八年级数学上册 13.3 等腰三角形 利用等腰三角形的“三线合一”性质解题素材 (新版)华东师大版
等腰三角形的三线合一”定理应用
等腰三角形的三线合一”定理应用全文共四篇示例,供读者参考第一篇示例:等腰三角形是一种特殊的三角形,其中两条边长度相等。
在等腰三角形中,存在一个重要的定理,即“等腰三角形的三线合一”定理。
这个定理指出,在一个等腰三角形中,等腰线、中位线和高线三条线段会共点于一个点,这个点被称为三角形的垂心。
等腰三角形的三线合一定理在几何学中有着重要的应用。
通过这个定理,我们可以推导出很多三角形的性质,并且可以帮助我们解决一些几何问题。
下面我们将通过几个具体的例子来展示等腰三角形的三线合一定理的应用。
我们来看一个简单的例子。
设等腰三角形ABC中,AB=AC,BD是边AC的中位线,E是边BC的中点,连接DE。
我们要证明线段BD 与CE相交于垂心H。
根据等腰三角形的性质,我们知道角B和角C是等的,所以三角形ABC是等腰的。
根据等腰三角形的三线合一定理,我们知道线段BD、CE和AH相交于一个点H,即三角形ABC的垂心。
接下来,我们可以利用这个性质来解决几何问题。
我们可以通过这个定理来证明等腰三角形的顶角相等,或者计算等腰三角形的面积等等。
第二篇示例:等腰三角形是指具有两条边相等的三角形,其特点是具有对称性和稳定性,是几何学中常见的形状之一。
在等腰三角形中,有一定的定理和性质可以应用,在解决几何问题时起到重要作用。
本文将重点介绍等腰三角形的三线合一定理及其应用。
一、三线合一定理的概念在等腰三角形中,连接等腰三角形顶点与底边中点的直线被称为等腰三角形的三线合一。
三线合一定理指的是在等腰三角形中,三条线段的端点在同一直线上。
这是等腰三角形的一个重要性质,可以通过几何推理和证明加以验证。
假设在等腰三角形ABC中,AB=AC。
连接顶点A与底边BC的中点D,并将直线AD延长至E点。
因为AD是BC的中线,根据中线定理可知AD=DC。
又因为ABC 为等腰三角形,所以AB=AC,由此可得BD=DC。
考虑△ADE和△ACD,根据两边相等、夹角相等、以及对应边角对应相等的条件可以得出△ADE≌△ACD。
人教版数学八年级初二上册 等腰三角形“三线合一”的妙用 名师教学教案 教学设计反思
13.3.1 等腰三角形1问题1:如图所示,把一张长方形的纸按图中虚线对折,并剪去阴影部分,再把它展开,得到的△ABC 有什么特点?探究作准备.二、探究性质问题2:仔细观察自己剪出的等腰三角形纸片,你能发现这个等腰三角形有什么特征吗?等腰三角形的特征:(1)等腰三角形的两个底角相等;(2)等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.追问1:同学们剪下的等腰三角形纸片大小不同,形状各异,是否都具有上述所概括的特征?追问2:在练习本上任意画一个等腰三角形,把它剪下来,折一折,上面得出的结论仍然成立吗?由此你能概括出等腰三角形的性质吗?学生观察后独立思考,并同伴交流,最后互动、交流得出性质1、2.通过感性材料,让学生在动手操作的过程中发现等腰三角形的共同的、本质的特征,进一步培养学生的概括能力,体会“三线合一”的含义.问题3:利用实验操作的方法,我们发现并概括出等腰三角形的性质1和性质2.对于性质1,你能通过严格的逻辑推理证明这个结论吗?(1)你能根据结论画出图形,写出已知、求证吗?(2)结合所画的图形,你认为证明两学生根据结论画出图形,写出已知、求证,并在教师的启发下进行小组讨论,得出证明方法,并在全班内交流.师根据学生所述,板书过程.让学生有、逐步实现由实验几何到论证几何的过渡.2个底角相等的思路是什么?(3)如何在一个等腰三角形中构造出两个全等三角形呢?从剪图、折纸的过程中你能获得什么启发?已知:如图,△ABC 中,AB =AC.求证:∠B =∠C.追问:你还有其他方法证明性质1吗?问题4:性质2可以分解为三个命题,本节课证明“等腰三角形的底边上的中线也是底边上的高和顶角平分线”.已知:如图,△ABC 中,AB =AC,AD 是底边BC的中线.求证:∠BAD =∠CAD,AD ⊥BC.性质1、2的符号语言表达方式问题5:在等腰三角形性质的探索过程和证明过程中,“折痕”“辅助线”发挥了非常重要的作用,由此,你能发现等腰三角形具有什么特征?结论:等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在直线就是它的对称轴.师引导学一根据结论画出图形,写出已知、求证并证明.学生回答.让学经历完整的的命题证明过程中,理解等腰三角形的性质,会进行符号语言、图形语言、文字语言的转换.重新回顾等腰三角形的轴对称性,让学生对等腰三角形的知识与轴对称的知识进行整合.3三、应用提高练习1:(1)如图,△ABC 中, AB =AC, ∠A=36°, 则∠B = °;学生独立完成练习1、2,并组内交流、班内汇报.对等腰三角形的性质进行简单应用.(2)如图,△ABC 中, AB =AC, ∠B=36°, 则∠A = °;(3)已知等腰三角形的一个内角为70°,则它的另外两个内角的度数分别是 .练习2:如图,△ABC 是等腰直角三角形(AB =AC,∠BAC =90°),AD 是底边BC上的高,标出∠B,∠C,∠BAD,∠DAC 的度数,并写出图中所有相等的线段.例1:如图,△ABC 中,AB =AC,点D 在AC 上,且BD =BC =AD.求△ABC 各角的度数.练习3:课本P77页练习第3题.学生回答,师板演.学生板演.运用所学知识解决实际问题,对学生的书写进行规范.五、体验谈谈你的收获和体会(1)本节课学习了哪些主要内容?师引导学生归纳总结.旨在让学生学会归纳总结,梳理知识,45收获 (2)我们是怎么探究等腰三角形的性质的?(3)本节课你学到了哪些证明线段相等或角相等的方法?提高认识.六、 实践 延伸 课后作业: 课本P81-82页习题13.3第1、2、4、6题 检测学生对本节知识的掌握情况.附:板书设计敎學反思:本节课主要学习等腰三角形的性质,通过师生双方的互动,学生接受新知较快,探究、归纳能力不断地得到提高,在敎學过程中体现了“发现问题、提出问题、分析问题、解决问题”的敎學思想。
2024年人教版八年级上册数学第13章第3节第1课时等腰三角形
感悟新知
知3-讲
特别提醒 1.等腰三角形的定义也是一种判定方法. 2.“等角对等边”是我们以后证明两条线段相
等的常用方法,在证明过程中,经常通过 计算三角形各角的度数,或利用角的关系 得到角相等,从而得到所对的边相等.
感悟新知
知3-讲
3. 已知底边及底边上的高作等腰三角形已知:一个等腰三 角形底边长为a,底边上的高为h(如图13 .3 -9). 求作:这个等腰三角形.
感悟新知
几何语言:如图13 .3 -3,在△ ABC 中, (1)∵ AB=AC,AD ⊥ BC, ∴ AD 平分∠ BAC(或BD=CD); (2)∵ AB=AC,BD=DC, ∴ AD ⊥ BC(或AD 平分∠ BAC); (3)∵ AB=AC,AD 平分∠ BAC, ∴ BD=DC(或AD ⊥ BC).
感悟新知
知2-练
3-1.[中考·宿迁] 如图,已知AB=AC=AD,且AD ∥ BC,求 证:∠ C=2 ∠ D.
感悟新知
证明:∵AB=AC=AD, ∴∠C=∠ABC,∠D=∠ABD. ∵∠ABC=∠ABD+∠CBD, ∴∠ABC=∠CBD+∠D. ∵AD∥BC,∴∠CBD=∠D. ∴∠ABC=∠D+∠D=2∠D. 又∵∠C=∠ABC,∴∠C=2∠D.
知3-讲
感悟新知
知3-练
例6 如图13.3-11, 在△ ABC 中,D 为AC 的中点,DE ⊥ AB,DF ⊥ BC,垂足分别为点E,F,且DE=DF.求 证:△ ABC 是等腰三角形.
解题秘方:利用“等角对等边” 判定等腰三角形,只需证明三 角形两个内角相等即可.
感悟新知
知3-练
证明:∵ DE ⊥ AB,DF ⊥ BC,垂足分别为点E,F, ∴∠ AED= ∠ CFD=9 0 °. ∵ D 为AC 的中点,∴ AD=DC.
八年级数学人教版(上册)第1课时等腰三角形的性质
证明:∵△ABC为等腰三角形,AB=AC,
∴∠ABC=∠ACB.
又∵BD、CE为底角的平分线,
∴ DBC 1 ABC,ECB 1 ACB,
2
2
∴∠DBC=∠ECB.
∵∠DBC=∠F,∴∠ECB=∠F,
∴EC∥DF. 侵权必究
当堂练习
7.A、B是4×4网格中的格点,网格中的每个小正方 形的边长为1,请在图中标出使以A、B、C为顶点 的三角形是等腰三角形的所有格点C的位置.
侵权必究
当堂练习
✓ 当堂反馈 ✓ 即学即用
侵权必究
当堂练习
1.等腰三角形有一个角是90°,则另两个角分别是( B )
A.30°,60°
B.45°,45°
C.45°,90°
D.20°,70°
2.如图,在△ABC中,AB=AC,过点A作AD∥BC,
若∠1=70°,则∠BAC的大小为( A ) A.40° B.30° C.70° D.50°
侵权必究
讲授新课
(1)解:∵AB=AC,AD是BC边上的中线,
∴∠BAD=∠CAD,∴∠BAC=2∠BAD=50°.
∵AB=AC,
∴
∠C=∠ABC
= =
112(1(18800°-°-50°)=∠6A5)°.
2
(2)证明:∵AB=AC,AD是BC边上的中线,
∴ED⊥BC,
又∵BG平分∠ABC,EF⊥AB,
B
C
∠A=36°,∠ABC=∠C=72°.
归纳 在含多个等腰三角形的图形中求角时,常常利用
方程思想,通过内角、外角之间的关系进行转化求解.
侵权必究
讲授新课
如图,在△ABC中,AB=AD=DC, ∠BAD=26°,求∠B和∠C的度数. 解:∵AB=AD=DC
南华县第一中学八年级数学上册第十三章轴对称13.3等腰三角形1等腰三角形第1课时等腰三角形的性质教学
结束语
同学们,你们要相信梦想是价值的源泉,相信成 功的信念比成功本身更重要,相信人生有挫折没 有失败,相信生命的质量来自决不妥协的信念,
考试加油!奥利给~
第十一章 三角形
章末复习 (一) 三角形
知识点一 三角形的三边关系
1.(2019·台州)以下长度的三条线段 , 能组成三角形的是(B
)
A.3 , 4 , 8
A.∠A+∠B=∠C B.∠A-∠B=∠C C.∠A∶∠B∶∠C=1∶2∶3 D.∠A=∠B=3∠C
12.如果在△ABC中 , ∠A=60°+∠B+∠C , 那么∠A等于( ) C
A.30° B.60° C.120° D.140°
13.一张△ABC纸片 , 点M , N分别是AB , AC上的点 , 假设沿直线MN折叠
第十三章 轴対称
等腰三角形〔1〕
【学习目标] 1、了解等腰三角形的概念 , 掌握等腰
三角形的性质 ; 2、运用等腰三角形的概念及性质解决
相关问题。 【学习重、难点] 重难点 : 等腰三角形的性质及其应用。
【预习导学]
(一)自学指导
1、自学1 : 自学课本P2页 , 〞探究、思考与例1” , 掌握等
等边対等角
总结归纳 : ①等腰三角形的两个
相等
B
A
D
C
〔中简线写成〞
高 ”〕
②等腰三角形的顶角的平対分称线轴 , 底边上
的
、底边上的 互相重合 ;
③等腰三角形是轴対称图形 ,
是
底边上的中线〔顶角平分线、底边上的高〕所在的直线。
【预习导学]
(二)自学检测 : 学生自主完成 , 小组内展示、点评 , 教师巡视。
A.只有①准确
人教版数学八年级上册第十三章13.3.1-等腰三角形说课稿
《13.3.1等腰三角形的性质》说课稿教学内容:义务教育课程标准试验教科书八年级数学上册第十三章第三节等腰三角形的性质,下面我从六个方面对本课的教学设计进行说明:一、说教材本节课内容在初中数学教学中起着比较重要的作用,它是对三角形的性质的呈现。
通过等腰三角形的性质反映在一个三角形中“等边对等角”的边角关系,并且是对轴对称图形性质的直观反映(三线合一)。
它所倡导的“观察---发现---猜想---论证”的数学思想方法是今后研究数学的基本思想方法。
因此,本节内容在教材中处于非常重要的地位,起着承前启后的作用。
二.说教学目标1.探索并证明等腰三角形的两个性质。
2.能利用性质证明两个角相等或两条线段相等。
3.结合等腰三角形性质的探索与证明过程,体会轴对称在研究几何问题中的作用。
说重点:探索并证明等腰三角形的性质。
说难点:性质1证明中辅助线的添加和对性质2的理解。
三.说教法在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”,“教必有法而教无定法”,只有方法得当,才会有效。
根据本课内容特点和初二学生思维活动的特点,我采用了教具直观教学法,联想发现教学法,设疑思考法,逐步渗透法和师生交际相结合的方法。
使学生全面参与、全员参与、全程参与,真正确立其主体地位。
而教师只是作为数学学习的组织者、引导者、合作者,及时地给以引导、点拨、纠正。
四.说学法只有好的学习方法才能培养能力,在学生探索知识的过程中培养他们掌握好的学习文教解题方法,并且通过自己动手操作、动脑思考,动口表述,培养学生的观察、猜想、概括、表述、论证的能力。
五.课标对本节课的要求探索并证明等腰三角形的性质定理:等腰三角形的两底角相等;等腰三角形的顶角的平分线,底边上的中线,底边上的高互相重合。
六.如何利用学案是为了让学生在课前预习时有方向、有目标地进行自主预习,是辅助课堂学习的一种方式。
七.说教学过程(一)知识回顾,导入新课(多媒体出示)学生独立思考,然后回答。
初二数学上册(人教版)第十三章轴对称13.3知识点总结含同步练习及答案
描述:初二数学上册(人教版)知识点总结含同步练习题及答案第十三章 轴对称 13.3 等腰三角形一、学习任务1. 了解等腰三角形和等边三角形的概念.2. 掌握等腰三角形和等边三角形的性质定理和判定定理,掌握 角的直角三角形的性质.二、知识清单等腰三角形 等边三角形三、知识讲解1.等腰三角形等腰三角形有两条边相等的三角形叫做等腰三角形(isosceles triangle ).等腰三角形的性质① 等腰三角形的两个底角相等;② 等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(简写成“三线合一”).等腰三角形的判定如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).三角形的边角对应关系在同一个三角形内,大边对大角,大角对大边.构造等腰三角形的方法30∘都填上)∠ADE=∠AED=2∠BAD34DE△BDE接 ,试判断 的形状,并说明理由.∠DBC描述:例题:2.等边三角形等边三角形三边都相等的三角形叫做等边三角形(equilateral triangle ),也属于等腰三角形.等边三角形的性质三个内角都相等,并且每一个角都等于 .等边三角形性质的推论在直角三角形中,如果一个锐角等于 ,那么它所对的直角边等于斜边的一半.等边三角形的判定① 三个角都相等的三角形是等边三角形;② 有一个角是 的等腰三角形是等边三角形.构造等边三角形的方法,.即 是等腰三角形.2∴∠DBC =∠E ∴BD =DE △BDE 60∘30∘60∘如图所示,在等边三角形 中, 和 的平分线相交于点 ,, 的垂直平分线分别交 于点 ,,求证: 是等边三角形.分析:根据垂直平分线的性质可知,,,由于 , 是角平分线,所以 ,再由于外角和定理,,所以 是等边三角形.证明: , 分别是 , 垂直平分线上的点,ABC ∠ABC ∠ACB O BO OC BC E F △OEF OE =BE OF =F C OB OC ∠OBC =∠OCB =30∘∠OEF =∠OF E =60∘△OEF ∵EF BO OC值为( )32A△ABC。
2022八年级数学上册 第十三章 轴对称13.3 等腰三角形 1等腰三角形第1课时 等腰三角形的性质
考查角度二 运用等腰三角形的性质判断线段间的数量关系与位置关系
13.如图,在等腰三角形ADC中,AD=CD,且AB∥DC,CB⊥AB于点B, CE⊥AD交AD的延长线于点E. (1)求证:CE=CB; (2)连接BE,请写出BE与AC的位置关系,并证明.
B.AD平分∠BAC
C.AB=2BD
D.∠B=∠C
7.如图,在△ABC中,AB=AC,AD平分∠BAC,若△ABC的周长为36, △ABD的周长为30,求AD的长.
解:∵AB=AC,AD平分∠BAC,∴BD=CD. ∵△ABC的周长为36,∴AB+BC+AC=36, ∴AB+BD=18. ∵△ABD的周长为30, ∴AB+BD+AD=30, ∴AD=30-18=12.
∠OPP′的度数为( B )
A.40° B.50°
C.70°
D.80°
3.某城市几条道路的位置关系如图所示,已知AB∥CD,AE与AB的夹角为 48°,若CF与EF的长度相等,则∠C的度数为___2_4_°___.
4.(课本P77练习T3改编)如图,在△ABC中,AD=BD=BC,若∠DBC= 28°,求∠ABC和∠C的度数. 解:设∠A=x°.∵AD=BD, ∴∠ABD=∠A=x°,∴∠BDC=2x°. ∵BD=BC,∴∠C=∠BDC=2x°. ∵∠DBC=28°,∠BDC+∠C+∠DBC=180°, ∴2x+2x+28=180,∴x=38, ∴∠C=76°,∠ABC=∠ABD+∠DBC=38°+28°=66°.
8.如图,在△ABC中,AB=AC,AD是边BC上的中线,BE⊥AC于点E.求 证:∠CBE=∠BAD.
巧用等腰三角形“三线合一”简化解题过程
巧用等腰三角形“三线合一”简化解题过程运用等腰三角形“三线合一”的性质证明线段相等、角相等或垂直关系,不仅可以减少证全等的次数,而且还可以简化解题过程 .一、利用“三线合一”证明线段相等1.如图,已知在△ABC 中,AB = AC , 点D,E 在边BC 上,且AD = AE .求证:BD = CE .证明:过点A 作AH⊥BC 于点H .∵AB = AC , AH⊥BC,∴BH = CH,同理可证,DH = EH,∴BH - DH = CH - EH ,∴BD = CE .2.如图,在等腰直角△ABC 中,∠A = 90°,D 为BC 边上的中点,E,F 分别为AB , AC 边上的点,且满足EA = CF .求证:DE = DF .证明:连接AD .∵△ABC 为等腰直角三角形,∠BAC = 90°,D 为BC 边上的中点,∴BD = CD = AD , AD 平分∠BAC,∴∠EAD = ∠C = 45°,在△ADE 和△CDF 中,AE = CF , ∠EAD = ∠C,AD = CD .∴△ADE ≌△CDF(SAS),∴DE = DF .二、利用“三线合一”证明角相等3.如图,在△ABC 中,AB = AC , AD 是BC 边上的中线,BE⊥AC 于点E . 求证:∠CBE = ∠BAD .证明:∵AB = AC , AD 是BC 边上的中线,∴AD⊥BC,∠CAD = ∠BAD,∴∠CAD + ∠C = 90° .又∵BE⊥AC,∴∠CBE + ∠C = 90°,∴∠CBE = ∠CAD .∴∠CBE = ∠BAD .4.如图,在△ACB 中,AC = BC , AD 为△ABC 的高线,CE 为△ABC 的中线 .求证:∠DAB = ∠ACE .证明:∵AC = BC , CE 为△ABC 的中线,∴∠CAB = ∠B,CE⊥AB,∴∠CAB + ∠ACE = 90° .∵AD 为△ABC 的高线,∴∠D = 90°,∴∠DAB + ∠B = 90°,∴∠DAB = ∠ACE .三、利用“三线合一”证明垂直关系5.如图,在△ABC 中,AC = 2AB , AD 平分∠BAC 交BC 于点D,E 是AD 上一点,且EA = EC . 求证:EB⊥AB .证明:过点E 作EF⊥AC 于点F .∵EA = EC ,∴AF = FC = 1/2 AC .∵AC = 2 AB,∴AF = AB .∵AD 平分∠BAC,∴∠BAD = ∠CAD .在△BAE 和△FAE 中,AB = AF , ∠BAD = ∠CAD,AE = AE , ∴△ABE ≌△AFE(SAS),∴∠ABE = ∠AFE = 90°,∴EB⊥AB .。
(说课稿)13.3.1等腰三角形的性质
(说课稿)13.一、教材分析1、教学内容:本节课是华师版八年级数学上册第十三章第三节《等腰三角形》的第一课时的内容——等腰三角形的性质,等腰三角形是一种专门的三角形,它除了具有一样三角形的性质以外,还具有一些专门的性质。
它是轴对称图形,具有对称性。
本节课确实是要利用对称的知识来研究等腰三角形的有关性质,并利用全等三角形的知识证明这些性质。
2、在教材中的地位与作用:本节课是在学生把握了一样三角形和轴对称的知识,具有初步的推理证明能力的基础上进行学习的,担负着进一步训练学生学会分析、学会证明的任务,在培养学生的思维能力和推理能力等方面有重要的作用;而“等边对等角”和“三线合一”的性质是今后论证两个角相等、两条线段相等、两条直线垂直的重要依据,本节课是第三课时研究等边三角形的基础,是全章的重点之一。
3、教学重点与难点:重点:等腰三角形的性质的探究和应用。
难点:等腰三角形的性质的验证。
二、教学目标:知识技能:1、明白得把握等腰三角形的性质。
2、运用等腰三角形的性质进行证明和运算。
数学摸索:1、观看等腰三角形的对称性进展形象思维。
2、通过实践、观看、证明等腰三角形的性质,进展学生合情推理能力和演绎推理能力。
解决问题:1通过观看等腰三角形的对称性,培养学生观看、分析、归纳问题的能力。
2、通过运用等腰三角形的性质解决有关的问题,提高运用知识和技能解决问题的能力,进展应用意识。
情感态度:通过引导学生对图形的观看、发觉激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中猎取成功的体验,建立学习的自信心。
教学预备:CAI课件,长方形的纸片,剪刀,常用画图工具。
三、教法及学法分析1、教法设想——让学生参与教学过程,注重培养学生的建构适应,提高学生的数学素养。
《新课程标准》要求课堂教学要充分表达以学生进展为本的精神,因此,在本节课的教学设计中,我采纳了“问题情境——建立模型——说明、应用与拓展”的教学模式,让学生经历知识的形成与应用的过程,从而更好地明白得数学知识的意义,把握必要的基础知识和差不多技能,进展应用数学知识的意识与能力,增强学好数学的愿望和信心。
2017年秋季新版华东师大版八年级数学上学期13.3、等腰三角形、利用等腰三角形的“三线合一”性质解题素材
利用等腰三角形的“三线合一”性质解题我们知道,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合,被称做为“三线合一”.等腰三角形的“三线合一”性质在几何解题中有着广泛地运用,现举例说明. 一、证明线段相等例1 如图1,在△ABC 中,AB =AC ,BD =CD ,DE ⊥AB 于点E ,DF ⊥AC 于点F .求证:DE =DF .分析 由于DE ⊥AB ,DF ⊥AC ,所以要证明DE =DF ,只要证明点D 是∠BAC 的平分线上的点,于是连结AD ,而由AB =AC ,BD =CD 即可证明AD 是∠BAC 的平分线.证明 连结AD .因为AB =AC ,BD =CD ,所以AD 是等腰三角形底边BC 上的中线,即AD 又是顶角的平分线.又因为DE ⊥AB ,DF ⊥AC ,所以DE =DF . 二、证明两条线垂直例2 如图2,AB =AE ,∠B =∠E ,BC =ED ,CF =DF .求证:AF ⊥CD .分析 由已知条件AB =AE ,∠B =∠E ,BC =ED ,显然只要连结AC 、AD ,则△ABC ≌△AED ,于是AC =AD ,而CF =DF ,则由等腰三角形的“三线合一”性质即可证明AF ⊥CD .证明 连结AC 、AD .因为AB =AE ,∠B =∠E ,BC =ED ,所以△ABC ≌△AED (SAS ), 所以AC =AD ,又因为CF =DF ,所以AF 是等腰三角形底边CD 的中线, 所以AF 也是CD 边上的高,即AF ⊥CD .三、证明角的倍半关系例3 如图3,△ABC 中,AB =AC ,BD ⊥AC 交AC 于D .求证:∠DBC =12∠BAC . 分析 要证明∠DBC =12∠BAC ,只要作出∠BAC 的平分线,然后利用等腰三角形的“三线合一”性质即可证明F E 图3D C BACD EF 图1BAF D 图2BECA证明 作∠BAC 的平分线AE .因为AB =AC ,所以由等腰三角形的“三线合一”可知AE ⊥BC .又因为BD ⊥AC ,所以∠ADB =90°,而∠BFE =∠AFD ,所以∠DBC =∠CAE , 故∠DBC =12∠BAC . 四、证明线段的倍半关系例4 如图4,已知等腰Rt△ABC 中,AB =AC ,∠BAC =90°,BF 平分∠ABC ,CD ⊥BD 交BF 的延长线于D .求证:BF =2CD .分析 由BF 平分∠ABC ,CD ⊥BD ,可想到等腰三角形的“三线合一”性质,于是延长线BA 、CD 交于点E ,于是△BCE 是等腰三角形,并有ED =CD ,余下来的问题只需证明BF =CE ,而事实上,由∠BAC =90°,CD ⊥BD ,∠AFB =∠DFC ,得∠ABF =∠DCF ,而AB =AC ,所以△ABF ≌△ACE ,则BF =CE ,从而问题获解.证明 延长线BA 、CD 交于点E .因为BF 平分∠ABC ,CD ⊥BD ,所以可得BC =BE ,DE =DC , 又因为∠BAC =90°,∠AFB =∠DFC ,所以可得∠ABF =∠DCF , 又AB =AC ,∠BAF =∠CAE ,所以△ABF ≌△ACE (SAS ),即BF =CE , 故BF =2CD .五、证明一个角是直角例5 如图5,△ABC 中,∠ACB =2∠B ,BC =2AC .求证:∠A =90°.分析 要证明∠A =90°,可构造出直角,然后使∠A 与之相等.由于条件中有两个倍半的关系,因此首先考虑对∠ACB =2∠B 和BC =2AC 进行技术处理,可先作倍角的平分线和BC 边上的垂线,这样利用等腰三角形的“三线合一”性质和全等三角形的知识即可解决问题.证明 作CD 平分∠ACB 交AB 于D ,过D 作DE ⊥BC 交BC 于E ,则∠ACD =∠BCD =12∠ACB ,∠DEC =90°.图5ABCDE图4 B F DECAD 图6CE BA因为∠ACB=2∠B,所以∠B=12∠ACB=∠BCD,即DB=DC.又DE⊥BC,所以DE是BC边上的中线,即E是BC的中点,所以BC=2CE.又因为BC=2AC,所以AC=CE.所以△ACD≌△ECD(SAS),所以∠A=∠DEC=90°.六、证明线段的和差关系例6 如图6,在△ABC中,AD⊥BC于D,且∠ABC=2∠C.求证:CD=AB+BD.分析要证明CD=AB+BD,可以A为圆心,AB长为半径画弧交CD于点E,连结AE,趁下来的问题只要能证明DE=DB,CE=AE即可,而由已知条件结合等腰三角形的“三线合一”性质和等腰三角形顶角的外角与底角的关系即证.证明以A为圆心,AB长为半径画弧交CD于点E,连结AE,则AE=AB,即∠AEB=∠ABC.因为AD⊥BC,所以AD是BE的中线,即DE=BD.又因为∠ABC=2∠C,所以∠AEB=2∠C,而∠∠AEB=∠CAE+∠C,所以∠CAE=∠C,即CE=AE=AB,故CD=AB+BD.。
人教版初中数学课标版八年级上册 第十三章 13.3 等腰三角形 教案
人教版初中数学课标版八年级上册第十三章 13.3 等腰三角形教案13.3等腰三角形第1课时【教学目标】知识与能力1、理解并掌握等腰三角形的性质。
2、会运用等腰三角形的概念和性质解决有关问题。
3、观察等腰三角形的对称性、发展形象思维。
过程与方法1、通过实践、观察、证明等腰三角形的性质,培养学生的推理能力。
2、通过运用等腰三角形的性质解决有关的问题,提高运用知识和技能解决问题的能力,发展应用意识。
情感态度与价值观1、引导学生对图形的观察、发现,激发学生的好奇心和求知欲。
2、在运用数学知识解决问题的活动中获取成功的体验,建立学习的自信心。
3、感受图形中的动态美、和谐美、对称美,感受合作交流带来的成功感,树立自信心。
【教学重难点】重点:等腰三角形的概念和性质及其应用。
难点:等腰三角形的性质的证明。
【教学过程】(1)、等腰三角形一腰为3cm,底为4cm,则它的周长是;(2)、等腰三角形的一边长为3cm,另一边长为4cm,则它的周长是;(3)、等腰三角形的一边长为3cm,另一边长为8cm,则它的周长是。
2、探究2仔细观察自己剪出的等腰三角形纸片,你能发现这个等腰三角形有什么特征吗?把剪出的等腰三角形ABC沿折痕对折,找出其中重合的线段和角。
重合的线段重合的角从上表,可以发现等腰三角形具有什么性质吗?引导学生先猜想“等腰三角形的两个底角相等”,再证明。
证明: 作△ABC 的高线AD∴∠ADB=∠ADC =90º在△ABD和△ACD中AB=AC(已知)AD=AD (公用)∴ Rt△ABD≌Rt△ACD (HL)∴∠B=∠C(全等三角形对应角相等)引导学生还可以用其他的方法进行证明:(1)、作△ABC 的中线AD(2)、作顶角的平分线AD再用PPT展示等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
进而归纳:等腰三角形的性质性质 1 等腰三角形的两个底角相等。
(简写成“等边对等角”)性质 2 等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
人教版 八年级数学讲义 等腰三角形“三线合一”的性质 (含解析)
第5讲等腰三角形“三线合一”的性质知识定位讲解用时:5分钟A、适用范围:人教版初二,基础较好;B、知识点概述:本讲义主要用于人教版初二新课,本节课我们要重点学习等腰三角形“三线合一”的性质。
我们知道等腰三角形是一种特殊的三角形,它除了具有一般三角形所有的性质外,还有许多特殊性,正是由于它的这些特殊性,使得它比一般三角形的应用更广泛。
因此,我们有必要把这部分内容学得更扎实。
知识梳理讲解用时:20分钟等腰三角形1、等腰三角形的概念:有两条边相等的三角形叫做等腰三角形,相等的两条边叫做腰,另外一条边叫做底,两腰所夹的角叫做顶角,底边和腰的夹角叫做底角。
2、等腰三角形的性质:(1)等腰三角形的两个底角相等;(简写成“等边对等角”)(2)等腰三角形的角平分线、底边上的中线、底边上的高互相重合.(简写成“三线合一”)3、等腰三角形的判定方法:(1)有两条边相等的三角形叫做等腰三角形;(定义法)(2)如果一个三角形有两个角相等,那么这两个角对应的边也相等.(简写成“等角对等边”)AB C等边三角形我们知道等边三角形是特殊的等腰三角形,所以接下来要研究等边三角形的性质和判定!1、等边三角形的概念:在等腰三角形中,有一种特殊的等腰三角形——三条边都相等的三角形,我们把这样的三角形叫做等边三角形。
2、等边三角形的性质:(1)等边三角形的三条边都相等;(定义)(2)等边三角形的三个内角都相等,都等于60°;(3)等腰三角形“三线合一”的性质同样适用于等边三角形.3、等边三角形的判定方法:(1)有两条边相等的三角形叫做等腰三角形;(定义)(2)三个内角都相等的三角形是等边三角形;(3)有一个角是60°的等腰三角形是等边三角形.AB C课堂精讲精练【例题1】如图,点D、E在△ABC的BC边上,AB=AC,AD=AE.求证:BD=CE.【答案】BD=CE【解析】要证明线段相等,只要过点A作BC的垂线,利用三线合一得到P为DE及BC的中点,线段相减即可得证.证明:如图,过点A作AP⊥BC于P.∵AB=AC,∴BP=PC;∵AD=AE,∴DP=PE,∴BP﹣DP=PC﹣PE,∴BD=CE.讲解用时:3分钟解题思路:本题考查了等腰三角形的性质;做题时,两次用到三线合一的性质,由等量减去等量得到差相等是解答本题的关键;教学建议:熟练运用等腰三角形“三线合一”的性质.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习1.1】如图,在△ABC中,AB=AC,AD是BC边上的高,过点C作CE∥AB交AD的延长线于点E,求证:CE=AB.【答案】CE=AB【解析】先根据等腰三角形的性质,得到∠BAE=∠CAE,再根据平行线的性质,得到∠E=∠CAE,最后根据等量代换即可得出结论.证明:∵AB=AC,AD是BC边上的高,∴∠BAE=∠CAE.∵CE∥AB,∴∠E=∠BAE.∴∠E=∠CAE.∴CE=AC.∵AB=AC,∴CE=AB.讲解用时:3分钟解题思路:本题主要考查了等腰三角形的性质以及平行线的性质,解题时注意:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.教学建议:熟练运用等腰三角形“三线合一”的性质以及平行线的性质.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题2】如图,在△ABC中,AB=AC,点D,点E分别是BC,AC上一点,且DE⊥AD.若∠BAD=55°,∠B=50°,求∠DEC的度数.【答案】115°【解析】根据等腰三角形的性质和三角形的内角和得到∠C=50°,进而得到∠BAC=80°,由∠BAD=55°,得到∠DAE=25°,由DE⊥AD,进而求出结论.解:∵AB=AC,∴∠B=∠C,∵∠B=50°,∴∠C=50°,∴∠BAC=180°﹣50°﹣50°=80°,∵∠BAD=55°,∴∠DAE=25°,∵DE⊥AD,∴∠ADE=90°,∴∠DEC=∠DAE+∠ADE=115°.讲解用时:3分钟解题思路:本题主要考查了等腰三角形的性质,三角形的内角和定理,垂直定义,熟练应用等腰三角形的性质是解题的关键.教学建议:熟练掌握等腰三角形等腰对等角的性质以及三角形的内角和定理. 难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习2.1】已知等腰三角形一腰上的中线将三角形的周长分成6cm和15cm的两部分,求这个三角形的腰和底边的长度.【答案】10cm,10cm,1cm【解析】根据题意,分两种情况进行分析,从而得到腰和底边的长,注意运用三角形的三边关系对其进行检验.解:①如图,AB+AD=6cm,BC+CD=15cm,∵AD=DC,AB=AC,∴2AD+AD=6cm,∴AD=2cm,∴AB=4cm,BC=13cm,∵AB+AC<BC,∴不能构成三角形,故舍去;②如图,AB+AD=15cm,BC+CD=6cm,同理得:AB=10cm,BC=1cm,∵AB+AC>BC,AB﹣AC<BC,∴能构成三角形,∴腰长为10cm,底边为1cm.故这个等腰三角形各边的长为10cm,10cm,1cm.讲解用时:3分钟解题思路:本题考查等腰三角形的性质及三角形三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这是解题的关键.教学建议:熟练掌握等腰三角形的性质以及三角形的三边关系.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题3】如图,在△ACB中,AC=BC,AD为△ACB的高线,CE为△ACB的中线.求证:∠DAB=∠ACE.【答案】∠DAB=∠ACE【解析】根据等腰三角形的性质证明即可.证明:∵AC=BC,CE为△ACB的中线,∴∠CAB=∠B,CE⊥AB,∴∠CAB+∠ACE=90°,∵AD为△ACB的高线,∴∠D=90°.∴∠DAB+∠B=90°,∴∠DAB=∠ACE.讲解用时:3分钟解题思路:此题考查等腰三角形的性质,关键是根据等腰三角形的性质解答.教学建议:熟练掌握等腰三角形“三线合一”的性质.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习3.1】如图,在△ABC中,AB=AC,AD是BC边上的中线,E是AC 边上的一点,且∠CBE=∠CAD.求证:BE⊥AC.【答案】BE⊥AC【解析】根据等腰三角形的性质得出AD⊥BC,再得出∠CBE+∠C=90°.证明:∵AB=AC,AD是BC边上的中线,∴AD⊥BC,∴∠CAD+∠C=90°,又∵∠CBE=∠CAD,∴∠CBE+∠C=90°,∴BE⊥AC.讲解用时:3分钟解题思路:本题主要考查等腰三角形的性质,掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合是解题的关键.教学建议:熟练掌握等腰三角形“三线合一”的性质.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题4】如图所示,已知△ABC中,AB=AC,∠BAD=30°,AD=AE,求∠EDC的度数.【答案】15°【解析】可以设∠EDC=x,∠B=∠C=y,根据∠ADE=∠AED=x+y,∠ADC=∠B+∠BAD即可列出方程,从而求解.解:设∠EDC=x,∠B=∠C=y,∠AED=∠EDC+∠C=x+y,又因为AD=AE,所以∠ADE=∠AED=x+y,则∠ADC=∠ADE+∠EDC=2x+y,又因为∠ADC=∠B+∠BAD,所以2x+y=y+30,解得x=15.所以∠EDC的度数是15°.讲解用时:3分钟解题思路:本题主要考查了等腰三角形的性质,等边对等角.正确确定相等关系列出方程是解题的关键.教学建议:熟练掌握等腰三角形等边对等角的性质.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习4.1】在△ABC中,AB=AC,AD⊥BC,∠BAD=40°,AD=AE,求∠CDE的度数.【答案】20°【解析】根据等腰三角形的性质得到∠CAD=∠BAD=40°,由于AD=AE,于是得到∠ADE==70°,根据三角形的内角和即可得到∠CDE=90°﹣70°=20°.解:∵AB=AC,AD⊥BC,∴∠CAD=∠BAD=40°,∠ADC=90°,又∵AD=AE,∴∠ADE==70°,∴∠CDE=90°﹣70°=20°.讲解用时:3分钟解题思路:本题考查等腰三角形的性质,三角形外角的性质,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.教学建议:熟练掌握等腰三角形“三线合一”的性质以及等边对等角的性质.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题5】如图,在△ABC中,AB=AC,D为BC上一点,∠B=30°,连接AD.(1)若∠BAD=45°,求证:△ACD为等腰三角形;(2)若△ACD为直角三角形,求∠BAD的度数.【答案】(1)△ACD为等腰三角形;(2)60°或30°【解析】(1)根据等腰三角形的性质求出∠B=∠C=30°,根据三角形内角和定理求出∠BAC=120°,求出∠CAD=∠ADC,根据等腰三角形的判定得出即可;(2)有两种情况:①当∠ADC=90°时,当∠CAD=90°时,求出即可.(1)证明:∵AB=AC,∠B=30°,∴∠B=∠C=30°,∴∠BAC=180°﹣30°﹣30°=120°,∵∠BAD=45°,∴∠CAD=∠BAC﹣∠BAD=120°﹣45°=75°,∠ADC=∠B+∠BAD=75°,∴∠ADC=∠CAD,∴AC=CD,即△ACD为等腰三角形;(2)解:有两种情况:①当∠ADC=90°时,∵∠B=30°,∴∠BAD=∠ADC﹣∠B=90°﹣30°=60°;②当∠CAD=90°时,∠BAD=∠BAC﹣∠CAD=120°﹣90°=30°;即∠BAD的度数是60°或30°.讲解用时:4分钟解题思路:本题考查了三角形内角和定理,等腰三角形的判定的应用,能根据定理求出各个角的度数是解此题的关键,用了分类讨论思想.教学建议:学会通过等角对等边证明三角形是全等三角形.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习5.1】如图,△ABC中BA=BC,点D是AB延长线上一点,DF⊥AC于F交BC于E,求证:△DBE是等腰三角形.【答案】△DBE是等腰三角形【解析】首先根据等腰三角形的两个底角相等得到∠A=∠C,再根据等角的余角相等得∠FEC=∠D,同时结合对顶角相等即可证明△DBE是等腰三角形.证明:在△ABC中,BA=BC,∵BA=BC,∴∠A=∠C,∵DF⊥AC,∴∠C+∠FEC=90°,∠A+∠D=90°,∴∠FEC=∠D,∵∠FEC=∠BED,∴∠BED=∠D,∴BD=BE,即△DBE是等腰三角形.讲解用时:3分钟解题思路:此题主要考查等腰三角形的判定和性质,关键是根据等腰三角形的基本性质及综合运用等腰三角形的性质来判定三角形是否为等腰三角形.教学建议:熟练掌握等腰三角形的判定和性质.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题6】如图:已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,垂足为M,求证:M是BE的中点.【答案】M是BE的中点【解析】要证M是BE的中点,根据题意可知,证明△BDE△为等腰三角形,利用等腰三角形的高和中线向重合即可得证.证明:连接BD,∵在等边△ABC,且D是AC的中点,∴∠DBC=∠ABC=×60°=30°,∠ACB=60°,∵CE=CD,∴∠CDE=∠E,∵∠ACB=∠CDE+∠E,∴∠E=30°,∴∠DBC=∠E=30°,∴BD=ED,△BDE为等腰三角形,又∵DM⊥BC,∴M是BE的中点.讲解用时:4分钟解题思路:本题考查了等腰三角形顶角平分线、底边上的中线和高三线合一的性质以及等边三角形每个内角为60°的知识.辅助线的作出是正确解答本题的关键.教学建议:熟练掌握等腰三角形“三线合一”的性质以及等边三角形的性质. 难度: 4 适应场景:当堂例题例题来源:无年份:2018【练习6.1】如图,等边三角形ABC中,D为AC上一点,E为AB延长线上一点,DE⊥AC交BC 于点F,且DF=EF.(1)求证:CD=BE;(2)若AB=12,试求BF的长.【答案】(1)CD=BE;(2)4【解析】(1)先作DM∥AB,交CF于M,可得△CDM为等边三角形,再判定△DMF ≌△EBF,最后根据全等三角形的性质以及等边三角形的性质,得出结论;(2)根据ED⊥AC,∠A=60°=∠ABC,可得∠E=∠BFE=∠DFM=∠FDM=30°,由此得出CM=MF=BF=BC,最后根据AB=12即可求得BF的长.解:(1)如图,作DM∥AB,交CF于M,则∠DMF=∠E,∵△ABC是等边三角形,∴∠C=60°=∠CDM=∠CMD,∴△CDM是等边三角形,∴CD=DM,在△DMF和△EBF中,,∴△DMF≌△EBF(ASA),∴DM=BE,∴CD=BE;(2)∵ED⊥AC,∠A=60°=∠ABC,∴∠E=∠BFE=∠DFM=∠FDM=30°,∴BE=BF,DM=FM,又∵△DMF≌△EBF,∴MF=BF,∴CM=MF=BF,又∵AB=BC=12,∴CM=MF=BF=4.解题思路:本题主要考查了等边三角形的性质、全等三角形的判定与性质的综合应用,解决问题的关键是作平行线,构造等边三角形和全等三角形,根据全等三角形的性质以及等边三角形的性质进行求解.教学建议:熟练掌握等边三角形的性质以及全等三角形的判定和性质.难度:4 适应场景:当堂练习例题来源:无年份:2018【例题7】如图所示,BO平分∠CBA,CO平分∠ACB,过O作EF∥BC,若AB=12,AC=8,求△AEF的周长.【答案】20【解析】根据角平分线的定义可得∠OBE=∠OBC,∠OCF=∠OCB,再根据两直线平行,内错角相等可得∠OBC=∠BOE,∠OCB=∠COF,然后求出∠OBE=∠BOE,∠OCF=∠COF,再根据等角对等边可得OE=BE,OF=CF,即可得证.解:∵BO平分∠CBA,∴∠EBO=∠OBC,∵CO平分∠ACB,∴∠FCO=∠OCB,∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∴∠EBO=∠EOB,∠FOC=∠FCO,∴BE=OE,CF=OF,∴△AEF的周长=AE+OE+OF+AF=AE+BE+CF+AF=AB+AC,∵AB=12,AC=8,∴C=12+8=20.△AEF解题思路:本题考查了等腰三角形的判定与性质,平行线的性质,主要利用了角平分线的定义,等角对等边的性质,两直线平行,内错角相等的性质,熟记各性质是解题的关键.教学建议:熟练掌握等腰三角形的判定和性质以及平行线的性质.难度:4 适应场景:当堂例题例题来源:无年份:2018【练习7.1】在△ABC中,AB=AC,DE∥BC,若M为DE上的点,且BM平分∠ABC,CM平分∠ACB,若△ADE的周长为20,BC=8,求△ABC的周长.【答案】28【解析】分别利用角平分线的性质和平行线的性质,说明DB=DM,EM=EC.把求△ABC的周长转化为△ADE的周长+BC边的长.解:∵BM平分∠ABC,∴∠ABM=∠CBM,∵DE∥BC,∴∠CBM=∠DMB,∴∠ABM=∠DMB,∴DB=DM.同理可证EM=CE∴AB+AC=AD+DB+AE+EC=AD+DM+ME+AE=AD+DE+AE∵△ADE的周长为20∴AB+AC=20∴△ABC的周长=AB+AC+BC=20+8=28.答:△ABC的周长为28.讲解用时:3分钟解题思路:此题主要考查了平行线的性质,角平分线的性质及等腰三角形的判定.本题的关键是利用平行线和角平分线的性质将△ABC的周长转化为△ADE的周长+BC边的长.教学建议:熟练掌握平行线的性质、角平分线的性质以及等腰三角形的判定. 难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题8】如图,D为等边三角形ABC内一点,将△BDC绕着点C旋转成△AEC,则△CDE是怎样的三角形?请说明理由.【答案】△CDE是等边三角形【解析】因为△ABC为等边三角形,所以△BDC绕着点C旋转60°成△AEC,则∠DCE=60°,DC=EC,故可判定△CDE是等边三角形.解:△CDE是等边三角形.理由:∵△ABC为等边三角形,∴∠ACB=60°∴将△BDC绕着点C旋转成△AEC,旋转角为60°∴∠DCE=60°∴DC=EC∴△CDE是等边三角形.讲解用时:3分钟解题思路:本题利用了等边三角形的判定和性质,旋转的性质等知识解决问题.考查学生综合运用数学知识的能力.教学建议:熟练掌握等边三角形的判定和性质,了解“手拉手”模型.难度: 4 适应场景:当堂例题例题来源:无年份:2018【练习8.1】已知,如图,△ABC是正三角形,D,E,F分别是各边上的一点,且AD=BE=CF.请你说明△DEF是正三角形.【答案】△DEF是正三角形【解析】根据等边△ABC中AD=BE=CF,证得△ADE≌△BEF≌△CFD即可得出△DEF是等边三角形.解:∵△ABC为等边三角形,且AD=BE=CF,∴AE=BF=CD,又∵∠A=∠B=∠C=60°,∴△ADE≌△BEF≌△CFD(SAS),∴DF=ED=EF,∴△DEF是等边三角形.讲解用时:3分钟解题思路:本题主要考查了等边三角形的判定与性质和全等三角形判定,根据已知得出△ADE≌△BEF≌△CFD是解答此题的关键.教学建议:熟练掌握等边三角形的判定和性质以及全等三角形的判定.难度: 4 适应场景:当堂练习例题来源:无年份:2018课后作业【作业1】如图,D,E在△ABC的边BC上,AB=AC,AD=AE,在图中找出一条与BE相等的线段,并说明理由.【答案】BE=CD【解析】根据等腰三角形的性质可得到两组角相等,再根据AAS可判定△ABE ≌△ACD,由全等三角形的性质即可证得BE=CD.解:BE=CD.理由如下:∵AB=AC,AD=AE,∴∠B=∠C,∠ADE=∠AED.在△ABE与△ACD中,,∴△ABE≌△ACD,∴BE=CD.故答案为CD.讲解用时:3分钟难度: 3 适应场景:练习题例题来源:无年份:2018【作业2】如图,已知∠BAC=60°,D是BC边上一点,AD=CD,∠ADB=80°,求∠B的度数.【答案】80°【解析】先根据三角形外角的性质求出∠C的度数,再根据三角形内角和定理即可得出∠B的度数.解:∵∠ADB=80°又∵AD=CD∴∠DAC=∠C=40°,∴∠B=180°﹣∠BAC﹣∠C=180°﹣60°﹣40°=80°.讲解用时:3分钟难度: 3 适应场景:练习题例题来源:无年份:2018【作业3】已知:如图,AB=BC,∠A=∠C.求证:AD=CD.【答案】AD=CD【解析】连接AC,根据等边对等角得到∠BAC=∠BCA,因为∠A=∠C,则可以得到∠CAD=∠ACD,根据等角对等边可得到AD=DC.证明:连接AC,∵AB=BC,∴∠BAC=∠BCA.∵∠BAD=∠BCD,∴∠CAD=∠ACD.∴AD=CD.讲解用时:3分钟难度: 3 适应场景:练习题例题来源:无年份:2018【作业4】如图,在△ABC中,∠ABC、∠ACB的平分线相交于F,过F作DE∥BC,分别交AB、AC于点D、E.判断DE=DB+EC是否成立?为什么?【答案】成立【解析】根据BF和CF分别平分∠ABC和∠ACB,和DE∥BC,利用两直线平行,内错角相等和等量代换,求证出DB=DF,FE=EC.然后即可得出答案.解:DE=DB+EC成立.理由如下:∵在△ABC中,FB和FC分别平分∠ABC和∠ACB,∴∠DBF=∠FBC,∠ECF=∠FCB,∵DE∥BC,∴∠DFB=∠FBC=∠DBF,∠EFC=∠FCB=∠ECF,∴DB=DF,FE=EC,∵DE=DF+FE,∴DE=BD+EC.讲解用时:3分钟难度:4 适应场景:练习题例题来源:无年份:2018【作业5】如图,等边△ABC中,点D在延长线上,CE平分∠ACD,且CE=BD.说明:△ADE是等边三角形.【答案】△ADE是等边三角形【解析】由条件可以容易证明△ABD≌△ACE,进一步得出AD=AE,∠BAD=∠CAE,加上∠DAE=60°,即可证明△ADE为等边三角形.证明:∵△ABC为等边三角形,∴∠B=∠ACB=60°,AB=AC,即∠ACD=120°,∵CE平分∠ACD,∴∠ACE=∠DCE=60°,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴AD=AE,∠BAD=∠CAE,又∵∠BAC=60°,∴∠DAE=60°,∴△ADE为等边三角形.讲解用时:3分钟难度: 4 适应场景:练习题例题来源:无年份:2018。
13.3等腰三角形教学文稿
复习 则∠BAD=____2_3_°__, 看图 BD=____6____.
概念 剪剪
思考
性质 小练
例题 练习 小节 检测
上一页 返回 下一页
封面
导航 某房屋的顶角∠BAC=120°,BC=8m过
目标 屋顶A的立柱AD⊥BC,屋檐AB=AC,
复习 求顶架上的∠B、∠C、∠CAD、的度数
看图 概念
小练
例题
大胆猜想
命题1
命题2
练习
小节
检测
你能猜一猜等腰三角形有什么
性质吗?说说你的猜想。
上一页 返回 下一页
目录
封面 导航 目标 复习 看图 概念 剪剪 思考 性质 小练 例题 练习 小节 检测
猜想
上一页 返回 下一页
目录
封面 导航 目标 复习 看图 概念 剪剪 思考 性质 小练 例题 练习 小节 检测
目录
封面
A
导航
等腰三角形有:△ABC、 △ADB、△BDC
⌒
目标
x
相等的角有:∠A=∠ ABD、
复习
∠ ABC= ∠C= ∠BDC
看图 概念
D ∠A=∠ ABD= ∠ DBC。
剪剪
2x
思考
性质 2x 小练 B
2x C
例题
练习
小节
检测
上一页 返回 下一页
封面 已知,在△ABC中,AB=AC,∠BAC=46°, 导航 BC=6。若AD⊥BC于D,
思考
性质 两角相等,
研究等腰三 角形的有关
小练 求等腰三角
例题
练习 形各角的度 小节 数.
检测
问题时“三 线”是常用 的辅助线.
上一页 返回 下一页
人教版八上数学13.3.1《等腰三角形》(第一课时)教学设计
13.3.1《等腰三角形》(第一课时)教学设计教学任务的分析教学目标1、理解并掌握“等边对等角”定理,能够运用“等边对等角”定理解决实际问题;2、理解并掌握“三线合一”定理,能够运用“三线合一”定理解决实际问题.重点“等边对等角”“三线合一”定理的探究过程难点“等边对等角”和“三线合一”在实际中的应用教学流程安排活动流程活动内容和目的活动一情景引入活动二复习回顾活动三互动探究活动四猜想论证活动五总结归纳活动六典例解析活动七拓展提升活动八小结梳理由生活中的实物图片引入课题,激发学生学习欲望复习等腰三角形及其相关概念,温故而知新学生通过动手操作、小组交流等活动发现性质,并进行理性思考培养学生的语言表达能力、观察能力和归纳能力,发展学生的理性思维归纳提炼性质定理,让学生熟悉“三种语言”的相互转化应用性质解决问题,尝试“用方程计算角度”的思想方法尝试应用所学方法解决问题,在实践中体验数学的应用价值了解学生的学情,让学生逐步养成总结的好习惯.课前准备教具学具补充材料1、多媒体演示文稿.2、直角三角尺、圆规.自制纸质等腰三角形剪刀、直角三角尺实践作业、课后阅读等教学过程教学环节师生活动设计意图【活动一】情景引入出示一组含有等腰三角形的生活图片,让学生感知图片主要部分形状的共同点,引入课题。
从学生感兴趣,并与实际生活相联系的话题入手.激发学生的好奇心和求知欲.【活动二】复习回顾学生回忆等腰三角形的相关定义,进一步提出:“人们在生活中如此的喜欢等腰三角形,它到底还具有那些性质呢?”引出本节课的课题--等腰三角形的性质(板书课题)抛出问题,激发学生的兴趣【活动三】互动探究1.如图13-3-14,把一张长方形纸沿图中虚线对折,并剪去阴影部分,再把它展开铺平,得到的三角形是什么特殊三角形?它具有哪些性质?它是轴对称图形吗?如果是,它的对称轴是什么?图13-3-142.请同学们拿出剪好的等腰三角形,动手折一折,通过刚才的对折过程,你发现∠B 和∠C 存在怎样的数量关系?由此你发现等腰三角形有什么性质?说说你的猜想.1.借助动手操作的过程,培养学生探究图形性质的基本能力,发展学生合情猜想的数学素养,体现“做中学”的教学理念.同时突破本节课的教学重、难点2.通过观察、思考、描述、证明,鼓励学生善于思考、勇于发现、大胆尝试,培养学生的语言表达能力、观察能力和归纳能力,养成自觉探索几何命题的良好习惯.【活动四】猜想论证①等腰三角形的两个底角相等提问:这是文字语言给出是命题,我们需要先把它转化成数学语言,写出已知、求证,画出图形。
人教版数学八年级上册第十三章利用等腰三角形的“三线合一”性质解题
利用等腰三角形的“三线合一”性质解题我们知道,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合,被称做为“三线合一”.等腰三角形的“三线合一”性质在几何解题中有着广泛地运用,现举例说明. 一、证明线段相等例1 如图1,在△ABC 中,AB =AC ,BD =CD ,DE ⊥AB 于点E ,DF ⊥AC 于点F .求证:DE =DF .分析 由于DE ⊥AB ,DF ⊥AC ,所以要证明DE =DF ,只要证明点D 是∠BAC 的平分线上的点,于是连结AD ,而由AB =AC ,BD =CD 即可证明AD 是∠BAC 的平分线.证明 连结AD .因为AB =AC ,BD =CD ,所以AD 是等腰三角形底边BC 上的中线,即AD 又是顶角的平分线.又因为DE ⊥AB ,DF ⊥AC ,所以DE =DF . 二、证明两条线垂直例2 如图2,AB =AE ,∠B =∠E ,BC =ED ,CF =DF .求证:AF ⊥CD . 分析 由已知条件AB =AE ,∠B =∠E ,BC =ED ,显然只要连结AC 、AD ,则△ABC ≌△AED ,于是AC =AD ,而CF =DF ,则由等腰三角形的“三线合一”性质即可证明AF ⊥CD .证明 连结AC 、AD .因为AB =AE ,∠B =∠E ,BC =ED ,所以△ABC ≌△AED (SAS ),所以AC =AD ,又因为CF =DF ,所以AF 是等腰三角形底边CD 的中线, 所以AF 也是CD 边上的高,即AF ⊥CD .F E 图3D C BACD EF 图1BAF D 图2BECA三、证明角的倍半关系例3 如图3,△ABC 中,AB =AC ,BD ⊥AC 交AC 于D .求证:∠DBC =12∠BAC . 分析 要证明∠DBC =12∠BAC ,只要作出∠BAC 的平分线,然后利用等腰三角形的“三线合一”性质即可证明证明 作∠BAC 的平分线AE .因为AB =AC ,所以由等腰三角形的“三线合一”可知AE ⊥BC .又因为BD ⊥AC ,所以∠ADB =90°,而∠BFE =∠AFD ,所以∠DBC =∠CAE , 故∠DBC =12∠BAC . 四、证明线段的倍半关系例4 如图4,已知等腰Rt △ABC 中,AB =AC ,∠BAC =90°,BF 平分∠ABC ,CD ⊥BD 交BF 的延长线于D .求证:BF =2CD .分析 由BF 平分∠ABC ,CD ⊥BD ,可想到等腰三角形的“三线合一”性质,于是延长线BA 、CD 交于点E ,于是△BCE 是等腰三角形,并有ED =CD ,余下来的问题只需证明BF =CE ,而事实上,由∠BAC =90°,CD ⊥BD ,∠AFB =∠DFC ,得∠ABF =∠DCF ,而AB =AC ,所以△ABF ≌△ACE ,则BF =CE ,从而问题获解.证明 延长线BA 、CD 交于点E .因为BF 平分∠ABC ,CD ⊥BD ,所以可得BC =BE ,DE =DC ,又因为∠BAC =90°,∠AFB =∠DFC ,所以可得∠ABF =∠DCF , 又AB =AC ,∠BAF =∠CAE ,所以△ABF ≌△ACE (SAS ),即BF =CE , 故BF =2CD .图5ABCDE图4BF DECAD 图6CE BA。
人教版八年级上册13.3.1《等腰三角形》
《等腰三角形》◆教材分析本节课是在前面学习了三角形的有关概念及性质、轴对称变换、全等三角形、垂直平分线和尺规作图的基础上,研究等腰三角形的定义及其重要性质,它既是前面所学知识的延伸,也是后面直角三角形、等边三角形的知识的重要储备,我们常常利用它证明角相等、线段相等、两直线垂直,因此本节课具有承上启下的重要作用。
◆教学目标【知识与能力目标】1、理解并掌握等腰三角形的性质。
2、会运用等腰三角形的概念和性质解决有关问题。
3、观察等腰三角形的对称性、发展形象思维。
4、探索等腰三角形的判定定理【过程与方法目标】1、通过实践、观察、证明等腰三角形的性质,培养学生的推理能力。
2、通过运用等腰三角形的性质解决有关的问题,提高运用知识和技能解决问题的能力,发展应用意识。
3、探索等腰三角形的判定定理,进一步体验轴对称的特征,发展空间观念【情感态度价值观目标】1、引导学生对图形的观察、发现,激发学生的好奇心和求知欲。
2、在运用数学知识解决问题的活动中获取成功的体验,建立学习的自信心。
3、感受图形中的动态美、和谐美、对称美,感受合作交流带来的成功感,树立自信心。
4、通过对等腰三角形的判定定理的探索,让学生体会探索学习的乐趣,并通过等腰三角形的判定定理的简单应用,加深对定理的理解.从而培养学生利用已有知识解决实际问题的能力【教学重点】1、等腰三角形的概念和性质及其应用。
2、等腰三角形的判定定理及其应用【教学难点】1、等腰三角形的性质的证明。
2、探索等腰三角形的判定定理◆教学过程一、情景导入:师:日常生活中,我们会经常看到一些美丽的图案,其中一些是平面几何图形,接下来我们观察几幅图片,说一说你们看到了什么图形?(课件向学生展示平常见到的有关等腰三角形的图片)学生观察一组图片,回答问题。
【设计意图】使学生能从实际生活中抽象出等腰三角形,初步感知等腰三角形在实际生活中的广泛应用,用美丽的画面激发学生的求知欲。
培养学生勤观察,肯思考的学习习惯。
证明等腰三角形三线合一的方法
证明等腰三角形三线合一的方法我们先来了解一下等腰三角形的定义和性质。
等腰三角形是指具有两条边相等的三角形,它的底边对应的两个角也是相等的。
根据等腰三角形的定义,我们可以得出以下性质:性质1:等腰三角形的底角相等。
性质2:等腰三角形的两条底边中线相等。
性质3:等腰三角形的高线和中线重合。
接下来,我们以一个具体的等腰三角形ABC为例进行证明。
假设AB=AC,底边BC是等腰三角形的底边。
我们需要证明三条特殊线段AD、BE和CF相交于一点O。
我们连接顶点A和底边BC,并取中点D。
根据性质2,我们知道AD是等腰三角形ABC的两条底边中线,所以AD=BD=CD。
接下来,我们分别连接点D和点E、点F。
由于BD=CD,所以角BDC是等腰三角形ABC的底角,根据性质1,我们知道角BDC=角BCD。
另一方面,由于AD=BD,所以角ABD=角BAD。
结合角BDC=角BCD,我们可以得出角ABD+角BDC=角BAD+角BCD,即角ADB=角ADC。
再来看点E和点F。
由于BD=CD,所以BE和CF是等腰三角形ABC的两条底边的中线,根据性质2,我们知道BE=CF。
现在,我们来证明点O是线段AD、BE和CF的交点。
我们需要证明线段AD、BE和CF相互交于点O,即证明AO=BO=CO。
连接AO和BO。
由于角ABD=角BAD,所以三角形ABD和三角形BAD是全等三角形。
根据全等三角形的性质,我们知道AD=BD,即AO=BO。
接下来,连接AO和CO。
由于角ADB=角ADC,所以三角形ADB 和三角形ADC是全等三角形。
根据全等三角形的性质,我们知道AD=CD,即AO=CO。
我们可以得出结论:在等腰三角形ABC中,线段AD、BE和CF相交于一点O,并且AO=BO=CO。
也就是说,等腰三角形的高线和中线重合于三角形的顶点,这就是等腰三角形三线合一的性质。
通过以上的证明过程,我们可以清晰地看到等腰三角形三线合一的证明过程。
这一性质的证明过程基于等腰三角形的定义和性质,通过运用几何知识和推理方法,逐步推导出结论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用等腰三角形的“三线合一”性质解题
我们知道,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合,被称做为“三线合一”.等腰三角形的“三线合一”性质在几何解题中有着广泛地运用,现举例说明. 一、证明线段相等
例1 如图1,在△ABC 中,AB =AC ,BD =CD ,DE ⊥AB 于点E ,DF ⊥AC 于点F .求证:DE =DF .
分析 由于DE ⊥AB ,DF ⊥AC ,所以要证明DE =DF ,只要证明点D 是∠BAC 的平分线上的点,于是连结AD ,而由AB =AC ,BD =CD 即可证明AD 是∠BAC 的平分线.
证明 连结AD .因为AB =AC ,BD =CD ,所以AD 是等腰三角形底边BC 上的中线,即AD 又是顶角的平分线.
又因为DE ⊥AB ,DF ⊥AC ,所以DE =DF . 二、证明两条线垂直
例2 如图2,AB =AE ,∠B =∠E ,BC =ED ,CF =DF .求证:AF ⊥CD .
分析 由已知条件AB =AE ,∠B =∠E ,BC =ED ,显然只要连结AC 、AD ,则△ABC ≌△AED ,于是AC =AD ,而CF =DF ,则由等腰三角形的“三线合一”性质即可证明AF ⊥CD .
证明 连结AC 、AD .因为AB =AE ,∠B =∠E ,BC =ED ,所以△ABC ≌△AED (SAS ), 所以AC =AD ,
又因为CF =DF ,所以AF 是等腰三角形底边CD 的中线, 所以AF 也是CD 边上的高,即AF ⊥CD .
三、证明角的倍半关系
例3 如图3,△ABC 中,AB =AC ,BD ⊥AC 交AC 于D .求证:∠DBC =1
2
∠BAC . 分析 要证明∠DBC =1
2
∠BAC ,只要作出∠BAC 的平分线,然后利用等腰三角形的“三线合一”性质即可证明
F E 图3
D C B
A
C
D E
F 图1
B
A
F D 图2
B
E
C
A
证明 作∠BAC 的平分线AE .因为AB =AC ,所以由等腰三角形的“三线合一”可知
AE ⊥BC .
又因为BD ⊥AC ,所以∠ADB =90°,而∠BFE =∠AFD ,所以∠DBC =∠CAE , 故∠DBC =
1
2
∠BAC . 四、证明线段的倍半关系
例4 如图4,已知等腰Rt△ABC 中,AB =AC ,∠BAC =90°,BF 平分∠ABC ,CD ⊥BD 交BF 的延长线于D .求证:BF =2CD .
分析 由BF 平分∠ABC ,CD ⊥BD ,可想到等腰三角形的“三线合一”性质,于是延长线
BA 、CD 交于点E ,于是△BCE 是等腰三角形,并有ED =CD ,余下来的问题只需证明BF =CE ,
而事实上,由∠BAC =90°,CD ⊥BD ,∠AFB =∠DFC ,得∠ABF =∠DCF ,而AB =AC ,所以△ABF ≌△ACE ,则BF =CE ,从而问题获解.
证明 延长线BA 、CD 交于点E .因为BF 平分∠ABC ,CD ⊥BD ,所以可得BC =BE ,DE =DC , 又因为∠BAC =90°,∠AFB =∠DFC ,所以可得∠ABF =∠DCF , 又AB =AC ,∠BAF =∠CAE ,所以△ABF ≌△ACE (SAS ),即BF =CE , 故BF =2CD .
五、证明一个角是直角
例5 如图5,△ABC 中,∠ACB =2∠B ,BC =2AC .求证:∠A =90°.
分析 要证明∠A =90°,可构造出直角,然后使∠A 与之相等.由于条件中有两个倍半的关系,因此首先考虑对∠ACB =2∠B 和BC =2AC 进行技术处理,可先作倍角的平分线和BC 边上的垂线,这样利用等腰三角形的“三线合一”性质和全等三角形的知识即可解决问题.
证明 作CD 平分∠ACB 交AB 于D ,过D 作DE ⊥BC 交BC 于E ,则∠ACD =∠BCD =1
2
∠ACB ,∠DEC =90°.
图5
A
B
C
D
E
图4 B F D
E
C
A
D 图6
C
E B
A
因为∠ACB=2∠B,所以∠B=1
2
∠ACB=∠BCD,即DB=DC.
又DE⊥BC,所以DE是BC边上的中线,即E是BC的中点,所以BC=2CE.
又因为BC=2AC,所以AC=CE.
所以△ACD≌△ECD(SAS),所以∠A=∠DEC=90°.
六、证明线段的和差关系
例6 如图6,在△ABC中,AD⊥BC于D,且∠ABC=2∠C.求证:CD=AB+BD.
分析要证明CD=AB+BD,可以A为圆心,AB长为半径画弧交CD于点E,连结AE,趁下来的问题只要能证明DE=DB,CE=AE即可,而由已知条件结合等腰三角形的“三线合一”性质和等腰三角形顶角的外角与底角的关系即证.
证明以A为圆心,AB长为半径画弧交CD于点E,连结AE,则AE=AB,即∠AEB=∠ABC.
因为AD⊥BC,所以AD是BE的中线,即DE=BD.
又因为∠ABC=2∠C,所以∠AEB=2∠C,
而∠∠AEB=∠CAE+∠C,所以∠CAE=∠C,即CE=AE=AB,
故CD=AB+BD.。