重庆市育才成功学校2015届九年级数学上学期期末试题 新人教版

合集下载

新人教版2014-2015学年名校九年级上学期期末数学试题及答案

新人教版2014-2015学年名校九年级上学期期末数学试题及答案

新人教版2014-2015学年名校九年级上学期期末数学试题时间120分钟满分100分 2015.8.27一、选择题(每小题3分,共30分)1.下面的图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.2.三角形的两边长分别是3和6,第三边是方程x2﹣6x+8=0的解,则这个三角形的周长是()A. 11 B. 13 C. 11或13 D. 11和133.用配方法把代数式x2﹣4x+5变形,所得结果是()A.(x﹣2)2+1 B.(x﹣2)2﹣9 C.(x+2)2﹣1 D.(x+2)2﹣54.如图,在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为()A. B. C. D.5.如图,△ABC中,∠C=70°,∠B=30°,将△ABC绕点A顺时针旋转后,得到△AB′C′,且C′在边BC上,则∠B′C′B的度数为()A. 30° B. 40° C. 46° D. 60°5题图 6题图 9题图6.如图,正三角形ABC内接于圆O,动点P在圆周的劣弧AB上,且不与A,B重合,则∠BPC 等于()A. 30° B. 60° C. 90° D. 45°7.函数y=﹣x2﹣4x﹣3图象顶点坐标是()A.(2,﹣1) B.(﹣2,1) C.(﹣2,﹣1) D. 2,1)8.半径为8cm的圆的内接正三角形的边长为()A. 8cm B. 4cm C. 8cm D. 4cm9.如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为()A. 2 B. 4 C. 6 D. 810.一个不透明的袋子中有3个红球和2个黄球,这些球除颜色外完全相同.从袋子中随机摸出一个球,它是黄球的概率为()A. B. C. D.二.填空题:(每空2分,共18分.)11.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是.12.某商店10月份的利润为600元,12月份的利润达到864元,则平均每月利润增长的百分率是.13.已知m是方程3x2﹣6x﹣2=0的一根,则m2﹣2m= .14.如图,一名男生推铅球,铅球行进高度y(单位:m)与水平距离x(单位:m)之间的关系是.则他将铅球推出的距离是m.14题图 17题图15.点A(3,n)关于原点对称的点的坐标是(m,2),那么m= ,n= .16.如果圆锥的底面周长是20π,侧面展开图所得的扇形的圆心角为120°,那么该圆锥的全面积为.17.如图,PA,PB是⊙O是切线,A,B为切点,AC是⊙O的直径,若∠P=46°,则∠BAC= 度.18.在一只不透明的口袋中放入红球6个,黑球2个,黄球n个,这些球除颜色不同外,其它无任何差别.搅匀后随机从中摸出一个恰好是黄球的概率为,则放入口袋中的黄球总数n= .三.解答题(共52分)用指定的方法解下列方程:19.x2+2x﹣35=0(配方法解)20.解方程:4x2+12x+9=0.21.在正方形网格中建立如图所示的平面直角坐标系xOy.△ABC的三个顶点都在格点上,点A、B、C的坐标分别是A(4,4 )、B(1,2 )、C(3,2 ),请解答下列问题.(1)将△ABC向下平移5个单位长度,画出平移后的△A1B1C1;(2)画出△A1B1C1关于y轴对称的△A2B2C2;(3)将△ABC绕点O逆时针旋转90°,画出旋转后的△A3B3C3.并写出点A3的坐标:A3(,).22.下图是输水管的切面,阴影部分是有水部分,其中水面AB宽16cm,水最深4cm.(1)求输水管的半径.(2)当∠AOB=120°时,求阴影部分的面积.23.红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.24.如图,AB是⊙O的直径,点F,C是⊙O上两点,且==,连接AC,AF,过点C作CD⊥AF交AF延长线于点D,垂足为D.(1)求证:CD是⊙O的切线;(2)若CD=2,求⊙O的半径.25.某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).(1)求售价与利润的函数关系式;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?参考答案一、1.故选:C . 2.故选B . 3.故选A . 4.故选:B . 5.故选B .6故选B . 7.故选B . 8.故选:A . 9.故选:D . 10.故选:B .二. 11 k >﹣1且k ≠0 . 12. 20% . 13. . 14. 10 m .15. m= ﹣3 ,n= ﹣2 . 16. 400π . 17. 23 度. 18. 4 .三19.解答: 解:移项得:x 2+2x=35,配方得:x 2+2x+1=35+1,即(x+1)2=36,开方得:x+1=6,x+1=﹣6,解得:x 1=5,x 2=﹣7.20解答: 解:移项,得4x 2+12x=﹣9,化二次项的系数化为1,得x 2+3x=﹣,等式两边同时加上一次项系数一半的平方 ,得(x+)2=0,解得,x 1=x 2=﹣.21解答: 解:(1)(2)(3)所作图形如图所示:,点A 3的坐标为(﹣4,4),故答案为:﹣4,4.22.解答: 解:(1)设圆形切面的半径,过点O 作OD ⊥AB 于点D ,交⊙O 于点E ,则AD=BD=AB=×16=8cm,∵最深地方的高度是4cm,∴OD=r=4,在Rt△OBD中,OB2=BD2+OD2,即r2=82+(r﹣4)2,解得r=10(cm).(2)∵∠AOB=120°,∴∠OAB=∠OBA=30°,∴OD=OA=5cm,AD=OA=5cm,∴AB=10cm,∴S阴影=S扇形﹣S△AOB=﹣×10×5=(cm)2.23.解答:解:(1)画树状图得:则共有12种等可能的结果;(2)∵恰好选派一男一女两位同学参赛的有8种情况,∴恰好选派一男一女两位同学参赛的概率为:=.24.解答:(1)证明:连结OC,如图,∵=,∴∠FAC=∠BAC,∵OA=OC,∴∠OAC=∠OCA,∴∠FAC=∠OCA,∴OC∥AF,∵CD⊥AF,∴OC⊥CD,∴CD是⊙O的切线;(2)解:连结BC,如图,∵AB为直径,∴∠ACB=90°,∵==,∴∠BOC=×180°=60°,∴∠BAC=30°,∴∠DAC=30°,在Rt△ADC中,CD=2,∴AC=2CD=4,在Rt△ACB中,BC=AC=×4=4,∴AB=2BC=8,∴⊙O的半径为4.25.解答:解:(1)由题意得:y=(210﹣10x)(50+x﹣40)=﹣10x2+110x+2100(0<x≤15且x为整数);(2)由(1)中的y与x的解析式配方得:y=﹣10(x﹣5.5)2+2402.5.∵a=﹣10<0,∴当x=5.5时,y有最大值2402.5.∵0<x≤15,且x为整数,当x=5时,50+x=55,y=2400(元),当x=6时,50+x=56,y=2400(元),∴当售价定为每件55或56元,每个月的利润最大,最大的月利润是2400元.。

2014-2015学年人教版九年级上学期期末数学试卷(精选3套,详细解析)

2014-2015学年人教版九年级上学期期末数学试卷(精选3套,详细解析)

2014-2015学年人教版九年级上学期期末数学试卷考试时间100分钟,试卷满分100分一. 选择题(每小题3分,共30分)1.“ a 是实数,0≥a ”这一事件是( )A .必然事件B .不确定事件C .不可能事件D .随机事件2. 把△ABC 三边的长度都扩大为原来的3倍,则锐角A 的正弦值( )A .不变B .缩小为原来的13C .扩大为原来的3倍D .不能确定 3.已知反比例函数xy 1=,下列结论中不正确的是( ) A .图象经过点(-1,-1) B .图象在第一、三象限C .当x >1 时, 0 <y <1D .当 x <0 时, y 随着 x 的增大而增大 4.如图,在方格纸中,△ABC 经过变换得到△DEF ,正确的变换是( ) A .把△ABC 绕点C 逆时针方向旋转90°,再向下平移2格 B .把△ABC 绕点C 顺时针方向旋转90°,再向下平移5格 C .把△ABC 向下平移4格,再绕点C 逆时针方向旋转180° D .把△ABC 向下平移5格,再绕点C 顺时针方向旋转180° 5.如果关于x 的一元二次方程22(21)10k x k x -++=有两个 不相等的实数根,那么k 的取值范围是() A .14k >-B .14k >-且0k ≠ C .14k <- D .14k ≥-且0k ≠ 6.如图,点A 、B 、O 是正方形网格上的三个格点,⊙O 的半径为OA ,点P 是优弧tan 的值是( )A .1BCD 7.如图,在大小为4×4的正方形网格中与①中三角形相似的是( )A .②B . ③C . ④和③D . ②和④8.已知抛物线k x a y +-=2)2((是常数,>k a a ,0),A (﹣3,y 1)、B (3,y 2)、C (4,y 3)是抛物线上三点,则y 1,y 2,y 3由小到大依序排列为( ) A .y 1<y 2<y 3 B .y 2<y 1<y 3 C .y 2<y 3<y 1 D .y 3<y 2<y 1 9.如图,△AOB 是等边三角形,B (2,0),将△AOB 绕O 点逆时针方向旋转90°到△A′OB′位置,则点A′ 的坐标是( )(第4题)(第6题)A .(﹣1,)B .(﹣,1)C .(,﹣1)D .(1,﹣)10. 已知二次函数c bx ax y ++=2的图象如图所示,那么 一次函数c bx y +=和反比例函数xay =在同一平面直角坐标系中的图象大致是( )A .B .C .D .二.填空题(每小题3分,共24分.) 11. 已知点M )3,21(m -关于原点对称的点在第一象限,那么的取值范围是________. 12. 如图所示,在平行四边形纸片上作随机扎针实验,针头扎在阴影区域内的概率为 13.一种药品经过两次降价,药价从原来每盒 60 元降至现在的 48.6 元,则平均每次降价的百分率是 .14. 如图,在平面直角坐标系中,点O为坐标原点,点P 在第一象限,☉P 与x 轴交于O 、A 两点,点A 的坐标为(6,0),☉P的半径为13,则点P 的坐标为 .15.如图,在△ABC 中,AB=24,AC=18,D 是AC 上一点,AD=12,AB 上取一点E ,A 、D 、E 三点为顶点组成的三角形与△ABC 相似,AE 的长是_____ _. 16.如图,在直角坐标系中,正方形的中心在原点O ,且正方形的一组对边与x 轴平行.点P (a 3,a )是反比例函数xk y =(k >0)的图象上与正方形的一个交点,若图中阴影部分的 面积等于9,则k 的值为 .(第16题) 17. 轮船从B 处以每小时50海里的速度沿南偏东30°方向匀速航行,在B 处观测灯塔A 位于南偏东75°方向上,轮船航行半小时到达 C 处,在C 处观测灯塔A 位于北偏东60°方向上,则C 处与灯塔 A 的距离是 海里.18. 二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0),下列说法:①若b 2﹣4ac=0,则抛物线的顶点一定在x 轴上; ②若a-b+c=0,则抛物线必过点(-1,0);③若a <0,且一元二次方程ax 2+bx+c=0有两根x 1,x 2(x 1<x 2),则ax 2+bx+c <0的解集为x 1<x <x 2;④若33ca b +=,则方程ax 2+bx+c=0有一根为-3. (第12题) (第14题) (第15题)其中正确的是 (把正确的序号都填上)三.解答题(本大题共有5题,满分46分) 19.(每小题6分,共12分)(1)2tan 603sin 30cos 45+--o o o . (2)解方程:2410x x ++=20.(本题8分) 如图,一次函数y 1=kx+b 的图象与反比例函数2my x=(x >0)的图象交于A (1,6),B (a ,2)两点.(1)求一次函数与反比例函数的解析式; (2)直接写出y 1≤y 2时x 的取值范围.21.(本题8分) 小华和小丽两人玩数字游戏,先由小丽心中任意想一个数记为 x ,再由小华猜小丽刚才想的数字,把小华猜的数字记为 y ,且他们想和猜的数字只能在 1、2、3、4这四个数字中.(1)请用树状图或列表法表示出他们想和猜的所有情况;(2)如果他们想和猜的数字相同,则称他们“心灵相通” .求他们“心灵相通”的概率; (3)如果他们想和猜的数字满足x y 1-≤,则称他们“心有灵犀” .求他们“心有灵犀”的概率.22. (本题8分) 如图,直线PM 切⊙O 于点M,直线PO 交⊙O 于A 、B 两点,弦AC ∥PM ,连接OM 、BC. 求证:(1)△ABC ∽△POM ;(2)2OA 2=OP·BC.23. (本题10分)某批发市场批发甲、乙两种水果,根据以往经验和市场行情,预计夏季某一段时间内,甲种水果的销售利润甲y (万元)与进货量x(吨)近似满足函数关系x y 3.0=甲;乙种水果的销售利润乙y (万元)与进货量x (吨)近似满足函数关系bx ax y +=2乙(其中0≠a ,a ,b 为常数),且进货量x 为1吨时,销售利润乙y 为1.4万元;进货量x 为2吨时,销售利润乙y 为2.6万元.(1)求乙y (万元)与x (吨)之间的函数关系式.(2)如果市场准备进甲、乙两种水果共10吨,设乙种水果的进货量为t 吨,请你写出这两种水果所获得的销售利润之和W (万元)与t (吨)之间的函数关系式.并求出这两种水果各进多少吨时获得的销售利润之和最大,最大利润是多少?2014—2015学年第一学期九年级数学期末质量检测评分标准11.m0< 12.1413.010 14.(3,2) 15.916或16.3 17.25 18.①、②、④三.解答题(本大题共有5题,满分46分)19.(1)21-2⎛⨯⎝…………………………………3分=313+-22…………………………………5分=4………………………………………6分(2)(2)解:2x4x1+=-,2x4x 414++=-+2(x2)3+=…………………………………3分x+2=…………………………………5分12x2,x2==.………………………………………6分20. (1)∵点A(1,6),B(a,2)在y2=的图象上,∴=6,m=6.∴反比例函数的解析式为:y2=,…………………………………3分∴=2,a==3,∵点A(1,6),B(3,2)在函数y1=kx+b的图象上,∴,解这个方程组,得∴一次函数的解析式为y1=-2x+8,反比例函数的解析式为y2=;…………………6分(2)由函数图象可知,当x在A、B之间时一次函数的图象在反比例函数图象的上方,∵点A(1,6),B(3,2),∴1≤x≤3.…………………………………8分(2)根据(1)得所以可能的情况有16中,想和猜的数相同的情况有4种,∴P(心灵相通)=41164=…………………6分(3)根据(1)得所以可能的情况有16中,数字满足|x-y|≤1的情况有10种,∴P(心有灵犀)105168==…………………8分22.(1)证明:∵直线PM切⊙O于点M,∴∠PMO=90°,∵弦AB是直径,∴∠ACB=90°,∴∠ACB=∠PMO,∵AC∥PM,∴∠CAB=∠P,∴△ABC∽△POM;…………………4分(2)∵△ABC∽△POM,∴,又AB=2OA,OA=OM,∴,∴2OA2=OP·BC.…………………8分23.解:(1)由题意,得:解得∴y乙=-0.1x2+1.5x.…………………4分(2)W=y甲+y乙=0.3(10-t)+(-0.1t2+1.5t)∴W=-0.1t2+1.2t+3.W=-0.1(t-6)2+6.6.∴t=6时,W有最大值为6.6.∴10-6=4(吨).答:甲、乙两种水果的进货量分别为4吨和6吨时,获得的销售利润之和最大,最大利润是6.6万元.…………………10分2014-2015学年人教版九年级上学期期末数学试卷一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.已知=,则x的值是()A.B.C.D.2.已知⊙O的半径是4,OP=3,则点P与⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定3.如图,在Rt△ABC中,∠C=90°,AB=5,BC=4,则sinB的值是()A.B.C.D.4.如果反比例函数y=在各自象限内,y随x的增大而减小,那么m的取值范围是()A.m<0 B.m>0 C.m<﹣1 D.m>﹣15.如图,⊙O是△ABC的外接圆,若∠AOB=100°,则∠ACB的度数是()A.40° B.50° C.60° D.80°6.一枚质地均匀的正方体骰子,其六个面上分别刻有1、2、3、4、5、6的点数,掷这个骰子一次,则掷得面朝上的点数为奇数的概率是()A.B.C.D.7.将抛物线y=5x2先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是()A.y=5(x+2)2+3 B.y=5(x﹣2)2+3 C.y=5(x﹣2)2﹣3 D.y=5(x+2)2﹣38.如图,等边△ABC边长为2,动点P从点A出发,以每秒1个单位长度的速度,沿A→B→C→A的方向运动,到达点A时停止.设运动时间为x秒,y=PC,则y关于x函数的图象大致为()A.B.C.D.二、填空题:(本题共16分,每小题4分)9.扇形的半径为9,且圆心角为120°,则它的弧长为.10.三角尺在灯泡O的照射下在墙上形成影子(如图所示).现测得OA=20cm,OA′=50cm,这个三角尺的周长与它在墙上形成的影子的周长的比是.11.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=,在下列结论中,唯一正确的是.(请将正确的序号填在横线上)①a<0;②c<﹣1;③2a+3b=0;④b2﹣4ac<0;⑤当x=时,y的最小值为.12.如图,在平面直角坐标系xOy中,正方形ABCD顶点A(﹣1,﹣1)、B(﹣3,﹣1).我们规定“把正方形ABCD先沿x轴翻折,再向右平移2个单位”为一次变换.(1)如果正方形ABCD经过1次这样的变换得到正方形A1B1C1D1,那么B1的坐标是.(2)如果正方形ABCD经过2014次这样的变换得到正方形A2014B2014C2014D2014,那么B2014的坐标是.三、解答题:(本题共30分,每题5分)13.计算:tan30°﹣cos60°×tan45°+sin30°.14.已知抛物线y=x2﹣4x+3.(1)用配方法将y=x2﹣4x+3化成y=a(x﹣h)2+k的形式;(2)求出该抛物线的对称轴和顶点坐标;(3)直接写出当x满足什么条件时,函数y<0.15.如图,在△ABC中,D是AB上一点,且∠ABC=∠ACD.(1)求证:△ACD∽△ABC;(2)若AD=3,AB=7,求AC的长.16.如图,热气球的探测器显示,从热气球看一栋高楼的顶部B的仰角为45°,看这栋高楼底部C的俯角为60°,热气球与高楼的水平距离AD为20m,求这栋楼的高度.(结果保留根号)17.如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB于点E.(1)求证:∠BCO=∠D;(2)若CD=,AE=2,求⊙O的半径.18.如图,一次函数y=kx+2的图象与x轴交于点B,与反比例函数的图象的一个交点为A(2,3).(1)分别求出反比例函数和一次函数的解析式;(2)过点A作AC⊥x轴,垂足为C,若点P在反比例函数图象上,且△PBC的面积等于18,求P点的坐标.四、解答题:(本题共20分,每题5分)19.如图,在锐角△ABC中,AB=AC,BC=10,sinA=,(1)求tanB的值;(2)求AB的长.20.在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c经过点(﹣3,0)和(1,0).(1)求抛物线的表达式;(2)在给定的坐标系中,画出此抛物线;(3)设抛物线顶点关于y轴的对称点为A,记抛物线在第二象限之间的部分为图象G.点B是抛物线对称轴上一动点,如果直线AB与图象G有公共点,请结合函数的图象,直接写出点B纵坐标t的取值范围.21.如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,且BF是⊙O的切线,BF交AC的延长线于F.(1)求证:∠CBF=∠CAB.(2)若AB=5,sin∠CBF=,求BC和BF的长.22.阅读下面材料:小明遇到这样一个问题:如图1,在等边三角形ABC内有一点P,且PA=3,PB=4,PC=5,求∠APB度数.小明发现,利用旋转和全等的知识构造△AP′C,连接PP′,得到两个特殊的三角形,从而将问题解决(如图2).请回答:图1中∠APB的度数等于,图2中∠PP′C的度数等于.参考小明思考问题的方法,解决问题:如图3,在平面直角坐标系xOy中,点A坐标为(﹣,1),连接AO.如果点B是x轴上的一动点,以AB为边作等边三角形ABC.当C(x,y)在第一象限内时,求y与x之间的函数表达式.五、解答题:(本题共22分,第23题7分,第24题7分,第25题8分)23.已知关于x的方程mx2+(3m+1)x+3=0(m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m的值;(3)在(2)的条件下,将关于x的二次函数y=mx2+(3m+1)x+3的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.请结合这个新的图象回答:当直线y=x+b与此图象有两个公共点时,b的取值范围.24.矩形ABCD一条边AD=8,将矩形ABCD折叠,使得点B落在CD边上的点P处.(1)如图1,已知折痕与边BC交于点O,连接AP、OP、OA.①求证:△OCP∽△PDA;②若△OCP与△PDA的面积比为1:4,求边AB的长.(2)如图2,在(1)的条件下,擦去AO和OP,连接BP.动点M在线段AP上(不与点P、A重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP 于点E.试问动点M、N在移动的过程中,线段EF的长度是否发生变化?若不变,求出线段EF的长度;若变化,说明理由.25.我们规定:函数y=(a、b、k是常数,k≠ab)叫奇特函数.当a=b=0时,奇特函数y=就是反比例函数y=(k是常数,k≠0).(1)如果某一矩形两边长分别是2和3,当它们分别增加x和y后,得到新矩形的面积为8.求y与x之间的函数表达式,并判断它是否为奇特函数;(2)如图,在平面直角坐标系xOy中,矩形OABC的顶点A、C坐标分别为(6,0)、(0,3),点D是OA中点,连接OB、CD交于E,若奇特函数y=的图象经过点B、E,求该奇特函数的表达式;(3)把反比例函数y=的图象向右平移4个单位,再向上平移个单位就可得到(2)中得到的奇特函数的图象;(4)在(2)的条件下,过线段BE中点M的一条直线l与这个奇特函数图象交于P,Q两点(P在Q右侧),如果以B、E、P、Q为顶点组成的四边形面积为16,请直接写出点P的坐标.2014-2015学年人教版九年级上学期期末数学试卷答案解析参考答案与试题解析一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.已知=,则x的值是()A.B.C.D.考点:比例的性质.专题:计算题.分析:根据内项之积等于外项之积得到2x=15,然后解一次方程即可.解答:解:∵=,∴2x=15,∴x=.故选B.点评:本题是基础题,考查了比例的基本性质,比较简单.2.已知⊙O的半径是4,OP=3,则点P与⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定考点:点与圆的位置关系.分析:点在圆上,则d=r;点在圆外,d>r;点在圆内,d<r(d即点到圆心的距离,r即圆的半径).解答:解:∵OP=3<4,故点P与⊙O的位置关系是点在圆内.故选A.点评:本题考查了点与圆的位置关系,注意掌握点和圆的位置关系与数量之间的等价关系是解决问题的关键.3.如图,在Rt△ABC中,∠C=90°,AB=5,BC=4,则sinB的值是()A.B.C.D.考点:锐角三角函数的定义.分析:首先根据勾股定理求得AC的长,然后利用正弦函数的定义即可求解.解答:解:∵在Rt△ABC中,∠C=90°,AB=5,BC=4,∴AC===3,∴sinB==.故选D.点评:本题考查了三角函数的定义,求锐角的三角函数值的方法:利用锐角三角函数的定义,转化成直角三角形的边长的比.4.如果反比例函数y=在各自象限内,y随x的增大而减小,那么m的取值范围是()A.m<0 B.m>0 C.m<﹣1 D.m>﹣1考点:反比例函数的性质.分析:如果反比例函数y=在各自象限内,y随x的增大而减小,那么m的取值范围是()解答:解:∵反比例函数y=的图象在所在象限内,y的值随x值的增大而减小,∴m+1>0,解得m>﹣1.故选D.点评:本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.5.如图,⊙O是△ABC的外接圆,若∠AOB=100°,则∠ACB的度数是()A.40° B.50° C.60° D.80°考点:圆周角定理.分析:已知⊙O是△ABC的外接圆,∠AOB=100°,根据圆周角定理可求得∠ACB的度数.解答:解:∵⊙O是△ABC的外接圆,∠AOB=100°,∴∠ACB=∠AOB=×100°=50°.故选B.点评:本题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角是所对的圆心角的一半.6.一枚质地均匀的正方体骰子,其六个面上分别刻有1、2、3、4、5、6的点数,掷这个骰子一次,则掷得面朝上的点数为奇数的概率是()A.B.C.D.考点:概率公式.分析:先统计出奇数点的个数,再根据概率公式解答.解答:解:∵正方体骰子共六个面,点数为1,2,3,4,5,6,奇数为1,3,5,∴点数为奇数的概率为:=.故选:C.点评:此题主要考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.7.将抛物线y=5x2先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是()A.y=5(x+2)2+3 B.y=5(x﹣2)2+3 C.y=5(x﹣2)2﹣3 D.y=5(x+2)2﹣3考点:二次函数图象与几何变换.专题:几何变换.分析:先确定抛物线y=5x2的顶点坐标为(0,0),再利用点平移的规律得到点(0,0)平移后所得对应点的坐标,然后根据顶点式写出平移后的抛物线解析式.解答:解:抛物线y=5x2的顶点坐标为(0,0),把点(0,0)向左平移2个单位,再向上平移3个单位后得到对应点的坐标为(﹣2,3),所以新抛物线的表达式是y=5(x+2)2+3.故选A.点评:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.8.如图,等边△ABC边长为2,动点P从点A出发,以每秒1个单位长度的速度,沿A→B→C→A的方向运动,到达点A时停止.设运动时间为x秒,y=PC,则y关于x函数的图象大致为()A .B .C .D .考点: 动点问题的函数图象.分析: 分段讨论,当0≤x ≤2时,作PQ ⊥AC ,根据锐角三角函数和勾股定理求出AQ 、PQ 、CQ 、PC 2;当2<x <4时,PC 在BC 上,是一次函数;当4<x ≤6时,PC 在AC 上,是一次函数,根据函数关系式分析即可得出结论.解答: 解:当0≤x ≤2时,作PQ ⊥AC ,∵AP=x ,∠A=60°∴AQ=,PQ=, ∴CQ=2﹣,∴PC==, ∴PC 2=x 2﹣2x+4=(x ﹣1)2+3;当2<x <4时,PC=4﹣x ,当4<x ≤6时,PC=2﹣(6﹣x )=x ﹣4,故选:C .点评: 本题主要考查了动点问题的函数图形,分段讨论,列出每段函数的解析式是解决问题的关键.二、填空题:(本题共16分,每小题4分)9.扇形的半径为9,且圆心角为120°,则它的弧长为 6π .考点: 弧长的计算.分析: 直接利用弧长的计算公式计算即可.解答: 解:弧长是:=6π.故答案是:6π.点评:本题考查了弧长的计算公式,正确记忆公式是关键.10.三角尺在灯泡O的照射下在墙上形成影子(如图所示).现测得OA=20cm,OA′=50cm,这个三角尺的周长与它在墙上形成的影子的周长的比是2:5.考点:相似三角形的应用.分析:由题意知三角尺与其影子相似,它们周长的比就等于相似比.解答:解:∵,∴三角尺的周长与它在墙上形成的影子的周长的比是.点评:本题考查相似三角形的性质,相似三角形的周长的比等于相似比.11.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=,在下列结论中,唯一正确的是③⑤.(请将正确的序号填在横线上)①a<0;②c<﹣1;③2a+3b=0;④b2﹣4ac<0;⑤当x=时,y的最小值为.考点:二次函数图象与系数的关系.分析:根据二次函数的图象开口方向即可判断A;由二次函数的图象与y轴的交点位置即可判断B;把x=﹣1代入二次函数的解析式即可判断C;根据二次函数的对称轴即可求出D.解答:解:①∵二次函数的图象开口向上,∴a>0,故本选项错误;②∵二次函数的图象与y轴的交点在点(0,﹣1)的上方,∴c>﹣1,故本选项错误;③、∵二次函数的图象的对称轴是直线x=,∴﹣=,﹣3b=2a,2a+3b=0,故本选项正确;④∵二次函数的图象与x轴有两个交点,∴b2﹣4ac>0,故本选项错误;⑤∵二次函数的图象的对称轴是直线x=,∴﹣=,∴﹣3b=2a,b=﹣a,∴y最小值=a+b+c=a+×(﹣a)+c=;即y的最小值为,故本选项正确;故答案为:③⑤.点评:本题考查了二次函数的图象和系数的关系,题目具有一定的代表性,是一道比较好的题目,注意用了数形结合思想,二次函数的图象开口方向决定a的符号,二次函数的图形与y轴的交点位置决定c的符号,根据二次函数的图象的对称轴是直线x=得出﹣=,把x=代入y=ax2+bx+c(a≠0)得出y=a+b+c等等.12.如图,在平面直角坐标系xOy中,正方形ABCD顶点A(﹣1,﹣1)、B(﹣3,﹣1).我们规定“把正方形ABCD先沿x轴翻折,再向右平移2个单位”为一次变换.(1)如果正方形ABCD经过1次这样的变换得到正方形A1B1C1D1,那么B1的坐标是(﹣1,1).(2)如果正方形ABCD经过2014次这样的变换得到正方形A2014B2014C2014D2014,那么B2014的坐标是(4025,﹣1).考点:规律型:点的坐标.分析:(1)把正方形ABCD先沿x轴翻折,则点B关于x轴对称,得到B点的坐标为:(﹣3,1),再向右平移2个单位”后点B的坐标为:(﹣3+2,1),即B1(﹣1,1).(2)首先由正方形ABCD,点A、B的坐标分别是(﹣1,﹣1)、(﹣3,﹣1),然后根据题意求得第1次、2次、3次变换后的点B的对应点的坐标,即可得规律:第n次变换后的点B的对应点的为:当n为奇数时为(2n﹣3,1),当n为偶数时为(2n﹣3,﹣1),继而求得把正方形ABCD经过连续2014次这样的变换得到正方形A′B′C′D′,则点B的对应点B′的坐标.解答:解:(1)∵正方形ABCD,点A、B的坐标分别是(﹣1,﹣1)、(﹣3,﹣1),∴根据题意得:第1次变换后的点B的对应点的坐标为(﹣3+2,1),即B1(﹣1,1),(2)第2次变换后的点B的对应点的坐标为:(﹣1+2,﹣1),即(1,﹣1),第3次变换后的点B的对应点的坐标为(1+2,1),即(3,1),第n次变换后的点B的对应点的为:当n为奇数时为(2n﹣3,1),当n为偶数时为(2n﹣3,﹣1),∴把正方形ABCD经过连续2014次这样的变换得到正方形A′B′C′D′,则点B的对应点B′的坐标是:(4025,﹣1).故答案为:(﹣1,1);(4025,﹣1).点评:此题考查了对称与平移的性质.此题难度较大,属于规律性题目,注意得到规律:第n次变换后的点B的对应点的坐标为:当n为奇数时为(2n﹣3,1),当n为偶数时为(2n ﹣3,﹣1)是解此题的关键.三、解答题:(本题共30分,每题5分)13.计算:tan30°﹣cos60°×tan45°+sin30°.考点:特殊角的三角函数值.分析:将tan30°=,cos60°=,tan45°=1,sin30°=分别代入运算,然后合并即可得出答案.解答:解:原式==.点评:本题考查了特殊角的三角函数值,属于基础题,熟练记忆一些特殊角的三角函数值是关键.14.已知抛物线y=x2﹣4x+3.(1)用配方法将y=x2﹣4x+3化成y=a(x﹣h)2+k的形式;(2)求出该抛物线的对称轴和顶点坐标;(3)直接写出当x满足什么条件时,函数y<0.考点:二次函数的三种形式;二次函数的性质.分析:(1)由于二次项系数是1,所以直接加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式;(2)根据二次函数y=a(x﹣h)2+k的顶点坐标为(h,k),对称轴为x=h求解即可;(3)先求出方程x2﹣4x+3=0的两根,再根据二次函数的性质即可求解.解答:解:(1)y=x2﹣4x+3=(x2﹣4x+4)﹣4+3=(x﹣2)2﹣1;(2)∵y=(x﹣2)2﹣1,∴对称轴为直线x=2,顶点坐标为(2,﹣1);(3)解方程x2﹣4x+3=0,得x=1或3.∵y=x2﹣4x+3,a=1>0,∴抛物线开口向上,∴当1<x<3时,函数y<0.点评:本题考查了二次函数解析式的三种形式,二次函数的性质,难度适中.利用配方法将一般式转化为顶点式是解题的关键.15.如图,在△ABC中,D是AB上一点,且∠ABC=∠ACD.(1)求证:△ACD∽△ABC;(2)若AD=3,AB=7,求AC的长.考点:相似三角形的判定与性质.分析:(1)根据两角对应相等,两三角形相似即可证明△ADC∽△ACB;(2)根据相似三角形的对应边成比例得出AC:AB=AD:AC,即AC2=AB•AD,将数值代入计算即可求出AC的长.解答:(1)证明:在△ADC与△ACB中,∵∠ABC=∠ACD,∠A=∠A,∴△ACD∽△ABC;(2)解:∵△ACD∽△ABC,∴AC:AB=AD:AC,∴AC2=AB•AD,∵AD=2,AB=7,∴AC2=7×2=14,∴AC=.点评:本题考查的是相似三角形的判定与性质,用到的知识点为:①如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似(简叙为两角对应相等,两三角形相似);②相似三角形的对应边成比例.16.如图,热气球的探测器显示,从热气球看一栋高楼的顶部B的仰角为45°,看这栋高楼底部C的俯角为60°,热气球与高楼的水平距离AD为20m,求这栋楼的高度.(结果保留根号)考点:解直角三角形的应用-仰角俯角问题.分析:在Rt△ABD中,求出BD,在Rt△ACD中,求出CD,二者相加即为楼高BC.解答:解:在Rt△ABD中,∠BDA=90°,∠BAD=45°,∴BD=AD=20.在Rt△ACD中,∠ADC=90°,∠CAD=60°,∴CD=AD=20.∴BC=BD+CD=20+20(m).答:这栋楼高为(20+20)m.点评:本题考查了解直角三角形的应用﹣﹣仰角俯角问题,将原三角形转化为两个直角三角形是解题的关键.17.如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB于点E.(1)求证:∠BCO=∠D;(2)若CD=,AE=2,求⊙O的半径.考点:圆周角定理;勾股定理;垂径定理.专题:计算题.分析:(1)由OB=OC,利用等边对等角得到一对角相等,再由同弧所对的圆周角相等得到一对角相等,等量代换即可得证;(2)由弦CD与直径AB垂直,利用垂径定理得到E为CD的中点,求出CE的长,在直角三角形OCE中,设圆的半径OC=r,OE=OA﹣AE,表示出OE,利用勾股定理列出关于r 的方程,求出方程的解即可得到圆的半径r的值.解答:(1)证明:如图.∵OC=OB,∴∠BCO=∠B.∵∠B=∠D,∴∠BCO=∠D;(2)解:∵AB是⊙O的直径,且CD⊥AB于点E,∴CE=CD=×4=2,在Rt△OCE中,OC2=CE2+OE2,设⊙O的半径为r,则OC=r,OE=OA﹣AE=r﹣2,∴r2=(2)2+(r﹣2)2,解得:r=3,∴⊙O的半径为3.点评:此题考查了垂径定理,勾股定理,以及圆周角定理,熟练掌握定理是解本题的关键.18.如图,一次函数y=kx+2的图象与x轴交于点B,与反比例函数的图象的一个交点为A(2,3).(1)分别求出反比例函数和一次函数的解析式;(2)过点A作AC⊥x轴,垂足为C,若点P在反比例函数图象上,且△PBC的面积等于18,求P点的坐标.考点:反比例函数与一次函数的交点问题;三角形的面积.专题:计算题.分析:(1)先将点A(2,3)代入反比例函数和一次函数y=kx+2,求得m、k的值,(2)可求得点B的坐标,设P(x,y),由S△PBC=18,即可求得x,y的值.解答:解:(1)把A(2,3)代入,∴m=6.∴.(1分)把A(2,3)代入y=kx+2,∴2k+2=3.∴.∴.(2分)(2)令,解得x=﹣4,即B(﹣4,0).∵AC⊥x轴,∴C(2,0).∴BC=6.(3分)设P(x,y),∵S△PBC==18,∴y1=6或y2=﹣6.分别代入中,得x1=1或x2=﹣1.∴P1(1,6)或P2(﹣1,﹣6).(5分)点评:本题考查了一次函数和反比例函数的交点问题,利用待定系数法求解析式是解此题的关键.四、解答题:(本题共20分,每题5分)19.如图,在锐角△ABC中,AB=AC,BC=10,sinA=,(1)求tanB的值;(2)求AB的长.考点:解直角三角形.专题:计算题.分析:(1)过点C作CD⊥AB,垂足为D,设CD=3k,则AB=AC=5k,继而可求出BD=k,从而求出tanB的值;(2)在Rt△BCD中,先求出BC=k=10,求出k的值,继而得出AB的值.解答:解:(1)过点C作CD⊥AB,垂足为D,(1分)在Rt△ACD中,,(1分)设CD=3k,则AB=AC=5k,(1分)∴.(1分)在△BCD中,∵BD=AB﹣AD=5k﹣4k=k.(1分)∴.(1分)(2)在Rt△BCD中,,(1分)∵BC=10,∴.(1分)∴.(1分)∴AB=.(1分)点评:本题考查了解直角三角形的知识,过点C作CD⊥AB,构造直角三角形是关键.20.在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c经过点(﹣3,0)和(1,0).(1)求抛物线的表达式;(2)在给定的坐标系中,画出此抛物线;(3)设抛物线顶点关于y轴的对称点为A,记抛物线在第二象限之间的部分为图象G.点B是抛物线对称轴上一动点,如果直线AB与图象G有公共点,请结合函数的图象,直接写出点B纵坐标t的取值范围.考点:待定系数法求二次函数解析式;二次函数的图象;二次函数的性质.分析:(1)根据待定系数法即可求得;(2)正确画出图形;(3)通过图象可以看出点B纵坐标t的取值范围.解答:解:(1)∵抛物线y=﹣x2+bx+c经过点(﹣3,0)和(1,0).∴,解得,∴抛物线的表达式为y=﹣x2﹣2x+3.(2)此抛物线如图所示.(3)2<t≤4.如图,由图象可知点B纵坐标t的取值范围为2<t≤4.点评:本题考查了待定系数法求解析式,以及画图的能力和识别图形的能力,要熟练掌握.21.如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,且BF是⊙O的切线,BF交AC的延长线于F.(1)求证:∠CBF=∠CAB.(2)若AB=5,sin∠CBF=,求BC和BF的长.考点:切线的性质.分析:(1)连接AE,由圆周角定理和等腰三角形的性质,结合切线的性质可证得∠CBF=∠BAE,可证得结论;(2)由(1)结论结合正弦值,在Rt△ABE中可求得BE,可求出BC,过C作CM⊥BF,在Rt△BCM中可求得BM,CM,再利用平行线分线段成比例可求得BF.解答:(1)证明:如图1,连结AE.∵AB是⊙O的直径,∴∠AEB=90°,∴∠BAE=∠BAC.∵BF是⊙O的切线,∴∠CBF=∠BAE,∴∠CBF=∠CAB.(2)解:由(1)可知∠CBF=∠BAE,∴sin∠BAE=sin∠CBF=,在Rt△ABE中,sin∠BAE=,∴=,∴BE=,∴BC=2,如图2,过C作CM⊥BF于点M,则sin∠CBF==,即=,解得CM=2,由勾股定理可求得BM=4,又∵AB∥CM,∴=,。

2015-2016学年新人教版九年级上期末数学试卷(含答案)

2015-2016学年新人教版九年级上期末数学试卷(含答案)

2015-2016学年新人教版九年级上期末数学试卷(含答案)九年级数学试卷考试时间:120分钟满分:120分一、选一选(本大题共10小题,每小题3分,共30分)1.二次函数y=(x-1)²-2的顶点坐标是(。

)。

A.(-1,-2)B.(-1,2)C.(1,-2)D.(1,2)2.判断一元二次方程x²-2x+1=0的根的情况是(。

)。

A.只有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根3.用配方法解方程x²-4x-3=0,下列配方结果正确的是(。

)。

A.(x-4)²=19B.(x-2)²=7C.(x+2)²=7D.(x+4)²=194.一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是x,根据题意,下面列出的方程正确的是(。

)。

A.100(1+x)=121B.100(1-x)=121C.100(1-x)²=121D.100(1+x)²=1215.如图,小正方形的边长均为1,则下列图形中的三角形(阴影部分)与△ABC相似的是(。

)。

A。

B。

C。

D.6.已知:点A(x₁,y₁)、B(x₂,y₂)、C(x₃,y₃)是函数y=-3x图象上的三点,且x₁<x₂<x₃,则y₁、y₂、y₃的大小关系是(。

)。

A.y₁<y₂<y₃B.y₃<y₂<y₁C.y₂<y₃<y₁D.无法确定7.某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉40只黄羊,发现其中两只有标志。

从而估计该地区有黄羊(。

)。

A.200只B.400只C.800只D.1000只8.如图,圆锥的侧面展开图是半径为3,圆心角为90°的扇形,则该圆锥的底面周长为(。

)。

A。

3π/4 B。

新人教版2014-2015年九年级上学期期末考试数学试题及答案

新人教版2014-2015年九年级上学期期末考试数学试题及答案

新人教版2014-2015年上学期期末考试九年级数学试题(考试时间:120分钟 满分:150分)一、选择题(本题共10道题,每小题3分,共30分)1.下列方程中,是一元二次方程的是( )A. 221x x y ++=B. 2110x x+-= C. 20x = D. 2(1)(3)1x x x ++=- 2.下列汽车标志中,既是轴对称又是中心对称图形的是( )3.下列说法中正确的是( )A.不确定事件发生的概率是不确定的B.事件发生的概率可以等于事件不发生的概率C.事件发生的概率不可能等于0D.抛掷一只均匀的骰子两次,朝上一面的点数之和一定大于24.如图45,15中,∠=∠=O CBO CAO ,则AOB ∠的度数是( )A.75 B.30 C.45 D.60 5.掷一枚六面分别标有1到6的均匀骰子,向上一面的点数大于2且小于5的概率为1P ,抛两枚硬币,正面均朝上的概率为2P ,则( )A.12P P <B.12P P >C.12P P =D.不能确定6.在同圆中,下列四个命题:○1圆心角是顶点在圆心的角;○2两个圆心角相等,它们所对的弦也相等;○3两条弦相等,所对的劣弧也相等;○4等弧所对的圆心角相等。

其中真命题有( )A.4个B.3个C.2个D.1个7.抛物线22(1)3y x =---与y 轴交点的纵坐标为( )A.3-B. 4-C.5-D.1-8.用配方法解关于x 的方程20x px q ++=,方程可变形为( ) A.224()24p p q x -+= B.224()24p q p x -+= C.224()24p p q x +-= 第4题D.224()24p p q x --= 9.如图,E 、F 分别是正方形ABCD 的边BC 、CD 上的点,BE=CF ,连接AE 、BF ,将△ABE 绕正方形的中心按逆时针方向旋转到BCF △,旋转角为()0180a a <<,则a =( )A.60 B.90 C.120 D.4510.已知二次函数2y ax bx c =++的图象如图所示,其对称轴为直线1x =-,给出下列结论(1)24b ac >; (2)0abc >; (3)20a b +=; (4)0a b c ++>; (5)420a b c -+<.则正确的结论有( )A. 2个B. 3个C. 4个D. 5个第9题C第16题第17题B二、填空题(本大题共8小题,每小题3分,共24分)11.方程2x =的根是 .12.众所周知,手机的电话号码是由11位数字组成的,某人的手机号码位于中间的数字为5的概率是13.在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是54002cm ,设金色纸边的宽为,那么x 满足的方程是14.如果函数232(3)1k k y k x kx -+=-++是二次函数,那么k 值为15.一个圆锥的侧面展开图是半径为1的半圆,该圆锥的底面半径是16.二次函数2y x bx c =-++的图象如图所示,则一次函数y bx c =+的图象不经过第 象限. 17.如图所示,一条公路的转变处是一段圆弧(图中的弧AB )点O 是这段弧的圆心,C 是AB 上一点,,OC AB ⊥ 垂足为D ,AB=300m ,CD=50m ,则这段弯路的半径是18.观察下列一组数:13579,,,,,27142334⋅⋅⋅它们是按一定规律排列的,那么这一组数的第n 个数是三、解答题(本大题共96分)19.解方程:(10分)(1) 2660x x --=(2) 22760x x -+=20.△ABC 在平面直角坐标系中的位置如图所示(A 、B 、C 三点在格点上),把△ABC 绕原点O 顺时针旋转90,A 、B 、C 旋转后的对应点分别是1A 、1B 、1C(1)画出旋转后的111△ABC ,并直接写出1A、1B 、1C 的坐标; (2)在旋转过程中,求点A 到点1A 所经过的路径的长.(12分)21.某汽车经销商推出A 、B 、C 、D 四种型号的小轿车共1000辆进行展销。

2015九年级(上)期末数学试卷 附答案

2015九年级(上)期末数学试卷 附答案

九年级(上)期末数学试卷一、选择题(每小题3分,共30分.每小题只有一个选项是正确的)1.下列等式一定成立的是()A.B.=a﹣b C.D.=a+b2.已知x=﹣1是一元二次方程x2+mx+1=0的一个根,那么m的值是()A.0 B. 1 C. 2 D.﹣23.已知一圆锥的母线长为6cm,底面圆的半径为3cm,则此圆锥侧面展开图的面积为()A.18πcm2 B.36πcm2 C.12πcm2 D.8πcm24.若式子有意义,则x的取值范围为()A.x≥2 B.x≠3 C.x≥2或x≠3 D.x≥2且x≠35.关于x的一元二次方程kx2﹣6x+1=0有两个不相等的实数根,则k的取值范围是()A.k≥9 B.k<9 C.k≤9且k≠0 D.k<9且k≠06.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.7.如图,EF是圆O的直径,OE=5cm,弦MN=8cm,则E,F两点到直线MN距离的和等于()A.12cm B.6cm C.8cm D.3cm8.关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值是()A.﹣1 B.1 C.1或﹣1 D.﹣1或09.如图,AB为半圆O的直径,C为半圆上一点,且为半圆的.设扇形AOC、△COB、弓形BmC的面积分别为S1、S2、S3,则下列结论正确的是()A.S1<S2<S3 B.S2<S1<S3 C.S2<S3<S1 D.S3<S2<S110.如果a>0,c>0,那么二次函数y=ax2+bx+c的图象大致是()A.B.C.D.二、填空题:(每小题3分,共30分)11.两圆相内切,大圆的半径长为5cm,圆心矩为3cm,则小圆半径为cm.12.半径为6cm的圆,60°圆周角所对弧的弧长为cm.13.一元二次方程2x2+4x﹣1=0的二次项系数、一次项系数及常数项之和为.14.最简根式和是同类根式,则a=,b=.15.若将函数y=2x2的图象向右平行移动1个单位,再向上平移5个单位,可得到.16.△ABC内接于⊙O,∠ACB=36°,那么∠AOB的度数为.17.口袋中放有3只红球和11只黄球,这两种球除颜色外没有任何区别.随机从口袋中任取一只球,取到黄球的概率是.18.平面直角坐标系内一点P(3,﹣2)关于原点对称的点的坐标是.19.如图,在Rt△ABC中,∠C=90°,CA=CB=2.分别以A、B、C为圆心,以AC为半径画弧,三条弧与边AB所围成的阴影部分的面积是.(保留π)20.计算=.三、计算题(每小题10分,共20分)21.解方程:(1)(x﹣3)2=2x(3﹣x);(2)(x+3)(x﹣1)=5.22.计算:(1)(﹣)﹣2()(2)﹣.四、解答题(每题10分,共50分)23.已知a=8,求2a2•﹣﹣的值.24.已知关于x的方程x2+(4k+1)x+2k﹣1=0.(1)求证:此方程一定有两个不相等的实数根;(2)若x1,x2是方程的两个实数根,且(x1﹣2)(x2﹣2)=2k﹣3,求k的值.25.某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元.求3月份到5月份营业额的月平均增长率.26.如图,已知直角坐标系中一条圆弧经过正方形网格的格点A(0,4)、B(4,4)、C(6,2)(1)用直尺画出该圆弧所在圆的圆心M的位置,并标出M点的坐标;(2)若D点的坐标为(7,0),验证点D是否在经过点A、B、C的抛物线上;(3)若D点的坐标为(7,0),想一想直线CD与⊙M有怎样的位置关系,并证明你的猜想.27.有四张背面相同的纸牌A,B,C,D,其正面分别划有四个不同的稽核图形(如图).小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸出一张.(1)用树状图(或列表法)表示两次模牌所有可能出现的结果(纸牌可用A、B、C、D表示);(2)求摸出两张牌面图形都是中心对称图形的纸牌的概率.五、证明题28.如图,在Rt△ABC中,∠B=90°,∠A的平分线交BC于D,E为AB上一点,DE=DC,以D为圆心,以DB的长为半径画圆.求证:(1)AC是⊙D的切线;(2)AB+EB=AC.六、阅读理解29.当抛物线的解析式中含有字母系数时,随着系数中字母取值的不同,抛物线的顶点坐标也将发生变化.例如:由抛物线y=x2﹣2mx+m2+2m﹣1 (1)得:y=(x﹣m)2+2m﹣1 (2)∴抛物线的顶点坐标为(m,2m﹣1),设顶点为P(x0,y0),则:当m的值变化时,顶点横、纵坐标x0,y0的值也随之变化,将(3)代入(4)得:y0=2x0﹣1. (5)可见,不论m取任何实数时,抛物线的顶点坐标都满足y=2x﹣1.(1)根据阅读材料提供的方法,确定抛物线y=x2﹣2mx+2m2﹣4m+3的顶点纵坐标y与横坐标x之间的函数关系式.(2)是否存在实数m,使抛物线y=x2﹣2mx+2m2﹣4m+3与x轴两交点A(x1,0)、B(x2,0)之间的距离为AB=4?若存在,求出m的值;若不存在,说明理由.参考答案与试题解析一、选择题(每小题3分,共30分.每小题只有一个选项是正确的)1.下列等式一定成立的是()A.B.=a﹣b C.D.=a+b考点:二次根式的混合运算.专题:计算题.分析:利用二次根式的性质计算合并.解答:解:A、不对,要先开方再相加;B、不对,这是平方差公式,不能直接开方;C、对,符合二次根式的乘法法则;D、不对,如果a+b小于0,则为它的相反数.故选C.点评:本题主要考查了根式的计算,注意根式的计算顺序.2.已知x=﹣1是一元二次方程x2+mx+1=0的一个根,那么m的值是()A.0 B.1 C. 2 D.﹣2考点:一元二次方程的解.专题:计算题.分析:一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值,再用这个数代替未知数所得式子仍然成立.解答:解:把x=﹣1代入方程可得1﹣m+1=0,∴m=2.故选C.点评:本题考查的是一元二次方程的根即方程的解的定义,是一道比较基础的题.3.已知一圆锥的母线长为6cm,底面圆的半径为3cm,则此圆锥侧面展开图的面积为()A.18πcm2 B.36πcm2 C.12πcm2 D.8πcm2考点:圆锥的计算.专题:压轴题.分析:圆锥的侧面积=底面周长×母线长÷2.解答:解:底面半径为3cm,则底面周长=6πcm,侧面面积=×6π×6=18πcm2.故选A.点评:本题利用了圆的周长公式和扇形面积公式求解.解题的关键是了解圆锥的有关元素与扇形的有关元素的对应.4.若式子有意义,则x的取值范围为()A.x≥2 B.x≠3 C.x≥2或x≠3 D.x≥2且x≠3考点:二次根式有意义的条件;分式有意义的条件.专题:计算题.分析:根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.解答:解:根据二次根式有意义,分式有意义得:x﹣2≥0且x﹣3≠0,解得:x≥2且x≠3.故选D.点评:本题考查了二次根式有意义的条件和分式的意义.考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.5.关于x的一元二次方程kx2﹣6x+1=0有两个不相等的实数根,则k的取值范围是()A.k≥9 B.k<9 C.k≤9且k≠0 D.k<9且k≠0考点:根的判别式;一元二次方程的定义.分析:在判断一元二次方程根的情况的问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有不相等的实数根时,必须满足△=b2﹣4ac>0.解答:解:根据题意,得(﹣6)2﹣4k>0,且k≠0,解得k<9且k≠0.故选D.点评:本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.6.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.考点:轴对称图形;中心对称图形.分析:根据中心对称图形的定义:旋转180°后能够与原图形完全重合即是中心对称图形;轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.解答:解:A、此图形既不是中心对称图形,也不是轴对称图形,故A错误;B、此图形是轴对称图形,不是中心对称图形,故B错误;C、此图形不是轴对称图形,是中心对称图形,故C错误;D、此图形既是轴对称图形,也是中心对称图形,故D正确.故选:D.点评:此题主要考查了中心对称图形与轴对称的定义,解题关键是找出图形的对称中心与对称轴,属于基础题,比较容易解答.7.如图,EF是圆O的直径,OE=5cm,弦MN=8cm,则E,F两点到直线MN距离的和等于()A.12cm B.6cm C.8cm D.3cm考点:垂径定理;勾股定理;梯形中位线定理.分析:由图可以明显的看出OK∥EG∥FH,而O是EF的中点,因此OK是梯形EGHF的中位线,欲求EG+FH的值,需求出OK的长;在Rt△OMK中,由垂径定理易知MK的长度,即可根据勾股定理求出OK的值,由此得解.解答:解:∵EG⊥GH,OK⊥GH,FH⊥GH,∴EG∥OK∥FH;∵EO=OF,∴OK是梯形EGHF的中位线,即EG+FH=2OK;Rt△OKM中,MK=MN=4cm,OM=OE=5cm;由勾股定理,得:OK==3cm;∴EG+FH=2OK=6cm.故选B.点评:此题主要考查了垂径定理、勾股定理以及梯形中位线定理的综合应用.8.关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值是()A.﹣1 B.1 C.1或﹣1 D.﹣1或0考点:一元二次方程的解.分析:将x=0代入关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0即可求得a的值.注意,二次项系数a﹣1≠0.解答:解:∵关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,∴(a﹣1)×0+0+a2﹣1=0,且a﹣1≠0,解得a=﹣1;故选A.点评:本题考查的是一元二次方程的根即方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.9.如图,AB为半圆O的直径,C为半圆上一点,且为半圆的.设扇形AOC、△COB、弓形BmC的面积分别为S1、S2、S3,则下列结论正确的是()A.S1<S2<S3 B.S2<S1<S3 C.S2<S3<S1 D.S3<S2<S1考点:扇形面积的计算.专题:压轴题.分析:首先根据△AOC的面积=△BOC的面积,得S2<S1.再根据题意,知S1占半圆面积的.所以S3大于半圆面积的.解答:解:根据△AOC的面积=△BOC的面积,得S2<S1,再根据题意,知S1占半圆面积的,所以S3大于半圆面积的.故选B.点评:此类题首先要比较有明显关系的两个图形的面积.10.如果a>0,c>0,那么二次函数y=ax2+bx+c的图象大致是()A.B.C.D.考点:二次函数图象与系数的关系.专题:数形结合.分析:由a>0可以判定二次函数的图象的开口方向;由已知条件“c>0”可以判定二次函数y=ax2+bx+c的图象与y轴的交点的大体位置.解答:解:∵a>0,∴二次函数y=ax2+bx+c的图象的开口向上;又∵c>0,∴二次函数y=ax2+bx+c的图象与y轴交于正半轴.故选A.点评:本题考查了二次函数图象与系数的关系.解答该题要弄清楚二次函数图象与二次函数y=ax2+bx+c的系数a、b、c的关系.二、填空题:(每小题3分,共30分)11.两圆相内切,大圆的半径长为5cm,圆心矩为3cm,则小圆半径为2cm.考点:圆与圆的位置关系.分析:根据两圆位置关系是内切,则圆心距=两圆半径之差,小圆半径=圆心距﹣大圆的半径.解答:解:∵两圆相内切,大圆的半径长为5cm,圆心矩为3cm,∴小圆半径为5﹣3=2cm.点评:本题用到的知识点为:两圆内切,圆心距=两圆半径之差.12.半径为6cm的圆,60°圆周角所对弧的弧长为4πcm.考点:弧长的计算.专题:压轴题.分析:根据弧长公式可得.解答:解:=4πcm.点评:注意圆周角要转化成圆心角.13.一元二次方程2x2+4x﹣1=0的二次项系数、一次项系数及常数项之和为5.考点:一元二次方程的定义.分析:一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,其中a,b,c分别叫二次项系数,一次项系数,常数项.确定二次项系数,一次项系数,常数项以后即可求解.解答:解:根据题意,可得一元二次方程2x2+4x﹣1=0的二次项系数为2,一次项系数为4,及常数项为﹣1;则其和为2+4﹣1=5;故答案为5.点评:求一元二次方程2x2+4x﹣1=0的二次项系数、一次项系数及常数项之和,就是求当x=1时,代数式2x2+4x﹣1的值.注意在说明二次项系数,一次项系数,常数项时,一定要带上前面的符号.14.最简根式和是同类根式,则a=1,b=1.考点:同类二次根式;解二元一次方程组.专题:计算题.分析:根据同类根式的根指数相同,且被开方数相同可得出关于a和b的方程组,解出即可得出a和b的值.解答:解:∵最简根式和是同类根式,∴,解得:.故答案为:1,1.点评:此题考查了同类根式的知识,解答本题的关键是掌握同类根式的根指数相同,且被开方数相同,属于基础题,难度一般.15.若将函数y=2x2的图象向右平行移动1个单位,再向上平移5个单位,可得到y=2(x ﹣1)2+5.考点:二次函数图象与几何变换.分析:根据向右平移横坐标加,向上平移纵坐标加求出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可.解答:解:∵y=2x2的图象向右平行移动1个单位,向上平移5个单位,∴平移后的函数的顶点坐标为(1,5),∴所得抛物线的解析式为y=2(x﹣1)2+5.故答案为:y=2(x﹣1)2+5.点评:本题考查了二次函数图象与几何变换,利用顶点的变化确定函数解析式的变化更简便.16.△ABC内接于⊙O,∠ACB=36°,那么∠AOB的度数为72°.考点:圆周角定理.专题:推理填空题.分析:根据圆周角定理直接解答即可.解答:解:∵△ABC内接于⊙O,∴∠ACB是所对的圆周角,∠AOB是所对的圆心角,∴∠AOB=2∠ACB=2×36°=72°.故答案为:72°.点评:本题考查的是圆周角定理,即同弧所对的圆周角等于所对圆心角的一半.17.口袋中放有3只红球和11只黄球,这两种球除颜色外没有任何区别.随机从口袋中任取一只球,取到黄球的概率是.考点:概率公式.分析:由于口袋中放有3只红球和11只黄球,所以随机从口袋中任取一只球,取到黄球的概率是=.解答:解:P(摸到黄球)=.故本题答案为:.点评:本题考查的是概率的定义:P(A)=,n表示该试验中所有可能出现的基本结果的总数目,m表示事件A包含的试验基本结果数.这种定义概率的方法称为概率的古典定义.18.平面直角坐标系内一点P(3,﹣2)关于原点对称的点的坐标是(﹣3,2).考点:关于原点对称的点的坐标.专题:应用题.分析:平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),从而可得出答案.解答:解:根据中心对称的性质,得点P(3,﹣2)关于原点对称点P′的坐标是(﹣3,2),故答案为:(﹣3,2).点评:本题主要考查关于原点对称的点坐标的关系,是需要识记的基本问题.记忆方法是结合平面直角坐标系的图形记忆.19.如图,在Rt△ABC中,∠C=90°,CA=CB=2.分别以A、B、C为圆心,以AC为半径画弧,三条弧与边AB所围成的阴影部分的面积是.(保留π)考点:扇形面积的计算.专题:压轴题.分析:三条弧与边AB所围成的阴影部分的面积=三角形的面积﹣三个小扇形的面积.解答:解:2×2÷2﹣﹣=2﹣.点评:本题的关键是理解阴影部分的面积=三角形的面积﹣三个小扇形的面积.20.计算=+.考点:二次根式的乘除法.专题:计算题.分析:先将原式变形(+)2009(+),再根据同底数幂乘法的逆运算即可.解答:解:原式=(+)2009(+)=[(+)(﹣)]2009(+)=(+).故答案为(+).点评:本题考查了二根式的乘除法,是基础知识要熟练掌握.三、计算题(每小题10分,共20分)21.解方程:(1)(x﹣3)2=2x(3﹣x);(2)(x+3)(x﹣1)=5.考点:解一元二次方程-因式分解法.分析:(1)先移项,再用因式分解法求解即可;(2)先展开后化为一元二次方程的一般形式,再根据因式分解法求出其解即可.解答:解:(1)移项,得(3﹣x)2﹣2x(3﹣x)=0,(3﹣x)(3﹣x﹣2x)=0,∴3﹣x=0或3﹣3x=0,∴x1=3,x2=1;(2)原方程变形为x2+2x﹣3﹣5=0,x2+2x﹣8=0,∴(x+4)(x﹣2)=0,∴x1=﹣4,x2=2.点评:本题考查了因式分解法解一元二次方程的运用,整式乘法的运用,解答时运用因式分解法求解是关键.22.计算:(1)(﹣)﹣2()(2)﹣.考点:二次根式的混合运算.专题:计算题.分析:(1)先把各二次根式化为最简二次根式,然后去括号合并即可;(2)直接分母有理化和把化为最简二次根式即可,如果合并即可.解答:解:(1)原式=2﹣﹣﹣2=﹣;(2)原式=2(2+)﹣2.=4+2﹣2=4.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.四、解答题(每题10分,共50分)23.已知a=8,求2a2•﹣﹣的值.考点:二次根式的化简求值.分析:由a=8>0,首先把原式子通过开方运算、分母有理化进行化简,合并同类二次根式,然后把a的值代入求值即可.解答:解:∵a=8>0,∴原式=2a2•﹣a﹣=2a﹣a﹣===16.点评:本题主要考查二次根式的意义、二次根式的化简求值,关键在于根据a的取值范围把二次根式进行化简,然后再代入求值就容易多了.24.已知关于x的方程x2+(4k+1)x+2k﹣1=0.(1)求证:此方程一定有两个不相等的实数根;(2)若x1,x2是方程的两个实数根,且(x1﹣2)(x2﹣2)=2k﹣3,求k的值.考点:根与系数的关系;根的判别式.专题:计算题;证明题.分析:(1)需证得根的判别式恒为正值.(2)(x1﹣2)(x2﹣2)=2k﹣3,即x1x2﹣2(x1+x2)+4=2k﹣3,依据根与系数的关系,列出关于k的方程求解则可.解答:(1)证明:△=b2﹣4ac=(4k+1)2﹣4(2k﹣1)=16k2+8k+1﹣8k+4=16k2+5,∵k2≥0,∴16k2≥0,∴16k2+5>0,∴此方程有两个不相等的实数根.(2)解:根据题意,得x1+x2=﹣(4k+1),x1x2=2k﹣1,∴(x1﹣2)(x2﹣2)=x1x2﹣2(x1+x2)+4=(2k﹣1)+2(4k+1)+4=2k﹣1+8k+2+4=10k+5即10k+5=2k﹣3,∴k=﹣1.点评:本题考查了一元二次方程根与系数的关系及根的判别式,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.25.某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元.求3月份到5月份营业额的月平均增长率.考点:一元二次方程的应用.专题:增长率问题;压轴题.分析:本题是平均增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.如果设平均增长率为x,那么结合到本题中a就是400×(1+10%),即3月份的营业额,b就是633.6万元即5月份的营业额.由此可求出x的值.解答:解:设3月份到5月份营业额的月平均增长率为x,根据题意得,400×(1+10%)(1+x)2=633.6,解得,x1=0.2=20%,x2=﹣2.2(不合题意舍去).答:3月份到5月份营业额的月平均增长率为20%.点评:本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b(当增长时中间的“±”号选“+”,当降低时中间的“±”号选“﹣”).26.如图,已知直角坐标系中一条圆弧经过正方形网格的格点A(0,4)、B(4,4)、C(6,2)(1)用直尺画出该圆弧所在圆的圆心M的位置,并标出M点的坐标;(2)若D点的坐标为(7,0),验证点D是否在经过点A、B、C的抛物线上;(3)若D点的坐标为(7,0),想一想直线CD与⊙M有怎样的位置关系,并证明你的猜想.考点:垂径定理;二次函数图象上点的坐标特征;勾股定理;直线与圆的位置关系.专题:代数几何综合题.分析:(1)题利用“两弦垂直平分线的交点为圆心”可确定圆心位置;(2)先根据A、B、C三点坐标,用待定系数法求出抛物线的解析式,然后将D点坐标代入抛物线的解析式中,即可判断出点D是否在抛物线的图象上;(3)由于C在⊙M上,如果CD与⊙M相切,那么C点必为切点;因此可连接MC,证MC是否与CD垂直即可.可根据C、M、D三点坐标,分别表示出△CMD三边的长,然后用勾股定理来判断∠MCD是否为直角.解答:解:(1)如图1,点M就是要找的圆心.正确即可(2)由A(0,4),可得小正方形的边长为1.设经过点A、B、C的抛物线的解析式为y=ax2+bx+4,依题意有,解得,;所以经过点A、B、C的抛物线的解析式为y=﹣x2+x+4,把点D(7,0)的横坐标x=7代入上述解析式,得y=﹣×49+×7+4=≠0,所以点D不在经过A、B、C的抛物线上;(3)证明:由A(0,4),可得小正方形的边长为1.如图2,设过C点与x轴垂直的直线与x轴的交点为E,连接MC,作直线CD,∴CE=2,ME=4,ED=1,MD=5,在Rt△CEM中,∠CEM=90°,∴MC2=ME2+CE2=42+22=20,在Rt△CED中,∠CED=90°,∴CD2=ED2+CE2=12+22=5,∴MD2=MC2+CD2,∴∠MCD=90°,又∵MC为半径,∴直线CD是⊙M的切线.点评:本题为综合题,涉及圆、平面直角坐标系、二次函数等知识,需灵活运用相关知识解决问题.本题考查二次函数、圆的切线的判定等初中数学的中的重点知识,试题本身就比较富有创新,在网格和坐标系中巧妙地将二次函数与圆的几何证明有机结合,很不错的一道题,令人耳目一新.27.有四张背面相同的纸牌A,B,C,D,其正面分别划有四个不同的稽核图形(如图).小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸出一张.(1)用树状图(或列表法)表示两次模牌所有可能出现的结果(纸牌可用A、B、C、D表示);(2)求摸出两张牌面图形都是中心对称图形的纸牌的概率.考点:列表法与树状图法;中心对称图形.专题:阅读型.分析:(1)画出树状图分析数据、列出可能的情况.(2)根据中心对称图形的概念可知,当摸出圆和平行四边形时为中心对称图形,除以总情况数即可.解答:解:(1)A B C DA (A,A)(A,B)(A,C)(A,D)B (B,A)(B,B)(B,C)(B,D)C (C,A)(C,B)(C,C)(C,D)D (D,A)(D,B)(D,C)(D,D)共产生16种结果,每种结果出现的可能性相同,即:(A,A)(A,B)(A,C)(A,D)(B,A)(B,B)(B,C)(B,D)(C,A)(C,B)(C,C)(C,D)(D,A)(D,B)(D,C)(D,D);(2)其中两张牌都是中心对称图形的有4种,即(B,B)(B,C)(C,B)(C,C)∴P(两张都是中心对称图形)==.点评:正确利用树状图分析两次摸牌所有可能结果是关键,区分中心对称图形是要点.用到的知识点为:概率=所求情况数与总情况数之比.五、证明题28.如图,在Rt△ABC中,∠B=90°,∠A的平分线交BC于D,E为AB上一点,DE=DC,以D为圆心,以DB的长为半径画圆.求证:(1)AC是⊙D的切线;(2)AB+EB=AC.考点:切线的判定;直角三角形全等的判定.专题:证明题.分析:(1)过点D作DF⊥AC于F,求出BD=DF等于半径,得出AC是⊙D的切线.(2)先证明△BDE≌△FCD(HL),根据全等三角形对应边相等及切线的性质的AB=AF,得出AB+EB=AC.解答:证明:(1)过点D作DF⊥AC于F;∵AB为⊙D的切线,AD平分∠BAC,∴BD=DF,∴AC为⊙D的切线.(2)∵AC为⊙D的切线,∴∠DFC=∠B=90°,在Rt△BDE和Rt△FCD中;∵BD=DF,DE=DC,∴Rt△BDE≌Rt△FCD(HL),∴EB=FC.∵AB=AF,∴AB+EB=AF+FC,即AB+EB=AC.点评:本题考查的是切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线;及全等三角形的判断,全等三角形的对应边相等.六、阅读理解29.当抛物线的解析式中含有字母系数时,随着系数中字母取值的不同,抛物线的顶点坐标也将发生变化.例如:由抛物线y=x2﹣2mx+m2+2m﹣1 (1)得:y=(x﹣m)2+2m﹣1 (2)∴抛物线的顶点坐标为(m,2m﹣1),设顶点为P(x0,y0),则:当m的值变化时,顶点横、纵坐标x0,y0的值也随之变化,将(3)代入(4)得:y0=2x0﹣1. (5)可见,不论m取任何实数时,抛物线的顶点坐标都满足y=2x﹣1.(1)根据阅读材料提供的方法,确定抛物线y=x2﹣2mx+2m2﹣4m+3的顶点纵坐标y与横坐标x之间的函数关系式.(2)是否存在实数m,使抛物线y=x2﹣2mx+2m2﹣4m+3与x轴两交点A(x1,0)、B(x2,0)之间的距离为AB=4?若存在,求出m的值;若不存在,说明理由.考点:二次函数综合题.分析:(1)根据材料给的方法:先配成y=(x﹣m)2+2m2﹣4m+2,得到顶点坐标,然后消去m,得到y与x的关系式;(2)先根据根与系数的关系得到x1+x2=2m,x1•x2=2m2﹣4m+3,然后利用AB=|x1﹣x2|,通过变形得到AB=,即可得到AB的最大值为2,由此得到不存在实数m,使AB=4.解答:解:(1)∵y=x2﹣2mx+2m2﹣4m+3=(x﹣m)2+2m2﹣4m+2,∴抛物线的顶点坐标为(m,2m2﹣4m+2),设顶点为P(x0,y0),则:,当m的值变化时,顶点横、纵坐标x0,y0的值也随之变化,∴y0=2x02﹣4x0+2,可见,不论m取任何实数时,抛物线的顶点坐标都满足y=2x2﹣4x+2;(2)不存在.理由如下:∵抛物线y=x2﹣2mx+2m2﹣4m+3与x轴两交点A(x1,0)、B(x2,0),∴x2﹣2mx+2m2﹣4m+3=0的两个根为x1、x2,∴x1+x2=2m,x1•x2=2m2﹣4m+3,∴AB=|x1﹣x2|===,∴AB的最大值为2,∴不存在实数m,使AB=4.点评:本题考查了二次函数综合题:抛物线的顶点式y=a(x﹣h)2+k(a≠0),则顶点坐标为(h,k);抛物线与x轴两交点的距离.也考查了代数式的变形能力.。

2015九年级(上)期末数学试卷附答案

2015九年级(上)期末数学试卷附答案

2015九年级(上)期末数学试卷一、选择题:(本大题共10小题,每小题3分,共30分,在每小题给出四个选项中,只有一项是符合题目要求的,请把每小题的答案填题后的在括号中)1.下列各组二次根式中是同类二次根式的是()A.B.C.D.2.下列运算正确的是()A.3﹣2=1 B.=C.2=2D.÷3=3.关于x的一元二次方程(m﹣2)x2+x+m2﹣4=0有一个根为0,则m的值应为()A.2 B.﹣2 C.2或﹣2 D. 14.若关于x的一元二次方程mx2﹣2x+1=0无实数根,则一次函数y=(m﹣1)x﹣m图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限5.在下列四个图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.6.已知线段AB=7cm,现以点A为圆心,2cm为半径画⊙A;再以点B为圆心,3cm为半径画⊙B,则⊙A和⊙B的位置关系()A.内含B.相交C.外切D.外离7.如图,△ABC中,∠B=90°,∠C=30°,AB=1,将△ABC绕顶点A旋转180°,点C落在C′处,则CC′的长为()A.4B. 4 C.2D.28.如图,AB是半圆O的直径,∠BAC=60°,D是半圆上任意一点,那么∠D的度数是()A.30° B.45° C.60° D.90°9.下列事件属于随机事件的有()①当室外温度低于﹣10℃时,将一碗清水放在室外会结冰;②经过城市中某有交通信号灯的路口,遇到红灯;③今年春节会下雪;④5,4,9的三根木条组成三角形.A.② B.②④ C.②③ D.①④10.在拼图游戏中,从图1的四张纸片中,任取两张纸片,能拼成“小房子”(如图2)的概率等于()A.B.C.D.二、填空题(本大题共8小题,每小题3分,共24分)11.使有意义,则x的取值范围是.12.一个正多边形,它的一个外角等于与它相邻内角的,则这个多边形是.13.已知代数式x2﹣4x﹣2的值为3,则代数式2x2﹣8x﹣5的值为.14.直径分别为4和8的两圆相切,那么两圆的圆心距为.15.如图,把△ABC绕点C顺时针旋转25°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A=.16.如图,随机闭合开关S1,S2,S3中的两个,能够让灯泡发光的概率为.17.用一张半径为24cm的扇形纸片做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计),如果做成的圆锥形小丑帽子的底面半径为10cm,那么这张扇形纸片的面积是cm2.18.一个口袋里有25个球,其中红球、黑球、黄球若干个,从口袋中随机摸出一球记下其颜色,再把它放回口袋中摇匀,重复上述过程,共试验200次,其中有120次摸到黄球,由此估计袋中的黄球有个.三.解答题(本大题共8小题,共66分,解答应写出文字说明,演算步骤或证明过程)19.计算(1);(2).20.解下列方程(1)x2+2x﹣3=0(2)x(2x﹣5)=2x﹣5.21.如图,利用关于原点对称的点的坐标特点,画出△ABC关于原点O对称的△A1B1C1,并写出点A1、B1、C1的坐标.22.已知电流在一定时间内正常通过电子元件的概率为0.5,分别求在一定时间内A、B之间电流通过的概率.(要求:解答分两步:第一步用列举法写出各种可能的结果;第二步,求A、B之间电流通过的概率.)23.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D为⊙O上一点,OD⊥AC,垂足为E,连接BD.(1)求证:BD平分∠ABC;(2)当∠ODB=30°,BC=,求⊙O的半径.24.如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD (围墙MN最长可利用25m),现在已备足可以砌50m长的墙的材料,试设计一种砌法,使矩形花园的面积为300m2.25.在4张完全相同的卡片正面分别写上数字1,2,3,3,现将它们的背面朝上洗均匀.(1)随机抽出一张卡片,求抽到数字“3”的概率;(2)若随机抽出一张卡片记下数字后放回并洗均匀,再随机抽出一张卡片,求两次都是抽到数字“3”的概率;(要求画树状图或列表求解)(3)如果再增加若干张写有数字“3”的同样卡片,洗均匀后,使得随机抽出一张卡片是数字“3”的概率为,问增加了多少张卡片?26.如图,点P在y轴上,⊙P交x轴于A、B两点,连结BP并延长交⊙P于C,过点C 的直线y=2x+b交x轴于D,且⊙P的半径为,AB=4.(1)求点B、P、C的坐标;(2)求证:CD是⊙P的切线.参考答案与试题解析一、选择题:(本大题共10小题,每小题3分,共30分,在每小题给出四个选项中,只有一项是符合题目要求的,请把每小题的答案填题后的在括号中)1.下列各组二次根式中是同类二次根式的是()A.B.C.D.考点:同类二次根式.分析:化简各选项后根据同类二次根式的定义判断.解答:解:A、=2与被开方数不同,故不是同类二次根式,故A选项错误;B、与被开方数不同,故不是同类二次根式,故B选项错误;C、与被开方数相同,是同类二次根式,故C选项正确;D、与被开方数不同,故不是同类二次根式,故D选项错误.故选:C.点评:本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.2.下列运算正确的是()A.3﹣2=1 B.=C.2=2D.÷3=考点:二次根式的混合运算.专题:计算题.分析:根据合并同类二次根式对A、B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法对D进行判断.解答:解:A、3﹣2=,所以A选项错误;B、与不能合并,所以B选项错误;C、2×2=4,所以C选项错误;D、÷3=3÷3=,所以D选项正确.故选D.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.3.关于x的一元二次方程(m﹣2)x2+x+m2﹣4=0有一个根为0,则m的值应为()A.2 B.﹣2 C.2或﹣2 D. 1考点:一元二次方程的解;一元二次方程的定义.分析:把x=0代入已知方程,列出关于m的新方程,通过解新方程可以求得m的值.解答:解:∵关于x的一元二次方程(m﹣2)x2+x+m2﹣4=0有一个根为0,∴m2﹣4=0且m﹣2≠0,解得,m=﹣2.故选:B.点评:本题考查了一元二次方程的解的定义和一元二次方程的定义.解题时,注意一元二次方程的二次项系数一定不能等于零.4.若关于x的一元二次方程mx2﹣2x+1=0无实数根,则一次函数y=(m﹣1)x﹣m图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限考点:根的判别式;一次函数图象与系数的关系.专题:计算题.分析:根据判别式的意义得到m≠0且△=(﹣2)2﹣4m<0,解得m>1,然后根据一次函数的性质可得到一次函数y=(m﹣1)x﹣m图象经过第一、三象限,且与y轴的交点在x 轴下方.解答:解:根据题意得m≠0且△=(﹣2)2﹣4m<0,解得m>1,∵m﹣1>0,﹣m<0,∴一次函数y=(m﹣1)x﹣m图象经过第一、三、四象限.故选B.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一次函数图象与系数的关系.5.在下列四个图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、既是轴对称图形,又是中心对称图形,故本选项正确;B、是轴对称图形,不是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项错误;D、既是轴对称图形,不是中心对称图形,故本选项错误.故选A.点评:本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.已知线段AB=7cm,现以点A为圆心,2cm为半径画⊙A;再以点B为圆心,3cm为半径画⊙B,则⊙A和⊙B的位置关系()A.内含B.相交C.外切D.外离考点:圆与圆的位置关系.分析:针对两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系得出两圆位置关系.解答:解:依题意,线段AB=7cm,现以点A为圆心,2cm为半径画⊙A;再以点B为圆心,3cm为半径画⊙B,∴R+r=3+2=5,d=7,所以两圆外离.故选D.点评:此题主要考查了圆与圆的位置关系,圆与圆的位置关系与数量关系间的联系.此类题为中考热点,需重点掌握.7.如图,△ABC中,∠B=90°,∠C=30°,AB=1,将△ABC绕顶点A旋转180°,点C落在C′处,则CC′的长为()A.4B. 4 C.2D.2考点:解直角三角形;旋转的性质.专题:计算题.分析:因为在△ABC中,∠B=90°,∠C=30°,AB=1,由此得到AC=2,又根据旋转可以推出AC′=AC,即可求出CC′.解答:解:∵在△ABC中,∠B=90°,∠C=30°,AB=1,∴AC=2.∵将△ABC绕顶点A旋转180°,点C落在C′处,AC′=AC=2,∴CC′=4.故选B.点评:此题主要考查学生对旋转的性质及综合解直角三角形的运用能力.8.如图,AB是半圆O的直径,∠BAC=60°,D是半圆上任意一点,那么∠D的度数是()A.30° B.45° C.60° D.90°考点:圆周角定理;等边三角形的判定与性质.分析:首先连接BC,由AB是半圆的直径,根据直径所对的圆周角是直角即可求得∠D的度数.解答:解:连接BC,∵AB是半圆的直径∴∠ACB=90°∵∠BAC=60°,∴∠ABC=90°﹣∠BAC=30°,∴∠D=∠ABC=30°.故选A.点评:本题题考查了圆周角定理此题比较简单,注意掌握辅助线的作法,注意数形结合思想的应用.9.下列事件属于随机事件的有()①当室外温度低于﹣10℃时,将一碗清水放在室外会结冰;②经过城市中某有交通信号灯的路口,遇到红灯;③今年春节会下雪;④5,4,9的三根木条组成三角形.A.② B.②④ C.②③ D.①④考点:随机事件.分析:根据不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,对各小题分析判断即可得解.解答:解:①当室外温度低于﹣10℃时,将一碗清水放在室外会结冰,是必然事件;②经过城市中某有交通信号灯的路口,遇到红灯,是随机事件;③今年春节会下雪,是随机事件;④5,4,9的三根木条组成三角形,是不可能事件,所以,属于随机事件的是②③.故选C.点评:本题考查了随机事件,关键在于正确理解必然事件、不可能事件、随机事件的概念.用到的知识点为:确定事件包括必然事件和不可能事件.必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.10.在拼图游戏中,从图1的四张纸片中,任取两张纸片,能拼成“小房子”(如图2)的概率等于()A.B.C.D.考点:列表法与树状图法.分析:先用列举法求出两张纸片的所有组合情况,再根据概率公式解答.解答:解:任取两张纸片,能拼成“小房子”(如图2)的概率等于,即.故选D.点评:用到的知识点为:概率=所求情况数与总情况数之比.二、填空题(本大题共8小题,每小题3分,共24分)11.使有意义,则x的取值范围是x≥﹣且x≠0.考点:二次根式有意义的条件;分式有意义的条件.分析:根据被开方数大于等于0,分母不等于0列式求解即可.解答:解:根据题意得,3x+2≥0且x≠0,解得x≥﹣且x≠0.故答案为:x≥﹣且x≠0.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.12.一个正多边形,它的一个外角等于与它相邻内角的,则这个多边形是正十边形.考点:多边形内角与外角.专题:应用题.分析:外角等于与它不相邻的内角的四分之一可知该多边形内角为144°,外角36°,根据正多边形外角和=360°,利用360÷36即可解决问题.解答:解:∵一个正多边形它的一个外角等于与它相邻的内角的,∴它的每一个外角=180÷5=36°,∴它的边数=360÷36=10.故答案为正十边形.点评:本题主要考查了多边形的外角和等于360度,难度适中.13.已知代数式x2﹣4x﹣2的值为3,则代数式2x2﹣8x﹣5的值为5.考点:代数式求值.专题:计算题.分析:根据题意求出x2﹣4x的值,原式前两项提取2变形后,将x2﹣4x的值代入计算即可求出值.解答:解:∵x2﹣4x﹣2=3,即x2﹣4x=5,∴原式=2(x2﹣4x)﹣5=10﹣5=5.故答案为:5.点评:此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.14.直径分别为4和8的两圆相切,那么两圆的圆心距为2或6.考点:圆与圆的位置关系.分析:两圆相切,则两圆外切或内切.当两圆外切时,圆心距等于两圆半径之和;当两圆内切时,圆心距等于两圆半径之差.解答:解:当两圆外切时,则圆心距等于4÷2+8÷2=6;当两圆内切时,则圆心距等于8÷2﹣4÷2=2.故答案为:2或6.点评:此题考查了两圆的位置关系与数量之间的联系.注意:两圆相切,则两圆内切或外切.15.如图,把△ABC绕点C顺时针旋转25°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A=65°.考点:旋转的性质.专题:计算题.分析:根据旋转的性质对应点与旋转中心的连线段的夹角等于旋转角得到∠ACA′=25°,而∠A′DC=90°,则∠A′=90°﹣25°=65°,然后再根据旋转的性质即可得到∠A=65°.解答:解:∵△ABC绕点C顺时针旋转25°,得到△A′B′C,∴∠ACA′=25°,又∵∠A′DC=90°,∴∠A′=90°﹣25°=65°,∴∠A=65°.故答案为65°.点评:本题考查了旋转的性质:旋转前后两图形全等,即对应角相等,对应边相等,对应点与旋转中心的连线段的夹角等于旋转角.16.如图,随机闭合开关S1,S2,S3中的两个,能够让灯泡发光的概率为.考点:概率公式.专题:跨学科.分析:根据题意可得:随机闭合开关S1,S2,S3中的两个,有3种方法,其中有两种能够让灯泡发光,故其概率为.解答:解:P(灯泡发光)=.故本题答案为:.点评:本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.17.用一张半径为24cm的扇形纸片做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计),如果做成的圆锥形小丑帽子的底面半径为10cm,那么这张扇形纸片的面积是240πcm2.考点:圆锥的计算.专题:压轴题;数形结合.分析:易得圆锥的底面周长,利用侧面积公式可得扇形纸片的面积.解答:解:∵圆锥的底面周长为20π,∴扇形纸片的面积=×20π×24=240πcm2.故答案为240π.点评:考查圆锥的计算,用到的知识点为:圆锥的底面周长=侧面展开图的弧长;圆锥的侧面积=LR.18.一个口袋里有25个球,其中红球、黑球、黄球若干个,从口袋中随机摸出一球记下其颜色,再把它放回口袋中摇匀,重复上述过程,共试验200次,其中有120次摸到黄球,由此估计袋中的黄球有15个.考点:利用频率估计概率.分析:先求出试验200次摸到黄球的频率,再乘以总球的个数即可.解答:解:∵口袋里有25个球,试验200次,其中有120次摸到黄球,∴摸到黄球的频率为:=,∴袋中的黄球有25×=15个.故估计袋中的黄球有15个.点评:用到的知识点为:部分的具体数目=总体数目×相应频率.三.解答题(本大题共8小题,共66分,解答应写出文字说明,演算步骤或证明过程)19.计算(1);(2).考点:二次根式的混合运算.专题:计算题.分析:(1)先把各二次根式化为最简二次根式,然后合并即可;(2)根二次根式的乘除法则进行计算.解答:解:(1)原式=2+﹣2=;(2)原式=2×××=.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.20.解下列方程(1)x2+2x﹣3=0(2)x(2x﹣5)=2x﹣5.考点:解一元二次方程-因式分解法.专题:计算题.分析:(1)利用因式分解法解方程;(2)先移项得到x(2x﹣5)﹣(2x﹣5)=0,再利用因式分解法解方程.解答:解:(1)(x﹣1)(x+3)=0,x﹣1=0或x+3=0,所以x1=1,x2=﹣3;(2)x(2x﹣5)﹣(2x﹣5)=0,(2x﹣5)(x﹣1)=0,2x﹣5=0或x﹣1=0,所以x1=,x2=1.点评:本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).21.如图,利用关于原点对称的点的坐标特点,画出△ABC关于原点O对称的△A1B1C1,并写出点A1、B1、C1的坐标.考点:作图-旋转变换.专题:作图题.分析:根据平面直角坐标系找出点A、B、C关于原点对称的A1、B1、C1的位置,然后顺次连接即可,再根据关于原点对称的点的横坐标与纵坐标写出A1、B1、C1的坐标.解答:解:△A1B1C1如图所示;A1(3,﹣2),B1(2,1),C1(﹣2,﹣3).点评:本题考查了利用旋转变换作图,根据平面直角坐标系准确找出对应点的位置是解题的关键.22.已知电流在一定时间内正常通过电子元件的概率为0.5,分别求在一定时间内A、B之间电流通过的概率.(要求:解答分两步:第一步用列举法写出各种可能的结果;第二步,求A、B之间电流通过的概率.)考点:列表法与树状图法.专题:计算题.分析:画树状图得出所有等可能的情况数,找出通电的情况,即可求出所求概率.解答:解:画树状图,如图所示:,得出所有等可能的情况有4种,其中通电的占3种,则P(通电)=.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.23.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D为⊙O上一点,OD⊥AC,垂足为E,连接BD.(1)求证:BD平分∠ABC;(2)当∠ODB=30°,BC=,求⊙O的半径.考点:圆周角定理;勾股定理;垂径定理.专题:证明题.分析:(1)根据垂径定理得到弧CD=弧AD,然后根据圆周角定理得∠CBD=∠DBA;(2)由于∠OBD=∠ODB=30°,则∠ABC=60°,再根据半圆(或直径)所对的圆周角是直角得到∠ACB=90°,然后根据含30度的直角三角形三边的关系.可得到直径AB的长,则即可得到圆的半径.解答:(1)证明:∵OD⊥AC,∴弧CD=弧AD,∴∠CBD=∠DBA,∴BD平分∠ABC;(2)解:∵OD=OB,∴∠OBD=∠ODB=30°,∴∠ABC=60°,∵AB是⊙O的直径,∴∠ACB=90°,在Rt△ABC中,∠A=30°,BC=,∴AB=2BC=2,∴⊙O的半径为.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了垂径定理和含30度的直角三角形三边的关系.24.如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD (围墙MN最长可利用25m),现在已备足可以砌50m长的墙的材料,试设计一种砌法,使矩形花园的面积为300m2.考点:一元二次方程的应用.分析:根据可以砌50m长的墙的材料,即总长度是50米,AB=x米,则BC=(50﹣2x)米,再根据矩形的面积公式列方程,解一元二次方程即可.解答:解:设AB=x米,则BC=(50﹣2x)米.根据题意可得,x(50﹣2x)=300,解得:x1=10,x2=15,当x=10,BC=50﹣10﹣10=30>25,故x1=10(不合题意舍去),当x=15时,BC=50﹣2×15=20(米).答:可以围成AB的长为15米,BC为20米的矩形.点评:本题考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系求解,注意围墙MN最长可利用25m,舍掉不符合题意的数据.25.在4张完全相同的卡片正面分别写上数字1,2,3,3,现将它们的背面朝上洗均匀.(1)随机抽出一张卡片,求抽到数字“3”的概率;(2)若随机抽出一张卡片记下数字后放回并洗均匀,再随机抽出一张卡片,求两次都是抽到数字“3”的概率;(要求画树状图或列表求解)(3)如果再增加若干张写有数字“3”的同样卡片,洗均匀后,使得随机抽出一张卡片是数字“3”的概率为,问增加了多少张卡片?考点:列表法与树状图法;概率公式.分析:(1)由有4张完全相同的卡片正面分别写上数字1,2,3,3,抽到数字“3”的有2种情况,利用概率公式求解即可求得答案;(2)首先根据题意列出表格,然后由表格求得所有等可能的结果与两次都是抽到数字“3”的情况,再利用概率公式求解即可求得答案;(3)首先设增加了x张卡片,即可得方程:=,解此方程即可求得答案.解答:解:(1)∵有4张完全相同的卡片正面分别写上数字1,2,3,3,抽到数字“3”的有2种情况,∴随机抽出一张卡片,抽到数字“3”的概率为:=;(2)列表得:第二张第一张1 2 3 31 (1,1)(1,2)(1,3)(1,3)2 (2,1)(2,2)(2,3)(2,3)3 (3,1)(3,2)(3,3)(3,3)3 (3,1)(3,2)(3,3)(3,3)∵共有16种等可能的结果,两次都是抽到数字“3”的有4种情况,∴P(两次都是抽到数字“3”)==;(3)设增加了x张卡片,则有:=,解得:x=4,∴增加了4张卡片.点评:此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.26.如图,点P在y轴上,⊙P交x轴于A、B两点,连结BP并延长交⊙P于C,过点C 的直线y=2x+b交x轴于D,且⊙P的半径为,AB=4.(1)求点B、P、C的坐标;(2)求证:CD是⊙P的切线.考点:切线的判定;一次函数图象上点的坐标特征;全等三角形的判定与性质.分析:(1)连结AC,由于BC是圆P的直径,那么∠CAB=90°.解Rt△ABC,得出AC==2,由垂径定理得出OB=OA=2,根据三角形中位线定理得出OP=AC=1,从而求出点B、P、C的坐标;(2)将C(﹣2,2)代入y=2x+b,利用待定系数法求出过点C的直线解析式为y=2x+6,得到D(﹣3,0),AD=1.再利用SAS证明△ADC≌△OPB,得出∠DCA=∠B,然后证明∠BCD=90°,根据切线的判定定理证明CD是⊙P的切线.解答:(1)解:连结AC.∵BC是⊙P的直径,∴∠CAB=90°.在Rt△ABC中,∵∠CAB=90°,BC=2,AB=4,∴AC==2,∵OP⊥AB,∴OB=OA=2,∴OP=AC=1,∴P(0,1),B(2,0),C(﹣2,2);(2)证明:将C(﹣2,2)代入y=2x+b,得﹣4+b=2,解得b=6∴y=2x+6,当y=0时,则x=﹣3,∴D(﹣3,0),∴AD=1.在△ADC和△OPB中,,∴△ADC≌△OPB(SAS),∴∠DCA=∠B.∵∠B+∠ACB=90°,∴∠DCA+∠ACB=90°,即∠BCD=90°,∴CD是⊙P的切线.点评:本题考查了切线的判定,垂径定理,勾股定理,全等三角形的判定与性质等知识点.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.。

2015届九年级上期末数学试卷一解析版

2015届九年级上期末数学试卷一解析版

2015届九年级上学期期末数学试卷一、选择题:每小题2分,共16分.四个选项中只有一项是正确的.1.(2分)如图,所给三视图的几何体是()A.球B.圆柱C.圆锥D.三棱锥2.(2分)下列一元二次方程中,有两个不相等实数根的是()A.x2﹣2x﹣6=0 B.x2﹣4x+4=0 C.3x2+2x+1=0 D.x2+3x+6=03.(2分)根据下面表格中列出来的数据,你猜想方程x2+2x﹣100=0有一个根大约是()x9.03 9.04 9.05 9.06 9.07x2+2x﹣100 ﹣0.400 ﹣0.198 0.003 0.203 0.405A.9.025 B.9.035 C.9.045 D.9.0554.(2分)如图,晚上小亮在路灯下散步,在小亮由A处走到B处这一过程中,他在地上的影子()A.逐渐变短B.逐渐变长C.先变短后变长D.先变长后变短5.(2分)随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率为()A.B.C.D.6.(2分)一个不透明的口袋里装有除颜色外都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了100次,其中有10次摸到白球.因此小亮估计口袋中的红球大约有()个.A.45 B.48 C.50 D.557.(2分)如图,菱形OABC的顶点O是原点,顶点B在y轴上,菱形的两条对角线的长分别是6和4,反比例函数y=的图象经过点C,则这个反比例函数的表达式为()A.y=﹣B.y=﹣C.y=D.y=8.(2分)如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB和BC上移动,记P A=x,点D到直线P A的距离为y,则y关于x的函数图象大致是()A.B.C.D.二、填空题:每小题2分,共16分.9.(2分)方程x2=5x的根是.10.(2分)正比例函数y=6x的图象与反比例函数y=的图象的交点在象限.11.(2分)若==≠0,且a+3c﹣2b=16,则b=.[来源:学#科#网]12.(2分)收入倍增计划是2012年11月中国共产党第十八次全国代表大会报告中提出的.“2020年实现国内生产总值和城乡居民人均收入比2010年翻一番”,假设2010年某地城乡居民人均收入为4万元,到2020年该地城乡居民人均收入达到8万元.设每五年的平均增长率为a%,则可列方程为.13.(2分)如图所示,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆.小丽站在离南岸边15米的点P处看北岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为米.14.(2分)如图,在直角坐标系中,点E(﹣4,2),F(﹣2,﹣2),以O为位似中心,按2:1的相似比把△EFO缩小为△E′F′O,则点E的对应点E′的坐标为.15.(2分)如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,则EF的最小值为.16.(2分)已知△ABC是一张等腰直角三角形纸板,∠C=90°,AC=BC=2.要在这张纸板中剪取正方形.如图1所示的剪法称为第1次剪取,记所得正方形面积为s1;按照图1的剪法,在余下的△ADE和△BDF中,分别剪取两个全等的正方形,称为第2次剪取,并记这两个正方形面积之和为s2(如图2);再在余下的四个三角形中,用同样的方法分别剪去正方形,得到四个全等的正方形,成为第3次剪取,并记这四个正方形面积之和为S3(如图3);继续剪取下去…;则第n此剪取时,S n=.三、解答题:每题7分,共14分.17.(7分)解方程:x2+2x﹣5=0.18.(7分)如图,下列是一个机器零件的毛坯,请将这个机器零件的三视图补充完整.四、解答题:每题8分,共16分.19.(8分)有三张正面分别写有数字﹣2,﹣1,1的卡片,它们的背面完全相同,将这三张卡片背面朝上洗匀后随机抽取一张,以其正面的数字作为x的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数字作为y的值,两次结果记为(x,y).(1)用树状图或列表法表示(x,y)所有可能出现的结果;(2)若(x,y)表示平面直角坐标系的点,求点(x,y)在图象上的概率.20.(8分)新兴商场经营某种儿童益智玩具.已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.每件玩具的售价定为多少元时,月销售利润恰为2520元?五、解答题:每题9分,共18分.21.(9分)病人按规定的剂量服用某种药物,测得服药后2小时,每毫升血液中的含药量达到最大值为4毫克.已知服药后,2小时前每毫升血液中的含药量y(毫克)与时间x(小时)成正比例,2小时后y与x成反比例(如图所示).根据以上信息解答下列问题.(1)求y与x之间的函数关系式;并写出自变量x的取值范围;(2)若每毫升血液中的含药量不低于2毫克时治疗有效,那么病人服药一次治疗疾病的有效时间是多长?22.(9分)如图,四边形OABC是矩形,四边形ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=位于第一象限的图象上,OA=1,OC=6.(1)求反比例函数的表达式;(2)求正方形ADEF的边长;(3)根据图象直接写出直线BE对应的一次函数的函数值大于反比例函数y=的值时,自变量x的取值范围.六、解答题:每题10分,佛纳甘20分.23.(10分)如图1,在正方形ABCD中,E是BC边上的动点(点E不与端点B、C重合),以AE为边,在直线BC的上方作矩形AEFG.使顶点G恰好落在射线CD上,过点F作FH⊥BC,交BC的延长线于点H.(1)求证:①矩形AEFG是正方形;②BE=HC;(2)若题设中动点E在BC的延长线上,其他条件不变,请在图2中补全图形,猜想(1)中的两个结论是否成立,请直接写出结论,不需要证明.24.(10分)如图,在△ABC中,AD是∠BAC的平分线,AD的垂直平分线EF交CB的延长线于点F,交AD于点E,交AC于点M.[来源:学§科§网Z§X§X§K](1)△ACF与△BAF相似吗?请说明理由;(2)如果AF=6,BD=2,AC=4,求DC和AM的长.参考答案与试题解析一、选择题:每小题2分,共16分.四个选项中只有一项是正确的.[来源:学科网] 1.(2分)如图,所给三视图的几何体是()A.球B.圆柱C.圆锥D.三棱锥考点:由三视图判断几何体.分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.解答:解:主视图和左视图都是等腰三角形,那么此几何体为锥体,由俯视图为圆,可得此几何体为圆锥.故选:C.点评:本题考查了由三视图判断几何体的知识,解题的关键是了解主视图和左视图的大致轮廓为长方形的几何体为锥体.2.(2分)下列一元二次方程中,有两个不相等实数根的是()A.x2﹣2x﹣6=0 B.x2﹣4x+4=0 C.3x2+2x+1=0 D.x2+3x+6=0考点:根的判别式.分析:判断上述四个方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.解答:解:A、∵△=b2﹣4ac=(﹣2)2﹣4×1×(﹣6)=28>0,∴方程有两个不相等的实数根,故本选项正确;B、∵△=b2﹣4ac=(﹣4)2﹣4×1×4=0,∴方程有两个相等的实数根,故本选项错误;C、∵△=b2﹣4ac=22﹣4×3×1=﹣8<0,∴方程没有实数根,故本选项错误;D、∵△=b2﹣4ac=32﹣4×1×6=﹣15<0,∴方程没有实数根,故本选项错误;故选A.点评:本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.3.(2分)根据下面表格中列出来的数据,你猜想方程x2+2x﹣100=0有一个根大约是()x9.03 9.04 9.05 9.06 9.07x2+2x﹣100 ﹣0.400 ﹣0.198 0.003 0.203 0.405A.9.025 B.9.035 C.9.045 D.9.055考点:估算一元二次方程的近似解.专题:计算题.分析:根据函数y=x2+2x﹣100的图象与x轴的交点的横坐标就是方程x2+2x﹣100=0的根来解决此题.解答:解:方程x2+2x﹣100=0的一个根就是函数y=x2+2x﹣100的图象与x轴的一个交点,即关于函数y=x2+2x﹣100,y=0时x的值,由表格可得:当x的值是9.05时,函数值y与0最接近.因而方程的解介于9.04与9.05之间,故选C.点评:本题考查了估算一元二次方程的近似解,属于基础题,掌握函数y=ax2+bx+c的图象与x轴的交点与方程ax2+bx+c=0的根的关系是解决此题的关键所在.4.(2分)如图,晚上小亮在路灯下散步,在小亮由A处走到B处这一过程中,他在地上的影子()A.逐渐变短B.逐渐变长C.先变短后变长D.先变长后变短考点:中心投影.分析:根据中心投影的特点:等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.进行判断即可.解答:解:因为小亮由A处走到B处这一过程中离光源是由远到近再到远的过程,所以他在地上的影子先变短后变长.故选C.点评:本题综合考查了中心投影的特点和规律.中心投影的特点是:①等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长;②等长的物体平行于地面放置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.5.(2分)随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率为()A.B.C.D.考点:列表法与树状图法.分析:先求出两次掷一枚硬币落地后朝上的面的所有情况,再根据概率公式求解.解答:解:随机掷一枚均匀的硬币两次,落地后情况如下:至少有一次正面朝上的概率是,故选D.点评:本题考查了随机事件的概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.6.(2分)一个不透明的口袋里装有除颜色外都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了100次,其中有10次摸到白球.因此小亮估计口袋中的红球大约有()个.A.45 B.48 C.50 D.55考点:用样本估计总体.分析:小亮共摸了100次,其中10次摸到白球,则有90次摸到红球;摸到白球与摸到红球的次数之比为1:9,由此可估计口袋中白球和红球个数之比为1:9;即可计算出红球数.解答:解:∵小亮共摸了100次,其中10次摸到白球,则有90次摸到红球,∴白球与红球的数量之比为1:9,∵白球有5个,∴红球有9×5=45(个),故选:A.点评:本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.7.(2分)如图,菱形OABC的顶点O是原点,顶点B在y轴上,菱形的两条对角线的长分别是6和4,反比例函数y=的图象经过点C,则这个反比例函数的表达式为()A.y=﹣B.y=﹣C.y=D.y=考点:反比例函数图象上点的坐标特征;菱形的性质.专题:计算题.分析:根据菱形的性质得到OD=OB=2,CD=AC=3,CD⊥y轴,再利用k的几何意义得到|k|=×2×3,然后去绝对值即可得到满足条件的k的值,从而得到反比例函数解析式.解答:解:∵菱形OABC的顶点O是原点,∴AC与OB互相垂直平分,∴OD=OB=2,CD=AC=3,CD⊥y轴,∴|k|=×2×3,而k<0,∴k=﹣6,∴反比例函数解析式为y=﹣.故选B.点评:本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了菱形的性质.8.(2分)如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB和BC上移动,记P A=x,点D到直线P A的距离为y,则y关于x的函数图象大致是()A.B.C.D.考点:动点问题的函数图象.专题:压轴题;动点型.分析:①点P在AB上时,点D到AP的距离为AD的长度,②点P在BC上时,根据同角的余角相等求出∠APB=∠P AD,再利用相似三角形的列出比例式整理得到y与x的关系式,从而得解.解答:解:①点P在AB上时,0≤x≤3,点D到AP的距离为AD的长度,是定值4;②点P在BC上时,3<x≤5,∵∠APB+∠BAP=90°,∠P AD+∠BAP=90°,∴∠APB=∠P AD,又∵∠B=∠DEA=90°,∴△ABP∽△DEA,∴=,即=,∴y=,纵观各选项,只有B选项图形符合.故选:B.点评:本题考查了动点问题函数图象,主要利用了相似三角形的判定与性质,难点在于根据点P的位置分两种情况讨论.二、填空题:每小题2分,共16分.9.(2分)方程x2=5x的根是x1=0,x2=5.考点:解一元二次方程-因式分解法.专题:计算题.分析:先把方程变形为x2﹣5x=0,把方程左边因式分解得x(x﹣5)=0,则有x=0或x﹣5=0,然后解一元一次方程即可.解答:解:x2﹣5x=0,∴x(x﹣5)=0,∴x=0或x﹣5=0,∴x1=0,x2=5.故答案为x1=0,x2=5.点评:本题考查了利用因式分解法解一元二次方程:先把方程变形为一元二次方程的一般形式,然后把方程左边因式分解,这样就把方程转化为两个一元一次方程,再解一元一次方程即可.10.(2分)正比例函数y=6x的图象与反比例函数y=的图象的交点在一、三象限.考点:反比例函数与一次函数的交点问题.分析:根据两函数解析式可知两函数的图象在一、三象限,故可知其交点也在第一、三象限.解答:解:∵y=6x,y=,∴正比例函数和反比例函数图象过一、三象限,∴两函数图象的交点在一、三象限,故答案为:一、三.点评:本题主要考查函数图象,掌握正比例函数和反比例函数当比例系数大于0时图象过一、三象限,小于0时过二四象限是解题的关键.11.(2分)若==≠0,且a+3c﹣2b=16,则b=10.考点:比例的性质.分析:根据比例的性质,可用b表示a,用b表示c,再根据代入法,可得关于b的一元一次方程,根据解一元一次方程,可得答案.解答:解:由==≠0,得a=,c=.把a=,c=代入方程,得+3×﹣2b=16.解得b=10,故答案为:10.点评:本题考查了比例的性质,利用比例的性质:用b表示a,用b表示c是解题关键.12.(2分)收入倍增计划是2012年11月中国共产党第十八次全国代表大会报告中提出的.“2020年实现国内生产总值和城乡居民人均收入比2010年翻一番”,假设2010年某地城乡居民人均收入为4万元,到2020年该地城乡居民人均收入达到8万元.设每五年的平均增长率为a%,则可列方程为4(1+a%)2=8.[来源:]考点:由实际问题抽象出一元二次方程.专题:增长率问题.分析:利用一般用增长后的量=增长前的量×(1+增长率)求出即可.解答:解:依题意得2020年人均收入为4(1+a%)2,∴4(1+a%)2=8.故答案为:4(1+a%)2=8.[来源:Z|xx|]点评:本题考查了由实际问题抽象出一元二次方程,找到关键描述语,就能找到等量关系,是解决问题的关键.同时要注意增长率问题的一般规律.[来源:]13.(2分)如图所示,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆.小丽站在离南岸边15米的点P处看北岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为22.5米.考点:平行线分线段成比例.专题:压轴题.分析:根据题意,河两岸平行,故可根据平行线分线段成比例来解决问题,列出方程,求解即可.解答:解:如下图,设河宽为h,∵AB∥CD由平行线分线段成比例定理得:,解之得:h=22.5,所以河宽为22.5米.故答案为:22.5.点评:本题考查平行线分线段成比例定理的实际应用.14.(2分)如图,在直角坐标系中,点E(﹣4,2),F(﹣2,﹣2),以O为位似中心,按2:1的相似比把△EFO缩小为△E′F′O,则点E的对应点E′的坐标为(2,﹣1)或(﹣2,1).考点:位似变换;坐标与图形性质.分析:由在直角坐标系中,点E(﹣4,2),F(﹣2,﹣2),以O为位似中心,按2:1的相似比把△EFO缩小为△E′F′O,利用位似图形的性质,即可求得点E的对应点E′的坐标.解答:解:∵点E(﹣4,2),以O为位似中心,按2:1的相似比把△EFO缩小为△E′F′O,∴点E的对应点E′的坐标为:(2,﹣1)或(﹣2,1).故答案为:(2,﹣1)或(﹣2,1).点评:此题考查了位似图形的性质.此题比较简单,注意熟记位似图形的性质是解此题的关键.15.(2分)如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,则EF的最小值为2.4.考点:矩形的判定与性质;垂线段最短.分析:根据三个角都是直角的四边形是矩形,得四边形AEPF是矩形,根据矩形的对角线相等,得EF=AP,则EF的最小值即为AP的最小值,根据垂线段最短,知:AP的最小值即等于直角三角形ABC斜边上的高.解答:解:连接AP,∵在△ABC中,AB=3,AC=4,BC=5,∴AB2+AC2=BC2,即∠BAC=90°.又∵PE⊥AB于E,PF⊥AC于F,∴四边形AEPF是矩形,∴EF=AP,[来源:Z§xx§]∵AP的最小值即为直角三角形ABC斜边上的高,即2.4,∴EF的最小值为2.4,故答案为:2.4.点评:本题考查了矩形的性质和判定,勾股定理的逆定理,直角三角形的性质的应用,要能够把要求的线段的最小值转化为便于求的最小值得线段是解此题的关键.16.(2分)已知△ABC是一张等腰直角三角形纸板,∠C=90°,AC=BC=2.要在这张纸板中剪取正方形.如图1所示的剪法称为第1次剪取,记所得正方形面积为s1;按照图1的剪法,在余下的△ADE和△BDF中,分别剪取两个全等的正方形,称为第2次剪取,并记这两个正方形面积之和为s2(如图2);再在余下的四个三角形中,用同样的方法分别剪去正方形,得到四个全等的正方形,成为第3次剪取,并记这四个正方形面积之和为S3(如图3);继续剪取下去…;则第n此剪取时,S n=()n﹣1.考点:相似三角形的判定与性质.专题:规律型.分析:根据题意可求得△ABC的面积,且可得出每个正方形是所以三角形面积的一半,即为上一次剪得的正方形面积的一半,可得出S n与△ABC的面积之间的关系,可求得答案.解答:解:∵AC=BC=2,∴∠A=∠B=45°,∵四边形CEDF为正方形,∴DE⊥AC,∴AE=DE=DF=BF,∴S正方形CEDF=CE•CF=AC•BC=S△ABC=1,同理每次剪得的正方形的面积都是所在三角形面积的一半,∴S2=S△AED+S△BDF=S正方形CEDF=S1,同理可得S3=S2=()2S1,依此类推可得S n=()n﹣1S1=()n﹣1,故答案为:()n﹣1.点评:本题主要考查正方形的性质,根据条件找到S n与S1之间的关系是解题的关键.注意规律的总结与归纳.三、解答题:每题7分,共14分.17.(7分)解方程:x2+2x﹣5=0.考点:解一元二次方程-配方法.专题:方程思想.分析:配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.解答:解:∵x2+2x﹣5=0,∴x2+2x=5,∴x2+2x+1=5+1,∴(x+1)2=6,∴x+1=±,∴x=﹣1±.点评:此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.18.(7分)如图,下列是一个机器零件的毛坯,请将这个机器零件的三视图补充完整.考点:作图-三视图.分析:利用已知几何体的形状进而补全几何体的三视图.解答:解:如图所示:点评:此题主要考查了画几何体的三视图,注意三视图中实线与虚线.四、解答题:每题8分,共16分.19.(8分)有三张正面分别写有数字﹣2,﹣1,1的卡片,它们的背面完全相同,将这三张卡片背面朝上洗匀后随机抽取一张,以其正面的数字作为x的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数字作为y的值,两次结果记为(x,y).(1)用树状图或列表法表示(x,y)所有可能出现的结果;(2)若(x,y)表示平面直角坐标系的点,求点(x,y)在图象上的概率.考点:列表法与树状图法;反比例函数图象上点的坐标特征.分析:(1)根据题意列出图表,即可表示(x,y)所有可能出现的结果;(2)根据反比例函数的性质求出在图象上的点,即可得出答案.解答:解:(1)用列表法表示(x,y)所有可能出现的结果如下:﹣2 ﹣1 1﹣2 (﹣2,﹣2)(﹣1,﹣2)(1,﹣2)﹣1 (﹣2,﹣1)(﹣1,﹣1)(1,﹣1)1 (﹣2,1)(﹣1,1)(1,1)(2)∵点(x,y)在图象上的只有(﹣2,1),(1,﹣2),∴点(x,y)在图象上的概率.点评:此题考查了树状图法与列表法求概率.此题难度不大,解题的关键是根据题意画出树状图或列出表格,注意树状图法与列表法可以不重不漏地表示出所有等可能的结果,注意用到的知识点为:概率=所求情况数与总情况数之比.20.(8分)新兴商场经营某种儿童益智玩具.已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.每件玩具的售价定为多少元时,月销售利润恰为2520元?考点:一元二次方程的应用.专题:销售问题.分析:根据题意知一件玩具的利润为(30+x﹣20)元,月销售量为(230﹣10x),然后根据月销售利润=一件玩具的利润×月销售量列出一元二次方程求解即可.解答:解:设每件玩具上涨x元,则售价为(30+x)元,则根据题意,得(30+x﹣20)(230﹣10x)=2520.整理方程,得x2﹣13x+22=0.解得:x1=11,x2=2,当x=11时,30+x=41>40,∴x=11 不合题意,舍去.∴x=2,∴每件玩具售价为:30+2=32(元).答:每件玩具的售价定为32元时,月销售利润恰为2520元.点评:考查了一元二次方程的应用,解题的关键是能够了解总利润的计算方法,难度不大.五、解答题:每题9分,共18分.21.(9分)病人按规定的剂量服用某种药物,测得服药后2小时,每毫升血液中的含药量达到最大值为4毫克.已知服药后,2小时前每毫升血液中的含药量y(毫克)与时间x(小时)成正比例,2小时后y与x成反比例(如图所示).根据以上信息解答下列问题.(1)求y与x之间的函数关系式;并写出自变量x的取值范围;(2)若每毫升血液中的含药量不低于2毫克时治疗有效,那么病人服药一次治疗疾病的有效时间是多长?考点:反比例函数的应用.分析:(1)根据点(2,4)利用待定系数法求正比例函数解形式;根据点(2,4)利用待定系数法求反比例函数解形式;(2)根据两函数解析式求出函数值是2时的自变量的值,即可求出有效时间.解答:解:(1)设正比例函数的表达式为y=kx,根据图象知,正比例函数的图象经过点(2,4),[来源:学科网]则2k=4.解得k=2.所以正比例函数表达式为y=2x(0≤x≤2);设反比例函数的表达式为y=,根据图象知,反比例函数的图象经过点(2,4),则,解得k=8.所以,所求的反比例函数表达为y=(x>2).(2)由题意,当y=2时,即2x=2,解得x=1.=2,解得x=4.∴4﹣1=3(小时).答:病人服药一次,治疗疾病的有效时间是3小时.点评:本题主要考查图象的识别能力和待定系数法求函数解形式,是近年2015届中考的热点之一.22.(9分)如图,四边形OABC是矩形,四边形ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=位于第一象限的图象上,OA=1,OC=6.(1)求反比例函数的表达式;(2)求正方形ADEF的边长;(3)根据图象直接写出直线BE对应的一次函数的函数值大于反比例函数y=的值时,自变量x的取值范围.[来源:学。

2015-2016学年重庆市育才中学九年级(上)第一次月考数学试卷

2015-2016学年重庆市育才中学九年级(上)第一次月考数学试卷

2015-2016学年重庆市育才中学九年级(上)第一次月考数学试卷一、选择题(本大题共12小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号在答题卷中对应的方框涂黑。

1.(4分)(2012•新区二模)的绝对值是()A.B.C.D.2.(4分)(2015秋•重庆校级月考)计算6m8÷2m2的结果正确的是()A.4m4B.3m4C.3m6D.4m63.(4分)(2015秋•重庆校级月考)下列调查中,适宜采用全面调查(普查)方式的是()A.调查我市市民对“国庆火车票抢票软件”的使用情况B.调查重庆双福育才中学学生对“热直饮机”的使用情况C.调查重庆双福育才中学学生和家长对新校区环境的满意程度D.调查我校初三•一班学生国庆数学作业完成情况4.(4分)(2015•重庆)一元二次方程x2﹣2x=0的根是()A.x1=0,x2=﹣2 B.x1=1,x2=2 C.x1=1,x2=﹣2 D.x1=0,x2=25.(4分)(2007•临汾)如图是由相同小正方形搭的几何体的俯视图(小正方形中所标的数字表示在该位置上小正方体的个数),则这个几何体的左视图是()A.B.C.D.6.(4分)(2015•黔东南州)若ab<0,则正比例函数y=ax与反比例函数y=在同一坐标系中的大致图象可能是()A.B.C.D.7.(4分)(2015秋•重庆校级月考)如图所示,是物理课上李老师让小刘同学连接的电路图,现要求:随机同时闭合开关S1、S2、S3、S4中的两个算一次操作,则小刘同学操作一次就能使灯泡⊗发光的概率是()A.B.C.D.8.(4分)(2013•海南模拟)某商店购进一种商品,单价为30元.试销中发现这种商品每天的销售量P(件)与每件的销售价x(元)满足关系:P=100﹣2x.若商店在试销期间每天销售这种商品获得200元的利润,根据题意,下面所列方程正确的是()A.(x﹣30)(100﹣2x)=200 B.x(100﹣2x)=200C.(30﹣x)(100﹣2x)=200 D.(x﹣30)(2x﹣100)=2009.(4分)(2015秋•重庆校级月考)如图,已知:∠BAO=∠CAE=∠DCB,则下列关系式中正确的是()A.B.C.D.10.(4分)(2015秋•重庆校级月考)在▱ABCD中,∠ABC的平分线BE于边AD交于点E,与对角线AC交于点O,点E将边AD分成3:2两部分,则△AOE与△BOC的面积之比为()A.4:9或9:25 B.9:25或4:25 C.2:5 D.3:511.(4分)(2015秋•重庆校级月考)为庆祝“十•一”国庆节.重庆双福育才中学在校园里增设了一排灯花.其设计自以下图案逐步演变而成,其中圆圈代表灯花中的灯泡.n代表第n 次演变过程,s代表第3次演变后的灯泡的个数,仔细观察下列演变过程,当n=6时,s的值为()A.167 B.177 C.187 D.19712.(4分)(2015秋•重庆校级月考)如图所示,过y轴负半轴上的任意一点P,作x轴的平行线,分别与反比例函数y=﹣和y=的图象交于点A和点B,若点C是x轴上任意一点,连接AC、BC,则△ABC的面积为()A.B.7 C.D.5二、填空题(本大题共6小题,每小题4分,共24分)请把下列各题的正确答案填写在答题卡对应的横线上.13.(4分)(2015秋•重庆校级月考)分解因式:a5﹣4a3=______.14.(4分)(2015秋•重庆校级月考)已知△ABC∽△A1B1C1的面积比为1:9,则△ABC 与△A1B1C1的周长之比为______.15.(4分)(2015秋•重庆校级月考)点A(x1,y1)、B(x2、y2)、C(x3、y3)是反比例函数y=的图象上三点,且x1<x2<0<x3,用“<”将函数值y1、y2、y3连接起来______.16.(4分)(2015秋•重庆校级月考)若关于x的分是方程=2有增根,则m的值是______.17.(4分)(2015秋•重庆校级月考)有5张正面分别有数字﹣1,﹣,0,1,3的卡片,它们除数字不同外全部相同,将它们背面朝上,洗匀后从中随机的抽取一张.记卡片上的数字为a,则使以x为自变量的反比例函数y=经过二、四象限,且关于x的一元二次方程ax2﹣2x+3=0有实数解的概率是______.18.(4分)(2015秋•重庆校级月考)如图所示,在平面直角坐标系中,菱形OABC的顶点A的坐标是(﹣4,3),顶点C的坐标为(﹣5,0),将菱形OABC沿边OA所在直线翻折,得到菱形OAB′C′,若反比例函数y=(x<0)的图象刚好经过点C′,则k的值为______.三、解答题(本大题共2小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤.19.(8分)(2015秋•重庆校级月考)(1)计算:+(π﹣2015)0﹣(﹣1)2015+()﹣2(2)解方程:=.20.(8分)(2015秋•重庆校级月考)如图,已知反比例函数y=和一次函数y=2x﹣1,其中一次函数的图象经过M(a,b),N(a+1,b+k)两点.(1)求反比例函数的解析式;(2)求△OAB的面积;(3)利用(2)的结果,请问:在x轴上是否存在点P,使△AOP为等腰三角形?若存在,把符合条件的P点坐标都求出来;若不存在,请说明理由.四、解答题(本大题共4小题,每小题10分,共40分)解答时每小题必须绘出必要的演算过程或推理步骤.21.(10分)(2015•重庆校级模拟)先化简,再求值:(﹣x﹣2)÷+,其中x是方程2x2+x﹣3=0的解.22.(10分)(2015•盘锦)为响应国家的“一带一路”经济发展战略,树立品牌意识,我市质检部门对A、B、C、D四个厂家生产的同种型号的零件共2000件进行合格率检测,通过检测得出C厂家的合格率为95%,并根据检测数据绘制了如图1、图2两幅不完整的统计图.(1)抽查D厂家的零件为______件,扇形统计图中D厂家对应的圆心角为______;(2)抽查C厂家的合格零件为______件,并将图1补充完整;(3)通过计算说明合格率排在前两名的是哪两个厂家;(4)若要从A、B、C、D四个厂家中,随机抽取两个厂家参加德国工业产品博览会,请用“列表法”或“画树形图”的方法求出(3)中两个厂家同时被选中的概率.23.(10分)(2015秋•重庆校级月考)国庆节期间,某品牌月饼经销商销售甲、乙两种不同味道的月饼,已知一个甲种月饼和一个乙种月饼的进价之和为14元,每个甲种月饼的利润是6元,每个乙种月饼的售价比其进价的2倍少1元,小王同学买4个甲种月饼和3个乙种月饼一共用了89元.(1)甲、乙两种月饼的进价分别是多少元?(2)在(1)的前提下,经销商统计发现:平均每天可售出甲种月饼200个和乙种月饼150个.如果将两种月饼的售价各提高1元,则每天将少售出50个甲种月饼和40个乙种月饼.为使每天获取的利润更多,经销商决定把两种月饼的价格都提高x元.在不考虑其他因素的条件下,当x为多少元时,才能使该经销商每天销售甲、乙两种月饼获取的利润为2650元?24.(10分)(2014•珠海)阅读下列材料:解答“已知x﹣y=2,且x>1,y<0,试确定x+y的取值范围”有如下解法:解∵x﹣y=2,∴x=y+2又∵x>1,∴y+2>1.∴y>﹣1.又∵y<0,∴﹣1<y<0.…①同理得:1<x<2.…②由①+②得﹣1+1<y+x<0+2∴x+y的取值范围是0<x+y<2请按照上述方法,完成下列问题:(1)已知x﹣y=3,且x>2,y<1,则x+y的取值范围是______.(2)已知y>1,x<﹣1,若x﹣y=a成立,求x+y的取值范围(结果用含a的式子表示).五、解答题(本大题共2小题,每小题12分,共24分)25.(12分)(2015秋•重庆校级月考)如图所示,在矩形ABCD中,点E是边BC延长线上一点,连结AE,交DC于点F,作BH⊥AE于点G,交DC于点H,作FM∥BC交BH 于点M,连结AM.且FH=FE.AD=2.AG=6.(1)求:AF的长;(2)求:四边形AGHD的面积;(3)求证:∠BAM=45°﹣∠HBA.26.(12分)(2015秋•重庆校级月考)如图1所示,已知y=(x>0)图象上一点P,PA⊥x轴于点A(a,0),点B坐标为(0,b)(b>0),动点M是y轴正半轴上B点上方的点,动点N在射线AP上,过点B作AB的垂线,交射线AP于点D,交直线MN于点Q连接AQ,取AQ的中点为C.(1)如图2,连接BP,求△PAB的面积;(2)当点Q在线段BD上时,若四边形BQNC是菱形,面积为4,求此时P点的坐标;(3)当点Q在射线BD上时,且a=6,b=2,若以点B,C,N,Q为顶点的四边形是平行四边形,求这个平行四边形的周长.2015-2016学年重庆市育才中学九年级(上)第一次月考数学试卷参考答案一、选择题(本大题共12小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号在答题卷中对应的方框涂黑。

2015新人教版九年级上期末试卷

2015新人教版九年级上期末试卷

九年级(上)期末数学试卷一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.在-4,0,-2,1这四个数中,最小的数是( )A .-4B .-2C .0D .12.下列事件中,必然事件是( )A .早晨的太阳从东方升起B .投两枚质地均匀的正方体骰子,点数之和大于6C .打开电视,正在播《傻儿传奇》D .登献失联客机ZQ8501上的黑闸子和残片都能找到A .21<kB .21<k 且k≠0C .2121<<-kD .2121<<-k 且k≠0 4.把二次函数y=x 2-2x-3配方成顶点式为( )A .y=(x-1)2B .y=(x+1)2-2C .y=(x+1)2-4D .y=(x-1)2-45.如图,⊙O 是△ABC 的外接圆,已知∠ACB=60°,则∠ABO 的大小为( )A .30°B .40°C .45°D .50°6.如图,已知△ABC 中,∠C =90°,,将△ABC 绕点A 顺时针方向旋转60°到△AB ′C ′的位置,连接C ′B ,则C ′B 的长为( )A .22-B .23C .13-D .1A .S 1<S 2<S 3B .S 2<S 1<S 3C .S 2<S 3<S 1D .S 1<S 2<S 3A .B .C .D .11.如图,下列一束束“鲜花”都是由一定数量形状相同且边长为1的菱形按照一定规律组成,其中第①个图形含边长为1的菱形3个,第②个图形含边长为1的菱形6个,第③个图形含边长为1的菱形10个,…,按此规律,则第⑦个图形中含边长为1的菱形的个数为( )A.36B.38C.34D.2812.如图,直线y=kx+c 与抛物线y=ax 2+bx+c 的图象都经过y 轴上的D 点,抛物线与x 轴交于A ,B 两点,其对称轴为直线x=1,且OA=OD ,直线y=kx+c 与x 轴交于点C (点C 在点B 的右侧),则下列命题中正确命题的个数是( )①abc >0;②3a+c >0;③-1<k <0;④a+b <k ;⑤0<ac+k <1.A .1B .2C .3D .4二、填空题(本大题6个小题,每小题4分,共24分)在每小题中,请将你认为正确的答案填在答题卡相应位置的横线上.13.一元二次方程x 2=16的解是 .14.抛物线m x x y +--=22,若其顶点在x 轴上,则m= 。

2015年新人教版九年级上学期期末数学试卷(精选3套,详细解析)

2015年新人教版九年级上学期期末数学试卷(精选3套,详细解析)

2014-2015学年人教版九年级上学期期末数学试卷(一)一、选择题(共8小题,每小题4分,满分32分)1.方程x2﹣3x﹣5=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定是否有实数根2.在Rt△ABC中,∠C=90°,BC=3,AB=5,则sinA的值为()A.B.C.D.3.若如图是某个几何体的三视图,则这个几何体是()A.长方体B.正方体C.圆柱D.圆锥4.小丁去看某场电影,只剩下如图所示的六个空座位供他选择,座位号分别为1号、4号、6号、3号、5号和2号.若小丁从中随机抽取一个,则抽到的座位号是偶数的概率是()A.B.C.D.5.如图,△ABC和△A1B1C1是以点O为位似中心的位似三角形,若C1为OC的中点,AB=4,则A1B1的长为()A.1 B. 2 C. 4 D.86.已知点A(x1,y1),B(x2,y2)是反比例函数y=﹣的图象上的两点,若x1<0<x2,则下列结论正确的是()A.y1<0<y2 B.y2<0<y1 C.y1<y2<0 D.y2<y1<07.如图,AB是半圆O的直径,AC为弦,OD⊥AC于D,过点O作OE∥AC交半圆O于点E,过点E作EF⊥AB于F.若AC=2,则OF的长为()A.B.C.1 D.28.如图,在矩形ABCD中,AB<BC,AC,BD交于点O.点E为线段AC上的一个动点,连接DE,BE,过E作EF⊥BD于F,设AE=x,图1中某条线段的长为y,若表示y与x 的函数关系的图象大致如图2所示,则这条线段可能是图1中的()A.线段EF B.线段DE C.线段CE D.线段BE二、填空题(共4小题,每小题4分,满分16分)9.如图,已知扇形的半径为3cm,圆心角为120°,则扇形的面积为cm2.(结果保留π)10.在某一时刻,测得一根高为2m的竹竿的影长为1m,同时测得一栋建筑物的影长为12m,那么这栋建筑物的高度为m.11.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),则关于x的方程ax2﹣bx﹣c=0的解为.12.对于正整数n,定义F(n)=,其中f(n)表示n的首位数字、末位数字的平方和.例如:F(6)=62=36,F(123)=f(123)=12+32=10.规定F1(n)=F(n),F k+1(n)=F(F k(n)).例如:F1(123)=F(123)=10,F2(123)=F(F1(123))=F(10)=1.(1)求:F2(4)=,F2015(4)=;(2)若F3m(4)=89,则正整数m的最小值是.三、解答题(共13小题,满分72分)13.计算:(﹣1)2015+sin30°﹣(π﹣3.14)0+()﹣1.14.如图,△ABC中,AB=AC,D是BC中点,BE⊥AC于E,求证:△ACD∽△BCE.15.已知m是一元二次方程x2﹣3x﹣2=0的实数根,求代数式的值.16.抛物线y=2x2平移后经过点A(0,3),B(2,3),求平移后的抛物线的表达式.17.如图,在平面直角坐标系xOy中,正比例函数y=2x与反比例函数y=的图象交于A,B两点,A点的横坐标为2,AC⊥x轴于点C,连接BC.(1)求反比例函数的解析式;(2)若点P是反比例函数y=图象上的一点,且满足△OPC与△ABC的面积相等,请直接写出点P的坐标.18.如图,△ABC中,∠ACB=90°,sinA=,BC=8,D是AB中点,过点B作直线CD的垂线,垂足为点E.(1)求线段CD的长;(2)求cos∠ABE的值.19.已知关于x的一元二次方程mx2﹣(m+2)x+2=有两个不相等的实数根x1,x2.(1)求m的取值范围;(2)若x2<0,且>﹣1,求整数m的值.20.某工厂生产的某种产品按质量分为10个档次,据调查显示,每个档次的日产量及相应的单件利润如表所示(其中x为正整数,且1≤x≤10);质量档次 1 2 ...x (10)日产量(件)95 90 ...100﹣5x (50)单件利润(万元) 6 8 ...2x+4 (24)为了便于调控,此工厂每天只生产一个档次的产品,当生产质量档次为x的产品时,当天的利润为y万元.(1)求y关于x的函数关系式;(2)工厂为获得最大利润,应选择生产哪个档次的产品?并求出当天利润的最大值.21.如图,四边形ABCD是平行四边形,点A,B,C在⊙O上,AD与⊙O相切,射线AO 交BC于点E,交⊙O于点F.点P在射线AO上,且∠PCB=2∠BAF.(1)求证:直线PC是⊙O的切线;(2)若AB=,AD=2,求线段PC的长.22.阅读下面材料:小明观察一个由1×1正方形点阵组成的点阵图,图中水平与竖直方向上任意两个相邻点间的距离都是1,他发现一个有趣的问题:对于图中出现的任意两条端点在点阵上且互相不垂直的线段,都可以在点阵中找到一点构造垂直,进而求出它们相交所成锐角的正切值.请回答:(1)如图1,A,B,C是点阵中的三个点,请在点阵中找到点D,作出线段CD,使得CD⊥AB;(2)如图2,线段AB与CD交于点O.为了求出∠AOD的正切值,小明在点阵中找到了点E,连接AE,恰好满足AE⊥CD于点F,再作出点阵中的其它线段,就可以构造相似三角形,经过推理和计算能够使问题得到解决.请你帮小明计算:OC=;tan∠AOD=;解决问题:如图3,计算:tan∠AOD=.23.在平面直角坐标系xOy中,反比例函数y=的图象经过点A(1,4)、B(m,n).(1)求代数式mn的值;(2)若二次函数y=(x﹣1)2的图象经过点B,求代数式m3n﹣2m2n+3mn﹣4n的值;(3)若反比例函数y=的图象与二次函数y=a(x﹣1)2的图象只有一个交点,且该交点在直线y=x的下方,结合函数图象,求a的取值范围.24.如图1,在△ABC中,BC=4,以线段AB为边作△ABD,使得AD=BD,连接DC,再以DC为边作△CDE,使得DC=DE,∠CDE=∠ADB=α.(1)如图2,当∠ABC=45°且α=90°时,用等式表示线段AD,DE之间的数量关系;(2)将线段CB沿着射线CE的方向平移,得到线段EF,连接BF,AF.①若α=90°,依题意补全图3,求线段AF的长;②请直接写出线段AF的长(用含α的式子表示).25.在平面直角坐标系xOy中,设点P(x1,y1),Q(x2,y2)是图形W上的任意两点.定义图形W的测度面积:若|x1﹣x2|的最大值为m,|y1﹣y2|的最大值为n,则S=mn为图形W的测度面积.例如,若图形W是半径为1的⊙O,当P,Q分别是⊙O与x轴的交点时,如图1,|x1﹣x2|取得最大值,且最大值m=2;当P,Q分别是⊙O与y轴的交点时,如图2,|y1﹣y2|取得最大值,且最大值n=2.则图形W的测度面积S=mn=4(1)若图形W是等腰直角三角形ABO,OA=OB=1.①如图3,当点A,B在坐标轴上时,它的测度面积S=;②如图4,当AB⊥x轴时,它的测度面积S=;(2)若图形W是一个边长1的正方形ABCD,则此图形的测度面积S的最大值为;(3)若图形W是一个边长分别为3和4的矩形ABCD,求它的测度面积S的取值范围.2014-2015学年人教版九年级上学期期末数学试卷(一)参考答案与试题解析一、选择题(共8小题,每小题4分,满分32分)1.方程x2﹣3x﹣5=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定是否有实数根考点:根的判别式.分析:求出b2﹣4ac的值,再进行判断即可.解答:解:x2﹣3x﹣5=0,△=b2﹣4ac=(﹣3)2﹣4×1×(﹣5)=29>0,所以方程有两个不相等的实数根,故选A.点评:本题考查了一元二次方程的根的判别式的应用,注意:一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0)①当b2﹣4ac>0时,一元二次方程有两个不相等的实数根,②当b2﹣4ac=0时,一元二次方程有两个相等的实数根,③当b2﹣4ac<0时,一元二次方程没有实数根.2.在Rt△ABC中,∠C=90°,BC=3,AB=5,则sinA的值为()A.B.C.D.考点:锐角三角函数的定义.分析:直接根据三角函数的定义求解即可.解答:解:∵Rt△ABC中,∠C=90°,BC=3,AB=5,∴sinA==.故选A.点评:此题考查的是锐角三角函数的定义,比较简单,用到的知识点:正弦函数的定义:我们把锐角A的对边a与斜边c的比叫做∠A的正弦,记作sinA.即sinA=∠A的对边:斜边=a:c.3.若如图是某个几何体的三视图,则这个几何体是()A.长方体B.正方体C.圆柱D.圆锥考点:由三视图判断几何体.分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.解答:解:主视图和左视图都是等腰三角形,那么此几何体为锥体,由俯视图为圆,可得此几何体为圆锥.故选:D.点评:本题考查的知识点是三视图,如果有两个视图为三角形,该几何体一定是锥,如果有两个矩形,该几何体一定柱,其底面由第三个视图的形状决定.4.小丁去看某场电影,只剩下如图所示的六个空座位供他选择,座位号分别为1号、4号、6号、3号、5号和2号.若小丁从中随机抽取一个,则抽到的座位号是偶数的概率是()A.B.C.D.考点:概率公式.分析:由六个空座位供他选择,座位号分别为1号、4号、6号、3号、5号和2号,直接利用概率公式求解即可求得答案.解答:解:∵六个空座位供他选择,座位号分别为1号、4号、6号、3号、5号和2号,∴抽到的座位号是偶数的概率是:=.故选C.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.5.如图,△ABC和△A1B1C1是以点O为位似中心的位似三角形,若C1为OC的中点,AB=4,则A1B1的长为()A.1 B.2 C. 4 D.8考点:位似变换.专题:计算题.分析:根据位似变换的性质得到=,B1C1∥BC,再利用平行线分线段成比例定理得到=,所以=,然后把OC1=OC,AB=4代入计算即可.解答:解:∵C1为OC的中点,∴OC1=OC,∵△ABC和△A1B1C1是以点O为位似中心的位似三角形,∴=,B1C1∥BC,∴=,∴=,即=∴A1B1=2.故选B.点评:本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.注意:①两个图形必须是相似形;②对应点的连线都经过同一点;③对应边平行.6.已知点A(x1,y1),B(x2,y2)是反比例函数y=﹣的图象上的两点,若x1<0<x2,则下列结论正确的是()A.y1<0<y2 B.y2<0<y1 C.y1<y2<0 D.y2<y1<0考点:反比例函数图象上点的坐标特征.专题:计算题.分析:根据反比例函数图象上点的坐标特征得到y1=﹣,y2=﹣,然后利用x1<0<x2即可得到y1与y2的大小.解答:解:∵A(x1,y1),B(x2,y2)是反比例函数y=﹣的图象上的两点,∴y1=﹣,y2=﹣,∵x1<0<x2,∴y2<0<y1.故选B.点评:本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.7.如图,AB是半圆O的直径,AC为弦,OD⊥AC于D,过点O作OE∥AC交半圆O于点E,过点E作EF⊥AB于F.若AC=2,则OF的长为()A.B.C.1 D.2考点:垂径定理;全等三角形的判定与性质.分析:根据垂径定理求出AD,证△ADO≌△OFE,推出OF=AD,即可求出答案.解答:解:∵OD⊥AC,AC=2,∴AD=CD=1,∵OD⊥AC,EF⊥AB,∴∠ADO=∠OFE=90°,∵OE∥AC,∴∠DOE=∠ADO=90°,∴∠DAO+∠DOA=90°,∠DOA+∠EF=90°,∴∠DAO=∠EOF,在△ADO和△OFE中,,∴△ADO≌△OFE(AAS),∴OF=AD=1,故选C.点评:本题考查了全等三角形的性质和判定,垂径定理的应用,解此题的关键是求出△ADO≌△OFE和求出AD的长,注意:垂直于弦的直径平分这条弦.8.如图,在矩形ABCD中,AB<BC,AC,BD交于点O.点E为线段AC上的一个动点,连接DE,BE,过E作EF⊥BD于F,设AE=x,图1中某条线段的长为y,若表示y与x 的函数关系的图象大致如图2所示,则这条线段可能是图1中的()A.线段EF B.线段DE C.线段CE D.线段BE考点:动点问题的函数图象.分析:作BN⊥AC,垂足为N,FM⊥AC,垂足为M,DG⊥AC,垂足为G,分别找出线段EF、CE、BE最小值出现的时刻即可得出结论.解答:解:作BN⊥AC,垂足为N,FM⊥AC,垂足为M,DG⊥AC,垂足为G.由垂线段最短可知:当点E与点M重合时,即AE<时,FE有最小值,与函数图象不符,故A错误;由垂线段最短可知:当点E与点G重合时,即AEd>时,DE有最小值,故B正确;∵CE=AC﹣AE,CE随着AE的增大而减小,故C错误;由垂线段最短可知:当点E与点N重合时,即AE<时,BE有最小值,与函数图象不符,故D错误;故选:B.点评:本题主要考查的是动点问题的函数图象,根据垂线段最短确定出函数最小值出现的时刻是解题的关键.二、填空题(共4小题,每小题4分,满分16分)9.如图,已知扇形的半径为3cm,圆心角为120°,则扇形的面积为3πcm2.(结果保留π)考点:扇形面积的计算.专题:压轴题.分析:知道扇形半径,圆心角,运用扇形面积公式就能求出.解答:解:由S=知S=×π×32=3πcm2.点评:本题主要考查扇形面积的计算,知道扇形面积计算公式S=.10.在某一时刻,测得一根高为2m的竹竿的影长为1m,同时测得一栋建筑物的影长为12m,那么这栋建筑物的高度为24m.考点:相似三角形的应用.分析:根据同时同地的物高与影长成正比列式计算即可得解.解答:解:设这栋建筑物的高度为xm,由题意得,=,解得x=24,即这栋建筑物的高度为24m.故答案为:24.点评:本题考查了相似三角形的应用,熟记同时同地的物高与影长成正比是解题的关键.11.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),则关于x的方程ax2﹣bx﹣c=0的解为x1=﹣2,x2=1.考点:二次函数的性质.专题:数形结合.分析:根据二次函数图象与一次函数图象的交点问题得到方程组的解为,,于是易得关于x的方程ax2﹣bx﹣c=0的解.解答:解:∵抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),∴方程组的解为,,即关于x的方程ax2﹣bx﹣c=0的解为x1=﹣2,x2=1.故答案为x1=﹣2,x2=1.点评:本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣.也考查了二次函数图象与一次函数图象的交点问题.12.对于正整数n,定义F(n)=,其中f(n)表示n的首位数字、末位数字的平方和.例如:F(6)=62=36,F(123)=f(123)=12+32=10.规定F1(n)=F(n),F k+1(n)=F(F k(n)).例如:F1(123)=F(123)=10,F2(123)=F(F1(123))=F(10)=1.(1)求:F2(4)=37,F2015(4)=26;(2)若F3m(4)=89,则正整数m的最小值是6.考点:规律型:数字的变化类.专题:新定义.分析:通过观察前8个数据,可以得出规律,这些数字7个一个循环,根据这些规律计算即可.解答:解:(1)F2(4)=F(F1(4))=F(16)=12+62=37;F1(4)=F(4)=16,F2(4)=37,F3(4)=58,F4(4)=89,F5(4)=145,F6(4)=26,F7(4)=40,F8(4)=16,通过观察发现,这些数字7个一个循环,2015是7的287倍余6,因此F2015(4)=26;(2)由(1)知,这些数字7个一个循环,F4(4)=89=F18(4),因此3m=18,所以m=6.故答案为:(1)37,26;(2)6.点评:本题属于数字变化类的规律探究题,通过观察前几个数据可以得出规律,熟练找出变化规律是解题的关键.三、解答题(共13小题,满分72分)13.计算:(﹣1)2015+sin30°﹣(π﹣3.14)0+()﹣1.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项利用乘方的意义计算,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,最后一项利用负指数幂法则计算即可.解答:解:原式=﹣1+﹣1+2=.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.14.如图,△ABC中,AB=AC,D是BC中点,BE⊥AC于E,求证:△ACD∽△BCE.考点:相似三角形的判定.专题:证明题.分析:根据等腰三角形的性质,由AB=AC,D是BC中点得到AD⊥BC,易得∠ADC=∠BEC=90°,再加上公共角,于是根据有两组角对应相等的两个三角形相似即可得到结论.解答:证明:∵AB=AC,D是BC中点,∴AD⊥BC,∴∠ADC=90°,∵BE⊥AC,∴∠BEC=90°,∴∠ADC=∠BEC,而∠ACD=∠BCE,∴△ACD∽△BCE.点评:本题考查了相似三角形的判定:有两组角对应相等的两个三角形相似.也考查了等腰三角形的性质.15.已知m是一元二次方程x2﹣3x﹣2=0的实数根,求代数式的值.考点:一元二次方程的解.专题:计算题.分析:把x=m代入方程得到m2﹣2=3m,原式分子利用平方差公式化简,将m2﹣2=3m代入计算即可求出值.解答:解:把x=m代入方程得:m2﹣3m﹣2=0,即m2﹣2=3m,则原式===3.点评:此题考查了一元二次方程的解,熟练掌握运算法则是解本题的关键.16.抛物线y=2x2平移后经过点A(0,3),B(2,3),求平移后的抛物线的表达式.考点:二次函数图象与几何变换.专题:计算题.分析:由于抛物线平移前后二次项系数不变,则可设平移后的抛物线的表达式为y=2x2+bx+c,然后把点A和点B的坐标代入得到关于b、c的方程组,解方程组求出b、c 即可得到平移后的抛物线的表达式.解答:解:设平移后的抛物线的表达式为y=2x2+bx+c,把点A(0,3),B(2,3)分别代入得,解得,所以平移后的抛物线的表达式为y=2x2﹣4x+3.点评:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.17.如图,在平面直角坐标系xOy中,正比例函数y=2x与反比例函数y=的图象交于A,B两点,A点的横坐标为2,AC⊥x轴于点C,连接BC.(1)求反比例函数的解析式;(2)若点P是反比例函数y=图象上的一点,且满足△OPC与△ABC的面积相等,请直接写出点P的坐标.考点:反比例函数与一次函数的交点问题.分析:(1)把A点横坐标代入正比例函数可求得A点坐标,代入反比例函数解析式可求得k,可求得反比例函数解析式;(2)由条件可求得B、C的坐标,可先求得△ABC的面积,再结合△OPC与△ABC的面积相等求得P点坐标.解答:解:(1)把x=2代入y=2x中,得y=2×2=4,∴点A坐标为(2,4),∵点A在反比例函数y=的图象上,∴k=2×4=8,∴反比例函数的解析式为y=;(2)∵AC⊥OC,∴OC=2,∵A、B关于原点对称,∴B点坐标为(﹣2,﹣4),∴B到OC的距离为4,∴S△ABC=2S△ACO=2××2×4=8,∴S△OPC=8,设P点坐标为(x,),则P到OC的距离为||,∴×||×2=8,解得x=1或﹣1,∴P点坐标为(1,8)或(﹣1,﹣8).点评:本题主要考查待定系数法求函数解析式及函数的交点问题,在(1)中求得A点坐标、在(2)中求得P点到OC的距离是解题的关键.18.如图,△ABC中,∠ACB=90°,sinA=,BC=8,D是AB中点,过点B作直线CD的垂线,垂足为点E.(1)求线段CD的长;(2)求cos∠ABE的值.考点:解直角三角形;勾股定理.专题:计算题.分析:(1)在△ABC中根据正弦的定义得到sinA==,则可计算出AB=10,然后根据直角三角形斜边上的中线性质即可得到CD=AB=5;(2)在Rt△ABC中先利用勾股定理计算出AC=6,在根据三角形面积公式得到S△BDC=S△ADC,则S△BDC=S△ABC,即CD•BE=•AC•BC,于是可计算出BE=,然后在Rt△BDE中利用余弦的定义求解.解答:解:(1)在△ABC中,∵∠ACB=90°,∴sinA==,而BC=8,∴AB=10,∵D是AB中点,∴CD=AB=5;(2)在Rt△ABC中,∵AB=10,BC=8,∴AC==6,∵D是AB中点,∴BD=5,S△BDC=S△ADC,∴S△BDC=S△ABC,即CD•BE=•AC•BC,∴BE==,在Rt△BDE中,cos∠DBE===,即cos∠ABE的值为.点评:本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了直角三角形斜边上的中线性质和三角形面积公式.19.已知关于x的一元二次方程mx2﹣(m+2)x+2=有两个不相等的实数根x1,x2.(1)求m的取值范围;(2)若x2<0,且>﹣1,求整数m的值.考点:根的判别式;根与系数的关系.专题:计算题.分析:(1)由二次项系数不为0,且根的判别式大于0,求出m的范围即可;(2)利用求根公式表示出方程的解,根据题意确定出m的范围,找出整数m的值即可.解答:解:(1)由已知得:m≠0且△=(m+2)2﹣8m=(m﹣2)2>0,则m的范围为m≠0且m≠2;(2)方程解得:x=,即x=1或x=,∵x2<0,∴x2=<0,即m<0,∵>﹣1,∴>﹣1,即m>﹣2,∵m≠0且m≠2,∴﹣2<m<0,∵m为整数,∴m=﹣1.点评:此题考查了根的判别式,一元二次方程有两个不相等的实数根即为根的判别式大于0.20.某工厂生产的某种产品按质量分为10个档次,据调查显示,每个档次的日产量及相应的单件利润如表所示(其中x为正整数,且1≤x≤10);质量档次 1 2 ...x (10)日产量(件)95 90 ...100﹣5x (50)单件利润(万元) 6 8 ...2x+4 (24)为了便于调控,此工厂每天只生产一个档次的产品,当生产质量档次为x的产品时,当天的利润为y万元.(1)求y关于x的函数关系式;(2)工厂为获得最大利润,应选择生产哪个档次的产品?并求出当天利润的最大值.考点:二次函数的应用.分析:(1)根据总利润=单件利润×销售量就可以得出y与x之间的函数关系式;(2)由(1)的解析式转化为顶点式,由二次函数的性质就可以求出结论.解答:解:(1)由题意,得y=(100﹣5x)(2x+4),y=﹣10x2+180x+400(1≤x≤10的整数);答:y关于x的函数关系式为y=﹣10x2+180x+400;(2)∵y=﹣10x2+180x+400,∴y=﹣10(x﹣9)2+1210.∵1≤x≤10的整数,∴x=9时,y最大=1210.答:工厂为获得最大利润,应选择生产9档次的产品,当天利润的最大值为1210万元.点评:本题考查了总利润=单件利润×销售量的运用,二次函数的解析式的运用,顶点式的运用,解答时求出函数的解析式是关键.21.如图,四边形ABCD是平行四边形,点A,B,C在⊙O上,AD与⊙O相切,射线AO 交BC于点E,交⊙O于点F.点P在射线AO上,且∠PCB=2∠BAF.(1)求证:直线PC是⊙O的切线;(2)若AB=,AD=2,求线段PC的长.考点:切线的判定;勾股定理;平行四边形的性质;相似三角形的判定与性质.分析:(1)首先连接OC,由AD与⊙O相切,可得FA⊥AD,四边形ABCD是平行四边形,可得AD∥BC,然后由垂径定理可证得F是的中点,BE=CE,∠OEC=90°,又由∠PCB=2∠BAF,即可求得∠OCE+∠PCB=90°,继而证得直线PC是⊙O的切线;(2)首先由勾股定理可求得AE的长,然后设⊙O的半径为r,则OC=OA=r,OE=3﹣r,则可求得半径长,易得△OCE∽△CPE,然后由相似三角形的对应边成比例,求得线段PC 的长.解答:(1)证明:连接OC.∵AD与⊙O相切于点A,∴FA⊥AD.∵四边形ABCD是平行四边形,∴AD∥BC,∴FA⊥BC.∵FA经过圆心O,∴F是的中点,BE=CE,∠OEC=90°,∴∠COF=2∠BAF.∵∠PCB=2∠BAF,∴∠PCB=∠COF.∵∠OCE+∠COF=180°﹣∠OEC=90°,∴∠OCE+∠PCB=90°.∴OC⊥PC.∵点C在⊙O上,∴直线PC是⊙O的切线.(2)解:∵四边形ABCD是平行四边形,∴BC=AD=2.∴BE=CE=1.在Rt△ABE中,∠AEB=90°,AB=,∴.设⊙O的半径为r,则OC=OA=r,OE=3﹣r.在Rt△OCE中,∠OEC=90°,∴OC2=OE2+CE2.∴r2=(3﹣r)2+1.解得,∵∠COE=∠PCE,∠OEC=∠CEP=90°.∴△OCE∽△CPE,∴.∴.∴.点评:此题考查了切线的判定、平行四边形的性质、勾股定理以及相似三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用.22.阅读下面材料:小明观察一个由1×1正方形点阵组成的点阵图,图中水平与竖直方向上任意两个相邻点间的距离都是1,他发现一个有趣的问题:对于图中出现的任意两条端点在点阵上且互相不垂直的线段,都可以在点阵中找到一点构造垂直,进而求出它们相交所成锐角的正切值.请回答:(1)如图1,A,B,C是点阵中的三个点,请在点阵中找到点D,作出线段CD,使得CD⊥AB;(2)如图2,线段AB与CD交于点O.为了求出∠AOD的正切值,小明在点阵中找到了点E,连接AE,恰好满足AE⊥CD于点F,再作出点阵中的其它线段,就可以构造相似三角形,经过推理和计算能够使问题得到解决.请你帮小明计算:OC=;tan∠AOD=5;解决问题:如图3,计算:tan∠AOD=.考点:相似形综合题.分析:(1)用三角板过C作AB的垂线,从而找到D的位置;(2)连接AC、DB、AD、DE.由△ACO∽△DBO求得CO的长,由等腰直角三角形的性质可以求出AF,DF的长,从而求出OF的长,在Rt△AFO中,根据锐角三角函数的定义即可求出tan∠AOD的值;(3)如图,连接AE、BF,则AF=,AB=,由△AOE∽△BOF,可以求出AO=,在Rt△AOF中,可以求出OF=,故可求得tan∠AOD.解答:解:(1)如图所示:线段CD即为所求.(2)如图2所示连接AC、DB、AD.∵AD=DE=2,∴AE=2.∵CD⊥AE,∴DF=AF=.∵AC∥BD,∴△ACO∽△DBO.∴CO:DO=2:3.∴CO=.∴DO=.∴OF=.tan∠AOD=.(3)如图3所示:根据图形可知:BF=2,AE=5.由勾股定理可知:AF==,AB==.∵FB∥AE,∴△AOE∽△BOF.∴AO:OB=AE:FB=5:2.∴AO=.在Rt△AOF中,OF==.∴tan∠AOD=.点评:本题主要考查的是相似三角形的性质和判定、勾股定理的应用、锐角三角函数的定义,根据点阵图构造相似三角形是解题的关键.23.在平面直角坐标系xOy中,反比例函数y=的图象经过点A(1,4)、B(m,n).(1)求代数式mn的值;(2)若二次函数y=(x﹣1)2的图象经过点B,求代数式m3n﹣2m2n+3mn﹣4n的值;(3)若反比例函数y=的图象与二次函数y=a(x﹣1)2的图象只有一个交点,且该交点在直线y=x的下方,结合函数图象,求a的取值范围.考点:反比例函数综合题;代数式求值;反比例函数与一次函数的交点问题;二次函数的性质.专题:综合题;数形结合;分类讨论.分析:(1)只需将点A、B的坐标代入反比例函数的解析式就可解决问题;(2)将点B的坐标代入y=(x﹣1)2得到n=m2﹣2m+1,先将代数式变形为mn(m2﹣2m+1)+2mm﹣4n,然后只需将m2﹣2m+1用n代替,即可解决问题;(3)可先求出直线y=x与反比例函数y=交点C和D的坐标,然后分a>0和a<0两种情况讨论,先求出二次函数的图象经过点D或C时对应的a的值,再结合图象,利用二次函数的性质(|a|越大,抛物线的开口越小)就可解决问题.解答:解:(1)∵反比例函数y=的图象经过点A(1,4)、B(m,n),∴k=mn=1×4=4,即代数式mn的值为4;(2)∵二次函数y=(x﹣1)2的图象经过点B,∴n=(m﹣1)2=m2﹣2m+1,∴m3n﹣2m2n+3mn﹣4n=m3n﹣2m2n+mn+2mn﹣4n=mn(m2﹣2m+1)+2mm﹣4n=4n+2×4﹣4n=8,即代数式m3n﹣2m2n+3mn﹣4n的值为8;(3)设直线y=x与反比例函数y=交点分别为C、D,解,得:或,∴点C(﹣2,﹣2),点D(2,2).①若a>0,如图1,当抛物线y=a(x﹣1)2经过点D时,有a(2﹣1)2=2,解得:a=2.∵|a|越大,抛物线y=a(x﹣1)2的开口越小,∴结合图象可得:满足条件的a的范围是0<a<2;②若a<0,如图2,当抛物线y=a(x﹣1)2经过点C时,有a(﹣2﹣1)2=﹣2,解得:a=﹣.∵|a|越大,抛物线y=a(x﹣1)2的开口越小,∴结合图象可得:满足条件的a的范围是a<﹣.综上所述:满足条件的a的范围是0<a<2或a<﹣.点评:本题主要考查了反比例函数图象上点的坐标特征、求代数式的值、求直线与反比例函数图象的交点坐标、二次函数的性质等知识,另外还重点对整体思想、数形结合的思想、分类讨论的思想进行了考查,运用整体思想是解决第(2)小题的关键,考虑临界位置并运用数形结合及分类讨论的思想是解决第(3)小题的关键.24.如图1,在△ABC中,BC=4,以线段AB为边作△ABD,使得AD=BD,连接DC,再以DC为边作△CDE,使得DC=DE,∠CDE=∠ADB=α.(1)如图2,当∠ABC=45°且α=90°时,用等式表示线段AD,DE之间的数量关系;(2)将线段CB沿着射线CE的方向平移,得到线段EF,连接BF,AF.①若α=90°,依题意补全图3,求线段AF的长;②请直接写出线段AF的长(用含α的式子表示).考点:几何变换综合题.分析:(1)根据等腰直角三角形的性质得出即可;(2)①设DE与BC相交于点H,连接AE,交BC于点G,根据SAS推出△ADE≌△BDC,根据全等三角形的性质得出AE=BC,∠AED=∠BCD.求出∠AFE=45°,解直角三角形求出即可;②过E作EM⊥AF于M,根据等腰三角形的性质得出∠AEM=∠FME=,AM=FM,解直角三角形求出FM即可.解答:解:(1)AD+DE=4,理由是:如图1,∵∠ADB=∠EDC=∠α=90°,AD=BD,DC=DE,∴AD+DE=BC=4;(2)①补全图形,如图2,设DE与BC相交于点H,连接AE,交BC于点G,∵∠ADB=∠CDE=90°,∴∠ADE=∠BDC,在△ADE与△BDC中,,∴△ADE≌△BDC,∴AE=BC,∠AED=∠BCD.∵DE与BC相交于点H,∴∠GHE=∠DHC,∴∠EGH=∠EDC=90°,∵线段CB沿着射线CE的方向平移,得到线段EF,∴EF=CB=4,EF∥CB,∴AE=EF,∵CB∥EF,∴∠AEF=∠EGH=90°,∵AE=EF,∠AEF=90°,∴∠AFE=45°,∴AF==4;②如图2,过E作EM⊥AF于M,∵由①知:AE=EF=BC,∴∠AEM=∠FME=,AM=FM,∴AF=2FM=EF×sin=8sin.点评:本题考查了全等三角形的性质和判定,解直角三角形,等腰三角形的性质,平移的性质的应用,能正确作出辅助线是解此题的关键,综合性比较强,难度偏大.。

最新2015-2016学年人教版九年级(上-下册)数学期末测试卷及答案

最新2015-2016学年人教版九年级(上-下册)数学期末测试卷及答案

2015-2016学年度九年级(上,下册)数学期末试卷一、选择题1.下列图形中,既是中心对称图形又是轴对称图形的是 ( )2. 如图,是一个简单的数值运算程序,若输入x 的值为( )A. 2.B. 3C. 3-131或+D. 1 3.如图,将Rt △ABC (其中∠B=35°,∠C=90°)绕点A 按顺时针方向旋转到△AB 1C 1的位置,使得点C 、A 、B 1在同一条直线上,那么旋转角等于 ( )A.55°B.70°C.125°D.145°4.一条排水管的截面如下左图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O 到水面的距离OC 是( )A. 4 B. 5 C. 36 D. 65.一个半径为2cm 的圆内接正六边形的面积等于( )A .24cm 2B .63 cm 2C .123 cm 2D .83 cm 2 6.如图,若AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD =55°,则∠BCD 的度数为( )A .35°B .45°C .55°D .75°7.函数m x x y +--=822的图象上有两点),(11y x A ,),(22y x B ,若221-<<x x ,则( )A.21y y <B.21y y >C.21y y =D.1y 、2y 的大小不确定8.将半径为3cm 的圆形纸片沿AB 折叠后,圆弧恰好能经过圆心O ,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为( )A .B .C .D .9.一次函数y ax b =+与二次函数2y ax bx c=++在同一坐标系中的图像可能是( )10.如图,有一圆锥形粮堆,其正视图是边长为6m 的正三角形ABC ,粮堆母线AC 的中点P 处有一老鼠正在偷吃粮食,此时,小猫正在B 处,它要沿圆锥侧面到达P 处捕捉老鼠,第3题图 第6题图第4题图则小猫所经过的最短路程是 m .(结果不取近似值)A .3 B .33 C .D .411.如图,PA 、PB 、DE 分别切⊙O 于点A 、B 、C ,DE 交PA 、PB 于点D 、E ,已知PA 长8cm .则△PDE 的周长为( );若∠P=40°,则∠DOE 为( )A. 16 ,140·B. 12, 120·C. 10,100·D. 8, 135·12. 已知一元二次方程(m+2)x 2+7mx+m 2﹣4=0有一个根为0,则m 为( ) A. 2 B. 2- C. 2± D. 1.13. 将函数y =2x 2的图象向左平移1个单位,再向上平移3个单位,可得到的抛物线是( )A .y =2(x -1)2-3B .y =2(x -1)2+3C .y =2(x +1)2-3D .y =2(x +1)2+314.已知二次函数1)1(2+-+=x m x y ,当x >1时,y 随x 的增大而增大,则m 的取值范围是( )A.1-=mB.3=mC.1-≤mD. 1-≥m xy 3-=,当2≤x 时,y 的取值范围是( ) A.23-≤y B.23-≥y C.y >0或23-≤y D.y ≤-23<0 16.如图一只封闭的圆柱形水桶(桶的厚度忽略不计)如图1所示,一只封闭的圆柱形水桶内盛了半桶水(桶的厚度忽略不计),圆柱形水桶的底面直径与母线长相等,现将该水桶水平放置后如图2所示,设图1、图2中水所形成的几何体的表面积分别为S 1 、S 2 ,则S 1 与S 2 的大小关系是 二.填空题1点A,B,C,D 分别对应数3-,7,13,21;把数轴两次弯折后使点D 与A 重合,围成三角形ABC (如图所示),则sin ∠ABC 的值为___18.(1)如图,将△ABC 的绕点A 顺时针旋转得到△AED , 点D 正好落在BC 边上.已知∠C=80°,则∠EAB= °.(2).若函数221y mx x =++的图象与x 轴只有一个公共点,则常数m 的值是_______(3).抛物线y=-x 2+bx+c 的部分图象如图所示,若y >0,则x 的取值范围是 .19.如图,在一个正方形围栏中均匀地散步者许多米粒,正方形内有一个圆(正方形的内切园),一只小鸡仔围栏内啄食,则“小鸡正在院内”啄食的概率为_______.20.如图,把直角三角形ABC 的斜边AB 放在定直线l 上,按顺时针方向在l 上转动两次,使它转到△A″B″C″的位置.设BC=2,AC=2,则顶点A 运动到点A″的位置时,点A 经过的路线与直线l 所围成的面积是 _________ .三、解答下列各题1.解方程:21.李老师布置了两道解方程的作业题:(1)选用合适的方法解方程:()()621==+x x(2)用配方法解方程:05422=-+x x 以下是小明同学的作业: (1)解:()()1,1.32,21,62121===+=+=++x x x x x x 所以得(2)解:由20542=-+x x 得 ()261,261;261,2311-2512,252542212222--=+-=±=+=+=++=+=+x x x x x x x x x x 所以,22.已知关于x 的一元二次方程2(31)30kx k x +++=(0)k ≠.(1)求证:无论k 取何值,方程总有两个实数根;(2)若二次函数3)13(2+++=x k kx y 的图象与x 轴两个交点的横坐标均为整数,且k 为整数,求k 的值.23.如图,平面直角坐标系中,每个小正方形边长都是1.(1)按要求作图:①△ABC 关于原点O 逆时针旋转90°得到△A 1B 1C 1;②△A 1B 1C 1关于原点中心对称的△A 2B 2C 2.(2)△A 2B 2C 2中顶点B 2坐标为 .24.(1)问题如图1,在四边形ABCD 中,点P 为AB 上一点,∠DPC =∠A=∠B=90·,求证:AD ×BC=AP ×BP(2) 探究如图2,在四边形ABCD 中,点P 为AB 上一点,∠DPC =∠A=∠B=θ时,上述结论是否依然成立?说明理由;(3)应用请利用(1)(2)获得的经验解决问题:如图3,在△ABD 中,AB=6,AD=BD=5,点P 以每秒1个单位长度的速度,由点A 出发,沿边AB 向点B 运动,且满足∠DPC =∠A ,设点P 的运动时间为t (秒),当以D 为圆心,以DC 为半径的圆与AB 相切时,求t 的值。

人教版2015届九年级上期末考试数学试题及答案

人教版2015届九年级上期末考试数学试题及答案

一、选择题1.一元二次方程240x -=的解为( ) A .12x =,22x =-B .2x =-C . 2x =D .12x =,20x =2.抛物线1)3(22+-=x y 的顶点坐标是( )A.(3, 1)B.(3,-1)C.(-3, 1)D.(-3, -1) 3.点M (2,-3)关于原点对称的点N 的坐标是: ( )A.(-2,-3)B.(-2, 3)C.(2, 3)D.(-3, 2) 4.已知圆的半径为3,一点到圆心的距离是5,则这点在( )A .圆内B .圆上C .圆外D .都有可能 5.用配方法解方程2420x x -+=,下列配方正确的是( ) A .2(2)6x -= B .2(2)2x +=C .2(2)2x -=-D .2(2)2x -=6.下列平面图形中,既是轴对称图形,又是中心对称图形的是 ( )7.抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( ) A. 23(1)2y x =++ B. 23(1)2y x =+- C. 23(1)2y x =-- D. 23(1)2y x =-+8.某品牌服装原价173元,连续两次降价x%后售价为127元,下面所列方程中正确的是( )A . 173(1+x%)2=127 B .173(1-2x%)=127C . 127(1+x%)2=173D .173(1-x%)2=127 9.一个布袋里装有6个只有颜色不同的球,其中2个红球,4个白球.从布袋里任意摸出1个球,则摸出的球是白球的概率为( )A.21 B.51 C. 31D.3210.一个圆锥的母线长为10,侧面展开图是半圆,则圆锥的侧面积是( )A .10πB .20πC .50πD .100π11.三角形两边长分别为2和4,第三边是方程x 2-6x+8=0的解,•则这个三角形的周长是( ) A .10 B .8或10 C .8 D .8和1012.如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对称轴为x =-1.给出四个结论:①b 2> 4ac ;②2a+b=0;③a-b +c=0;④5a < b .其中正确结论有( )20题图A .1个B .2个C .3个D .4个二、填空题13.二次函数2)1(2+-=x y 的最小值是 .14.已知关于x 方程x 2-3x +m =0的一个根是1,则它的另一个根是______. 15.如图,A 、B 、C 为⊙O 上三点,且∠OAB=55°,则∠ACB 的度数是_______度.16.⊙O 的直径为10,弦AB=6,P 是弦AB 上一动点,则OP 的取值范围是 . 17.现有6张正面分别标有数字—1,0,1,2,3,4的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a ,则使得关于x 的一元二次方程2220x x a -+-=有实数根,且关于x 的分式方程11222ax x x-+=--有解的概率为 .18.如图,△ABC 绕点A 顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC=22,则图中阴影部分的面积等于 . 三、解答题19.解方程:02632=--x x20.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,ABC △的顶点都在格点上,点C 的坐标为(41)-,.(1)把ABC △向上平移5个单位后得到对应的111A B C △, 画出111A B C △,并写出1C 的坐标;(2)以原点O 为对称中心,再画出ABC △关于原点O 对称的222A B C △,并写出点2C 的坐标.四、解答题21.先化简,再求值:)211(1222x x xx x ++÷--,其中3-=x22.为了了解同学们课外阅读的情况,现对初三某班进行了“你最喜欢的课外书籍类别”的问卷调查。

2015届人教版九年级上册考试数学期末试题及答案

2015届人教版九年级上册考试数学期末试题及答案

江西省广昌一中2015届九年级上册考试试卷范围:九年级上册全部命题人:陶燕鸣一.选择题(共8小题,每小题3分,共24分)1.如图所示的几何体的俯视图是()A.B.C.D.2.菱形的两条对角线长分别是6和8,则此菱形的边长是()A .10 B.8C.6D.53.让图中两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的区域,则两个数的和是2的倍数或是3的倍数的概率等于()A.B.C.D.4.x1,x2是关于x的一元二次方程x 2﹣mx+m﹣2=0的两个实数根,是否存在实数m 使+=0成立?则正确的结论是()A .m=0时成立B.m=2时成立C.m =0或2时成立D.不存在5.在同一平面直角坐标系中,函数y=mx+m与y=(m≠0)的图象可能是()A.B.C.D.6.若x:y=1:3,2y=3z,则的值是()C.D.5A.﹣5 B.﹣7.如图,△ABC 的三个顶点分别为A(1,2),B(2,5),C (6,1).若函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是()A.2≤k≤B.6≤k≤10C.2≤k≤6 D.2≤k≤8.如图,以点O为支点的杠杆,在A端用竖直向上的拉力将重为G的物体匀速拉起,当杠杆OA水平时,拉力为F;当杠杆被拉至OA1时,拉力为F1,过点B1作B1C⊥OA,过点A1作A1D⊥OA,垂足分别为点C、D.①△OB1C∽△OA1D;②OA•OC=OB•OD;③OC•G=OD•F1;④F=F1.其中正确的说法有()A.1个B.2个C.3个D.4个二.填空题(共6小题,每小题3分,共18分)9.若一元二次方程ax2=b(ab>0)的两个根分别是m+1与2m﹣4,则=_________.10.合作小组的4位同学坐在课桌旁讨论问题,学生A的座位如图所示,学生B,C,D随机坐到其他三个座位上,则学生B坐在2号座位的概率是_________.11.如图,这是一个长方体的主视图和俯视图,由图示数据(单元:cm)可以得出该长方体的体积是_________cm3.12.在平面直角坐标系xOy中,点P到x轴的距离为3个单位长度,到原点O的距离为5个单位长度,则经过点P的反比例函数的解析式为_________.13.如图,在梯形ABCD中,AD∥BC,BE平分∠ABC交CD于E,且BE⊥CD,CE:ED=2:1.如果△BEC的面积为2,那么四边形ABED的面积是_________.14.如图,在矩形ABCD中,点E为AB的中点,EF⊥EC交AD于点F,连接CF(AD>AE),下列结论:①∠AEF=∠BCE;②AF+BC>CF;③S△CEF=S△EAF+S△CBE;④若=,则△CEF≌△CDF.其中正确的结论是_________.(填写所有正确结论的序号)三.解答题(共10小题)15.(3分)解方程:x2+4x+2=0.16、(7分)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是_________;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是_________;(3)△A2B2C2的面积是_________平方单位.17.(7分)某同学报名参加校运动会,有以下5个项目可供选择:径赛项目:100m,200m,400m(分别用A1、A2、A3表示);田赛项目:跳远,跳高(分别用B1、B2表示).(1)该同学从5个项目中任选一个,恰好是田赛项目的概率为_________;(2)该同学从5个项目中任选两个,利用树状图或表格列举出所有可能出现的结果,并求恰好是一个田赛项目和一个径赛项目的概率.18.(7分)如图,在平面直角坐标系中,点O为坐标系原点,矩形OABC的边OA,OC分别在x轴和y轴上,其中OA=6,OC=3.已知反比例函数y=(x>0)的图象经过BC边上的中点D,交AB于点E.(1)k的值为_________;(2)猜想△OCD的面积与△OBE的面积之间的关系,请说明理由.19.(8分)天山旅行社为吸引游客组团去具有喀斯特地貌特征的黄果树风景区旅游,推出了如下收费标准(如图所示):某单位组织员工去具有喀斯特地貌特征的黄果树风景区旅游,共支付给旅行社旅游费用27000元,请问该单位这次共有多少名员工去具有喀斯特地貌特征的黄果树风景区旅游?20(8分)在“首届中国西部(银川)房•车生活文化节”期间,某汽车经销商推出A、B、C、D四种型号的小轿车共1000辆进行展销.C型号轿车销售的成交率为50%,其它型号轿车的销售情况绘制在图1和图2两幅尚不完整的统计图中.(1)参加展销的D型号轿车有多少辆?(2)请你将图2的统计图补充完整;(3)通过计算说明,哪一种型号的轿车销售情况最好?(4)若对已售出轿车进行抽奖,现将已售出A、B、C、D四种型号轿车的发票(一车一票)放到一起,从中随机抽取一张,求抽到A型号轿车发票的概率.21.(9分)如图,在正方形ABCD中,边长AB=3,点E(与B,C不重合)是BC边上任意一点,把EA绕点E顺时针方向旋转90°到EF,连接CF.(1)求证:CF是正方形ABCD的外角平分线;(2)当∠BAE=30°时,求CF的长.22.(9分)如图,在Rt△ABC中,∠B=90°,AC=60,AB=30.D是AC上的动点,过D作DF⊥BC 于F,过F作FE∥AC,交AB于E.设CD=x,DF=y.(1)求y与x的函数关系式;(2)当四边形AEFD为菱形时,求x的值;(3)当△DEF是直角三角形时,求x的值.23.(10分)如图,一次函数y=kx+b(k≠0)的图象过点P(﹣,0),且与反比例函数y=(m≠0)的图象相交于点A(﹣2,1)和点B.(1)求一次函数和反比例函数的解析式;(2)求点B的坐标,并根据图象回答:当x在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?24.(10分)(1)问题背景如图1,Rt△ABC中,∠BAC=90°,AB=AC,∠ABC的平分线交直线AC于D,过点C作CE⊥BD,交直线BD于E.请探究线段BD与CE的数量关系.(事实上,我们可以延长CE与直线BA相交,通过三角形的全等等知识解决问题.)结论:线段BD与CE的数量关系是_________(请直接写出结论);(2)类比探索在(1)中,如果把BD改为∠ABC的外角∠ABF的平分线,其他条件均不变(如图2),(1)中的结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由;(3)拓展延伸在(2)中,如果AB≠AC,且AB=nAC(0<n<1),其他条件均不变(如图3),请你直接写出BD与CE的数量关系.结论:BD=_________CE(用含n的代数式表示).江西省广昌一中2015届九年级上册考试试卷答案一、选择题:(每题3分,共24分)题号 1 2 3 4 5 6 7 8答案 D D C A A A A D二、填空题:(每小题3分,共18分)9、 4 10、11、1812、y=或y=﹣13、14、①③④三、(每小题6分,共24分)15、(3分)解:∵x2+4x+2=0∴x2+4x=﹣2∴x2+4x+4=﹣2+4∴(x+2)2=2∴x=﹣2∴x1=﹣2+,x2=﹣2﹣16、(7分)(1)(2,﹣2)(2)(1,0)(3)1017、(7分)(1)(2)(2)画树状图得:∵共有20种等可能的结果,恰好是一个田赛项目和一个径赛项目的12种情况,∴恰好是一个田赛项目和一个径赛项目的概率为:=.18、(7分)(1)9(2)S△OCD=S△OBE,理由是:∵点D,E在函数的图象上,∴S△OCD=S△OAE=,∵点D为BC的中点,∴S△OCD=S△OBD,即S△OBE=,∴S△OCD=S△OBE.19、(8分)解:设该单位去具有喀斯特地貌特征的黄果树旅游人数为x人,则人均费用为1000﹣20(x﹣25)元由题意得x[1000﹣20(x﹣25)]=27000整理得x2﹣75x+1350=0,解得x1=45,x2=30.当x=45时,人均旅游费用为1000﹣20(x﹣25)=600<700,不符合题意,应舍去.当x=30时,人均旅游费用为1000﹣20(x﹣25)=900>700,符合题意.答:该单位这次共有30名员工去具有喀斯特地貌特征的黄果树风景区旅游.20、(8分)解:(1)∵1﹣35%﹣20%﹣20%=25%,∴1000×25%=250(辆).答:参加销展的D型轿车有250辆;(2)如图,1000×20%×50%=100;(3)四种型号轿车的成交率:A:×100%=48%;B:×100%=49%;C:50%;D:×100%=52%∴D种型号的轿车销售情况最好.(4)∵.∴抽到A型号轿车发票的概率为.21、(9分)(1)证明:过点F作FG⊥BC于点G.∵∠AEF=∠B=∠90°,∴∠1=∠2.在△ABE和△EGF中,∴△ABE≌△EGF(AAS).∴AB=EG,BE=FG.又∵AB=BC,∴BE=CG,∴FG=CG,∴∠FCG=∠45°,即CF平分∠DCG,∴CF是正方形ABCD外角的平分线.(2)∵AB=3,∠BAE=30°,tan30°=,BE=AB•tan30°=3×,即CG=.在Rt△CFG中,cos45°=,∴CF=.22、(9分)解:(1)∵在Rt△ABC中,∠B=90°,AC=60,AB=30,∴∠C=30°,∵CD=x,DF=y.∴y=x;(2)∵四边形AEFD为菱形,∴AD=DF,∴y=60﹣x∴方程组,解得x=40,∴当x=40时,四边形AEFD为菱形;(3)∵△DEF是直角三角形,∴∠FDE=90°,∵FE∥AC,∴∠EFB=∠C=30°,∵DF⊥BC,∴∠DEF+∠DFE=∠EFB+∠DFE,∴∠DEF=∠EFB=30°,∴EF=2DF,∴60﹣x=2y,与y=x,组成方程组,得解得x=30,∴当△DEF是直角三角形时,x=30.23、(10分)解:(1)一次函数y=kx+b(k≠0)的图象过点P(﹣,0)和A(﹣2,1),∴,解得,∴一次函数的解析式为y=﹣2x﹣3,反比例函数y=(m≠0)的图象过点A(﹣2,1),∴,解得m=﹣2,∴反比例函数的解析式为y=﹣;(2),解得,或,∴B(,﹣4)由图象可知,当﹣2<x<0或x>时,一次函数的函数值小于反比例函数的函数值.24、(10分)解:(1)BD=2CE.理由如下:如图1,延长CE、BA交于F点.∵CE⊥BD,交直线BD于E,∴∠FEB=∠CEB=90°.∵BD平分∠ABC,∴∠1=∠2,∴∠F=∠BCF,∴BF=BC,∵BE⊥CF,∴CF=2CE.∵△ABC中,AC=AB,∠A=90°,∴∠CBA=45°,∴∠F=(180﹣45)°÷2=67.5°,∠FBE=22.5°,∴∠ADB=67.5°,∵在△ADB和△AFC中,,∴△ADB≌△AFC(AAS),∴BD=CF,∴BD=2CE;(2)结论BD=2CE仍然成立.理由如下:如图2,延长CE、AB交于点G.∵∠1=∠2,∠1=∠3,∠2=∠4,∴∠3=∠4,又∵BE=BE,∠GEB=∠CEB=90°,∴△GBE≌△CBE(ASA),∴GE=CE,∴CG=2CE.∵∠D+∠DCG=∠G+∠DCG=90°,∴∠D=∠G,又∵∠DAB=∠GAC=90°,∴△DAB∽△GAC,∴=,∵AB=AC,∴BD=CG=2CE;(3)BD=2nCE.理由如下:如图3,延长CE、AB交于点G.∵∠1=∠2,∠1=∠3,∠2=∠4,∴∠3=∠4,又∵BE=BE,∠GEB=∠CEB=90°,∴△GBE≌△CBE(ASA),∴GE=CE,∴CG=2CE.∵∠D+∠DCG=∠G+∠DCG=90°,∴∠D=∠G,又∵∠DAB=∠GAC=90°,∴△DAB∽△GAC,∴=,∵AB=nAC,∴BD=nCG=2nCE.故答案为BD=2CE;2n.。

九年级数学上学期期末试卷(含解析) 新人教版7 (2)

九年级数学上学期期末试卷(含解析) 新人教版7 (2)

重庆市大成中学2015-2016学年九年级(上)期末数学试卷一、选择题(本大题共12个小题,每小题4分,共48分)1.反比例函数的图象经过点A(﹣1,3),则k的值为()A.k=3 B.k=﹣3 C.k=6 D.k=﹣62.如图图形既是轴对称图形又是中心对称图形的是()A. B. C. D.3.一元二次方程x2﹣2x=0的根是()A.x1=0,x2=﹣2 B.x1=1,x2=2 C.x1=1,x2=﹣2 D.x1=0,x2=24.二次函数y=(x+2)2﹣1的图象的对称轴为()A.x=2 B.x=﹣2 C.x=1 D.x=﹣15.如图,在△ABC中,DE∥BC,AE=2,CE=3,DE=4,则BC=()A.6 B.10 C.5 D.86.如图,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BAO=30°,则∠OCB的度数为()A.30° B.60° C.50° D.40°7.正六边形的边心距为,这个正六边形的面积为()A. B. C. D.128.用一个圆心角为90°,半径为4的扇形作一个圆锥的侧面,则圆锥的高为()A. B. C. D.9.如图,△ABC的三个顶点都在方格纸的格点上,其中点A的坐标是(﹣1,0).现将△ABC绕点A顺时针旋转90°,则旋转后点C的坐标是()A.(2,1) B.(1,2) C.(﹣2,﹣1) D.(﹣1,﹣2)10.已知关于x的一元二次方程(m﹣1)x2﹣2mx+m+1=0的两个根都是正整数,则整数m的值是()A.2 B.3 C.2或3 D.1或2或311.如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△DOE:S△AOC的值为()A. B. C. D.12.如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数y=的图象上.若点B在反比例函数y=的图象上,则k的值为()A.﹣4 B.4 C.﹣2 D.2二、填空题(本大题6个小题,每小题4分,共24分)13.两个相似三角形的周长的比为,它们的面积的比为______.14.如图,△ABC的顶点A,B,C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是______.15.已知点A在反比例函数的图象上,AB⊥y轴,点C在x轴上,S△ABC=2,则反比例函数的解析式为______.16.从﹣3,﹣1,0,1,3这五个数中随机抽取一个数记为a,再从剩下的四个数中任意抽取一个数记为b,恰好使关于x,y的二元一次方程组有整数解,且点(a,b)落在双曲线上的概率是______.17.如图,已知A(,2)、B(,1),将△AOB绕着点O逆时针旋转,使点A旋转到点A′(﹣2,2)的位置,则图中阴影部分的面积为______.18.如图,若四边形ABCD、四边形GFED都是正方形,AD=4,,当正方形GFED绕D旋转到如图的位置,点F在边AD上,延长CE交AG于H,交AD于M.则CM的长为______.三、解答题:(本大题2个小题,每小题7分,共14分)19.已知关于x的一元二次方程x2+4x﹣k=0有两个不相等的实数根.(1)求k的取值范围;(2)请你在﹣5,﹣4,﹣3,1,2,3中选择一个数作为k的值,使方程有两个整数根,并求出方程的两个整数根.20.如图,从一个建筑物的A处测得对面楼BC的顶部B的仰角为32°,底部C的俯角为45°,观测点与楼的水平距离AD为31m,楼BC的高度大约为多少?(结果取整数).(参考数据:sin32°≈0.5,cos32°≈0.8,tan32°≈0.6)四、解答题:(本大题4个小题,每小题10分,共40分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.21.(10分)(2015秋•重庆校级期末)化简并求值:,其中x是方程x2+2x﹣4=0的解.22.(10分)(2015秋•重庆校级期末)定义新运算:对于两个不相等的实数a、b,我们规定符号Max{a,b}表示a、b中的较大值,如:Max{2,4}=4.(1)填空:Max{﹣2,﹣4}=______;(2)按照这个规定,解方程.23.(10分)(2015秋•重庆校级期末)寒假期间,一些同学将要到A,B,C,D四个地方参加冬令营活动,现从这些同学中随机调查了一部分同学.根据调查结果,绘制成了如下两幅统计图:(1)扇形A的圆心角的度数为______,若此次冬令营一共有320名学生参加,则前往C地的学生约有______人,并将条形统计图补充完整;(2)若某姐弟两人中只能有一人参加,姐弟俩决定用一个游戏来确定参加者:在4张形状、大小完全相同的卡片上分别写上﹣1,1,2,3四个整数,先让姐姐随机地抽取一张,再由弟弟从余下的三张卡片中随机地抽取一张.若抽取的两张卡片上的数字之和小于3则姐姐参加,否则弟弟参加.用列表法或树状图分析这种方法对姐弟俩是否公平?24.(10分)(2015•舟山)如图,直线y=2x与反比例函数y=(k≠0,x>0)的图象交于点A(1,a),B是反比例函数图象上一点,直线OB与x轴的夹角为α,tanα=.(1)求k的值.(2)求点B的坐标.(3)设点P(m,0),使△PAB的面积为2,求m的值.五、解答题:(本大题2个小题,每小题12分,共24分)25.(12分)(2015秋•重庆校级期末)如图,△ABC和△DEC都是等腰直角三角形,C为它们的公共直角顶点,连AD,BE,F为线段AD的中点,连接CF(1)如图1,当D点在BC上时,求证:①BE=2CF,②BE⊥CF.(2)如图2,把△DEC绕C点顺时针旋转一个锐角,其他条件不变,问(1)中的关系是否仍然成立?如果成立请证明.如果不成立,请写出相应的正确的结论并加以证明.26.(12分)(2015秋•重庆校级期末)如图,抛物线y=ax2+c(a≠0)与y轴交于点A,与x轴交于点B,C两点(点C在x轴正半轴上),△ABC为等腰直角三角形,且面积为4.现将抛物线沿BA方向平移,平移后的抛物线经过点C时,与x轴的另一交点为E,其顶点为F,对称轴与x轴的交点为H.(1)求a,c的值;(2)连结OF,试判断△OEF是否为等腰三角形,并说明理由;(3)现将一足够大的三角板的直角顶点Q放在射线AF或射线HF上,一直角边始终过点E,另一直角边与轴相交于点P,是否存在这样的点Q,使以点P,Q,E为顶点的三角形与△POE 全等?若存在,直接写出点Q的坐标;若不存在,请说明理由.2015-2016学年重庆市大成中学九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题4分,共48分)1.反比例函数的图象经过点A(﹣1,3),则k的值为()A.k=3 B.k=﹣3 C.k=6 D.k=﹣6【考点】反比例函数图象上点的坐标特征.【分析】直接把点A(﹣1,3)代入反比例函数,求出k的值即可.【解答】解:∵反比例函数y=的图象经过点A(﹣1,3),∴k=(﹣1)×3=﹣3.故选B.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.2.如图图形既是轴对称图形又是中心对称图形的是()A. B. C. D.【考点】中心对称图形;轴对称图形.【分析】结合选项根据轴对称图形与中心对称图形的概念求解即可.【解答】解:A、是轴对称图形,也是中心对称图形;B、不轴对称图形,也不是中心对称图形;C、是轴对称图形,不是中心对称图形;D、不是轴对称图形,是中心对称图形.故选A.【点评】本题考查了中心对称图形与轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.3.一元二次方程x2﹣2x=0的根是()A.x1=0,x2=﹣2 B.x1=1,x2=2 C.x1=1,x2=﹣2 D.x1=0,x2=2【考点】解一元二次方程-因式分解法.【分析】先分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x2﹣2x=0,x(x﹣2)=0,x=0,x﹣2=0,x1=0,x2=2,故选D.【点评】本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程,难度适中.4.二次函数y=(x+2)2﹣1的图象的对称轴为()A.x=2 B.x=﹣2 C.x=1 D.x=﹣1【考点】二次函数的性质.【分析】根据顶点式直接写出其对称轴即可.【解答】解:∵二次函数y=(x+2)2﹣1,是顶点式,∴对称轴为:x=﹣2.故选B.【点评】本题考查了二次函数的性质,比较简单,牢记顶点式是解题的关键.5.如图,在△ABC中,DE∥BC,AE=2,CE=3,DE=4,则BC=()A.6 B.10 C.5 D.8【考点】平行线分线段成比例.【分析】由在△ABC中,DE∥BC,可得△ADE∽△ABC,然后由相似三角形的对应边成比例,求得答案.【解答】解:∵在△ABC中,DE∥BC,∴△ADE∽△ABC,∴=,∵AE=2,CE=3,DE=4,∴AC=AE+CE=5,∴=,解得:BC=10.故选B.【点评】此题考查了相似三角形的判定与性质.注意证得△ADE∽△ABC是解此题的关键.6.如图,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BAO=30°,则∠OCB的度数为()A.30° B.60° C.50° D.40°【考点】切线的性质.【分析】根据切线性质得出∠OBA=90°,求出∠O=60°,证出△OBC是等边三角形,即可得出结果.【解答】解:∵AB是⊙O的切线,B为切点,∴∠OBA=90°,∵∠BAO=30°,∴∠O=60°,∵OB=OC,∴△OBC是等边三角形,∴∠OCB=60°,故选:B.【点评】本题考查了切线的性质、等边三角形的判定与性质;熟练掌握切线的性质,证明三角形是等边三角形是解决问题的关键.7.正六边形的边心距为,这个正六边形的面积为()A. B. C. D.12【考点】正多边形和圆.【分析】根据正六边形的特点,通过中心作边的垂线,连接半径,结合解直角三角形的有关知识解决.【解答】解:如图,连接OA、OB;过点O作OG⊥AB于点G.在Rt△AOG中,OG=,∠AOG=30°,∵OG=OA•cos 30°,∴OA===2,∴这个正六边形的面积=6S△OAB=6××2×=6.故选C.【点评】此题主要考查正多边形和圆,根据题意画出图形,再根据正多边形的性质及锐角三角函数的定义解答即可.8.用一个圆心角为90°,半径为4的扇形作一个圆锥的侧面,则圆锥的高为()A. B. C. D.【考点】圆锥的计算.【分析】设圆锥的底面圆的半径为r,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式得到2πr=,然后求出r后利用勾股定理计算圆锥的高.【解答】解:设圆锥的底面圆的半径为r,根据题意得2πr=,解得r=1,所以圆锥的高==.故选B.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.9.如图,△ABC的三个顶点都在方格纸的格点上,其中点A的坐标是(﹣1,0).现将△ABC绕点A顺时针旋转90°,则旋转后点C的坐标是()A.(2,1) B.(1,2) C.(﹣2,﹣1) D.(﹣1,﹣2)【考点】坐标与图形变化-旋转.【分析】利用网格特点和旋转的性质画出△ABC绕点A顺时针旋转90°后的图形,然后写出旋转后点C的坐标.【解答】解:如图,△ABC绕点A顺时针旋转90°得到△AB′C′,旋转后点C的坐标为(2,1).【点评】本题考查了坐标与图形变换﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.10.已知关于x的一元二次方程(m﹣1)x2﹣2mx+m+1=0的两个根都是正整数,则整数m的值是()A.2 B.3 C.2或3 D.1或2或3【考点】根的判别式.【分析】利用公式法求出方程的两个根,再根据方程的两个实数根都为正整数,即可求出m 的值.【解答】解:∵△=(﹣2m)2﹣4(m+1)(m﹣1)=4>0,m﹣1≠0,∴x1===1+,x2==1,∵方程的两个实数根都为正整数,且m>1,∴是正整数,∴m=2或m=3,故选:C.【点评】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.11.如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△DOE:S△AOC的值为()A. B. C. D.【考点】相似三角形的判定与性质.【分析】证明BE:EC=1:3,进而证明BE:BC=1:4;证明△DOE∽△AOC,得到=,借助相似三角形的性质即可解决问题.【解答】解:∵S△BDE:S△CDE=1:3,∴BE:EC=1:3;∴BE:BC=1:4;∵DE∥AC,∴△DOE∽△AOC,∴=,∴S△DOE:S△AOC==,故选D.【点评】本题主要考查了相似三角形的判定及其性质的应用问题;解题的关键是灵活运用形似三角形的判定及其性质来分析、判断、推理或解答.12.如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数y=的图象上.若点B在反比例函数y=的图象上,则k的值为()A.﹣4 B.4 C.﹣2 D.2【考点】反比例函数图象上点的坐标特征;相似三角形的判定与性质.【分析】要求函数的解析式只要求出B点的坐标就可以,过点A,B作AC⊥x轴,BD⊥x轴,分别于C,D.根据条件得到△ACO∽△ODB,得到: ===2,然后用待定系数法即可.【解答】解:过点A,B作AC⊥x轴,BD⊥x轴,分别于C,D.设点A的坐标是(m,n),则AC=n,OC=m,∵∠AOB=90°,∴∠AOC+∠BOD=90°,∵∠DBO+∠BOD=90°,∴∠DBO=∠AOC,∵∠BDO=∠ACO=90°,∴△BDO∽△OCA,∴==,∵OB=2OA,∴BD=2m,OD=2n,因为点A在反比例函数y=的图象上,则mn=1,∵点B在反比例函数y=的图象上,B点的坐标是(﹣2n,2m),∴k=﹣2n•2m=﹣4mn=﹣4.故选A.【点评】本题考查了反比例函数图象上点的坐标特征,相似三角形的判定和性质,求函数的解析式的问题,一般要转化为求点的坐标的问题,求出图象上点的横纵坐标的积就可以求出反比例函数的解析式.二、填空题(本大题6个小题,每小题4分,共24分)13.两个相似三角形的周长的比为,它们的面积的比为4:9 .【考点】相似三角形的性质.【分析】根据相似三角形周长的比等于相似比求出相似比,再根据相似三角形面积的比等于相似比的平方求解即可.【解答】解:∵两个相似三角形的周长比为,∴这两个相似三角形的相似比为2:3,∴它们的面积比是4:9.故答案为:4:9.【点评】本题考查了相似三角形的性质,是基础题,熟记性质是解题的关键.14.如图,△ABC的顶点A,B,C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是60°.【考点】圆周角定理.【分析】先根据圆周角定理得到∠ABC=∠AOC,由于∠ABC+∠AOC=90°,所以∠AOC+∠AOC=90°,然后解方程即可.【解答】解:∵∠ABC=∠AOC,而∠ABC+∠AOC=90°,∴∠AOC+∠AOC=90°,∴∠AOC=60°.故答案为:60°.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.15.已知点A在反比例函数的图象上,AB⊥y轴,点C在x轴上,S△ABC=2,则反比例函数的解析式为y=﹣.【考点】待定系数法求反比例函数解析式;反比例函数系数k的几何意义.【分析】先根据反比例函数的图象在第二象限判断出k的符号,再由S△ABC=2得出AB•OB的值,进而可得出结论.【解答】解:∵反比例函数的图象在第二象限,∴k<0.∵S△ABC=2,∴AB•OB=2,∴AB•OB=4,∴k=﹣4,即反比例函数的解析式为y=﹣.故答案为:y=﹣.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.16.从﹣3,﹣1,0,1,3这五个数中随机抽取一个数记为a,再从剩下的四个数中任意抽取一个数记为b,恰好使关于x,y的二元一次方程组有整数解,且点(a,b)落在双曲线上的概率是.【考点】列表法与树状图法.【分析】根据题意可以写出所有的可能性,然后将所有的可能性代入方程组和双曲线,找出符号要求的可能性,从而可以解答本题.【解答】解:从﹣3,﹣1,0,1,3这五个数中随机抽取一个数记为a,再从剩下的四个数中任意抽取一个数记为b,则(a,b)的所有可能性是:(﹣3,﹣1)、(﹣3,0)、(﹣3,1)、(﹣3,3)、(﹣1,﹣3)、(﹣1,0)、(﹣1,1)、(﹣1,3)、(0,﹣3)、(0,﹣1)、(0,1)、(0,3)、(1,﹣3)、(1,﹣1)、(1,0)、(1,3)、(3,﹣3)、(3,﹣1)、(3,0)、(3,1),将上面所有的可能性分别代入关于x,y的二元一次方程组有整数解,且点(a,b)落在双曲线上的是:(﹣3,1),(﹣1,3),(3,﹣1),故恰好使关于x,y的二元一次方程组有整数解,且点(a,b)落在双曲线上的概率是:,故答案为:.【点评】本题考查列表法与树状图法,解题的关键是明确题意,写出所有的可能性.17.如图,已知A(,2)、B(,1),将△AOB绕着点O逆时针旋转,使点A旋转到点A′(﹣2,2)的位置,则图中阴影部分的面积为.【考点】旋转的性质;扇形面积的计算.【分析】由A(2,2)旋转到点A′(﹣2,2),易得旋转角为105°,求出OA和OB,根据旋转的性质可得,阴影部分的面积等于S扇形A'OA﹣S扇形C'OC,从而求出答案.【解答】解:(1)∵A(,2)、A′(﹣2,2),∴∠A′OA=45°+60°=105°,∵将△AOB绕着点O逆时针旋转,使点A(2,2)旋转到点A′(﹣2,2)的位置,B旋转到点B′位置,∴∠A′OA=∠B′OB=105°,∵B(2,1),A′(﹣2,2),∴B′点坐标为(﹣2+1,2);(2)如图,设交OA′于C′,∵A(2,2)、B(2,1),∴OA=4,OC=OB=.根据旋转的性质可得,S△OB′C′=S△OBC,∴阴影部分的面积=S扇形A'OA﹣S扇形C'OC=﹣=π,故答案为:π.【点评】此题主要考查了扇形的面积计算及旋转的性质,解答本题的关键是根据旋转的性质得出S OB′C′=S OBC,从而得到阴影部分的表达式.18.如图,若四边形ABCD、四边形GFED都是正方形,AD=4,,当正方形GFED绕D旋转到如图的位置,点F在边AD上,延长CE交AG于H,交AD于M.则CM的长为.【考点】旋转的性质;勾股定理的应用;正方形的性质;平行线分线段成比例.【分析】先过点E作EQ⊥CD于Q,构造等腰直角三角形DEG,并求得其直角边长,再根据EQ∥MD,运用平行线分线段成比例定理,求得MD的长,最后在直角三角形CDM中根据勾股定理求得斜边CM的长.【解答】解:过点E作EQ⊥CD于Q,则∠EQD=90°,∵正方形DEFG中∠EDF=45°,正方形ABCD中∠ADC=90°,∴∠EDQ=90°﹣45°=45°,∴△DEQ是等腰直角三角形,∵DE=,∴EQ=DQ=1,又∵AD=4=CD,∴CQ=4﹣1=3,∵EQ∥MD,∴=,即=,∴DM=,∴直角三角形CDM中,CM==.故答案为:【点评】本题以图形旋转为背景,考查了正方形的性质以及勾股定理,解决问题的关键是作辅助线,运用平行线分线段成比例定理进行求解.三、解答题:(本大题2个小题,每小题7分,共14分)19.已知关于x的一元二次方程x2+4x﹣k=0有两个不相等的实数根.(1)求k的取值范围;(2)请你在﹣5,﹣4,﹣3,1,2,3中选择一个数作为k的值,使方程有两个整数根,并求出方程的两个整数根.【考点】根的判别式.【分析】(1)根据方程有两个不等实根结合根的判别式,可得出关于k的一元一次不等式,解不等式即可得出k的取值范围;(2)结合(1)的结论,找出k的值,并验证k为这些数时,何时方程的两根为整数,由此即可得出结论.【解答】解:(1)∵方程x2+4x﹣k=0有两个不相等的实数根,∴△=42﹣4×1×(﹣k)=16+4k>0,解得:k>﹣4,∴k的取值范围为k>﹣4;(2)当k=﹣3时,△=16+4k=4,原方程为x2+4x+3=(x+1)(x+3)=0,解得:x=﹣1或x=﹣3;当k=1时,△=16+4k=20,不是整数;当k=2时,△=16+4k=24,不是整数;当k=3时,△=16+4k=28,不是整数.∴当取k=﹣3时,方程的两个整数根为﹣1或﹣3.【点评】本题考查了根的判别式以及解一元一次不等式,解题的关键是:(1)找出△=16+4k >0;(2)验证k为何值时,方程有两个整数根.本题属于中档题,难度不大,解决该题型题目时,根据方程根的个数结合根的判别式得出不等式是关键.20.如图,从一个建筑物的A处测得对面楼BC的顶部B的仰角为32°,底部C的俯角为45°,观测点与楼的水平距离AD为31m,楼BC的高度大约为多少?(结果取整数).(参考数据:sin32°≈0.5,cos32°≈0.8,tan32°≈0.6)【考点】解直角三角形的应用-仰角俯角问题.【分析】在Rt△ABD中,根据正切函数求得BD=AD•tan32°=31×0.6=18.6,在Rt△ACD中,求得CD=AD=31,再根据BC=BD+CD,代入数据计算即可.【解答】解:在Rt△ABD中,∵AD=31,∠BAD=32°,∴BD=AD•tan32°≈31×0.6=18.6,在Rt△ACD中,∵∠DAC=45°,∴CD=AD=31,∴BC=BD+CD=18.6+31≈50.故楼BC的高度大约为50m.【点评】此题考查了解直角三角形的应用﹣仰角俯角问题.此题难度适中,注意能借助仰角或俯角构造直角三角形并解直角三角形是解此题的关键.四、解答题:(本大题4个小题,每小题10分,共40分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.21.(10分)(2015秋•重庆校级期末)化简并求值:,其中x是方程x2+2x﹣4=0的解.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再根据x是方程x2+2x﹣4=0的解得出x2+2x=4,再代入原式进行计算即可.【解答】解:原式=﹣÷=﹣•=﹣==,∵x2+2x﹣4=0,∴x2+2x=4,∴原式=.【点评】本题考查的是分式的化简求值,此类题型的特点是:利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.22.(10分)(2015秋•重庆校级期末)定义新运算:对于两个不相等的实数a、b,我们规定符号Max{a,b}表示a、b中的较大值,如:Max{2,4}=4.(1)填空:Max{﹣2,﹣4}= ﹣2 ;(2)按照这个规定,解方程.【考点】解一元二次方程-因式分解法;解一元二次方程-公式法.【分析】(1)根据新定义直接作出判断;(2)分x>0和x<0两种情况分析,利用公式法解一元二次方程即可.【解答】解:(1)根据定义可知:Max{﹣2,﹣4}=﹣2;故答案为﹣2;(2)当x>0时,有=x,解得x=,x=(舍去),x<0时,有=﹣x,解得,x=﹣1,x=2(舍去).【点评】此题主要考查了一元二次方程的解法,解题的关键是掌握新定义以及掌握因式分解法以及公式法解方程的方法步骤,掌握降次的方法,把二次化为一次,再解一元一次方程.23.(10分)(2015秋•重庆校级期末)寒假期间,一些同学将要到A,B,C,D四个地方参加冬令营活动,现从这些同学中随机调查了一部分同学.根据调查结果,绘制成了如下两幅统计图:(1)扇形A的圆心角的度数为108°,若此次冬令营一共有320名学生参加,则前往C 地的学生约有64 人,并将条形统计图补充完整;(2)若某姐弟两人中只能有一人参加,姐弟俩决定用一个游戏来确定参加者:在4张形状、大小完全相同的卡片上分别写上﹣1,1,2,3四个整数,先让姐姐随机地抽取一张,再由弟弟从余下的三张卡片中随机地抽取一张.若抽取的两张卡片上的数字之和小于3则姐姐参加,否则弟弟参加.用列表法或树状图分析这种方法对姐弟俩是否公平?【考点】游戏公平性;用样本估计总体;扇形统计图;条形统计图;列表法与树状图法.【分析】(1)根据两个统计图中的数据求出调查的总人数,进而确定出A的圆心角度数,利用样本与总体之间的关系求出C的学生数,补全条形统计图即可;(2)列表得出所有等可能的情况数,找出数字之和小于3与数字之和大于等于3的情况数,求出姐弟两人参加的概率,比较即可得到结果.【解答】解:(1)由题意得:(30+20+10)÷(1﹣40%)=100(人),则扇形A的圆心角的度数为×360°=108°;此次冬令营一共有320名学生参加,则前往C地的学生约有:×320=64(人);B营地的人数是:100×40%=40(人),补全条形统计图,如图所示;故答案为:108;64;(2)根据题意列表如下:﹣1123﹣1﹣﹣﹣(1,﹣1)(2,﹣1)(3,﹣1)1(﹣1,1)﹣﹣﹣(2,1)(3,1)2(﹣1,2)(1,2)﹣﹣﹣(3,2)3(﹣1,3)(1,3)(2,3)﹣﹣﹣所有等可能的情况有12种,其中抽取的两张卡片上的数字之和小于3的情况有6种,∴P(数字之和小于3)=P(数字之和大于等于3)==,则此游戏公平.【点评】此题考查了游戏得公平性,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.24.(10分)(2015•舟山)如图,直线y=2x与反比例函数y=(k≠0,x>0)的图象交于点A(1,a),B是反比例函数图象上一点,直线OB与x轴的夹角为α,tanα=.(1)求k的值.(2)求点B的坐标.(3)设点P(m,0),使△PAB的面积为2,求m的值.【考点】反比例函数与一次函数的交点问题.【分析】(1)把点A(1,a)代入y=2x,求出a=2,再把A(1,2)代入y=,即可求出k 的值;(2)过B作BC⊥x轴于点C.在Rt△BOC中,由tanα=,可设B(2h,h).将B(2h,h)代入y=,求出h的值,即可得到点B的坐标;(3)由A(1,2),B(2,1),利用待定系数法求出直线AB的解析式为y=﹣x+3,那么直线AB与x轴交点D的坐标为(3,0).根据△PAB的面积为2列出方程|3﹣m|×(2﹣1)=2,解方程即可求出m的值.【解答】解:(1)把点A(1,a)代入y=2x,得a=2,则A(1,2).把A(1,2)代入y=,得k=1×2=2;(2)过B作BC⊥x轴于点C.∵在Rt△BOC中,tanα=,∴可设B(2h,h).∵B(2h,h)在反比例函数y=的图象上,∴2h2=2,解得h=±1,∵h>0,∴h=1,∴B(2,1);(3)∵A(1,2),B(2,1),∴直线AB的解析式为y=﹣x+3,设直线AB与x轴交于点D,则D(3,0).∵S△PAB=S△PAD﹣S△PBD=2,点P(m,0),∴|3﹣m|×(2﹣1)=2,解得m1=﹣1,m2=7.【点评】本题考查了反比例函数与一次函数的交点问题,一次函数、反比例函数图象上点的坐标特征,利用待定系数法求反比例函数与一次函数的解析式,正切函数的定义,三角形的面积,难度适中,利用数形结合是解题的关键.五、解答题:(本大题2个小题,每小题12分,共24分)25.(12分)(2015秋•重庆校级期末)如图,△ABC和△DEC都是等腰直角三角形,C为它们的公共直角顶点,连AD,BE,F为线段AD的中点,连接CF(1)如图1,当D点在BC上时,求证:①BE=2CF,②BE⊥CF.(2)如图2,把△DEC绕C点顺时针旋转一个锐角,其他条件不变,问(1)中的关系是否仍然成立?如果成立请证明.如果不成立,请写出相应的正确的结论并加以证明.【考点】三角形综合题.【分析】(1)①由条件可证明Rt△ADC≌Rt△BEC,可证得BE=AD,再利用直角三角形的性质可证明BE=2CF;②由直角三角形的性质可得CF=DF,可证明∠FCD=∠ADC,可证得∠EBC+∠FCD=90°,可证明结论;(2)延长CF到M,使FM=FC,连接AM,DM,可证明四边形ACDM为平行四边形,进一步可证明△MAC≌△ECB,则可得MC=BE,可证得BE=2CF,再结合∠ACB=90°,可证明BE⊥CF.【解答】(1)证明:①∵△ABC和△DEC都是等腰直角三角形,∴BC=AC,CD=CE,∠ACB=∠ECD=90°,在△BCE和△ACD中∴△BCE≌△ACD(SAS),∴BE=AD,∠EBC=∠DAC,∵F为线段AD的中点,∴CF=AF=DF=AD∴BE=2CF;②∵AF=CF,∴∠DAC=∠FCA,∵∠BCF+∠ACF=90°,∴∠BCF+∠EBC=90°,即BE⊥CF;(2)旋转一个锐角后,(1)中的关系依然成立.证明:如图2,延长CF到M,使FM=FC,连接AM,DM,又AF=DF,∴四边形AMDC为平行四边形∴AM=CD=CE,∠MAC=180°﹣∠ACD,∠BCE=∠BCA+∠DCE﹣∠ACD=180°﹣∠ACD,即∠MAC=∠BCE,在△MAC和△ECB中∴△MAC≌△ECB(SAS),∴CM=BE;∠ACM=∠CBE,∴BE=CM=2CF;∴∠CBE+∠BCM=∠ACM+∠BCM=90°,即BE⊥CF.【点评】本题主要考查三角形的综合应用,涉及知识点有等腰三角形、直角三角形的性质、全等三角形的判定和性质、平行四边形的判定和性质等.在(1)中注意直角三角形斜边上的中线等于斜边的一半,在(2)中构造三角形全等是解题的关键.本题知识点较多,但是思路清晰,难度不大,属于基础题.26.(12分)(2015秋•重庆校级期末)如图,抛物线y=ax2+c(a≠0)与y轴交于点A,与x轴交于点B,C两点(点C在x轴正半轴上),△ABC为等腰直角三角形,且面积为4.现将抛物线沿BA方向平移,平移后的抛物线经过点C时,与x轴的另一交点为E,其顶点为F,对称轴与x轴的交点为H.(1)求a,c的值;(2)连结OF,试判断△OEF是否为等腰三角形,并说明理由;(3)现将一足够大的三角板的直角顶点Q放在射线AF或射线HF上,一直角边始终过点E,另一直角边与轴相交于点P,是否存在这样的点Q,使以点P,Q,E为顶点的三角形与△POE 全等?若存在,直接写出点Q的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)由△ABC为等腰直角三角形,且面积为4,易求得OA的长,即可求得点A,B,C的坐标,然后由待定系数法求得答案;(2)首先求得直线AB的函数表达式,设顶点F的坐标为(m,m+2),由抛物线过点C (2,0),可求得平移后的抛物线函数表达式,继而求得点E的坐标,即可判定△OEF是等腰三角形;(3)分别情形一:从点Q在射线HF上,当点P在x轴上方时或当点P在x轴下方时,以及情形二:点Q在射线AF上,去分析求解即可求得答案.【解答】解:(1)∵△ABC为等腰直角三角形,∴OA=BC.又∵△ABC的面积=BC×OA=4,即OA2=4,∴OA=2.∴A(0,2),B(﹣2,0),C(2,0).∴,解得:.(2)△OEF是等腰三角形.理由如下:如答图1,∵A (0,2)),B (﹣2,0),∴直线AB的函数表达式为:y=x+2,又∵平移后的抛物线顶点F在射线BA上,∴设顶点F的坐标为(m,m+2).∴平移后的抛物线函数表达式为:y=﹣(x﹣m)2+m+2.∵抛物线过点C (2,0),∴﹣(x﹣m)2+m+2=0,解得m1=0,m2=6.∴平移后的抛物线函数表达式为:y=﹣(x﹣6)2+8,即y=﹣x2+6x﹣10.当y=0时,﹣ x2+6x﹣10=0,解得x1=2,x2=10.∴E(10,0),OE=10.又∵F(6,8),OH=6,FH=8.∴OF===10,∴OE=OF,即△OEF为等腰三角形.。

重庆市育才成功学校九年级数学上学期期末试题 新人教版

重庆市育才成功学校九年级数学上学期期末试题 新人教版

重庆育才成功学校初2015级九年级测试数学试题(满分:150分,考试时间:120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试卷上直接作答;2.作答前认真阅读答题卡上的注意事项.参考公式:抛物线y=ax 2+bx+c (a≠0)的顶点坐标为(2b a -,244ac b a-),对称轴公式为2b x a =-.一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号在答题卡中对应的方框涂黑. 1. -2的倒数是( )A.2B.-2C.D.2. 下列计算中,正确的是( )A.2a+3b=5abB.(3a 3)2=6a 6C. a 6÷a 2=a 3D.﹣3a+2a=﹣a 3. 如图,由几个相同的小正方体搭成的一个几何体,它的左视图为( )A . B. C . D. 4. 函数3+=x xy 中自变量x 的取值范围是( ) A .30x x >-≠且 B .0x ≠C .3x >-D .30x x ≠-≠或5. 如图,C 、D 分别EA 、EB 为的中点,∠E=30°,∠1=110°, 则∠2的度数为( )A. 080B. 090C. 0100D. 01106. 在一次芭蕾舞比赛中,甲、乙、丙、丁四队女演员的人数相同,身高的平均数均为166 cm ,且方差分别为2S 甲=1.5,2S 乙=2.5,2S 丙=2.9,2S 丁=3.3,则这四队女演员的身高最整齐的是( ) A .甲队B .乙队C .丙队D .丁队7. 如图,菱形ABCD 中,∠B =60°,AB =2㎝,E 、F 分别是BC 、CD 的中点,连结AE 、EF 、AF ,则△AEF的周长为( ) A .32㎝B .33㎝C .34㎝D .3㎝8. 如图,AB 是⊙O 的直径,若∠BAC=350,则么∠ADC=( ) A.350B.550C.70D.1100(第7题图) (第8题图) (第11题图)9. 小明骑自行车上学,开始以正常速度匀速行驶,但行至中途时,自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,他比修车前加快了速度继续匀速行驶,下面是行驶路程s (m )关于时间t (min )的函数图象,那么符合小明行驶情况的大致图象是( )A.B. C. D.10. 如图,是一组按照某种规律摆放成的图案,则图5中三角形的个数是( )A.8B.9C.16D.1711. 已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,则下列结论错误的是( )A .abc <0B .a +b>0C .c<4bD .若ax 12+bx 1=ax 22+bx 2,且x 1≠x 2,则x 1+x 2=1.12. 如图,已知直线643+-=x y 分别与x 轴、y 轴交于A 、B 两点,与双曲线ky x=交于E 、F 两点. 若AB=2EF ,则k 的值是( ) A .6 B .8 C .9 D .10二、填空题:(本题共6小题,每小题4分,共24分)请把下列各题的正确答案填写在答题卡对应的横线上.13. 未来三年,国家将投入8450亿元用于缓解群众“看病难、看病贵”的问题.将8450亿元用科学记数法表示为 亿元。

2015新人教九上期末数学试题

2015新人教九上期末数学试题

2013——2014学年度上学期期末考试九年级数学试题卷首语:亲爱的同学们,你已顺利的完成了本学期学习任务,现在是检测你学习效果的时候,希望你带着轻松.带着自信来解答下面的题目,同时尽情展示自己的才能。

答题时,请记住细心、精心和耐心。

祝你成功! 一.选择题(每小题3分,共36分,每小题有四个选择支,其中只有一个符合题意,请将序号填入题后的括号中)( )1.使式子xx+-21有意义的x 的取值范围是: A .x ≤1 B. x ≤1且x ≠-2 C. x ≠-2 D. x<1且x ≠-2( )2.方程x x x =-)1(的根是:A.2=xB. 2-=xC. 21-=x ,02=xD. 21=x ,02=x( )3.一个凸多边形共有14条对角线,则这个多边形的边数是:A .6B .7C .8D .9( )4.平面直角坐标系内一点P (-2,3)关于原点对称点的坐标是:A .(3,-2)B .(2,3)C .(-2,-3)D .(2,-3)( )5.下列图形中,既是轴对称图形,又是中心对称图形的是:( )6.下列事件不是随机事件的是:A .掷一次骰子,向上一面的点数是6点B .经过城市某一有交通信号灯的路口,遇到红灯C .通常温度降到0℃以下,纯净的水结冰D .某射击运动员射击一次,命中靶心( )7.如图,在⊙O 中,弦AB ∥CD ,若∠ABC=40°,则∠BOD 等于:A .20° B.40° C.50° D.80° ( )8.若⊙O 1,⊙O 2的半径分别是21=r ,42=r ,圆心距5=d ,则这两个圆的位置关系是:A .内切B .相交C .外切D .外离( )9.将抛物线25x y =向左平移2个单位,再向下平移3个单位,得到的抛物线是:A .3)2(52++=x yB .3)2(52-+=x yC .3)2(52+-=x yD .3)2(52--=x y( )10.已知二次函数c bx ax y ++=2(0≠a )的图象如图所示,则下列结论中,正确的是:A.a <0,b >0,c >0B. a <0,b >0,c <0C.a <0,b <0,c >0D. a <0,b <0,c <0( )11.下列说法正确的是( )A.各有一个角是100°的两个等腰三角形相似.B.各有一个角是45°的两个等腰三角形相似.C.有两边对应成比例的两个等腰三角形相似.D.两腰对应成比例的两个等腰三角形相似.( )12.如图,已知AD 为△ABC 的角平分线,DE ∥AB 交AC于点E ,53=EC AE ,那么AC AB等于: A .85 B .52 C .53D .83二.填空题(每题3分,共15分)13.若6的整数都分为a ,小数部分为b ,则=+22b a ________. 14.掷三枚硬币,一枚硬币的正面朝上,两枚硬币的反面朝上 的概率是 .15.如图,大半圆O 与小半圆O 1相切于点C ,大半圆的弦AB 与小半圆相切于F ,且AB ∥CD ,AB=4cm ,则阴影部分的面积为 .16.如图,一名男生推铅球,铅球行进高度y (单位:m )与水平距离x (单位:m )之间的关系是35321212++-=x x y .则铅球推出的距离是___________m. 17. 如图,正方形ABCD 边长是4,P 是CD 中点,Q 是线段BC 上一点,当CQ=__________时,以由Q ,C ,P 三点为顶点的三角形与△ADP 相似.三.解答下列各题(本大题共9题,满分69分)18.(本题满分6分)当2)202()25)(25(÷-+-+=x 时,求代数式642--x x 的值.19.(本题满分6分)已知关于x 的一元二次方程01)1(222=-+-+k x k x 有两个不相等的实数根.(1)求实数k 的取值范围;(2)0可能是方程的一个根吗?若是,请求出它的另一个根;若不是,请说明理由.20.(本题满分6分)如图,△ABD 和△AEC 都是等边三角形.BE 与DC 有什么关系?请你用旋转的性质说明上述关系成立的理由.21.(本题满分6分)布袋中有红、黄、蓝三种颜色的球各一个.(1)从中先摸出一个球,记录下它的颜色,将它放回布袋,搅匀,再摸出一个球,记录下颜色.求得到的两个颜色中有“一红一黄”(不分顺序)的概率.(2)如果摸出第一个球之后不放回布袋,再摸第二个球,这时得到的两个颜色中有“一红一黄” (不分顺序)的概率是多少?22.(本题满分6分)某商店购进一种商品,单价30元.试销中发现这种商品每天的销售量P(件)与每件的销售价x (元)满足关系:x P 2100-=.如果商店每天销售这种商品要获得200元的利润,那么每件商品的售价应定为多少元?每天要售出这种商品多少件?23.(本题满分8分)如图,折叠矩形ABCD 的一边AD ,使点D 落在BC 边的点F 处,已知折痕55=AE cm ,且43=FC EC . (1)△AFB 与△FEC 有什么关系?并说明理由. (2)求矩形ABCD 的周长.24.(本题满分8分)如图,有一抛物线拱桥,已知水位在AB 位置时,水面的宽为64米;水位上升4米,就达到警戒线CD ,这时的水面宽为34米.若洪水到来时,水位每小时上升0.5米,求水过警戒线后几小时淹到拱桥顶端M 处.25.(本题满分11分)如图,AB是⊙O的直径,BC⊥AB于B,过C作⊙O的切线PC,切点为D,与直线BC相交于C,与直线AB相交于P.(1)求证:AD∥OC;(2)试探究线段PA,PB,PD之间的等量关系,并加以证明;(3)当CD=PD,且OC=4时,求BC的长.26.(本题满分12分)如图,抛物线c bx ax y ++=2经过点A(1,0),B(4,0),C(0,2).(1)求抛物线的解析式及顶点坐标;(2)在对称轴右侧的抛物线上是否存在点P ,使△PAC 为直角三角形?若存在,求出所有符合条件点P 的坐标,并判断△PAC 是否与△COA 相似;荐不存在,请说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重庆育才成功学校初2015级九年级测试数学试题(满分:150分,考试时间:120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试卷上直接作答;2.作答前认真阅读答题卡上的注意事项.参考公式:抛物线y=ax 2+bx+c (a≠0)的顶点坐标为(2b a -,244ac b a-),对称轴公式为2b x a =-.一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号在答题卡中对应的方框涂黑. 1. -2的倒数是( )A.2B.-2C.D.2. 下列计算中,正确的是( )A.2a+3b=5abB.(3a 3)2=6a 6C. a 6÷a 2=a 3D.﹣3a+2a=﹣a 3. 如图,由几个相同的小正方体搭成的一个几何体,它的左视图为( )A . B. C . D. 4. 函数3+=x xy 中自变量x 的取值范围是( ) A .30x x >-≠且 B .0x ≠C .3x >-D .30x x ≠-≠或5. 如图,C 、D 分别EA 、EB 为的中点,∠E=30°,∠1=110°, 则∠2的度数为( )A. 080B. 090C. 0100D. 01106. 在一次芭蕾舞比赛中,甲、乙、丙、丁四队女演员的人数相同,身高的平均数均为166 cm ,且方差分别为2S 甲=1.5,2S 乙=2.5,2S 丙=2.9,2S 丁=3.3,则这四队女演员的身高最整齐的是( ) A .甲队B .乙队C .丙队D .丁队7. 如图,菱形ABCD 中,∠B =60°,AB =2㎝,E 、F 分别是BC 、CD 的中点,连结AE 、EF 、AF ,则△AEF的周长为( ) A .32㎝B .33㎝C .34㎝D .3㎝8. 如图,AB 是⊙O 的直径,若∠BAC=350,则么∠ADC=( ) A.350B.550C.70D.1100(第7题图) (第8题图) (第11题图)9. 小明骑自行车上学,开始以正常速度匀速行驶,但行至中途时,自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,他比修车前加快了速度继续匀速行驶,下面是行驶路程s (m )关于时间t (min )的函数图象,那么符合小明行驶情况的大致图象是( )A.B. C. D.10. 如图,是一组按照某种规律摆放成的图案,则图5中三角形的个数是( )A.8B.9C.16D.1711. 已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,则下列结论错误的是( )A .abc <0B .a +b>0C .c<4bD .若ax 12+bx 1=ax 22+bx 2,且x 1≠x 2,则x 1+x 2=1.12. 如图,已知直线643+-=x y 分别与x 轴、y 轴交于A 、B 两点,与双曲线ky x=交于E 、F 两点. 若AB=2EF ,则k 的值是( ) A .6 B .8 C .9 D .10二、填空题:(本题共6小题,每小题4分,共24分)请把下列各题的正确答案填写在答题卡对应的横线上.13. 未来三年,国家将投入8450亿元用于缓解群众“看病难、看病贵”的问题.将8450亿元用科学记数法表示为 亿元。

14. 如图,在△ABC 中,EF ∥BC ,AE 1EB 2=,8=BCFE S 四边形,则ABC S ∆= 。

15. 某校篮球班21名同学的身高如下表:则该校篮球班21名同学身高的中位数是 cm .16. 如图,在ABC ∆中,90A ∠=o ,O 是BC 边上一点,以O 为圆心的半圆分别与AB 、AC 边相切于D 、E 两点,已知2BD =,3AD =.则图中两部分阴影面积的和为 。

(第14题图) (第16题图) (第18题图)17. 随机地将一枚质地均匀六面分别标有1、2、3、4、5、6的骰子掷出,所得的数作为一次函数()()k x k y -++=51和关于x 的方程041)5(2=+++kx x k 中的k 值,恰好使所得的函数图象不经过第四象限,且方程有实根的概率为 。

18. 如图,点E 是边长为25的正方形ABCD 外一点,∠BED=90°,DE=8,连接AE ,则AE 的长为 。

三、解答题:(本大题共2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤. 19. 计算:30220146445cos 2)14.3(21311--+-+--⎪⎭⎫⎝⎛-+- π20. 已知△ABC 中,∠C=90°,tanA=12,D 是AC 上一点,AD=6,且∠CBD=∠A ,求AB 。

四、解答题:(本大题共个4小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.21.先化简,再求值:221443(1)21x xxx x x x-+-÷+-+--,其中x满足xxx-=-2)2(。

22.今年以来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查统计结果,绘制了不完整的三种统计图表.对雾霾了解程度的统计表:请结合统计图表,回答下列问题.(1)本次参与调查的学生共有人,m= ,n= ;(2)图2所示的扇形统计图中D部分扇形所对应的圆心角是度;(3)请补全图1示数的条形统计图;(4)根据调查结果,学校准备开展关于雾霾知识竞赛,某班要从“非常了解”态度的小明和小刚中选一人参加,现设计了如下游戏来确定,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4,然后放到一个不透明的袋中,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球.若摸出的两个球上的数字和为奇数,则小明去;否则小刚去.请用树状图或列表法说明这个游戏规则是否公平.23.某省会城市2013年的污水处理量为10万吨/天,2014年的污水处理量为30万吨/天,2014年平均每天的污水排放量比2013年平均每天污水排放量增加了20%,若2014年每天的污水处理率比2013年每天的污水处理率提高30%。

(污水处理率 污水处理量污水排放量).(1)求该市2013年、2014年平均每天的污水排放量分别是多少万吨?(2)2015年预计该市原有城区平均每天的污水排放量要比2014年平均每天污水排放量增加25%,同时,由于新的经济技术开发区投入生产,每天要新增污水5万吨。

按照国家规定“2015年省会城市的污水处理率不低于...70%”,那么该市2015年每天污水处理量在2014年每天污水处理量的基础上至少..还需要增加多少万吨,才能符合国家规定?24.如图,在△ABC中,∠ACB=90°,AC=BC,CD⊥AB于点D。

E、F分别为BC、AB上的点,AE⊥CF于点G,交CD于点H。

(1)求证:AH=CF ;(2)若CE=BF ,求证:BE=2DH.五、解答题(本大题共2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤.25. 如图,在直角坐标系xOy 中,直线33+-=x y 与x 轴、y 轴分别交于A 、B 两点,将△AOB 绕原点O逆时针旋转90°得到△DOC ,抛物线y=ax 2+bx+c 经过点A 、B 、C . (1)求抛物线的解析式;(2)点P 是第二象限内抛物线上的一个动点。

①是否存在一点P ,使△PCD 面积最大?若存在,求出△PCD 的面积的最大值;若不存在,请说明理由. ②连接PC ,以CP 为直角边作等腰直角△CPQ ,随着点P 的运动,△CPQ 的大小、位置也随之改变.当点Q 恰好落在抛物线对称轴上时,求出对应的P 点的坐标.26.如图1.在□ABCD中,∠DAC= 90°,AD=12cm,AC =16cm,H为AB的中点。

在△EFG中,∠EFG= 90°,EF = 4cm,FG= 3cm,FG在AC在上,且点F与点A重合。

将△EFG沿直线AC以1cm/s的速度向点C 运动。

当点F到达点C时,△EFG停止运动。

设运动的时间是t(s).其中t>0。

(1)当t= 时,点E落在线段HC上;(2)设△EFG与△AHC重叠部分的面积为S.请直接写出S与t的函数关系式及t的取值范围;(3)当点F到达点C时,如图2,将△EFG绕着点C逆时针旋转360°,在旋转过程中,设直线EG与射线BA、射线BC分别相交于M、N两点.试问:是否存在点M、N,使得△BMN是以∠MBN为底角的等腰三角形?若存在,请求出BM的长度;若不存在,请说明理由.重庆育才成功学校初2015级数学试题参考答案一、选择题二、填空题三、解答题19.解:原式=4-211291-+++-+=6 20.解:∵∠CBD=∠A ,∴21tan tan ===∠=BC CD AC BC CBD A 。

设CD=a ,则BC=2a ,AC=4a , ∴AD=AC-CD=3a=6,即a=2。

在Rt △ABC 中,AB ===45。

四、解答题21.解:原式21(2)(1)(1)32(1)1x x x x x x x -+--=-÷+-- 21(2)12(1)(2)(2)x x x x x x x --=-⋅+-+- 122(2)x x x x -=-++ 222x x=+∵x x x -=-2)2( ∴2121=-=x x , 当1-=x 时∴原式=2-2-12=; 当2=x 时∴原式无意义。

22.解:(1)利用条形图和扇形图可得出:本次参与调查的学生共有:180÷45%=400;m=×100%=15%,n=1﹣5%﹣15%﹣45%=35%;(2)图2所示的扇形统计图中D 部分扇形所对应的圆心角是:360°×35%=126°; (3)∵D 等级的人数为:400×35%=140; 如图所示:;(4)列树状图得:所以从树状图可以看出所有可能的结果有12种,数字之和为奇数的有8种, 则小明参加的概率为:P==23,小刚参加的概率为:P==13, 故游戏规则不公平.23.解:(1)设2013年平均每天的污水排放量为x 万吨,则2014年平均每天的污水排放量为(1+20%)x 万吨,依题意得:%3010%)20130=-+xx ( 解得50=x 经检验,50=x 是原方程的解. ()60%201=+x答:2013年平均每天的污水排放量约为50万吨,2014年平均每天的污水排放量约为60万吨.(2)解:设2015年平均每天的污水处理量还需要在2014年的基础上增加y 万吨,依题意得:%705%)251(6030≥+++y解得26≥y答:2015年平均每天的污水处理量还需要在2014年的基础上至少增加26万吨. 24.证明:(1)∵∠DCF+∠GFD=90°,∠DAH+∠GFD=90°,∴∠DCF=∠DAH 在△ADH 和△CDF 中⎪⎩⎪⎨⎧=∠=∠=∠=∠90CDF ADH CD AD DCFDAH ∴△ADH ≌△CDF ∴AH=CF(2)取AE 的中点M,连接DM,∵AD=DB,∴BE=2DM,且DM ∥BC∴∠DMH=∠CEH 。

相关文档
最新文档