最新高考考点完全题数学(理)专题突破练习题_(4) 数列中的典型题型与创新题型 Word版含答案

合集下载

高考数学压轴专题新备战高考《数列》真题汇编附答案解析

高考数学压轴专题新备战高考《数列》真题汇编附答案解析

高中数学《数列》知识点归纳一、选择题1.已知{}n a 是单调递增的等比数列,满足352616,17a a a a ⋅=+=,则数列{}n a 的前n项和n S = A .122n+ B .122n- C .1122n -+D .1122n -- 【答案】D 【解析】 【分析】由等比数列的性质和韦达定理可得26a a , 为方程217160x x -+= 的实根,解方程可得q和a 1,代入求和公式计算可得. 【详解】∵352616,17a a a a ⋅=+=,∴由等比数列的性质可得26261617a a a a ⋅=+=, ,26a a , 为方程217160x x -+= 的实根解方程可得2626116161a a a a ====,,或, , ∵等比数列{a n }单调递增,∴26116a a ==,,∴1122q a ,== ,∴()1112122122nn n S ----== 故选D . 【点睛】本题考查等比数列的求和公式,涉及等比数列的性质和一元二次方程的解法,属中档题.2.已知数列{}n a 为等比数列,前n 项和为n S ,且12a =,1n n b a =+,若数列{}n b 也是等比数列,则n S =( ) A .2n B .31n - C .2n D .31n -【答案】C 【解析】 【分析】设等比数列{}n a 的公比为q ,写出,n n a b .由数列{}n b 是等比数列,得2213b b b =,求出q ,即求n S .设等比数列{}n a 的公比为q ,112,2n n a a q -=∴=Q ,121n n b q -∴=+,13b ∴=,221b q =+,2321b q =+,{}n b Q 也是等比数列, 2213b b b ∴=,即()()2221321q q +=+解得1q =,2,2n n a S n ∴=∴=. 故选:C . 【点睛】本题考查等比数列的性质,属于基础题.3.已知数列{}n a 的前n 项和为n S ,若2n n S a n =-,则9S =( ) A .993 B .766 C .1013 D .885【答案】C 【解析】 【分析】计算11a =,()1121n n a a -+=+,得到21nn a =-,代入计算得到答案.【详解】当1n =时,11a =;当2n ≥时,1121n n n n a S S a --=-=+,∴()1121n n a a -+=+,所以{}1n a +是首项为2,公比为2的等比数列,即21nn a =-,∴1222n n n S a n n +=-=--,∴1092111013S =-=.故选:C . 【点睛】本题考查了构造法求通项公式,数列求和,意在考查学生对于数列公式方法的灵活运用.4.已知公比为q 的等比数列{}n a 的首项10a >,则“1q >”是“53a a >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】 【分析】根据等比数列的性质可得530,0a a >>,若53a a >,可得21q >,然后再根据充分条件和必要条件的判断方法即可得到结果.由于公比为q 的等比数列{}n a 的首项10a >, 所以530,0a a >>,若53a a >,则233a q a >,所以21q >,即1q >或1q <-,所以公比为q 的等比数列{}n a 的首项10a >, 则“1q >”是“53a a >”的充分不必要条件, 故选:A. 【点睛】本题主要考查了等比数列的相关性质和充分必要条件的判断方法,熟练掌握等比数列的性质是解题的关键.5.已知数列{}n a 是正项等比数列,若132a =,3432a a ⋅=,数列{}2log n a 的前n 项和为n S ,则n S >0时n 的最大值为 ( ) A .5 B .6C .10D .11【答案】C 【解析】2525163412132323222log 62n n n n a a a q q q a a n --⋅===⇒=⇒=⨯=⇒=-⇒ max (56)011102n n n S n n +-=>⇒<⇒= ,故选C.6.在数列{}n a 中,若10a =,12n n a a n +-=,则23111na a a +++L 的值 A .1n n- B .1n n+ C .11n n -+ D .1n n + 【答案】A 【解析】分析:由叠加法求得数列的通项公式(1)n a n n =-,进而即可求解23111na a a +++L 的和. 详解:由题意,数列{}n a 中,110,2n n a a a n +=-=,则112211()()()2[12(1)](1)n n n n n a a a a a a a a n n n ---=-+-++-+=+++-=-L L ,所以1111(1)1n a n n n n==--- 所以231111111111(1)()()12231n n a a a n n n n-+++=-+-++-=-=-L L ,故选A. 点睛:本题主要考查了数列的综合问题,其中解答中涉及到利用叠加法求解数列的通项公式和利用裂项法求解数列的和,正确选择方法和准确运算是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与运算能力.7.已知{}n a 是等差数列,1010a =,其前10项和1070S =,则其公差为( ) A .23B .32C .23-D .32-【答案】A 【解析】 【分析】根据等差数列的通项公式和前n 项和公式,列方程组求解即得. 【详解】设等差数列{}n a 的公差为d .101010,70a S ==Q ,1191010910702a d a d +=⎧⎪∴⎨⨯+=⎪⎩解得23d =. 故选:A . 【点睛】本题考查等差数列的通项公式和前n 项和公式,属于基础题.8.在等差数列{}n a 中,2436a a +=,则数列{}n a 的前5项之和5S 的值为( ) A .108 B .90C .72D .24【答案】B 【解析】由于152436a a a a +=+=,所以1555()5369022a a S +⨯===,应选答案A . 点睛:解答本题的简捷思路是巧妙运用等差数列的性质152436a a a a +=+=,然后整体代换前5项和中的15=36a a +,从而使得问题的解答过程简捷、巧妙.当然也可以直接依据题设条件建立方程组进行求解,但是解答过程稍微繁琐一点.9.已知等差数列{}n a 中,若311,a a 是方程2210x x --=的两根,单调递减数列{}()*n b n N ∈通项公式为27n b n a n λ=+.则实数λ的取值范围是( )A .(),3-∞-B .1,3⎛⎫-∞- ⎪⎝⎭C .1,3⎛⎫-+∞ ⎪⎝⎭D .()3,-+∞【答案】B 【解析】先求出71a =,再根据{}n b 是递减数列,得到121n λ<-+对*n N ∈恒成立,即得解. 【详解】∵311,a a 是方程220x x --=的两根,∴3112a a +=. ∵{}n a 是等差数列,∴311722a a a +==,∴71a =,∴2n b n n λ=+,又∵{}n b 是递减数列,∴10n n b b +-<对*n N ∈恒成立, 则()()()22110n n nn λλ+++-+<,∴()2110n λ++<,∴121n λ<-+对*n N ∈恒成立, ∴13λ<-.故选:B. 【点睛】本题主要考查等差中项的应用,考查数列的单调性和数列不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平.10.已知等比数列{}n a 的前n 项和为n S ,若1220a a +=,334S =,且2n a S a ≤≤+,则实数a 的取值范围是( ) A .[]1,0- B .11,2⎡⎤-⎢⎥⎣⎦C .1,12⎡⎤⎢⎥⎣⎦D .[]0,1【答案】B 【解析】 【分析】先求得等比数列的首项和公比,得到n S ,分析数列的单调性得到n S 的最值,从而列不等式求解即可. 【详解】由1220,a a += 334S =,得11211,,1232nn a q S ⎡⎤⎛⎫==-=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,当1n =时,n S 取最大值1,当2n =时,n S 取最小值12, 所以1221a a ⎧≤⎪⎨⎪+≥⎩,112a -≤≤,故选B.本题主要考查了等比数列的单调性,结合首项和公比即可判断,属于中档题.11.科赫曲线是一种外形像雪花的几何曲线,一段科赫曲线可以通过下列操作步骤构造得到,任画一条线段,然后把它均分成三等分,以中间一段为边向外作正三角形,并把中间一段去掉,这样,原来的一条线段就变成了4条小线段构成的折线,称为“一次构造”;用同样的方法把每条小线段重复上述步骤,得到16条更小的线段构成的折线,称为“二次构造”,…,如此进行“n 次构造”,就可以得到一条科赫曲线.若要在构造过程中使得到的折线的长度达到初始线段的1000倍,则至少需要通过构造的次数是( ).(取lg30.4771≈,lg 20.3010≈)A .16B .17C .24D .25【答案】D 【解析】 【分析】由折线长度变化规律可知“n 次构造”后的折线长度为43na ⎛⎫ ⎪⎝⎭,由此得到410003n⎛⎫≥ ⎪⎝⎭,利用运算法则可知32lg 2lg 3n ≥⨯-,由此计算得到结果.【详解】记初始线段长度为a ,则“一次构造”后的折线长度为43a ,“二次构造”后的折线长度为243a ⎛⎫ ⎪⎝⎭,以此类推,“n 次构造”后的折线长度为43na ⎛⎫ ⎪⎝⎭, 若得到的折线长度为初始线段长度的1000倍,则410003na a ⎛⎫≥ ⎪⎝⎭,即410003n⎛⎫≥ ⎪⎝⎭,()()44lg lg lg 4lg32lg 2lg3lg1000333nn n n ⎛⎫∴==-=-≥= ⎪⎝⎭,即324.0220.30100.4771n ≥≈⨯-,∴至少需要25次构造.故选:D . 【点睛】本题考查数列新定义运算的问题,涉及到对数运算法则的应用,关键是能够通过构造原则得到每次构造后所得折线长度成等比数列的特点.12.已知数列{}n a 的奇数项依次成等差数列,偶数项依次成等比数列,且11a =,22a =,347a a +=,5613a a +=,则78a a +=( )A .4B .19C .20D .23【答案】D 【解析】 【分析】本题首先可以设出奇数项的公差以及偶数项的公比,然后对347a a +=、5613a a +=进行化简,得出公差和公比的数值,然后对78a a +进行化简即可得出结果. 【详解】设奇数项的公差为d ,偶数项的公比为q ,由347a a +=,5613a a +=,得127d q ++=,212213d q ++=, 解得2d =,2q =,所以37813271623a a d q +=++=+=,故选D .【点睛】本题主要考查等差数列、等比数列的通项公式及性质等基础知识,考查运算求解能力,考查函数与方程思想、化归与转化思想等,体现基础性与综合性,提升学生的逻辑推理、数学运算等核心素养,是中档题.13.在正整数数列中,由1开始依次按如下规则,将某些数取出.先取1;再取1后面两个偶数2,4;再取4后面最邻近的3个连续奇数5,7,9;再取9后面的最邻近的4个连续偶数10,12,14,16;再取此后最邻近的5个连续奇数17,19,21,23,25.按此规则一直取下去,得到一个新数列1,2,4,5,7,9,10,12,14,16,17,…,则在这个新数列中,由1开始的第2 019个数是( ) A .3 971 B .3 972C .3 973D .3 974【答案】D 【解析】 【分析】先对数据进行处理能力再归纳推理出第n 组有n 个数且最后一个数为n 2,则前n 组共1+2+3+…+n ()12n n +=个数,运算即可得解.【详解】解:将新数列1,2,4,5,7,9,10,12,14,16,17,…,分组为(1),(2,4),(5,7,9,),(10,12,14,16),(17,19,21,23,25)… 则第n 组有n 个数且最后一个数为n 2, 则前n 组共1+2+3+…+n ()12n n +=个数,设第2019个数在第n 组中,则()()120192120192n n n n ⎧+≥⎪⎪⎨-⎪⎪⎩<, 解得n =64,即第2019个数在第64组中,则第63组最后一个数为632=3969,前63组共1+2+3+…+63=2016个数,接着往后找第三个偶数则由1开始的第2019个数是3974, 故选:D . 【点睛】本题考查了对数据的处理能力及归纳推理能力,考查等差数列前n 项和公式,属中档题.14.已知数列{}n a 的前n 项和为212343n S n n =++(*N n ∈),则下列结论正确的是( )A .数列{}n a 是等差数列B .数列{}n a 是递增数列C .1a ,5a ,9a 成等差数列D .63S S -,96S S -,129S S -成等差数列【答案】D 【解析】 【分析】由2*123()43n S n n n N =++∈,2n …时,1n n n a S S -=-.1n =时,11a S =.进而判断出正误. 【详解】解:由2*123()43n S n n n N =++∈,2n ∴…时,2211212153[(1)(1)3]4343212n n n a S S n n n n n -=-=++--+-+=+.1n =时,114712a S ==,1n =时,15212n a n =+,不成立.∴数列{}n a 不是等差数列.21a a <,因此数列{}n a 不是单调递增数列.5191547154322(5)(9)021*******a a a --=⨯⨯+--⨯+=-≠,因此1a ,5a ,9a 不成等差数列.631535(456)32124S S -=⨯+++⨯=.961553(789)32124S S -=⨯+++⨯=.1291571(101112)32124S S -=⨯+++⨯=.Q53235710444⨯--=, 63S S ∴-,96S S -,129S S -成等差数列.故选:D . 【点睛】本题考查了等差数列的通项公式与求和公式、数列递推关系,考查了推理能力与计算能力,属于中档题.15.执行如图所示的程序框图,若输出的S 为154,则输入的n 为( )A .18B .19C .20D .21【答案】B 【解析】 【分析】找到输出的S 的规律为等差数列求和,即可算出i ,从而求出n . 【详解】由框图可知,()101231154S i =+++++⋯+-= , 即()1231153i +++⋯+-=,所以()11532i i -=,解得18i =,故最后一次对条件进行判断时18119i =+=,所以19n =. 故选:B 【点睛】本题考查程序框图,要理解循环结构的程序框图的运行,考查学生的逻辑推理能力.属于简单题目.16.已知{}n a 是公差d 不为零的等差数列,其前n 项和为n S ,若348,,a a a 成等比数列,则A .140,0a d dS >>B .140,0a d dS <<C .140,0a d dS ><D .140,0a d dS <>【答案】B【解析】 ∵等差数列,,,成等比数列,∴,∴,∴,,故选B.考点:1.等差数列的通项公式及其前项和;2.等比数列的概念17.在古希腊,毕达哥拉斯学派把1,3,6,10,15,21,28,36,45,…这些数叫做三角形数.设第n 个三角形数为n a ,则下面结论错误的是( ) A .1(1)n n a a n n --=> B .20210a =C .1024是三角形数D .123111121n n a a a a n +++⋯+=+ 【答案】C 【解析】 【分析】对每一个选项逐一分析得解. 【详解】∵212a a -=,323a a -=,434a a -=,…,由此可归纳得1(1)n n a a n n --=>,故A 正确;将前面的所有项累加可得1(1)(2)(1)22n n n n n a a -++=+=,∴20210a =,故B 正确; 令(1)10242n n +=,此方程没有正整数解,故C 错误; 1211111111212231n a a a n n ⎡⎤⎛⎫⎛⎫⎛⎫+++=-+-++- ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦L L 122111n n n ⎛⎫=-= ⎪++⎝⎭,故D 正确. 故选C 【点睛】本题主要考查累加法求通项,考查裂项相消法求和,意在考查学生对这些知识的理解掌握水平和分析推理能力.18.等比数列{}n a 的前n 项和为n S ,公比为q ,若639S S =,562S =,则1a =( ) A 2 B .2C 5D .3【答案】B【解析】 【分析】根据题意,分析可得等比数列{}n a 的公比1q ≠±,进而由等比数列的通项公式可得()()631111911a q a q qq--=⨯--,解可得2q =,又由()5151131621a q Saq-===-,解可得1a 的值,即可得答案.【详解】根据题意,等比数列{}n a 中,若639S S =,则1q ≠±, 若639S S =,则()()631111911a q a q qq--=⨯--,解可得38q=,则2q =,又由562S =,则有()5151131621a q S aq-===-,解可得12a =;故选B . 【点睛】本题考查等比数列的前n 项和公式的应用,关键是掌握等比数列的前n 项和的性质.19.设函数()221xf x =+,利用课本(苏教版必修5)中推导等差数列前n 项和的方法,求得()()()()()54045f f f f f -+-+⋅⋅⋅++⋅⋅⋅++的值为( ) A .9 B .11C .92D .112【答案】B 【解析】 【分析】先计算出()()f x f x +-的值,然后利用倒序相加法即可计算出所求代数式的值. 【详解】()221xf x =+Q ,()()()22222212121221xx x x x xf x f x --⋅∴+-=+=+++++()2122222211221xx x x x +⋅=+==+++, 设()()()()()54045S f f f f f =-+-+⋅⋅⋅++⋅⋅⋅++, 则()()()()()54045S f f f f f =+++++-+-L L ,两式相加得()()2115511222S f f ⎡⎤=⨯+-=⨯=⎣⎦,因此,11S =. 故选:B. 【点睛】本题考查函数值的和的求法,注意运用倒序相加法,求得()()2f x f x +-=是解题的关键,考查化简运算能力,属于中档题.20.执行如图所示的程序框图,若输入,则输出的S 的值是A .B .C .D .【答案】B 【解析】 【分析】本题首先可以通过程序框图明确输入的数值以及程序框图中所包含的关系式,然后按照程序框图所包含的关系式进行循环运算,即可得出结果. 【详解】由程序框图可知,输入,,,第一次运算:,;第二次运算:,; 第三次运算:,; 第四次运算:,;第五次运算:,; 第六次运算:,; 第七次运算:,;第八次运算:,;第九次运算:,;第十次运算:,,综上所述,输出的结果为,故选B.【点睛】本题考查程序框图的相关性质,主要考查程序框图的循环结构以及裂项相消法的使用,考查推理能力,提高了学生从题目中获取信息的能力,体现了综合性,提升了学生的逻辑推理、数学运算等核心素养,是中档题.。

专题02 数列-【李金柱梳理】冲刺2023年高考数学大题突破+限时集训(新高考专用)(原卷版)

专题02 数列-【李金柱梳理】冲刺2023年高考数学大题突破+限时集训(新高考专用)(原卷版)

专题02数列题型简介数列一般作为全国卷第17题或第18题或者是19题,主要考查数列对应的求和运算以及相应的性质考察题型一般为:1错位相减求和2裂项相消求和3(并项)分组求和4数列插项问题5不良结构问题6数列与其他知识点交叉问题;在新高考改革情况下,对于数列的思辨能力有进一步的加强,务必要重视典例在线题型一:数列错位错位相减求和1.已知{}n a 为首项112a =的等比数列,且n a ,12n a +,24n a +成等差数列;又{}n b 为首项11b =的单调递增的等差数列,{}n b 的前n 项和为n S ,且1S ,2S,4S 成等比数列.(1)分别求数列{}n a ,{}n b 的通项公式;(2)令n n n c a b =⋅,数列{}n c 的前n 项和为n T ,求证:3n T <.变式训练1.若等差数列{}n a 的前n 项和为n S ,数列{}n b 是等比数列,并且0n b >,11334223,1,19,2a b b S a b a ==+=-=.(1)求数列{}n a 和{}n b 的通项公式;(2)求数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和n T ;(3)若()11N *·n n n c n a a +=∈,求数列{}n c 的前n 项和nM 题型二:裂项相消求和1已知数列{}n a 的前n 项的积记为n T ,且满足112n n na T a -=.(1)证明:数列{}n T 为等差数列;(2)设()()111nnn n n b T T +-+=,求数列{}nb 的前n 项和nS.1.已知正项数列{}n a 的前n 项和为n S,且1n a =+.(1)证明:{}n a 是等差数列.(2)设数列1n n n S a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,若满足不等式n T m<的正整数n 的个数为3,求m 的取值范围.题型三:(并项)分组求和1.设{}n a 是首项为1的等比数列,且满足123,3,9a a a 成等差数列:数列{}n b 各项均为正数,n S 为其前n 项和,且满足()21n n n S b b =+,则(1)求数列{}n a 和{}n b 的通项公式;(2)记n T 为数列{}n n a b 的前n 项的和,证明:121412318n n n T --+≤⋅;(3)任意()()254,N ,,n n n n nb b a n nc a n +⎧--∈=⎨⎩为奇数为偶数,求数列{}n c 的前2n 项的和.变式训练1.已知数列{}n a 满足11a =,11,2,n n na n a a n ++⎧=⎨⎩为奇数为偶数.(1)记2n n b a =,写出1b ,2b ,3b ,4b ,并猜想数列{}n b 的通项公式;(2)证明(1)中你的猜想;(3)若数列{}n a 的前n 项和为n S ,求2n S .题型四:数列插项问题1.记数列{an }的前n 项和为Sn ,对任意正整数n ,有2Sn =nan ,且a 2=3.(1)求数列{an }的通项公式;(2)对所有正整数m ,若ak <2m <ak +1,则在ak 和ak +1两项中插入2m ,由此得到一个新数列{bn },求{bn }的前40项和.变式训练1.已知数列{}n a 的前n 项和为n S ,且()23n n S a n n *=-∈N .(1)求证:12n a ⎧⎫+⎨⎩⎭是等比数列;(2)在n a 与1n a +之间插入n 个数,使这2n +个数组成一个公差为n d 的等差数列,求数列1n d ⎧⎫⎨⎬⎩⎭的前n 项和.题型五不良结构问题1.已知数列{}n a 是公差不为零的等差数列,11a =且2a ,5a ,14a 成等比数列.(1)求数列{}n a 的通项公式;(2)设数列{}n b 的前n 项和为n S ,在①21n n S =-,*n ∈N ;②21n n S b =-,*n ∈N ;③121n n S S +=+,*n ∈N 这三个条件中任选一个,将序号补充在下面横线处,并根据题意解决问题.问题:若11b =,且______,求数列{}n n a b ⋅的前n 项和n T .注:如果选择多个条件分别解答,按第一个解答给分.变式训练1.在①89a =,②520S =,③2913a a +=这三个条件中选择两个,补充在下面问题中,并进行解答已知等差数列{}n a 的前n 项和为n S ,*n ∈N ,___________,___________.(1)求数列{}n a 的通项公式;(2)设11n n n b a a +=,求数列{}n b 的前n 项和n T ;(3)若存在n *∈N ,使得10n n T a λ+-≥成立,求实数λ的取值范围.注:如果选择多组条件分别解答,按第一个解答计分.题型六数列与其他知识点交叉问题1.为了让幼儿园大班的小朋友尝试以客体区分左手和右手,左肩和右肩,在游戏中提高细致观察和辨别能力,同时能大胆地表达自己的想法,体验与同伴游戏的快乐,某位教师设计了一个名为【肩手左右】的游戏,方案如下:游戏准备:选取甲、乙两位小朋友面朝同一方向并排坐下进行游戏.教师站在两位小朋友面前出示游戏卡片.游戏卡片为两张白色纸板,一张纸板正反两面都打印有相同的“左”字,另一张纸板正反两面打印有相同的“右”字.游戏进行:一轮游戏(一轮游戏包含多次游戏直至决出胜者)开始后,教师站在参加游戏的甲、乙两位小朋友面前出示游戏卡片并大声报出出示的卡片上的“左”或者“右”字.两位小朋友如果听到“左”的指令,或者看到教师出示写有“左”字的卡片就应当将左手放至右肩上并大声喊出“停!”.小朋友如果听到“右”的指令,或者看到教师出示写有“右”字的卡片就应当将右手放至左肩上并大声喊出“停!”.最先完成指令动作的小朋友喊出“停!”时,两位小朋友都应当停止动作,教师根据两位小朋友的动作完成情况进行评分,至此游戏完成一次.游戏评价:为了方便描述问题,约定:对于每次游戏,若甲小朋友正确完成了指令动作且乙小朋友未完成则甲得1分,乙得-1分;若乙小朋友正确完成了指令动作且甲小朋友未完成则甲得-1分,乙得1分;若甲,乙两位小朋友都正确完成或都未正确完成指令动作,则两位小朋友均得0分.当两位小朋友中的一位比另外一位小朋友的分数多8分时,就停止本轮游戏,并判定得分高的小朋友获胜.现假设“甲小朋友能正确完成一次游戏中的指令动作的概率为α,乙小朋友能正确完成一次游戏中的指令动作的概率为β”,一次游戏中甲小朋友的得分记为X .(1)求X 的分布列;(2)若甲小朋友、乙小朋友在一轮游戏开始时都赋予4分,()0,1,,8i p i =⋅⋅⋅表示“甲小朋友的当前累计得分为i 时,本轮游戏甲小朋友最终获胜”的概率,则00p =,81p =,11(1,2,,7)i i i i bp cp a i p p -+=++=⋅⋅⋅,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.6β=.(i )证明:{}1(0,1,2,,7)i i p p i +-=⋯为等比数列;(ii )根据4p 的值说明这种游戏方案是否能够充分验证“甲小朋友能正确完成一次游戏中的指令动作的概率为0.5,乙小朋友能正确完成一次游戏中的指令动作的率为0.6”的假设.变式训练1.已知函数()cos 2f x x =,()sin g x x =.(1)判断函数()2ππ4H x f x g x ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭的奇偶性,并说明理由;(2)设函数()()sin h x x ωϕ=+(0ω>,π02ϕ<<),若函数2πh x ⎛⎫+ ⎪⎝⎭和()πh x -都是奇函数,将满足条件的ω按从小到大的顺序组成一个数列{}n a ,求{}n a 的通项公式;(3)求实数a 与正整数n ,使得()()()F x f x ag x =+在(0,π)n 内恰有147个零点.模拟尝试一、解答题1.已知数列{}n a 的前n 项之积为()()1*22n n n S n -=∈N .(1)求数列{}n a 的通项公式;(2)设公差不为0的等差数列{}n b 中,11b =,___________,求数列{}n n a b +的前n 项和n T .请从①224b b =;②358b b +=这两个条件中选择一个条件,补充在上面的问题中并作答.注:如果选择多个条件分别作答,则按照第一个解答计分.2.已知数列{}n a 的前n 项和为11131,3,31n n n n n S S a S ++-==-.(1)求23,S S 及{}n a 的通项公式;(2)若()()()()()()()32122311111111n n n n a a a a a a a a a a λ-+++≤------- 对任意的*2,N n n ≥∈恒成立,求λ的最小值.3.在数列{}n a 中,21716a =,*113,N 44n n a a n +=+∈.(1)证明:数列{}1n a -是等比数列;(2)令123n n n b a +=⋅+,数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,求证:1340n S <.4.已知正项等差数列{}n a 和正项等比数列{}n b ,n S 为数列{}n a 的前n 项和,且满足1325162,12,4,a S b b a ====.(1)分别求数列{}n a 和{}n b 的通项公式;(2)将数列{}n a 中与数列{}n b 相同的项剔除后,按从小到大的顺序构成数列{}n c ,记数列{}n c 的前n 项和为n T ,求100T .5.已知{}n a 为首项112a =的等比数列,且n a ,12n a +,24n a +成等差数列;又{}n b 为首项11b =的单调递增的等差数列,{}n b 的前n 项和为n S ,且1S ,2S,4S 成等比数列.(1)分别求数列{}n a ,{}n b 的通项公式;(2)令n n n c a b =⋅,数列{}n c 的前n 项和为n T ,求证:3n T <.6.设数列{}n a 的前n 项之积为n T ,且满足()*21N n n T a n =-∈.(1)证明:数列11n a ⎧⎫⎨⎬-⎩⎭是等差数列,并求数列{}n a 的通项公式;(2)记22212n n S T T T =++⋅⋅⋅+,证明:14n S <.7.设{}n a 是首项为1的等比数列,且满足123,3,9a a a 成等差数列:数列{}n b 各项均为正数,n S 为其前n 项和,且满足()21n n n S b b =+,则(1)求数列{}n a 和{}n b 的通项公式;(2)记n T 为数列{}n n a b 的前n 项的和,证明:121412318n n n T --+≤⋅;(3)任意()()254,N ,,n n n n nb b a n nc a n +⎧--∈=⎨⎩为奇数为偶数,求数列{}n c 的前2n 项的和.真题再练一、解答题1.(2022·全国·统考高考真题)记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+.(1)证明:{}n a 是等差数列;(2)若479,,a a a 成等比数列,求n S 的最小值.2.(2022·全国·统考高考真题)记n S 为数列{}n a 的前n 项和,已知11,n n S a a ⎧⎫=⎨⎬⎩⎭是公差为13的等差数列.(1)求{}n a 的通项公式;(2)证明:121112na a a +++< .3.(2022·全国·统考高考真题)已知{}n a 为等差数列,{}nb 是公比为2的等比数列,且223344a b a b b a -=-=-.(1)证明:11a b =;(2)求集合{}1,1500k m k b a a m =+≤≤中元素个数.4.(2022·北京·统考高考真题)已知12:,,,k Q a a a 为有穷整数数列.给定正整数m ,若对任意的{1,2,,}n m ∈ ,在Q 中存在12,,,,(0)i i i i j a a a a j +++≥ ,使得12i i i i j a a a a n +++++++= ,则称Q 为m -连续可表数列.(1)判断:2,1,4Q 是否为5-连续可表数列?是否为6-连续可表数列?说明理由;(2)若12:,,,k Q a a a 为8-连续可表数列,求证:k 的最小值为4;(3)若12:,,,k Q a a a 为20-连续可表数列,且1220k a a a +++< ,求证:7k ≥.5.(2022·天津·统考高考真题)设{}n a 是等差数列,{}n b 是等比数列,且1122331a b a b a b ==-=-=.(1)求{}n a 与{}n b 的通项公式;(2)设{}n a 的前n 项和为n S ,求证:()1111n n n n n n n S a b S b S b +++++=-;(3)求211(1)nkk k k k a a b +=⎡⎤--⎣⎦∑.6.(2022·浙江·统考高考真题)已知等差数列{}n a 的首项11a =-,公差1d >.记{}n a 的前n 项和为()n S n *∈N .(1)若423260S a a -+=,求n S ;(2)若对于每个n *∈N ,存在实数n c ,使12,4,15n n n n n n a c a c a c +++++成等比数列,求d 的取值范围.7.(2021·全国·统考高考真题)已知数列{}n a 满足11a =,11,,2,.nn n a n a a n ++⎧=⎨+⎩为奇数为偶数(1)记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式;(2)求{}n a 的前20项和.8.(2020·山东·统考高考真题)已知公比大于1的等比数列{}n a 满足24320,8a a a +==.(1)求{}n a 的通项公式;(2)记m b 为{}n a 在区间*(0,]()m m ∈N 中的项的个数,求数列{}m b 的前100项和100S .9.(2020·海南·高考真题)已知公比大于1的等比数列{}n a 满足24320,8a a a +==.(1)求{}n a 的通项公式;(2)求112231(1)n n n a a a a a a -+-+⋯+-.。

数列大题拔高练-高考数学重点专题冲刺演练(解析版)

数列大题拔高练-高考数学重点专题冲刺演练(解析版)

数列大题拔高练-新高考数学复习分层训练(新高考通用)1.(2023·湖北武汉·华中师大一附中校联考模拟预测)数列{}n a 满足11a =,1113n n a a n+=+.(1)设27n nn nb a -=,求{}n b 的最大项;(2)求数列{}n a 的前n 项和n S .2.(2023·安徽蚌埠·统考三模)已知数列{}n a 满足11a =,2121n n a a +=+,2212n n a a -=.(1)求数列{}n a 的通项公式;(2)设12111n nT a a a =+++ ,求证:23n T <.3.(2023·吉林通化·梅河口市第五中学校考模拟预测)已知数列{}n a 满足11a =,1,,,;n n na n n a a n n ++⎧=⎨-⎩为奇数为偶数数列nb 满足2n n b a =.(1)求数列{}n b 的通项公式;(2)求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n S .4.(2023·广东广州·统考一模)已知数列{}n a 的前n 项和为n S ,且221nn n S a +=+(1)求1a ,并证明数列2n n a ⎧⎫⎨⎬⎩⎭是等差数列:(2)若222k k a S <,求正整数k 的所有取值.5.(2023·湖南岳阳·统考二模)已知数列{}n a 的前n 项和为111,1,22n n n n S a S S ++==+(1)证明数列2n n S ⎧⎫⎨⎬⎩⎭是等差数列,并求数列{}n a 的通项公式;(2)设3n n n b S =,若对任意正整数n ,不等式21827n m m b -+<恒成立,求实数m 的取值范围.6.(2023·广东深圳·深圳中学校联考模拟预测)在数列{}n a 中,149a =,()()()2313912n n n n a n a ++⋅+=+.(1)求{}n a 的通项公式;(2)设{}n a 的前n 项和为n S ,证明:525443n nn S +<-.7.(2023·山西·校联考模拟预测)在①n b =11n n n b a a +=;③2nn n b a =,这三个条件中任选一个补充在下面横线上,并解答问题.已知数列{}n a 的前n 项和23322n n S na n n =-+.(1)证明:数列{}n a 是等差数列;(2)若12a =,设___________,求数列{}n b 的前n 项和n T .8.(2023·吉林长春·校联考一模)已知等差数列{}n a 的首项11a =,记{}n a 的前n 项和为n S ,4232140S a a -+=.(1)求数列{}n a 的通项公式;(2)若数列{}n a 公差1d >,令212n n nn n a c a a ++=⋅⋅,求数列{}n c 的前n 项和n T .【答案】(1)21n a n =-或23n a n =-+9.(2023·浙江·校联考三模)已知数列{}n a 是以d 为公差的等差数列,0,n d S ≠为{}n a 的前n 项和.(1)若6336,1S S a -==,求数列{}n a 的通项公式;(2)若{}n a 中的部分项组成的数列{}n m a 是以1a 为首项,4为公比的等比数列,且214a a =,求数列{}n m 的前n 项和n T .10.(2023·山西·统考模拟预测)已知数列{}n a 是正项等比数列,且417a a -=,238a a =.(1)求{}n a 的通项公式;(2)从下面两个条件中选择一个作为已知条件,求数列{}n b 的前n 项和n S .①()21n n b n a =-;②()121log n b n a =+.11.(2023·辽宁沈阳·统考一模)设*n ∈N ,向量()1,1AB n =-,()1,41AC n n =--,n a AB AC =⋅ .(1)令1n n n b a a +=-,求证:数列{}n b 为等差数列;(2)求证:1211134n a a a ++⋅⋅⋅+<.【答案】(1)证明见详解(2)证明见详解【分析】(1)根据平面向量数量积的坐标运算可得22n a n n =+,进而可得23n b n =+,结合等差数列的定义分析证明;(2)利用裂项相消法分析证明.12.(2023·福建厦门·厦门双十中学校考模拟预测)设数列{}n a 的前n 项和为n S .已知11a =,222n n na S n n -=-,*N n ∈.(1)求证:数列{}n a 是等差数列;(2)设数列{}n b 的前n 项和为n T ,且21nn T =-,令2nn na cb =,求数列{}nc 的前n 项和n R .所以1122n n R -++=-.方法二:(裂项)因为()()222121121323222n n n n n n n n n c ---++++++==-,所以()()222321012112131213222322332322222n n n n n n n R ---+++++⨯++⨯++⨯+++=--++-L 13.(2023·山东潍坊·统考一模)已知数列{}n a 为等比数列,其前n 项和为n S ,且满足()2n n S m m R =+∈.(1)求m 的值及数列{}n a 的通项公式;(2)设2log 5n n b a =-,求数列{}n b 的前n 项和n T .14.(2023·辽宁抚顺·统考模拟预测)已知n S 是等差数列{}n a的前n 项和,n T 是等比数列{}n b 的前n 项和,且10a =,11b =,223344S T S T S T +=+=+.(1)求数列{}n a 和{}n b (2)设211nn n i c a n ==⋅∑,求数列11n n c c +⎧⎫⎨⎬⋅⎩⎭的前n 项和n P .15.(2023·湖北·校联考模拟预测)已知数列{}n a 满足()112,(1)02,N n n a n a na n n *-=-+=≥∈.(1)求数列{}n a 的通项公式;(2)设n S 为数列{}n a 的前n 项和,求2023S .2222024=++⋅⋅⋅+=.16.(2023·安徽合肥·校考一模)已知数列{}n a 满足221n n n a a a ++=,13a =,23243a a =.(1)求{}n a 的通项公式;(2)若3log n n b a =,数列{}n b 的前n 项和为n S ,求111S S S ++⋯+.17.(2023·辽宁葫芦岛·统考一模)设等差数列{}n a 的前项和为n S ,已知1239a a a ++=,2421a a ⋅=,等比数列{}n b 满足2334b b +=,234164b b b =.(1)求n S ;(2)设n n c =,求证:1234n c c c c ++++< .18.(2023·山东枣庄·统考二模)已知数列{}n a 的首项13a =,且满足2122n n n a a +++=.(1)证明:{}2nn a -为等比数列;(2)已知2,log ,n n na nb a n ⎧=⎨⎩为奇数为偶数,n T 为{}n b 的前n 项和,求10T .【答案】(1)证明见解析(2)1048【分析】(1)由()11222n n n n a a ++-=--结合定义证明即可;19.(2023·山东聊城·统考一模)已知数列{}n a 满足1322a a a +=,13,2,n n na n a a n +⎧=⎨+⎩为奇数为偶数,数列{}n c 满足21n n c a -=.(1)求数列{}n c 和{}n a 的通项公式;(2)求数列{}n a 的前n 项和n S .20.(2023·江苏·二模)已知数列{}n a 满足12a =-,()1120n n n a na +++=.数列{}n b 满足11b =,1n n n b k b a +=⋅+.(1)求{}n a 的通项公式;(2)证明:当1k ≤时,1132n n n b -+≤-.21.(2023·江苏·统考一模)在数列{}n a 中,若()*1123N n n a a a a a d n +-⋅⋅⋅=∈,则称数列{}n a 为“泛等差数列”,常数d 称为“泛差”.已知数列{}n a 是一个“泛等差数列”,数列{}n b 满足22212123n n n a a a a a a a b =⋅++⋅⋅⋅⋅-⋅+.(1)若数列{}n a 的“泛差”1d =,且1a ,2a ,3a 成等差数列,求1a ;(2)若数列{}n a 的“泛差”1d =-,且112a =,求数列{}nb 的通项n b .22.(2023·辽宁辽阳·统考一模)某体育馆将要举办一场文艺演出,以演出舞台为中心,观众座位依次向外展开共有10排,从第2排起每排座位数比前一排多4个,且第三排共有49个座位.(1)设第n 排座位数为()1,2,,10n a n =L ,求n a 及观众座位的总个数;(2)已知距离演出舞台最远的第10排的演出门票的价格为500元/张,每往前推一排,门票单价为其后一排的1.1倍,若门票售罄,试问该场文艺演出的门票总收入为多少元?(取101.1 2.594=)23.(2023·浙江温州·统考二模)已知{}n a 是首项为1的等差数列,公差{}0,n d b >是首项为2的等比数列,4283,a b a b ==.(1)求{}{},n n a b 的通项公式;(2)若数列{}n b 的第m 项m b ,满足__________(在①②中任选一个条件),*N k ∈,则将其去掉,数列{}n b 剩余的各项按原顺序组成一个新的数列{}n c ,求{}n c 的前20项和20S .①4log m k b a =②31m k b a =+.24.(2023·山西太原·统考一模)已知等差数列{}n a 中,11a =,n S 为{}n a 的前n 项和,且也是等差数列.(1)求n a ;(2)设()*nn S b n a a =∈N ,求数列{}n b 的前n 项和n T .25.(2023·云南红河·统考二模)已知等差数列{}n a 的公差0d >,12a =,其前n 项和为n S ,且______.在①1a ,3a ,11a 成等比数列;②53353S S -=;③221133n n n n a a a a ++-=+这三个条件中任选一个,补充在横线上,并回答下列问题.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足()11nn n b a =+-,求数列{}n b 的前2n 项和2n T .注:如果选择多个条件分别解答,那么按第一个解答计分.26.(2023·辽宁大连·校联考模拟预测)已知数列{}n a 的前n 项之积为()(1)22N n n n S n -*=∈.(1)求数列{}n a 的通项公式;(2)设公差不为0的等差数列{}n b 中,11b =,___________,求数列{}2log 2n bn a +的前n项和n T .请从①224b b =;②358b b +=这两个条件中选择一个条件,补充在上面的问题中并作答.注:如果选择多个条件分别作答,则按照第一个解答计分.27.(2023·山东·烟台二中校联考模拟预测)已知等差数列{}n a 的前n 项和为n S ,且413a =,672S =,数列{}n b 的前n 项和为n T ,且344n n T b =-.(1)求数列{}n a ,{}n b 的通项公式.(2)记()152n n n n a b c +-⋅=,若数列{}nc 的前n 项和为nQ,数列的前n 项和为nR ,探究:n nQ R c +是否为定值?若是,请求出该定值;若不是,请说明理由.28.(2023·湖南常德·统考一模)已知数列{}n a 满足1224444n n n +++=L (*n ∈N ).(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足1n b a a =,求{}n b 的前n 项和n S .29.(2023·山东济宁·统考一模)已知数列{}n a 的前n 项和为n S ,且满足:*111,2(N )n n a na S n n +==+∈.(1)求证:数列1n a n +⎧⎫⎨⎬⎩⎭为常数列;(2)设3123123333n n n a a a a a a a aT =++++ ,求n T .30.(2023·湖南长沙·湖南师大附中校考一模)如图,已知曲线1:(0)1C y x x =>+及曲线21:(0)3C y x x=>.从1C 上的点()n P n +∈N 作直线平行于x 轴,交曲线2C 于点n Q ,再从点n Q 作直线平行于y 轴,交曲线1C 于点1n P +,点n P 的横坐标构成数列{}1102n a a ⎛⎫<< ⎪⎝⎭.(1)试求1n a +与n a 之间的关系,并证明:()21212n n a a n -+<<∈N ;(2)若113a =,求n a 的通项公式.。

高考数学压轴专题最新备战高考《数列》全集汇编及答案解析

高考数学压轴专题最新备战高考《数列》全集汇编及答案解析

新数学高考《数列》复习资料一、选择题1.已知数列}{n a 为等比数列,n S 是它的前n 项和,若2312a a a ⋅=,且4a 与72a 的等差中项为54,则5S =( ). A .35 B .33C .31D .29【答案】C 【解析】试题分析:由题意得,设等比数列的公比为q ,则2231112a a a q a q a =⋅=,所以42a =,又3474452224a a a a q +=+=⨯,解得11,162q a ==,所以5515116(1())(1)2311112a q S q --===--,故选C . 考点:等比数列的通项公式及性质.2.已知数列{}n a 为等比数列,前n 项和为n S ,且12a =,1n n b a =+,若数列{}n b 也是等比数列,则n S =( ) A .2n B .31n - C .2n D .31n -【答案】C 【解析】 【分析】设等比数列{}n a 的公比为q ,写出,n n a b .由数列{}n b 是等比数列,得2213b b b =,求出q ,即求n S . 【详解】设等比数列{}n a 的公比为q ,112,2n n a a q -=∴=Q ,121n n b q -∴=+,13b ∴=,221b q =+,2321b q =+,{}n b Q 也是等比数列, 2213b b b ∴=,即()()2221321q q +=+解得1q =,2,2n n a S n ∴=∴=. 故选:C . 【点睛】本题考查等比数列的性质,属于基础题.3.在各项都为正数的等比数列{}n a 中,若12a =,且1564a a ⋅=,则数列1(1)(1)n n n a a a +⎧⎫⎨⎬--⎩⎭的前n 项和是( ) A .11121n +--B .1121n -+ C .1121n -+ D .1121n -- 【答案】A 【解析】由等比数列的性质可得:2153364,8a a a a ==∴=,则数列的公比:2q ===, 数列的通项公式:112n nn a a q -==,故:()()()()1112111121212121n n n n n n n n a a a +++==-------,则数列()()111n n n a a a +⎧⎫⎪⎪⎨⎬--⎪⎪⎩⎭的前n 项和是:1223111111111121212121212121n n n ++⎛⎫⎛⎫⎛⎫-+-++-=- ⎪ ⎪ ⎪-------⎝⎭⎝⎭⎝⎭L . 本题选择A 选项.点睛:使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.4.在等比数列{}n a 中,已知259,243a a ==,那么{}n a 的前4项和为( ). A .81 B .120C .121D .192【答案】B 【解析】 【分析】根据352a q a =求出公比,利用等比数列的前n 项和公式即可求出. 【详解】Q35227a q a ==, ∴ 3q =∴ 4414(1)3(13)120113a q S q --===--.故选:B【点睛】本题主要考查了等比数列的通项公式,等比数列的前n 项和,属于中档题.5.已知各项均为正数的等比数列{}n a 的前n 项和为n S ,且满足6a ,43a ,5a -成等差数列,则42S S ( ) A .3 B .9 C .10 D .13【答案】C 【解析】 【分析】设{}n a 的公比为0q >,由645,3,a a a -成等差数列,可得260,0q q q --=>,解得q ,再利用求和公式即可得结果. 【详解】设各项均为正数的等比数列{}n a 的公比为0q >,Q 满足645,3,a a a -成等差数列,()2465446,6,0a a a a a q q q ∴=-∴=->, 260,0q q q ∴--=>,解得3q =,则()()4124221313131103131a S S a --==+=--,故选C. 【点睛】本题主要考查等比数列的通项公式与求和公式,属于中档题. 等比数列基本量的运算是等比数列的一类基本题型,数列中的五个基本量1,,,,,n n a q n a S ,一般可以“知二求三”,通过列方程组所求问题可以迎刃而解,解决此类问题的关键是熟练掌握等比数列的有关性质和公式,并灵活应用,在运算过程中,还应善于运用整体代换思想简化运算过程.6.已知数列{}n a 满足:()()2*112,10n n n a a S S n +=+-=∈N ,其中n S 为数列{}n a 的前n 项和.设()()()12111()1n S S S f n n +++=+L ,若对任意的n 均有(1)()f n kf n +<成立,则k 的最小整数值为( ) A .2 B .3C .4D .5【答案】A 【解析】 【分析】当1n ≥时,有条件可得()211n n n nS S S S +--=-,从而111n n nS S S +--=,故111111n n S S +-=--,得出 11n S ⎧⎫⎨⎬-⎩⎭是首项、公差均为1的等差数列,从而求出n S 【详解】当1n ≥时,有条件可得()211n n n nS S S S +--=-,从而111n n nS S S +--=,故111111111n n n n n S S S S S +-=-=----,又1111121S ==--,11n S ⎧⎫∴⎨⎬-⎩⎭是首项、公差均为1的等差数列,11n n S ∴=-,1n n S n +=,由()()()12111()1n S S S f n n +++=+L , 得()1(1)1(1)23152,2()2223n n S f n n f n n n n +++++⎡⎫===-∈⎪⎢+++⎣⎭, 依题意知(1)()f n k f n +>, min 2k ∴=.故选:A 【点睛】本题考查数列的综合应用.属于中等题.7.已知首项为1的正项等比数列{}n a 的前n 项和为n S ,4a -、3a 、5a 成等差数列,则2020S 与2020a 的关系是( )A .2020202021S a =+B .2020202021S a =-C .2020202041S a =+D .2020202043S a =-【答案】B 【解析】 【分析】求出等比数列{}n a 的公比q ,然后求出2020S 和2020a ,由此可得出结论. 【详解】设等比数列{}n a 的公比为q ,则0q >,4a -Q 、3a 、5a 成等差数列,3542a a a ∴=-,所以,220q q --=,0q >Q ,解得2q =,20192019202012a a q∴==,()20201202020201211a q S q-==--,因此,2020202021S a =-.故选:B. 【点睛】本题考查等比数列求和公式以及通项公式的应用,涉及等差中项的应用,考查计算能力,属于中等题.8.在古希腊,毕达哥拉斯学派把1,3,6,10,15,21,28,36,45,…这些数叫做三角形数.设第n 个三角形数为n a ,则下面结论错误的是( ) A .1(1)n n a a n n --=> B .20210a =C .1024是三角形数D .123111121n n a a a a n +++⋯+=+ 【答案】C 【解析】 【分析】对每一个选项逐一分析得解. 【详解】∵212a a -=,323a a -=,434a a -=,…,由此可归纳得1(1)n n a a n n --=>,故A 正确;将前面的所有项累加可得1(1)(2)(1)22n n n n n a a -++=+=,∴20210a =,故B 正确; 令(1)10242n n +=,此方程没有正整数解,故C 错误; 1211111111212231n a a a n n ⎡⎤⎛⎫⎛⎫⎛⎫+++=-+-++- ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦L L 122111n n n ⎛⎫=-= ⎪++⎝⎭,故D 正确. 故选C 【点睛】本题主要考查累加法求通项,考查裂项相消法求和,意在考查学生对这些知识的理解掌握水平和分析推理能力.9.函数()f x 对任意正整数,a b 满足条件()()()f a b f a f b +=⋅,且()12f =,(2)(4)(6)(2018)(1)(3)(5)(2017)f f f f f f f f ++++L 的值是( )A .1008B .1009C .2016D .2018【答案】D 【解析】 【分析】由题意结合()()()f a b f a f b +=⋅求解()()()()()()()()24620181352017f f f f f f f f ++++L 的值即可.【详解】在等式()()()f a b f a f b +=⋅中,令1b =可得:()()()()112f a f a f f a +==, 则()()12f a f a +=,据此可知: ()()()()()()()()24620181352017f f f f f f f f ++++L 2222210092018=++++=⨯=L .本题选择D 选项. 【点睛】本题主要考查抽象函数的性质,函数的求值方法等知识,意在考查学生的转化能力和计算求解能力.10.已知等差数列{}n a 的前n 项和为n S ,若34322128,6a a S ⋅==,则数列{}(1)nn a -的前40项和为( ) A .0 B .20 C .40 D .80【答案】B 【解析】 【分析】先由题意求出34a +a =7,然后利用等差数列的前n 项和公式表示出134a a +=,前后两式作差,求出公差,进而代入求出首项,最后即得n a n =,代入题目中{}(1)nn a -,两两组合可求新数列前40项的和. 【详解】 依题意,()133362a a S +== ,∴134a a +=,①∵3422128a a ⋅=,即342128a a +=, ∴34a +a =7,② ②-①得33d =, ∴1d =, ∴11,n a a n ==, ∴(1)(1)n n n a n -=-,∴{}(1)nn a -的前40项和40(12)(34)(3940)20S -++-++⋅⋅⋅+-+==,故选:B . 【点睛】本题考查了指数运算:同底数幂相乘,底数不变,指数相加;主要考查等差数列的前n 和公式,等差中项的性质等等,以及常见的摆动数列的有限项求和,可以采用的方法为:分组求和法,两两合并的方法等等,对学生的运算能力稍有要求,为中等难度题11.在数列{}n a 中,若10a =,12n n a a n +-=,则23111na a a +++L 的值 A .1n n- B .1n n+ C .11n n -+ D .1n n + 【答案】A 【解析】分析:由叠加法求得数列的通项公式(1)n a n n =-,进而即可求解23111na a a +++L 的和. 详解:由题意,数列{}n a 中,110,2n n a a a n +=-=,则112211()()()2[12(1)](1)n n n n n a a a a a a a a n n n ---=-+-++-+=+++-=-L L , 所以1111(1)1n a n n n n==--- 所以231111111111(1)()()12231n n a a a n n n n-+++=-+-++-=-=-L L ,故选A. 点睛:本题主要考查了数列的综合问题,其中解答中涉及到利用叠加法求解数列的通项公式和利用裂项法求解数列的和,正确选择方法和准确运算是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与运算能力.12.已知等差数列{}n a 的前n 项和为n S ,若816S =,61a =,则数列{}n a 的公差为( ) A .32B .32-C .23D .23-【答案】D 【解析】 【分析】根据等差数列公式直接计算得到答案. 【详解】 依题意,()()183********a a a a S ++===,故364a a +=,故33a =,故63233a a d -==-,故选:D . 【点睛】 本题考查了等差数列的计算,意在考查学生的计算能力.13.等差数列{}n a 中,1599a a a ++=,它的前21项的平均值是15,现从中抽走1项,余下的20项的平均值仍然是15,则抽走的项是( ) A .11a B .12aC .13aD .14a【答案】A 【解析】 【分析】由等差数列的性质可知5113,15a a ==,再根据前21项的均值和抽取一项后的均值可知抽取的一项的大小为15,故可确定抽走的是哪一项. 【详解】因为1952a a a +=,所以539a =即53a =. 有211521S =得1115a =, 设抽去一项后余下的项的和为S ,则2015300S =⨯=,故抽取的一项的大小为11, 所以抽走的项为11a ,故选A. 【点睛】一般地,如果{}n a 为等差数列,n S 为其前n 项和,则有性质: (1)若,,,*,m n p q N m n p q ∈+=+,则m n p q a a a a +=+; (2)()1,1,2,,2k n k n n a a S k n +-+==L 且()2121n n S n a -=- ;(3)2n S An Bn =+且n S n ⎧⎫⎨⎬⎩⎭为等差数列;(4)232,,,n n n n n S S S S S --L 为等差数列.14.在一个数列中,如果*n N ∀∈,都有12n n n a a a k ++=(k 为常数),那么这个数列叫做等积数列,k 叫做这个数列的公积.已知数列{}n a 是等积数列,且11a =,22a =,公积为8,则122020a a a ++⋅⋅⋅+=( )A .4711B .4712C .4713D .4715【答案】B 【解析】 【分析】计算出3a 的值,推导出()3n n a a n N *+=∈,再由202036731=⨯+,结合数列的周期性可求得数列{}n a 的前2020项和. 【详解】由题意可知128n n n a a a ++=,则对任意的n *∈N ,0n a ≠,则1238a a a =,31284a a a ∴==, 由128n n n a a a ++=,得1238n n n a a a +++=,12123n n n n n n a a a a a a +++++∴=,3n n a a +∴=,202036731=⨯+Q ,因此,()1220201231673673714712a a a a a a a ++⋅⋅⋅+=+++=⨯+=.故选:B. 【点睛】本题考查数列求和,考查了数列的新定义,推导出数列的周期性是解答的关键,考查推理能力与计算能力,属于中等题.15.根据下面的程序框图,输出的S 的值为( )A .1007B .1009C .0D .-1【答案】A 【解析】 【分析】按照程序框图模拟运行即可得解. 【详解】1i =,1112x ==--,0(1)1S =+-=-;2i =,111(1)2x ==--, 11122S =-+=-;3i =,12112x ==-,13222S =-+=;4i =,1112x ==--,31(1)22S =+-=,…, 由此可知,运行程序过程中,x 呈周期性变化,且周期为3,所以输出112672110072S ⎛⎫=-++⨯-= ⎪⎝⎭. 故选A 【点睛】本题主要考查程序框图和数列的周期性,意在考查学生对这些知识的理解掌握水平和分析推理能力.16.等比数列{}n a 共有21n +项,其中11a =,偶数项和为170,奇数项和为341,则n =( )A .3B .4C .7D .9【答案】B 【解析】由题意知1321...341n a a a ++++= ,可得3211...341340n a a a +++=-=,又因为242...170,n a a a +++= 所以321242 (340)2 (170)n n a a q a a a +++===+++ ,21211234117051112n n S ++-==+=- ,解得4n = ,故选B.17.数列{}n a 满足11a =,对任意的*n N ∈都有11n n a a n +=++,则122016111a a a +++=L ( ) A .20152016 B .40322017C .40342017D .20162017【答案】B 【解析】 【分析】首先根据题设条件,由11n n a a n +=++,可得到递推关系为11n n a a n +-=+;接下来利用累加法可求得()12n n n a +=,从而()1211211n a n n n n ⎛⎫==- ⎪++⎝⎭,由此就可求得122016111a a a +++L 的值. 【详解】因为111n n n a a a n a n +=++=++, 所以11n n a a n +-=+, 用累加法求数列{}n a 的通项得:()()1211n n n a a a a a a -=+-+⋯+-()1122n n n +=++⋯+=, 所以()1211211n a n n n n ⎛⎫==- ⎪++⎝⎭, 于是1232016111111111212222320162017a a a a ⎛⎫⎛⎫⎛⎫ +++⋯+=-+-+⋯+-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭121201*********⎛⎫==- ⎪⎝⎭. 故选:B. 【点睛】本题是一道考查数列的题目,掌握数列的递推关系以及求解前n 项和的方法是解答本题的关键,属于常考题.18.设函数()221xf x =+,利用课本(苏教版必修5)中推导等差数列前n 项和的方法,求得()()()()()54045f f f f f -+-+⋅⋅⋅++⋅⋅⋅++的值为( ) A .9 B .11C .92D .112【答案】B 【解析】 【分析】先计算出()()f x f x +-的值,然后利用倒序相加法即可计算出所求代数式的值. 【详解】()221x f x =+Q ,()()()22222212121221xx x x x x f x f x --⋅∴+-=+=+++++()2122222211221xx x x x +⋅=+==+++, 设()()()()()54045S f f f f f =-+-+⋅⋅⋅++⋅⋅⋅++, 则()()()()()54045S f f f f f =+++++-+-L L ,两式相加得()()2115511222S f f ⎡⎤=⨯+-=⨯=⎣⎦,因此,11S =. 故选:B. 【点睛】本题考查函数值的和的求法,注意运用倒序相加法,求得()()2f x f x +-=是解题的关键,考查化简运算能力,属于中档题.19.{}n a 为等差数列,公差为d ,且01d <<,5()2k a k Z π≠∈,223557sin 2sin cos sin a a a a +⋅=,函数()sin(4)(0)f x d wx d w =+>在20,3π⎛⎫⎪⎝⎭上单调且存在020,3x π⎛⎫∈ ⎪⎝⎭,使得()f x 关于0(,0)x 对称,则w 的取值范围是( ) A .20,3⎛⎤ ⎥⎝⎦B .30,2⎛⎤ ⎥⎝⎦C .24,33⎛⎤⎥⎝⎦D .33,42⎛⎤ ⎥⎝⎦【答案】D 【解析】 【分析】推导出sin4d =1,由此能求出d ,可得函数解析式,利用在203x π⎛⎫∈ ⎪⎝⎭,上单调且存在()()0020203x f x f x x π⎛⎫∈+-= ⎪⎝⎭,,,即可得出结论. 【详解】∵{a n }为等差数列,公差为d ,且0<d <1,a 52k π≠(k ∈Z ), sin 2a 3+2sin a 5•cos a 5=sin 2a 7, ∴2sin a 5cos a 5=sin 2a 7﹣sin 2a 3=2sin 372a a +cos 732a a -•2cos 372a a +sin 732a a -=2sin a 5cos2d •2cos a 5sin2d , ∴sin4d =1,∴d 8π=.∴f (x )8π=cosωx ,∵在203x π⎛⎫∈ ⎪⎝⎭,上单调 ∴23ππω≥, ∴ω32≤; 又存在()()0020203x f x f x x π⎛⎫∈+-= ⎪⎝⎭,,, 所以f (x )在(0,23π)上存在零点,即223ππω<,得到ω34>.故答案为33, 42⎛⎤ ⎥⎝⎦故选D【点睛】本题考查等差数列的公差的求法,考查三角函数的图象与性质,准确求解数列的公差是本题关键,考查推理能力,是中档题.20.执行如图所示的程序框图,若输入,则输出的S的值是A.B.C.D.【答案】B【解析】【分析】本题首先可以通过程序框图明确输入的数值以及程序框图中所包含的关系式,然后按照程序框图所包含的关系式进行循环运算,即可得出结果.【详解】由程序框图可知,输入,,,第一次运算:,;第二次运算:,;第三次运算:,;第四次运算:,;第五次运算:,;第六次运算:,;第七次运算:,;第八次运算:,;第九次运算:,;第十次运算:,,综上所述,输出的结果为,故选B.【点睛】本题考查程序框图的相关性质,主要考查程序框图的循环结构以及裂项相消法的使用,考查推理能力,提高了学生从题目中获取信息的能力,体现了综合性,提升了学生的逻辑推理、数学运算等核心素养,是中档题.。

高考数学压轴专题最新备战高考《数列》知识点总复习含答案

高考数学压轴专题最新备战高考《数列》知识点总复习含答案

新高中数学《数列》专题解析一、选择题1.已知{}n a 为等差数列,135105a a a ++=,24699a a a ++=,则20a 等于( ).A .1-B .1C .3D .7【答案】B 【解析】 【分析】利用等差数列的通项公式,列出方程组,求出首项和公差,由此能求出20a . 【详解】解:{}n a Q 为等差数列,135105a a a ++=,24699a a a ++=, 13533105a a a a ∴++==,2464399a a a a ++==, 335a ∴=,433a =,4333352d a a =-=-=-, 13235439a a d =-=+=, 20139391921a a d ∴=+=-⨯=.故选:B 【点睛】本题考查等差数列的第20项的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.2.若两个等差数列{}n a 、{}n b 的前n 项和分别为n A 、n B ,且满足2131n n A n B n -=+,则371159a a ab b +++的值为( )A .3944B .58C .1516D .1322【答案】C 【解析】 【分析】利用等差中项的性质将371159a a ab b +++化简为7732a b ,再利用数列求和公式求解即可. 【详解】11337117131135971313()3333213115213()22223131162a a a a a a A b b b b b B +++⨯-==⨯=⨯=⨯=++⨯+, 故选:C. 【点睛】本题考查了等差中项以及数列求和公式的性质运用,考查了推理能力与计算能力,属于中档题.3.若{}n a 为等差数列,n S 是其前n 项和,且11223S π=,则6tan()a 的值为( ) A .3 B .3-C .3 D .3-【答案】B 【解析】 【分析】由11162a a a +=,即可求出6a 进而求出答案. 【详解】 ∵()11111611221123a a S a π+===,∴623a π=,()62tan tan 33a π⎛⎫==- ⎪⎝⎭, 故选B. 【点睛】本题主要考查等差数列的性质,熟记等差数列的性质以及等差数列前n 项和性质即可,属于基础题型.4.执行下面程序框图输出S 的值为( )A .2542B .3764C .1730D .67【答案】A 【解析】【分析】模拟执行程序框图,依此写出每次循环得到的,S i 的值并判断5i >是否成立,发现当6i =,满足5i >,退出循环,输出运行的结果111111324354657S =++⨯⨯⨯⨯⨯++,利用裂项相消法即可求出S . 【详解】 由题意可知, 第1次循环时113S =⨯,2i =,否; 第2次循环111324S =+⨯⨯,3i =,否; 第3次循环时111132435S =++⨯⨯⨯,4i =,否; 第4次循环时111113243546S =++⨯⨯⨯⨯+,5i =,否;第5次循环时111111324354657S =+++⨯⨯⨯⨯⨯+,6i =,是; 故输出111111324354657S =++⨯⨯⨯⨯⨯++111111111112324354657⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-+-+-+- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦= 1111251226742⎛⎫=+--=⎪⎝⎭ 故选:A. 【点睛】本题主要考查程序框图中的循环结构,同时考查裂项相消法求和,属于基础题.5.已知{}n a 是等差数列,1010a =,其前10项和1070S =,则其公差为( ) A .23B .32C .23-D .32-【答案】A 【解析】 【分析】根据等差数列的通项公式和前n 项和公式,列方程组求解即得. 【详解】设等差数列{}n a 的公差为d .101010,70a S ==Q ,1191010910702a d a d +=⎧⎪∴⎨⨯+=⎪⎩解得23d =. 故选:A . 【点睛】本题考查等差数列的通项公式和前n 项和公式,属于基础题.6.等差数列的首项为125,且从第10项开始为比1大的项,则公差d 的取值范围是( ) A .(0,)+∞ B .8,75⎛⎫+∞⎪⎝⎭C .83,7525⎛⎫⎪⎝⎭ D .83,7525⎛⎤⎥⎝⎦ 【答案】D 【解析】 【分析】根据题意可知101a >,91a ≤,把1a 的值代入列不等式解得即可. 【详解】由题意,设数列{}n a 的公差为d ,首项1125a =,则10911a a >⎧⎨≤⎩,即101919181a a d a a d =+>⎧⎨=+≤⎩,解得837525d <≤. 故选:D. 【点睛】本题主要考查了等差数列的通项公式的应用,要熟练记忆等差数列的通项公式.7.设{a n }为等比数列,{b n }为等差数列,且S n 为数列{b n }的前n 项和.若a 2=1,a 10=16且a 6=b 6,则S 11=( ) A .20 B .30C .44D .88【答案】C 【解析】 【分析】设等比数列{a n }的公比为q ,由a 2=1,a 10=16列式求得q 2,进一步求出a 6,可得b 6,再由等差数列的前n 项和公式求解S 11. 【详解】设等比数列{a n }的公比为q ,由a 2=1,a 10=16,得810216aqa==,得q2=2.∴4624a a q==,即a6=b6=4,又S n为等差数列{b n}的前n项和,∴()1111161111442b bS b+⨯===.故选:C.【点睛】本题考查等差数列与等比数列的通项公式及性质,训练了等差数列前n项和的求法,是中档题.8.科赫曲线是一种外形像雪花的几何曲线,一段科赫曲线可以通过下列操作步骤构造得到,任画一条线段,然后把它均分成三等分,以中间一段为边向外作正三角形,并把中间一段去掉,这样,原来的一条线段就变成了4条小线段构成的折线,称为“一次构造”;用同样的方法把每条小线段重复上述步骤,得到16条更小的线段构成的折线,称为“二次构造”,…,如此进行“n次构造”,就可以得到一条科赫曲线.若要在构造过程中使得到的折线的长度达到初始线段的1000倍,则至少需要通过构造的次数是().(取lg30.4771≈,lg20.3010≈)A.16 B.17 C.24 D.25【答案】D【解析】【分析】由折线长度变化规律可知“n次构造”后的折线长度为43na⎛⎫⎪⎝⎭,由此得到410003n⎛⎫≥⎪⎝⎭,利用运算法则可知32lg2lg3n≥⨯-,由此计算得到结果.【详解】记初始线段长度为a,则“一次构造”后的折线长度为43a,“二次构造”后的折线长度为24 3a⎛⎫ ⎪⎝⎭,以此类推,“n次构造”后的折线长度为43na⎛⎫⎪⎝⎭,若得到的折线长度为初始线段长度的1000倍,则410003na a⎛⎫≥⎪⎝⎭,即410003n⎛⎫≥⎪⎝⎭,()()44lg lg lg 4lg32lg 2lg3lg1000333nn n n ⎛⎫∴==-=-≥= ⎪⎝⎭,即324.0220.30100.4771n ≥≈⨯-,∴至少需要25次构造.故选:D . 【点睛】本题考查数列新定义运算的问题,涉及到对数运算法则的应用,关键是能够通过构造原则得到每次构造后所得折线长度成等比数列的特点.9.已知数列{}n a 的前n 项和()2*23n S n n n N=+∈,则{}na 的通项公式为( )A .21n a n =+B .21n a n =-C .41n a n =+D .41n a n =-【答案】C 【解析】 【分析】首先根据223n S n n =+求出首项1a 的值,然后利用1n n n a S S -=-求出2n ≥时n a 的表达式,然后验证1a 的值是否适合,最后写出n a 的式子即可. 【详解】因为223n S n n =+,所以,当2n ≥时,22123[2(1)3(1)]41n n n a S S n n n n n -=-=+--+-=+,当1n =时,11235==+=a S ,上式也成立, 所以41n a n =+, 故选C. 【点睛】该题考查的是有关数列的通项公式的求解问题涉及到的知识点有数列的项与和的关系,即11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,算出之后再判断1n =时对应的式子是否成立,最后求得结果.10.已知{}n a 是单调递增的等比数列,满足352616,17a a a a ⋅=+=,则数列{}n a 的前n 项和n S = A .122n+ B .122n- C .1122n -+D .1122n -- 【答案】D 【解析】【分析】由等比数列的性质和韦达定理可得26a a , 为方程217160x x -+= 的实根,解方程可得q 和a 1,代入求和公式计算可得. 【详解】∵352616,17a a a a ⋅=+=,∴由等比数列的性质可得26261617a a a a ⋅=+=, ,26a a , 为方程217160x x -+= 的实根解方程可得2626116161a a a a ====,,或, , ∵等比数列{a n }单调递增,∴26116a a ==,,∴1122q a ,== ,∴()1112122122nn n S ----== 故选D . 【点睛】本题考查等比数列的求和公式,涉及等比数列的性质和一元二次方程的解法,属中档题.11.已知数列{}n a 的前n 项和为212343n S n n =++(*N n ∈),则下列结论正确的是( )A .数列{}n a 是等差数列B .数列{}n a 是递增数列C .1a ,5a ,9a 成等差数列D .63S S -,96S S -,129S S -成等差数列【答案】D 【解析】 【分析】由2*123()43n S n n n N =++∈,2n …时,1n n n a S S -=-.1n =时,11a S =.进而判断出正误. 【详解】解:由2*123()43n S n n n N =++∈,2n ∴…时,2211212153[(1)(1)3]4343212n n n a S S n n n n n -=-=++--+-+=+.1n =时,114712a S ==,1n =时,15212n a n =+,不成立.∴数列{}n a 不是等差数列.21a a <,因此数列{}n a 不是单调递增数列.5191547154322(5)(9)021*******a a a --=⨯⨯+--⨯+=-≠,因此1a ,5a ,9a 不成等差数列.631535(456)32124S S -=⨯+++⨯=.961553(789)32124S S -=⨯+++⨯=.1291571(101112)32124S S -=⨯+++⨯=.Q53235710444⨯--=, 63S S ∴-,96S S -,129S S -成等差数列.故选:D . 【点睛】本题考查了等差数列的通项公式与求和公式、数列递推关系,考查了推理能力与计算能力,属于中档题.12.在数列{}n a 中,1112,1n na a a +=-=-,则2016a 的值为A .-2B .13 C .12 D .32【答案】B 【解析】由111n na a +=-,得2111111111n n n na a a a ++=-=-=--. 所以32111111n n n na a a a ++=-=-=-. 即数列{}n a 以3为周期的周期数列. 所以2016311113a a a ===-. 故选B.点睛:数列的递推关系是给出数列的一种方法,根据给出的初始值和递推关系可以依次写出这个数列的各项,由递推关系求数列的通项公式,常用的方法有:①求出数列的前几项,再归纳猜想出数列的一个通项公式;②将已知递推关系式整理、变形,变成等差、等比数列,或用累加法、累乘法、迭代法求通项,本题是通过迭代得到了数列的周期性.13.在等差数列{}n a 中,3a ,15a 是方程2650x x -+=的根,则17S 的值是( )A .41B .51C .61D .68【答案】B 【解析】 【分析】由韦达定理得3156a a +=,由等差数列的性质得117315a a a a +=+,再根据等差数列的前n 项和公式求17S . 【详解】在等差数列{}n a 中,3a ,15a 是方程2650x x -+=的根,3156a a ∴+=.()()11731517171717651222a a a a S ++⨯∴====. 故选:B . 【点睛】本题考查等差数列的性质和前n 项和公式,属于基础题.14.一对夫妇为了给他们的独生孩子支付将来上大学的费用,从孩子一周岁生日开始,每年到银行储蓄a 元一年定期,若年利率为r 保持不变,且每年到期时存款(含利息)自动转为新的一年定期,当孩子18岁生日时不再存入,将所有存款(含利息)全部取回,则取回的钱的总数为( ) A .17(1)a r + B .17[(1)(1)]ar r r +-+C .18(1)a r +D .18[(1)(1)]ar r r+-+【答案】D 【解析】 【分析】由题意可得:孩子18岁生日时将所有存款(含利息)全部取回,可以看成是以(1)a r +为首项,(1)r +为公比的等比数列的前17项的和,再由等比数列前n 项和公式求解即可. 【详解】 解:根据题意,当孩子18岁生日时,孩子在一周岁生日时存入的a 元产生的本利合计为17(1)a r +, 同理:孩子在2周岁生日时存入的a 元产生的本利合计为16(1)a r +, 孩子在3周岁生日时存入的a 元产生的本利合计为15(1)a r +,⋯⋯孩子在17周岁生日时存入的a 元产生的本利合计为(1)a r +,可以看成是以(1)a r +为首项,(1)r +为公比的等比数列的前17项的和, 此时将存款(含利息)全部取回,则取回的钱的总数:17171618(1)[(1)1](1)(1)(1)[(1)(1)]11a r r aS a r a r a r r r r r++-=++++⋯⋯++==+-++-;故选:D . 【点睛】本题考查了不完全归纳法及等比数列前n 项和,属中档题.15.在递减等差数列{}n a 中,21324a a a =-.若113a =,则数列11{}n n a a +的前n 项和的最大值为 ( ) A .24143B .1143C .2413D .613【答案】D 【解析】设公差为,0d d < ,所以由21324a a a =-,113a =,得213(132)(13)42d d d +=+-⇒=- (正舍),即132(1)152n a n n =--=- , 因为111111()(152)(132)2215213n n a a n n n n +==----- ,所以数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和等于1111116()()213213213261313n --≤--=-⨯- ,选D. 点睛:裂项相消法是指将数列的通项分成两个式子的代数和的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如1n n c a a +⎧⎫⎨⎬⎩⎭(其中{}n a 是各项均不为零的等差数列,c 为常数)的数列. 裂项相消法求和,常见的有相邻两项的裂项求和(如本例),还有一类隔一项的裂项求和,如1(1)(3)n n ++或1(2)n n +.16.在等差数列{}n a 中,其前n 项和是n S ,若90S >,100S <,则在912129,,,S S S a a a ⋯中最大的是( ) A .11S a B .88S a C .55S a D .99S a 【答案】C 【解析】 【分析】由题意知5600a a >,< .由此可知569121256900...0,0,...0S S S S Sa a a a a ,,,>>><<,所以在912129...S S S a a a ,,,中最大的是55S a . 【详解】 由于191109510569()10()9050222a a a a S a S a a ++====+>,()< , 所以可得5600a a >,<. 这样569121256900...0,0,...0S S S S S a a a a a ,,,>>><<, 而125125S S S a a a ⋯⋯<<<,>>>>0, , 所以在912129...S S S a a a ,,,中最大的是55S a . 故选C .【点睛】本题考查等数列的性质和应用,解题时要认真审题,仔细解答.属中档题.17.正项等比数列{}n a 中的1a 、4039a 是函数()3214633f x x x x =-+-的极值点,则2020a =( )A .1-B .1 CD .2 【答案】B【解析】【分析】根据可导函数在极值点处的导数值为0,得出140396a a =,再由等比数列的性质可得.【详解】解:依题意1a 、4039a 是函数()3214633f x x x x =-+-的极值点,也就是()2860f x x x '=-+=的两个根∴140396a a =又{}n a是正项等比数列,所以2020a =∴20201a ==.故选:B【点睛】本题主要考查了等比数列下标和性质以应用,属于中档题.18.等差数列{}n a 中,1599a a a ++=,它的前21项的平均值是15,现从中抽走1项,余下的20项的平均值仍然是15,则抽走的项是( )A .11aB .12aC .13aD .14a【答案】A【解析】【分析】 由等差数列的性质可知5113,15a a ==,再根据前21项的均值和抽取一项后的均值可知抽取的一项的大小为15,故可确定抽走的是哪一项.【详解】因为1952a a a +=,所以539a =即53a =. 有211521S =得1115a =, 设抽去一项后余下的项的和为S ,则2015300S =⨯=,故抽取的一项的大小为11, 所以抽走的项为11a ,故选A.【点睛】一般地,如果{}n a 为等差数列,n S 为其前n 项和,则有性质:(1)若,,,*,m n p q N m n p q ∈+=+,则m n p q a a a a +=+;(2)()1,1,2,,2k n k n n a a S k n +-+==L 且()2121n n S n a -=- ; (3)2n S An Bn =+且n S n ⎧⎫⎨⎬⎩⎭为等差数列; (4)232,,,n n n n n S S S S S --L 为等差数列.19.根据下面的程序框图,输出的S 的值为( )A .1007B .1009C .0D .-1【答案】A【解析】【分析】按照程序框图模拟运行即可得解.【详解】1i =,1112x ==--,0(1)1S =+-=-;2i =,111(1)2x ==--, 11122S =-+=-;3i =,12112x ==-, 13222S =-+=;4i =,1112x ==--, 31(1)22S =+-=,…, 由此可知,运行程序过程中,x 呈周期性变化,且周期为3, 所以输出112672110072S ⎛⎫=-++⨯-= ⎪⎝⎭. 故选A【点睛】本题主要考查程序框图和数列的周期性,意在考查学生对这些知识的理解掌握水平和分析推理能力.20.等比数列{}n a 共有21n +项,其中11a =,偶数项和为170,奇数项和为341,则n =( )A .3B .4C .7D .9 【答案】B【解析】由题意知1321...341n a a a ++++= ,可得3211...341340n a a a +++=-=,又因为242...170,n a a a +++= 所以321242...3402 (170)n n a a q a a a +++===+++ ,21211234117051112n n S ++-==+=- ,解得4n = ,故选B.。

2024年高考数学专项突破数列大题压轴练(解析版)

2024年高考数学专项突破数列大题压轴练(解析版)

数列大题压轴练-新高考数学复习分层训练(新高考通用)1.(2023·云南曲靖·宣威市第七中学校考模拟预测)记n S 为数列{}n a 的前n 项和,n T 为数列{}n S 的前n 项和,已知2n n S T +=.(1)求证:数列{}n S 是等比数列;(2)求数列{}n na 的前n 项和n A .2.(2023·辽宁铁岭·校联考模拟预测)已知数列{}n a 中,11a =,214a =,且1(1)(2,3,4,)nn na n n a n a +=-=⋅⋅⋅-.(1)设*111()n n b n N a +=-∈,试用n b 表示1n b +,并求{}n b 的通项公式;(2)设*1sin 3()cos cos n n n n c N b b +=∈,求数列{}n c 的前n 项和n S .3.(2023·湖南株洲·统考一模)数列{}n a 满足13a =,212n n n a a a +-=.(1)若21n bn a =+,求证:{}n b 是等比数列.(2)若1n nnc b =+,{}n c 的前n 项和为n T ,求满足100n T <的最大整数n .4.(2023·河北衡水·河北衡水中学校考模拟预测)已知数列{}n a 满足21n n n a xa ya ++=+()N n +∈,11a =,22a =,n S 为数列{}n a 前n 项和.(1)若2x =,1y =-,求n S 的通项公式;(2)若1x y ==,设n T 为n a 前n 项平方和,证明:214n n n T S S -<恒成立.5.(2023·山西朔州·怀仁市第一中学校校考二模)已知数列{}n a 满足13a =,且12,1,n n na n a a n +⎧=⎨-⎩是偶数是奇数.(1)设221n n n b a a -=+,证明:{}3n b -是等比数列;(2)设数列{}n a 的前n 项和为n S ,求使得不等式2022n S >成立的n 的最小值.6.(2022春·河北衡水·高三校联考阶段练习)已知正项数列{}n a 的前n 项和为n S ,且满足11a =,23a =,2132n n n a a a ++=-,数列{}n c 满足()22221232341n c c c n c n +++++= .2024年高考数学专项突破数列大题压轴练(解析版)(1)求出{}n a ,{}n c 的通项公式;(2)设数列()()1221log 1n n c n a +⎧⎫⋅+⎪⎪⎨⎬+⎡⎤⎪⎪⎣⎦⎩⎭的前n 项和为n T ,求证:516<n T .7.(2022秋·河北衡水·高三河北衡水中学校考阶段练习)已知数列{}n a 的前n 项和n S 满足36S =,2n n S n na =+,*n ∈N .(1)求{}n a 的通项公式;(2)数列{}n b ,{}n c ,{}n d 满足()21211n n n a b a +=+-,12121n n n n n c b b b b --= ,且2nn nc d n =⋅,求数列{}n d 的前n 项和n T .8.(2023·广东·校联考模拟预测)已知数列{}n a 的前n 项和为n S ,且312323n S S S nS n +++⋅⋅⋅+=.(1)求数列{}n a 的通项公式;(2)若n n b na =,且数列{}n b 的前n 项和为n T ,求证:当3n ≥时,()311421n n n T n +≤+--.9.(2022秋·山东青岛·高三山东省莱西市第一中学校考阶段练习)对于项数为m 的数列{}n a ,若满足:121m a a a ≤<<< ,且对任意1i j m ≤≤≤,i j a a ⋅与j ia a 中至少有一个是{}n a 中的项,则称{}n a 具有性质P .(1)如果数列1a ,2a ,3a ,4a 具有性质P ,求证:11a =,423a a a =⋅;(2)如果数列{}n a 具有性质P ,且项数为大于等于5的奇数,试判断{}n a 是否为等比数列?并说明理由.10.(2022秋·山东青岛·高三统考期末)记数列{}n a 的前n 项和为n S ,11a =,______.给出下列两个条件:条件①:数列{}n a 和数列{}1n S a +均为等比数列;条件②:1121222n n n n a a a na -+++⋅⋅⋅+=.试在上面的两个条件中任选一个,补充在上面的横线上,完成下列两问的解答:(注:如果选择多个条件分别解答,按第一个解答计分.)(1)求数列{}n a 的通项公式;(2)记正项数列{}n b 的前n 项和为n T ,12b a =,23b a =,14n n n T b b +=⋅,求211(1)ni i i i b b +=⎡⎤-⎣⎦∑.11.(2022·湖北·黄冈中学校联考模拟预测)已知数列{}n a 满足0n a ≠,*N n ∈.(1)若2210n n n a a ka ++=>且0n a >.(ⅰ)当{}lg n a 成等差数列时,求k 的值;(ⅱ)当2k =且11a =,4a =2a 及n a 的通项公式.(2)若21312n n n n a a a a +++=-,11a =-,20a <,[]34,8a ∈.设n S 是{}n a 的前n 项之和,求2020S 的最大值.12.(2022秋·湖南长沙·高三校考阶段练习)已知数列{}n a 的前n 项和1122n n n S a -⎛⎫=--+ ⎪⎝⎭(n *∈N ),数列{}n b 满足2nn n b a =.(1)求证:数列{}n b 是等差数列,并求数列{}n a 的通项公式;(2)设数列{}n c 满足()()131n nn n a c n λ--=-(λ为非零整数,n *∈N ),问是否存在整数λ,使得对任意n *∈N ,都有1n n c c +>.13.(2022秋·湖南衡阳·高三衡阳市一中校考期中)已知n S 为数列{}n a 的前n 项和,25a =,14n n n S S a +=++;{}n b 是等比数列,29b =,1330bb +=,公比1q >.(1)求数列{}n a ,{}n b 的通项公式;(2)数列{}n a 和{}n b 的所有项分别构成集合A ,B ,将A B ⋃的元素按从小到大依次排列构成一个新数列{}n c ,求2012320T c c c c =++++ .14.(2022·浙江·模拟预测)已知正项数列{}n a 满足11a =,当2n ≥时,22121n n a a n --=-,{}n a 的前n 项和为n S .(1)求数列{}n a 的通项公式及n S ;(2)数列{}n b 是等比数列,q 为数列{}n b 的公比,且13b q a ==,记21n n n nS a c b-+=,证明:122733n c c c ≤++⋅⋅⋅+<15.(2022秋·广东广州·高三校联考阶段练习)已知数列{}n a 的前n 项和为n S ,且12a =,132n n S S +=+,数列{}n b 满足()1122,n n n b b b n++==,其中*n ∈N .(1)分别求数列{}n a 和{}n b 的通项公式;(2)在n a 与1n a +之间插入n 个数,使这2n +个数组成一个公差为n c 的等差数列,求数列{}n n b c 的前n 项和nT16.(2023·辽宁朝阳·校联考一模)已知数列{}n a 的前n 项和为()+N 1=∈+n nS n n ,数列{}n b 满足11b =,且()1+N 2+=∈+nn n b b n b (1)求数列{}n a 的通项公式;(2)求数列{}n b 的通项公式;(3)对于N n +∈,试比较1n b +与n a 的大小.17.(2022秋·广东深圳·高三校考阶段练习)记n S 为数列{}n a 的前n 项和,已知{}12,32n n a a S =-是公差为2的等差数列.(1)求{}n a 的通项公式;(2)若{}11,n n n n n a b b a a ++=的前n 项和为n T ,求证:14n T <.18.(2022秋·江苏常州·高三常州市第一中学校考阶段练习)已知正项数列{}n a满足)1,2n n a a n n -+-∈≥N ,11a =.数列{}n b 满足各项均不为0,14b =,其前n项的乘积112n n n T b -+=⋅.(1)求数列{}n a 通项公式;(2)设2log n n c b =,求数列{}n c 的通项公式;(3)记数列(){}1nn a -的前2m 项的和2m S ,求使得不等式21210m S c c c ≥+++L 成立的正整数m 的最小值.19.(2022秋·江苏宿迁·高三沭阳县建陵高级中学校考期中)已知数列{}n a 满足2123n n n a a a ++=+,112a =,232a =.(1)证明:数列{}1n n a a ++为等比数列,求{}n a 的通项公式.(2)若数列{}n a 的前n 项和为n S ,且()*127N 4n S n n λ⎛⎫+≥-∈ ⎪⎝⎭恒成立,求实数λ的取值范围.20.(2022秋·江苏南通·高三江苏省如东高级中学校考阶段练习)等差数列{}n a 的前n 项和为n S ,且4224,21n n S S a a ==+.数列{}n b 的前n 项和为n T ,且112n n na T ++=(1)求数列{}{},n n ab 的通项公式;(2)数列{}n c 满足cos ,,n n na n n cb n π⎧=⎨⎩为奇数为偶数,求21ni i c =∑.21.(2023秋·广东·高三校联考期末)已知数列1:A a ,2a ,…,n a ,…满足10a =,11i i a a +=+(1,2,,,i n = ),数列A 的前n 项和记为n S .(1)写出3S 的最大值和最小值;(2)是否存在数列A ,使得20221011S =如果存在,写出此时2023a 的值;如果不存在,说明理由.22.(2023秋·山东日照·高三校联考期末)已知数列{}n a 的各项均为非零实数,其前n 项和为(0)n n S S ≠,且21n n n n S a S a ++⋅=⋅.(1)若32S =,求3a 的值;(2)若1a a =,20232023a a =,求证:数列{}n a 是等差数列,并求其前n 项和.23.(2023秋·江苏南京·高三南京市第一中学校考期末)已知数列{}{},n n a b 满足222,1n n n n n a b a b +=-=.(1)求{}{},n n a b 的通项公式;(2)记数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,证明:11121n n S n +≤-+-.24.(2023春·湖南长沙·高三湖南师大附中校考阶段练习)已知数列{}n a 各项都不为0,12a =,24a =,{}n a 的前n 项和为n S ,且满足14n n n a a S +=.(1)求{}n a 的通项公式;(2)若12311231C C CC C n nn nnnn nn nb a a a a a --=+++⋅⋅⋅++,求数列112n n n n b b b ++⎧⎫+⎨⎬⎩⎭的前n 项和n T .25.(2023春·江苏南京·高三校联考阶段练习)已知数列{}n a 中11a =,其前n 项和记为n S ,且满足()()1232n n S S S n S ++⋅⋅⋅+=+.(1)求数列()1n S n n ⎧⎫⎪⎪⎨⎬+⎪⎪⎩⎭的通项公式;(2)设无穷数列1b ,2b ,…n b ,…对任意自然数m 和n ,不等式1m n m n nb b b m a +--<+均成立,证明:数列{}n b 是等差数列.26.(2023·山东·沂水县第一中学校联考模拟预测)在如图所示的平面四边形ABCD 中,ABD △的面积是CBD △面积的两倍,又数列{}n a 满足12a =,当2n ≥时,()()1122n n n n BD a BA a BC --=++- ,记2nn n a b =.(1)求数列{}n b 的通项公式;(2)求证:2221211154n b b b +++< .27.(2022秋·湖北·高三校联考开学考试)已知数列{}n a 满足11a =,1n a +=中*N n ∈)(1)判断并证明数列{}n a 的单调性;(2)记数列{}n a 的前n 项和为n S ,证明:20213522S <<.28.(2022秋·山东潍坊·高三统考阶段练习)定义:对于任意一个有穷数列,在其每相邻的两项间都插入这两项的和,得到的新数列称为一阶和数列,如果在一阶和数列的基础上再在其相邻的两项间插入这两项的和,得到二阶和数列,以此类推可以得到n 阶和数列,如{}2,4的一阶和数列是{}2,6,4,设n 阶和数列各项和为n S .(1)试求数列{}2,4的二阶和数列各项和2S 与三阶和数列各项和3S ,并猜想{}n S 的通项公式(无需证明);(2)设()()()()331321log 3log 3n n n n S n b S S +-+=-⋅-,{}n b 的前m 项和m T ,若20252m T >,求m 的最小值29.(2022秋·湖北黄冈·高三统考阶段练习)已知数列{}1,1,n n a a S =为数列{}n a 的前n 项和,且1(2)3n n S n a =+.(1)求数列{}n a 的通项公式;(2)求证:sin 0n n a a -<;(3)证明:212311111sin 1sin 1sin 1sin e n a a a a ⎛⎫⎛⎫⎛⎫⎛⎫++++< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ .30.(2023·浙江温州·统考二模)设n S 为正项数列{}n a 的前n 项和,满足222n n n S a a =+-.(1)求{}n a 的通项公式;(2)若不等式214na n a t ⎛⎫+ ⎪+⎝≥⎭对任意正整数n 都成立,求实数t 的取值范围;(3)设3ln(1)4n a n n b e +=(其中e 是自然对数的底数),求证:123426n n b b b b b b ++++<….数列大题压轴练-新高考数学复习分层训练(新高考通用)1.(2023·云南曲靖·宣威市第七中学校考模拟预测)记n S为数列{}n a的前n项和,n T为S T+=.数列{}n S的前n项和,已知2n n(1)求证:数列{}n S是等比数列;(2)求数列{}n na的前n项和n A.2.(2023·辽宁铁岭·校联考模拟预测)已知数列{}n a 中,11a =,24a =,且1(1)(2,3,4,)nn na n n a n a +=-=⋅⋅⋅-.(1)设*111()n n b n N a +=-∈,试用n b 表示1n b +,并求{}n b 的通项公式;(2)设*sin 3()cos cos n n c N b b =∈,求数列{}n c 的前n 项和n S .3.(2023·湖南株洲·统考一模)数列{}n a 满足13a =,212n n n a a a +-=.(1)若21n bn a =+,求证:{}n b 是等比数列.(2)若1nnc b =+,{}n c 的前n 项和为n T ,求满足100n T <的最大整数n .4.(2023·河北衡水·河北衡水中学校考模拟预测)已知数列{}n a 满足21n n n a xa ya ++=+()N n +∈,11a =,22a =,n S 为数列{}n a 前n 项和.(1)若2x =,1y =-,求n S 的通项公式;(2)若1x y ==,设n T 为n a 前n 项平方和,证明:214n n n T S S -<恒成立.5.(2023·山西朔州·怀仁市第一中学校校考二模)已知数列{}n a 满足13a =,且12,1,n n na n a a n +⎧=⎨-⎩是偶数是奇数.(1)设221n n n b a a -=+,证明:{}3n b -是等比数列;S>成立的n的最小值.(2)设数列{}n a的前n项和为n S,求使得不等式2022n6.(2022春·河北衡水·高三校联考阶段练习)已知正项数列{}n a 的前n 项和为n S ,且满足11a =,23a =,2132n n n a a a ++=-,数列{}n c 满足()22221232341n c c c n c n +++++= .(1)求出{}n a ,{}n c 的通项公式;(2)设数列()()1221log 1n n c n a +⎧⎫⋅+⎪⎪⎨⎬+⎡⎤⎪⎪⎣⎦⎩⎭的前n 项和为n T ,求证:516<n T .7.(2022秋·河北衡水·高三河北衡水中学校考阶段练习)已知数列{}n a 的前n 项和n S 满足36S =,2n n S n na =+,*n ∈N .(1)求{}n a 的通项公式;(2)数列{}n b ,{}n c ,{}n d 满足()21211n n n a b a +=+-,12121n n n n n c b b b b --= ,且2nn nc d n =⋅,求数列{}n d 的前n 项和n T .8.(2023·广东·校联考模拟预测)已知数列{}n a 的前n 项和为n S ,且312323n S S S nS n +++⋅⋅⋅+=.(1)求数列{}n a 的通项公式;(2)若n n b na =,且数列{}n b 的前n 项和为n T ,求证:当3n ≥时,()311421n n n T n +≤+-.9.(2022秋·山东青岛·高三山东省莱西市第一中学校考阶段练习)对于项数为m 的数列{}n a ,若满足:121m a a a ≤<<< ,且对任意1i j m ≤≤≤,i j a a ⋅与j ia a 中至少有一个是{}n a 中的项,则称{}n a 具有性质P .(1)如果数列1a ,2a ,3a ,4a 具有性质P ,求证:11a =,423a a a =⋅;(2)如果数列{}n a 具有性质P ,且项数为大于等于5的奇数,试判断{}n a 是否为等比数列?并说明理由.【答案】(1)证明见解析(2){}n a 为等比数列,理由见解析10.(2022秋·山东青岛·高三统考期末)记数列{}n a 的前n 项和为n S ,11a =,______.给出下列两个条件:条件①:数列{}n a 和数列{}1n S a +均为等比数列;条件②:1121222n n n n a a a na -+++⋅⋅⋅+=.试在上面的两个条件中任选一个,补充在上面的横线上,完成下列两问的解答:(注:如果选择多个条件分别解答,按第一个解答计分.)(1)求数列{}n a 的通项公式;(2)记正项数列{}n b 的前n 项和为n T ,12b a =,23b a =,14n n n T b b +=⋅,求211(1)nii i i b b +=⎡⎤-⎣⎦∑.【答案】(1)12n n a -=(2)288n n+【分析】(1)选择条件①:先由{}1n S a +为等比数列结合等比中项列出式子,再设出等比数列{}n a 的公比,通过等比数列公式化简求值即可得出答案;选择条件②:先由1121222n n n n a a a na -+++⋅⋅⋅+=得出()()12121222212n n n n a a a n a n --++⋅⋅⋅+=-≥,两式做减即可得出()122n n a a n +=≥,再验证1n =时即可利用等比数列通项公式得出答案;(2)通过14n n n T b b +=⋅得出()1142n n n T b b n --⋅≥=,两式相减结合已知即可得出()1142n n b b n +--=≥,即数列{}n b 的奇数项、偶数项分别都成公差为4的等差数列,将211(1)nii i i b b+=⎡⎤-⎣⎦∑转化即可得出答案.【详解】(1)选条件①:数列{}1n S a +为等比数列,()()()2211131S a S a S a ∴+=++,即()()2121123222a a a a a a +=++,11a = ,且设等比数列{}n a 的公比为q ,()()22222q q q ∴+=++,解得2q =或0q =(舍),1112n n n a a q --∴==,选条件②:1121222n n n n a a a na -+++⋅⋅⋅+= ①,()()1212122212n n n n a a a n a n ---++⋅⋅⋅+=-≥∴,即()()12121222212n n n n a a a n a n --++⋅⋅⋅+=-≥ ②,由①②两式相减得:()()12221n n n n a na n a +=-≥-,即()122n n a a n +=≥,令1121222n n n n a a a na -+++⋅⋅⋅+=中1n=得出212a a =也符合上式,故数列{}n a 为首项11a =,公比2q =的等比数列,则1112n n n a a q --==,(2)由第一问可知,不论条件为①还是②,都有数列{}n a 为首项11a =,公比2q =的等比数列,即12n n a -=,11.(2022·湖北·黄冈中学校联考模拟预测)已知数列{}n a 满足0n a ≠,*N n ∈.(1)若2210n n n a a ka ++=>且0n a >.(ⅰ)当{}lg n a 成等差数列时,求k 的值;(ⅱ)当2k =且11a =,4a =2a 及n a 的通项公式.(2)若21312n n n n a a a a +++=-,11a =-,20a <,[]34,8a ∈.设n S 是{}n a 的前n 项之和,求2020S 的最大值.12.(2022秋·湖南长沙·高三校考阶段练习)已知数列{}n a 的前n 项和1122n n n S a -⎛⎫=--+ ⎪⎝⎭(n *∈N ),数列{}n b 满足2nn n b a =.(1)求证:数列{}n b 是等差数列,并求数列{}n a 的通项公式;(2)设数列{}n c 满足()()131n nn n a c n λ--=-(λ为非零整数,n *∈N ),问是否存在整数λ,使得对任意n *∈N ,都有1n n c c +>.13.(2022秋·湖南衡阳·高三衡阳市一中校考期中)已知n S 为数列{}n a 的前n 项和,25a =,14n n n S S a +=++;{}n b 是等比数列,29b =,1330bb +=,公比1q >.(1)求数列{}n a ,{}n b 的通项公式;(2)数列{}n a 和{}n b 的所有项分别构成集合A ,B ,将A B ⋃的元素按从小到大依次排列构成一个新数列{}n c ,求2012320T c c c c =++++ .【答案】(1)43n a n =-,3nn b =(2)660【分析】(1)将14n n n S S a +=++移项作差可得{}n a 是等差数列,结合25a =可求出数列{}n a 的通项公式,将1,b q 代入等式计算,即可求出数列{}n b 的通项公式;(2)由2077a =可判断前20项中最多含有123,,b b b 三项,排除23b a =可确定前20项中14.(2022·浙江·模拟预测)已知正项数列{}n a 满足11a =,当2n ≥时,22121n n a a n --=-,{}n a 的前n 项和为n S .(1)求数列{}n a 的通项公式及n S ;(2)数列{}n b 是等比数列,q 为数列{}n b 的公比,且13b q a ==,记21n n n nS a c b -+=,证明:122733n c c c ≤++⋅⋅⋅+<15.(2022秋·广东广州·高三校联考阶段练习)已知数列{}n a 的前n 项和为n S ,且12a =,132n n S S +=+,数列{}n b 满足()1122,n n n b b b n++==,其中*n ∈N .(1)分别求数列{}n a 和{}n b 的通项公式;(2)在n a 与1n a +之间插入n 个数,使这2n +个数组成一个公差为n c 的等差数列,求数列{}n n b c 的前n 项和nT【答案】(1)1*(2)3n n a n -=⋅∈N ,()*)1(n b n n n =+∈N (2)()*)121(3n n T n n =+-∈N 【分析】(1)由132n n S S +=+可得12)3(2n n S S n -=+≥,两式作差即可得数列{}n a 的递推关系,即可求通项,最后验证1a 是否符合即可;数列{}n b 利用累乘法即可求,最后验证1b 是否符合即可;(2)由题,由等差数列的性质得()11n n n a a n c +-=+,即可求出n c 的通项公式,最后利用错位相减法求n T 即可【详解】(1)由132n n S S +=+可得12)3(2n n S S n -=+≥,两式相减可得13(2)n n a a n +=≥,故数列{}n a 从第3项开始是以首项为2a ,公比3q =的等比数列.又由已知132n n S S +=+,令1n =,得213+2S S =,即12132a a a +=+,得21226a a =+=,故123)2(n n a n -=⋅≥;又12a =也满足上式,则数列{}n a 的通项公式为1*(2)3n n a n -=⋅∈N ;16.(2023·辽宁朝阳·校联考一模)已知数列{}n a 的前n 项和为()+N 1=∈+n nS n n ,数列{}n b 满足11b =,且()1+N 2+=∈+nn n b b n b (1)求数列{}n a 的通项公式;(2)求数列{}n b 的通项公式;(3)对于N n +∈,试比较1n b +与n a 的大小.17.(2022秋·广东深圳·高三校考阶段练习)记n S 为数列{}n a 的前n 项和,已知{}12,32n n a a S =-是公差为2的等差数列.(1)求{}n a 的通项公式;(2)若{}1,n n n a b b a a +=的前n 项和为n T ,求证:14n T <.18.(2022秋·江苏常州·高三常州市第一中学校考阶段练习)已知正项数列{}n a 满足)1,2n n a a n n -+-∈≥N ,11a =.数列{}n b 满足各项均不为0,14b =,其前n项的乘积112n n n T b -+=⋅.(1)求数列{}n a 通项公式;(2)设2log n n c b =,求数列{}n c 的通项公式;(3)记数列(){}1nn a -的前2m 项的和2m S ,求使得不等式21210m S c c c ≥+++L 成立的正整数m 的最小值.19.(2022秋·江苏宿迁·高三沭阳县建陵高级中学校考期中)已知数列{}n a满足2123n n n a a a ++=+,112a =,232a =.(1)证明:数列{}1n n a a ++为等比数列,求{}n a 的通项公式.(2)若数列{}n a 的前n 项和为n S ,且()*127N 4n S n n λ⎛⎫+≥-∈ ⎪⎝⎭恒成立,求实数λ的取值范围.20.(2022秋·江苏南通·高三江苏省如东高级中学校考阶段练习)等差数列{}n a 的前n 项和为n S ,且4224,21n n S S a a ==+.数列{}n b 的前n 项和为n T ,且112n n na T ++=(1)求数列{}{},n n ab 的通项公式;(2)数列{}n c 满足cos ,,n n na n n cb n π⎧=⎨⎩为奇数为偶数,求21ni i c =∑.21.(2023秋·广东·高三校联考期末)已知数列1:A a ,2a ,…,n a ,…满足10a =,11i i a a +=+(1,2,,,i n = ),数列A 的前n 项和记为n S .(1)写出3S 的最大值和最小值;(2)是否存在数列A ,使得20221011S =如果存在,写出此时2023a 的值;如果不存在,说明理由.22.(2023秋·山东日照·高三校联考期末)已知数列{}n a 的各项均为非零实数,其前n 项和为(0)n n S S ≠,且21n n n n S a S a ++⋅=⋅.(1)若32S =,求3a 的值;(2)若1a a =,20232023a a =,求证:数列{}n a 是等差数列,并求其前n 项和.23.(2023秋·江苏南京·高三南京市第一中学校考期末)已知数列{}{},n n a b 满足222,1n n n n n a b a b +=-=.(1)求{}{},n n a b 的通项公式;(2)记数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,证明:11121n n S n +≤-+-.24.(2023春·湖南长沙·高三湖南师大附中校考阶段练习)已知数列{}n a 各项都不为0,12a =,24a =,{}n a 的前n 项和为n S ,且满足14n n n a a S +=.(1)求{}n a 的通项公式;(2)若12311231C C CC C n nn nnnn nn nb a a a a a --=+++⋅⋅⋅++,求数列112n n n n b b b ++⎧⎫+⎨⎬⎩⎭的前n 项和n T .25.(2023春·江苏南京·高三校联考阶段练习)已知数列{}n a 中11a =,其前n 项和记为n S ,且满足()()1232n n S S S n S ++⋅⋅⋅+=+.(1)求数列()1n S n n ⎧⎫⎪⎪⎨⎬+⎪⎪⎩⎭的通项公式;(2)设无穷数列1b ,2b ,…n b ,…对任意自然数m 和n ,不等式1m n m n nb b b m a +--<+均成立,证明:数列{}n b 是等差数列.26.(2023·山东·沂水县第一中学校联考模拟预测)在如图所示的平面四边形ABCD 中,ABD △的面积是CBD △面积的两倍,又数列{}n a 满足12a =,当2n ≥时,()()1122n n n n BD a BA a BC--=++- ,记2nn n a b =.(1)求数列{}n b 的通项公式;(2)求证:22211154b b b +++< .(2)由(1)可得:当1n =时,则1b 当2n ≥时,可得()(2211212n b n n=<-则222121111111114223nb b b ⎛+++=+-+- ⎝L 27.(2022秋·湖北·高三校联考开学考试)已知数列{}n a 满足11a =,1n a +=中*N n ∈)(1)判断并证明数列{}n a 的单调性;(2)记数列{}n a 的前n 项和为n S ,证明:20213522S <<.⎫⎪⎪⎪28.(2022秋·山东潍坊·高三统考阶段练习)定义:对于任意一个有穷数列,在其每相邻的两项间都插入这两项的和,得到的新数列称为一阶和数列,如果在一阶和数列的基础上再在其相邻的两项间插入这两项的和,得到二阶和数列,以此类推可以得到n 阶和数列,如{}2,4的一阶和数列是{}2,6,4,设n 阶和数列各项和为n S .(1)试求数列{}2,4的二阶和数列各项和2S 与三阶和数列各项和3S ,并猜想{}n S 的通项公式(无需证明);(2)设()()()()331321log 3log 3n n n n S n b S S +-+=-⋅-,{}n b 的前m 项和m T ,若20252m T >,求m 的最小值【答案】(1)230S =,384S =,133n n S +=+(2)7【分析】(1)根据123,,S S S 进行猜想,结合等比数列的知识进而求解,并进行推导.(2)利用裂项求和法求得m T ,由此列不等式,从而求得m 的最小值.【详解】(1)一阶和数列:{}2,6,4,对应112S =;二阶和数列:{}2,8,6,10,4,对应230S =;三阶和数列:{}2,10,8,14,6,16,10,14,4,对应384S =;故猜想136n n S S -=-,()1333n n S S --=-,所以数列{}3n S -是首项为139S -=,公比为3的等比数列,所以11393,33n n n n S S -+-=⋅=+.下面证明136n n S S -=-:设112124n m m S a a a a --=++++++ ,则()()()()1112112244n m m m m m S a a a a a a a a a --=+++++++++++++29.(2022秋·湖北黄冈·高三统考阶段练习)已知数列{}1,1,n n a a S =为数列{}n a 的前n 项和,且1(2)3n n S n a =+.(1)求数列{}n a 的通项公式;(2)求证:sin 0n n a a -<;(3)证明:212311111sin 1sin 1sin 1sin e n a a a a ⎛⎫⎛⎫⎛⎫⎛⎫++++< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ .30.(2023·浙江温州·统考二模)设n S 为正项数列{}n a 的前n 项和,满足222n n n S a a =+-.(1)求{}n a 的通项公式;(2)若不等式214na n a t ⎛⎫+ ⎪+⎝≥⎭对任意正整数n 都成立,求实数t 的取值范围;(3)设3ln(1)4n a n nb e+=(其中e 是自然对数的底数),求证:123426n n b b b b b b ++++<….。

2023-2024学年高考数学数列专项练习题(含答案)

2023-2024学年高考数学数列专项练习题(含答案)

2023-2024学年高考数学数列小专题一、单选题1.已知等比数列的前项和为,且,则数列的前项和为( ){}n a n n S 11n n a S +=+{}2n a n A .B .413n -213n -C .D .41n-21n-2.已知函数在上的最小值为,最大值为,且在等差数列中,2log y x =[]16,256m M {}n a ,则( )24,a m a M ==10a =A .17B .18C .20D .243.数列满足,(),,若数列是递减数{}n a 18a =11nn n a a na +=+*n ∈N 112nn n b a λ⎛⎫⎛⎫=+⋅ ⎪ ⎪⎝⎭⎝⎭{}n b 列,则实数的取值范围是( )λA .B .C .D .8,7⎛⎫-+∞ ⎪⎝⎭7,8⎛⎫-+∞ ⎪⎝⎭8,7⎛⎫+∞ ⎪⎝⎭7,8⎛⎫+∞ ⎪⎝⎭4.等差数列中的,是函数的极值点,则{}n a 2a 2024a ()32642024=-+-f x x x x ( )81013log =a A .B .C .3D .133-13-5.已知数列的前项和为,且等比数列满足,若,则{}n c n n S {}n a 2log n n c a =2364a a =( )9S =A .3B .4C .5D .66.已知数列是公比为q ()的正项等比数列,且,若,则{}n b 1q ≠10122ln 0b =()241f x x =+( )()()()122023f b f b f b +++=A .4069B .2023C .2024D .40467.已知等比数列的前项和为,若,则( ){}n a n n S 132n n S λ+=⨯+λ=A .B .C .D .33-66-8.已知数列的前4项分别为,,,,则该数列的一个通项公式可以为132-354+578-7916+( )n a =A .2121(1)2nn n n -++-B .12121(1)2n n n n +-++-C .12121(1)2n n n n--++-D .2121(1)2nnn n -++-二、多选题9.已知是等比数列的前项和,且,则下列说法正确的是( )n S {}n a n 11(2)n n S a -=+-A .2a =-B .中任意奇数项的值始终大于任意偶数项的值{}n S C .的最大项为,最小项为{}n S 13S =232S =D .12231011201612a a a a a a ⎛⎫+++=- ⎪⎝⎭ 10.数列中,,则( ){}n a 1112,1,n na a n a ++=+=∈N A .202412a =B .12320221011a a a a +++⋅⋅⋅+=C .12320242a a a a ⋅⋅⋅=-D .122334202220231011a a a a a a a a +++⋅⋅⋅+=-11.已知数列满足,,为的前项和,则( ){}n a 126a =132n n a a +=-n S {}n a n A .为等比数列{}1n a +B .的通项公式为{}n a 4131n n a -=-C .为递减数列{}n aD .当或时,取得最大值4n =5n =n S 12.等差数列的前n 项和为,若,,则( ){}n a n S 79a =443S a =A .的公差为1B .的公差为2{}n a {}n a C .D .418S =20232025a =三、填空题13.在等比数列中,,则.{}n a 12563,6a a a a +=+=910a a +=14.某网店统计了商品近30天的日销售量,日销售量依次构成数列,已知,且A {}n a 120a=,则商品近30天的总销量为 .()()111nn n a a n ++-=+-∈N A 15.在数列与中,已知,则{}n a {}n b ()1111112,2,2n n n n n n n n a b a b a b a b a b ++++==+=+=.2023202311a b +=16.已知数列满足.且,若,则{}n a 1265n n a a n ++=+13a =()1nn n b a =-.1232024b b b b ++++=答案:1.A【分析】根据关系得出等比数列求出,最后再根据等比数列前项和计算求解,n n a S 12n n a -=n 即可.【详解】因为,所以当时,,两式相减,得,11n n a S +=+2n ≥11n n a S -=+12n n a a +=所以数列从第2项起是公比为2的等比数列.又数列是等比数列,所以.{}n a {}n a 212a a =由,解得,所以数列是首项为1,公比为2的等比数列,所以21111a S a =+=+11a ={}n a ,12n n a -=所以,所以数列是首项为1,公比为4的等比数列,()212124n n n a --=={}2na 所以数列的前项和为.{}2n a n 1441143n n --=-故选:A .2.C【分析】利用对数函数单调性先求出函数最小值为,最大值为,再由等差数列通项公式m M 求解.【详解】因为函数在上单调递增,2log y x =[]16,256所以,,2log 164m ==2log 2568M ==所以,所以等差数列的公差,244,8a a =={}n a 42842422a a d --===-所以.()10210248220a a d =+-=+⨯=故选:C .3.D【分析】将取倒数结合累加法求得,再利用数列单调递减列不等式11nn n a a na +=+()22118n n a -=并分离参数,求出新数列的最大值即可求得答案【详解】由题意,,两边取倒数可化为,所以,11nn n a a na +=+1111n n n n na n a a a ++==+21111a a -=,,由累加法可得,,因为32112a a -=1111--=-n n n a a ()()11111212n n n n a a --=++⋅⋅⋅+-=,所以,18a =()()212111288n n n n a --=+=所以,因为数列是递减数列,故,即()221111282nn n n n b a λλ⎡⎤-⎛⎫⎛⎫⎛⎫=+=+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦{}n b 1n n b b -<,整理可得,()()2212123118282n n n n λλ-⎡⎤⎡⎤--⎛⎫⎛⎫+<+⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,因为,,所以2254842017288n n n λ⎛⎫--+ ⎪-+-⎝⎭>=2n ≥*n ∈N ,故.22max 5548428722888n ⎛⎫⎛⎫⎛⎫--+-⨯-+ ⎪⎪ ⎪⎝⎭⎝⎭ ⎪==⎪ ⎪⎝⎭7,8λ⎛⎫∈+∞ ⎪⎝⎭故选:D.4.A【分析】利用导数求出函数的两个极值点,再利用等差数列性质求出即可计算得解.()f x 1013a 【详解】由求导得:,()32642024=-+-f x x x x 2()3124f x x x '=-+有,即有两个不等实根,2124340∆=-⨯⨯>()0f x '=12,x x 显然是的变号零点,即函数的两个极值点,12,x x ()f x '()f x 依题意,,在等差数列中,,24122024a x a x ++=={}n a 22024101322a a a +==所以.38101321log log 23a ==故选:A 5.D【分析】设等比数列的公比为,根据题意,求得,结合对数运算性质有{}n a q 354a =,即可求解.9925log S a =【详解】设等比数列的公比为,{}n a q因为,()2235365524a a a a q a q ===所以9128212228299log log log log S c c a c c a a a =++++++=++ .()9321289252log log log 46a a a a a ==== 故选:D.6.D【分析】由等比数列的性质可得,由,可得1202322022202311b b b b b b ⋅=⋅==⋅= ()241f x x =+,故有,即可计()14f x f x ⎛⎫+= ⎪⎝⎭()()()()()()1202322022202314f b f b f b f b f b f b +=+==+= 算.()()()122023f b f b f b +++ 【详解】由数列是公比为q ()的正项等比数列,故,{}n b 1q ≠0n b >,故,()210121012120232ln ln ln 0b b b b ==⋅=120231b b ⋅=即有,1202322022202311b b b b b b ⋅=⋅==⋅= 由,则当时,()241f x x =+0x >有,()2222214444411111x f x f x x x x x ⎛⎫+=+=+= ⎪+++⎝⎭⎛⎫+ ⎪⎝⎭故,()()()()()()1202322022202314f b f b f b f b f b f b +=+==+= 故()()()()()()()12202312023220222f b f b f b f b f b f b f b ⎡⎤⎡⎤⎡⎤+++=++++⎣⎦⎣⎦⎣⎦ ,()()()()202312023120238092f b f b f b f b ⎡⎤⎡⎤++=+=⎣⎦⎣⎦故.()()()1220234046f b f b f b +++= 故选:D.7.D【分析】根据题意,求得,结合等比数列的定义,得到,即可求解.12,2n na n a +=≥212a a =【详解】由,132n n S λ+=⨯+当时,,可得,2n ≥1132(32)32n n nn n n a S S λλ+--==⨯+-⨯+=⋅12,2n na n a +=≥当时,,1n =21132a S λ==⨯+因为数列为等比数列,可得,解得.{}n a 222132232a a λ⨯==⨯+6λ=-故选:D.8.D【分析】观察数列的项的特点,找到各项之间的规律,即可写出一个通项公式,结合选项,即得答案.【详解】观察可知,该数列的前面整数部分为奇数,后面分数部分正负相间,首项的分21n +数部分为负,分母为,分子为,2n 21n-故该数列的一个通项公式可以为,2121(1)2nn n n a n -=++-故选:D 9.BCD【分析】由等比数列的前项和公式可得,可判断选项A ;根据的解析式判断奇数项n 2a =n S 与偶数项的公式,从而判断BC ;由得到的通项公式,从而表示出的通项公式n S n a 1n n n b a a +=即可判断D.【详解】由题可知,此时等比数列的公比,所以设前项和公式应为:1q ≠n ,n n S A q A =-⋅+,A 错误;12,22nn S a a ⎛⎫=-⋅-+∴= ⎪⎝⎭因此,1112,1222122,2nn n n n S n --⎧+⎪⎪⎛⎫=-⋅-+=⎨⎪⎝⎭⎪-+⎪⎩为奇数为偶数可得中,奇数项递减,且始终大于2,最大值为,{}n S 13S =偶数项递增,且始终小于2,最小值为,因此BC 正确;232S =由可得,令,n S 23122n n a -⎛⎫=-- ⎪⎝⎭23121919422n n n n n b a a -+-⎛⎫==-=-⎪⎝⎭所以,故D 正确1012231011121020911124611214a a a a a a b b b ⎛⎫-- ⎪⎛⎫⎝⎭+++=+++==- ⎪⎝⎭- 故选:BCD 10.ABD【分析】根据递推公式可得数列是以3为周期的周期数列,再逐个选项判断即可.{}n a 【详解】由题意得:,234512341111111,11,12,1,22a a a a a a a a =-==-=-=-==-=⋅⋅⋅数列是以3为周期的周期数列.∴{}n a 对于A ,,A 正确;202467432212a a a ⨯+===对于B ,,B 正确;()1232022123367467410112a a a a a a a +++⋅⋅⋅+=++=⨯=对于C ,,C 错误;()6741232024123202320241a a a a a a a a a ⋅⋅⋅==对于D ,由递推关系式知:,11n n n a a a +=-()()()12233420222023122022111a a a a a a a a a a a ∴+++⋅⋅⋅+=-+-+⋅⋅⋅+-,D 正确.12320222022101120221011a a a a =+++⋅⋅⋅+-=-=-故选:ABD .11.AC【分析】利用构造法得,判断出为首项为,公比为的等比数列,()1311n n a a ++=+{}11n a ++2713判断A 选项;利用等比数列通项公式求出通项公式,判断B 选项;根据函数是减函数,1n a +判断C 选项;令,解得,判断D 选项.n a =4n =【详解】因为,所以,即,,132n n a a +=-1331n n a a ++=+()1311n n a a ++=+11113n na a ++=+又因为,所以,所以为首项为,公比为的等比数列,A 正确;126a =1127a +={}11n a ++2713B 错误;C 正确;D 错误.故选:AC 12.ACD【分析】列出方程组,求出等差数列的公差和首项,判断A ,B ;根据等差数列通项公式以及前n 项和公式即可判断C ,D.【详解】设的公差为d ,由,,得,{}n a 79a =443S a =111694639a d a d a d +=⎧⎨+=+⎩解得,故A 正确,B 错误;131a d =⎧⎨=⎩,,C ,D 正确.414618S a d =+=2023120222025a a d =+=故选:ACD 13.12【分析】根据等比数列的通项公式可得结果.【详解】设等比数列的公比为,,所以,{}n a q ()44561236a a q a a q +=+==42q =所以,()4910562612a a q a a +=+=⨯=故12.14.1020【分析】根据题目所给递推关系找到数列的规律,进而求和.【详解】当时,,当时,,21n k =-221k k a a -=2n k =2122k k a a +=+,∴21212k k a a +-=+中奇数项是公差为2,首项为20的等差数列,{}n a ∴∴1232930a a a a a +++++ ()135292a a a a =++++ .151421520210202⨯⎛⎫=⨯⨯+⨯= ⎪⎝⎭商品近30天的总销量为.∴A 1020故答案为.102015.1【分析】由已知计算可得为常数列,进而可得结果.1111n n a b +++11{}n n a b +【详解】由题意知,,()111111211112n n n n n n n n n n n n a b a b a b a b a b a b +++++++++===+所以为常数列,即,11{}n n a b +11111111122n n a b a b +=+=+=所以.20232023111a b +=故1.16.2024【分析】利用构造法与迭代法求得,从而利用并项求和法即可得解.21n a n =+【详解】因为,所以,1265n n a a n ++=+()12(1)1221n n a n a n +-+-=---又,则,13a =12113210a -⨯-=--=所以()[]12112(1)1(2)21(2)2(1)1n n n a n a n a n +--+-=---=----=,()1(2)2110n a =--⨯-=故,则,210n a n --=21n a n =+所以,()()11(21)nnn n b a n =-=-+则的各项分别为,{}n b 3,5,7,9,11,13,--- 所以()()()()12320243579111340474049b b b b ++++=-++-++-+++-+ .210122024=⨯=故2024关键点点睛:本题解决的关键在于将推递关系式化得,从而()12(1)1221n n a n a n +-+-=---求得,由此得解.n a。

2023年高考-数学(理科)考试备考题库附带答案9

2023年高考-数学(理科)考试备考题库附带答案9

2023年高考-数学(理科)考试备考题库附带答案第1卷一.全考点押密题库(共50题)1.(单项选择题)(每题 5.00 分) 已知A,B 是球 O 的球面上两点,∠AOB = 90° ,C为该球面上的动点。

若三棱锥 O - ABC 体积的最大值为36,则球 O 的表面积为A. 36πB. 64πC. 144πD. 256π正确答案:C,2.(填空题)(每题 5.00 分) 已知圆锥的顶点为S,母线SA,SB所成角的余弦值为7/8,SA与圆锥底面所成角为45°.若△SAB的面积为5√15,则该圆锥的侧面积为.正确答案:40√2π,3.(单项选择题)(每题 5.00 分) 记SN.为等差数列αN}的前n项和.若3S3=S2+S4,α=2,则α5= {A. -12B. -10C. 10D. 12正确答案:B,4.(填空题)(每题5.00 分) 已知函数f(x)=2sinx+sin2x,则f(x)的最小值是_______?正确答案:-3√3/2,5.(单项选择题)(每题 5.00 分) 双曲线x2/α2-y2/b2=1(α>0,b>0)的离心率为√3,则其渐近线方程为A. y=±√2xB. y=±√3xC. y=±√2/2xD. y=±√3/2x正确答案:A,6.(单项选择题)(每题 5.00 分) 已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为A. 3√3/4B. 2√3/3C. 3√2/4D. √3/2正确答案:A,7.(单项选择题)(每题 5.00 分) 已知集合A=x∣x2-x-2>0},则CRA={A. x∣-12}{D. {x∣x≦-1}∪{x∣x≧2}正确答案:B,8.(单项选择题)(每题 5.00 分) 在△ABC中,cos C/2=√5/5,BC=1,AC=5,则AB=A. 4√2B. √30C. √29D. 2√5正确答案:A,9.(填空题)(每题 5.00 分) 某髙科技企业生产产品 A 和产品 B 需要甲、乙两种新型材料。

2024年高考数学大题突破:数列综合大题归类(解析版)

2024年高考数学大题突破:数列综合大题归类(解析版)

数列综合大题归类目录【题型一】“函数型”裂项求和:基础型【题型二】“函数型”裂项求和:指数函数型【题型三】“函数型”裂项求和:等差裂和型【题型四】“函数型”裂项求和:指数型裂和【题型五】“函数型”裂项求和:同构仿写型【题型六】“函数型”裂项求和:三角函数裂项型【题型七】递推公式:分式型不动点【题型八】插入数型【题型九】数列跳项型【题型十】证明数列不等式【题型十一】新结构第19题型:差分密码型【题型一】“函数型”裂项求和:基础型基础原理:m pq =m q -p 1p -1q,如:12×4=14-212-14;基本题型:①1n n +1 =1n -1n +1;②12n -1 2n +1=1212n -1-12n +1 ;注意(避免掉坑)①分母分解因式:1n 2+3n=1n n +3 =131n -1n +3 ;②系数不相同就提系数:1n 2n +4=12⋅1n n +2 =12⋅121n -1n +2 ;③求和化简时,要写到“前三后二”,并且一定要强调每项加括号,这样容易观察剩余的时首尾项(或正负项)对应.(1)1n n +k=1k 1n -1n +k ;(2)1n +k +n=1k n +k -n ;(3)12n -1 2n +1=1212n -1-12n +1;(4)1n n +1 n +2 =121n n +1 -1n +1 n +2;分式型分子裂差法形如f n a n ⋅a n +1型,如果f n =λa n +1-a n ,则可以分子裂差:f n a n ⋅a n +1=λa n +1-a n a n ⋅a n +1=λ1a n -1a n +11(22·23·龙岩·二模)已知等差数列a n 的首项为1,公差d ≠0,前n 项和为S n ,且S nS 2n为常数.(1)求数列a n 的通项公式;(2)令b n =n a n a n +1-n +1a n +1a n +2,证明:b 1+b 2+b 3+⋯+b n <13.【答案】(1)a n =2n -1(2)证明见解析【分析】(1)由S nS 2n为常数,则n [1+1+(n -1)d ]22n [1+1+(2n -1)d ]2=2-d +nd4-2d +4nd为常数,即d =2,然后结合等差数列的通项公式求解即可;(2)由(1)可得b n =n a n a n +1-n +1a n +1a n +2=n (2n -1)(2n +1)-n +1(2n +1)(2n +3),然后累加求和即可得证.【详解】(1)依题意,得:S 1S 2=S 2S 4,即a 1a 1+a 2=a 1+a 2a 1+a 2+a 3+a 4所以,12+d =2+d4+6d,化简得:d (d -2)=0因为d ≠0,所以d =2所以a n =1+2(n -1)=2n -1经检验:S n S 2n =n 24n 2=14成立(2)因为a n =2n -1所以b n =n (2n -1)(2n +1)-n +1(2n +1)(2n +3)=144n (2n -1)(2n +1)-4(n +1)(2n +1)(2n +3)=1412n -1+12n +1 -12n +1+12n +3=1412n -1-12n +3 ,所以b 1+b 2+b 3+⋯+b n =14[1-15 +13-17 +15-19 +⋯+12n -5-12n -1 +12n -3-12n +1 +12n -1-12n +3 ]=141+13-12n +1-12n +3 =1443-12n +1-12n +3 <13.2(22·23·秦皇岛·模拟预测)设等比数列a n 的前n 项和为S n ,数列b n 为等差数列,且公差d ≠0,a 1=b 1=2,a 3=b 3,S 3=b 5.(1)求数列a n 的通项公式以及前n 项和S n ;(2)数列2n +1n 2b n +4 2的前n 项和为T n ,求证:T n≤19.【答案】(1)a n =2n ,S n =2n +1-2(2)证明见解析【分析】(1)利用等差数列通项公式运算、等比数列通项公式和求和公式运算即可求解.(2)利用裂项相消法求出T n =19×1-1n +1 2,而1-1n +1 2<1,从而得出证明.【详解】(1)设a n 的公比为q ,由题意,可得a 1q 2=b 1+2d a 1+a 1q +a 1q 2=b 1+4d ,解得q =2d =3 ,所以a n =2n,所以S n =2×1-2n 1-2=2n +1-2;(2)由(1)得b n =2+3n -1 =3n -1,所以2n +1n 2b n +4 2=2n +1n 2(3n +3)2=2n +19n 2(n +1)2=191n 2-1(n +1)2,所以T n =b 1+b 2+⋯+b n =19×1-122 +122-132+⋯+1n 2-1(n +1)2=19×1-1n +1 2 ,因为1-1n +12<1,所以T n ≤19,得证.3(2024下·福建·高三校联考开学考试)已知正项数列a n 中,a 1=1,a n +1=a n +2a n +1.(1)求数列a n 的通项公式;(2)记数列b n =2a n +1a n a n +1的前n 项和S n ,求满足S n <99100的正整数n 的集合.【答案】(1)a n =n 2(2)n ∈N *|1≤n ≤8【分析】(1)由题意,可得到数列a n 是公差为1的等差数列,进而得到数列a n 的通项公式;(2)由(1)可得数列b n 的通项公式,利用裂项相消法即可求出S n ,进而解不等式.【详解】(1)由a n +1=a n +2a n +1,有a n +1=a n +1 2,即a n +12=a n +1 2,因为数列a n 是正项数列,所以a n +1=a n +1,即a n +1-a n =1,可得数列a n 是首项为1,公差为1的等差数列,所以a n =a 1+n -1=n ,故数列a n 的通项公式为a n =n 2;(2)由(1)可得b n =2n +1n 2n +1 2=n +1 2-n 2n 2n +1 2=1n 2-1n +12.所以S n =1-122+122-132+⋅⋅⋅+1n 2-1n +1 2 =1-1n +12,故不等式S n <99100可化为1-1n +1 2<99100,解得0<n <9,所以满足S n <99100的正整数n 的集合为n ∈N *|1≤n ≤8 .【题型二】“函数型”裂项求和:指数函数型指数裂项法形如mq n +r +t hq n +b hq n +1+b 型,如果mq n +r +t =λhq n +b -hq n +1+b ,则可以分子裂差:mq n +r +t hq n +b hq n +1+b=λhq n +1+b -hq n +bhqn+b hq n +1+b=λ1hq n +b -1hq n +1+b1(2023·广西玉林·校联考模拟预测)记S n 为数列a n 的前n 项和,已知a 1=2,a n +1=S n +n .(1)证明:当n ≥2时,数列a n +1 是等比数列,并求数列a n 的通项公式;(2)设b n =2n +1a n +1a n +2,数列b n 的前n 项和为T n ,证明:T n <13.【答案】(1)证明见解析,a n =2,n =12n-1,n ≥2(2)证明见解析【分析】(1)令n =1可求得a 2的值,当n ≥2时,由a n +1=S n +n ,可得a n =S n -1+n -1,两式作差,结合等比数列的定义可证得结论成立,据此可求得数列a n 的通项公式;(2)b n =12n +1-1-12n +2-1,利用裂项相消法可证得结论成立.【详解】(1)证明:因为a 1=2,a n +1=S n +n ,S n 为数列a n 的前n 项和,当n =1时,a 2=S 1+1=2+1=3,当n ≥2时,由a n +1=S n +n ①,可得a n =S n -1+n -1②,①-②可得a n +1-a n =a n +1,即a n +1=2a n +1,所以,a n +1+1=2a n +1 ,又因为a 2+1=3+1=4≠2a 1+1 ,则当n ≥2时,数列a n +1 是等比数列,其公比为2,即当n ≥2时,a n +1=a 2+1 ⋅2n -2=4×2n -2=2n ,则a n =2n -1,a 1=2不满足a n =2n -1,所以,a n =2,n =12n -1,n ≥2.(2)证明:b n =2n +1a n +1a n +2=2n +12n +1-1 2n +2-1=12n +1-1-12n +2-1,则T n =b 1+b 2+⋯+b n =122-1-123-1 +123-1-124-1 +124-1-125-1 +⋯+12n +1-1-12n +2-1=13-12n +2-1<13.综上,对任意的n ∈N ∗,T n <13.2(2023上·海南海口·高三校考阶段练习)在数列a n a n ≠0 和b n 中,a 1=1,b 1=2,且a n +1b n 是a n a n +1和a n b n +1的等差中项.(1)设c n =b na n,求证:数列c n -1 为等比数列;(2)若b n =3×2n2n +1,a n 的前n 项和为S n ,求证:S n <3.【答案】(1)证明见解析(2)证明见解析【分析】(1)由等差中项整理得a n b n +1=2a n +1b n -a n a n +1,两边同时除以a n a n +1,得c n +1-1=2(c n -1)即可证明;(2)应用裂项相消法即可求解.【详解】(1)依题a n +1b n 是a n a n +1和a n b n +1的等差中项,则2a n +1b n =a n a n +1+a n b n +1,即a n b n +1=2a n +1b n -a n a n +1,两边同时除以a n a n+1a n≠0,得b n+1a n+1=2⋅b na n-1,即c n+1=2c n-1,则c n+1-1=2(c n-1),由c1-1=b1a1-1=1≠0,所以数列c n-1是以1为首项,2为公比的等比数列.(2)由(1)得c n-1=2n-1,则c n=2n-1+1,则a n=b nc n=3×2n(2n-1+1)(2n+1)=612n-1+1-12n+1,则S n=612-13+13-15+⋯+12n-2+1-12n-1+1+12n-1+1-12n+1=612-1 2n+1=3-62n+1,因为n∈N∗,则62n+1>0,故S n<3.3(2023上·湖南长沙·高二长沙一中校考阶段练习)已知数列a n的首项a1=4,且满足a n+1=3a n -2n∈N*.(1)求证:数列a n-1为等比数列;(2)记b n=3na n⋅a n+1,求数列b n的前n项和S n.【答案】(1)证明见解析(2)S n=18-12⋅3n+1+2【分析】(1)由题设递推式可得a n+1-1=3a n-1n∈N*,根据等比数列的定义,结合已知条件,即可证a n-1为等比数列;(2)由(1)有a n=3n+1,进而求b n,利用裂项相消法求S n.【详解】(1)由a n+1=3a n-2n∈N*得a n+1-1=3a n-1n∈N*,又a1-1=3,所以a n-1是首项为3,公比为3的等比数列.(2)由(1)知,a n-1=3×3n-1=3n,所以a n=3n+1所以b n=3n3n+1⋅3n+1+1=12×13n+1-13n+1+1,S n=b1+b2+b3+⋯+b n=12×131+1-132+1+132+1-133+1+⋯+13n+1-13n+1+1=12×131+1-13n+1+1=18-12⋅3n+1+2.【题型三】“函数型”裂项求和:等差裂和型正负型:等差裂和型形如-1n⋅f na n⋅a n+1型,如果f n =λa n+1-a n,则可以分子裂差:-1 n⋅f na n⋅a n+1=-1n⋅λa n+1-a na n⋅a n+1=-1n⋅λ1a n-1a n+11(2023·河北唐山·三模)设S n 为数列a n 的前n 项和,a n >0,a 2n +2a n +1=4S n .(1)求数列a n 的通项公式;(2)求数列-1n4na n a n +1的前n 项和T n.【答案】(1)a n =2n -1(2)T n =-1+(-1)n12n +1【分析】(1)利用S n 与a n 的关系计算求通项;(2)结合(1)的结论,利用裂项相消法计算即可.【详解】(1)已知a 2n +2a n +1=4S n ①,当n =1时,a 1=1.当n ≥2时,a 2n -1+2a n -1+1=4S n -1②①-②得:a 2n +2a n -a 2n -1-2a n -1=4a n ,即a n +a n -1 a n -a n -1-2 =0.又a n >0,所以a n +a n -1≠0,a n -a n -1=2.所以数列a n 是以1为首项,2为公差的等差数列.所以a n =2n -1.(2)设b n =(-1)n 4n a n a n +1=(-1)n 4n 2n -1 2n +1=(-1)n 12n -1+12n +1 .T n =-1+13 +13+15 -15+17 +⋯+(-1)n 12n -1+12n +1 =-1+(-1)n 12n +1.2(2023·江苏镇江·二模)已知数列a n 满足:a 1=14,a n +1=nn +2a n.(1)求数列a n 的通项公式;(2)若b n =(-1)n (2n +1)a n ,求数列b n 的前n 项和S n .【答案】(1)a n =12n n +1(2)S n =-12+-1 n ⋅12n +2【分析】(1)运用累乘法计算;(2)运用裂项相消法求和.【详解】(1)由题意:a 2a 1=13,a 3a 2=24,a 4a 3=35,a 5a 4=46,⋯,a n +1a n =nn +2 ,∴a 2a 1×a 3a 2×a 4a 3×a 5a 4×⋯×a n +1a n =13×24×35×46×⋯×n n +2=2n +1 n +2,a n +1a 1=2n +1 n +2 ,a n +1=a 1×2n +1 n +2 =12n +1 n +2 ,a n =12n n +1 ,将n =1代入上式也成立,∴a n =12n n +1;(2)b n =-1 n 2n +1 a n =-1 n 2n +12n n +1=-1 n 1n +1n +1 ⋅12,S n =b 1+b 2+b 3+b 4+b 5+⋯+b n =12-1-12+12+13-13-14+⋅⋅⋅+-1 n ⋅1n +-1 n ⋅1n +1=12-1+-1 n ⋅1n +1 =-12+-1 n⋅12n +2.3(2023·湖南永州·三模)记正项数列a n 的前n 项积为T n ,且1=1-4.(1)证明:数列T n 是等差数列;(2)记b n =-1 n ⋅8n +6T n ⋅T n +1,求数列b n 的前2n 项和S 2n .【答案】(1)证明见解析(2)-8n 40n +25【分析】(1)根据题意得到T n T n -1=a n ,由1a n =1-4T n,化简得到T n -T n -1=4,求得T 1=5,结合等差数列的定义,即可求解;(2)由(1)可得T n =4n +1,得到b n =-1 n ⋅14n +1+14n +5,结合裂项法,即可求解.【详解】(1)证明:由题意得T n =a 1a 2⋯a n ,当n ≥2时,可得T n -1=a 1a 2⋯a n -1,可得Tn T n -1=a n ,(n ≥2),因为1a n =1-4T n ,所以T n -1T n =1-4T n,(n ≥2),即T n -1=T n -4(n ≥2),即T n -T n -1=4,(n ≥2),当n =1时,可得T 1=a 1,所以1T 1=1-4T 1,解得T 1=5,所以数列T n 是以5为首项,4为公差的等差数列.(2)解:由(1)可得T n =5+(n -1)×4=4n +1,所以b n =-1 n ⋅8n +6T n ⋅T n +1=-1 n ⋅8n +6(4n +1)(4n +5)=-1 n ⋅14n +1+14n +5 ,所以S 2n =-15+19+19+113 -113+117+⋯-18n -3+18n +1 +18n +1+18n +5 =-15+18n +5=-8n 40n +25.【题型四】“函数型”裂项求和:指数型裂和正负型:指数裂和型形如-1 n⋅mq n +r +t hq n +b hq n +1+b型,如果mq n +r +t =λhq n +b +hq n +1+b ,则可以分子裂和:-1 n ⋅mq n +r +t hq n +b hq n +1+b =-1 n ⋅λhq n +1+b +hq n +b hq n +b hq n +1+b=-1 n ⋅λ1hq n +b +1hq n +1+b1(23·24上·湖北·期中)已知{a n }为等比数列,且a 2+a 3+a 4=14,a 2,a 3+1,a 4成等差数列.(1)求数列{a n }的通项公式;(2)当{a n }为递增数列时,b n =(-1)n 6a n +22n +1 2n +1+1 ,数列{b n }的前n 项和为T n ,若存在n ∈N ∗,m ≥T n ,求m 的取值范围.【答案】(1)a n =2n -1或a n =25-n (2)m ≥-815【分析】(1)运用等差中项的性质和等比数列通项公式基本量运算,解方程即可得到{a n }通项.(2)由{a n }递增可得a n =2n -1,对b n 通项进行裂项展开,当n 为偶数、奇数时分别求出T n 表达式,然后再分别求出T n的范围,由存在n∈N∗,m≥T n,即可求出m的取值范围.【详解】(1)设等比数列{a n}公比为q,由a2+a3+a4=14a2+a4=2a3+1⇒a3=4q=2或a3=4q=12,∴a n=2n-1或a n=25-n.(2)当{a n}为递增数列时,a n=2n-1所以b n=(-1)n3⋅2n+22n+12n+1+1=(-1)n12n+1+12n+1+1当n为偶数时,T n=-12+1+122+1+122+1+123+1+⋯+12n+1+12n+1+1=-13+12n+1+1在n∈N*上单调递减,∴T n∈-13,-29,当n为奇数时,T n=-12+1+122+1+122+1+123+1+⋯-12n+1+12n+1+1=-13-12n+1+1在n∈N*上单调递增,∴T n∈-815,-13,∴m≥-815.2(23·24上·黔东南·阶段练习)已知数列a n满足:a1=1,a n=2a n-1+1n≥2.(1)证明:a n+1是等比数列,并求a n的通项公式;(2)令b n=(-1)n(3n+2)n(n+1)a n+1+1,求b n的前n项和S n.【答案】(1)证明见解析,a n=2n-1(2)S n=(-1)n(n+1)∙2n+1-12【分析】(1)通过构造可证a n+1为等比数列,根据等比数列通项公式可得a n+1,然后可得a n;(2)将数列b n通项公式变形为b n=(-1)n1n∙2n+1(n+1)∙2n+1,直接求和可得.【详解】(1)证明:由a n=2a n-1+1(n≥2),所以a n+1=2a n-1+2=2(a n-1+1),所以{a n+1}是以a1+1=2为首项,公比为2的等比数列,所以a n+1=2n,即a n=2n-1(2)由(1)知:a n+1+1=2n+1,所以b n=(-1)n(3n+2)n(n+1)∙2n+1.又b n=(-1)n1n∙2n+1(n+1)∙2n+1,所以S n=-12+12·22+12·22+13·23-13·23+14·24+⋯+-1 n1n·2n+1n+1·2n+1=(-1)n(n+1)∙2n+1-123(22·23高二下·黑龙江哈尔滨·期中)已知数列a n满足a1=14,a n+1=3a n-4.(1)求a n的通项公式;(2)设b n=(-1)n a n3n+13n+1+1,数列b n的前n项和为T n,若存在n∈N*,使m≥T n,求m的取值范围.【答案】(1)a n=4×3n+2(2)-720,+∞【分析】(1)依题意可得a n+1-2=3a n-2,再结合等比数列的定义即可证明;(2)由(1)可得b n=(-1)n13n+1+1 3n+1+1,再分n为偶数和奇数两类情况并结合裂项求和法讨论即可.【详解】(1)证明:因为a n+1=3a n-4,所以a n+1-2=3a n-2,即a n+1-2a n-2=3n∈N*,因为a1=14,所以a1-2=12,故数列a n-2是以12为首项,3为公比的等比数列,所以a n-2=12×3n-1=4×3n,则a n=4×3n+2.(2)解:由(1)知a n=4×3n+2,所以b n=(-1)n a n3n+13n+1+1=(-1)n4×3n+23n+13n+1+1=(-1)n13n+1+13n+1+1.当n为偶数时,T n=-13+1-1 32+1+132+1+133+1+L+-13n++113n+1+13n+1+13n++1=-13+1+13n+1+1=-14+13n+1+1,因为T n=-14+13n+1+1是单调递减的,所以-14<T n≤-314.当n为奇数时,T n=-13+1-1 32+1+132+1+133+1+⋯+13n++1+13n+1+-13n+113n+1+1=-13+1-13n+1+1=-14-13n+1+1,又T n=-14-13n+1+1是单调递增的,因为13n+1+1>0,所以-720≤T n<-14.要使存在n∈N*,使m≥T n,只需m≥T nmin,即m≥-720,故m的取值范围是-720,+∞.【题型五】“函数型”裂项求和:同构仿写型 仿写规律:t>1①b na n⋅a n+1⋅t n⇒1a n⋅t n-1-1a n+1⋅t n=λb na n⋅a n+1⋅t n(可通分反解λ);②b n⋅t na n⋅a n+1⇒t n+1a n+1-t na n=λb n⋅t na n⋅a n+1(可通分反解λ)1(23·24上·甘南·期中)在数列a n中,a1=2且∀n∈N*,a n+1=3a n+2×3n.(1)求a n的通项公式;(2)设b n=a n+3na n a n+1,若b n的前n项和为S n,证明:S n<14.【答案】(1)a n=2n⋅3n-1,n∈N∗(2)证明见解析【分析】(1)根据题意,化简得到a n+13n+1-a n3n=23,得出数列a n3n为等差数列,结合等差数列的通项公式,进而求得数列a n的通项公式;(2)由a n=2n⋅3n-1,得到b n=121a n-1a n+1,结合裂项法求和,求得S n=14-14(n+1)⋅3n,进而证得S n<1 4.【详解】(1)解:由a n+1=3a n+2×3n,两边同除以3n+1,可得a n+13n+1=a n3n+23,即a n+13n+1-a n3n=23,因为a1=2,可得a13=23,所以数列a n3n是首项为23,公差为23的等差数列,可得a n3n=23+(n-1)×23=2n3,所以a n=2n3×3n=2n⋅3n-1,即数列a n的通项公式为a n=2n⋅3n-1,n∈N∗.(2)解:由a n=2n⋅3n-1,可得b n=a n+3na n a n+1=2n⋅3n-1+3n2n⋅3n-1⋅2(n+1)⋅3n=(2n+3)⋅3n-12n⋅3n-1⋅2(n+1)⋅3n=1212n⋅3n-1-12(n+1)⋅3n=121a n-1a n+1,所以数列b n的前n项和为S n=121a1-1a2+1a2-1a3+⋯+1an-1a n+1=121a1-1a n+1=1212-12(n+1)⋅3n=14-14(n+1)⋅3n,因为4(n+1)⋅3n>0,可得14-14(n+1)⋅3n<14,即S n<14.2(23·24上·合肥·阶段练习)在数1和3之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积记作T n,令a n=log3T n.(1)求数列a n的通项公式;(2)若b n=n+1⋅2n-1a n a n+1,求数列b n的前n项和S n.【答案】(1)a n=n+22(2)S n=2n+2n+3-43【分析】(1)利用等比数列的基本性质结合倒序相乘法可求得T n,结合对数的运算可得出数列a n的通项公式;(2)计算得出b n=-2n+1n+2+2n+2n+3,利用裂项相消法可求得S n.【详解】(1)解:在数1和3之间插入n个实数,使得这n+2个数构成递增的等比数列,设插入的这n个数分别为c1、c2、⋯、c n,由等比数列的性质可得c1c n=c2c n-1=⋯=c n c1=1×3=3,所以,T n=1⋅c1c2⋯c n⋅3 T n=3⋅c n c n-1⋯c1⋅1,所以,T2n =1⋅3⋅c1c n⋅c2c n-1⋅⋯⋅c n c1⋅1⋅3=3n+2,易知T n>0,所以,T n=3n+22,则an=log3T n=log33n+22=n+22.(2)解:b n =n +1 ⋅2n -1a n a n +1=n +1 ⋅2n -1n +2 n +34=n +1 ⋅2n +1n +2 n +3=2n +2 -n +3 ⋅2n +1n +2 n +3=-2n +1n +2+2n +2n +3,所以,S n =-223+234 +-234+245+⋯+-2n +1n +2+2n +2n +3 =2n +2n +3-43.3(23·24上·昆明·阶段练习)已知数列a n 满足a 1=2,a n +1=2n +1a n n ∈N * .(1)求数列a n 的通项公式;(2)设b n =log 2a 2n -n 2,数列b n +22n +1b n ⋅b n +1 的前n 项和为S n ,求证:38≤S n<12.【答案】(1)a n =2n n +12(2)证明见解析【分析】(1)运用累乘法求出a n 的通项公式;(2)先运用裂项法求出S n 的解析式,再运用缩放法证明.【详解】(1)由已知a 1=2,a n +1a n=2n +1n ∈N * ,所以a n =a n a n -1⋅a n -1a n -2⋯⋯a 2a 1⋅a 1=2n ⋅2n -1⋯⋯22⋅2=2n n +12n ≥2 ,当n =1时,a 1=2满足条件,所以a n =2n n +12;(2)由于b n =log 2a 2n -n 2=n ,所以b n +22n +1b n ⋅b n +1=n +22n +1n n +1 =1n ⋅2n -1n +1 2n +1,所以S n =11×2-12×22+12×22-13×23 +13×23-14×24+⋯+1n ⋅2n 1n +1 2n +,所以S n =11×2-1n +1 2n +1,显然S n 在N *上为增函数,S 1=11×2-12×22=38,∴S n ≥S 1=38,又S n =11×2-1n +12n +1<11×2=12,所以38≤S n <12;综上,a n =2n n +12.【题型六】“函数型”裂项求和:三角函数裂项型常见的三角函数裂项:1.正切型裂项:若a n +1-a n =α,tan α=m (特殊角),则tan α=tan a n +1-a n =tan a n +1-tan a n1+tan a n +1tan a n=m ,b n =tan a n +1tan a n =1mtan a n +1-tan a n -1;2.正余弦和与差公式应用裂项型:b n =sin1cos n cos (n -1)=sin [n -(n -1)]cos n cos (n -1)=sin n cos (n -1)-cos n sin (n -1)cos n cos (n -1)=tan n -tan (n -1)1(2023·山东威海·二模)已知2n +2个数排列构成以q n q n >1 为公比的等比数列,其中第1个数为1,第2n +2个数为8,设a n =log 2q n .(1)证明:数列1a n是等差数列;(2)设b n =tanπa n tan πa n +1,求数列b n 的前100项和S 100.【答案】(1)数列1a n是以公差为23的等差数列.1a n +1-1a n =23(2)-99【分析】(1)根据等比数列的性质分析可得a n =32n +1,再结合等差数列的定义分析证明;(2)根据两角差的正切公式整理得b n =-33tan πa n +1-tan πa n-1,结合裂项相消法运算求解.【详解】(1)由题意可得:q 2n +1n=81=8,且q n >1,可得q n =232n +1,所以a n =log 2232n +1=32n +1,可得1a n =2n +13,则1a n +1-1a n =2n +1 +13-2n +13=23,所以数列1a n是以公差为23的等差数列.(2)由(1)可得πa n +1-πa n =2π3,则tan 2π3=tan πa n +1-πa n=tan πa n +1-tan πan 1+tan πa n +1tan πan=-3,整理得b n =tanπa n tan πa n +1=-33tan πa n +1-tan πa n-1,则S 100=b 1+b 2+⋅⋅⋅+b 100=-33tan πa 2-tan πa 1 -1+-33tan πa 3-tan πa 2-1 +⋅⋅⋅+-33tan πa 101-tan πa 100-1=-33tanπa 2-tan πa 1 +tan πa 3-tan πa 2 +⋅⋅⋅+tan πa 101-tan πa 100-100=-33tan πa 101-tan πa 1-100=-33tan 203π3-tanπ -100=-33tan 68π-π3 -100=33tan π3-100=-99,所以数列b n 的前100项和S 100=-99.2(22·23高三上·山东济宁·期中)已知n ∈N *,抛物线y =-x 2+n 与x 轴正半轴相交于点A ,在点A 处的切线在y 轴上的截距为a n (1)求数列a n 的通项公式;(2)若b n =4n cos n πa n -1 a n +1,求数列b n 的前项和S n .【答案】(1)a n =2n ;(2)S n =-2n +22n +1,n =2k -1-2n 2n +1,n =2k,k ∈N ∗ .【分析】(1)利用导数的几何意义求出切线方程,再求出纵截距作答.(2)由(1)的结论求出b n,再分奇偶利用裂项相消法求解作答.【详解】(1)n∈N∗,抛物线与x轴正半轴的交点坐标为(n,0),由y=-x2+n求导得:y =-2x,因此抛物线在点A处的切线的斜率为-2n,切线方程为y=-2n(x-n),当x=0时,y=2n,所以a n=2n.(2)由(1)知,a n=2n,则b n=4n cos nπ(2n-1)(2n+1)=12n-1+12n+1cos nπ,当n为偶数时,S n=-1+1 3+13+15-15+17+17+19-⋯-12n-3+12n-1+1 2n-1+1 2n+1=-1+12n+1=-2n2n+1,当n为奇数时,S n=S n+1-b n+1=-1+12n+3-12n+1+12n+3=-1-12n+1=-2n+22n+1,S n=-2n+22n+1,n=2k-1-2n2n+1,n=2k,k∈N∗.3(22·23上·芜湖·期末)已知S n是数列a n的前n项和,2S n=n+1a n.且a1=1(1)求a n的通项公式;(2)设a0=0,已知数列b n满足b n=sin1cos a n cos a n-1,求b n的前n项的和T n【答案】(1)a n=n;(2)tan n.【分析】(1)利用给定的递推公式,结合a n=S n-S n-1,n≥2变形,构造数列求解作答.(2)由(1)的结论,利用差角的正弦公式变形,再利用错位相减法求解作答.【详解】(1)因为n∈N*,2S n=n+1a n,当n≥2时,2S n-1=na n-1,两式相减得:2a n=(n+1)a n-na n-1,即(n-1)a n=na n-1,变形得a nn=a n-1n-1,于是得数列a nn是常数列,因此a nn=a11=1,即a n=n,所以数列a n的通项公式是a n=n.(2)由(1)知,a n=n,b n=sin1cos n cos(n-1)=sin[n-(n-1)]cos n cos(n-1)=sin n cos(n-1)-cos n sin(n-1)cos n cos(n-1)=tan n-tan(n-1),所以T n=(tan1-tan0)+(tan2-tan1)+(tan3-tan2)+⋅⋅⋅+[tan n-tan(n-1)]=tan n-tan0=tan n.【题型七】递推公式:分式型不动点已知分式一次型数列递推关系a n+1=Ca n+DAa n+B求通项的问题解法:法一,化归法.当D=0时,递推关系两边取倒数,再裂项构造即可;当D≠0时,为了保持取倒数后分母一致性,通常可以令a n+1+x=Ca n+DAa n+B+x=C+xAa n+D+BxAa n+B,可由1x=C+AxD+Bx解得x的值,即可得到构造方向b n+1=tb nAa n+B,通过这样的转化将问题又化归为D=0的情形再求解.法二,特征根法求解.先构造特征方程x=Cx+DAx+B,解方程得根x1,x2,若x1≠x2,则a n-x2a n-x1为等比数列;若x1=x2,则1a n-x1为等差数列.1(22-23高三·河南·阶段练习)已知数列a n满足a1=0,a n+1=-a n-22a n+3,n∈N∗.(1)证明:数列1a n+1是等差数列;(2)证明:a2 ⋅a3 ⋅a4 ⋅⋅⋅⋅⋅a n+1>12n+1.【答案】(1)证明见解析.(2)证明见解析.【分析】(1)根据条件a1=0,a n+1=-a n-22a n+3,n∈N∗可得1a n+1+1=2+1a n+1,利用等差数列的定义即可证明结论;(2)利用(1)的结论可得a n=-2n+22n-1,即得|a n |=2n-22n-1,(n≥2,n∈N∗),利用作差法可得|a n|=2n-22n-1>2n-32n-2,由此可设S=a2 ⋅a3 ⋅a4 ⋅⋅⋅⋅⋅a n+1,即得S=23⋅45⋅67⋅⋅⋅⋅⋅2n2n+1,且S>12⋅34⋅56⋅⋅⋅⋅⋅2n-12n,两式相乘可证明结论.【详解】(1)证明:根据题意a1=0,a n+1=-a n-22a n+3,n∈N∗,可得a n+1+1=a n+12a n+3,则1a n+1+1=2a n+3a n+1=2+1a n+1,故1a n+1+1-1a n+1=2,1a1+1=10+1=1故数列1a n+1是以1为首项,2为公差的等差数列.(2)由(1)知,1a n+1=1+2(n-1)=2n-1,则a n=12n-1-1=-2n+22n-1,则|a n|=2n-22n-1,(n≥2,n∈N∗),由于2n-22n-1-2n-32n-2=(2n-2)2-(2n-3)(2n-1)(2n-1)(2n-2)=1(2n-1)(2n-2)>0,故|a n|=2n-22n-1>2n-32n-2,(n≥2,n∈N∗)设S=a2⋅a3 ⋅a4 ⋅⋅⋅⋅⋅a n+1,则S=23⋅45⋅67⋅⋅⋅⋅⋅2n2n+1,且S>12⋅34⋅56⋅⋅⋅⋅⋅2n-12n,则S2>23⋅45⋅67⋅⋅⋅⋅⋅2n2n+1⋅12⋅34⋅56⋅⋅⋅⋅⋅2n-12n=12n+1,故S>12n+1,∴a2 ⋅a3 ⋅a4 ⋅⋅⋅⋅⋅a n+1>12n+1.2(2024高三·全国·专题练习)在数列{a n}中,a1=4且a n+1=3a n+2a n+4,求数列{a n}的通项公式.【答案】a n=2n-1+5n-1 5n-1-2n-2【分析】法一,由a n+1+x=3a n+2a n+4+x=(x+3)a n+4x+2a n+4,令1x=x+34x+2,解得x1=-1,x2=2,即在等式两边同减去1,可构造出形式a n+1-1=2(a n-1)a n+4,从而两边再同取倒数可得1a n+1-1=12+52⋅1a n-1,由此配凑常数,可构造等比数列1a n-1+13进而求得等比数列通项,解an可得;法二,利用特征方程x=3x+2x+4有两个不等式根:x1=1,x2=-2,确定构造方向,先构造两个等式,再作比即可构造特殊数列,即可求得特殊数列的通项,再解出a n即可.【详解】法一,由a n+1=3a n+2a n+4两边减去1得,a n+1-1=3a n+2a n+4-1=2(a n-1)a n+4,两边取倒数得,1a n+1-1=a n+42(a n-1)=a n-1+52(a n-1)=12+52⋅1a n-1,两边同加13得,1a n+1-1+13=56+52⋅1a n-1=52⋅1a n-1+13,由a1=4,则1a1-1+13=23≠0,所以有1a n+1-1+131a n-1+13=52,故1a n-1+13是以23为首项,52为公比的等比数列.所以1a n-1+13=23⋅52n-1,故a n-1=3⋅2n-12⋅5n-1+2n-1,解得a n=2n-1+5n-15n-1-2n-2.法二:因为a n+1=3a n+2a n+4,两边同减去1得a n+1-1=3a n+2a n+4-1=2a n-2a n+4①,两边同加上2得a n+1+2=3a n+2a n+4+2=5a n+10a n+4②,由已知a1=4,则a1-1=3≠0,a1+2=6≠0,①②两式相除得,a n+1-1 a n+1+2=2a n-15(a n+2),且a1-1a1+2=12≠0,所以,数列a n-1a n+2是以12为首项,25为公比的等比数列,∴a n-1a n+2=a1-1a1+2·25n-1=12⋅25 n-1,∴a n=2n-1+5n-15n-1-2n-2.3(2023高三·全国·专题练习)已知数列a n满足性质:对于n∈N,a n-1=a n+42a n+3,且a1=3,求{a n}的通项公式.【答案】a n =(-5)n -42+(-5)n【分析】根据特征方程的根,构造数列c n 的通项公式,再得到数列a n 的通项公式.【详解】依定理作特征方程x =x +42x +3,变形得2x 2+2x -4=0,其根为λ1=1,λ2=-2.故特征方程有两个相异的根,使用定理2的第(2)部分,则有c n =a 1-λ1a 1-λ2⋅p -λ1r p -λ2rn -1=3-13+2⋅1-1⋅21+2⋅2n -1,n ∈N ∴c n =25-15n -1,n ∈N .∴a n =λ2c n -λ1c n -1=-2⋅25-15 n -1-125-15n -1-1,n ∈N .即a n =(-5)n -42+(-5)n,n ∈N .【题型八】插入数型插入数型1.插入数构成等差数列在a n 和a n +1之间插入n 个数,使这n +2个数构成等差数列,可通过构造新数列{b n }来求解d nn +2个数构成等差数列,公差记为d n ,所以:b n +2=b 1+(n +2-1)d n ⇔d n =b n +2-b 1(n +2-1)2.插入数构成等比数列在a n 和a n +1之间插入n 个数,使这n +2个数构成等比数列,可通过构造新数列{b n }来求解d nn +2个数构成等比数列,公差记为d n ,所以:b n +2=b 1∙q n (n +2-1)⇔q n (n +2-1)=b n +2b 1⇔ln b n +2b 1=ln q n (n +2-1)=(n +2-1)ln q n3.插入数混合型混合型插入数列,其突破口在于:在插入这些数中,数列a n 提供了多少项,其余都是插入进来的。

高考考点突破:数列专题(含答案)

高考考点突破:数列专题(含答案)

数列专题达标检测一、选择题1.在等差数列{a n }中,若a 2+2a 6+a 10=120,则a 3+a 9等于 ( )A .30B .40C .60D .802.等比数列{a n }的前n 项和为S n ,且4a 1,2a 2,a 3成等差数列,若a 1=1,则S 4等于 ( )A .7B .8C .15D .163.等比数列{a n }中,a 1=512,公比q =-12,用Πn 表示它的前n 项之积:Πn =a 1·a 2·…·a n ,则Πn 中最大的是( )A .Π11B .Π10C .Π9D .Π84.设函数f (x )=x m +ax 的导函数f ′(x )=2x +1,则数列⎩⎨⎧⎭⎬⎫1f (n )(n ∈N *)的前n 项和是( ) A.n n +1 B.n +2n +1 C.n n -1D.n +1n5.如果数列{a n }满足a 1=2,a 2=1,且a n -1-a n a n -1=a n -a n +1a n +1(n ≥2,n ∈N *),则这个数列的第10项等于( ) A.1210 B.129 C.110 D.156.数列{a n }中,a 1=1,a n 、a n +1是方程x 2-(2n +1)x +1b n=0的两个根,则数列{b n }的前n 项和S n =( ) A.12n +1 B.1n +1 C.n 2n +1 D.n n +1二、填空题7.数列{a n }的构成法则如下:a 1=1,如果a n -2为自然数且该自然数之前未出现过,则用递推公式a n +1=a n -2,否则用递推公式a n +1=3a n ,则a 6=________.8.已知数列{a n }满足a n +1a n =n +2n(n ∈N *),且a 1=1,则a n =________.9.如图,它满足:(1)第n 行首尾两数均为n ;(2)图中的递推关系类似杨辉三角,则第n (n ≥2)行的第2 个数是________.10.对正整数n ,设曲线y =x n (1-x )在x =2处的切线与y 轴交点的纵坐标为a n ,则数列⎩⎨⎧⎭⎬⎫a n n +1的前n 项和的公式是________.三、解答题11.等差数列{a n }的各项均为正数,a 1=3,前n 项和为S n ,{b n }为等比数列, b 1=1,且b 2S 2=64,b 3S 3=960.(1)求a n 与b n ;(2)求1S 1+1S 2+…+1S n的值.12.已知数列{a n }满足a 1=2,a n +1=2⎝⎛⎭⎫1+1n 2a n . (1)求数列{a n }的通项公式; (2)设b n =(An 2+Bn +C )·2n ,试推断是否存在常数A 、B 、C ,使得对一切n ∈N *,a n =b n +1-b n 恒成 立?若存在,求出A 、B 、C 的值;若不存在,说明理由;(3)求证: i =1n a i <(n 2-2n +2)·2n +2.13.已知数列{a n }满足a 1=0,a 2=2,且对任意m ,n ∈N *都有a 2m -1+a 2n -1=2a m +n -1+2(m -n )2.(1)求a 3,a 5;(2)设b n =a 2n +1-a 2n -1(n ∈N *),证明:{b n }是等差数列;(3)设c n =(a n +1-a n )q n -1(q ≠0,n ∈N *),求数列{c n }的前n 项和S n .数列专题达标检测一、选择题1.在等差数列{a n }中,若a 2+2a 6+a 10=120,则a 3+a 9等于( )A .30B .40C .60D .80解析:由等差数列性质:若m +n =p +q ,则a m +a n =a p +a q ,故a 2+2a 6+a 10=4a 6=120,故a 6=30,a 3+a 9=2a 6=2×30=60.答案:C2.等比数列{a n }的前n 项和为S n ,且4a 1,2a 2,a 3成等差数列,若a 1=1,则S 4等于( )A .7B .8C .15D .16解析:设等比数列的公比为q ,则由4a 1,2a 2,a 3成等差数列.得4a 2=4a 1+a 3.∴4a 1q =4a 1+a 1q 2.∴q 2-4q +4=0∴q =2,∴S 4=a 1(1-q 4)1-q=15. 答案:C3.等比数列{a n }中,a 1=512,公比q =-12,用Πn 表示它的前n 项之积:Πn =a 1·a 2·…·a n ,则Πn 中最大 的是 ( )A .Π11B .Π10C .Π9D .Π8解析:Πn =a 1a 2…a n =a n 1·q 1+2+…+n -1=29n ⎝⎛⎭⎫-12(n -1)n 2=(-1)n (n -1)22-n 2+19n 2,∴当 n =9时,Πn 最大.故选C答案:C4.设函数f (x )=x m +ax 的导函数f ′(x )=2x +1,则数列⎩⎨⎧⎭⎬⎫1f (n )(n ∈N *)的前n 项和是( ) A.n n +1 B.n +2n +1 C.n n -1D.n +1n 解析:∵f ′(x )=mx m -1+a =2x +1, ∴m =2,a =1,∴f (x )=x 2+x =x (x +1),∴1f (x )=1n (n +1)=1n -1n +1, ∴S n =1-12+12-13+…+1n -1n +1=1-1n +1=n n +1. 答案:A5.如果数列{a n }满足a 1=2,a 2=1,且a n -1-a n a n -1=a n -a n +1a n +1(n ≥2,n ∈N *),则这个数列的第10项等于( ) A.1210 B.129 C.110 D.15解析:∵1-a n a n -1=a n a n +1-1,∴a n a n -1+a n a n +1=2,2a n =1a n -1+1a n +1,∴⎩⎨⎧⎭⎬⎫1a n 是首项为12,公 差为12的等差数列, ∴1a n =12n ,∴a 10=15,故选D. 答案:D6.数列{a n }中,a 1=1,a n 、a n +1是方程x 2-(2n +1)x +1b n=0的两个根,则数列{b n }的前n 项和S n =( ) A.12n +1 B.1n +1 C.n 2n +1 D.n n +1解析:由题意得a n +a n +1=2n +1,又∵a n -n =-[a n +1-(n +1)],a 1=1∴a n =n ,又a n ·a n +1=1b n ,∴b n =1n (n +1). ∴S n =b 1+b 2+…+b n =1-1n +1=n n +1. 答案:D二、填空题7.数列{a n }的构成法则如下:a 1=1,如果a n -2为自然数且该自然数之前未出现过,则用递推公式a n +1=a n -2,否则用递推公式a n +1=3a n ,则a 6=________.解析:∵a 1-2=-1∉N ,∴a 2=3a 1=3.∵a 2-2=1=a 1,∴a 3=3a 2=9,∵a 3-2=7,∴a 4=7,∵a 4-2=5,∴a 5=5,∵a 5-2=3=a 2,∴a 6=3a 5=15. 答案:158.已知数列{a n }满足a n +1a n =n +2n(n ∈N *),且a 1=1,则a n =________. 解析:由已知得a n a n -1=n +1n -1, a n -1a n -2=n n -2, …a 2a 1=31,a 1=1,左右两边分别相乘得a n =1·31·42·53·64·…·n -1n -3·n n -2·n +1n -1=n (n +1)2. 答案:n (n +1)29.如图,它满足:(1)第n 行首尾两数均为n ;(2)图中的递推关系类似杨辉三角,则第n (n ≥2)行的第2个数是________.解析:设第n (n ≥2)行的第2个数构成数列{a n },则有a 3-a 2=2,a 4-a 3=3,a 5-a 4=4,…,a n -a n -1=n -1,相加得a n -a 2=2+3+…+(n -1)=2+n -12×(n -2)=(n +1)(n -2)2, a n =2+(n +1)(n -2)2=n 2-n +22. 答案:n 2-n +2210.对正整数n ,设曲线y =x n (1-x )在x =2处的切线与y 轴交点的纵坐标为a n ,则数列⎩⎨⎧⎭⎬⎫a n n +1的前n 项和的公式是________.解析:∵y =x n (1-x ),∴y ′=(x n )′(1-x )+(1-x )′·x n=n ·x n -1(1-x )+(-x n ). f ′(2)=-n ·2n -1-2n =(-n -2)·2n -1. ∵函数在点x =2处点的纵坐标为y =-2n .∴切线方程为y +2n =(-n -2)·2n -1(x -2),与y 轴交点纵坐标为y =(n +1)·2n =a n ∴a n n +1=2n ,∴数列⎩⎨⎧⎭⎬⎫a n n +1成等比数列,首项为2,公比为2, ∴前n 项和为2(1-2n )1-2=2(2n -1)=2n +1-2. 答案:2n +1-2 三、解答题11.等差数列{a n }的各项均为正数,a 1=3,前n 项和为S n ,{b n }为等比数列, b 1=1,且b 2S 2=64,b 3S 3=960. (1)求a n 与b n ;(2)求1S 1+1S 2+…+1S n的值. 解:(1)设{a n }的公差为d ,{b n }的公比为q ,则d 为正数,a n =3+(n -1)d ,b n =q n -1, 依题意有⎩⎪⎨⎪⎧S 2b 2=(6+d )q =64S 3b 3=(9+3d )q 2=960, 解得⎩⎪⎨⎪⎧ d =2q =8 或⎩⎨⎧ d =-65q =403(舍去),故a n =3+2(n -1)=2n +1,b n =8n -1. (2)由(1)知S n =3+5+…+(2n +1)=n (n +2),所以1S 1+1S 2+…+1S n =11×3+12×4+13×5+…+1n (n +2)=12⎝⎛⎭⎫1-13+12-14+13-15+…+1n -1n +2 =12⎝⎛⎭⎫1+12-1n +1-1n +2=34-2n +32(n +1)(n +2).12.已知数列{a n }满足a 1=2,a n +1=2⎝⎛⎭⎫1+1n 2a n . (1)求数列{a n }的通项公式; (2)设b n =(An 2+Bn +C )·2n ,试推断是否存在常数A 、B 、C ,使得对一切n ∈N *,a n =b n +1-b n 恒成 立?若存在,求出A 、B 、C 的值;若不存在,说明理由;(3)求证:∑i =1n a i <(n 2-2n +2)·2n +2.(1)解:由已知得a n +1(n +1)2=2·ann 2,∴⎩⎨⎧⎭⎬⎫a n n 2是公比为2的等比数列,且首项为2,∴a nn 2=2·2n -1,a n =2n ·n 2(2)解:∵b n =(An 2+Bn +C)·2n ,∴b n +1-b n =[A(n +1)2+B(n +1)+C]·2n +1-(An 2+Bn +C)·2n=[An 2+(4A +B)n +2A +2B +C]·2n .若a n =b n +1-b n 恒成立,则An 2+(4A +B)n +2A +2B +C =n 2恒成立, ∴⎩⎪⎨⎪⎧ A =14A +B =02A +2B +C =0,解得A =1,B =-4,C =6,故存在常数A =1,B =-4,C =6满足条件.(3)证明:由(2)得,b n =(n 2-4n +6)·2n ,∴∑i =1n a i =(b 2-b 1)+(b 3-b 2)+(b 4-b 3)+…+(b n +1-b n )=b n +1-b 1=[(n +1)2-4(n +1)+6]·2n +1-6=(n 2-2n +3)·2n +1-6<(n 2-2n +3)·2n +1=⎝⎛⎭⎫n 22-n +32· 2n +2=⎣⎡⎦⎤(n 2-2n +2)-⎝⎛⎭⎫n 22-n +12·2n +2=⎣⎡⎦⎤(n 2-2n +2)-(n -1)22·2n +2≤(n 2-2n +2)·2n +2,∴原不等式成立.13.已知数列{a n }满足a 1=0,a 2=2,且对任意m ,n ∈N *都有a 2m -1+a 2n -1=2a m +n -1+2(m -n )2.(1)求a 3,a 5;(2)设b n =a 2n +1-a 2n -1(n ∈N *),证明:{b n }是等差数列;(3)设c n =(a n +1-a n )q n -1(q ≠0,n ∈N *),求数列{c n }的前n 项和S n .(1)解:由题意,令m =2,n =1可得a 3=2a 2-a 1+2=6. 再令m =3,n =1可得a 5=2a 3-a 1+8=20.(2)证明:当n ∈N *时,由已知(以n +2代替m )可得a 2n +3+a 2n -1=2a 2n +1+8.于是[a 2(n +1)+1-a 2(n +1)-1]-(a 2n +1-a 2n -1)=8,即b n +1-b n =8.所以,数列{b n }是公差为8的等差数列.(3)由(1)、(2)的解答可知{b n }是首项b 1=a 3-a 1=6,公差为8的等差数列. 则b n =8n -2,即a 2n +1-a 2n -1=8n -2.另由已知(令m =1)可得,a n =a 2n -1+a 12-(n -1)2.那么,a n +1-a n =a 2n +1-a 2n -12-2n +1=8n -22-2n +1=2n . 于是,c n =2nq n -1.当q =1时,S n =2+4+6+…+2n =n (n +1). 当q ≠1时,S n =2·q 0+4·q 1+6·q 2+…+2n ·q n -1. 两边同乘q 可得qS n =2·q 1+4·q 2+6·q 3+…+2(n -1)·q n -1+2n ·q n . 上述两式相减即得(1-q )S n =2(1+q 1+q 2+…+q n -1)-2nq n =2·1-q n1-q -2nq n=2·1-(n +1)q n +nq n +11-q ,所以S n =2·nq n +1-(n +1)q n +1(q -1)2.综上所述,S n =⎩⎪⎨⎪⎧ n (n +1) (q =1),2·nq n +1-(n +1)q n+1(q -1)2 (q ≠1).。

新高考数学数列多选题专项练习附解析

新高考数学数列多选题专项练习附解析

新高考数学数列多选题专项练习附解析一、数列多选题1.已知数列{} n a 满足11a =,121++=+n n a a n ,*n N ∈, n S 是数列1 n a ⎧⎫⎨⎬⎩⎭的前n 项和,则下列结论中正确的是( ) A .()21121n nS n a -=-⋅ B .212n n S S =C .2311222n n n S S ≥-+ D .212n n S S ≥+【答案】CD【分析】根据数列{} n a 满足11a =,121++=+n n a a n ,得到1223+++=+n n a a n ,两式相减得:22n n a a +-=,然后利用等差数列的定义求得数列{} n a 的通项公式,再逐项判断.【详解】因为数列{} n a 满足11a =,121++=+n n a a n ,*n N ∈, 所以1223+++=+n n a a n , 两式相减得:22n n a a +-=,所以奇数项为1,3,5,7,….的等差数列; 偶数项为2,4,6,8,10,….的等差数列; 所以数列{} n a 的通项公式是n a n =, A. 令2n =时, 311111236S =++=,而 ()1322122⨯-⋅=,故错误; B. 令1n =时, 213122S =+=,而 11122S =,故错误;C. 当1n =时, 213122S =+=,而 31132222-+=,成立,当2n ≥时,211111...23521n n S S n =++++--,因为221n n >-,所以11212n n >-,所以111111311...1 (352148222)n n n ++++>++++=--,故正确; D. 因为21111...1232n n S S n n n n-=+++++++,令()1111...1232f n n n n n=+++++++,因为()111111()021*******f n f n n n n n n +-=+-=->+++++,所以()f n 得到递增,所以()()112f n f ≥=,故正确; 故选:CD 【点睛】本题主要考查等差数列的定义,等比数列的前n 项和公式以及数列的单调性和放缩法的应用,还考查了转化求解问题的能力,属于较难题.2.已知数列{}n a 的前n 项和为n S ,则下列说法正确的是( ) A .若21,n S n =-则{}n a 是等差数列B .若21,nn S =-则{}n a 是等比数列C .若{}n a 是等差数列,则995099S a =D .若{}n a 是等比数列,且10,0,a q >>则221212n n n S S S -+⋅>【答案】BC 【分析】由n S 求n a ,根据通项公式可判断AB 是否正确,由等差数列的性质可判断C ,取1n =时,结合等比数列求和公式作差比较13S S ⋅与22S 大小即可判断D. 【详解】对于A 选项,若21n S n =-,当2n ≥时,21n a n =-,10a =不满足21n a n =-,故A错误;对于B 选项,若21nn S =-,则1112,21,1n n n n S S n a S n --⎧-=≥=⎨==⎩,由于11a =满足12n n a -=,所以{}n a 是等比数列,故B 正确;对于C 选项,若{}n a 是等差数列,则()199995099992a a S a +==,故C 正确. 对于D 选项,当1n =时,()()222222132111110S S S a q qa q a q ⋅-=++-+=-<,故当1n =时不等式不等式,故221212n n n S S S -+⋅>不成立,所以D 错误.故选:BC 【点睛】本题考查数列的前n 项和为n S 与n a 之间的关系,等差数列的性质,等比数列的前n 项和为n S 的公式等,考查运算求解能力.本题D 选项解题的关键将问题特殊化,讨论1n =时,13S S ⋅与22S 大小情况.此外还需注意一下公式:11,2,1n n n S S n a S n --≥⎧=⎨=⎩;若{}n a 是等差数列,则()2121n n S n a -=-.3.设n S 是等差数列{}n a 的前n 项和,且12a =,38a =则( ) A .512a = B .公差3d =C .()261n S n n =+D .数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为64nn + 【答案】BCD 【分析】根据已知条件求出等差数列{}n a 的通项公式和前n 项和公式,即可判断选项A 、B 、C ,再利用裂项求和即可判断选项D. 【详解】因为数列{}n a 是等差数列,则312228a a d d =+=+=,解得:3d =,故选项B 正确; 所以()21331n a n n =+-⨯=-,对于选项A :535114a =⨯-=,故选项A 不正确;对于选项C :()()2222132612n n S n n n ++-⨯⎡⎤⎣⎦=⨯=+,所以故选项C 正确; 对于选项D :()()111111313233132n n a a n n n n +⎛⎫==- ⎪-+-+⎝⎭, 所以前n 项和为111111111325588113132n n ⎛⎫-+-+-++-⎪-+⎝⎭()611132322324n n n n n ⎛⎫=-== ⎪++⎝⎭+,故选项D 正确, 故选:BCD. 【点睛】方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解.4.在递增的等比数列{}n a 中,已知公比为q ,n S 是其前n 项和,若1432a a =,2312a a +=,则下列说法正确的是( )A .2qB .数列{}2n S +是等比数列C .8510S =D .数列{}lg n a 是公差为2的等差数列【答案】ABC 【分析】 计算可得2q,故选项A 正确;8510S =,122n n S ++=,所以数列{}2n S +是等比数列,故选项,B C 正确;lg lg 2n a n =⋅,所以数列{}lg n a 是公差为lg 2的等差数列,故选项D 错误. 【详解】{}n a 为递增的等比数列,由142332,12,a a a a =⎧⎨+=⎩得23142332,12,a a a a a a ==⎧⎨+=⎩解得234,8a a =⎧⎨=⎩或238,4a a =⎧⎨=⎩,∵{}n a 为递增数列, ∴234,8a a =⎧⎨=⎩∴322a q a ==,212a a q ==,故选项A 正确; ∴2nn a =,()12122212nn nS +⨯-==--,∴9822510S =-=,122n n S ++=,∴数列{}2n S +是等比数列,故选项B 正确;所以122n n S +=-,则9822510S =-=,故选项C 正确.又lg 2lg 2lg nn n a ==⋅,∴数列{}lg n a 是公差为lg 2的等差数列,故选项D 错误. 故选:ABC. 【点睛】方法点睛:证明数列为等差(等比)数列常用的方法有: (1)定义法; (2)通项公式法 (3)等差(等比)中项法(4)等差(等比)的前n 项和的公式法.要根据已知灵活选择方法证明.5.已知等比数列{}n a 满足11a =,其前n 项和()*1,0n n S pa r n N p +=+∈>.( )A .数列{}n a 的公比为pB .数列{}n a 为递增数列C .1r p =--D .当14p r-取最小值时,13-=n n a 【答案】BD 【分析】先结合已知条件,利用1n n n a S S -=-找到,p q 的关系,由11p q =-判断选项A 错误,由11pq p+=>判断B 正确,利用{}n a 通项公式和前n 项和公式代入已知式计算r p =-判断C 错误,将r p =-代入14p r-,利用基本不等式求最值及取等号条件,判断D 正确. 【详解】依题意,等比数列{}n a ,11a =,其前n 项和()*1,0n n S pa r n N p +=+∈>,设公比是q ,2n ≥时,11n n n n S pa rS pa r +-=+⎧⎨=+⎩,作差得,1n n n pa a pa +-=,即()11n n p a pa +=+,故11n n a p a p ++=,即1p q p +=,即11p q =-. 选项A 中,若公比为p ,则11p q q ==-,即210q q --=,即p q ==时,数列{}n a 的公比为p ,否则数列{}n a 的公比不为p ,故错误;选项B 中,由0p >知,1111p q p p +==+>,故111111n n n n a a q q p ---=⋅==⎛⎫+ ⎪⎝⎭是递增数列,故正确;选项C 中,由1n n S pa r +=+,11n n q S q-=-,11p q =-,1nn a q +=知, 1111111n n n n q p q q a qr S p q +--=-⋅=-=---=,故C 错误;选项D 中, 因为r p =-,故()1111444p p p r p p -=-=+≥=⋅-,当且仅当14p p =,即12p =时等号成立,14p r-取得最小值1,此时13p q p +==,113n n n a q --==,故正确.故选:BD. 【点睛】 方法点睛:由数列前n 项和求通项公式时,一般根据11,2,1n n n S S n a a n --≥⎧=⎨=⎩求解;2、当两个正数,a b的积为定值,要求这两个正数的和式的最值时,可以使用基本不等式a b +≥,当且仅当a b =取等号.6.已知数列{}n a 的前n 项和为n S ,11a =,且1n n S a λ-=(λ为常数).若数列{}n b 满足2920n n a b n n -+-=,且1n n b b +<,则满足条件的n 的取值可以为( )A .5B .6C .7D .8【答案】AB 【分析】利用11a S =可求得2λ=;利用1n n n a S S -=-可证得数列{}n a 为等比数列,从而得到12n na ,进而得到nb ;利用10nnb b 可得到关于n 的不等式,解不等式求得n 的取值范围,根据n *∈N 求得结果. 【详解】当1n =时,1111a S a λ==-,11λ∴-=,解得:2λ=21n n S a ∴=-当2n ≥且n *∈N 时,1121n n S a --=-1122n n nn n a S S a a ,即:12n n a a -=∴数列{}n a 是以1为首项,2为公比的等比数列,12n na2920n n a b n n =-+-,219202n n n n b --+-∴= ()()222111912092011280222n n n n nn n n n n n b b +--+++--+--+∴-=-=< 20n >,()()21128470n n n n ∴-+=--<,解得:47n <<又n *∈N ,5n ∴=或6 故选:AB 【点睛】关键点点睛:本题考查数列知识的综合应用,涉及到利用n a 与n S 的关系求解通项公式、等比数列通项公式的求解、根据数列的单调性求解参数范围等知识,解决本题的关键点是能够得到n b 的通项公式,进而根据单调性可构造出关于n 的不等式,从而求得结果,考查学生计算能力,属于中档题.7.在数列{}n a 中,如果对任意*n N ∈都有211n n n na a k a a +++-=-(k 为常数),则称{}n a 为等差比数列,k 称为公差比.下列说法正确的是( ) A .等差数列一定是等差比数列 B .等差比数列的公差比一定不为0C .若32nn a =-+,则数列{}n a 是等差比数列D .若等比数列是等差比数列,则其公比等于公差比 【答案】BCD 【分析】考虑常数列可以判定A 错误,利用反证法判定B 正确,代入等差比数列公式判定CD 正确. 【详解】对于数列{}n a ,考虑121,1,1n n n a a a ++===,211n n n na a a a +++--无意义,所以A 选项错误;若等差比数列的公差比为0,212110,0n n n n n na a a a a a +++++---==,则1n n a a +-与题目矛盾,所以B 选项说法正确; 若32nn a =-+,2113n n n na a a a +++-=-,数列{}n a 是等差比数列,所以C 选项正确;若等比数列是等差比数列,则11,1n n q a a q -=≠,()()11211111111111n n nn n n n n n n a q q a a a q a q q a a a q a q a q q +++--+---===---,所以D 选项正确.故选:BCD 【点睛】易错点睛:此题考查等差数列和等比数列相关的新定义问题.解决此类问题应该注意: (1)常数列作为特殊的等差数列公差为0; (2)非零常数列作为特殊等比数列公比为1.8.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,则下列4个命题中正确的有( )A .若100S =,则50a >,60a <;B .若412S S =,则使0n S >的最大的n 为15;C .若150S >,160S <,则{}n S 中7S 最大;D .若89S S <,则78S S <. 【答案】ABD 【分析】利用等差数列的求和公式及等差数列的性质,逐一检验选项,即可得答案. 【详解】对于A :因为正数,公差不为0,且100S =,所以公差0d <,所以1101010()02a a S +==,即1100a a +=, 根据等差数列的性质可得561100a a a a +=+=,又0d <, 所以50a >,60a <,故A 正确; 对于B :因为412S S =,则1240S S -=,所以561112894()0a a a a a a ++⋅⋅⋅++=+=,又10a >, 所以890,0a a ><, 所以115815815()15215022a a a S a +⨯===>,116891616()16()022a a a a S ++===, 所以使0n S >的最大的n 为15,故B 正确; 对于C :因为115815815()15215022a a a S a +⨯===>,则80a >, 116891616()16()022a a a a S ++===,则890a a +=,即90a <, 所以则{}n S 中8S 最大,故C 错误;对于D :因为89S S <,则9980S a S =->,又10a >, 所以8870a S S =->,即87S S >,故D 正确, 故选:ABD 【点睛】解题的关键是先判断d 的正负,再根据等差数列的性质,对求和公式进行变形,求得项的正负,再分析和判断,考查等差数列性质的灵活应用,属中档题.9.已知数列{}n a ,下列结论正确的有( ) A .若12a =,11n n a a n +++=,则20211a =.B .若11132n n a a a ++=,=,则71457a =C .若12nn S =3+,则数列{}n a 是等比数列 D .若11212n n n a a a a ++=,=()*n N ∈,则15215a = 【答案】AB 【分析】直接利用叠加法可判断选项A ,从而判断,利用构造新数列可求出B,D 中数列的通项公式,可判断,选项C 求出数列的前3项从而可判断. 【详解】选项A. 由11n n a a n +=++,即11n n a a n +-=+则()()()()19191818120207121a a a a a a a a a a =-+-+-++-+20191822211=+++++=故A 正确.选项B. 由132n n a a +=+,得()1311n n a a +=++,所以数列{}1n a +是以112a +=为首项,3为公比的等比数列.则1123n n a -+=⨯,即1231n n a -=⨯-,所以672311457a =⨯-=,故B 正确.选项C. 由12nn S =3+,可得当1n =时,11722a =+=3 当2n =时,得2211193622a S S ⎛⎫⎛⎫=-=+-+= ⎪ ⎪⎝⎭⎝⎭, 当3n =时,得332112791822a S S ⎛⎫⎛⎫=-=+-+= ⎪ ⎪⎝⎭⎝⎭,显然2213a a a ≠,所以数列{}n a 不是等比数列,故C 错误.选项D. 由122nn n a a a +=+,可得11112n n a a +-= 所以数列1n a ⎧⎫⎨⎬⎩⎭是以1为首项,12为公差的等差数列. 所以()1111122n n n a +=+-=,则1511826a ==,即1518a =,故D 错误. 故选:AB 【点睛】关键点睛:本题考查利用递推关系求数列的通项公式,解答的关键是掌握求数列通项公式的常见方法,由叠加法可得()()()()19191818120207121a a a a a a a a a a =-+-+-++-+,利用构造新数列()1311n n a a +=++,11112n n a a +-=解决问题,属于中档题.10.斐波那契数列{}n a :1,1,2,3,5,8,13,21,34,…,又称黄金分割数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,其通项公式1122n nn a ⎡⎤⎛⎛-⎢⎥=- ⎢⎥⎝⎭⎝⎭⎣⎦,是用无理数表示有理数的一个范例,该数列从第三项开始,每项等于其前相邻两项之和,即21n n n a a a ++=+,记该数列{}n a 的前n 项和为n S ,则下列结论正确的是( )A .10711S a =B .2021201920182a a a =+C .202120202019S S S =+D .201920201S a =-【答案】AB 【分析】选项A 分别求出710S a ,可判断,选项B 由21n n n a a a ++=+,得()112n n n a a a n +-=+≥,相加得2n a +12n n a a -=+可判断,选项C ,由202112342021S a a a a a =+++++,202012S a a =+++2020a ,两式错位相减可判断.选项D.由()()()()()324354652122n n n n S a a a a a a a a a a a a +++=-+-+-+-++-=-可判断.【详解】因为10143S =,711143a =,所以10711S a =,则A 正确;由21n n n a a a ++=+,得()112n n n a a a n +-=+≥,相加得2n a +12n n a a -=+, 所以2021201920182a a a =+,所以B 正确; 因为202112342021S a a a a a =+++++,202012S a a =+++2020a ,两式错位相减可得202120201220192019101S S a a a S -=+++++=+,所以2021202020191S S S =++,所以C 错误; 因为()()()()()123324354652122n n n n n S a a a a a a a a a a a a a a a a +++=++++=-+-+-+-++-=-21n a +=-,所以201920211S a =-,所以D 错误.故选:AB. 【点睛】关键点睛:本题考查数列的递推关系的应用,解答本题的关键是由202112342021S a a a a a =+++++,202012S a a =+++2020a ,两式错位相减可得202120201220192019101S S a a a S -=+++++=+,以及由递推关系可得()()()()()324354652122n n n n S a a a a a a a a a a a a +++=-+-+-+-++-=-,属于中档题.。

2023高考数学数列练习题及答案

2023高考数学数列练习题及答案

2023高考数学数列练习题及答案数列是高中数学中常见的重要概念,也是高考数学考试中的热点内容之一。

在准备2023年高考数学考试时,通过练习数列题目可以帮助我们深入理解数列的性质和应用,提高解题能力。

下面将提供一些2023年高考数学数列练习题及答案,供同学们进行复习和练习,以期取得好成绩。

练习题1:已知数列{an}满足a₁ = 2,an+1 = 2an - 1,(n ≥ 1),求a₅。

解答:根据已知条件可以得到数列的通项公式为an = 2ⁿ⁻¹。

代入n = 5,得到a₅ = 2⁴ = 16。

练习题2:已知等差数列{an}的首项是a₁ = 3,公差是d = 4,求数列的第n项an。

解答:根据等差数列的通项公式an = a₁ + (n - 1)d可以得出:an = 3 + (n - 1) × 4化简后得到an = 4n - 1。

练习题3:已知等比数列{bn}的首项是b₁ = 5,公比是q = 2,求数列的第n项bn。

解答:根据等比数列的通项公式bn = b₁ × qⁿ⁻¹可以得出:bn = 5 × 2ⁿ⁻¹。

练习题4:已知等差数列{cn}的首项是c₁ = 2,公差是d = 3,求数列的前n项和Sn。

解答:数列的前n项和Sn可以表示为Sn = n/2 × (2a₁ + (n - 1)d)。

代入已知条件得到Sn = n/2 × (2 × 2 + (n - 1) × 3)。

化简后得到Sn = 3n² - 3n。

练习题5:已知等差数列{dn}的前n项和Sn为Sn = 4n² + n,求数列的首项d₁和公差d。

解答:根据数列的前n项和的公式可以得到Sn = n/2 × (2a₁ + (n - 1)d)。

代入已知条件得到4n² + n = n/2 × (2d + (n - 1)d)。

高考大题专项突破 数列

高考大题专项突破 数列
(2)解由(1)得 an+n=2×2n-1=2n,故 an=2n-n. 因此,Sn=2×1(1-2-2������) − ������(������2+1),即 Sn=2n+1-������22+������-2.
-13-
题型一 题型二 题型三 题型四 题型五
策略一 策略二
对点训练3设Sn为等比数列{an}的前n项和,已知S2=2,S3=-6. (1)求{an}的通项公式; (2)求Sn,并判断Sn+1,Sn,Sn+2是否成等差数列.
∵a2+a3=5ln 2, ∴2a1+3d=5ln 2. 又a1=ln 2,∴d=ln 2. ∴an=a1+(n-1)d=nln 2. (2)由(1)知 an=nln 2,∵e������������ =enln 2=eln 2������ =2n, ∴{e������������ }是以 2 为首项,2 为公比的等比数列. ∴e������1 + e������2 +…+e������������ =2+22+…+2n=2n+1-2. ∴e������1 + e������2 +…+e������������ =2n+1-2.
-17-
题型一 题型二 题型三 题型四 题型五
策略一 策略二
(2)∵f(m)=���������+���1,b1=a1=1,bn=f(bn-1)=������������������-���1���-+1 1(n≥2),∴���1��������� =
������������������-���1���-+1 1(n≥2).∴���1���������

2024年高考数学专项突破数列大题基础练(解析版)

2024年高考数学专项突破数列大题基础练(解析版)

数列大题基础练-新高考数学复习分层训练(新高考通用)1.(2022·浙江·模拟预测)已知数列{}n a 满足,12(1)nn n a a +=+⋅-.(1)若11a =,数列{}2n a 的通项公式;(2)若数列{}n a 为等比数列,求1a .2.(2022·海南省直辖县级单位·校联考一模)等差数列{}n a 的首项11a =,且满足2512a a +=,数列{}n b 满足2n a n b =.(1)求数列{}n a 的通项公式;(2)设数列{}n b 的前n 项和是n T ,求n T .3.(2023·黑龙江大庆·统考一模)设{}n a 是公差不为0的等差数列,12a =,3a 是1a ,11a 的等比中项.(1)求{}n a 的通项公式;(2)设13n n n b a a +=,求数列{}n b 的前n 项和n S .4.(2023·广东惠州·统考模拟预测)数列{}n a 中,12a =,121n n a a +=-.(1)求证:数列{}1n a -是等比数列;(2)若n n b a n =+,求数列{}n b 的前n 项和n T .5.(2023·广东江门·统考一模)已知数列{}n a (N n +∈)满足11a =,133n n n a a n++=,且n n ab n =.(1)求数列{}n b 是通项公式;(2)求数列{}n a 的前n 项和n S .6.(2023·江苏·统考一模)已知等比数列{}n a 的各项均为正数,且23439a a a ++=,54323a a a =+.(1)求{}n a 的通项公式;(2)数列{}n b 满足n nnb a=,求{}n b 的前n 项和n T .2024年高考数学专项突破数列大题基础练(解析版)7.(2023·重庆·统考二模)已知数列{}n a 的前n 项和为n S ,且满足()115n n na n a +-+=,且15a ≠-.(1)求证:数列5n a n +⎧⎫⎨⎬⎩⎭为常数列,并求{}n a 的通项公式;(2)若使不等式20n S >成立的最小整数为7,且1Z a ∈,求1a 和n S 的最小值.8.(2023·海南海口·校考模拟预测)已知数列{}n a 的前n 项和为n S ,14a =,12n n a n S n+=.(1)求数列{}n a 的通项公式;(2)记12nn na c =-,数列{}nc 的前n 项和为n T ,求12111n T T T ++⋅⋅⋅+的值.9.(2023·山东青岛·统考一模)已知等差数列{}n a 的前n 项和为n S ,公差0d ≠,2S ,4S ,54S +成等差数列,2a ,4a ,8a 成等比数列.(1)求n S ;(2)记数列{}n b 的前n 项和为n T ,22n n n n b T S +-=,证明数列1n n b S ⎧⎫-⎨⎬⎩⎭为等比数列,并求{}n b 的通项公式.10.(2023·山东济南·一模)已知数列{}n a 满足111,(1)1n n a na n a +=-+=.(1)若数列{}n b 满足1nn a b n+=,证明:{}n b 是常数数列;(2)若数列{}n c 满足πsin 22n an n c a ⎛⎫=+ ⎪⎝⎭,求{}n c 的前2n 项和2n S .11.(2022·辽宁鞍山·统考一模)已知等差数列{}n a 满足首项为3331log 15log 10log 42-+的值,且3718a a +=.(1)求数列{}n a 的通项公式;(2)设11n n n b a a +=,求数列{}n b 的前n 项和n T .12.(2023·广东·统考一模)已知各项都是正数的数列{}n a ,前n 项和n S 满足()2*2n n n a S a n =-∈N .(1)求数列{}n a 的通项公式.(2)记n P 是数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和,n Q 是数列121n a -⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和.当2n ≥时,试比较n P 与n Q 的大小.13.(2022·吉林长春·东北师大附中校考模拟预测)从①12n a S n n ⎛⎫=+ ⎪⎝⎭;②23S a =,412a a a =;③12a =,4a 是2a ,8a 的等比中项这三个条件中任选一个,补充到下面横线上,并解答.已知等差数列{}n a 的前n 项和为n S ,公差d 不等于零,______.(1)求数列{}n a 的通项公式;(2)若122n n n b S S +=-,数列{}n b 的前n 项和为n W ,求n W .14.(2022·广东珠海·珠海市第三中学统考二模)已知数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,1221n n n a b n -+=+-,221n n n T S n -=--.(1)求11,a b 及数列{}n a ,{}n b 的通项公式;(2)设()*21N 2n n n a n k c k b n k=-⎧=∈⎨=⎩,,,求数列{}n c 的前2n 项和2n P .15.(2022·云南大理·统考模拟预测)已知数列{}n a 的前n 项和为n S ,且满足1121,1nn S a a n+==-.(1)求数列{}n a 的通项公式;(2)若数列2,,23,,n n n C n n ⎧=⎨+⎩为奇数为偶数,求数列{}n C 的前2n 项和2n T .16.(2022·湖南永州·统考一模)已知数列{}{},n n a b 满足:111a b ==,且210n n n n a b a b ++-=.(1)若数列{}n a 为等比数列,公比为121,2q a a -=,求{}n b 的通项公式;(2)若数列{}n a 为等差数列,11n n a a +-=,求{}n b 的前n 项和n T .17.(2022·广东韶关·统考一模)已知数列{}n a 的首项145a =,且满足143n n n a a a+=+,设11nnb a =-.(1)求证:数列{}n b 为等比数列;(2)若1231111140na a a a ++++> ,求满足条件的最小正整数n .18.(2022·河北·模拟预测)已知数列{}n a 的前n 项和为n S ,13a =,且1123n n n S S a +++=-.(1)求数列{}n a 的通项公式;(2)①3log n n nb a a =;②3321log log n n n b a a +=⋅;③3log n n n b a a =-.从上面三个条件中任选一个,求数列{}n b 的前n 项和n T .注:如果选择多个条件分别解答,按第一个解答计分.19.(2022·广东广州·统考一模)已知公差不为0的等差数列{}n a 中,11a =,4a 是2a 和8a 的等比中项.(1)求数列{}n a 的通项公式:(2)保持数列{}n a 中各项先后顺序不变,在k a 与1(1,2,)k a k += 之间插入2k ,使它们和原数列的项构成一个新的数列{}n b ,记{}n b 的前n 项和为n T ,求20T 的值.20.(2023·湖北·荆州中学校联考二模)已知数列{}n a ,若_________________.(1)求数列{}n a 的通项公式;(2)求数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n T .从下列三个条件中任选一个补充在上面的横线上,然后对题目进行求解.①2123n a a a a n ++++= ;②11a =,47a =,()*112,2n n n a a a n n -+=+∈N ≥;③11a =,点(),n A n a ,()11,n B n a ++在斜率是2的直线上.21.(2023·江苏南通·二模)已知正项数列{}n a 的前n 项和为,且11a =,2218n n S S n +-=,*N n ∈.(1)求n S ;(2)在数列{}n a 的每相邻两项1k k a a +,之间依次插入12k a a a ⋯,,,,得到数列{}1121231234n b a a a a a a a a a a ⋯⋯:,,,,,,,,,,,求{}n b 的前100项和.22.(2023·江苏南通·海安高级中学校考一模)已知数列{}n a 满足()1122n n n a a a n -+=+≥,且12342,18a a a a =++=(1)求{}n a 的通项公式;(2)设1000na nb =-,求数列{}n b 的前15项和15T (用具体数值作答).23.(2023·安徽·模拟预测)已知{}n a 为等差数列,{}n b 是公比为2的等比数列,且223344a b a b b a -=-=-.(1)证明:11a b =;(2)求集合{}1,1500k m k b a a m =+≤≤中元素个数.24.(2023·河北衡水·河北衡水中学校考三模)已知{}n a 为等差数列,1154,115n n a n a a n+-==+.(1)求{}n a 的通项公式;(2)若()()1,414n n n n b T a a =++为{}n b 的前n 项和,求n T .25.(2023·广东广州·统考二模)设数列{}n a 的前n 项和为n S ,且()22*n n S a n =-∈N .(1)求{}n a 的通项公式;(2)设2211log log n n n b a a +=⋅,记{}n b 的前n 项和为n T ,证明:1n T <.26.(2023·江苏泰州·统考一模)在①124,,S S S 成等比数列,②4222a a =+,③8472S S S =+-这三个条件中任选两个,补充在下面问题中,并完成解答.已知数列{}n a 是公差不为0的等差数列,其前n 项和为n S ,且满足__________,__________.(1)求{}n a 的通项公式;(2)求12233411111n n a a a a a a a a +++++ .注:如果选择多个方案分别解答,按第一个方案计分.27.(2023·黑龙江·黑龙江实验中学校考一模)已知数列{}n a ,前n 项和为n S ,且满足112n n n a a a +-=-,2n ≥,*N n ∈,1514a a +=,770S =,等比数列{}n b 中,1212b b +=,且12,6b b +,3b 成等差数列.(1)求数列{}n a 和{}n b 的通项公式;(2)记n c 为区间(]()*,N n n a b n ∈中的整数个数,求数列{}n c 的前n 项和n P .28.(2023·吉林·统考二模)已知数列{}n a 的前n 项和为n S ,13a =,数列n S n ⎧⎫⎨⎬⎩⎭是以2为公差的等差数列.(1)求{}n a 的通项公式;(2)设()()112n nn nn a b a a +-+=,求数列{}nb 的前2n 项和2nT .29.(2023·山西·校联考模拟预测)已知数列{}n a 满足0n a >,22112n n n n a a a a ++=+,且13a ,23a +,3a 成等差数列.(1)求{}n a 的通项公式;(2)若12,log ,n n na nb a n ⎧⎪=⎨⎪⎩为奇数为偶数,求数列{}n b 的前2n 项和2n T .30.(2023·黑龙江哈尔滨·哈尔滨三中校考二模)已知数列{}n a 满足:15a =,134n n a a +=-,设2n n b a =-,*N n ∈.(1)求数列{}n b 的通项公式;(2)设3132312log log log n n nb b b T b b b =++⋅⋅⋅+,()*N n ∈,求证:34n T <.数列大题基础练-新高考数学复习分层训练(新高考通用)1.(2022·浙江·模拟预测)已知数列{}n a 满足,12(1)nn n a a +=+⋅-.(1)若11a =,数列{}2n a 的通项公式;(2)若数列{}n a 为等比数列,求1a .【答案】(1)21n a =-;(2)11a =.【分析】(1)利用累加法求2n a 即可;(2)根据()121nn n a a +=+⋅-得到212a a =-,322a a =+,联立得到1q =-,然后代入求1a 即可.【详解】(1)由题意得()121nn n a a +-=⋅-,所以()()()22212122211n n n n n a a a a a a a a ---=-+-++-+ ()()()212212121211n n --=⋅-+⋅-++⨯-+ 211=-+=-.(2)设数列{}n a 的公比为q ,因为()121nn n a a +=+⋅-,所以212a a =-,322a a =+,两式相加得2311a a q a =⋅=,所以1q =±,当1q =时,2112a a a ==-不成立,所以1q =-,2112a a a =-=-,解得11a =.2.(2022·海南省直辖县级单位·校联考一模)等差数列{}n a 的首项11a =,且满足2512a a +=,数列{}n b 满足2n a n b =.(1)求数列{}n a 的通项公式;(2)设数列{}n b 的前n 项和是n T ,求n T .【答案】(1)21n a n =-;3.(2023·黑龙江大庆·统考一模)设{}n a 是公差不为0的等差数列,12a =,3a 是1a ,11a 的等比中项.(1)求{}n a 的通项公式;(2)设3n b a a =,求数列{}n b 的前n 项和n S .4.(2023·广东惠州·统考模拟预测)数列{}n a 中,12a =,121n n a a +=-.(1)求证:数列{}1n a -是等比数列;(2)若n n b a n =+,求数列{}n b 的前n 项和n T .5.(2023·广东江门·统考一模)已知数列{}n a (N n +∈)满足11a =,133n n n a a n++=,且n n ab n =.(1)求数列{}n b 是通项公式;(2)求数列{}n a 的前n 项和n S .【答案】(1)13n n b -=6.(2023·江苏·统考一模)已知等比数列{}n a 的各项均为正数,且23439a a a ++=,54323a a a =+.(1)求{}n a 的通项公式;(2)数列{}n b 满足n nb a =,求{}n b 的前n 项和n T .7.(2023·重庆·统考二模)已知数列{}n a 的前n 项和为n S ,且满足()115n n na n a +-+=,且15a ≠-.(1)求证:数列5n a n +⎧⎫⎨⎬⎩⎭为常数列,并求{}n a 的通项公式;(2)若使不等式20n S >成立的最小整数为7,且1Z a ∈,求1a 和n S 的最小值.8.(2023·海南海口·校考模拟预测)已知数列{}n a 的前n 项和为n S ,14a =,2n n S n=.(1)求数列{}n a 的通项公式;(2)记12nn na c =-,数列{}n c 的前n 项和为n T ,求111T T T ++⋅⋅⋅+的值.9.(2023·山东青岛·统考一模)已知等差数列{}n a 的前n 项和为n S ,公差0d ≠,2S ,4S ,54S +成等差数列,2a ,4a ,8a 成等比数列.(1)求n S ;(2)记数列{}n b 的前n 项和为n T ,22n n n n b T S +-=,证明数列1n n b S ⎧⎫-⎨⎬⎩⎭为等比数列,并求{}n b 的通项公式.10.(2023·山东济南·一模)已知数列{}n a 满足111,(1)1n n a na n a +=-+=.(1)若数列{}n b 满足1nn a b n+=,证明:{}n b 是常数数列;(2)若数列{}n c 满足πsin 22n an n c a ⎛⎫=+ ⎪,求{}n c 的前2n 项和2n S .11.(2022·辽宁鞍山·统考一模)已知等差数列{}n a 满足首项为333log 15log 10log 42-+的值,且3718a a +=.(1)求数列{}n a 的通项公式;(2)设1n b a a =,求数列{}n b 的前n 项和n T .12.(2023·广东·统考一模)已知各项都是正数的数列{}n a ,前n 项和n S 满足()2*2n n n a S a n =-∈N .(1)求数列{}n a 的通项公式.(2)记n P 是数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和,n Q 是数列121n a -⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和.当2n ≥时,试比较n P 与n Q 的大小.【答案】(1)n a n =(2)n nP Q <13.(2022·吉林长春·东北师大附中校考模拟预测)从①12n S n n ⎛⎫=+ ⎪⎝⎭;②23S a =,412a a a =;③12a =,4a 是2a ,8a 的等比中项这三个条件中任选一个,补充到下面横线上,并解答.已知等差数列{}n a 的前n 项和为n S ,公差d 不等于零,______.(1)求数列{}n a 的通项公式;(2)若122n n n b S S +=-,数列{}n b 的前n 项和为n W ,求n W .14.(2022·广东珠海·珠海市第三中学统考二模)已知数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,1221n n n a b n -+=+-,221n n n T S n -=--.(1)求11,a b 及数列{}n a ,{}n b 的通项公式;(2)设()*21N 2n n n a n k c k b n k=-⎧=∈⎨=⎩,,,求数列{}n c 的前2n 项和2n P .15.(2022·云南大理·统考模拟预测)已知数列{}n a 的前n 项和为n S ,且满足111,1nn a a n+==-.(1)求数列{}n a 的通项公式;(2)若数列2,,23,,n n n C n n ⎧=⎨+⎩为奇数为偶数,求数列{}n C 的前2n 项和2n T .16.(2022·湖南永州·统考一模)已知数列{}{},n n a b 满足:111a b ==,且210n n n n a b a b ++-=.(1)若数列{}n a 为等比数列,公比为121,2q a a -=,求{}n b 的通项公式;(2)若数列{}n a 为等差数列,11n n a a +-=,求{}n b 的前n 项和n T .17.(2022·广东韶关·统考一模)已知数列{}n a 的首项15a =,且满足13n n n a a +=+,设1n nb a =-.(1)求证:数列{}n b 为等比数列;(2)若1111140a a a a ++++> ,求满足条件的最小正整数n .18.(2022·河北·模拟预测)已知数列{}n a 的前n 项和为n S ,13a =,且1123n n n S S a +++=-.(1)求数列{}n a 的通项公式;(2)①3log n n n b a a =;②3321log log n n n b a a +=⋅;③3log n n n b a a =-.从上面三个条件中任选一个,求数列{}n b 的前n 项和n T .注:如果选择多个条件分别解答,按第一个解答计分.19.(2022·广东广州·统考一模)已知公差不为0的等差数列{}n a 中,11a =,4a 是2a 和8a 的等比中项.(1)求数列{}n a 的通项公式:(2)保持数列{}n a 中各项先后顺序不变,在k a 与1(1,2,)k a k += 之间插入2k ,使它们和原数列的项构成一个新的数列{}n b ,记{}n b 的前n 项和为n T ,求20T 的值.20.(2023·湖北·荆州中学校联考二模)已知数列{}n a ,若_________________.(1)求数列{}n a 的通项公式;(2)求数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n T .从下列三个条件中任选一个补充在上面的横线上,然后对题目进行求解.①2123n a a a a n ++++= ;②11a =,47a =,()*112,2n n n a a a n n -+=+∈N ≥;③11a =,点(),n A n a ,()11,n B n a ++在斜率是2的直线上.21.(2023·江苏南通·二模)已知正项数列{}n a 的前n 项和为,且11a =,2218n n S S n +-=,*N n ∈.(1)求n S ;(2)在数列{}n a 的每相邻两项1k k a a +,之间依次插入12k a a a ⋯,,,,得到数列{}1121231234n b a a a a a a a a a a ⋯⋯:,,,,,,,,,,,求{}n b 的前100项和.22.(2023·江苏南通·海安高级中学校考一模)已知数列{}n a 满足()1122n n n a a a n -+=+≥,且12342,18a a a a =++=(1)求{}n a 的通项公式;(2)设1000na nb =-,求数列{}n b 的前15项和15T (用具体数值作答).()()1061022166490300022-==--+23.(2023·安徽·模拟预测)已知{}n a 为等差数列,{}n b 是公比为2的等比数列,且223344a b a b b a -=-=-.(1)证明:11a b =;(2)求集合{}1,1500k m k b a a m =+≤≤中元素个数.24.(2023·河北衡水·河北衡水中学校考三模)已知{}n a 为等差数列,11,115n n a a n+==+.(1)求{}n a 的通项公式;(2)若()()1,414n n b T a a =++为{}n b 的前n 项和,求n T .25.(2023·广东广州·统考二模)设数列{}n a 的前n 项和为n S ,且()22*n n S a n =-∈N .(1)求{}n a 的通项公式;(2)设1log log n b a a =⋅,记{}n b 的前n 项和为n T ,证明:1n T <.26.(2023·江苏泰州·统考一模)在①124,,S S S 成等比数列,②4222a a =+,③8472S S S =+-这三个条件中任选两个,补充在下面问题中,并完成解答.已知数列{}n a 是公差不为0的等差数列,其前n 项和为n S ,且满足__________,__________.(1)求{}n a 的通项公式;(2)求12233411111n n a a a a a a a a +++++ .注:如果选择多个方案分别解答,按第一个方案计分.27.(2023·黑龙江·黑龙江实验中学校考一模)已知数列{}n a ,前n 项和为n S ,且满足112n n n a a a +-=-,2n ≥,*N n∈,1514a a +=,770S =,等比数列{}n b 中,1212b b +=,且12,6b b +,3b 成等差数列.(1)求数列{}n a 和{}n b 的通项公式;(2)记n c 为区间(]()*,N n n a b n ∈中的整数个数,求数列{}n c 的前n 项和n P .28.(2023·吉林·统考二模)已知数列{}n a 的前n 项和为n S ,13a =,数列n n ⎧⎫⎨⎬⎩⎭是以2为公差的等差数列.(1)求{}n a 的通项公式;(2)设()()112n n n n n a b a a +-+=,求数列{}n b 的前2n 项和2n T .29.(2023·山西·校联考模拟预测)已知数列{}n a 满足0n a >,22112n n n n a a a a ++=+,且13a ,23a +,3a 成等差数列.(1)求{}n a 的通项公式;(2)若12,log ,n n n a n b a n ⎧⎪=⎨⎪⎩为奇数为偶数,求数列{}n b 的前2n 项和2n T .30.(2023·黑龙江哈尔滨·哈尔滨三中校考二模)已知数列{}n a 满足:15a =,134n n a a +=-,设2n n b a =-,*N n ∈.(1)求数列{}n b 的通项公式;(2)设31323log log log n n b b b T b b b =++⋅⋅⋅+,()*N n ∈,求证:34n T <.。

2024年高考数学专项复习数列中的知识交汇和创新型问题(解析版)

2024年高考数学专项复习数列中的知识交汇和创新型问题(解析版)

数列中的知识交汇和创新型问题1王先生今年初向银行申请个人住房贷款100万元购买住房,按复利计算,并从贷款后的次月初开始还贷,分10年还清.银行给王先生提供了两种还贷方式:①等额本金:在还款期内把本金总额等分,每月偿还同等数额的本金和剩余本金在该月所产生的利息;②等额本息:在还款期内,每月偿还同等数额的贷款(包括本金和利息).(1)若王先生采取等额本金的还贷方式,已知第一个还贷月应还15000元,最后一个还贷月应还6500元,试计算王先生该笔贷款的总利息;(2)若王先生采取等额本息的还贷方式,贷款月利率为0.3%,.银行规定每月还贷额不得超过家庭月收入的一半,已知王先生家庭月收入为23000元,试判断王先生该笔贷款能否获批.(不考虑其他因素)参考数据1.003119≈1.428,1.003180≈1.433,1.003121≈1.4372024年高考数学专项复习数列中的知识交汇和创新型问题(解析版)2佛山新城文化中心是佛山地标性公共文化建筑.在建筑造型上全部都以最简单的方块体作为核心要素,与佛山世纪莲体育中心的圆形莲花造型形成“方”“圆”呼应.坊塔是文化中心的标志性建筑、造型独特、类似一个个方体错位堆叠,总高度153.6米.坊塔塔楼由底部4个高度相同的方体组成塔基,支托上部5个方体,交错叠合成一个外形时尚的塔身结构.底部4个方体高度均为33.6米,中间第5个方体也为33.6米高,再往上2个方体均为24米高,最上面的两个方体均为19.2米高.(1)请根据坊塔方体的高度数据,结合所学数列知识,写出一个等差数列a n的通项公式,该数列以33.6为首项,并使得24和19.2也是该数列的项;(2)佛山世纪莲体育中心上层屋盖外径为310米.根据你得到的等差数列,连续取用该数列前m(m∈N*)项的值作为方体的高度,在保持最小方体高度为19.2米的情况下,采用新的堆叠规则,自下而上依次为2a1、3a2、4a3、⋯⋯、m+1a m表示高度为a m的方体连续堆叠m+1层的总高度),请问新堆叠坊塔a m(m+1的高度是否超过310米?并说明理由.3在当前市场经济条件下,某服装市场上私营个体商店中的商品所标价格a与其实际价值b之间存在着相当大的差距.对购物的消费者来说,这个差距越小越好,而商家则相反,于是就有消费者与商家的“讨价还价”,常见的方法是“对半还价法”,消费者第一次减去定价的一半,商家第一次讨价加上二者差价的一半;消费者第二次还价再减去二者差价的一半,商家第二次讨价,再加上二者差价的一半,如此下去,可得表1:表1次数消费者还价商家讨价第一次b1=12a c1=b1+12(a-b1)第二次b2=c1-12(c1-b1)c2=b2+12(c1-b2)第三次b3=c2-12(c2-b2)c3=b3+12(c2-b3)⋅⋅⋅⋅⋅⋅⋅⋅⋅第n次b n=c n-1-12(c n-1-b n-1)c n=b n+12(c n-1-b n)消费者每次的还价b n(n∈k)组成一个数列b n.(1)写出此数列的前三项,并猜测通项b n的表达式并求出limn→+∞b n;(2)若实际价格b与定出a的价格之比为b:a=0.618:1,利用“对半还价法”讨价还价,最终商家将能有百分之几的利润?4近两年,直播带货逐渐成为一种新兴的营销模式,带来电商行业的新增长点.某直播平台第1年初的启动资金为500万元,由于一些知名主播加入,平台资金的年平均增长率可达40%,每年年底把除运营成本a万元,再将剩余资金继续投入直播平合.(1)若a=100,在第3年年底扣除运营成本后,直播平台的资金有多少万元?(2)每年的运营成本最多控制在多少万元,才能使得直播平台在第6年年底㧅除运营成本后资金达到3000万元?(结果精确到0.1万元)5甲、乙两人同时分别入职A,B两家公司,两家公司的基础工资标准分别为:A公司第一年月基础工资数为3700元,以后每年月基础工资比上一年月基础工资增加300元;B公司第一年月基础工资数为4000元,以后每年月基础工资都是上一年的月基础工资的1.05倍.(1)分别求甲、乙两人工作满10年的基础工资收入总量(精确到1元)(2)设甲、乙两人入职第n年的月基础工资分别为a n、b n元,记c n=a n-b n,讨论数列c n的单调性,指出哪年起到哪年止相同年份甲的月基础工资高于乙的月基础工资,并说明理由.6治理垃圾是S市改善环境的重要举措.去年S市产生的垃圾量为200万吨,通过扩大宣传、环保处理等一系列措施,预计从今年开始,连续5年,每年的垃圾排放量比上一年减少20万吨,从第6年开始,每年的垃圾排放量为上一年的75%.(1)写出S市从今年开始的年垃圾排放量与治理年数n n∈N*的表达式;(2)设A n为从今年开始n年内的年平均垃圾排放量.如果年平均垃圾排放量呈逐年下降趋势,则认为现有的治理措施是有效的;否则,认为无效,试判断现有的治理措施是否有效,并说明理由.7为了防止某种新冠病毒感染,某地居民需服用一种药物预防.规定每人每天定时服用一次,每次服用m毫克.已知人的肾脏每24小时可以从体内滤除这种药物的80%,设第n次服药后(滤除之前)这种药物在人体内的含量是a n毫克,(即a1=m).(1)已知m=12,求a2、a3;(2)该药物在人体的含量超过25毫克会产生毒副作用,若人需要长期服用这种药物,求m的最大值.8保障性租赁住房,是政府为缓解新市民、青年人住房困难,作出的重要决策部署.2021年7月,国务院办公厅发布《关于加快发展保障性租赁住房的意见》后,国内多个城市陆续发布了保障性租赁住房相关政策或征求意见稿.为了响应国家号召,某地区计划2021年新建住房40万平方米,其中有25万平方米是保障性租赁住房.预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%,另外,每年新建住房中,保障性租赁住房的面积均比上一年增加5万平方米.(1)到哪一年底,该市历年所建保障性租赁住房的累计面积(以2021年为累计的第一年)将首次不少于475万平方米?(2)到哪一年底,当年建造的保障性租赁住房的面积占该年建造住房面积的比例首次大于85%?9某市2013年发放汽车牌照12万张,其中燃油型汽车牌照10万张,电动型汽车2万张,为了节能减排和控制总量,从2013年开始,每年电动型汽车牌照按50%增长,而燃油型汽车牌照每一年比上一年减少0.5万张,同时规定一旦某年发放的牌照超过15万张,以后每一年发放的电动车的牌照的数量维持在这一年的水平不变.(1)记2013年为第一年,每年发放的燃油型汽车牌照数量构成数列a n,每年发放电动型汽车牌照数为构成数列b n,完成下列表格,并写出这两个数列的通项公式;a1=10a2=9.5a3=a4=b1=2b2=3b3=b4=(2)从2013年算起,累计各年发放的牌照数,哪一年开始超过200万张?10市民小张计划贷款60万元用于购买一套商品住房,银行给小张提供了两种贷款方式:①等额本金:每月的还款额呈递减趋势,且从第二个还款月开始,每月还款额与上月还款额的差均相同;②等额本息:每月的还款额均相同.银行规定,在贷款到账日的次月当天开始首次还款(如2020年7月7日贷款到账,则2020年8月7日首次还款).已知该笔贷款年限为20年,月利率为0.4%.(1)若小张采取等额本金的还款方式,已知第一个还款月应还4900元,最后一个还款月应还2510元,试计算该笔贷款的总利息.(2)若小张采取等额本息的还款方式,银行规定,每月还款额不得超过家庭平均月收入的一半.已知小张家庭平均月收入为1万元,判断小张申请该笔贷款是否能够获批(不考虑其他因素).参考数据:1.0042.61.(3)对比两种还款方式,从经济利益的角度考虑,小张应选择哪种还款方式.11流行性感冒是由流感病毒引起的急性呼吸道传染病.某市去年11月份曾发生流感,据统计,11月1日该市的新感染者有30人,以后每天的新感染者比前一天的新感染者增加50人.由于该市医疗部门采取措施,使该种病毒的传播得到控制,从11月k+19≤k≤29,k∈N*日起每天的新感染者比前一天的新感染者减少20人.(1)若k=9,求11月1日至11月10日新感染者总人数;(2)若到11月30日止,该市在这30天内的新感染者总人数为11940人,问11月几日,该市新感染者人数最多?并求这一天的新感染者人数.12某知识测试的题目均为多项选择题,每道多项选择题有A,B,C,D这4个选项,4个选项中仅有两个或三个为正确选项.题目得分规则为:全部选对的得5分,部分选对的得2分,有选错的得0分.已知测试过程中随机地从四个选项中作选择,每个选项是否为正确选项相互独立.若第一题正确选项为两个的概率为13,并且规定若第i i=1,2,⋯,n-1题正确选项为两个,则第i+1题正确选项为两个的概率为13;第i i=1,2,⋯,n-1题正确选项为三个,则第i+1题正确选项为三个的概率为1 3.(1)若第二题只选了“C”一个选项,求第二题得分的分布列及期望;(2)求第n题正确选项为两个的概率;(3)若第n题只选择B、C两个选项,设Y表示第n题得分,求证:E Y ≤1718.13甲、乙两人进行象棋比赛,赛前每人发3枚筹码.一局后负的一方,需将自己的一枚筹码给对方;若平局,双方的筹码不动,当一方无筹码时,比赛结束,另一方最终获胜.由以往两人的比赛结果可知,在一局中甲胜的概率为0.3、乙胜的概率为0.2.(1)第一局比赛后,甲的筹码个数记为X,求X的分布列和期望;(2)求四局比赛后,比赛结束的概率;(3)若P i i=0,1,⋯,6表示“在甲所得筹码为i枚时,最终甲获胜的概率”,则P0=0,P6=1.证明:P i+1-P ii=0,1,2,⋯,5为等比数列.14已知数列a n的前n项和为S n,a1=2,对任意的正整数n,点a n+1,S n均在函数f x =x图象上.(1)证明:数列S n是等比数列;(2)问a n中是否存在不同的三项能构成等差数列?说明理由.15如果数列a n对任意的n∈N*,a n+2-a n+1>a n+1-a n,则称a n为“速增数列”.(1)请写出一个速增数列a n的通项公式,并证明你写出的数列符合要求;(2)若数列a n为“速增数列”,且任意项a n∈Z,a1=1,a2=3,a k=2023,求正整数k的最大值.16设数列a n的前n项和为S n,若12≤a n+1a n≤2n∈N*,则称a n是“紧密数列”.(1)若a n=n2+2n4n ,判断a n是否是“紧密数列”,并说明理由;(2)若数列a n前n项和为S n=14n2+3n,判断a n是否是“紧密数列”,并说明理由;(3)设数列a n是公比为q的等比数列.若数列a n与S n都是“紧密数列”,求q的取值范围.17已知a n和b n是各项均为正整数的无穷数列,若a n和b n都是递增数列,且a n中任意两个不同的项的和不是b n 中的项,则称a n 被b n 屏蔽.已知数列c n 满足1c 1+3c 2+⋅⋅⋅+2n -1c n=n n ∈N * .(1)求数列c n 的通项公式;(2)若d n 为首项与公比均为c 1+1的等比数列,求数列c n ⋅d n 的前n 项和S n ,并判断S n 能否被c n 屏蔽,请说明理由.18设y =f (x )是定义域为R 的函数,如果对任意的x 1、x 2∈R x 1≠x 2 ,f x 1 -f x 2 <x 1-x 2 均成立,则称y =f (x )是“平缓函数”.(1)若f 1(x )=1x 2+1,f 2(x )=sin x ,试判断y =f 1(x )和y =f 2(x )是否为“平缓函数” ?并说明理由;(参考公式:x >0时,sin x <x 恒成立)(2)若函数y =f (x )是“平缓函数”,且y =f (x )是以1为周期的周期函数,证明:对任意的x 1、x 2∈R ,均有f x 1 -f x 2 <12;(3)设y =g (x )为定义在R 上函数,且存在正常数A >1使得函数y =A ⋅g (x )为“平缓函数”. 现定义数列x n 满足:x 1=0,x n =g x n -1 (n =2,3,4,⋯),试证明:对任意的正整数n ,g x n ≤A |g (0)|A -1.19若项数为N N ≥3 的数列A N :a 1,a 2,⋯,a N 满足:a 1=1,a i ∈N *i =2,3,⋯,N ,且存在M ∈2,3,⋯,N -1 ,使得a n +1-a n ∈1,2 ,1≤n ≤M -1-1,-2 ,M ≤n ≤N -1,则称数列A N 具有性质P .(1)①若N =3,写出所有具有性质P 的数列A 3;②若N =4,a 4=3,写出一个具有性质P 的数列A 4;(2)若N =2024,数列A 2024具有性质P ,求A 2024的最大项的最小值;(3)已知数列A N :a 1,a 2,⋯,a N ,B N :b 1,b 2,⋯,b N 均具有性质P ,且对任意i ,j ∈1,2,⋯,N ,当i ≠j 时,都有a i ≠a j ,b i ≠b j .记集合T 1=a 1,a 2,⋯,a N ,T 2=b 1,b 2,⋯,b N ,求T 1∩T 2中元素个数的最小值.20在一个有穷数列的每相邻两项之间插入这两项的和,形成新的数列,我们把这样的操作称为该数列的一次“和扩充”.如数列1,2第1次“和扩充”后得到数列1,3,2,第2次“和扩充”后得到数列1,4,3,5,2.设数列a ,b ,c 经过第n 次“和扩充”后所得数列的项数记为P n ,所有项的和记为S n .(1)若a =1,b =2,c =3,求P 2,S 2;(2)设满足P n ≥2023的n 的最小值为n 0,求n 0及S n 03(其中[x ]是指不超过x 的最大整数,如1.2 =1,-2.6 =-3);21已知Q :a 1,a 2,⋯,a k 为有穷整数数列.给定正整数m ,若对任意的n ∈1,2,⋅⋅⋅,m ,在Q 中存在a i ,a i +1,a i +2,⋯,a i +j j ≥0 ,使得a i +a i +1+a i +2+⋅⋅⋅+a i +j =n ,则称Q 为m -连续可表数列.(1)判断Q :2,1,4,2是否为7-连续可表数列?是否为8-连续可表数列?说明理由;(2)若Q :a 1,a 2,⋯,a k 为8-连续可表数列,求证:k 的最小值为4.22已知有限数列a n ,从数列a n 中选取第i 1项、第i 2项、⋯、第i m 项(i 1<i 2<⋯<i m ),顺次排列构成数列b k ,其中b k =a i k,1≤k ≤m ,则称新数列b k 为a n 的长度为m 的子列.规定:数列a n 的任意一项都是a n 的长度为1的子列,若数列a n 的每一子列的所有项的和都不相同,则称数列a n 为完全数列.设数列a n 满足a n =n ,1≤n ≤25,n ∈N *.(1)判断下面数列a n 的两个子列是否为完全数列,并说明由;数列①:3,5,7,9,11;数列②:2,4,8,16.(2)数列a n 的子列b k 长度为m ,且b k 为完全数列,证明:m 的最大值为6;(3)数列a n 的子列b k 长度m =5,且b k 为完全数列,求1b 1+1b 2+1b 3+1b 4+1b 5的最大值.23有穷数列{a n }共m 项(m ≥3).其各项均为整数,任意两项均不相等.b i =a i -a i +1 i =1,2,⋯,m -1 ,b i ≤b i +1i =1,2,⋯,m -2 .(1)若{a n }:0,1,a 3.求a 3的取值范围;(2)若m =5,当5i =1a i 取最小值时,求4i =1b i 的最大值;(3)若1≤a i ≤m i =1,2,...,m ,m -1k =1b k =m +1,求m 的所有可能取值.24如图为一个各项均为正数的数表,记数表中第i 行第j 列的数为a i ,j ,已知各行从左至右成等差数列,各列从上至下成公比相同的等比数列.1⋯620⋮(1)若a i,j;=100,求实数对i,j(2)证明:所有正整数恰在数表中出现一次.25若数列a n为η数列.记S n=a1+a2 满足a k+1-a k=1k=1,2,3,⋯,n-1n≥2,则称数列a n+a3+⋯+a n.(1)写出一个满足a1=a5=1,且S5=5的η数列;(2)若a1=24,n=2000,证明:η数列a n是递增数列的充要条件是a n=2023;(3)对任意给定的整数n n≥3,使得S n=1?如果存在,写出一个满足条 ,是否存在首项为1的η数列a n件的η数列a n;如果不存在,说明理由.26定义矩阵运算:a b c dx y =ax +bycx +d y.已知数列a n ,b n 满足a 1=1,且n 11na nb n=n 2+2nn 2n +1.(1)证明:a n ,b n 分别为等差数列,等比数列.(2)求数列a 2n +3b 2n -1+1 的前n 项和S n .27将数列{a n }按照一定的规则,依顺序进行分组,得到一个以组为单位的序列称为数列{a n }的一个分群数列,{a n }称为这个分群数列的原数列.如(a 1,a 2,⋯,a r ),(a r +1,a r +2,⋯,a t ),(a t +1,a t +2,⋯,a s ),⋯,(a m +1,a m +2,⋯,a n ),⋯是数列{a n }的一个分群数列,其中第k 个括号称为第k 群.已知数列{a n }的通项公式为a n =2n .(1)若数列{a n }的一个分群数列每个群都含有3项,该分群数列第k 群的最后一项为b k ,求数列{b n }的通项公式.(2)若数列{a n }的一个分群数列满足第k 群含有k 项,A k 为{a n }的该分群数列第k 群所有项构成的数集,设M ={m |a m ∈A k ,a m +6∈A k +2},求集合M 中所有元素的和.28已知数列a n3n是以13为首项的常数列,S n为数列a n的前n项和.(1)求S n;(2)设正整数m=b0×30+b1×31+⋯+b k×3k,其中b i∈{0,1,2},i,k∈N.例如:3=0×30+1×31,则b0=0,b1=1;4=1×30+1×31,则b0=1,b1=1.若f(m)=b0+b1+⋯+b k,求数列S n⋅f S n的前n项和T n.29已知a n是公比为q的等比数列.对于给定的k(k=1,2,3⋯n),设T(k)是首项为a k,公差为2a k -1的等差数列a n,记T(k)的第i项为b(k)i.若b(1)1+b(2)1=b(2)2,且b(1)2=b(2)3.(1)求a n的通项公式;(2)求ni=11 b(2)i b(2)i+1;(3)求ni=1b(k)i.30已知数列a n的前n项和为S n,且S n=2n+1.(1)求a n的通项公式;(2)保持a n中各项先后顺序不变,在a k与a k+1之间插入k个1,使它们和原数列的项构成一个新的数列b n,记b n的前n项和为T n,求T100的值(用数字作答).31若项数为k (k∈N*,k≥3)的有穷数列{a n}满足:0≤a1<a2<a3<⋅⋅⋅<a k,且对任意的i ,j (1≤i≤j≤k),a j+a i或a j-a i是数列{a n}中的项,则称数列{a n}具有性质P.(1)判断数列0 , 1 , 2是否具有性质P,并说明理由;(2)设数列{a n}具有性质P,a i (i=1,2,⋯, k)是{a n}中的任意一项,证明:a k-a i一定是{a n}中的项;(3)若数列{a n}具有性质P,证明:当k≥5时,数列{a n}是等差数列.32已知有穷数列A:a1,a2,⋯,a n(n≥3)中的每一项都是不大于n的正整数.对于满足1≤m≤n的整数m,令集合A(m)={k a k=m ,k=1 , 2 , ⋯ ,n }.记集合A(m)中元素的个数为s(m)(约定空集的元素个数为0).(1)若A:6 , 3 , 2 , 5 , 3 , 7 , 5 , 5,求A(5)及s(5);(2)若1s(a1)+1s(a2)+⋯+1s(a n)=n,求证:a1 ,a2 ,⋯ ,a n互不相同;(3)已知a1=a , a2=b,若对任意的正整数i,j(i≠j,i+j≤n)都有i+j∈A(a i)或i+j∈A(a j),求a1+a2 +⋯+a n的值.33已知无穷数列a n 满足a n =max a n +1,a n +2 -min a n +1,a n +2 (n =1,2,3,⋯),其中max {x ,y }表示x ,y 中最大的数,min {x ,y }表示x ,y 中最小的数.(1)当a 1=1,a 2=2时,写出a 4的所有可能值;(2)若数列a n 中的项存在最大值,证明:0为数列a n 中的项;(3)若a n >0(n =1,2,3,⋯),是否存在正实数M ,使得对任意的正整数n ,都有a n ≤M ?如果存在,写出一个满足条件的M ;如果不存在,说明理由.34设λ为整数.有穷数列a n 的各项均为正整数,其项数为m (m ≥2).若a n 满足如下两个性质,则称a n 为P λ数列:①a m =1,且a i ≠1(i =1,2,⋯,m -1);②a n +1=λa n +1 ,a n 为奇数,a n2,a n 为偶数 (n =1,2,⋯,m-1)(1)若a n 为P 1数列,且a 1=5,求m ;(2)若a n 为P -1数列,求a 1的所有可能值;(3)若对任意的P 1数列a n ,均有m ≤2log 2a 1+d ,求d 的最小值.35若数列A n 满足A n +1=A 2n ,则称数列A n 为“平方递推数列”.已知数列a n 中,a 1=9,点a n ,a n +1 在函数f (x )=x2+2x 的图象上,其中n 为正整数,(1)证明:数列a n +1 是“平方递推数列”,且数列lg a n +1 为等比数列;(2)设b n =lg a n +1 ,c n =2n +4,定义a *b =a ,a ≤b ,b ,a >b ,,且记d n =b n *c n ,求数列d n 的前n 项和S n .36如果一个数列从第2项起,每一项与它前一项的比都大于2,则称这个数列为“G 型数列”.(1)若数列a n 满足a 1=1,a n +1a n =32n -1,求证:数列a n 是“G 型数列”.(2)若数列a n 的各项均为正整数,且a 1=1,a n 为“G 型数列”,记b n =a n +1,数列b n 为等比数列,公比q 为正整数,当b n 不是“G 型数列”时,求数列a n 的通项公式.(3)在(2)的条件下,令c n =1a n a n +1,记c n 的前n 项和为S n ,是否存在正整数m ,使得对任意的n ∈N *,都有1S n∈m -1,m 成立?若存在,求出m 的值;若不存在,请说明理由.37已知等差数列a n 的前n 项和为S n ,且a 4=4,数列b n 的前n 项之积为T n ,b 1=13,且S n =log 3T n .(1)求T n ;(2)令c n =a nb n,是否存在正整数n ,使得“c n -1=c n +c n +1”与“c n 是c n -1,c n +1的等差中项”同时成立?请说明理由.38若无穷数列a n 满足∀n ∈N *,a n -a n +1 =n +1,则称a n 具有性质P 1.若无穷数列a n 满足∀n ∈N *,a n a n +4+1≥a 2n +2,则称a n 具有性质P 2.(1)若数列a n 具有性质P 1,且a 1=0,请直接写出a 3的所有可能取值;(2)若等差数列a n 具有性质P 2,且a 1=1,求a 22+a 23的取值范围;(3)已知无穷数列a n 同时具有性质P 1和性质P 2,a 5=3,且0不是数列a n 的项,求数列a n 的通项公式.39如果数列a n对任意的n∈N*,a n+2-a n+1>a n+1-a n,则称a n为“速增数列”.(1)判断数列2n是否为“速增数列”?说明理由;(2)若数列a n为“速增数列”.且任意项a n∈Z,a1=1,a2=3,a k=2023,求正整数k的最大值;(3)已知项数为2k(k≥2,k∈Z)的数列b n是“速增数列”,且b n的所有项的和等于k,若c n=2b n,n=1, 2,3,⋯,2k,证明:c k c k+1<2.40已知数表A2n=a11a12⋯a1na21a22⋯a2n中的项a ij(i=1,2;j=1,2,⋯,n)互不相同,且满足下列条件:①a ij∈1,2,⋯,2n;②(-1)m+1a1m-a2m<0(m=1,2,⋯,n).则称这样的数表A2n具有性质P.(1)若数表A22具有性质P,且a12=4,写出所有满足条件的数表A22,并求出a11+a12的值;(2)对于具有性质P的数表A2n,当a11+a12+⋅⋅⋅+a1n取最大值时,求证:存在正整数k1≤k≤n,使得a1k= 2n;(3)对于具有性质P的数表A2n,当n为偶数时,求a11+a12+⋅⋅⋅+a1n的最大值.数列中的知识交汇和创新型问题1王先生今年初向银行申请个人住房贷款100万元购买住房,按复利计算,并从贷款后的次月初开始还贷,分10年还清.银行给王先生提供了两种还贷方式:①等额本金:在还款期内把本金总额等分,每月偿还同等数额的本金和剩余本金在该月所产生的利息;②等额本息:在还款期内,每月偿还同等数额的贷款(包括本金和利息).(1)若王先生采取等额本金的还贷方式,已知第一个还贷月应还15000元,最后一个还贷月应还6500元,试计算王先生该笔贷款的总利息;(2)若王先生采取等额本息的还贷方式,贷款月利率为0.3%,.银行规定每月还贷额不得超过家庭月收入的一半,已知王先生家庭月收入为23000元,试判断王先生该笔贷款能否获批.(不考虑其他因素)参考数据1.003119≈1.428,1.003180≈1.433,1.003121≈1.437【答案】(1)290000元(2)王先生该笔贷款能够获批【分析】(1)由题意,每月的还贷额构成一个等差数列,对数列求和可得所求利息;(2)利用等比数列求和公式,求得王先生每月还货额,与题目所给数据比较,得结论.【详解】(1)由题可知,等额本金还货方式中,每月的还贷额构成一个等差数列a n,S n表示数列a n的前n项和.则a1=15000,a120=6500,故S120=15000+65002×120=1290000.故王先生该笔贷款的总利息为:1290000-1000000=290000元.(2)设王先生每月还货额为x元,则有x+x(1+0.003)1+x(1+0.003)2+⋯+x(1+0.003)119=1000000×(1+0.003)120,即x 1-1.0031201-1.003=1000000×(1+0.003)120,故x=1000000×(1+0.003)120×0.0031.003120-1≈9928.因为9928<23000×12=11500,故王先生该笔贷款能够获批.2佛山新城文化中心是佛山地标性公共文化建筑.在建筑造型上全部都以最简单的方块体作为核心要素,与佛山世纪莲体育中心的圆形莲花造型形成“方”“圆”呼应.坊塔是文化中心的标志性建筑、造型独特、类似一个个方体错位堆叠,总高度153.6米.坊塔塔楼由底部4个高度相同的方体组成塔基,支托上部5个方体,交错叠合成一个外形时尚的塔身结构.底部4个方体高度均为33.6米,中间第5个方体也为33.6米高,再往上2个方体均为24米高,最上面的两个方体均为19.2米高.(1)请根据坊塔方体的高度数据,结合所学数列知识,写出一个等差数列a n 的通项公式,该数列以33.6为首项,并使得24和19.2也是该数列的项;(2)佛山世纪莲体育中心上层屋盖外径为310米.根据你得到的等差数列,连续取用该数列前m (m ∈N *)项的值作为方体的高度,在保持最小方体高度为19.2米的情况下,采用新的堆叠规则,自下而上依次为2a 1、3a 2、4a 3、⋯⋯、m +1 a m (m +1 a m 表示高度为a m 的方体连续堆叠m +1层的总高度),请问新堆叠坊塔的高度是否超过310米?并说明理由.【答案】(1)a n =36-2.4n (答案不唯一,符合题意即可)(2)可以,理由见详解【分析】(1)根据等差数列的通项公式运算求解,并检验24和19.2是否符合;(2)根据题意求S 7,并与310比较大小,分析判断.【详解】(1)由题意可知:a 1=33.6,注意到33.6-24=9.6,24-19.2=4.8,取等差数列的公差d =-2.4,则a n =33.6-2.4n -1 =36-2.4n ,令a n =36-2.4n =24,解得n =5,即24为第5项;令a n =36-2.4n =19.2,解得n =7,即19.2为第7项;故a n =36-2.4n 符合题意.(2)可以,理由如下:由(1)可知:m ≤7,a 1=33.6,a 2=31.2,a 3=28.8,a 4=26.4,a 5=24,a 6=21.6,a 7=19.2,设数列n +1 a n 的前n 项和为S n ,∵S 7=2a 1+3a 2+4a 3+...+8a 7=856.8>310,故新堆叠坊塔的高度可以超过310米.3在当前市场经济条件下,某服装市场上私营个体商店中的商品所标价格a 与其实际价值b 之间存在着相当大的差距.对购物的消费者来说,这个差距越小越好,而商家则相反,于是就有消费者与商家的“讨价还价”,常见的方法是“对半还价法”,消费者第一次减去定价的一半,商家第一次讨价加上二者差价的一半;消费者第二次还价再减去二者差价的一半,商家第二次讨价,再加上二者差价的一半,如此下去,可得表1:表1次数消费者还价商家讨价第一次b 1=12a c 1=b 1+12(a -b 1)第二次b 2=c 1-12(c 1-b 1)c 2=b 2+12(c 1-b 2)第三次b 3=c 2-12(c 2-b 2)c 3=b 3+12(c 2-b 3)⋅⋅⋅⋅⋅⋅⋅⋅⋅第n 次b n =c n -1-12(c n -1-b n -1)c n =b n +12(c n -1-b n )消费者每次的还价b n (n ∈k )组成一个数列b n .(1)写出此数列的前三项,并猜测通项b n 的表达式并求出lim n →+∞b n ;(2)若实际价格b 与定出a 的价格之比为b :a =0.618:1,利用“对半还价法”讨价还价,最终商家将能有百分之几的利润?【答案】(1)答案见解析(2)8%【分析】(1)根据条件即可得到数列b n 的通项公式,进而可直接计算lim n →+∞b n ;(2)根据价格比得a ,b 关系,代入(1)中lim n →+∞b n 计算即可.【详解】(1)b 1=12a ,b 2=c 1-12c 1-b 1 =12a +14a -18a =-12a +-12 2a +-12 3a +a ,b 3=c 2-12c 2-b 2 =-12a +-12 2a +⋯+-125a +a ,观察可得,b n =c n -1-12c n -1-b n -1 =-12a +-12 2a +⋯+-12 2n -1a +a=-13a 1+12 2n -1+a lim n →∞b n =lim n →∞-13a 1+12 2n -1 +a =-13a +a =23a .(2)因为b :a =0.618:1,所以a =b0.618,故23a =2b 3×0.618≈1.08b 故商家将有约8%的利润.4近两年,直播带货逐渐成为一种新兴的营销模式,带来电商行业的新增长点.某直播平台第1年初的启动资金为500万元,由于一些知名主播加入,平台资金的年平均增长率可达40%,每年年底把除运营成本a 万元,再将剩余资金继续投入直播平合.(1)若a =100,在第3年年底扣除运营成本后,直播平台的资金有多少万元?(2)每年的运营成本最多控制在多少万元,才能使得直播平台在第6年年底㧅除运营成本后资金达到3000万元?(结果精确到0.1万元)【答案】(1)936万元(2)3000万元【分析】(1)用a n 表示第n 年年底扣除运营成本后直播平台的资金,然后根据已知计算a 1,a 2,a 3可得;(2)由已知写出a 1,a 2,a 3,⋯,a 6,然后由a 6≥3000求得a 的范围.【详解】(1)记a n 为第n 年年底扣除运营成本后直播平台的资金,则a 1=500×1.4-100=600,a 2=600×1.4-100=740a3=740×1.4-100=936故第3年年底扣除运营成本后直播平台的资金为936万元.(2)a1=500×1.4-a,a2=500×1.4-a×1.4-a=500×1.42-1.4a-a⋯a6=500×1.46-1.45+1.44+⋯+1a=500×1.46-a⋅1-1.461-1.4由a6≥3000,得a≤46.8,故运营成本最多控制在46.8万元,才能使得直播平台在第6年年底扣除运营成本后资金达到3000万元.5甲、乙两人同时分别入职A,B两家公司,两家公司的基础工资标准分别为:A公司第一年月基础工资数为3700元,以后每年月基础工资比上一年月基础工资增加300元;B公司第一年月基础工资数为4000元,以后每年月基础工资都是上一年的月基础工资的1.05倍.(1)分别求甲、乙两人工作满10年的基础工资收入总量(精确到1元)(2)设甲、乙两人入职第n年的月基础工资分别为a n、b n元,记c n=a n-b n,讨论数列c n的单调性,指出哪年起到哪年止相同年份甲的月基础工资高于乙的月基础工资,并说明理由.【答案】(1)甲的基础工资收入总量606000元;乙的基础工资收入总量603739元(2)单调性见解析;从第5年到第14年甲的月基础工资高于乙的月基础工资;理由见解析【分析】(1)易得甲的工资满足等差数列,乙的工资满足等比数列,再根据等差等比数列的求和公式求解即可(2)根据题意可得c n=3400+300n-4000×1.05n-1,再求解c n+1-c n>0分析c n的单调性,并计算c n<0时n的取值范围即可【详解】(1)甲的基础工资收入总量S1=3700×10+12×10×9×300×12=606000元乙的基础工资收入总量S2=4000× 1.0510-11.05-1×12=603739元(2)a n=3700+300n-1,b n=4000×1.05n-1c n=3400+300n-4000×1.05n-1,c n+1=3400+300n+1-4000×1.05n,设c n+1-c n=300-200×1.05n-1>0,即1.05n-1<1.5,解得1≤n≤8所以当1≤n≤8时,c n递增,当n≥9时,c n递减又当c n<0,即3400+300n<4000×1.05n-1,解得5≤n≤14,所以从第5年到第14年甲的月基础工资高于乙的月基础工资. .6治理垃圾是S市改善环境的重要举措.去年S市产生的垃圾量为200万吨,通过扩大宣传、环保处理等一系列措施,预计从今年开始,连续5年,每年的垃圾排放量比上一年减少20万吨,从第6年开始,每年的垃圾排放量为上一年的75%.(1)写出S市从今年开始的年垃圾排放量与治理年数n n∈N*的表达式;(2)设A n为从今年开始n年内的年平均垃圾排放量.如果年平均垃圾排放量呈逐年下降趋势,则认为现有的治理措施是有效的;否则,认为无效,试判断现有的治理措施是否有效,并说明理由.【答案】(1)a n=200-20n,1≤n<5 100×34n-5,n≥6。

2018年高考考点完全题数学理专题突破练习题_4 数列中的典型题型与创新题型 含答案 精品

2018年高考考点完全题数学理专题突破练习题_4 数列中的典型题型与创新题型 含答案 精品

专题突破练(4) 数列中的典型题型与创新题型一、选择题1. 如果等差数列{a n }中,a 3+a 4+a 5=12,那么a 1+a 2+…+a 7等于( ) A .14 B .21 C .28 D .35 答案 C解析 ∵a 3+a 4+a 5=12,∴3a 4=12,a 4=4.∴a 1+a 2+…+a 7=(a 1+a 7)+(a 2+a 6)+(a 3+a 5)+a 4=7a 4=28.2.在等比数列{a n }中,a 1=1,公比|q |≠1.若a m =a 1a 2a 3a 4a 5,则m 等于( ) A .9 B .10 C .11 D .12 答案 C解析 a m =a 1a 2a 3a 4a 5=(a 1a 5)·(a 2a 4)·a 3=a 23·a 23·a 3=a 53=a 51·q 10. 因为a 1=1,|q |≠1,所以a m =a 51·q 10=a 1q 10,所以m =11.3.在递减等差数列{a n }中,若a 1+a 5=0,则S n 取最大值时n 等于( ) A .2 B .3 C .4 D .2或3 答案 D解析 ∵a 1+a 5=2a 3=0,∴a 3=0.∵d <0,∴{a n }的第一项和第二项为正值,从第四项开始为负值,故S n 取最大值时n 等于2或3,故选D.4.数列{a n }的首项为3,{b n }为等差数列,且b n =a n +1-a n (n ∈N *),若b 3=-2,b 10=12,则a 8=( )A .0B .3C .8D .11 答案 B解析 设{b n }的公差为d ,∵b 10-b 3=7d =12-(-2)=14,∴d =2. ∵b 3=-2,∴b 1=b 3-2d =-2-4=-6,∴b 1+b 2+…+b 7=7b 1+7×62·d =7×(-6)+21×2=0,又b 1+b 2+…+b 7=(a 2-a 1)+(a 3-a 2)+…+(a 8-a 7)=a 8-a 1=a 8-3=0, ∴a 8=3.故选B.5.已知等差数列:1,a 1,a 2,9;等比数列:-9,b 1,b 2,b 3,-1.则b 2(a 2-a 1)的值为( )A .8B .-8C .±8 D.89答案 B解析 a 2-a 1=d =9-13=83;又b 22=b 1b 3=(-9)×(-1)=9,因为b 2与-9、-1同号,所以b 2=-3.所以b 2(a 2-a 1)=-8.6.约瑟夫规则:将1,2,3,…,n 按逆时针方向依次放置在一个单位圆上,然后从1开始,按逆时针方向,每隔一个数删除一个数,直至剩余一个数为止,删除的数依次为1,3,5,7,….当n =65时,剩余的一个数为( )A .1B .2C .4D .8 答案 B解析 将1,2,3,…,65按逆时针方向依次放置在一个单位圆上,然后从1开始,按逆时针方向,每隔一个数删除一个数,首先删除的数为1,3,5,7,…,65(删除33个,剩余32个);然后循环,删除的数的个数分别为16,8,4,2,1,最后剩余2,故选B.7.在等差数列{a n }中,a 9=12a 12+6,则数列{a n }的前11项和S 11=( )A .24B .48C .66D .132 答案 D解析 设{a n }公差为d ,∵a 9=12a 12+6,∴a 1+8d =12(a 1+11d )+6,∴a 1+5d =12,即a 6=12.∴数列{a n }的前11项和S 11=a 1+a 2+…+a 11=(a 1+a 11)+(a 2+a 10)+…+(a 5+a 7)+a 6=11a 6=132.故选D.8.在数列{a n }中,已知a 1+a 2+…+a n =2n-1,则a 21+a 22+…+a 2n =( )A .(2n -1)2B.n-23C .4n-1 D.4n-13答案 D解析 记S n =a 1+a 2+…+a n =2n -1,则a n =S n -S n -1=2n -1(n ≥2),当n =1时也满足,所以{a 2n }是首项为1,公比为4的等比数列,所以a 21+a 22+…+a 2n =1-4n1-4=4n-13,故选D.9.将向量a 1=(x 1,y 1),a 2=(x 2,y 2),…,a n =(x n ,y n )组成的系列称为向量列{a n },并定义向量列{a n }的前n 项和S n =a 1+a 2+…+a n .如果一个向量列从第二项起,每一项与前一项的差都等于同一个向量,那么称这样的向量列为等差向量列.若向量列{a n }是等差向量列,则下面四个向量中,与S 21一定平行的向量是( )A .a 10B .a 11C .a 20D .a 21 答案 B解析 在等差数列{a n }中,S 21=a 1+a 212=21·2a 112=21a 11,类比等差数列的性质有S 21=21a 11,故与S 21一定平行的是a 11.10.已知数列{a n }中,a 1=t ,a n +1=a n 2+2a n,若{a n }为单调递减数列,则实数t 的取值范围是( )A .(-∞,-2)B .(-2,0)C .(0,2)D .(2,+∞)答案 D解析 由题意可知:对一切正整数n ,均有a n +1<a n ,则当n =1也成立,即a 2<a 1,也即t 2+2t<t ,解之得t >2,故应选D. 11.已知数列{a n }的首项a 1=2,数列{b n }为等比数列,且b n =a n +1a n,若b 10b 11=2,则a 21=( )A .29B .210C .211D .212答案 C解析 由已知,b 1b 2…b 20=a 2a 1·a 3a 2…a 21a 20=a 21a 1=a 212.因为{b n }为等比数列,则b 1b 2…b 20=(b 10b 11)10=210,所以a 21=2b 1b 2…b 20=211,选C.12.在公差不为0的等差数列{a n }中,a 2+a 4=a p +a q ,记1p +9q的最小值为m .若数列{b n }满足b 1=211m,2b n +1-b n ·b n +1=1.则b 1+b 22+b 33+…+b 100100=( )A.97100 B.99100 C.100101 D.102101答案 C解析 在等差数列{a n }中,由a 2+a 4=a p +a q ,得p +q =6,p ,q ∈N *,所以当p =1,q =5时,1p +9q =145;当p =2,q =4时,1p +9q =114;当p =3,q =3时,1p +9q =103;当p =4,q =2时,1p +9q =194;当p =5,q =1时,1p +9q =465.所以当且仅当p =2,q =4时,1p +9q取最小值114,所以m =114,即b 1=12.由2b n +1-b n ·b n +1=1可得b n +1=12-b n .由b 1=12,则b 2=12-12=23,b 3=12-23=34,…,归纳出b n =n n +1,代入到2b n +1-b n ·b n +1=1使等式成立.所以b n n2=1n n +=1n -1n +1,所以b 1+b 222+b 332+…+b 1001002=100101. 二、填空题13.设数列{a n }满足a 2+a 4=10,点P n (n ,a n )对任意的n ∈N *,都有向量P n P n +1=(1,2),则数列{a n }的前n 项和S n =________.答案 n 2解析 ∵P n (n ,a n ),∴P n +1(n +1,a n +1),∴P n P n +1=(1,a n +1-a n )=(1,2),∴a n +1-a n=2,∴{a n }是公差d 为2的等差数列.又由a 2+a 4=2a 1+4d =2a 1+4×2=10,解得a 1=1,∴S n =n +n n -2×2=n 2.14.设数列{a n }的通项公式为a n =pn +q (n ∈N *,p >0).数列{b n }定义如下:对于正整数m ,b m 是使不等式a n ≥m 成立的所有n 中的最小值.若p =12,q =-13,则b 3=________.答案 7解析 由题意得a n =12n -13,解12n -13≥3,得n ≥203,∴12n -13≥3成立的所有n 中的最小整数为7,即b 3=7.15.已知数列{a n }的通项公式为a n =-8⎝ ⎛⎭⎪⎫18n +9⎝ ⎛⎭⎪⎫14n -3⎝ ⎛⎭⎪⎫12n (其中n ∈N *),若第m 项是数列{a n }中的最小项,则a m =________.答案 -516解析 设t =⎝ ⎛⎭⎪⎫12n ∈⎝ ⎛⎦⎥⎤0,12,得y =-8t 3+9t 2-3t ,y ′=-24t 2+18t -3=-3(2t -1)(4t -1),当t ∈⎝ ⎛⎭⎪⎫0,14时,y ′<0;当t ∈⎣⎢⎡⎦⎥⎤14,12时,y ′>0,所以当t =14时,取得最小值-516. 16.设数列{a n }的前n 项和为S n ,若S nS 2n为常数,则称数列{a n }为“精致数列”.已知等差数列{b n }的首项为1,公差不为0,若数列{b n }为“精致数列”,则数列{b n }的通项公式为________.答案 b n =2n -1解析 设数列{b n }的公差为d (d ≠0),S n S 2n =k ,∵b 1=1,∴n +12n (n -1)d =k ⎣⎢⎡⎦⎥⎤2n +122n n -d ,即2+(n -1)d =4k +2k (2n -1)d ,整理得:(4k -1)dn +(2k -1)(2-d )=0,∵上式对任意n ∈N *都成立,∴⎩⎪⎨⎪⎧d k -=0,k --d =0,解得⎩⎪⎨⎪⎧d =2,k =14,∴b n =2n -1.三、解答题17.已知等差数列{a n }中,a 5=12,a 20=-18. (1)求数列{a n }的通项公式; (2)求数列{|a n |}的前n 项和S n . 解 (1)设{a n }的公差为d ,依题意⎩⎪⎨⎪⎧a 5=a 1+4d =12,a 20=a 1+19d =-18,∴a 1=20,d =-2.∴a n =20+(n -1)(-2)=-2n +22.(2)易知|a n |=|-2n +22|=⎩⎪⎨⎪⎧-2n +22,n ≤11,2n -22,n >11,∴n ≤11时,S n =20+18+…+(-2n +22) =n-2n +2=(21-n )n ;n >11时,S n =S 11+2+4+…+(2n -22)=110+n -+2n -2=n 2-21n +220.综上所述,S n =⎩⎪⎨⎪⎧-n n ,n ≤11,n 2-21n +220,n >11.18.已知数列{a n }的前n 项和S n =1-a n ,其中n ∈N *. (1)求{a n }的通项公式;(2)若b n =na n ,求{b n }的前n 项和T n . 解 (1)当n =1时,S 1=1-a 1,解得a 1=12.当n ≥2时,a n =S n -S n -1=(1-a n )-(1-a n -1)=a n -1-a n ,化简整理得a n a n -1=12(n ≥2), 因此,数列{a n }是以12为首项,12为公比的等比数列,从而a n =⎝ ⎛⎭⎪⎫12n.(2)由(1)可得T n =1·12+2·⎝ ⎛⎭⎪⎫122+3·⎝ ⎛⎭⎪⎫123+4·⎝ ⎛⎭⎪⎫124+…+n ·⎝ ⎛⎭⎪⎫12n,12T n =⎝ ⎛⎭⎪⎫122+2·⎝ ⎛⎭⎪⎫123+3·⎝ ⎛⎭⎪⎫124+…+n ·⎝ ⎛⎭⎪⎫12n +1,∴12T n =12-⎝ ⎛⎭⎪⎫12n +112-n ·⎝ ⎛⎭⎪⎫12n +1, ∴T n =2-⎝ ⎛⎭⎪⎫12n -1-n ·⎝ ⎛⎭⎪⎫12n.19.已知数列{a n }的前n 项和为S n ,且a 1=14,a n +1=S n +t 16(n ∈N *,t >-4),令b n =lg a n+1.(1)若{a n }成等比数列,求t 的值;(2)若t =-3,设数列{b n }前n 项和为T n ,n 为何值时T n 取最小值. 解 (1)∵a n +1=S n +t16,①a n =S n -1+t16,②①-②得a n +1=2a n (n ≥2). 故{a n }是公比为2的等比数列,则a 2=S 1+t 16=4+t 16=2a 1=12.解得t =4>-4成立,∴t =4. (2)a 2=116,b 1=lg 116=-4lg 2,n ≥1时,b n =b 1+(n -1)lg 2=(n -5)lg 2, n ≤4时,b n <0,b 5=0,n ≥6时b n >0.∴n =4和n =5时T n 取最小值.20.已知公差不为零的等差数列{a n },满足a 1+a 3+a 5=9,且a 1,a 4,a 16成等比数列. (1)求数列{a n }的通项公式; (2)设b n =1a n a n +1a n +2,求数列{b n }的前n 项和S n .解 (1)∵a 1+a 3+a 5=9,∴3a 3=9,∴a 3=3. ∵a 1,a 4,a 16成等比数列,∴a 24=a 1a 16. ∴(3+d )2=(3-2d )(3+13d ).∵d ≠0,∴d =1,∴a n =a 3+(n -3)d =3+(n -3)=n . (2)由(1)得b n =1a n a n +1a n +2=1nn +n +=12⎣⎢⎡⎦⎥⎤1nn +-1n +n +∴S n =b 1+b 2+…+b n=12⎣⎢⎡⎝ ⎛⎭⎪⎫11×2-12×3+⎝ ⎛⎭⎪⎫12×3-13×4+…+⎦⎥⎤⎝⎛⎭⎪⎫1n n +-1n +n +=12⎣⎢⎡⎦⎥⎤12-1n +n +=14-1n +n +.21.已知{a n }是正项等差数列,∀n ∈N *,数列⎩⎨⎧⎭⎬⎫1a n ·a n +1的前n 项和S n =n2n +4.(1)求a n ;(2)设b n =(-1)n a 2n ,n ∈N *,求数列{b n }的前n 项和T n . 解 (1)依题意,设a n =α+βn (α、β是常数,且β>0).S 1=1a 1·a 2,即(α+β)(α+2β)=6,1a 2·a 3=S 2-S 1,即(α+2β)(α+3β)=12. 解⎩⎪⎨⎪⎧α+βα+2β=6,α+2βα+3β=12得⎩⎪⎨⎪⎧α=-1,β=-1(舍去),或⎩⎪⎨⎪⎧α=1,β=1,a n =n +1.(2)由(1)得b n =(-1)n (n +1)2,b n -1+b n =(-1)n·[]n +2-n 2=(-1)n (2n +1).n 为偶数时,T n =(b 1+b 2)+(b 3+b 4)+…+(b n -1+b n )=5+9+…+(2n +1)=n n +2,n 为奇数时,T n =(b 1+b 2)+(b 3+b 4)+…+(b n -2+b n -1)+b n=5+9+…+(2n -1)-(n +1)2=n -n +2-(n +1)2=-n 2+3n +42.∴T n=⎩⎪⎨⎪⎧-n 2+3n +42,n 为奇数,nn +2,n 为偶数.。

高考数学专题突破练4数列中的典型题型与创新题型理含解析

高考数学专题突破练4数列中的典型题型与创新题型理含解析

专题突破练(4) 数列中的典型题型与创新题型一、选择题1.如果等差数列{a n }中,a 3+a 4+a 5=12,那么a 1+a 2+…+a 7等于( ) A .14 B .21 C .28 D .35 答案 C解析 ∵a 3+a 4+a 5=12,∴3a 4=12,a 4=4.∴a 1+a 2+…+a 7=(a 1+a 7)+(a 2+a 6)+(a 3+a 5)+a 4=7a 4=28.故选C .2.在等比数列{a n }中,a 1=1,公比|q |≠1.若a m =a 1a 2a 3a 4a 5,则m 等于( ) A .9 B .10 C .11 D .12 答案 C解析 a m =a 1a 2a 3a 4a 5=(a 1a 5)·(a 2a 4)·a 3=a 23·a 23·a 3=a 53=a 51·q 10.因为a 1=1,|q |≠1,所以a m =a 51·q 10=a 1q 10,所以m =11.故选C .3.在递减等差数列{a n }中,若a 1+a 5=0,则S n 取最大值时n 等于( ) A .2 B .3 C .4 D .2或3 答案 D解析 ∵a 1+a 5=2a 3=0,∴a 3=0.∵d <0,∴{a n }的第一项和第二项为正值,从第四项开始为负值,故S n 取最大值时n 等于2或3.故选D .4.在等差数列{a n }中,首项a 1=0,公差d ≠0,若a k =a 10+a 11+…+a 100,则k =( ) A .496 B .469 C .4914 D .4915 答案 D解析 因为数列{a n }是等差数列,所以a n =a 1+(n -1)d =(n -1)d ,因为a k =a 10+a 11+…+a 100,所以a k =100a 1+100×992d -9a 1+9×82d =4914d ,又a k =(k -1)d ,所以(k -1)d =4914d ,所以k =4915.故选D .5.已知数列{a n }的通项为a n =log n +1(n +2)(n ∈N *),我们把使乘积a 1·a 2·a 3·…·a n为整数的n 叫做“优数”,则在(0,2018]内的所有“优数”的和为( )A .1024B .2012C .2026D .2036 答案 C解析 设a 1·a 2·a 3·…·a n =log 23·log 34·log 45·…·log n +1(n +2)=log 2(n +2)=k ,k ∈Z ,则0<n =2k -2≤2018,2<2k ≤2020,1<k ≤10,∴所有“优数”之和为(22-2)+(23-2)+…+(210-2)=22(1-29)1-2-18=211-22=2026.故选C .6.约瑟夫规则:将1,2,3,…,n 按逆时针方向依次放置在一个单位圆上,然后从1开始,按逆时针方向,每隔一个数删除一个数,直至剩余一个数为止,删除的数依次为1,3,5,7,….当n =65时,剩余的一个数为( )A .1B .2C .4D .8 答案 B解析 将1,2,3,…,65按逆时针方向依次放置在一个单位圆上,然后从1开始,按逆时针方向,每隔一个数删除一个数,首先删除的数为1,3,5,7,…,65(删除33个,剩余32个);然后循环,删除的数的个数分别为16,8,4,2,1,最后剩余2.故选B .7.已知数列{a n }中,a n +1=3S n ,则下列关于{a n }的说法正确的是( ) A .一定为等差数列 B .一定为等比数列C .可能为等差数列,但不会为等比数列D .可能为等比数列,但不会为等差数列 答案 C解析 若数列{a n }中所有的项都为0,则满足a n +1=3S n ,所以数列{a n }可能为等差数列,故B,D 不正确;由a n +1=3S n ,得a n +2=3S n +1,则a n +2-a n +1=3(S n +1-S n )=3a n +1,所以a n +2=4a n+1,当a 1≠0时,易知a n +1≠0,所以a n +2a n +1=4,由a n +1=3S n ,得a 2=3a 1,即a 2a 1=3,此时数列{a n }既不是等比数列又不是等差数列,故A 不正确,C 正确.故选C .8.(2018·江西南昌测试二)已知各项均为正数的递增数列{a n }的前n 项和为S n 满足2S n =a n +1,b n =a na n +t,若b 1,b 2,b m 成等差数列,则tm的最大值为( )A .27B .35C .38D .54 答案 D解析 由题2S n =a n +1,则4S n =(a n +1)2,4S n +1=(a n +1+1)2,作差得a n +1-a n =2,2S 1=a 1+1⇒a 1=1,a n =2n -1,由b 1,b 2,b m 成等差数列,可得b m =2b 2-b 1,2m -12m -1+t =63+t -11+t,分离m 化简得m =3+4t -1,故(t ,m )=(2,7),(3,5),(5,4),t m max =54.故选D . 9.(2018·河南信阳高级中学模拟)给定函数y =f (x )的图象在下列四个选项中,并且对任意a 1∈(0,1),由关系式a n +1=f (a n )得到的数列{a n }满足a n +1<a n .则该函数的图象可能是( )答案 A解析 由题对于给定函数y =f (x )的图象在下列四个选项中,并且对任意a 1∈(0,1),由关系式a n +1=f (a n )得到的数列{a n }满足a n +1<a n .则可得到f (a n )<a n ,所以f (a 1)<a 1在∀a 1∈(0,1)上都成立,即∀x ∈(0,1),f (x )<x ,所以函数图象都在y =x 的下方.故选A .10.杨辉三角,是二项式系数在三角形中的一种几何排列.在欧洲,这个表叫做帕斯卡三角形.帕斯卡(1623~1662)是在1654年发现这一规律的,比杨辉要迟393年,比贾宪迟600年.右图的表在我国南宋数学家杨辉1261年所著的《详解九章算法》一书里就出现了,这又是我国数学史上的一个伟大成就.如图所示,在“杨辉三角”中,从1开始箭头所指的数组成一个锯齿形数列:1,2,3,3,6,4,10,5,…,则此数列前16项和为( )A .120B .163C .164D .165 答案 C解析 考查每行第二个数组成的数列:2,3,4,5,…,归纳推理可知其通项公式为b n =n +1,其前8项和S 8=8×2+8×72×1=44;每行第三个数组成的数列:1,3,6,10,…,归纳推理可知其通项公式为c n =n (n +1)2=12(n 2+n ),其前8项和 T 8=12×8×(8+1)×(2×8+1)6+(8+1)×82=120,据此可得题中数列前16项和为120+44=164.故选C .11.(2018·河南林州调研)设等差数列{a n }的前n 项和为S n ,且满足S 17>0,S 18<0,则S 1a 1,S 2a 2,…,S 15a 15中最大的项为( ) A .S 7a 7 B .S 8a 8 C .S 9a 9 D .S 10a 10答案 C解析 ∵等差数列{a n }中,S 17>0,且S 18<0,即S 17=17a 9>0,S 18=9(a 9+a 10)<0,∴a 9+a 10<0,a 9>0,∴a 10<0,∴等差数列{a n }为递减数列,故可知a 1,a 2,…,a 9为正,a 10,a 11,…为负;∴S 1,S 2,…,S 17为正,S 18,S 19,…为负,则S 1a 1>0,S 2a 2>0,…,S 9a 9>0,S 10a 10<0,S 11a 11<0,…,S 15a 15<0,又∵S 1<S 2<…<S 9,a 1>a 2>…>a 9,则S 9a 9最大.故选C .12.已知数列{a n }为等比数列,a 1∈(0,1),a 2∈(1,2),a 3∈(2,3),则a 4的取值范围是( )A .(3,4)B .(22,4)C .(2,9)D .(22,9) 答案 D解析 设等比数列{a n }的公比为q , 由已知得⎩⎪⎨⎪⎧0<a 1<1, ①1<a 1q <2, ②2<a 1q 2<3. ③由①②得q =a 1q a 1>11=1;由①③得q 2=a 1q 2a 1>21=2;由②③得q =a 1q 2a 1q >1且q =a 1q 2a 1q<3,故2<q <3.因为a 4=a 1q 3=(a 1q 2)·q ,所以22<a 4<9.故选D .二、填空题13.(2018·湖南张家界模拟)定义“等积数列”,在一个数列中,如果每一项与它后一项的积都为同一个常数,那么这个数列叫做等积数列,这个常数叫做该数列的公积.已知数列{a n }是等积数列且a 1=2,公积为10,则a 2018=________.答案 5解析 已知数列{a n }是等积数列且a 1=2,公积为10,可得a 2=5,a 3=2,a 4=5,a 5=2,…,由此奇数项为2,偶数项为5,所以a 2018=5.14.设数列{a n }满足a 2+a 4=10,点P n (n ,a n )对任意的n ∈N *,都有向量P n P n +1=(1,2),则数列{a n }的前n 项和S n =________.答案 n 2解析 ∵P n (n ,a n ),∴P n +1(n +1,a n +1),∴P n P n +1=(1,a n +1-a n )=(1,2),∴a n +1-a n =2,∴{a n }是公差d 为2的等差数列.又由a 2+a 4=2a 1+4d =2a 1+4×2=10,解得a 1=1,∴S n =n +n (n -1)2×2=n 2.15.(2018·湖北荆州中学模拟一)“斐波那契”数列由十三世纪意大利数学家斐波那契发现.数列中的一系列数字常被人们称之为神奇数.具体数列为:1,1,2,3,5,8,…,即从该数列的第三项数字开始,每个数字等于前两个相邻数字之和.已知数列{a n }为“斐波那契”数列,S n 为数列{a n }的前n 项和,若a 2020=M ,则S 2018=________.(用M 表示)答案 M -1解析 ∵数列为:1,1,2,3,5,8,…,即从该数列的第三项数字开始,每个数字等于前两个相邻数字之和,∴a n +2=a n +a n +1=a n +a n -1+a n =a n +a n -1+a n -2+a n -1=a n +a n -1+a n -2+a n -3+a n -2=…=a n +a n -1+a n -2+a n -3+…+a 2+a 1+1,则S 2018=a 2020-1=M -1.16.(2018·衡水金卷压轴卷二)已知曲线C 1的方程为(x -1)2+(y -2)2=1,过平面上一点P 1作C 1的两条切线,切点分别为A 1,B 1,且满足∠A 1P 1B 1=π3.记P 1的轨迹为C 2,过平面上一点P 2作C 2的两条切线,切点分别为A 2,B 2,且满足∠A 2P 2B 2=π3.记P 2的轨迹为C 3,按上述规律一直进行下去,…,记a n =|A n A n +1|min ,且S n 为数列{a n }的前n 项和,则满足S n -5n >0的最小正整数n 为________.答案 5解析 由题设可知轨迹C 1,C 2,C 3,...,C n 分别是半径为1,2,4,8,16,32, (2)的圆.因为a n =|A n A n +1|min ,所以a 1=1,a 2=2,a 3=4,a 4=8,…,a n =2n -1,所以S n =a 1+a 2+a 3+…+a n =1+2+4+…+2n -1=2n-12-1=2n -1.由S n -5n >0,得2n -1-5n >0⇒2n>5n +1,故最小的正整数n 为5.三、解答题17.(2018·山西考前适应训练)已知等比数列{a n }中,a n >0,a 1=164,1a n -1a n +1=2a n +2,n ∈N *.(1)求{a n }的通项公式;(2)设b n =(-1)n·(log 2a n )2,求数列{b n }的前2n 项和T 2n . 解 (1)设等比数列{a n }的公比为q ,则q >0, 因为1a n -1a n +1=2a n +2,所以1a 1q n -1-1a 1q n =2a 1qn +1,因为q >0,解得q =2,所以a n =164×2n -1=2n -7,n ∈N *.(2)b n =(-1)n ·(log 2a n )2=(-1)n ·(log 22n -7)2=(-1)n ·(n -7)2,设c n =n -7,则b n =(-1)n·(c n )2.T 2n =b 1+b 2+b 3+b 4+…+b 2n -1+b 2n=-c 21+c 22+(-c 23)+c 24+…+(-c 22n -1)+c 22n=(-c 1+c 2)(c 1+c 2)+(-c 3+c 4)(c 3+c 4)+…+(-c 2n -1+c 2n )(c 2n -1+c 2n ) =c 1+c 2+c 3+c 4+…+c 2n -1+c 2n =2n [-6+(2n -7)]2=n (2n -13)=2n 2-13n .18.(2018·山东青岛统测)已知等差数列{a n }的公差为2,等比数列{b n }的公比为2,且a nb n =n ·2n .(1)求数列{a n }和{b n }的通项公式; (2)令c n =1a n ·log 2b n +3,记数列{c n }的前n 项和为T n ,试比较T n 与38的大小.解 (1)∵a n b n =n ·2n, ∴⎩⎪⎨⎪⎧a 1b 1=2,a 2b 2=8⇒⎩⎪⎨⎪⎧a 1b 1=2,(a 1+2)·2b 1=8,解得a 1=2,b 1=1,∴a n =2+2(n -1)=2n ,b n =2n -1.(2)∵a n =2n ,b n =2n -1,∴c n =1a n ·log 2b n +3=12n (n +2)=141n -1n +2,∴T n =c 1+c 2+c 3+c 4+…+c n -1+c n=141-13+12-14+13-15+14-16+…+1n -1-1n +1+1n -1n +2 =141+12-1n +1-1n +2 =38-141n +1+1n +2<38, ∴T n <38.19.(2018·广东三校联考二)设数列{a n }的前n 项和为S n ,点(a n ,S n )(n ∈N *)在直线2x -y -2=0上.(1)求证:数列{a n }是等比数列,并求其通项公式;(2)设直线x =a n 与函数f (x )=x 2的图象交于点A n ,与函数g (x )=log 2x 的图象交于点B n ,记b n =OA n →·OB n →(其中O 为坐标原点),求数列{b n }的前n 项和T n .解 (1)证明:∵点(a n ,S n )在直线2x -y -2=0上, ∴2a n -S n -2=0.①当n =1时,2a 1-a 1-2=0,∴a 1=2. 当n ≥2时,2a n -1-S n -1-2=0,② ①-②,得a n =2a n -1.∴数列{a n }是首项为2,公比为2的等比数列, 则a n =2n.(2)由(1)及已知易得A n (2n ,4n ),B n (2n,n ), ∴b n =OA n →·OB n →,∴b n =(n +1)·4n.则T n =2×41+3×42+4×43+…+(n +1)·4n,③ 4T n =2×42+3×43+4×44+…+(n +1)·4n +1,④③-④,得-3T n =8+42+43+…+4n -(n +1)·4n +1=8+16(1-4n -1)1-4-(n +1)·4n +1,∴T n =n 3+29·4n +1-89.20.(2018·湖南六校联考)已知函数f (x )=x 2+x +c (c 为常数),且x ∈-12,0时,f (x )的最大值为-14,数列{a n }的首项a 1=32,点(a n ,a n +1)在函数f (x )的图象上,其中n ≥1,n ∈Z .(1)证明:数列lg a n +12是等比数列;(2)记R n =a 1+12·a 2+12·…·a n +12,求R n .解 (1)证明:依题意,f (x )=x 2+x +c ,c 为常数, 当x ∈-12,0时,f ′(x )≥0,f (x )单调递增,所以f (x )max =f (0)=c =-14,所以f (x )=x 2+x -14.又点(a n ,a n +1)在函数f (x )的图象上, 所以a n +1=a 2n +a n -14,即a n +1+12=a n +122,由于a 1=32,易知a n +12>0,所以lg a n +1+12=2lg a n +12,又lg a 1+12=lg 2≠0,所以数列lg a n +12是首项为lg 2,公比为2的等比数列.(2)由(1)知lg a n +12=2n -1·lg 2=lg 22n -1,所以a n +12=22n -1,所以R n =220·221·222·…·22n -1=220+21+22+…+2n -1 =22n -1.21.(2019·宁夏六盘山高级中学模拟)已知函数y =f (x ).对任意x ∈R ,都有f (x )+f (1-x )=2.(1)求f 12和f 1n +f n -1n(n ∈N *)的值;(2)数列{a n }满足a n =f (0)+f 1n +f 2n +…+f n -1n+f (1)(n ∈N *),求证:数列{a n }是等差数列.解 (1)由题设条件知f 12+f 12=2,故f 12=1.而1n +n -1n =1,故f 1n +f n -1n =2.(2)证明:依题有a n =f (0)+f 1n +…+f n -1n+f (1),n ∈N *,同理有a n =f (1)+fn -1n +…+f 1n+f (0),n ∈N *, 上述两式对应相加得2a n =[f (0)+f (1)]+f 1n+f n -1n+…+f 1n+f n -1n+[f (0)+f (1)]=2(n +1),从而a n =n +1,n ∈N *,而a n +1-a n =1,故{a n }为等差数列.。

2022年高考新课标数学(理)一轮考点突破练习:第六章 数列 Word版含答案

2022年高考新课标数学(理)一轮考点突破练习:第六章 数列 Word版含答案

第六章数列1.数列的概念和简洁表示法(1)了解数列的概念和几种简洁的表示方法(列表、图象、通项公式).(2)了解数列是自变量为正整数的一类特殊函数.2.等差数列、等比数列(1)理解等差数列、等比数列的概念.(2)把握等差数列、等比数列的通项公式与前n项和公式.(3)能在具体的问题情境中识别数列的等差关系或等比关系,并能用等差数列、等比数列的有关学问解决相应的问题.(4)了解等差数列与一次函数的关系、等比数列与指数函数的关系.6.1 数列的概念与简洁表示法1.数列的概念(1)定义:依据肯定挨次排列着的一列数称为数列,数列中的每一个数叫做这个数列的 .数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第1项(通常也叫做 ),排在第n 位的数称为这个数列的第n 项.所以,数列的一般形式可以写成 ,其中a n 是数列的第n 项,叫做数列的通项.常把一般形式的数列简记作{a n }.(2)通项公式:假如数列{a n }的 与序号 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.(3)从函数的观点看,数列可以看作是一个定义域为正整数集N *(或它的有限子集{1,2,3,…,n })的函数(离散的),当自变量从小到大依次取值时所对应的一列________.(4)数列的递推公式:假如已知数列的第1项(或前几项),且从其次项(或某一项)开头的任一项 与它的前一项 (或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.(5) 数列的表示方法有_________、_________、_________、_________. 2.数列的分类(1) 数列按项数是有限还是无限来分,分为_________、_________.(2)按项的增减规律分为_________、_________、_________和________.递增数列⇔a n +1_________a n ;递减数列⇔a n +1_________a n ;常数列⇔a n +1 _________a n .递增数列与递减数列统称为_________.3.数列前n 项和S n 与a n 的关系已知S n ,则a n =⎩⎪⎨⎪⎧ (n =1),(n ≥2).4.常见数列的通项(1)1,2,3,4,…的一个通项公式为a n =____________; (2)2,4,6,8,…的一个通项公式为a n =____________; (3)3,5,7,9,…的一个通项公式为a n =____________; (4)2,4,8,16,…的一个通项公式为a n =____________;(5)-1,1,-1,1,…的一个通项公式为 a n =______________________; (6)1,0,1,0,…的一个通项公式为a n =___________; (7)a ,b ,a ,b ,…的一个通项公式为a n =___________;(8)9,99,999,…的一个通项公式为a n =___________.注:据此,很易获得数列1,11,111,…;2,22,222,…;…;8,88,888,…的通项公式分别为19(10n-1),29(10n-1),…,89(10n -1).自查自纠:1.(1)项 首项 a 1,a 2,a 3,…,a n ,… (2)第n 项 n (3)函数值 (4)a n a n -1(5)通项公式法(解析式法) 列表法 图象法 递推公式法2.(1)有穷数列 无穷数列 (2)递增数列 递减数列摇摆数列 常数列 > < = 单调数列 3.S 1 S n -S n -14.(1)n (2)2n (3)2n +1 (4)2n(5)(-1)n(6)1+(-1)n -12(7)(a +b )+(-1)n -1(a -b )2(8)10n-1已知n ∈N *,给出4个表达式:①a n =⎩⎪⎨⎪⎧0,n 为奇数,1,n 为偶数, ②a n =1+(-1)n2,③a n =1+cos n π2,④a n =⎪⎪⎪⎪⎪⎪sin nπ2.其中能作为数列:0,1,0,1,0,1,0,1,…的通项公式的是( )A .①②③B .①②④C .②③④D .①③④解:检验知①②③都是所给数列的通项公式.故选A.把1,3,6,10,15,…这些数叫做三角形数,这是由于这些数目的点可以排成一个正三角形(如图所示).则第七个三角形数是( ) A .27 B .28 C .29 D .30解:观看三角形数的增长规律,可以发觉每一项比它的前一项多的点数正好是本身的序号,所以依据这个规律计算即可.依据三角形数的增长规律可知第七个三角形数是1+2+3+4+5+6+7=28.故选B.在数列{a n }中,a 1=1,a n a n -1=a n -1+ (-1)n(n ≥2,n ∈N +),则a 3a 5的值是( ) A.1516 B.158 C.34 D.38解:由于a n a n -1=a n -1+(-1)n, 所以a n =1+(-1)na n -1(a n -1≠0).由于a 1=1,所以a 2=2,a 3=12,a 4=3,a 5=23,所以a 3a 5=34.故选C.(2021·黄冈联考)若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式是a n =________.解:由S n =23a n +13得:当n ≥2时,S n -1= 23a n -1+13,所以当n ≥2时,a n =S n -S n -1,所以 a n =-2a n -1,又n =1时,S 1=a 1=23a 1+13,所以 a 1=1,所以a n =(-2)n -1.故填(-2)n -1.(2021·江苏)设数列{a n }满足a 1=1,且 a n +1-a n =n +1(n ∈N *),则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________.解:由a 1=1,且a n +1-a n =n +1(n ∈N *),得a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=n +(n -1)+…+2+1=n (n +1)2,则1a n =2⎝ ⎛⎭⎪⎫1n -1n +1,故数列⎩⎨⎧⎭⎬⎫1a n 的前10项的和S 10=2⎝ ⎛⎭⎪⎫1-12+12-13+…+110-111=2⎝ ⎛⎭⎪⎫1-111=2011.故填2011.类型一 数列的通项公式依据下面各数列前几项的值,写出数列的一个通项公式: (1)-1,7,-13,19,…;(2)23,415,635,863,1099,…; (3)12,2,92,8,252,…; (4)5,55,555,5 555,….解:(1)偶数项为正,奇数项为负,故通项公式正负性可用(-1)n调整,观看各项的确定值,后一项的确定值总比它前一项的确定值大6,故数列的一个通项公式为a n =(-1)n(6n -5).(2)这是一个分数数列,其分子构成偶数数列,而分母可分解为1×3,3×5,5×7,7×9,9×11,…,每一项都是两个相邻奇数的乘积.故数列的一个通项公式为a n =2n(2n -1)(2n +1).(3)数列的各项,有的是分数,有的是整数,可将数列的各项都统一成分数再观看.即12,42,92,162,252,…,故数列的一个通项公式为a n =n 22.(4)将原数列改写为59×9,59×99,59×999,…,易知数列9,99,999,…的通项为10n-1,故数列的一个通项公式为a n =59(10n-1).点拨:①留意通项公式的形式不肯定是惟一的,如数列1,0,1,0,…的通项公式可写成a n =1+(-1)n +12或a n =⎪⎪⎪⎪⎪⎪sin nπ2,甚至分段形式a n=⎩⎪⎨⎪⎧1,n 是奇数,0,n 是偶数等.②对于此类归纳猜想求通项的题目,肯定要把握一些常见数列的通项公式,如{n },{2n },{(-1)n },{2n },{n 2},{2n -1}等,在此基础之上还要把握肯定的方法,如将各项分解成若干个数的和、差、积、商,分别分子分母等.写出下列数列的一个通项公式:(1)-1,12,-13,14,-15,…;(2)3,5,9,17,33,…; (3)3,33,333,3 333,…;(4)23,-1,107,-179,2611,…. 解:(1)a n =(-1)n·1n;(2)a n =2n+1;(3)a n =13(10n-1);(4)由于-1=-55,故分母为3,5,7,9,11,…,即{2n +1},分子为2,5,10,17,26,…,即 {n2+1}.符号看作各项依次乘1,-1,1,-1,…,即{(-1)n +1},故a n =(-1)n +1·n 2+12n +1.类型二 由前n 项和公式求通项公式(1)若数列{a n }的前n 项和S n =n 2-10n ,则此数列的通项公式为a n =______________.(2)若数列{a n }的前n 项和S n =2n+1,则此数列的通项公式为a n =_____________. 解:(1)当n =1时,a 1=S 1=1-10=-9; 当n ≥2时,a n =S n -S n -1=n 2-10n -=2n -11. 当n =1时,2×1-11=-9=a 1. 所以a n =2n -11.故填2n -11. (2)当n =1时,a 1=S 1=21+1=3; 当n ≥2时,a n =S n -S n -1=(2n+1)-(2n -1+ 1)=2n-2n -1=2n -1.综上有 a n =⎩⎪⎨⎪⎧3(n =1),2n -1(n ≥2).故填⎩⎪⎨⎪⎧3(n =1),2n -1(n ≥2).点拨:任何一个数列,它的前n 项和S n 与通项a n 都存在关系:a n =⎩⎪⎨⎪⎧S 1(n =1),S n -S n -1(n ≥2). 若a 1适合S n - S n -1,则应把它们统一起来,否则就用分段函数表示.另外一种快速推断技巧是利用S 0是否为0来推断:若S 0=0,则a 1适合S n -S n -1,否则不符合,这在解小题时比较有用.已知下列数列{a n }的前n 项和S n ,分别求它们的通项公式a n .(1)S n =2n 2-3n ; (2)S n =3n+b . 解:(1)a 1=S 1=2-3=-1,当n ≥2时,a n =S n -S n -1=(2n 2-3n )-=4n -5,a 1也适合此等式,所以a n =4n -5.(2)a 1=S 1=3+b , 当n ≥2时,a n =S n -S n -1 =(3n+b )-(3n -1+b )=2·3n -1.当b =-1时,a 1适合此等式. 当b ≠-1时,a 1不适合此等式. 所以当b =-1时,a n =2·3n -1;当b ≠-1时,a n =⎩⎪⎨⎪⎧3+b , n =1,2·3n -1,n ≥2. 类型三 由递推公式求通项公式写出下面各数列{a n }的通项公式. (1)a 1=2,a n +1=a n +n +1; (2)a 1=1,前n 项和S n =n +23a n ;(3)a 1=1,a n +1=3a n +2.解:(1)由题意得,当n ≥2时,a n -a n -1=n , 所以a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n - a n -1) =2+(2+3+…+n )=2+(n -1)(2+n )2=n (n +1)2+1.又a 1=2=1×(1+1)2+1,适合上式,因此a n =n (n +1)2+1.(2)由题设知,a 1=1. 当n ≥2时,a n =S n -S n -1=n +23a n -n +13a n -1.所以a n a n -1=n +1n -1. 所以a n a n -1=n +1n -1,…,a 4a 3=53,a 3a 2=42,a 2a 1=3. 以上n -1个式子的等号两端分别相乘, 得到a n a 1=n (n +1)2.又由于a 1=1,所以a n =n (n +1)2.(3)解法一:(累乘法)a n +1=3a n +2,得a n +1+1=3(a n +1),即a n +1+1a n +1=3, 所以a 2+1a 1+1=3,a 3+1a 2+1=3,a 4+1a 3+1=3,…, a n +1+1a n +1=3. 将这些等式两边分别相乘得a n +1+1a 1+1=3n. 由于a 1=1,所以a n +1+11+1=3n,即a n +1=2×3n-1(n ≥1), 所以a n =2×3n -1-1(n ≥2),又a 1=1也适合上式,故数列{a n }的一个通项公式为a n =2×3n -1-1.解法二:(迭代法)a n +1=3a n +2,即a n +1+1=3(a n +1)=32(a n -1+1)=33(a n -2+1) = (3)(a 1+1)=2×3n (n ≥1), 所以a n =2×3n -1-1(n ≥2),又a 1=1也满足上式,故数列{a n }的一个通项公式为a n =2×3n -1-1.点拨:已知数列的递推关系,求数列的通项时,通常用累加、累乘、构造法求解.当消灭a n =a n -1+m 时,构造等差数列;当消灭a n =xa n -1+y 时,构造等比数列;当消灭a n =a n -1+f (n )时,一般用累加法求通项;当消灭a na n -1=f (n )时,一般用累乘法求通项.还须留意检验n =1时,是否适合所求.写出下面各递推公式表示的数列{a n }的通项公式.(1)a 1=2,a n +1=a n +1n (n +1);(2)a 1=1,a n +1=2na n ; (3)a 1=1,a n +1=2a n +1. 解:(1)由于当n ≥2时,a n -a n -1=1n (n -1)=1n -1-1n,所以当n ≥2时,a n =(a n -a n -1)+(a n -1- a n -2)+…+(a 2-a 1)+a 1=⎝ ⎛⎭⎪⎫1n -1-1n +⎝ ⎛⎭⎪⎫1n -2-1n -1+…+(12-13)+⎝ ⎛⎭⎪⎫1-12+2=3-1n .当n =1时,适合.故a n =3-1n.(2)由于a n +1a n =2n ,所以a 2a 1=21,a 3a 2=22,…, a n a n -1=2n -1, 将这n -1个等式叠乘,得a n a 1=21+2+…+(n -1)=2n (n -1)2, 所以a n =2n (n -1)2.当n =1时,适合.故a n =2n (n -1)2.(3)由题意知a n +1+1=2(a n +1),所以数列 {a n +1}是以2为首项,2为公比的等比数列,所以a n +1=2n,所以a n =2n-1.类型四 数列通项的性质已知函数f (x )=x -1x,设a n =f (n )(n ∈N +). (1)求证:a n <1;(2){a n }是递增数列,还是递减数列?为什么? 解:(1)证明:由于a n =n -1n =1-1n, 又n ∈N +,所以1≥1n>0.所以a n <1.(2)由于a n +1-a n =⎝⎛⎭⎪⎫1-1n +1-⎝ ⎛⎭⎪⎫1-1n =1n (n +1),又由于n +1>n ≥1,所以a n +1-a n >0, 即a n +1>a n .所以{a n }是递增数列. 点拨:要证明数列{a n }是单调的,可利用“{a n }是递增数列⇔a n <a n +1,数列{a n }是递减数列⇔a n >a n +1”来证明.留意数列的单调性是探究数列的最大、最小项及解决其他很多数列问题的重要途径,因此要娴熟把握上述求数列单调性的方法.(2022·宝鸡5月模拟)已知函数 f (x )=⎩⎪⎨⎪⎧(3-a )x +2,x ≤2,a 2x 2-9x +11,x >2 (a >0,且a ≠1),若数列{a n }满足a n =f (n )(n ∈N *),且{a n }是递增数列,则实数a 的取值范围是( )A .(0,1) B.⎣⎢⎡⎭⎪⎫83,3C .(2,3)D .(1,3)解:由于{a n }是递增数列,且2<94<3,所以⎩⎪⎨⎪⎧3-a >0,a >1,(3-a )×2+2<a 2,解得2<a <3.故选C.1.已知数列的前几项,求数列的通项公式,应从以下几方面考虑: (1)假如符号正负相间,则符号可用(-1)n或(-1)n +1来调整.(2)分式形式的数列,分子和分母分别找通项,并充分借助分子和分母的关系来解决. (3)对于比较简单的通项公式,要借助于等差数列、等比数列和其他方法来解决.此类问题虽无固定模式,但也有规律可循,主要靠观看(观看规律)、比较(比较已知的数列)、归纳、转化(转化为等差、等比或其他特殊数列)等方法来解决.2.a n =⎩⎪⎨⎪⎧S 1(n =1),S n -S n -1(n ≥2),留意a n =S n -S n -1的条件是n ≥2,还须验证a 1是否符合a n (n ≥2),是则合并,否则写成分段形式.3.已知递推关系求通项把握先由a 1和递推关系求出前几项,再归纳、猜想a n 的方法,以及“累加法”“累乘法”等. (1)已知a 1且a n -a n -1=f (n ),可以用“累加法”得:a n =a 1+f (2)+f (3)+…+f (n -1)+f (n ). (2)已知a 1且a na n -1=f (n ),可以用“累乘法”得:a n =a 1·f (2)·f (3)·…·f (n -1)·f (n ).注:以上两式均要求{f (n )}易求和或积. 4.数列的简洁性质(1)单调性:若a n +1>a n ,则{a n }为递增数列;若a n +1<a n ,则{a n }为递减数列.(2)周期性:若a n +k =a n (n ∈N *,k 为非零正整数),则{a n }为周期数列,k 为{a n }的一个周期.(3)最大值与最小值:若⎩⎪⎨⎪⎧a n ≥a n +1,a n ≥a n -1, 则a n 最大;若⎩⎪⎨⎪⎧a n ≤a n +1,a n ≤a n -1, 则a n 最小.1.数列0.9,0.99,0.999,…的一个通项公式是( )A .1+⎝ ⎛⎭⎪⎫110nB .-1+⎝ ⎛⎭⎪⎫110nC .1-⎝ ⎛⎭⎪⎫110nD .1-⎝ ⎛⎭⎪⎫110n +1解:原数列前几项可改写为1-110,1-1102, 1-1103,…,故通项a n =1-⎝ ⎛⎭⎪⎫110n .故选C.2.(2022·广东3月测试)设S n 为数列{a n }的前n 项和,且S n =32(a n -1)(n ∈N *),则a n =( )A .3(3n-2n) B .3n+2 C .3nD .3·2n -1解:当n =1时,a 1=3;当n ≥2时,a n =S n -S n -1=32(a n -1)-32(a n -1-1),得到a n =3a n -1,所以a n =3n.故选C .3.(2022·天水联考)已知数列{a n }的前n 项和为S n =2a n -1,则使得a nn≤2的正整数n 的集合为( ) A .{1,2}B .{1,2,3,4}C .{1,2,3}D .{1,2,4}解:当n ≥2时,a n =S n -S n -1=2a n -1- (2a n -1-1)=2a n -2a n -1,所以a n =2a n -1,由于 S 1=2a 1-1=a 1,所以a 1=1,a n =2n -1,把n =1,2,3,4代入a n n 都满足a n n≤2.故选B.4.数列{a n }满足a n +1=⎩⎪⎨⎪⎧2a n ,0≤a n <12,2a n-1,12≤a n<1, 若a 1=25,则a2 017等于( )A.15B.25C.35D.45解:由于a 1=25<12,所以a 2=45.a 3=35,a 4=15,a 5=25,所以数列具有周期性,周期为4,所以a 2 017=a 1=25.故选B.5.已知数列{a n }的前n 项和S n =n 2a n (n ≥2),而a 1=1,通过计算a 2,a 3,a 4,猜想a n 等于( ) A.2(n +1)2B.2n (n +1)C.12n -1D.22n -1解:S 2=22·a 2,所以1+a 2=4a 2,所以a 2=13;S 3=32·a 3,所以1+13+a 3=9a 3,所以a 3=12×3; S 4=42·a 4,所以1+13+12×3+a 4=16a 4,所以a 4=12×5.可见a 1=21×2,a 2=22×3,a 3=23×4,a 4=24×5,由此可以猜想a n =2n (n +1).故选B.6.(2022·荆门联考)若数列{a n },{b n }的通项公式分别是a n =(-1)n +24a ,b n =2+(-1)n +2 017n,且a n <b n 对任意n ∈N *恒成立,则实数a 的取值范围是( )A.⎣⎢⎡⎭⎪⎫-1,12 B.⎣⎢⎡⎭⎪⎫-2,12C.⎣⎢⎡⎭⎪⎫-2,32 D.⎣⎢⎡⎭⎪⎫-1,32 解:(1)当n 为奇数时,a n =-a ,b 1=2+1,b 3=2+13,b 5=2+15,…若a n <b n 恒成立,只须-a ≤2,即a ≥-2;(2)当n 为偶数时,a n =a ,b 2=2-12,b 4=2-14,b 6=2-16,若a n <b n 恒成立,只须a <32,综上所述,a 的取值范围是⎣⎢⎡⎭⎪⎫-2,32.故选C.7.已知数列{a n }满足a s ·t =a s a t (s ,t ∈N *),且a 2=2,则a 8=________.解:令s =t =2,则a 4=a 2×a 2=4,令s =2, t =4,则a 8=a 2×4=a 2×a 4=8.故填8. 8.已知数列{a n }的前n 项和为S n ,且满足log 2(S n +1)=n +1,则a n =________ 解:由条件可得S n +1=2n +1,则S n =2n +1-1,当n =1时,a 1=S 1=3; 当n ≥2时,a n =S n -S n -1=2n +1-1-2n +1=2n,由于当n =1时不满足a n =2n,故a n =⎩⎪⎨⎪⎧3,n =1,2n ,n ≥2. 故填⎩⎪⎨⎪⎧3,n =1,2n ,n ≥2.9.依据数列{a n } 的前几项,分别写出下列数列的一个通项公式. (1)7,77,777,7 777,…; (2)4,-52,2,-74,85,…;(3)3,5,3,5,…; (4)1,2,2,4,3,8,4,16,…. 解:(1)将各项改写如下79(10-1),79(102-1),79(103-1),79(104-1),… 易知a n =79(10n-1).(2)将各项确定值改写如下 41,52,63,74,85,… 综合考查分子、分母,以及各项符号可知a n =(-1)n -1n +3n. (3)a n =⎩⎪⎨⎪⎧3(n 为奇数),5(n 为偶数), 或a n =(3+5)+(-1)n -1(3-5)2=4+(-1)n.(4)观看数列{a n}可知,奇数项成等差数列,偶数项成等比数列,所以a n=⎩⎪⎨⎪⎧n +12(n 为奇数),2n 2(n 为偶数).10.已知二次函数f (x )=ax 2+bx 的图象过点(-4n ,0),且f ′(0)=2n (n ∈N *). (1)求f (x )的解析式; (2)若数列{a n }满足1a n +1=f ′⎝ ⎛⎭⎪⎫1an ,且a 1=4,求数列{a n }的通项公式.解:(1)由f ′(x )=2ax +b ,f ′(0)=2n, 得b =2n ,又f (x )的图象过点(-4n ,0), 所以16n 2a -4nb =0,解得a =12.所以f (x )=12x 2+2nx (n ∈N *).(2)由(1)知f ′(x )=x +2n (n ∈N *), 所以1a n +1=1a n+2n ,即1a n +1-1a n=2n .所以1a n -1a n -1=2(n -1),1a n -1-1a n -2=2(n -2), (1)a 2-1a 1=2,以上各式相加得1a n -14=n 2-n ,所以a n =1n 2-n +14,即a n =4(2n -1)2(n ∈N *). 11.已知数列{a n }满足前n 项和S n =n 2+1,数列{b n }满足b n =2a n +1,且前n 项和为T n ,设c n = T 2n +1-T n . (1)求数列{b n }的通项公式;(2)推断数列{c n }的增减性.解:(1)a 1=2,a n =S n -S n -1=2n -1(n ≥2). 所以b n=⎩⎪⎨⎪⎧23 (n =1),1n (n ≥2).(2)由于c n =b n +1+b n +2+…+b 2n +1 =1n +1+1n +2+…+12n +1, 所以c n +1-c n =12n +2+12n +3-1n +1=12n +3-12n +2=-1(2n +3)(2n +2)<0,所以{c n }是递减数列.设数列{a n }的前n 项和为S n .已知 a 1=a (a ≠3),a n +1=S n +3n,n ∈N *.(1)设b n =S n -3n,求数列{b n }的通项公式; (2)若a n +1≥a n ,n ∈N *,求a 的取值范围. 解:(1)依题意,S n +1-S n =a n +1=S n +3n, 即S n +1=2S n +3n ,由此得S n +1-3n +1=2(S n -3n),又S 1-31=a -3(a ≠3),故数列{S n -3n}是首项为a -3,公比为2的等比数列, 因此,所求通项公式为b n =S n -3n =(a -3)2n -1,n ∈N *.(2)由(1)知S n =3n+(a -3)2n -1,n ∈N *,于是,当n ≥2时,a n =S n -S n -1=3n +(a -3)2n -1-3n -1-(a -3)2n -2=2×3n -1+(a -3)2n -2,当n =1时,a 1=a 不适合上式, 故a n =⎩⎪⎨⎪⎧a , n =1,2×3n -1+(a -3)2n -2,n ≥2.a n +1-a n =4×3n -1+(a -3)2n -2=2n -2⎣⎢⎡⎦⎥⎤12·⎝ ⎛⎭⎪⎫32n -2+a -3,当n ≥2时,a n +1≥a n ⇔12·⎝ ⎛⎭⎪⎫32n -2+a -3≥0⇔a ≥-9.又a 2=a 1+3>a 1.综上,所求a 的取值范围是,同理a n +1=12.从而a n +1-a n =12.整理得(n -1)a n +1+(n -1)a n -1=2(n -1)a n , 由于n ≥2,所以a n +1+a n -1=2a n . 所以{a n }是等差数列. 点拨:判定数列是等差数列的方法可参看本节“考点梳理”,证明一个数列是等差数列只能用前两种方法,做客观题时可用后两种方法推断.(2022·南昌联考)已知数列{a n }的前n 项和为S n ,且满足a 1=12,a n =-2S n S n -1(n ≥2).(1)求证:数列⎩⎨⎧⎭⎬⎫1S n 是等差数列;(2)求S n 和a n .解:(1)证明:当n ≥2时,a n =S n -S n -1=-2S n S n -1,由于S 1=a 1≠0,由递推关系知S n ≠0(n ∈N *),将等式S n -S n -1=-2S n S n -1, 两边同除以S n S n -1,得1S n -1S n -1=2(n ≥2),1S 1=1a 1=2,所以⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列.(2)由于1S n =1S 1+(n -1)d =2n ,所以S n =12n .当n ≥2时,a n =S n -S n -1=-12n (n -1),当n =1时,a 1=12不适合上式,所以a n=⎩⎪⎨⎪⎧12,n =1,-12n (n -1),n ≥2.类型二 等差数列基本量的计算 在等差数列{a n }中, (1)已知a 15=33,a 45=153,求a n ; (2)已知a 6=10,S 5=5,求S n ;(3)已知前3项和为12,前3项积为48,且 d >0,求a 1. 解:(1)解法一:设首项为a 1,公差为d ,依条件得⎩⎪⎨⎪⎧33=a 1+14d ,153=a 1+44d , 解得⎩⎪⎨⎪⎧a 1=-23,d =4. 所以a n =-23+(n -1)×4=4n -27. 解法二:由d =a n -a mn -m, 得d =a 45-a 1545-15=153-3330=4,由a n =a 15+(n -15)d ,得a n =4n -27.(2)由于a 6=10,S 5=5,所以⎩⎪⎨⎪⎧a 1+5d =10,5a 1+10d =5.解得a 1=-5,d =3. 所以S n =-5n +n (n -1)2·3=32n 2-132n .(3)设数列的前三项分别为a 2-d ,a 2,a 2+d ,依题意有:⎩⎪⎨⎪⎧(a 2-d )+a 2+(a 2+d )=12,(a 2-d )·a 2·(a 2+d )=48, 即⎩⎪⎨⎪⎧a 2=4,a 2(a 22-d 2)=48, 解得⎩⎪⎨⎪⎧a 2=4,d =±2.由于d >0,所以d =2,所以a 1=a 2-d =2. 点拨:在等差数列五个基本量a 1,d ,n ,a n ,S n 中,已知其中三个量,可以依据已知条件结合等差数列的通项公式、前n 项和公式列出关于基本量的方程(组)来求余下的两个量,计算时须留意整体代换及方程思想的应用.(1)已知等差数列的前三项依次为a ,4,3a ,前n 项和为S n ,且S k =110.(Ⅰ)求a 及k 的值;(Ⅱ)设数列{b n }的通项b n =S nn,证明数列{b n }是等差数列,并求其前n 项和T n .解:(Ⅰ)设该等差数列为{a n },则a 1=a ,a 2=4,a 3=3a , 由已知有a +3a =8,得a 1=a =2,公差d =4-2=2,a n =2n . 所以S k =ka 1+k (k -1)2·d =2k +k (k -1)2×2=k 2+k .由S k =110,得k 2+k -110=0,解得k =10或k =-11(舍去),故a =2,k =10. (Ⅱ)由(Ⅰ)得S n =n (2+2n )2=n (n +1),则b n =S nn=n +1,故b n +1-b n =(n +2)-(n +1)=1,即数列{b n }是2为首项,1为公差的等差数列,b n =n +1.所以T n =n (2+n +1)2=n (n +3)2.(2)各项均为正数的数列{a n }满足a 2n =4S n - 2a n -1(n ∈N *),其中S n 为{a n }的前n 项和. (Ⅰ)求a 1,a 2的值;(Ⅱ)求数列{a n }的通项公式.解:(Ⅰ)当n =1时,a 21=4S 1-2a 1-1=2a 1-1, 即(a 1-1)2=0,解得a 1=1. 当n =2时,a 22=4S 2-2a 2-1=4a 1+2a 2-1=3+2a 2,解得a 2=3或a 2=-1(舍去). (Ⅱ)a 2n =4S n -2a n -1,①a 2n +1=4S n +1-2a n +1-1.②②-①得a 2n +1-a 2n =4a n +1-2a n +1+2a n =2(a n +1+a n ),即(a n +1-a n )(a n +1+a n )=2(a n +1+a n ). 由于数列{a n }各项均为正数, 所以a n +1+a n >0,所以a n +1-a n =2,所以数列{a n }是首项为1,公差为2的等差数列.所以a n =2n -1.类型三 等差数列的性质 (1)已知S n 为等差数列{a n }的前n 项和,a 6=100,则S 11=________;(2)设数列{a n },{b n }都是等差数列.若a 1+ b 1=7,a 3+b 3=21,则a 5+b 5=________;(3)若一个等差数列的前4项和为36,后4项和为124,且全部项的和为780,则这个数列的项数为________; (4)已知S n 为等差数列{a n }的前n 项和,S n =m ,S m =n (n ≠m ),则S m +n =________. 解:(1)S 11=11(a 1+a 11)2=11a 6=1 100.故填1 100.(2)由于数列{}a n ,{}b n 都是等差数列,所以数列{}a n +b n 也是等差数列.故由等差中项的性质,得()a 5+b 5+()a 1+b 1=2()a 3+b 3,即a 5+b 5+7=2×21,解得a 5+b 5=35.故填35.(3)设该等差数列的项数为n ,则a 1+a 2+a 3+a 4=36,a n +a n -1+a n -2+a n -3=124,a 1+a n =a 2+a n -1=a 3+a n -2=a 4+a n -3,所以4(a 1+a n )=160,即a 1+a n =40. 所以S n =n (a 1+a n )2=20n =780,解得n =39.故填39.(4)解法一:令S n =An 2+Bn ,则⎩⎪⎨⎪⎧An 2+Bn =m ,Am 2+Bm =n , 得A (n 2-m 2)+B (n -m )=m -n . 由于n ≠m ,所以A (n +m )+B =-1. 所以S m +n =A (m +n )2+B (m +n )=-(m +n ). 解法二:不妨设m >n ,S m -S n =a n +1+a n +2+a n +3+…+a m -1+a m=(m -n )(a n +1+a m )2=n -m ,所以a 1+a m +n =a n +1+a m =-2.所以S m +n =(m +n )(a 1+a m +n )2=-(m +n ).解法三:由于{a n }是等差数列,所以⎩⎨⎧⎭⎬⎫S n n 为等差数列,D 为公差.所以S m +n m +n -S m m =nD ,S n n -S mm=(n -m )D . 所以m n -n m n -m =S m +n m +n -n m n,解得S m +n =-(m +n ).故填-(m +n ).点拨:(1)可利用等差数列的性质S 2n +1=(2n +1)a n +1来求解,这一性质表明:若等差数列有奇数项,则正中间一项是该数列各项的平均数;(2)利用等差数列的性质及等差中项来求;(3)可利用“等差数列前m 项与后m 项的和等于m (a 1+a n )”这一性质来求解;(4)可利用等差数列下标和性质:若“p +q = m +n ,则a p +a q =a m +a n ”来求解.等差数列的性质是其定义、通项公式及前n 项和公式等基础学问的推广与变形,解题时机敏应用这些性质经常可化繁为简,起到事半功倍的效果.(1)若两个等差数列{a n }和{b n }的前n 项和分别为S n 和T n ,已知S n T n =7n n +3,则a 5b 5等于( )A .7 B.23 C.278 D.214(2)已知等差数列{a n }的公差为4,项数为偶数,全部奇数项的和为15,全部偶数项的和为55,则这个数列的项数为( )A .10B .20C .30D .40(3)已知等差数列{a n }的前n 项和为S n ,且 S 10=10,S 20=30,则S 30=________.解:(1)由于a 5=a 1+a 92,b 5=b 1+b 92,所以a 5b 5=a 1+a 92b 1+b 92=9(a 1+a 9)29(b 1+b 9)2=S 9T 9=7×99+3=214.故选D.(2)等差数列{a n }的公差为4,设项数为n ,前n 项和为S n ,则S 偶-S 奇=d2n =2n =40,解得n =20,所以这个数列的项数为20.故选B.(3)由于S 10,S 20-S 10,S 30-S 20成等差数列,所以2(S 20-S 10)=S 10+(S 30-S 20),所以40=10+ S 30-30,所以S 30=60.故填60.类型四 等差数列的最值问题等差数列{a n }的首项a 1>0,设其前n 项和为S n ,且S 5=S 12,则当n 为何值时,S n 有最大值? 解法一:由题意知d <0,由于S n =d2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n ,设f (x )=d2x 2+⎝⎛⎭⎪⎫a 1-d 2x ,如图,由S 5=S 12知,抛物线的对称轴为x =5+122=172,由图可知,当1≤n ≤8时,S n 单调递增;当n ≥9时,S n 单调递减,且S 8=S 9.又n ∈N *,所以当n =8或9时,S n 有最大值.解法二:设等差数列{a n }的公差为d ,由S 5=S 12得5a 1+10d =12a 1+66d ,d =-18a 1<0.S n =na 1+n (n -1)2d =na 1+n (n -1)2·⎝ ⎛⎭⎪⎫-18a 1=-116a 1(n 2-17n )=-116a 1⎝ ⎛⎭⎪⎫n -1722+28964a 1,由于a 1>0,n ∈N *,所以当n =8或9时,S n 有最大值. 解法三:由解法二得d =-18a 1<0.设此数列的前n 项和最大,则⎩⎪⎨⎪⎧a n ≥0,a n +1≤0,即⎩⎪⎨⎪⎧a n=a 1+(n -1)·⎝ ⎛⎭⎪⎫-18a 1≥0,a n +1=a 1+n ·⎝ ⎛⎭⎪⎫-18a 1≤0,解得⎩⎪⎨⎪⎧n ≤9,n ≥8, 即8≤n ≤9,又n ∈N *,所以当n =8或9时,S n 有最大值. 解法四:由解法二得d =-18a 1<0,又S 5=S 12得a 6+a 7+a 8+a 9+a 10+a 11+a 12=0, 所以7a 9=0,所以a 9=0.所以当n =8或9时,S n 有最大值. 点拨:求等差数列前n 项和的最值,常用的方法:(1)利用等差数列的单调性,求出其正负转折项;(2)利用性质求出其正负转折项,便可求得和的最值;(3)将等差数列的前n 项和S n =An 2+Bn (A ,B 为常数)看作二次函数,依据二次函数的性质求最值.(1)(2021·洛阳统考)设等差数列{a n }的前n 项和为S n ,且a 1>0,a 3+a 10>0,a 6a 7<0,则满足S n >0的最大自然数n 的值为( )A .6B .7C .12D .13解:由于a 1>0,a 6a 7<0,所以a 6>0,a 7<0,等差数列的公差小于零,又a 3+a 10=a 1+a 12>0, a 1+a 13=2a 7<0,又由于S n =n (a 1+a n )2,所以 S 12>0,S 13<0,所以满足S n >0的最大自然数n 的值为12.故选C.(2)设等差数列{a n }的前n 项和为S n ,若a 1<0,S 2 017=0. ①求S n 的最小值及此时n 的值; ②求n 的取值集合,使a n ≥S n .解:①设公差为d ,则由S 2 017=0得2 017a 1+2 017×2 0162d =0,得a 1+1 008d =0,d =-11 008a 1,a 1+a n =2 017-n1 008a 1, 所以S n =n 2(a 1+a n )=n 2·2 017-n 1 008a 1=a 12 016(2 017n -n 2). 由于a 1<0,n ∈N *,所以当n =1 008或1 009时,S n 取最小值1 0092a 1.②a n =1 009-n 1 008a 1,S n ≤a n ⇔a 12 016(2 017n -n 2)≤1 009-n 1 008a 1. 由于a 1<0,所以n 2-2 019n +2 018≤0, 即(n -1)(n -2 018)≤0,解得1≤n ≤2 018. 故所求n 的取值集合为{n|1≤n ≤2 018,n ∈N *}.1.等差数列中,已知5个元素a 1,a n ,n ,d ,S n 中的任意三个,便可求出其余两个.除已知a 1,d ,n 求a n ,S n可以直接用公式外,其他状况一般都要列方程或方程组求解,因此这种问题蕴含着方程思想.留意,我们把a 1,d 叫做等差数列的基本元素.将全部其他元素都转化成基本元素是解决等差数列问题的一个格外重要的基本思想.2.求等差数列{a n }前n 项的确定值{|a n |}之和,首先应分清这个数列哪些项是负的,哪些项是非负的,然后再分段求和.3.等差数列前n 项和的最值通常是在正负项分界的位置产生,利用这一性质可求其最值;另一种方法是利用二次函数的性质.4.机敏运用等差数列的性质(如等差中项的性质),可简化运算.5.等差数列{a n }的前n 项和满足:⎩⎨⎧⎭⎬⎫S n n 也是等差数列,且首项与{a n }的首项相同,公差为{a n }公差的一半.6.数列{a n }是等差数列的充要条件是S n = An 2+Bn (A ,B 是常数,n ∈N *).1.(2021·云南月考)设等差数列{a n }的前n 项和为S n ,已知a 3=5,S 11=22,则数列{a n }的公差d 为( ) A .-1 B .-13 C.13D .1解:由于S 11=11a 6=22,所以a 6=2, 所以d =a 6-a 36-3=-1.故选A.2.设等差数列{a n }的前n 项和为S n ,若S 412- S 39=1,则公差d 为( )A .2B .4C .5D .6解:依题意得S 4=4a 1+4×32d =4a 1+6d ,S 3=3a 1+3×22d =3a 1+3d ,于是有4a 1+6d 12-3a 1+3d9=1,解得d =6.故选D .3.(2022·鄂东南联盟期中检测)已知等差数列{a n },其前n 项和为S n ,若a 4+a 5+a 6=π4,则cos S 9的值为( )A.12B.22 C .-12D .-22解:由已知得a 4+a 5+a 6=π4=3a 5,所以a 5=π12,S 9=9a 5=3π4,cos S 9=-22.故选D .4.已知等差数列{a n }的前n 项和为S n ,且S 4S 2=4,则S 6S 4=( )A.94B.32C.53D .4 解:设S 2=x ,则S 4=4x ,由于S 2,S 4-S 2, S 6-S 4成等差数列,所以S 6-S 4=5x ,即S 6=9x ,所以S 6S 4=9x4x=94.故选A. 5.(2021·浙江名校联考)已知每项均大于零的数列{a n }中,首项a 1=1且前n 项和S n 满足S n S n -1-S n -1S n =2S n S n -1(n ∈N *且n ≥2),则 a 81=( )A .641B .640C .639D .638解:由已知S n S n -1-S n -1S n =2S n S n -1可得,S n -S n -1=2,所以{S n }是以1为首项,2为公差的等差数列,故S n =2n -1,S n =(2n -1)2,所以a 81=S 81-S 80=1612-1592=640.故选B.6.已知数列{a n }为等差数列,若a 11a 10<-1,且它们的前n 项和S n 有最大值,则使S n >0的n 的最大值为( ) A .11 B .19 C .20 D .21解:由于a 11a 10<-1,且S n 有最大值, 所以a 10>0,a 11<0,且a 10+a 11<0, 所以S 19=19(a 1+a 19)2=19·a 10>0,S 20=20(a 1+a 20)2=10(a 10+a 11)<0,故使得S n >0的n 的最大值为19.故选B.7.(2021·东北四市联考)《莱因德纸草书》是世界上最古老的数学著作之一.书中有一道这样的题目:把100个面包分给5个人,使每人所得成等差数列,且使较大的三份之和的17是较小的两份之和,则最小的一份为________.解:依题意,设这100份面包所分成的五份由小到大依次为a -2m ,a -m ,a ,a +m ,a +2m (m >0),则有⎩⎪⎨⎪⎧5a =100,a +(a +m )+(a +2m )=7(a -2m +a -m ),解得a =20,m =11a 24,a -2m =a 12=53,即其中最小的一份为53.故填53.8.(2022·山西四校联考)设数列{a n }满足 a 2+a 4=10,点P n (n ,a n )对任意的n ∈N *,都有向量1n n P P +=(1,2),则数列{a n }的前n 项和S n =________.解:由于P n (n ,a n ),所以P n +1(n +1,a n +1),所以1n n P P +=(1,a n +1-a n )=(1,2),所以a n +1-a n =2, 所以{a n }是公差d 为2的等差数列.又由a 2+a 4=2a 1+4d =2a 1+4×2=10,解得a 1=1, 所以S n =n +n (n -1)2×2=n 2.故填n 2.9.已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足a 3·a 4=117,a 2+a 5=22,求a n 和S n . 解:由于数列{a n }为等差数列,所以a 3+a 4=a 2+a 5=22. 又a 3·a 4=117,所以a 3,a 4是方程x 2-22x +117=0的两实根, 又公差d >0,所以a 3<a 4,所以a 3=9,a 4=13,所以⎩⎪⎨⎪⎧a 1+2d =9,a 1+3d =13, 所以⎩⎪⎨⎪⎧a 1=1,d =4.所以通项公式a n =4n -3. 所以S n =na 1+n (n -1)2×d =2n 2-n .10.已知数列{a n }满足2a n +1=a n +a n +2(n ∈N *),它的前n 项和为S n ,且a 3=10,S 6=72,若b n =12a n -30,设数列{b n }的前n 项和为T n ,求T n 的最小值.解:由于2a n +1=a n +a n +2, 所以a n +1-a n =a n +2-a n +1, 故数列{a n }为等差数列.设数列{a n }的首项为a 1,公差为d ,由a 3=10,S 6=72得,⎩⎪⎨⎪⎧a 1+2d =10,6a 1+15d =72, 解得⎩⎪⎨⎪⎧a 1=2,d =4. 所以a n =4n -2,则b n =12a n -30=2n -31,令⎩⎪⎨⎪⎧b n ≤0,b n +1≥0, 即⎩⎪⎨⎪⎧2n -31≤0,2(n +1)-31≥0, 解得292≤n ≤312,由于n ∈N *,所以n =15,即数列{b n }的前15项均为负值,第16项为正值. 所以T 15最小.由于数列{b n }的首项是-29,公差为2, 所以T 15=15(b 1+b 15)2=-225,所以数列{b n }的前n 项和T n 的最小值为-225.(2022·全国卷Ⅰ)已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数.(1)证明:a n +2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由.解:(1)证明:由题设,a n a n +1=λS n -1, a n +1a n +2=λS n +1-1,两式相减得a n +1(a n +2-a n )= λa n +1,由于a n +1≠0,所以a n +2-a n =λ.(2)存在λ使得{a n }为等差数列,理由如下:由题设a 1=1,a 1a 2=λS 1-1,可得a 2=λ-1,由(1)知a 3=λ+1.假设{a n }为等差数列,则a 1,a 2,a 3成等差数列,所以a 1+a 3=2a 2,解得λ=4. 以下证明λ=4时,{a n }为等差数列. 由a n +2-a n =4知,数列奇数项构成的数列{a 2m -1}是首项为1,公差为4的等差数列,a 2m -1=4m -3, 令n =2m -1,则m =n +12,所以a n =2n -1(n =2m -1).数列偶数项构成的数列{a 2m }是首项为3,公差为4的等差数列,a 2m =4m -1,m ∈N *. 令n =2m ,则m =n2,所以a n =2n -1(n =2m ).所以a n =2n -1(n ∈N *),a n +1-a n =2. 因此,存在λ=4,使得{a n }为等差数列.1.{a n }为等差数列,公差d =-2,S n 为其前n 项和.若S 10=S 11,则a 1=( ) A .18 B .20 C .22 D .24解:由S 10=S 11得a 11=S 11-S 10=0,a 1=a 11- 10d =0-10×(-2)=20.故选B . 2.设等差数列{a n }的前n 项和为S n ,若a 5+ a 14=10,则S 18=( ) A .20 B .60 C .90 D .100解:由于{a n }是等差数列,所以S 18=18(a 1+a 18)2=9(a 5+a 14)=90.故选C .3.已知{a n }为等差数列,a 1+a 3+a 5=105, a 2+a 4+a 6=99,则a 20等于( ) A .-1 B .1 C .3 D .7解:两式相减,可得3d =-6,d =-2.由已知可得3a 3=105,a 3=35,所以a 20=a 3+17d =35+17×(-2)=1.故选B.4.设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S k +2-S k =24,则k =( ) A .8 B .7 C .6 D .5解:由a 1=1,公差d =2得通项a n =2n -1,又S k +2-S k =a k +1+a k +2,所以2k +1+2k +3=24,得k =5.故选D. 5.在等差数列{a n }中,S 15>0,S 16<0,则使a n >0成立的n 的最大值为( ) A .6 B .7 C .8 D .9解:依题意得S 15=15(a 1+a 15)2=15a 8>0,即a 8>0;S 16=16(a 1+a 16)2=8(a 1+a 16)=8(a 8+a 9)<0,即a 8+a 9<0,a 9<-a 8<0.因此使a n >0成立的n 的最大值是8.故选C .6.已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a nb n为整数的正整数n 的个数是( )A .2B .3C .4D .5解:由A n B n =7n +45n +3得:a n b n =A 2n -1B 2n -1=14n +382n +2=7n +19n +1,要使a n b n 为整数,则需7n +19n +1=7+12n +1为整数,所以n =1,2,3,5,11,共有5个.故选D.7.(2022·江苏)已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是________. 解:设公差为d ,则由题意可得a 1+(a 1+d )2=-3,5a 1+10d =10,解得a 1=-4,d =3,则a 9=-4+8×3=20.故填20.8.在等差数列{a n }中,a 1=-3,11a 5=5a 8-13,则数列{a n }的前n 项和S n 的最小值为________. 解:设公差为d ,则11(-3+4d )=5(-3+7d )-13, 所以d =59,所以数列{a n }为递增数列.令a n ≤0,所以-3+59(n -1)≤0,所以n ≤325,又n ∈N *,前6项和最小, S 6=6a 1+6×52×d =-293,所以S n 的最小值为-293.故填-293.9.设a 1,d 为实数,首项为a 1,公差为d 的等差数列{a n }的前n 项和为S n ,满足S 5S 6+15=0. (1)若S 5=5,求S 6及a 1; (2)求d 的取值范围.解:(1)由题意知S 6=-15S 5=-3,a 6=S 6-S 5=-8,所以⎩⎪⎨⎪⎧5a 1+10d =5,a 1+5d =-8,解得a 1=7.(2)由于S 5S 6+15=0,所以(5a 1+10d )(6a 1+15d )+15=0,即2a 21+9da 1+10d 2+1=0,此式可看作关于a 1的一元二次方程,则Δ=(9d )2-8(10d 2+1)≥0,即d 2≥8,故d 的取值范围为{d|d ≤-22或d ≥22}.10.(2022·全国卷Ⅱ)S n 为等差数列{a n }的前n 项和,且a 1=1,S 7=28.记b n =,其中表示不超过x 的最大整数,如=0,=1.(1)求b 1,b 11,b 101;(2)求数列{b n }的前1 000项和. 解:(1)设{a n }的公差为d ,S 7=7a 4=28, 所以a 4=4,所以d =a 4-a 13=1,所以a n =a 1+(n -1)d =n .所以b 1===0,b 11== =1,b 101===2. (2)记{b n }的前n 项和为T n , 则T 1 000=b 1+b 2+…+b 1 000 =++…+.当0≤lg a n <1时,n =1,2,…,9; 当1≤lg a n <2时,n =10,11,…,99; 当2≤lg a n <3时,n =100,101,…,999; 当lg a n =3时,n =1 000.所以T 1 000=0×9+1×90+2×900+3×1= 1 893.(2021·福建)在等差数列{a n }中,公差d >0,前n 项和为S n ,a 2a 3=45,a 1+a 5=18.(1)求数列{a n }的通项公式; (2)令b n =S nn +c(n ∈N *),是否存在一个非零常数c ,使数列{b n }也为等差数列?若存在,求出c 的值;若不存在,请说明理由.解:(1)由题意得⎩⎪⎨⎪⎧(a 1+d )(a 1+2d )=45,a 1+(a 1+4d )=18.解得⎩⎪⎨⎪⎧a 1=1,d =4.所以a n =4n -3(n ∈N *).(2)由b n =S nn +c=n (1+4n -3)2n +c=2n ⎝ ⎛⎭⎪⎫n -12n +c,由于c ≠0,所以可令c =-12,得到b n =2n .由于b 1=2,b n +1-b n =2(n +1)-2n =2(n ∈N *), 所以数列{b n }是首项为2,公差为2的等差数列. 即存在一个非零常数c =-12,使数列{b n }也为等差数列.6.3 等比数列1.等比数列的定义一般地,假如一个数列从第2项起,每一项与它的前一项的 等于同一 ,那么这个数列叫做等比数列,这个常数叫做等比数列的 ,通常用字母q 表示(q ≠0).2.等比中项假如在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么G 叫做a 与b 的 ,且G 2= 或G = .3.等比数列的通项公式(1)若{a n }是等比数列,则通项a n = 或a n = .当n -m 为大于1的奇数时,q 用a n ,a m 表示为q = ;当n -m 为正偶数时,q = .(2)a n =a 1qn -1可变形为a n =Aq n,其中 A = ;点(n ,a n )是曲线 上一群孤立的点.4.等比数列的前n 项和公式等比数列{a n }中,S n =⎩⎨⎧ ,q =1,= ,q ≠1. 求和公式的推导方法是: ,为解题的便利,有时可将求和公式变形为S n =Bq n-B (q ≠1),其中B = 且q ≠0,q ≠1.5.等比数列的判定方法(1)定义法:a n +1=a n q 且a 1≠0(q 是不为0的常数,n ∈N *)⇔{a n }是等比数列. (2)通项公式法:a n =cq n (c ,q 均是不为0的常数,n ∈N *)⇔{a n }是等比数列. (3)等比中项法:a 2n +1=a n ·a n +2(a n ·a n +1·a n +2≠0,n ∈N *)⇔{a n }是等比数列. (4)前n 项和公式法:S n =a 1q -1q n -a 1q -1= Bq n-B ⎝ ⎛⎭⎪⎫B =a 1q -1是常数,且q ≠0,q ≠1⇒{a n }是等比数列.6.等比数列的性质(1)在等比数列中,若p +q =m +n ,则 a p ·a q =a m ·a n ; 若2m =p +q ,则a 2m =a p ·a q (p ,q ,m ,n ∈N *).(2)若{a n },{b n }均为等比数列,且公比分别为q 1,q 2,则数列⎩⎨⎧⎭⎬⎫1a n ,{p ·a n }(p ≠0),{a n ·b n },⎩⎨⎧⎭⎬⎫a nb n 仍为等比数列且公比分别为 , , , .(3)在等比数列中,按序等距离取出若干项,也构成一个等比数列,即a n ,a n +m ,a n +2m ,…仍为等比数列,公比为 .(4)公比不为-1的等比数列前n 项和为S n (S n ≠0),则S n ,S 2n -S n ,S 3n -S 2n ,…构成等比数列,且公比为 .(5)对于一个确定的等比数列,在通项公式a n =a 1q n -1中,a n 是n 的函数,这个函数由正比例函数a n =a 1q·u 和指数函数u =q n(n ∈N *)复合而成.①当a 1>0, 或a 1<0, 时,等比数列{a n }是递增数列; ②当a 1>0, 或a 1<0, 时,等比数列{a n }是递减数列; ③当 时,它是一个常数列; ④当 时,它是一个摇摆数列.自查自纠: 1.比 常数 公比 2.等比中项 ab ±ab3.(1)a 1q n -1a m q n -mn -m a n a m ±n -m a na m(2)a 1qy =⎝ ⎛⎭⎪⎫a 1q q x4.na 1 a 1(1-q n )1-q a 1-a n q 1-q 乘公比,错位相减 a 1q -16.(2)1q 1 q 1 q 1q 2 q 1q 2(3)q m (4)q n(5)①q >1 0<q <1 ②0<q <1q >1 ③q =1 ④q <0等比数列的前n 项,前2n 项,前3n 项的和分别为X ,Y ,Z ,则( ) A .X +Y =Z B .Y 2=X ZC .(X +Y )-Z =Y 2D .X 2+Y 2=X (Y +Z)解:依据题意,由等比数列的性质知,X ,Y -X ,Z -Y 成等比数列,即(Y -X )2=X (Z -Y ),得 X 2+Y 2=X (Y +Z).故选D.。

(完整word)高中数学-数列问题高考考点专题突破复习题含答案(人教A版),推荐文档

(完整word)高中数学-数列问题高考考点专题突破复习题含答案(人教A版),推荐文档

高中数学-数列问题高考考点专题突破复习题含答案含答案(人教A 版)【考点自测】1.(2017·洛阳模拟)已知等差数列{a n }的公差和首项都不等于0,且a 2,a 4,a 8成等比数列,则a 1+a 5+a 9a 2+a 3等于( )A .2B .3C .5D .7 答案 B解析 ∵在等差数列{a n }中,a 2,a 4,a 8成等比数列,∴a 24=a 2a 8,∴(a 1+3d )2=(a 1+d )(a 1+7d ),∴d 2=a 1d ,∵d ≠0,∴d =a 1,∴a 1+a 5+a 9a 2+a 3=15a 15a 1=3.故选B.2.(2018·衡水调研)已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前100项和为( ) A.100101 B.99101 C.99100 D.101100答案 A解析 设等差数列{a n }的首项为a 1,公差为d .∵a 5=5,S 5=15,∴⎩⎪⎨⎪⎧a 1+4d =5,5a 1+5×(5-1)2d =15,∴⎩⎪⎨⎪⎧a 1=1,d =1, ∴a n =a 1+(n -1)d =n . ∴1a n a n +1=1n (n +1)=1n -1n +1, ∴数列⎩⎨⎧⎭⎬⎫1a n a n +1的前100项和为⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1100-1101=1-1101=100101. 3.若a ,b 是函数f (x )=x 2-px +q (p >0,q >0)的两个不同的零点,且a ,b ,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p +q 的值等于( ) A .6 B .7 C .8 D .9 答案 D解析 由题意知a +b =p ,ab =q ,∵p >0,q >0,∴a >0,b >0.在a ,b ,-2这三个数的6种排序中,成等差数列的情况有:a ,b ,-2;b ,a ,-2;-2,a ,b ;-2,b ,a ;成等比数列的情况有:a ,-2,b ;b ,-2,a .∴⎩⎪⎨⎪⎧ ab =4,2b =a -2或⎩⎪⎨⎪⎧ ab =4,2a =b -2,解得⎩⎪⎨⎪⎧ a =4,b =1或⎩⎪⎨⎪⎧a =1,b =4. ∴p =5,q =4,∴p +q =9,故选D.4.(2017·江西高安中学等九校联考)已知数列{a n }是等比数列,数列{b n }是等差数列,若a 1·a 6·a 11=33,b 1+b 6+b 11=7π,则tan b 3+b 91-a 4·a 8的值是( )A .1 B.22C .-22D .- 3答案 D解析 {a n }是等比数列,{b n }是等差数列,且a 1·a 6·a 11=33,b 1+b 6+b 11=7π,∴a 36=(3)3,3b 6=7π,∴a 6=3,b 6=7π3,∴tan b 3+b 91-a 4·a 8=tan 2b 61-a 26=tan 2×7π31-(3)2=tan ⎝⎛⎭⎫-7π3=tan ⎝⎛⎭⎫-2π-π3=-tan π3=- 3. 5.(2018·保定模拟)已知数列{a n }的前n 项和为S n ,对任意n ∈N *都有S n =23a n -13,若1<S k <9(k ∈N *),则k 的值为________. 答案 4解析 由题意,S n =23a n -13,当n ≥2时,S n -1=23a n -1-13,两式相减,得a n =23a n -23a n -1,∴a n =-2a n -1, 又a 1=-1,∴{a n }是以-1为首项,以-2为公比的等比数列, ∴a n =-(-2)n -1, ∴S k =(-2)k -13,由1<S k <9,得4<(-2)k <28, 又k ∈N *,∴k =4.题型一 等差数列、等比数列的综合问题例1 (2016·四川)已知数列{a n }的首项为1,S n 为数列{a n }的前n 项和,S n +1=qS n +1,其中q >0,n ∈N *.(1)若a 2,a 3,a 2+a 3成等差数列,求数列{a n }的通项公式; (2)设双曲线x 2-y 2a 2n=1的离心率为e n ,且e 2=2,求e 21+e 22+…+e 2n . 解 (1)由已知,S n +1=qS n +1,得S n +2=qS n +1+1,两式相减得a n +2=qa n +1,n ≥1. 又由S 2=qS 1+1得a 2=qa 1, 故a n +1=qa n 对所有n ≥1都成立.所以数列{a n }是首项为1,公比为q 的等比数列, 从而a n =q n -1.由a 2,a 3,a 2+a 3成等差数列,可得2a 3=a 2+a 2+a 3, 所以a 3=2a 2,故q =2. 所以a n =2n -1(n ∈N *). (2)由(1)可知,a n =q n -1,所以双曲线x 2-y 2a 2n=1的离心率e n =1+a 2n =1+q 2(n -1). 由e 2=1+q 2=2,解得q =3,所以e 21+e 22+…+e 2n=(1+1)+(1+q 2)+…+[1+q 2(n -1)]=n +[1+q 2+…+q 2(n-1)]=n +q 2n -1q 2-1=n +12(3n -1).思维升华 等差数列、等比数列综合问题的解题策略(1)分析已知条件和求解目标,为最终解决问题设置中间问题,例如求和需要先求出通项、求通项需要先求出首项和公差(公比)等,确定解题的顺序.(2)注意细节:在等差数列与等比数列综合问题中,如果等比数列的公比不能确定,则要看其是否有等于1的可能,在数列的通项问题中第一项和后面的项能否用同一个公式表示等,这些细节对解题的影响也是巨大的.跟踪训练1 (2018·沧州模拟)已知首项为32的等比数列{a n }不是递减数列,其前n 项和为S n (n ∈N *),且S 3+a 3,S 5+a 5,S 4+a 4成等差数列.(1)求数列{a n }的通项公式;(2)设T n =S n -1S n (n ∈N *),求数列{T n }的最大项的值与最小项的值.解 (1)设等比数列{a n }的公比为q , 因为S 3+a 3,S 5+a 5,S 4+a 4成等差数列, 所以S 5+a 5-S 3-a 3=S 4+a 4-S 5-a 5,即4a 5=a 3, 于是q 2=a 5a 3=14.又{a n }不是递减数列且a 1=32,所以q =-12.故等比数列{a n }的通项公式为a n =32×⎝⎛⎭⎫-12n -1 =(-1)n -1·32n .(2)由(1)得S n =1-⎝⎛⎭⎫-12n =⎩⎨⎧1+12n ,n 为奇数,1-12n ,n 为偶数.当n 为奇数时,S n 随n 的增大而减小, 所以1<S n ≤S 1=32,故0<S n -1S n ≤S 1-1S 1=32-23=56.当n 为偶数时,S n 随n 的增大而增大, 所以34=S 2≤S n <1,故0>S n -1S n ≥S 2-1S 2=34-43=-712.综上,对于n ∈N *,总有-712≤S n -1S n ≤56. 所以数列{T n }的最大项的值为56,最小项的值为-712.题型二 数列的通项与求和例2 (2018·邢台模拟)已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列.(1)求数列{a n }的通项公式; (2)令b n =(-1)n-14na n a n +1,求数列{b n }的前n 项和T n . 解 (1)因为S 1=a 1,S 2=2a 1+2×12×2=2a 1+2,S 4=4a 1+4×32×2=4a 1+12,由题意得(2a 1+2)2=a 1(4a 1+12), 解得a 1=1,所以a n =2n -1. (2)b n =(-1)n -14na n a n +1=(-1)n-14n(2n -1)(2n +1)=(-1)n -1⎝⎛⎭⎫12n -1+12n +1.当n 为偶数时,T n =⎝⎛⎭⎫1+13-⎝⎛⎭⎫13+15+…+⎝⎛⎭⎫12n -3+12n -1-⎝⎛⎭⎫12n -1+12n +1 =1-12n +1=2n2n +1.当n 为奇数时,T n =⎝⎛⎭⎫1+13-⎝⎛⎭⎫13+15+…-⎝⎛⎭⎫12n -3+12n -1+⎝⎛⎭⎫12n -1+12n +1 =1+12n +1=2n +22n +1.所以T n=⎩⎪⎨⎪⎧2n +22n +1,n 为奇数,2n2n +1,n 为偶数.(或T n =2n +1+(-1)n -12n +1)思维升华 (1)一般求数列的通项往往要构造数列,此时从要证的结论出发,这是很重要的解题信息.(2)根据数列的特点选择合适的求和方法,常用的求和方法有错位相减法、分组转化法、裂项相消法等.跟踪训练2 (2018·大连模拟)已知数列{a n }的前n 项和为S n ,且a 1=12,a n +1=n +12n a n(n ∈N *).(1)证明:数列⎩⎨⎧⎭⎬⎫a n n 是等比数列;(2)求数列{a n }的通项公式与前n 项和S n . (1)证明 ∵a 1=12,a n +1=n +12n a n ,当n ∈N *时,a nn≠0,又a 11=12,a n +1n +1∶a n n =12(n ∈N *)为常数, ∴⎩⎨⎧⎭⎬⎫a n n 是以12为首项,12为公比的等比数列.(2)解 由⎩⎨⎧⎭⎬⎫a n n 是以12为首项,12为公比的等比数列,得a n n =12·⎝⎛⎭⎫12n -1,∴a n =n ·⎝⎛⎭⎫12n . ∴S n =1·12+2·⎝⎛⎭⎫122+3·⎝⎛⎭⎫123+…+n ·⎝⎛⎭⎫12n , 12S n =1·⎝⎛⎭⎫122+2·⎝⎛⎭⎫123+…+(n -1)⎝⎛⎭⎫12n +n ·⎝⎛⎭⎫12n +1, ∴两式相减得12S n =12+⎝⎛⎭⎫122+⎝⎛⎭⎫123+…+⎝⎛⎭⎫12n -n ·⎝⎛⎭⎫12n +1=12-⎝⎛⎭⎫12n +11-12-n ·⎝⎛⎭⎫12n +1, ∴S n =2-⎝⎛⎭⎫12n -1-n ·⎝⎛⎭⎫12n =2-(n +2)·⎝⎛⎭⎫12n . 综上,a n =n ·⎝⎛⎭⎫12n ,S n =2-(n +2)·⎝⎛⎭⎫12n . 题型三 数列与其他知识的交汇 命题点1 数列与函数的交汇例3 (2018·长春模拟)设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x 的图象上(n ∈N *). (1)若a 1=-2,点(a 8,4b 7)在函数f (x )的图象上,求数列{a n }的前n 项和S n ; (2)若a 1=1,函数f (x )的图象在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列⎩⎨⎧⎭⎬⎫a nb n 的前n 项和T n .解 (1)由已知,得b 7=72a ,b 8=82a =4b 7, 有82a =4×72a =272a+,解得d =a 8-a 7=2,所以S n =na 1+n (n -1)2d =-2n +n (n -1)=n 2-3n .(2)f ′(x )=2x ln 2,f ′(a 2)=22a ln 2,故函数f (x )=2x 在(a 2,b 2)处的切线方程为y -22a =22a ln 2(x -a 2), 它在x 轴上的截距为a 2-1ln 2.由题意,得a 2-1ln 2=2-1ln 2,解得a 2=2, 所以d =a 2-a 1=1. 从而a n =n ,b n =2n ,a n b n =n2n .所以T n =12+222+323+…+n -12n -1+n 2n ,2T n =11+22+322+…+n2n -1.两式相减,得2T n -T n =1+12+122+…+12n -1-n 2n=2-12n -1-n2n=2n +1-n -22n.所以T n =2n +1-n -22n.命题点2 数列与不等式的交汇例4 (2016·天津)已知{a n }是各项均为正数的等差数列,公差为d ,对任意的n ∈N *,b n 是a n 和a n +1的等比中项.(1)设c n =b 2n +1-b 2n ,n ∈N *,求证:数列{c n }是等差数列;(2)设a 1=d ,T n =∑2nk =1 (-1)k b 2k,n ∈N *,求证:∑n k =11T k <12d 2. 证明 (1)由题意得b 2n =a n a n +1,c n =b 2n +1-b 2n =a n +1a n +2-a n a n +1=2da n +1.因此c n +1-c n =2d (a n +2-a n +1)=2d 2, 所以{c n }是等差数列.(2)T n =(-b 21+b 22)+(-b 23+b 24)+…+(-b 22n -1+b 22n )=2d (a 2+a 4+…+a 2n ) =2d ·n (a 2+a 2n )2=2d 2n (n +1).所以∑nk =11T k =12d 2∑n k =11k (k +1)=12d 2∑n k =1⎝⎛⎭⎫1k -1k +1 =12d 2·⎝⎛⎭⎫1-1n +1<12d2. 命题点3 数列应用题例5 某企业为了进行技术改造,设计了两种方案,甲方案:一次性贷款10万元,第一年便可获利1万元,以后每年比前一年增加30%的利润;乙方案:每年贷款1万元,第一年可获利1万元,以后每年比前一年增加5千元.两种方案的使用期都是10年,到期一次性归还本息.若银行两种形式的贷款都按年息5%的复利计算,试比较两种方案中哪种获利更多?(参考数据:取1.0510≈1.629,1.310≈13.786,1.510≈57.665)解 甲方案中,每年所获利润组成等比数列,首项为1,公比为(1+30%),所以10年所获得的总利润为S 10=1+(1+30%)+(1+30%)2+…+(1+30%)9 =1.310-10.3≈42.62(万元),贷款到期时,需要偿还银行的本息是 10(1+5%)10≈16.29(万元),故使用甲方案所获纯利润为42.62-16.29=26.33(万元). 乙方案中,每年的利润组成等差数列,首项为1,公差为0.5, 所以10年所获得的总利润为T 10=1+(1+0.5)+(1+2×0.5)+…+(1+9×0.5) =10×1+10×92×0.5=32.5(万元),从第一年起,每年的贷款在到期时所产生的本息组成等比数列,首项为1×(1+5%)10万元,公比为11+5%,故贷款到期时,需要偿还银行的本息是 1×[(1+5%)10+(1+5%)9+…+(1+5%)] =1.05×1.0510-10.05≈13.21(万元),故使用乙方案所获纯利润为32.5-13.21=19.29(万元). 综上可知,甲方案获利更多.思维升华 数列与其他知识交汇问题的常见类型及解题策略 (1)数列与函数的交汇问题①已知函数条件,解决数列问题,此类问题一般利用函数的性质、图象研究数列问题; ②已知数列条件,解决函数问题,解题时要注意数列与函数的内在联系,掌握递推数列的常见解法.(2)数列与不等式的交汇问题①函数方法:即构造函数,通过函数的单调性、极值等得出关于正实数的不等式,通过对关于正实数的不等式特殊赋值得出数列中的不等式;②放缩方法:数列中不等式可以通过对中间过程或者最后的结果放缩得到; ③比较方法:作差或者作商比较. (3)数列应用题①根据题意,确定数列模型; ②准确求解模型;③问题作答,不要忽视问题的实际意义.跟踪训练3 (2018·烟台模拟)已知二次函数f (x )=ax 2+bx 的图象过点(-4n ,0),且f ′(0)=2n ,n ∈N *,数列{a n }满足1a n +1=f ′⎝⎛⎭⎫1a n ,且a 1=4. (1)求数列{a n }的通项公式;(2)记b n =a n a n +1,求数列{b n }的前n 项和T n . 解 (1)f ′(x )=2ax +b ,由题意知b =2n , 16n 2a -4nb =0, ∴a =12,则f (x )=12x 2+2nx ,n ∈N *.数列{a n }满足1a n +1=f ′⎝⎛⎭⎫1a n , 又f ′(x )=x +2n , ∴1a n +1=1a n +2n ,∴1a n +1-1a n =2n , 由叠加法可得1a n -14=2+4+6+…+2(n -1)=n 2-n ,化简可得a n =4(2n -1)2(n ≥2),当n =1时,a 1=4也符合, ∴a n =4(2n -1)2(n ∈N *). (2)∵b n =a n a n +1=4(2n -1)(2n +1)=2⎝⎛⎭⎫12n -1-12n +1,∴T n =b 1+b 2+…+b n =a 1a 2+a 2a 3+…+a n a n +1=2⎣⎡⎦⎤⎝⎛⎭⎫1-13+⎝⎛⎭⎫13-15+…+⎝⎛⎭⎫12n -1-12n +1 =2⎝⎛⎭⎫1-12n +1=4n2n +1.1.(2018·泰安模拟)设数列{a n }的前n 项和为S n ,n ∈N *.已知a 1=1,a 2=32,a 3=54,且当n ≥2时,4S n +2+5S n =8S n +1+S n -1. (1)求a 4的值;(2)证明:⎩⎨⎧⎭⎬⎫a n +1-12a n 为等比数列;(3)求数列{a n }的通项公式.(1)解 当n =2时,4S 4+5S 2=8S 3+S 1, 即4⎝⎛⎭⎫1+32+54+a 4+5⎝⎛⎭⎫1+32=8⎝⎛⎭⎫1+32+54+1, 解得a 4=78.(2)证明 因为4S n +2+5S n =8S n +1+S n -1(n ≥2), 所以4S n +2-4S n +1+S n -S n -1=4S n +1-4S n (n ≥2), 即4a n +2+a n =4a n +1 (n ≥2),当n =1时,4a 3+a 1=4×54+1=6=4a 2,所以n =1也满足此式, 所以4a n +2+a n =4a n +1 (n ∈N *), 因为a n +2-12a n +1a n +1-12a n=4a n +2-2a n +14a n +1-2a n=4a n +1-a n -2a n +14a n +1-2a n =2a n +1-a n 2(2a n +1-a n )=12,所以数列⎩⎨⎧⎭⎬⎫a n +1-12a n 是以a 2-12a 1=1为首项,12为公比的等比数列.(3)解 由(2)知:数列⎩⎨⎧⎭⎬⎫a n +1-12a n 是以a 2-12a 1=1为首项,12为公比的等比数列,所以a n +1-12a n =⎝⎛⎭⎫12n -1. 即a n +1⎝⎛⎭⎫12n +1-a n⎝⎛⎭⎫12n =4,所以数列⎩⎨⎧⎭⎬⎫a n ⎝⎛⎭⎫12n 是以a 112=2为首项,4为公差的等差数列,所以a n ⎝⎛⎭⎫12n =2+(n -1)×4=4n -2, 即a n =(4n -2)×⎝⎛⎭⎫12n =(2n -1)×⎝⎛⎭⎫12n -1, 所以数列{a n }的通项公式是a n =(2n -1)×⎝⎛⎭⎫12n -1.2.(2017·福建漳州八校联考)已知递增的等比数列{a n }满足:a 2+a 3+a 4=28,且a 3+2是a 2和a 4的等差中项.(1)求数列{a n }的通项公式;(2)若b n =a n 12log a n ,S n =b 1+b 2+…+b n ,求使S n +n ·2n +1>62成立的正整数n 的最小值.解 (1)由题意,得⎩⎪⎨⎪⎧a 1q +a 1q 2+a 1q 3=28,a 1q +a 1q 3=2(a 1q 2+2), 解得⎩⎪⎨⎪⎧ a 1=2,q =2或⎩⎪⎨⎪⎧ a 1=32,q =12,∵{a n }是递增数列,∴a 1=2,q =2,∴数列{a n }的通项公式为a n =2·2n -1=2n .(2)∵b n =a n 12log a n =2n ·12log 2n =-n ·2n , ∴S n =b 1+b 2+…+b n =-(1×2+2×22+…+n ·2n ),①则2S n =-(1×22+2×23+…+n ·2n +1),②②-①,得S n =(2+22+…+2n )-n ·2n +1=2n +1-2-n ·2n +1,则S n +n ·2n +1=2n +1-2,解2n +1-2>62,得n >5,∴n 的最小值为6.3.(2018·梅州质检)已知正项数列{a n }中,a 1=1,点(a n ,a n +1)(n ∈N *)在函数y =x 2+1的图象上,数列{b n }的前n 项和S n =2-b n .(1)求数列{a n }和{b n }的通项公式;(2)设c n =-1a n +1log 2b n +1,求{c n }的前n 项和T n . 解 (1)∵点(a n ,a n +1)(n ∈N *)在函数y =x 2+1的图象上,∴a n +1=a n +1,∴数列{a n }是公差为1的等差数列.∵a 1=1,∴a n =1+(n -1)×1=n ,∵S n =2-b n ,∴S n +1=2-b n +1,两式相减,得b n +1=-b n +1+b n ,即b n +1b n =12, 由S 1=2-b 1,即b 1=2-b 1,得b 1=1.∴数列{b n }是首项为1,公比为12的等比数列, ∴b n =⎝⎛⎭⎫12n -1.(2)∵log 2b n +1=log 2⎝⎛⎭⎫12n =-n ,∴c n =1n (n +1)=1n -1n +1, ∴T n =c 1+c 2+…+c n =⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝⎛⎭⎫1n -1n +1=1-1n +1=n n +1. 4.(2018·佛山模拟)在等比数列{a n }中,a n >0(n ∈N *),公比q ∈(0,1),且a 1a 5+2a 3a 5+a 2a 8=25,又a 3与a 5的等比中项为2.(1)求数列{a n }的通项公式;(2)设b n =log 2a n ,求数列{b n }的前n 项和S n ;(3)是否存在k ∈N *,使得S 11+S 22+…+S n n<k 对任意n ∈N *恒成立,若存在,求出k 的最小值,若不存在,请说明理由.解 (1)∵a 1a 5+2a 3a 5+a 2a 8=25,∴a 23+2a 3a 5+a 25=25,∴(a 3+a 5)2=25,又a n >0,∴a 3+a 5=5,又a 3与a 5的等比中项为2,∴a 3a 5=4,而q ∈(0,1),∴a 3>a 5,∴a 3=4,a 5=1,∴q =12,a 1=16, ∴a n =16×⎝⎛⎭⎫12n -1=25-n .(2)∵b n =log 2a n =5-n ,∴b n +1-b n =-1,b 1=log 2a 1=log 216=log 224=4,∴{b n }是以b 1=4为首项,-1为公差的等差数列,∴S n =n (9-n )2. (3)由(2)知S n =n (9-n )2,∴S n n =9-n 2.当n ≤8时,S n n >0;当n =9时,S n n=0; 当n >9时,S n n<0. ∴当n =8或n =9时,S 11+S 22+S 33+…+S n n=18最大. 故存在k ∈N *,使得S 11+S 22+…+S n n<k 对任意n ∈N *恒成立,k 的最小值为19.5.(2017·天津滨海新区八校联考)已知数列{a n },{b n },S n 为数列{a n }的前n 项和,a 2=4b 1,S n =2a n -2,nb n +1-(n +1)b n =n 2+n (n ∈N *).(1)求数列{a n }的通项公式;(2)证明:⎩⎨⎧⎭⎬⎫b n n 为等差数列; (3)若数列{c n }的通项公式为c n =⎩⎨⎧ -a n b n 2,n 为奇数,a nb n 4,n 为偶数.令T n 为{c n }的前n 项和,求T 2n .(1)解 当n >1时,⎩⎪⎨⎪⎧S n =2a n -2,S n -1=2a n -1-2, 则a n =2a n -2a n -1,a n a n -1=2. 当n =1时,S 1=2a 1-2,得a 1=2,综上,{a n }是公比为2,首项为2的等比数列,a n =2n .(2)证明 ∵a 2=4b 1,∴b 1=1.∵nb n +1-(n +1)b n =n 2+n ,∴b n +1n +1-b n n=1, 综上,⎩⎨⎧⎭⎬⎫b n n 是公差为1,首项为1的等差数列,b n n=1+n -1,可得b n =n 2. (3)解 令p n =c 2n -1+c 2n=-(2n -1)2·22n -12+(2n )2·22n 4=(4n -1)·22n -2=(4n -1)·4n -1.⎩⎪⎨⎪⎧ T 2n =3·40+7·41+11·42+…+(4n -1)·4n -1,①4T 2n =3·41+7·42+11·43+…+(4n -5)·4n -1 +(4n -1)·4n ②①-②,得-3T 2n =3·40+4·41+4·42+…+4·4n -1-(4n -1)·4n ,∴-3T 2n =3+16-16·4n -11-4-(4n -1)·4n ∴T 2n =79+12n -79·4n .6.已知数列{a n },{b n },其中,a 1=12,数列{a n }满足(n +1)a n =(n -1)a n -1 (n ≥2,n ∈N *),数列{b n }满足b 1=2,b n +1=2b n .(1)求数列{a n },{b n }的通项公式;(2)是否存在自然数m ,使得对于任意n ∈N *,n ≥2,有1+1b 1+1b 2+…+1b n <m -84恒成立?若存在,求出m 的最小值;(3)若数列{c n }满足c n =⎩⎪⎨⎪⎧1na n ,n 为奇数,b n ,n 为偶数,求数列{c n }的前n 项和T n . 解 (1)由(n +1)a n =(n -1)a n -1,即a n a n -1=n -1n +1(n ≥2). 又a 1=12, 所以a n =a n a n -1·a n -1a n -2·a n -2a n -3·…·a 3a 2·a 2a 1·a 1 =n -1n +1·n -2n ·n -3n -1·…·24·13·12 =1n (n +1). 当n =1时,上式成立,故a n =1n (n +1). 因为b 1=2,b n +1=2b n ,所以{b n }是首项为2,公比为2的等比数列,故b n =2n .(2)由(1)知,b n =2n ,则1+1b 1+1b 2+…+1b n =1+12+122+…+12n =2-12n .假设存在自然数m ,使得对于任意n ∈N *,n ≥2,有1+1b 1+1b 2+…+1b n <m -84恒成立,即2-12n <m -84恒成立,由m -84≥2,解得m ≥16. 所以存在自然数m ,使得对于任意n ∈N *,n ≥2,有1+1b 1+1b 2+…+1b n <m -84恒成立,此时,m 的最小值为16.(3)当n 为奇数时,T n =⎝⎛⎭⎫1a 1+13a 3+…+1na n+(b 2+b 4+…+b n -1) =[2+4+…+(n +1)]+(22+24+…+2n -1)=2+n +12·n +12+124(14)14n --- =n 2+4n +34+43(2n -1-1); 当n 为偶数时,T n =⎣⎡⎦⎤1a 1+13a 3+…+1(n -1)a n -1+(b 2+b 4+…+b n ) =(2+4+…+n )+(22+24+…+2n )=2+n 2·n 2+24(14)14n -- =n 2+2n 4+43(2n -1). 所以T n =⎩⎨⎧n 2+4n +34+43(2n -1-1),n 为奇数,n 2+2n 4+43(2n -1),n 为偶数.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题突破练(4) 数列中的典型题型与创新题型一、选择题1. 如果等差数列{a n }中,a 3+a 4+a 5=12,那么a 1+a 2+…+a 7等于( ) A .14 B .21 C .28 D .35 答案 C解析 ∵a 3+a 4+a 5=12,∴3a 4=12,a 4=4.∴a 1+a 2+…+a 7=(a 1+a 7)+(a 2+a 6)+(a 3+a 5)+a 4=7a 4=28.2.在等比数列{a n }中,a 1=1,公比|q |≠1.若a m =a 1a 2a 3a 4a 5,则m 等于( ) A .9 B .10 C .11 D .12 答案 C解析 a m =a 1a 2a 3a 4a 5=(a 1a 5)·(a 2a 4)·a 3=a 23·a 23·a 3=a 53=a 51·q 10. 因为a 1=1,|q |≠1,所以a m =a 51·q 10=a 1q 10,所以m =11.3.在递减等差数列{a n }中,若a 1+a 5=0,则S n 取最大值时n 等于( ) A .2 B .3 C .4 D .2或3 答案 D解析 ∵a 1+a 5=2a 3=0,∴a 3=0.∵d <0,∴{a n }的第一项和第二项为正值,从第四项开始为负值,故S n 取最大值时n 等于2或3,故选D.4.数列{a n }的首项为3,{b n }为等差数列,且b n =a n +1-a n (n ∈N *),若b 3=-2,b 10=12,则a 8=( )A .0B .3C .8D .11 答案 B解析 设{b n }的公差为d ,∵b 10-b 3=7d =12-(-2)=14,∴d =2. ∵b 3=-2,∴b 1=b 3-2d =-2-4=-6,∴b 1+b 2+…+b 7=7b 1+7×62·d =7×(-6)+21×2=0,又b 1+b 2+…+b 7=(a 2-a 1)+(a 3-a 2)+…+(a 8-a 7)=a 8-a 1=a 8-3=0, ∴a 8=3.故选B.5.已知等差数列:1,a 1,a 2,9;等比数列:-9,b 1,b 2,b 3,-1.则b 2(a 2-a 1)的值为( )A .8B .-8C .±8 D.89答案 B解析 a 2-a 1=d =9-13=83;又b 22=b 1b 3=(-9)×(-1)=9,因为b 2与-9、-1同号,所以b 2=-3.所以b 2(a 2-a 1)=-8.6.约瑟夫规则:将1,2,3,…,n 按逆时针方向依次放置在一个单位圆上,然后从1开始,按逆时针方向,每隔一个数删除一个数,直至剩余一个数为止,删除的数依次为1,3,5,7,….当n =65时,剩余的一个数为( )A .1B .2C .4D .8 答案 B解析 将1,2,3,…,65按逆时针方向依次放置在一个单位圆上,然后从1开始,按逆时针方向,每隔一个数删除一个数,首先删除的数为1,3,5,7,…,65(删除33个,剩余32个);然后循环,删除的数的个数分别为16,8,4,2,1,最后剩余2,故选B.7.在等差数列{a n }中,a 9=12a 12+6,则数列{a n }的前11项和S 11=( )A .24B .48C .66D .132 答案 D解析 设{a n }公差为d ,∵a 9=12a 12+6,∴a 1+8d =12(a 1+11d )+6,∴a 1+5d =12,即a 6=12.∴数列{a n }的前11项和S 11=a 1+a 2+…+a 11=(a 1+a 11)+(a 2+a 10)+…+(a 5+a 7)+a 6=11a 6=132.故选D.8.在数列{a n }中,已知a 1+a 2+…+a n =2n -1,则a 21+a 22+…+a 2n =( ) A .(2n-1)2B.2n -123C .4n-1 D.4n-13答案 D解析 记S n =a 1+a 2+…+a n =2n -1,则a n =S n -S n -1=2n -1(n ≥2),当n =1时也满足,所以{a 2n }是首项为1,公比为4的等比数列,所以a 21+a 22+…+a 2n =1-4n1-4=4n-13,故选D.9.将向量a 1=(x 1,y 1),a 2=(x 2,y 2),…,a n =(x n ,y n )组成的系列称为向量列{a n },并定义向量列{a n }的前n 项和S n =a 1+a 2+…+a n .如果一个向量列从第二项起,每一项与前一项的差都等于同一个向量,那么称这样的向量列为等差向量列.若向量列{a n }是等差向量列,则下面四个向量中,与S 21一定平行的向量是( )A .a 10B .a 11C .a 20D .a 21 答案 B解析 在等差数列{a n }中,S 21=21a 1+a 212=21·2a 112=21a 11,类比等差数列的性质有S 21=21a 11,故与S 21一定平行的是a 11.10.已知数列{a n }中,a 1=t ,a n +1=a n 2+2a n,若{a n }为单调递减数列,则实数t 的取值范围是( )A .(-∞,-2)B .(-2,0)C .(0,2)D .(2,+∞)答案 D解析 由题意可知:对一切正整数n ,均有a n +1<a n ,则当n =1也成立,即a 2<a 1,也即t 2+2t<t ,解之得t >2,故应选D. 11.已知数列{a n }的首项a 1=2,数列{b n }为等比数列,且b n =a n +1a n,若b 10b 11=2,则a 21=( )A .29B .210C .211D .212答案 C1b 2…b 20=a 2a 1·a 3a 2…a 21a 20=a 21a 1=a 212.b 1b 2…b 20=(b 10b 11)10=210,所以a 21=2b 1b 2…b 20=211,选C.12.在公差不为0的等差数列{a n }中,a 2+a 4=a p +a q ,记1p +9q的最小值为m .若数列{b n }满足b 1=211m,2b n +1-b n ·b n +1=1.则b 1+b 222+b 332+…+b 1001002=( )A.97 B.99 C.100 D.102 答案 C解析 在等差数列{a n }中,由a 2+a 4=a p +a q ,得p +q =6,p ,q ∈N *,所以当p =1,q =5时,1p +9q =145;当p =2,q =4时,1p +9q =114;当p =3,q =3时,1p +9q =103;当p =4,q =2时,1p +9q =194;当p =5,q =1时,1p +9q =465.所以当且仅当p =2,q =4时,1p +9q取最小值114,所以m =114,即b 1=12.由2b n +1-b n ·b n +1=1可得b n +1=12-b n .由b 1=12,则b 2=12-12=23,b 3=12-23=34,…,归纳出b n =n n +1,代入到2b n +1-b n ·b n +1=1使等式成立.所以b n n2=1n n +1=1n -1n +1,所以b 1+b 222+b 332+…+b 1001002=100101.二、填空题13.设数列{a n }满足a 2+a 4=10,点P n (n ,a n )对任意的n ∈N *,都有向量P n P n +1=(1,2),则数列{a n }的前n 项和S n =________.答案 n 2解析 ∵P n (n ,a n ),∴P n +1(n +1,a n +1),∴P n P n +1=(1,a n +1-a n )=(1,2),∴a n +1-a n=2,∴{a n }是公差d 为2的等差数列.又由a 2+a 4=2a 1+4d =2a 1+4×2=10,解得a 1=1,∴S n =n +n n -12×2=n 2.14.设数列{a n }的通项公式为a n =pn +q (n ∈N *,p >0).数列{b n }定义如下:对于正整数m ,b m 是使不等式a n ≥m 成立的所有n 中的最小值.若p =12,q =-13,则b 3=________.答案 7解析 由题意得a n =12n -13,解12n -13≥3,得n ≥203,∴12n -13≥3成立的所有n 中的最小整数为7,即b 3=7.⎝ ⎛⎭⎪⎫18n +9⎝ ⎛⎭⎪⎫14n -3⎝ ⎛⎭⎪⎫12n (其中*列{a n }中的最小项,则a m =________.答案 -516解析 设t =⎝ ⎛⎭⎪⎫12n ∈⎝ ⎛⎦⎥⎤0,12,得y =-8t 3+9t 2-3t ,y ′=-24t 2+18t -3=-3(2t -1)(4t -1),当t ∈ ⎛⎪⎫0,1时,y ′<0;当t ∈⎢⎡⎥⎤1,1时,y ′>0,所以当t =14时,取得最小值-516. 16.设数列{a n }的前n 项和为S n ,若S nS 2n为常数,则称数列{a n }为“精致数列”.已知等差数列{b n }的首项为1,公差不为0,若数列{b n }为“精致数列”,则数列{b n }的通项公式为________.答案 b n =2n -1解析 设数列{b n }的公差为d (d ≠0),S n S 2n =k ,∵b 1=1,∴n +12n (n -1)d =k ⎣⎢⎡⎦⎥⎤2n +122n 2n -1d ,即2+(n -1)d =4k +2k (2n -1)d ,整理得:(4k -1)dn +(2k -1)(2-d )=0,∵上式对任意n ∈N *都成立,∴⎩⎪⎨⎪⎧d 4k -1=0,2k -12-d =0,解得⎩⎪⎨⎪⎧d =2,k =14,∴b n =2n -1.三、解答题17.已知等差数列{a n }中,a 5=12,a 20=-18. (1)求数列{a n }的通项公式; (2)求数列{|a n |}的前n 项和S n . 解 (1)设{a n }的公差为d ,依题意⎩⎪⎨⎪⎧a 5=a 1+4d =12,a 20=a 1+19d =-18,∴a 1=20,d =-2.∴a n =20+(n -1)(-2)=-2n +22.(2)易知|a n |=|-2n +22|=⎩⎪⎨⎪⎧-2n +22,n ≤11,2n -22,n >11,∴n ≤11时,S n =20+18+…+(-2n +22) =n 20-2n +222=(21-n )n ;n >11时,S n =S 11+2+4+…+(2n -22)=110+n -112+2n -222=n 2-21n +220.综上所述,S n =⎩⎪⎨⎪⎧21-n n ,n ≤11,n 2-21n +220,n >11.18.已知数列{a n }的前n 项和S n =1-a n ,其中n ∈N *. (1)求{a n }的通项公式;(2)若b n =na n ,求{b n }的前n 项和T n . 解 (1)当n =1时,S 1=1-a 1,解得a 1=12.当n ≥2时,a n =S n -S n -1=(1-a n )-(1-a n -1)=a n -1-a n ,化简整理得a n a n -1=12(n ≥2), 因此,数列{a n }是以12为首项,12为公比的等比数列,从而a n =⎝ ⎛⎭⎪⎫12n.(2)由(1)可得T n =1·12+2·⎝ ⎛⎭⎪⎫122+3·⎝ ⎛⎭⎪⎫123+4·⎝ ⎛⎭⎪⎫124+…+n ·⎝ ⎛⎭⎪⎫12n,12T n =⎝ ⎛⎭⎪⎫122+2·⎝ ⎛⎭⎪⎫123+3·⎝ ⎛⎭⎪⎫124+…+n ·⎝ ⎛⎭⎪⎫12n +1,∴12T n =12-⎝ ⎛⎭⎪⎫12n +112-n ·⎝ ⎛⎭⎪⎫12n +1, ∴T n =2-⎝ ⎛⎭⎪⎫12n -1-n ·⎝ ⎛⎭⎪⎫12n.19.已知数列{a n }的前n 项和为S n ,且a 1=14,a n +1=S n +t 16(n ∈N *,t >-4),令b n =lg a n+1.(1)若{a n }成等比数列,求t 的值;(2)若t =-3,设数列{b n }前n 项和为T n ,n 为何值时T n 取最小值. 解 (1)∵a n +1=S n +t16,①a n =S n -1+t16,②①-②得a n +1=2a n (n ≥2). 故{a n }是公比为2的等比数列,则a 2=S 1+t 16=4+t 16=2a 1=12.解得t =4>-4成立,∴t =4. (2)a 2=116,b 1=lg 116=-4lg 2,n ≥1时,b n =b 1+(n -1)lg 2=(n -5)lg 2, n ≤4时,b n <0,b 5=0,n ≥6时b n >0.∴n =4和n =5时T n 取最小值.20.已知公差不为零的等差数列{a n },满足a 1+a 3+a 5=9,且a 1,a 4,a 16成等比数列. (1)求数列{a n }的通项公式; (2)设b n =1a n a n +1a n +2,求数列{b n }的前n 项和S n .解 (1)∵a 1+a 3+a 5=9,∴3a 3=9,∴a 3=3. ∵a 1,a 4,a 16成等比数列,∴a 24=a 1a 16. ∴(3+d )2=(3-2d )(3+13d ).∵d ≠0,∴d =1,∴a n =a 3+(n -3)d =3+(n -3)=n . (2)由(1)得b n =1a n a n +1a n +2=1n ·n +1·n +2=12⎣⎢⎡⎦⎥⎤1n ·n +1-1n +1·n +2∴S n =b 1+b 2+…+b n=12⎣⎢⎡⎝ ⎛⎭⎪⎫11×2-12×3+⎝ ⎛⎭⎪⎫12×3-13×4+…+⎦⎥⎤⎝ ⎛⎭⎪⎫1n ·n +1-1n +1·n +2 =12⎣⎢⎡⎦⎥⎤12-1n +1·n +2=14-12n +1·n +2.21.已知{a n }是正项等差数列,∀n ∈N *,数列⎩⎨⎧⎭⎬⎫1a n ·a n +1的前n 项和S n =n2n +4.(1)求a n ;(2)设b n =(-1)n a 2n ,n ∈N *,求数列{b n }的前n 项和T n . 解 (1)依题意,设a n =α+βn (α、β是常数,且β>0).S 1=1a 1·a 2,即(α+β)(α+2β)=6,1a 2·a 3=S 2-S 1,即(α+2β)(α+3β)=12. 解⎩⎪⎨⎪⎧α+βα+2β=6,α+2βα+3β=12得⎩⎪⎨⎪⎧α=-1,β=-1(舍去),或⎩⎪⎨⎪⎧α=1,β=1,a n =n +1.(2)由(1)得b n =(-1)n (n +1)2,b n -1+b n =(-1)n·[]n +12-n 2=(-1)n (2n +1).n 为偶数时,T n =(b 1+b 2)+(b 3+b 4)+…+(b n -1+b n )=5+9+…+(2n +1)=n n +32,n 为奇数时,T n =(b 1+b 2)+(b 3+b 4)+…+(b n -2+b n -1)+b n=5+9+…+(2n -1)-(n +1)2=n -1n +22-(n +1)2=-n 2+3n +42.∴T n=⎩⎪⎨⎪⎧-n 2+3n +42,n 为奇数,nn +32,n 为偶数.。

相关文档
最新文档