14,从而得到x+2y+3z恰好取到最大值,由不等式的等号成立的条件解出x=、y=且z=,由此即可得到x+y+z的值.解答:解:根据柯西不等式,得(x+2y+3z)2≤(12+22+32)(x2+y2+z2)=14(x2+y2+z2)当且仅当时,上式的等号成立∵x2+y2+z2=1,∴(x+2y+3z)2≤14,结合,可得x+2y+3z恰好取到最大值∴=,可得x=,y=,z=因此,x+y+z=++=故答案为:点评:本题给出x、y、z的平方和等于1,在x+2y+3z恰好取到最大值的情况下求x+y+z的值.着重考查了运用柯西不等式求最值的方法,属于中档题.抓住柯西不等式的等号成立的条件,是本题得以解决的关键.14.(5分)考点:归纳推理.专题:计算题.分析:观察已知式子的规律,并改写形式,归纳可得,把n=10,k=24代入可得答案.解答:解:原已知式子可化为:,,,,由归纳推理可得,故=1100﹣100=1000故答案为:1000点评:本题考查归纳推理,观察已知式子的规律并改写形式是解决问题的关键,属基础题.15.(5分)考点:与圆有关的比例线段;直角三角形的射影定理.专题:压轴题;选作题.分析:设圆O的半径为3x,根据射影定理,可以求出OD2=OE•OC=x2,CD2=CE•OC=8x2,进而得到的值.解答:解:设圆O的半径OA=OB=OC=3x,∵AB=3AD,∴AD=2x,BD=4x,OD=x又∵点C在直径AB上的射影为D,在△ABC中,由射影定理得:CD2=AD•BD=8x2,在△ODC中,由射影定理得:OD2=OE•OC=x2,CD2=CE•OC=8x2,故==8故答案为:8点评:本题考查的知识点是直角三角形射影定理,射影定理在使用时一定要注意其使用范围…“双垂直”.16.(2013•湖北)考点:参数方程化成普通方程;椭圆的简单性质;点的极坐标和直角坐标的互化.专题:压轴题;圆锥曲线的定义、性质与方程.分析:先根据极坐标与直角坐标的转换关系将直线l的极坐标方程分别为为非零常数)化成直角坐标方程,再利用直线l经过椭圆C的焦点,且与圆O相切,从而得到c=b,又b2=a2﹣c2,消去b后得到关于a,c的等式,即可求出椭圆C的离心率.解答:解:直线l的极坐标方程分别为为非零常数)化成直角坐标方程为x+y﹣m=0,它与x轴的交点坐标为(m,0),由题意知,(m,0)为椭圆的焦点,故|m|=c,又直线l与圆O:ρ=b相切,∴,从而c=b,又b2=a2﹣c2,∴c2=2(a2﹣c2),∴3c2=2a2,∴=.则椭圆C的离心率为.故答案为:.点评:本题考查了椭圆的离心率,考查了参数方程化成普通方程,点的极坐标和直角坐标的互化,考查提高学生分析问题的能力.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(12分)考点:余弦定理;正弦定理.专题:解三角形.分析:(I)利用倍角公式和诱导公式即可得出;(II)由三角形的面积公式即可得到bc=20.又b=5,解得c=4.由余弦定理得a2=b2+c2﹣2bccosA=25+16﹣20=21,即可得出a.又由正弦定理得即可得到即可得出.解答:解:(Ⅰ)由cos2A﹣3cos(B+C)=1,得2cos2A+3cosA﹣2=0,即(2cosA﹣1)(cosA+2)=0,解得(舍去).因为0<A<π,所以.(Ⅱ)由S===,得到bc=20.又b=5,解得c=4.由余弦定理得a2=b2+c2﹣2bccosA=25+16﹣20=21,故.又由正弦定理得.点评:熟练掌握三角函数的倍角公式和诱导公式、三角形的面积公式、余弦定理得、正弦定理是解题的关键.18.(12分)考点:数列的求和;等比数列的通项公式;数列与不等式的综合.专题:计算题;等差数列与等比数列.分析:(I)设等比数列{a n}的公比为q,结合等比数列的通项公式表示已知条件,解方程可求a1,q,进而可求通项公式(Ⅱ)结合(I)可知是等比数列,结合等比数列的求和公式可求,即可判断解答:解:(Ⅰ)设等比数列{a n}的公比为q,则由已知可得解得故.(Ⅱ)若,则,故是首项为,公比为的等比数列,从而.若,则是首项为,公比为﹣1的等比数列,从而故.综上,对任何正整数m ,总有.故不存在正整数m ,使得成立.点评: 本题主要考查了等比数列的通项公式及求和公式的综合应用,还考查了一定的逻辑推理与运算的能力 19.(12分)考点: 用空间向量求平面间的夹角;空间中直线与平面之间的位置关系;直线与平面平行的判定;二面角的平面角及求法.专题:空间位置关系与距离;空间角. 分析: (I )直线l ∥平面PAC .连接EF ,利用三角形的中位线定理可得,EF ∥AC ;利用线面平行的判定定理即可得到EF ∥平面ABC .由线面平行的性质定理可得EF ∥l .再利用线面平行的判定定理即可证明直线l ∥平面PAC .(II )综合法:利用线面垂直的判定定理可证明l ⊥平面PBC .连接BE ,BF ,因为BF ⊂平面PBC ,所以l ⊥BC .故∠CBF 就是二面角E ﹣l ﹣C 的平面角,即∠CBF=β.已知PC ⊥平面ABC ,可知CD 是FD 在平面ABC 内的射影,故∠CDF 就是直线PQ 与平面ABC 所成的角,即∠CDF=θ.由BD ⊥平面PBC ,有BD ⊥BF ,知∠BDF=α,分别利用三个直角三角形的边角关系即可证明结论;向量法:以点C 为原点,向量所在直线分别为x ,y ,z 轴,建立如图所示的空间直角坐标系,利用两个平面的法向量的夹角即可得出二面角. 解答: 解:(Ⅰ)直线l ∥平面PAC ,证明如下: 连接EF ,因为E ,F 分别是PA ,PC 的中点,所以EF ∥AC ,又EF ⊄平面ABC ,且AC ⊂平面ABC ,所以EF ∥平面ABC . 而EF ⊂平面BEF ,且平面BEF ∩平面ABC=l ,所以EF ∥l . 因为l ⊄平面PAC ,EF ⊂平面PAC ,所以直线l ∥平面PAC . (Ⅱ)(综合法)如图1,连接BD ,由(Ⅰ)可知交线l 即为直线BD ,且l ∥AC . 因为AB 是⊙O 的直径,所以AC ⊥BC ,于是l ⊥BC . 已知PC ⊥平面ABC ,而l ⊂平面ABC ,所以PC ⊥l . 而PC ∩BC=C ,所以l ⊥平面PBC .连接BE ,BF ,因为BF ⊂平面PBC ,所以l ⊥BF .故∠CBF 就是二面角E ﹣l ﹣C 的平面角,即∠CBF=β.由,作DQ ∥CP ,且.连接PQ ,DF ,因为F 是CP 的中点,CP=2PF ,所以DQ=PF , 从而四边形DQPF 是平行四边形,PQ ∥FD .连接CD ,因为PC ⊥平面ABC ,所以CD 是FD 在平面ABC 内的射影, 故∠CDF 就是直线PQ 与平面ABC 所成的角,即∠CDF=θ. 又BD ⊥平面PBC ,有BD ⊥BF ,知∠BDF=α, 于是在Rt △DCF ,Rt △FBD ,Rt △BCF 中,分别可得,从而. (Ⅱ)(向量法)如图2,由,作DQ ∥CP ,且.连接PQ ,EF ,BE ,BF ,BD ,由(Ⅰ)可知交线l 即为直线BD .以点C 为原点,向量所在直线分别为x ,y ,z 轴,建立如图所示的空间直角坐标系,设CA=a ,CB=b ,CP=2c ,则有. 于是,∴=,从而,又取平面ABC 的一个法向量为,可得,设平面BEF 的一个法向量为,所以由可得.于是,从而.故,即sin θ=sin αsin β.点评: 本题综合考查了线面平行的判定定理和性质定理、线面垂直的判定与性质定理、平行四边形的判定与性质定理、线面角、二面角、异面直线所成的角、通过建立空间直角坐标系利用法向量的夹角求二面角等基础知识与方法,需要较强的空间想象能力、推理能力和计算能力. 20.(12分)考点: 简单线性规划;正态分布曲线的特点及曲线所表示的意义. 专题: 不等式的解法及应用;概率与统计. 分析: (I )变量服从正态分布N (800,502),即服从均值为800,标准差为50的正态分布,适合700<X ≤900范围内取值即在(μ﹣2σ,μ+2σ)内取值,其概率为:95.44%,从而由正态分布的对称性得出不超过900的概率为p 0.(II )设每天应派出A 型x 辆、B 型车y 辆,根据条件列出不等式组,即得线性约束条件,列出目标函数,画出可行域求解.解答: 解:(Ⅰ)由于随机变量X 服从正态分布N (800,502),故有μ=800,σ=50,P (700<X ≤900)=0.9544.由正态分布的对称性,可得p 0=(P (X ≤900)=P (X ≤800)+P (800<X ≤900)=(Ⅱ)设A 型、B 型车辆的数量分别为x ,y 辆,则相应的营运成本为1600x+2400y .依题意,x ,y 还需满足:x+y ≤21,y ≤x+7,P (X ≤36x+60y )≥p 0.由(Ⅰ)知,p0=P(X≤900),故P(X≤360x+60y)≥p0等价于36x+60y≥900.于是问题等价于求满足约束条件且使目标函数z=1600x+2400y达到最小值的x,y.作可行域如图所示,可行域的三个顶点坐标分别为P(5,12),Q(7,14),R(15,6).由图可知,当直线z=1600x+2400y经过可行域的点P时,直线z=1600x+2400y在y轴上截距最小,即z取得最小值.故应配备A型车5辆,B型车12辆.点评:本题考查正态分布曲线的特点及曲线所表示的意义,考查简单线性规划.本题解题的关键是列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数,将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.21.(13分)考点:直线与圆锥曲线的关系;三角形的面积公式;点到直线的距离公式.专题:压轴题;圆锥曲线的定义、性质与方程.分析:(Ⅰ)设出两个椭圆的方程,当直线l与y轴重合时,求出△BDM和△ABN的面积S1和S2,直接由面积比=λ列式求λ的值;(Ⅱ)假设存在与坐标轴不重合的直线l,使得S1=λS2,设出直线方程,由点到直线的距离公式求出M和N到直线l的距离,利用数学转化思想把两个三角形的面积比转化为线段长度比,由弦长公式得到线段长度比的另一表达式,两式相等得到,换元后利用非零的k值存在讨论λ的取值范围.解答:解:以题意可设椭圆C1和C2的方程分别为,.其中a>m>n>0,.(Ⅰ)如图1,若直线l与y轴重合,即直线l的方程为x=0,则,,所以.在C1和C2的方程中分别令x=0,可得y A=m,y B=n,y D=﹣m,于是.若,则,化简得λ2﹣2λ﹣1=0,由λ>1,解得.故当直线l与y轴重合时,若S1=λS2,则.(Ⅱ)如图2,若存在与坐标轴不重合的直线l,使得S1=λS2,根据对称性,不妨设直线l:y=kx(k>0),点M(﹣a,0),N(a,0)到直线l的距离分别为d1,d2,则,所以d1=d2.又,所以,即|BD|=λ|AB|.由对称性可知|AB|=|CD|,所以|BC|=|BD|﹣|AB|=(λ﹣1)|AB|,|AD|=|BD|+|AB|=(λ+1)|AB|,于是.将l的方程分别与C1和C2的方程联立,可求得根据对称性可知x C=﹣x B,x D=﹣x A,于是②从而由①和②可得③令,则由m>n,可得t≠1,于是由③可得.因为k≠0,所以k2>0.于是③关于k有解,当且仅当,等价于,由λ>1,解得,即,由λ>1,解得,所以当时,不存在与坐标轴不重合的直线l,使得S1=λS2;当时,存在与坐标轴不重合的直线l,使得S1=λS2.点评: 本题考查了三角形的面积公式,考查了点到直线的距离公式,考查了直线与圆锥曲线的关系,该题重点考查了数学转化思想方法和分类讨论的数学思想方法,(Ⅱ)中判断λ的存在性是该题的难题,考查了灵活运用函数和不等式的思想方法.22.(14分)考点:导数在最大值、最小值问题中的应用;利用导数研究函数的单调性;数列的求和;不等式的证明. 专题:压轴题;导数的综合应用;不等式的解法及应用. 分析: (Ⅰ)先求出函数f (x )的导函数f ′(x ),令f'(x )=0,解得x=0,再求出函数的单调区间,进而求出最小值为f (0)=0;(Ⅱ)根据(Ⅰ)知,即(1+x )r+1≥1+(r+1)x ,令代入并化简得,再令得,,即结论得到证明;(Ⅲ)根据(Ⅱ)的结论,令,n 分别取值81,82,83,…,125,分别列出不等式,再将各式相加得,,再由参考数据和条件进行求解.解答: 解;(Ⅰ)由题意得f'(x )=(r+1)(1+x )r ﹣(r+1)=(r+1)[(1+x )r ﹣1], 令f'(x )=0,解得x=0.当﹣1<x <0时,f'(x )<0,∴f (x )在(﹣1,0)内是减函数; 当x >0时,f'(x )>0,∴f (x )在(0,+∞)内是增函数. 故函数f (x )在x=0处,取得最小值为f (0)=0. (Ⅱ)由(Ⅰ),当x ∈(﹣1,+∞)时,有f (x )≥f (0)=0, 即(1+x )r+1≥1+(r+1)x ,且等号当且仅当x=0时成立, 故当x >﹣1且x ≠0,有(1+x )r+1>1+(r+1)x ,①在①中,令(这时x >﹣1且x ≠0),得.上式两边同乘n r+1,得(n+1)r+1>n r+1+n r (r+1), 即,②当n >1时,在①中令(这时x >﹣1且x ≠0),类似可得,③且当n=1时,③也成立. 综合②,③得,④(Ⅲ)在④中,令,n 分别取值81,82,83, (125)得,,,…,将以上各式相加,并整理得.代入数据计算,可得由[S ]的定义,得[S ]=211.点评: 本题考查了利用导数研究函数的单调性和求最值,以及学生的创新精神,是否会观察,会抽象概括,会用类比的方法得出其它结论,难度较大,注意利用上一问的结论.。
2013年普通高等学校统一招生考试数学试卷湖北卷(理)
(2)(向量法)如图2.由 ,作 ,且 ,连接
,由(1)知交线 即为直线
以点 为原点,向量 所在直线分别为 轴,建立如图所示的空间直角坐标系,
设 ,则有
于是 ,所以
又取平面 的一个法向量 ,可得设平面 的一法向量为 .由 取 ,于是
故
即 .
20(1)由于随机变量 服从正态分布 ,故
由正态分布的对称性知,
根据对称性知 ,于是
………②
从而由①和②可得 ……..③
令 ,则由 可得 ,于是由③可解得
,于是③关于 有解,当且仅当
等价于 ,由
由 ,解得 所以
当 时,不存在与坐标轴不重合的直线 ,使得
当 时,存在与坐标轴不重合的直线 ,使得
22.(1)因为 ,令 解得
当 时, ,所以 在 内是减函数
当 时, ,所以 在 内是增函数
故函数 在 处取得最小值
(2)由(1),当 时,有
即 且等号当且仅当 时成立.
故当 且 时,有 ………..①
在①中,令 ,(这时 且 )得
5.已知 ,则双曲线 与 的
A.实轴长相等B.虚轴长相等C.焦距相等D.离心率相等
6.已知点A(-1,1)、B(1,2)、C(-2,1)、D(3,4),则向量 和 方向上的投影为
A. B. C. D.
7.一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度 ( 的单位 , 的单位 )行驶至停止,在此期间汽车继续行驶的距离(单位: )是
15.(选修4-1:几何证明选讲)
如图,圆 上一点, 在直径 上的射影为 ,点 在半径 上的射影为 .若 则 的值为.
16.(选修4-4:坐标系与参数方程)
在直线坐标系 中,椭圆 的参数方程为 为参数, 在极坐标系(与直角坐标系 取相同的长度单位,且以原点 为极点,以 轴为正半轴为极轴)中,直线 与圆 的极坐标方程分别为 为非零常数 与 ,若直线 经过椭圆 的焦点,且与圆 相切,则椭圆的离心率为.
2013届湖北高考理科数学模拟试题(含详解)
2013届高考猜题、押题卷理数试卷命题人:高三数学备课组组长胡国书本试题考试时间为120分钟,满分为150分一.选择题(本大题共10小题;每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合},1|{},lg |{2+=∈==∈=x y R y N x y R x M 则集合N M =( )A .),0(+∞B .[)+∞,1C .),(+∞-∞D .(]1,02.在下列各数中,与sin2009°的值最接近的数是( ) A .21B .23C .21-D .23-3.已知α、β、γ为互不重合的三个平面,命题:p 若αβ⊥,βγ⊥,则//αγ;命题:q 若α上存在不共线的三点到β的距离相等,则//αβ。
对以上两个命题,下列结论中正确的是( ) A .命题“p 且q ”为真 B .命题“p 或q ⌝”为假C .命题“p 或q ”为假D .命题“p ⌝且q ⌝”为假4. 若6260126(1)mx a a x a x a x +=++++ ,且12663a a a +++= , 则实数m 的值为( ) A. 1或3B. -3C. 1D. 1或 -35.设f (x )是定义在正整数集上的函数,且f (k )满足:当“f (k )≥k 2成立时,总可推出f (k +1)≥(k +1)2成立”.那么下列命题总成立的是 ( )A .若f (3)≥9成立,则当k ≥1,均有f (k )≥k 2成立B .若f (5)≥25成立,则当k <5,均有f (k )≥k 2成立C .若f (7)<49成立,则当k ≥8,均有f (k )<k 2成立D .若f (4)=25成立,则当k ≥4,均有f (k )≥k 2成立6.已知函数f (x )=ax 2+bx +c 的图像过点(-1,3)和(1,1),若0<c <1,则实数a 的取值范围是( ) A .[2,3]B .[1,3]C .(1,2)D .(1,3)7.在平面直角坐标系中,i ,j分别是与x 轴、y 轴正方向同向的单位向量,O 为坐标原点,设向量OA =2i +j ,OB =3i +k j,若A ,O ,B 三点不共线,且△AOB 有一个内角为直角,则实数k 的所有可能取值的个数是 ( )A .1B .2C .3D .48.曲线422=+y x 与曲线22cos 22sin x y θθ=-+⎧⎨=+⎩ ([0,2)θπ∈)关于直线l 对称,则直线l的方程为 ( ) A .2-=x y B .0=-y xC .02=-+y xD .02=+-y x9.如图是函数y =sin x (0≤x ≤π)的图象,A (x ,y )是图象上任意一点,过点A 作x 轴的平行线,交其图象于另一点B (A ,B 可重合).设线段AB 的长为f (x ),则函数f (x )的图象是( )10.如图,正六边形ABCDEF 的两个顶点A 、D 为椭圆的两个焦点,其余4个顶点在椭圆上,则该椭圆的离心率是 ( )A .2 B . 14+C .2D .3-1二、填空题(本大题共5小题,每小题5分,共25分,将答案填写在题中横线上.) 11.定义max{a ,b }=⎩⎨⎧<≥)()(b a b b a a ,已知实数x ,y 满足|x |≤2,|y |≤2,设z =max{4x +y ,3x -y },则z 的取值范围是12.为配制某种染色剂,需要加入三种有机染料,两种无机染料和两种添加剂,其中有机染料的添加顺序不能相邻,现要研究所有不同添加顺序对染色效果的影响,总共要进行的试验次数为 (用数字作答)13.根据《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20—80mg/100ml (不含80)之间,属于酒后驾车,处暂扣一个月以上三个月以下驾驶证,并处200元以上500元以下罚款;血液酒精浓度在80mg/100ml (含80)以上时,属醉酒驾车,处十五日以下拘留和暂扣三个月以上六个月以下驾驶证,并处500元以上2000元以下罚款.据《法制晚报》报道,2010年8月15日至8 月28日,全国查处酒后驾车和醉酒驾车共28800人,如图1是对这28800人酒后驾车血液中酒精含量进行检测所得结果的频率分布直方图,则属于醉酒驾车的人数约为 人.14.关于曲线C :221x y --+=的下列说法:①关于原点对称;②关于直线0x y +=对称;③是封闭图形,面积大于π2;④不是封闭图形,与圆222x y +=无公共点;⑤与曲线D :22||||=+y x 的四个交点恰为正方形的四个顶点,其中正确的序号是 .15.如图所示,一个粒子在第一象限及坐标轴上运动,在第一秒内它从原点运动到点(0,1),然后它接着按图所示在x 轴、y 轴的平行方向来回运动(即(0,0)→(0,1)y23→(1,1)→(1,0)→(2,0)→…)且每秒移动一个单位长度.(i )粒子运动到(4,4)点时经过了 秒;(ii )第2009秒时,粒子所处的位置为 .三.解答题(本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.) 16.(本小题满分12分)已知向量)1,3(=a ,向量)cos ,(sin ααm b -=, (Ⅰ)若b a //,且)2,0[πα∈,求实数m 的最小值及相应的α值;(Ⅱ)若b a ⊥,且0=m , 求)cos()2sin()2cos(απαπαπ-+⋅- 的值.17. (本小题满分12分)一袋子中有大小、质量均相同的10个小球,其中标记“开”字的小球有5个,标记“心”字的小球有3个,标记“乐”字的小球有2个.从中任意摸出1个球确定标记后放回袋中,再从中任取1个球.不断重复以上操作,最多取3次,并规定若取出“乐”字球,则停止摸球.求:(Ⅰ)恰好摸到2个“心”字球的概率; (Ⅱ)摸球次数X 的概率分布列和数学期望.18.(本小题满分12分)如图,在边长为12的正方形A 1 AA ′A 1′中,点B 、C 在线段AA ′上,且AB = 3,BC = 4,作BB 1∥AA 1,分别交A 1A 1′、AA 1′于点B 1、P ;作CC 1∥AA 1,分别交A 1A 1′、AA 1′于点C 1、Q ;将该正方形沿BB 1、CC 1折叠,使得A ′A 1′ 与AA 1重合,构成如图所示的三棱柱ABC —A 1B 1C 1,在三棱柱ABC —A 1B 1C 1中,(Ⅰ)求证:AB ⊥平面BCC 1B 1;(Ⅱ)求面PQA 与面ABC 所成的锐二面角的大小.(Ⅲ)求面APQ 将三棱柱ABC —A 1B 1C 1分成上、下两部分几何体的体积之比.A 1 B 1 C 1A ′1A ′A BCP Q AB CA 1B 1C 1 QP19.(本小题满分12分)据中新网2009年4月9日电,日本鹿儿岛县樱岛昭和火山口当地时间9日下午3点31分发生中等规模爆发性喷火,鹿儿岛市及周边飞扬了大量火山灰.火山喷发停止后,为测量的需要距离喷口中心50米内的圆环面为第1区、50米至100米的圆环面为第2区、100米至150米的圆环面为第3区、……、第50(n -1)米至50n 米的圆环面为第n 区,……,现测得第1区火山灰平均每平方米为1吨、第2区每平方米的平均重量较第1区减少2%、第3区较第2区又减少2%,……,以此类推.(Ⅰ)若第n 区每平方米的重量为a n 千克,请写出a n 的表达式;(Ⅱ)第几区内的火山灰总重量最大?(Ⅲ)该火山这次喷发出的火山灰的总重量为多少万吨(π 取3,结果精确到万吨)?20.(本小题满分13分)已知点(4,0)C 和直线:1l x =,作,PQ l ⊥垂足为Q ,且(2)(2)0.PC PQ PC PQ +⋅-=(Ⅰ)求点P 的轨迹方程;(Ⅱ)过点C 的直线m 与点P 轨迹交于两点1122(,),(,)M x y N x y ,120x x >,点(1,0)B ,若BMN ∆的面积为,求直线m 的方程.21.(本小题满分14分)给出定义在(0,+∞)上的三个函数:f (x )=ln x ,g (x )=x 2-af (x ),h (x )=x -a x ,已知g (x )在x =1处取得极值.(Ⅰ)确定函数h (x )的单调性. (Ⅱ)求证:当1<x <e 2时,恒有x <)(2)(2x f x f -+成立;(Ⅲ)把函数h (x )的图象向上平移6个单位长度得到函数h 1(x )的图象,试确定函数y =g (x )- h 1(x )的图象与X 轴交点个数,并说明理由.2013届高考猜题、押题卷理数试卷参考答案一. 选择题BCCDD CBDAD1. B 解析:易得M=(0,+∞),N=[1, +∞),从而选B.2.C 解析: sin2009°=1sin(5360209)sin 209sin(18029)sin 292⨯+==+=-≈-. 3. C 解析: 命题p ,q 均为假命题,从而选C4. D 解析: 易得01a =,从而66(1)2m +=,则1m =或3m =-5.D 解析:由题意设f (x )满足:“当f (k )≥k 2成立时,总可推出f (k +1)≥(k +1)2成立.”,因此,对于A ,不一定有k =1,2时成立.对于B 、C 显然错误.对于D ,∵f (4)=25>42,因此对于任意的k ≥4,有f (k )≥k 2成立.6.C 解析:.将x =-1,y =3和x =1,y =1代入y =ax 2+bx +c 中得⎩⎪⎨⎪⎧3=a -b +c ,1=a +b +c ,∴b =-1.∴a +c =2.又∵0<c <1,∴0<2-a <1.∴1<a <2.7. B 解析:由题设,OA =(2,1),OB =(3,k ),则AB =(1,k -1).当OA ⊥OB 时,OA ·OB =0⇒k =-6; 当OA ⊥AB 时,OA ·AB =0⇒k =-1;当OB ⊥AB 时,OB ·AB =0⇒k 2-k +3=0(无解). 所以k 的所有可能取值有2个,故选B.8. D 解析: 两圆圆心(0,0)、(2,2)-关于直线l 对称,易求直线为02=+-y x . 9. A 解析: 由条件知,若A (x ,y ),则B (π-x ,y ),∴y =f (x )=|π-x -x |=|π-2x |,图象即为选项A.10.D 解析:连接AE ,则AE ⊥DE .设AD =2c ,则DE =c ,AE =3c .椭圆定义,得2a =AE +ED =3c +c ,所以e =a c=132+=3-1,故选D.二,填空题11,[-7,10] 12,1440 13,4320 14, ①②④⑤ 15, (i )20;(ii )(15,44)11.解析:由题设,z =max{4x +y ,3x -y }=⎪⎪⎩⎪⎪⎨⎧-<--≥+)21(3)21(4x y y x x y y x ,且|x |≤2,|y |≤2.作可行域,由图知,目标涵数z =4x +y 在点(2,2)处取最大值10,在点(-2,1)处取最小值-7.目标函数z =3x -y 点(2,-2)处取最大值8,在点(-2,1)处取最小值-7. 所以z 的取值范围是[-7,10],故选A. 12. 解析】4345A A = 1440.13.解析:4320 醉酒驾车的频率为0.15,从而人数约为4320人. [答案] ①②④⑤14.解析:将(,)x y 替换为(,)x y --,(,)y x --可知①②正确;该曲线与坐标轴无交点可知,该曲线不是封闭曲线,③不正确;方程可变形为222222x y x y xy xy +=≥⇒≥(当且仅当x y ==时取等),与圆无公共点,且与曲线D 有四个交点,④⑤正确. 15.解析:(i )20;(ii )将粒子的运动轨迹定义为数对(i ,j ) 则它的运动整点可排成数表 (0,0)(0,1) (1,1) (1,0)(0,0) (2,1) (2,2) (1,2) (0,2)(0,3) (1,3) (2,3) (3,3) (3,2) (3,1) (3,0)(4,0) (4,1) (4,2) (4,3) (4,4) (3,4) (2,4) (1,4)(0,4)通过推并可知:经过2 = 1×2s ,运动到(1,1)经过6 =2×3s ,运动到(2,2) 经过12 =3×4s ,运动到(3,3)∴经过44×45 = 1980s ,运动到(44,44) 再继续运动29s ,到达点(15,44).三.解答题16.【解析】(Ⅰ)∵b a //,∴)(sin 1cos 3m -⨯-αα= 0, (2分)∴)3sin(2cos 3sin πααα-=-=m , (3分)又∵α∈R ,∴1)3sin(-=-πα时,m min = –2.又)2,0[πα∈,所以πα611=(6分) (Ⅱ)∵b a ⊥,且0=m ,∴0cos sin 3=+αα∴tan α=(9分)∴)cos()2sin()2cos(απαπαπ-+⋅-αααcos )2sin (sin --⋅=ααα2tan 1tan 2tan +⋅=21= (12分)17.解: (Ⅰ)恰好摸到两个“心”字球的取法共有4种情形:开心心,心开心,心心开,心心乐. 则恰好摸到2个“心”字球的概率是53333215331010101010101000P =⨯⨯⨯+⨯⨯=. (4分)(Ⅱ)1,2,3X =,则 121101(1)5C P X C ===,11821110104(2)25C C P X C C ==⋅=,16(3)1(1)(2)25P X P X P X ==-=-==. (8分)故取球次数X 的分布列为1235252525EX =⨯+⨯+⨯=.(12分)18.【解析】(Ⅰ)∵AB = 3,BC= 4,∴AC = 5∵AC 2 = AB 2 + BC 2 ∴AB ⊥BC 又AB ⊥BB 1y且BC ∩BB 1 = B∴AB ⊥面BCC 1B 1 (4分) (Ⅱ)如图,建立空间直角坐标系 则A (3,0,0),P (0,0,3),Q (0,4,4) 设面APQ 的法向量为m= (x ,y ,z )330440x z y z -+=⎧⎨+=⎩⇒m = (1,–1,1) 而面ABC 的法向量可以取n= (0,0,1)∴cos ,m n ==∴面PQA 与面ABC 所成的锐二面角为 (8分) (Ⅲ)∵BP = AB = 3,CQ = AC = 7. ∴S 四边形BCQP =()(37)42022BC BP CQ ⋅++⨯==∴V A —BCQP =13×20×3 = 20又∵V 111ABC A B C -=113412722ABC S AA ⋅=⨯⨯⨯= .∴7220521320205V V -===上下. (12分) 19.解析:(Ⅰ)11)02.01(1000%)21(1000---=-=n n n a (*n N ∈). (2分) (Ⅱ)设第n 区内的面积为b n 平方米,则 )12(2500)1(50502222-=--=n n n b n πππ. (4分)则第n 区内火山灰的总重量为1%)21)(12(2500---==n n n n n b a C π(吨)1)98.0)(12(4--=n n π(万吨)(6分)设第n 区火山灰总重量最大,则⎪⎩⎪⎨⎧+≥--≥----nn n n n n n n )98.0)(12(4)98.0)(12(4)98.0)(32(4)98.0)(12(4121ππππ 解得,21502149≤≤n ∴n =50. 即得第50区火山灰的总重量最大. (8分) (Ⅲ)设火山喷发的火山区灰总重量为S 万吨, 则,21 ++++=n C C C S 设,02.01,21-=+++=q C C C S n n 则124)12(45434--++++=n n q n q q S ππππ① ∴nn q n q q q qS 4)12(4543432ππππ-++++=② 由①-②得nn n q n q q q S q 4)12()(24)1(12πππ--++++=-- ∴nn n q q n q q q q S )1(4)12()1(2)1()1(421-----+-=-πππ(10分)∵0<q <1,∴220.98lim 37124(1)2(1)40.022(0.02)n n qS S q q ππππ→∞⨯==+=+≈--⨯⨯(万吨)因此该火山这次喷发出的火山灰的总重量约为3712万吨. (12分)20. 解:(Ⅰ) 由已知(2)(2)0,PC PQ PC PQ +⋅-= 知2240PC PQ -= .所以2PC PQ =设(,)P x y21x =-平方整理得.221.412x y -= (4分) (Ⅱ)由题意可知设直线m 的斜率不为零,且(4,0)C 恰为双曲线的右焦点,设直线m 的方程为4x ty =+,由22221(31)243604124x y t y ty x ty ⎧-=⎪⇒-++=⎨⎪=+⎩(6分) 若2310t -=,则直线m 与双曲线只有一个交点,这与120x x >矛盾,故2310t -≠.由韦达定理可得12212224313631t y y t y y t -⎧+=⎪⎪-⎨⎪=⎪-⎩212121212222222(4)(4)4()16362434141600,3131313x x ty ty t y y t y y t t t t t t t t ∴=++=+++-+=++>⇒<⇒<--- (8分)1222121331ABCS BC y y t t ∆∴=-====--2221911,,4543t t t ⇒==< 或211.42t t ∴=⇒=± (10分) 故直线l 的方程为280280x y x y +-=--=或. (13分)21.解:(Ⅰ)由题设,g (x )=x 2-a ln x ,则g'(x )=2x -xa. 由已知,g'(1)=0,即2-a =0⇒a =2. (2分) 于是h (x )=x -2x ,则h'(x )=1-x1. 由h'(x )= 1-x1>0⇒x >1,所以h (x )在(1,+∞)上是增函数,在(0,1)上是减函数. (4分)(Ⅱ)当1<x <e 2时,0<ln x <2,即0<f (x )<2. 欲证x <)(2)(2x f x f -+,只需证x [2-f (x )]<2+ f (x ),即证f (x )>1)1(2+-x x . 设)(x ϕ=f (x )-1)1(2++x x =ln x -1)1(2+-x x ,则)('x ϕ=x 1-2)1()1(2)1(2+--+x x x =22)1()1(+-x x x . 当1<x <e 2时,)('x ϕ>0,所以)(x ϕ在区间(1,e 2)上为增函数. 从而当1<x <e 2时,)(x ϕ>)1(ϕ=0,即ln x >1)1(2+-x x ,故x <)(2)(2x f x f -+. (8分)(Ⅲ)由题设,h 1(x )=x -2x +6.令g (x )- h 1(x )=0,则x 2-2ln x -(x -2x +6)=0,即2x -2ln x =-x 2+x +6. 设h 2(x )=2x -2ln x ,h 3(x )=-x 2+x +6(x >0),h'2(x )=21-x2=x x 2 ,由x -2>0,得x >4.所以h 2(x )在(4,+∞)上是增函数,在(0,4)上是减函数. (10分)又h 3(x )在(0,21)上是增函数,在(21,+∞)上是减函数. 因为当x →0时,h 2(x )→+∞,h 3(x )→6.又h 2(1)=2,h 3(1)=6,h 2(4)=4-2ln4>0,h 3(4)=-6, 则函数h 2(x )与h 3(x )的大致图象如右:由图可知,当x >0,两个函数图象有2个交点,故函数y =g (x )-h 1(x )与X 轴有2个交点. (14分)。
2013年高考理科数学联考试题(湖北省七市附答案)
2013年高考理科数学联考试题(湖北省七市附答案)秘密★启用前2013年湖北荆州、黄冈、襄阳、十堰、宜昌、孝感、恩施七市(州)高三联合考试数学(理工类)本科目考试时间:2013年4月18日下午15:00-17:00★祝考试顺利★一、选择题:本大题共10小题,每小题5分,共50分.在每小题列出的四个选项中,只有一项是符合题目要求的.1.设复数,其中a为实数,若z的实部为2,则z的虚部为A.-iB.iC.-1D.12.已知向量a=(2,1),b=(x,-2),若a∥b,则a+b=A.(-2,-1)B.(2,1)C.(3,-1)D.(-3,1)3.下列说法中不正确的个数是①命题“x∈R,≤0”的否定是“∈R,>0”;②若“pq”为假命题,则p、q均为假命题;③“三个数a,b,c成等比数列”是“b=”的既不充分也不必要条件A.OB.1C.2D.34.函数f(x)=2x-sinx的零点个数为A.1B.2C.3D.45.一个几何体的三视图如下左图所示,则此几何体的体积是A.112B.80C.72D.646.已知全集U=Z,Z为整数集,如上右图程序框图所示,集合A={x|框图中输出的x值},B={y|框图中输出的y值};当x=-1时,(CuA)B= A.{-3,-1,5}B.{-3,-1,5,7}C.{-3,-1,7}D.{-3,-1,7,9} 7.我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有5架舰载机准备着舰.如果甲、乙两机必须相邻着舰,而丙、丁不能相邻着舰,那么不同的着舰方法有A.12种B.18种C.24种D.48种8.如右图,矩形OABC内的阴影部分由曲线f(x)=sinx(x∈(0,))及直线x=a(a∈(0,))与x轴围成,向矩形OABC内随机投掷一点,若落在阴影部分的概率为,则a的值为A.B.C.D.9.如右图,一单位正方体形积木,平放于桌面上,并且在其上方放置若干个小正方体形积木摆成塔形,其中上面正方体中下底面的四个顶点是下面相邻正方体中上底面各边的中点,如果所有正方体暴露在外面部分的面积之和超过8.8,则正方体的个数至少是A.68.7C.8D.1010.已知直线l:y=ax+1-a(a∈R).若存在实数a使得一条曲线与直线l 有两个不同的交点,且以这两个交点为端点的线段长度恰好等于|a|,则称此曲线为直线l的“绝对曲线”.下面给出四条曲线方程:①y=-2|x-1|;②y=;③(x-1)2+(y-1)2=1;④x2+3y2=4;则其中直线l的“绝对曲线”有A.①④B.②③C.②④D.②③④二、填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清.模棱两可均不得分.(一)必考题:(11-14题)11.若tan=,∈(0,),则sin(2+)=.12.点P(x,y)在不等式组表示的平面区域内,若点P(x,y)到直线y=kx-1(k>0)的最大距离为2,则k=.13.已知抛物线y2=4x的焦点为F,过点P(2,0)的直线交抛物线于A(x1,y1)和B(x2,y2)两点.则:(I)y1y2=;(Ⅱ)三角形ABF面积的最小值是.14.挪威数学家阿贝尔,曾经根据阶梯形图形的两种不同分割(如下图),利用它们的面积关系发现了一个重要的恒等式一阿贝尔公式:a1b1+a2b2+a3b3+…+anbn=a1(b1-b2)+L2(b2-b3)+L3(b3-b4)+…+Ln-1(bn-1-bn)+Lnbn则其中:(I)L3=;(Ⅱ)Ln=.(二)选考题:请考生在第15、16两题中任选一题作答.如果全选,则按第15题作答结果计分.15.(几何证明选讲)如右图,AB是⊙O的直径,P是AB延长线上的一点,过P作⊙O的切线,切点为C,PC=2,若∠CAP=30°,则⊙O的直径AB=.16.(坐标系与参数方程)在直角坐标平面内,以坐标原点0为极点,x 轴的非负半轴为极轴建立极坐标系,已知点M的极坐标为(4,),曲线C的参数方程为(为参数),则点M到曲线C上的点的距离的最小值为.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)已知向量=(sin2x+2,cosx),=(1,2cosx),设函数f(x)=•.(I)求f(x)的最小正周期与单调递增区间;(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,若a=,f(A)=4,求b+c的最大值.18.(本小题满分12分)数列{an}是公比为的等比数列,且1-a2是a1与1+a3的等比中项,前n项和为Sn;数列{bn}是等差数列,b1=8,其前n项和Tn满足Tn=n•bn+1(为常数,且≠1).(I)求数列{an}的通项公式及的值;(Ⅱ)比较+++…+与了Sn的大小.19.(本小题满分12分)如图,矩形A1A2A′2A′1,满足B、C在A1A2上,B1、C1在A′1A′2上,且BB1∥CC1∥A1A′1,A1B=CA2=2,BC=2,A1A′1=,沿BB1、CC1将矩形A1A2A′2A′1折起成为一个直三棱柱,使A1与A2、A′1与A′2重合后分别记为D、D1,在直三棱柱DBC-D1B1C1中,点M、N分别为D1B和B1C1的中点.(I)证明:MN∥平面DD1C1C;(Ⅱ)若二面角D1-MN-C为直二面角,求的值.20.(本小题满分12分)2013年2月20日,针对房价过高,国务院常务会议确定五条措施(简称“国五条”).为此,记者对某城市的工薪阶层关于“国五条”态度进行了调查,随机抽取了60人,作出了他们的月收入的频率分布直方图(如图),同时得到了他们的月收入情况与“国五条”赞成人数统计表(如下表):月收入(百元)赞成人数15,25)825,35)735,45)1045,55)655,65)265,75)1(I)试根据频率分布直方图估计这60人的平均月收入;(Ⅱ)若从月收入(单位:百元)在15,25),25,35)的被调查者中各随机选取3人进行追踪调查,记选中的6人中不赞成“国五条”的人数为X,求随机变量X的分布列及数学期望.21.(本小题满分13分)在矩形ABCD中,|AB|=2,|AD|=2,E、F、G、H分别为矩形四条边的中点,以HF、GE所在直线分别为x,y轴建立直角坐标系(如图所示).若R、R′分别在线段0F、CF上,且==.(Ⅰ)求证:直线ER与GR′的交点P在椭圆:+=1上;(Ⅱ)若M、N为椭圆上的两点,且直线GM与直线GN的斜率之积为,求证:直线MN过定点;并求△GMN面积的最大值.22.(本小题满分14分)已知函数f(x)=lnx,g(x)=k•.(I)求函数F(x)=f(x)-g(x)的单调区间;(Ⅱ)当x>1时,函数f(x)>g(x)恒成立,求实数k的取值范围;(Ⅲ)设正实数a1,a2,a3,…,an满足a1+a2+a3+…+an=1,求证:ln(1+)+ln(1+)+…+ln(1+)>.2013年七市联考数学试题(理工类)(B卷)参考答案一、选择题:CABABDCBAD二、填空题:11.12.13.(Ⅰ)(Ⅱ)14.(Ⅰ)(Ⅱ)15.16.(注:填空题中有两个空的,第一个空2分,第二个空3分)三、解答题17.解:(Ⅰ)……………3分∴的最小正周期……………4分由得∴的单调递增区间为……………6分(Ⅱ)由得,∵∴∴,……………8分法一:又,∴当时,最大为……………12分法二:即;当且仅当时等号成立。
2013届全国各地高考押题数学(理科)精选试题分类汇编11:概率
2013届全国各地高考押题数学(理科)精选试题分类汇编11:概率一、选择题1 .(2013届湖北省高考压轴卷 数学(理)试题)如图,设D 是图中边长分别为1和2的矩形区域,E 是D 内位于函数1(0)y x x =>图象下方的区域 (阴影部分),从D 内随机取一个点M ,则点M 取自E 内的概率为( )A .ln 22 B .1ln 22- C .1ln 22+ D .2ln 22- 【答案】C 【解析】:将1y x =与2y =图象交点记为A ,则1(,2)2A ,∴阴影部分E 的面积1121121ln 22S dx x=+⨯=+⎰,而D 的面积为122⨯=,∴所求概率1ln 22P +=.故选 C .2 .(2013届安徽省高考压轴卷数学理试题)投掷一枚正方体骰子(六个面上分别标有1,2,3,4,5,6),向上的面上的数字记为a ,又()n A 表示集合的元素个数,{}2||3|1,A x x ax x R =++=∈,则()4n A =的概率为 ( )A .31B .21 c.32 D .61 【答案】A 【解析】由()4n A =知,函数2|3|yx ax =++和1y =的图像有四个交点,所以23y x ax =++的最小值21214a -<-,解得4(4)a a ><-舍去,所以a 的取值是5,6.又因为a 的取值可能是6种,故概率是2163=,故选 ( )A .3 .(2013届海南省高考压轴卷理科数学)如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆. 在扇形OAB 内随机取一点,则此点取自阴影部分的概率是 ( )A .21π-B .112π-C .2πD .1π【答案】答案:A考点分析:本题考察几何概型及平面图形面积求法.解析:令1=OA ,扇形OAB 为对称图形,ACBD 围成面积为1S ,围成OC 为2S ,作对称轴OD ,则过C 点.2S 即为以OA 为直径的半圆面积减去三角形OAC 的面积,82212121212122-=⨯⨯-⎪⎭⎫ ⎝⎛=ππS .在扇形OAD 中21S 为扇形面积减去三角形OAC 面积和22S ,()1622811812221-=--=ππS S ,4221-=+πS S ,扇形OAB 面积π41=S ,4 .(2013届江西省高考压轴卷数学理试题)已知随机变量ξ服从正态分布2(0,)N σ,若(2)0.023P ξ>=,则(22)P ξ-=≤≤ ( )A .0.477B .0.625C .0.954D .0.977【答案】C 【解析】由随机变量ξ服从正态分布2(0,)N σ可知正态密度曲线关于y 轴对称,而(2)0.023P ξ>=,则(2)0.023P ξ<-=,故(22)1(2)(2)0.954P P p ξξξ-=->-<-=≤≤,故选C5 .(2013届广东省高考压轴卷数学理试题)已知(){}1,1,≤≤=Ωy x y x ,A 是曲线2x y =与21xy =围成的区域,若向区域Ω上随机投一点P,则点P 落入区域A 的概率为 ( )A .31 B .41 C .81 D .121 【答案】D 区域A面积为)31231200211|333x dx x x ⎛⎫-=-= ⎪⎝⎭⎰ 11/4312P ==第8题图二、填空题6 .(2013届上海市高考压轴卷数学(理)试题)已知随机变量ξ服从正态分布2(2,)N σ,且(4)0.8P ξ<=,则(02)P ξ<<等于_____________.【答案】0.3【解析】(4)0.8P ξ<=,则2.0)4(=>ξP ,又分布图像关于直线2=x 对称,2.0)4()0(=>=<ξξP P ,则6.0)40(=<<ξP ,3.0)20(=<<ξP7 .(2013届江苏省高考压轴卷数学试题)从集合{-1,1,2,3}中随机选取一个数记为m,从集合{-1,1,2}中随机选取一个数记为n,则方程22x y m n+=1表示双曲线的概率为________.【答案】5128 .(2013届上海市高考压轴卷数学(理)试题)将正整数1,2,3,4,5,6,7随机分成两组,使得每组至少有一个数,则两组中各数之和相等的概率是_______________.【答案】463【解析】将正整数1,2,3,4,5,6,7随机分成两组,使得每组至少有一个数则有123456777777722126C C C C C C +++++=-=种,因为123456728++++++=,所以要使两组中各数之和相,则有各组数字之和为14.则有7615432++=+++;7526431++=+++;7436521++=+++;7421653+++=++;5432761+++=++;6431752+++=++;6521743+++=++;6537421++=+++共8种,所以两组中各数之和相等的概率是8412663=9 .(2013届北京市高考压轴卷理科数学)设不等式组22,42x y x y -+≥≥-⎧⎪⎨⎪⎩0≤, 表示的平面区域为D .在区域D 内随机取一个点,则此点到直线+2=0y 的距离大于2的概率是________【答案】925【解析】不等式对应的区域为三角形DEF,当点D 在线段BC 上时,点D 到直线+2=0y 的距离等于2,所以要使点D 到直线的距离大于2,则点D 应在三角形BCF 中.各点的坐标为(20)(40)(62)(42)(43)B C D E F ----,,,,,,,,,,所以105DE EF ==,,6BC =,3CF =,根据几何概型可知所求概率为163921251052BCFDEFS P S ∆∆⨯⨯===⨯⨯.三、解答题10.(2013届山东省高考压轴卷理科数学)(2013日照二模)“中国式过马路”存在很大的交通安全隐患.某调查机构为了解路人对“中国式过马路 ”的态度是否与性别有关,从马路旁随机抽取30名路 人进行了问卷调查,得到了如下列联表:男性 女性 合计反感 10不反感 8 合计 30已知在这30人中随机抽取1人抽到反感“中国式过马路 ”的路人的概率是158. (Ⅰ)请将上面的列联表补充完整(在答题卡上直接填写结果,不需要写求解过程),并据此资料分析反感“中国式过马路 ”与性别是否有关?(Ⅱ)若从这30人中的女性路人中随机抽取2人参加一活动,记反感“中国式过马路”的人数为X,求X的分布列和数学期望. 【答案】由已知数据得:2230(10866) 1.158 3.84116141614χ⨯-⨯=≈<⨯⨯⨯,所以,没有充足的理由认为反感“中国式过马路”与性别有关 (Ⅱ)X 的可能取值为0,1,2.282144(0),13C C P X === 116821448(1),91C C C P X ===2621415(2),91C C P X ===所以X X 的数学期望为:012.1391917EX =⨯+⨯+⨯=11.(2013届天津市高考压轴卷理科数学)袋中有8个大小相同的小球,其中1个黑球,3个白球,4个红球.(I)若从袋中一次摸出2个小球,求恰为异色球的概率;(II)若从袋中一次摸出3个小球,且3个球中,黑球与白球的个数都没有超过红球的个数,记此时红球的个数为ξ,求ξ的分布列及数学期望E ξ.【答案】解: (Ⅰ)摸出的2个小球为异色球的种数为11C 11173419C C C +=从8个球中摸出2个小球的种数为2828C = 故所求概率为1928P =5 分 (Ⅱ)符合条件的摸法包括以下三种: 一种是有1个红球,1个黑球,1个白球,共有11C 114312C C =种一种是有2个红球,1个其它颜色球,共有214424C C =种,一种是所摸得的3小球均为红球,共有344C =种不同摸法,故符合条件的不同摸法共有40种由题意知,随机变量ξ的取值为1,2,3.其分布列为:3319123105105E ξ=⨯+⨯+⨯= 北京市高考压轴卷理科数学)本小题共14分 12.(2013届加2012年全省高中篮球比赛,某中学决定从四为了参个篮球较强的班级中选出12人组成男子篮球队代表所在地区参赛,队员来源人数如下表:(II)该中学篮球队经过奋力拼搏获得冠军.若要求选出两位队员代表冠军队发言,设其中来自高三(7)班的人数为ξ,求随机变量ξ的分布列及数学期望ξE .【答案】解:(I)“从这18名队员中随机选出两名,两人来自于同一班级”记作事件A ,则2222423321213()66C C C C P A C +++== 6' (II)ξ的所有可能取值为0,1,2 7'则02112048484822212121214163(0),(1),(2)333333C C C CC C P P P C C C ξξξ========= ∴ξ的分布列为:10'∴1416320123333333E ξ=⨯+⨯+⨯= 14' 13.(2013届江西省高考压轴卷数学理试题)现有4个人去参加春节联欢活动,该活动有甲、乙两个项目可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个项目联欢,掷出点数为1或2的人去参加甲项目联欢,掷出点数大于2的人去参加乙项目联欢. (I)求这4个人中恰好有2人去参加甲项目联欢的概率;(II)求这4个人中去参加甲项目联欢的人数大于去参加乙项目联欢的人数的概率;(III)用,X Y 分别表示这4个人中去参加甲、乙项目联欢的人数,记X Yξ=-,求随机变量ξ的分布列与数学期望E ξ.【答案】解:依题意,这4个人中,每个人去参加甲项目联欢的概率为13,去参加乙项目联欢的概率为23.设“这4个人中恰有i 人去参加甲项目联欢”为事件i A ,(0,1,2,3,4)i =,则4412()()()33i i ii P A C -=.(Ⅰ)这4个人中恰好有2人去参加甲项目联欢的概率22224128()()()3327P A C ==(Ⅱ)设“这4人中去参加甲项目联欢的人数大于去参加乙项目联欢的人数”为事件B ,34B A A =⋃, 故334434441211()()()()()()3339P B P A P A C C =+=+=. ∴这4人中去参加甲项目联欢的人数大于去参加乙项目联欢的人数的概率为19(III)ξ的所有可能取值为0,2,4.28(0)()27P P A ξ===,1340(2)()(),81P P A P A ξ==+=0417(4)()(),81P P A P A ξ==+= 所以ξ的分布列是14881E ξ=14.(2013届海南省高考压轴卷理科数学)中华人民共和国《道路交通安全法》中将饮酒后违法驾驶机动车的行为分成两个档次:“酒后驾车”和“醉酒驾车”,其检测标准是驾驶人员血液中的酒精含量Q (简称血酒含量,单位是毫克/100毫升),当20≤Q ≤80时,为酒后驾车;当Q >80时,为醉酒驾车.某市公安局交通管理部门于2012年1月的某天晚上8点至11点在市区昌隆饭店设点进行一次拦查行动,共依法查出了60名饮酒后违法驾驶机动车者,如图为这60名驾驶员抽血检测后所得结果画出的频率分布直方图(其中Q ≥140的人数计入120≤Q <140人数之内).(1)求此次拦查中醉酒驾车的人数;(2)从违法驾车的60人中按酒后驾车和醉酒驾车利用分层抽样抽取8人做样本进行研究,再从抽取的8人中任取3人,求3人中含有醉酒驾车人数X 的分布列和数学期望. 【答案】解:(Ⅰ) (0.0032+0.0043+0.0050)×20=0.25,0.25×60=15, 所以此次拦查中醉酒驾车的人数为15人.(Ⅱ) 易知利用分层抽样抽取8人中含有醉酒驾车者为2人;所以x 的所有可能取值为0,1,2;P(x =0)=3836C C =145,P(X=1)=381226C C C =2815,P(x =2)=382216C C C =283X 的分布列为432832281511450)(=⨯+⨯+⨯=X E . 15.(2013届湖北省高考压轴卷 数学(理)试题)我省某示范性高中为推进新课程改革,满足不同层次学生的要求,决定从高一年级开始,在每周的周一、周三、周五的课外活动期间同时开设数学、物理、化学、生物和信息技术辅导讲座,每位有兴趣的同学可以在期间的任何一天参加任何一门科目的辅导讲座,也可以放弃任何一门科目的辅导讲座(规定:各科达到预先设定的人数时称为满座,否则称为不满座).统计数据表明,各学科讲座各天的满座概率如下表:(1)求数学辅导讲座在周一、周三、周五都不满座的概率; 各辅导讲座满座的科目数为ξ,(2)设周三量ξ的分布列和数学期望.求随机变【答案】(1)设数学辅导讲座在周一、周三、周五都不满座为事件A ,则1221()(1)(1)(1)23318P A =---=.(2)ξ的所有可能取值为0,1,2,3,4,5.4121(0)(1)(1)2348P ξ==-⋅-=; 1344112121(1)(1)(1)(1)223238P C ξ==⋅⋅-⋅-+-⋅=;22213441121127(2)()(1)(1)()(1)22322324P C C ξ==⋅⋅-⋅-+⋅⋅-⋅=; 33222441121121(3)()(1)(1)()(1)2232233P C C ξ==⋅⋅-⋅-+⋅⋅-⋅=;.4334121123(4)()(1)()(1)2322316P C ξ==⋅-+⋅⋅-⋅=;4121(5)()2324P ξ==⋅=. 所以,随机变量ξ的分布列如下:故117131801234548824316243E ξ=⨯+⨯+⨯+⨯+⨯+⨯=. 16.(2013届广东省高考压轴卷数学理试题)生产A,B 两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品.现随机抽取这两种元件各100件进行检测,检测结果统计如下:(Ⅰ)试分别估计元件A,元件B 为正品的概率;(Ⅱ)生产一件元件A,若是正品可盈利40元,若是次品则亏损5元;生产一件元件B,若是正品可盈利50元,若是次品则亏损10元 .在(Ⅰ)的前提下,(ⅰ)记X 为生产1件元件A 和1件元件B 所得的总利润,求随机变量X 的分布列和数学期望;(ⅱ)求生产5件元件B 所获得的利润不少于140元的概率.【答案】【答案】(Ⅰ)解:元件A 为正品的概率约为4032841005++=元件B 为正品的概率约为4029631004++=(Ⅱ)解:(ⅰ)随机变量X 的所有取值为90,45,30,15-433(90)545P X ==⨯=; 133(45)5420P X ==⨯=; 411(30)545P X ==⨯=; 111(15)5420P X =-=⨯=所以,随机变量X 的分布列为:3311904530(15)66520520EX =⨯+⨯+⨯+-⨯=(ⅱ)设生产的5件元件B 中正品有n 件,则次品有5n -件.依题意,得 5010(5)140n n --≥, 解得 196n ≥.所以 4n =,或5n =设“生产5件元件B 所获得的利润不少于140元”为事件A ,则 445531381()C ()()444128P A =⨯+=17.(2013新课标高考压轴卷(一)理科数学)某校从6名学生会干部(其中男生4人,女生2人)中选3人参加市中学生运动会志愿者.(Ⅰ)所选3人中女生人数为ξ,求ξ的分布列及数学期望. (Ⅱ)在男生甲被选中的情况下,求女生乙也被选中的概率【答案】解:(I)ξ得可能取值为 0,1,2;由题意P(ξ=0)=343615C C =, P(ξ=1)=21423635C C C =, P(ξ=2)=12423615C C C = ∴ξ的分布列、期望分别为:E ξ=0×15+1×35+2 ×15=1 (II)设在男生甲被选中的情况下,女生乙也被选中的事件为C男生甲被选中的种数为2510C =,男生甲被选中,女生乙也被选中的 种数为144C =∴P(C)=142542105C C ==在男生甲被选中的情况下,女生乙也被选中的概率为2518.(2013届辽宁省高考压轴卷数学理试题)袋中有大小相同的10个编号为1、2、3的球,1号球有1个,2号球有m 个,3号球有n 个.从袋中依次摸出2个球,已知在第一次摸出3号球的前提下,再摸出一个2号球的概率是13. (Ⅰ)求m 、n 的值;(Ⅱ)从袋中任意摸出2个球,记得到小球的编号数之和为ξ,求随机变量ξ的分布列和数学期望E ξ.【答案】解:(1)记“第一次摸出3号球”为事件A ,“第二次摸出2号球”为事件B ,则31110)/(=-=m A B P , 解得6,3==n m ;(2)随机变量ξ的取值为6,5,4,3,ξ的分布列为所以,数学期望5=ξE 19.(2013届新课标高考压轴卷(二)理科数学)某校中学生篮球队假期集训,集训前共有6个篮球,其中3个是新球(即没有用过的球),3个是旧球(即至少用过一次的球).每次训练,都从中任意取出2个球,用完后放回. (Ⅰ)设第一次训练时取到的新球个数为ξ,求ξ的分布列和数学期望; (Ⅱ)求第二次训练时恰好取到一个新球的概率.【答案】解:(1)ξ的所有可能取值为0,1,2.设“第一次训练时取到i 个新球(即i =ξ)”为事件i A (=i 0,1,2).因为集训前共有6个篮球,其中3个是新球,3个是旧球,所以51)0()(26230====C C P A P ξ, 53)1()(2613131====C C C P A P ξ,51)2()(26232====C C P A P ξ.所以ξ的分布列为(注:不列表,不扣分)ξ3 4 5 6P151 51 52 31ξ的数学期望为1512531510=⨯+⨯+⨯=ξE .(2)设“从6个球中任意取出2个球,恰好取到一个新球”为事件B . 则“第二次训练时恰好取到一个新球”就是事件B A B A B A 210++. 而事件B A 0、B A 1、B A 2互斥,所以,)()()()(210210B A P B A P B A P B A B A B A P ++=++. 由条件概率公式,得253535151|()()(261313000=⨯=⨯==C C C A B P A P B A P ), 2581585353|()()(261412111=⨯=⨯==C C C A B P A P B A P ), 151315151|()()(261511222=⨯=⨯==C C C A B P A P B A P ).所以,第二次训练时恰好取到一个新球的概率为7538151258253)(210=++=++B A B A B A P . 20.(2013届重庆省高考压轴卷数学理试题)(本小题满分13分,其中(Ⅰ)小问4分,(Ⅱ)小问9分)某单位有三辆汽车参加某种事故保险,单位年初向保险公司缴纳每辆900元的保险金,对在一年内发生此种事故的每辆汽车,单位可获9000元的赔偿(假设每辆车最多只赔偿一次),设这三辆车在一年内发生此种事故的概率分别为19,110,111,且各车是否发生事故相互独立,求一年内该单位在此保险中: (Ⅰ)获赔的概率;(Ⅱ)获赔金额ξ的分布列与期望.【答案】解:设k A 表示第k 辆车在一年内发生此种事故,123k=,,.由题意知1A ,2A ,3A 独立, 且11()9P A =,21()10P A =,31()11P A =. (Ⅰ)该单位一年内获赔的概率为123123891031()1()()()19101111P A A A P A P A P A -=-=-⨯⨯=.(Ⅱ)ξ的所有可能值为0,9000,18000,27000.12312389108(0)()()()()9101111P P A A A P A P A P A ξ====⨯⨯=,123123123(9000)()()()P P A A A P A A A P A A A ξ==++123123123()()()()()()()()()P A P A P A P A P A P A P A P A P A =++19108110891910119101191011=⨯⨯+⨯⨯+⨯⨯ 2421199045==, 123123123(18000)()()()P P A A A P A A A P A A A ξ==++ 123123123()()()()()()()()()P A P A P A P A P A P A P A P A P A =++1110191811910119101191011=⨯⨯+⨯⨯+⨯⨯ 273990110==, 123123(27000)()()()()P P A A A P A P A P A ξ===111191011990=⨯⨯=. 综上知,ξ的分布列为求ξ的期望有两种解法: 解法一:由ξ的分布列得811310900018000270001145110990E ξ=⨯+⨯+⨯+⨯299002718.1811=≈(元). 解法二:设k ξ表示第k 辆车一年内的获赔金额,123k =,,, 则1ξ有分布列故11900010009E ξ=⨯=. 同理得21900090010E ξ=⨯=,319000818.1811E ξ=⨯≈.综上有1231000900818.182718.18E E E E ξξξξ=++≈++=(元).21.(2013届全国大纲版高考压轴卷数学理试题)(注意:在试题卷上作答无效.........) 在进行一项掷骰子放球的游戏中规定:若掷出1点或2点,则在甲盒中放一球;否则,在乙盒中放一球.现在前后一共掷了4次骰子,设x 、y 分别表示甲、乙盒子中球的个数. (Ⅰ)求13y x ≤-≤的概率;【答案】解:依题意知,掷一次骰子,球被放入甲盒、乙盒的概率分别为12,.33(Ⅰ)若13,y x ≤-≤则只能有1,3,x y ==即在4次掷骰子中,有1次在甲盒中放球,有3次在乙盒中放球,因此所求概率3141232.3381P C ⎛⎫=⨯⨯= ⎪⎝⎭(Ⅱ)由于,x y ξ=-所以ξ的可能取值有0,2,4()222412240,3381P C ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭()33134********,333381P C C ξ⎛⎫⎛⎫⎛⎫⎛⎫==+= ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ()44444111743381P C C ξ⎛⎫⎛⎫==+= ⎪ ⎪⎝⎭⎝⎭所以随机变量ξ的分布列为:故随机变量ξ的数学期望为244017148024.81818181E ξ=⨯+⨯+⨯= 22.(2013届浙江省高考压轴卷数学理试题)如图,已知面积为1的正三角形ABC 三边的中点分别为D 、E 、F,从A,B,C,D,E,F 六个点中任取三个不同的点,所构成的三角形的面积为X(三点共线时,规定X=0)(1)求1()2P X ≥;(2)求E(X)CB【答案】【解析】解:⑴从六点中任取三个不同的点共有36C 20=个基本事件,事件“12X ≥”所含基本事件有2317⨯+=,从而17()220P X =≥. ⑵X 的分布列为:X 014 12 P3201020620120则311016113()01204202202040E X =⨯+⨯+⨯+⨯=. 答:17()220P X =≥,13()40E X =. 23.(2013届湖南省高考压轴卷数学(理)试题)( 本小题满分12分)某次体能测试中,规定每名运动员一开始就要参加且最多参加四次测试.一旦测试通过,就不再参加余下的测试,否则一直参加完四次测试为止.已知运动员甲的每次通过率为7.0(假定每次通过率相同). (1) 求运动员甲最多参加两次测试的概率;(2) 求运动员甲参加测试的次数 的分布列及数学期望(精确到0.1).【答案】⑴因为运动员甲参加一次测试的概率是0.7运动员甲参加两次测试的概率是0.7×0.3=0.21所以运动员甲最多参加两次测试的概率是0.21+0.7=0.91 ⑵ξ的可能取值是1,2,3,4 P(ξ=1)=0.7;P(ξ=2)=0.21; P(ξ=3)=0.063; P(ξ=4)=0.027;24.(2013届陕西省高考压轴卷数学(理)试题)选聘高校毕业生到村任职,是党中央作出的一项重大决策,这对培养社会主义新农村建设带头人,引导高校毕业生面向基层就业创业具有重大意义.为响应国家号召,某大学决定从符合条件的6名(其中男生4名,女生2名)报名大学生中选择3人到某村参加村主任应聘考核.(1)设所选3人中女生人数为ξ,求ξ的分布列及数学期望; (2)在男生甲被选中的情况下,求女生乙也被选中的概率.【答案】【解析】(Ⅰ):ξ的所有可能取值为0,1,2.依题意得:3436C 1(0)C 5P ξ===,214236C C 3(1)C 5P ξ===,124236C C 1(2)C 5P ξ===. ∴ξ的分布列为∴ 10121555E ξ=⨯+⨯+⨯=. (Ⅱ):设“男生甲被选中”为事件A ,“女生乙被选中”为事件B ,则()2536C 1C 2P A ==, ()1436C 1C 5P AB ==,∴()()()25P AB P B A P A ==.故在男生甲被选中的情况下,女生乙也被选中的概率为25. 25.(2013届福建省高考压轴卷数学理试题)已知甲箱中只放有x 个红球与y 个白球(,0,x y ≥且6)x y +=,乙箱中只放有2个红球、1个白球与1个黑球(球除颜色外,无其它区别). 若甲箱从中任取2个球, 从乙箱中任取1个球.(Ⅰ)记取出的3个球的颜色全不相同的概率为P ,求当P 取得最大值时,x y 的值; (Ⅱ)当2x =时,求取出的3个球中红球个数ξ的期望()E ξ.【答案】【解析】(I)由题意知203)2(60160.211=+≤=⋅=γx xy Cx C C P L r , 当且仅当y x =时等号成立,所以,当P 取得最大值时3==y x .(II)当2=x 时,即甲箱中有2个红球与4个白球,所以ξ的所有可能取值为3,2,1,0则51)0(14261124===C C C C P ξ,157)1(14261224121412=+==C C C C C C C P ξ,103)2(14261214121222=+==C C C C C C C p ξ, 301)3(142612===C C C P ξ,所以红球个数ξ的分布列为于是67=ξE . 26.(2013届安徽省高考压轴卷数学理试题),获得如下数据:试销结束后(假设商品的日销售量的分布规律不变),在试销期间,每天开始营业时商品有5件,当天营业结束后,进行盘点存货,若发现存量小于3件,则当天进货补充到5件,否则不进货. (1)求超市进货的概率(2)记ξ为第二天开始营业时该商品的件数,求ξ的分布列和数学期望.【答案】【解析】(1)10642()(3)(4)(5)3030303P P P P =++=++=进货销售件销售件销售件 (2)ξ的取值是345.,, 61317(3)(4)(5)305301010P P P ξξξ========,,,即分布列是: 所以数学期望是345 4.551010E ξ=⨯+⨯+⨯=。
湖北省七地市高考备考(押注)冲刺卷(四)数学(理)试题.docx
42013年七地市高考备考(押注)冲刺卷理科(数学)本试卷满分150分,考试时间120分钟。
注意事项:1. 答题前,请考生务必将自己的姓名、准考证号填写(涂)在试题卷和答题卡上。
2. 考生答题时,选择题请用2B 铅笔将答题卡上对应题目的答案标号涂黑;非选择题请按照题号顺序在各题的答题区域内作答,超出答题区域书写的答案无效。
3. 考试结束,请将本试题卷和答题卡一并上交。
一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.i 为虚数单位,z 是复数z 的共轭复数,且(i z 4+)(i -1)=i -3,则复数z = A.i 32- B.i 32+ C.i 23- D.i 23+2.下列命题中:①命题02,:p ,02,:00<∈∃⌝>∈∀x xR x R x p 则.②在的充分不必要条件是中,B inA B A ABC sin s >>∆.③从1,2,3Λ9中同时取4个不同的数,和为偶数的不同取法共有66种. ④2x+y+3z=14,则.14222的最小值为z y x ++其中正确命题的个数为A.1B.2C.3D.4 3.已知正项数列}{n a 中,)2,(112,21,12121221≥∈+===*-+n N n a a a a a n n n ,则=9a A.251B.25C.514.执行如图所示的程序框图,则输出的S 的值为 A.6- B.15- C.3 D.105.设x,y 满足约束条件⎪⎩⎪⎨⎧-≥--≥+≤-2210y x y x y x ,若目标函数A)0,0(>>+=b a by ax z 的最大值为4,则ba 41+的最小值为A.9B.4 C . 2 D.29 6.已知n a 13-=n )(*∈N n ,将数列}{n a 的各项排成如图所示的数阵,则第20行中从左到右第8个数为 2 5 8 A.590 B.593 C.630 D.633 11 14 17 20 23 26 29 . . .7.设是两条不重合的直线,,是三个互不重合的平面n ,m ,,γβα则下列命题中正确的是A.若γαγββα⊥⊥⊥则,,B.若βαββα//,//,,//m m m 则⊄C.若βαβα//m ,,则⊥⊥mD.若n n m ⊥⊥m ,,//,//则βαβα8.如图,圆O 的直径AB =2,C 是半圆上不同于A ,B 的任意一点,若P 为半径OC 上的动点,则⋅+)(的最小值为 A.21-B.41-C.41 D.219.椭圆12622=+y x 与双曲线13222=-by x 有公共的焦点1F ,2F ,P 是两曲线的一个交点,则21PF F ∆的面积为A..873 B.8153 C.2 D.6510.函数的零点个数为则下列函数1)]([,0,log 0,1)(2+=⎩⎨⎧>≤+=x f f y x x x ax x fA . 1个或2个 B. 4个 C. 2个或4个 D . 1个或4个 二、填空题:本大题共6小题,考试共需作答5小题,每小题5分,共25分。
湖北省2013年七地市高考备考(押注)冲刺卷(五)数学(理)试卷
52013年七地市高考备考(押注)冲刺卷理科(数学)本试卷共4页,共22题,其中第15、16题为选考题。
满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2.选择题的作答:每小题选出答案后,用统一提供的2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
答在试题卷、草稿纸上无效。
3.填空题和解答题的作答:用统一提供的签字笔直接答在答题卡上对应的答题区域内。
答在试题卷、草稿纸上无效。
4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用统一提供的2B 铅笔涂黑。
考生应根据自己选做的题目准确填涂题号,不得多选。
答题答在答题卡上对应的答题区域内,答在试题卷、草稿纸上无效。
5.考生必须保持答题卡的整洁。
考试结束后,请将本试题卷和答题卡一并上交。
一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.设非空集合A,B 满足B A ⊆,则 A 、,0A x ∈∃使得B x ∉0 B 、,A x ∈∀有B x ∈ C 、,0B x ∈∃使得A x ∉0 D 、,B x ∈∀有A x ∈ 2.若复数z 与其共轭复数z 满足:2,2=+=z z z ,则z z 22-为A 、 2B 、-2C 、 2iD 、-2i 3.设数列{})(*∈N n a n 是等比数列,则321a a a <<是数列{}n a 是递增数列的A 、充分而不必要条件B 、必要而不充分条件C 、充分必要条件D 、既不充分也不必要条件 4.从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )=A 、 18B 、14C 、25D 、12 5.若某多面体的三视图(单位:cm )如图所示, 则此多面体 的体积是A 、321cm B 、332cmC 、365cmD 、387cm6.在右图求2+5+8+…+2009的值的程序中,正整数m 的最大值为A 、2009B 、2010C 、2011D 、20127.动点(),A x y 在圆221x y +=上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周。
2013高考数学(理科)复习冲剌参考题参考答案
点 P,Q 的抛物线的切线方程分别为 y = 4 x − 8, y = −2 x − 2, 联立方程组解得 x = 1, y = −4, 故 点 A 的纵坐标为 −4.
3π ). 4 37. ρ = 4sin θ
36. ( 2, 38. 99
°
39. 15 解析:由 相 交 弦 定 理 可得 TD = 9 . 设 PB = x ,由 切 割线 定 理 可得 PT 2 = PB ⋅ PA 即
解析:设设备甲租 x 天,设备乙租 y 天,则有
x ≥ 0 y ≥ 0 作出可行域,可知,过 两 直线 10 x + 20 y ≥ 140 5 x + 6 y ≥ 50 10 x + 20 y = 140 , 5 x + 6 y ≥ 50 交点 (4,5) 时, 租
赁费 z = 200 x + 300 y 最少,其值为 z = 200 x + 300 y = 200 × 4 + 300 × 5 = 2300 34.
作出可行域 ,可知,当直线 z = 400 x + 300 y 过点
(4, 2) 时, zmin = 2200 ,故选 B
14.C 解析:
x − y + 1 ≤ 0, y 表示的平面区域如图所示, 表示坐标原点与区域上 x x > 0, y ∈ (1,+ ∞ ) x
一点 P ( x, y ) 所在直线斜率,可得 15.C
x + y − 3 = 0 的交点时,函数 y = 2 x 的图像仅有一个点 P
在可行域内,由
y = 2x 得 P (1,2) ,所以 m ≤ 1 .故选 B. x + y − 3 = 0
2013年高考湖北卷(理)
2013年湖北省理科数学高考试题一.选择题 1.在复平面内,复数21iz i=+(i 为虚数单位)的共轭复数对应的点位于( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限2.已知全集为R ,集合112xA x ⎧⎫⎪⎪⎛⎫=≤⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,{}2|680B x x x =-+≤,则R A C B =( )A.{}|0x x ≤B.{}|24x x ≤≤C. {}|024x x x ≤<>或D.{}|024x x x <≤≥或3.在一次跳伞训练中,甲.乙两位学员各跳一次,设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( ) A.()()p q ⌝∨⌝ B. ()p q ∨⌝ C. ()()p q ⌝∧⌝ D.p q ∨4.将函数()sin y x x x R =+∈的图像向左平移()0m m >个长度单位后,所得到的图像关于y 轴对称,则m 的最小值是( ) A.12πB.6πC.3πD.56π5.已知04πθ<<,则双曲线22122:1cos sin x y C θθ-=与222222:1sin sin tan y x C θθθ-=的( )A.实轴长相等B.虚轴长相等C.焦距相等D. 离心率相等6.已知点()1,1A -.()1,2B .()2,1C --.()3,4D ,则向量AB 在CD 方向上的投影为( )A.C. D.7.一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度()25731v t t t=-++(t 的单位:s ,v 的单位:/m s )行驶至停止。
在此期间汽车继续行驶的距离(单位;m )是( )A. 125ln5+B. 11825ln 3+ C. 425ln5+ D. 450ln 2+8.一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为1V ,2V ,3V ,4V ,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有( )A. 1243V V V V <<<B. 1324V V V V <<<C. 2134V V V V <<<D. 2314V V V V <<<9.如图,将一个各面都涂了油漆的正方体,切割成125个同样大小的小正方体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f ( x) min
A在距离O点
20、 (1)圆 N : ( x 3) ( y 1) 3 设直线 BF2 为 y kx 1
3
3k 1 k
2
得k
2 2
令 y 0得x
2 c a 3
……………………………4分
a 2 b2 c2 3 椭圆方程为 x2 y2 1 3 A( 3 ,0)
)
A.
3 2 4 2
B.
1 4
C.
1 8
D.
2 8
二.填空题
11. “戒烟一小时,健康亿人行” .每 年 5 月 31 日是国际无烟日, 小华就公 众对在餐厅吸烟的态度进行了随机抽 样调查,主要有四种态度:A.顾客出 面制止;B.劝说进吸烟室;C.餐厅 老板出面制止;D.无所谓.他将调查 结果绘制了两幅不完整的统计图.根 据图中的信息,若城区人口有 100 万 人,估计赞成“餐厅老板出面制止”的有__________万人. 12. 圆 x y 4 上 的 一 点 到 直 线 y x b 的 距 离 不 小 于
21.设函数 f ( x ) ln x ax 1 . (1)求函数 y f ( x ) 的单调区间; (2)若 x 0 时 f ( x ) 0 恒成立,求 a 的取值范围;
(3)求证: ln
1 1 22 32 (n 1) 2 > . (n N ) ln ln 2 2 2 2 n2 2 1 3 1 (n 1) 1
(2) B (0,1)
P( 3 3
3 1 , ) 1 1
过点 O, P 直线为 y 联立椭圆方程得 y
2
x
1 1 2
S y yD ABC C S ABD yP yD
1 1 2 1 1 1 1 1 1 2
……………………………8分
①点
②射线
③直线
④圆
⑤椭圆
⑥双曲线的一支
请考生在下列两题中任选一题作答, 若两题都做, 则按所做的第一题评阅计分。 15. 选做题:
1
(1). (坐标系与参数方程选做题) 在极坐标系下,已知直线 l 的方程为 cos(
) 到直线 l 的距离为__________. 4 (2). (几何证明选讲选做题) 如图, P 为圆 O 外一点,由 P 引圆 O 的切线 PA 与圆 O 切于 A 点,引圆 O 的割线 PB
17.已知 an 是公差为 2 的等差数列,且 a3 1是a1 1与a7 1 的等比中项. (1)求数列 an 的通项公式; (2)令 bn a 2 n ,求数列 bn 的前 10 项和.
18.已知圆柱 OO1 底面半径为 1,高为 2,ABCD 是圆柱的一个轴截面.动点 M 从点 B 出发 沿着圆柱的侧面到达点 D,其距离最短时在侧面留下的曲线 如图所示.将轴截面 ABCD 绕 着轴 OO1 逆时针旋转后
(3)
S ABC S ABD
(1 ) 2 1 1 2 (1 ) 2 1 1 2
设t
(1 ) 2 ( 0) 1 2
则t
1 2 2 2 1 2 2 1 1
1 t 2 S ABC t 1 2 1 0,3 2 2 S ABD t 1 t 1
理科答案
一、选择题 CAACD BADBA
9. 构造特殊三角形建系可得。 10.三角代换 a cos x, b sin x ,令 t sin x cos x ,用 t 表示 sin x cos x . 二、填空题 11.30; 13. C 5 ; 14.点在圆外,圆上,圆内,圆心。 三、解答题 16、 (1)P( 2 )=P( 0 )+ P( 1 )=
正视图
侧视图
正视图
侧视图
正视图
侧视图
正视图
侧视图
俯视图
俯视图
俯视图
俯视图
9.已知 P 为△ABC 内部或者边界上任意一点, 若 AP x AB y AC , 则 x y 的取值范围是 ( A. )
1,0
B.
2
1,1
2 3
C.
3
0,1
D. 0,2
3
且 a b 1 m( a b 1) , 则 m 的最小值为 ( b 满足 a b 1 , 10.已知正实数 a 、
(2) bn a 2 n 2
n 1
……………………………4分 ……………………………8分
1
S10 b1 b2 b10 = (2 2 23 211 ) 10 =
2 2 (1 210 ) 10 = 212 2 2 10 =4102 1 2
1
2013 年七地市高考备考(押注)冲刺卷
理科(数学)
一.选择题
1.设集合 A 5, log 2 ( a 3),集合 B a, b,若 A B 2,则 a b ( A.1 2.如果 B.2 C.3 D. 4 )
2 1 mi ( m R , i 表示虚数单位) ,那么 m ( ) 1 i A.1 B. 1 C.2 D.0 3.在等比数列 {an } 中,首项 a1 1 ,公比 q 1 ,若 a k a1 a 2 a 7 ,则 k ( A. 22 B. 23 C. 24 D. 25
,0 是 y f x 的图象的一个对称中心; 8
④将 y f x 的图象向左平移
个单位,可得到 y 2 sin 2 x 的图象. 4
其中真命题的序号是 A.①③
(
) C. ①③④ D. ③④ )
B. ①②③
该三棱锥的三视图是( 8.已知以下三视图中有三个同时表示某一个三棱锥,则不是 ..
2
12.0 或±2;
13.10;
14.②④⑤⑥;
15. (1)
1 9 π ; (2) 2 4
少于两件概率为
1 2
1 3 1 1 + = 4 4 3 2
……………………………6分
(2)P( 2 )= 分布列
1 4
P( 3 ) =
1 4
2 3
0
1
期 望 E =0 ×
P
1 4
1 4
1 4
1 4
1 3 = (瓶)……………………………12分 4 2
17、 (1) ( a3 +1) =( a1 +1) ( a7 +1)
2
1 1 1 +1 × +2 × +3 × 4 4 4
又 d=2
得 a1 =3
an a1 (n 1)d 2n 1
an 的通项公式为 an 2n 1
(1) 求曲线 长度; (2)求二面角 P AB B1 的大小; (3) 求点 C1 到平面 APB 的距离.
,边 B1C1 与曲线 相交于点 P . 2
D D1
O1
C1 C
P B1
A A1
O
ห้องสมุดไป่ตู้
B
19.如图,在 C 城周边已有两条公路 l1 、 l2 在 O 点处交汇,且它们的夹角为 60 。 已知 OC 4 km , OC 与公路 l1 的夹角为 30 ,为了发展 C 城经济,现 规划在公路 l1 、 l2 上分别选择 A, B 两处为交汇点(异于 O 点)直接修 建公路通过 C 城。设 OA x km, OB y km. (1)求 y 关于 x 的函数关系式并指出它的定义域;
bn 的前10项和为4102
18、 (1)曲线 长度为 2
2 2
……………………………12分
2 4
……………………………4分
(2)由题意知 B1 为 P 在平面 ABB1 上的射影
过 B1 作 B1M AB 连接 PM
则 PMB1 大小为二面角 P AB B1 的平面角
a
0
(cos x sin x )dx 取最大值 2 1 时, a 的最小值
8
)
C.
3
4 D. 6
B.
7.关于函数 f x sin 2 x cos 2 x 有下列命题: ①函数 y f x 的周期为 ; ②直线 x ③点
是 y f x 的一条对称轴; 4
2 2
2 的概率为
b
1 ,则 2
.
13.数列 an 共有 6 项, a1 0 , a 6 1 ,且 ak 1 ak 1 ( k 1,2,3,…6) ,满足这种 条件下的不同数列的个数为 . 14.记点 P 到圆形 C 上每一个点的距离的最小值称为 P 到图形 C 的距离,那么平面内到定 圆 C 的距离与到定点 A 的距离相等的点的轨迹可能_________.(填上你认为正确的序号)
则点 M (0, 与圆 O 交于 C 点.已知 AB AC , PA 2, PC 1 .则 圆 O 的面积为 .
P C A
1 ) , 3 2
B
三.解答题.
16.江北“玉宇泉”酒厂某工人在包装时不小心将一瓶不合格的酒一起放进了一个箱子,此 时该箱子中共有外观完全相同的四瓶酒.只有将酒瓶逐一打开检验才能确定哪一瓶是不合格 的,一旦打开检验不管是否合格都将报废.记 表示将此箱不合格的检测出来后三瓶合格酒 中报废的酒的数量. (1)求报废的合格酒少于两瓶的概率; (2)求 的分布列和数学期望.
4.“ 2 m 1 ”是“方程 A. 充分必要条件 C. 必要但不充分条件
)