等腰三角形性质:三线合一”专题

合集下载

等腰三角形的三线合一”定理应用

等腰三角形的三线合一”定理应用

等腰三角形的三线合一”定理应用全文共四篇示例,供读者参考第一篇示例:等腰三角形是一种特殊的三角形,其中两条边长度相等。

在等腰三角形中,存在一个重要的定理,即“等腰三角形的三线合一”定理。

这个定理指出,在一个等腰三角形中,等腰线、中位线和高线三条线段会共点于一个点,这个点被称为三角形的垂心。

等腰三角形的三线合一定理在几何学中有着重要的应用。

通过这个定理,我们可以推导出很多三角形的性质,并且可以帮助我们解决一些几何问题。

下面我们将通过几个具体的例子来展示等腰三角形的三线合一定理的应用。

我们来看一个简单的例子。

设等腰三角形ABC中,AB=AC,BD是边AC的中位线,E是边BC的中点,连接DE。

我们要证明线段BD 与CE相交于垂心H。

根据等腰三角形的性质,我们知道角B和角C是等的,所以三角形ABC是等腰的。

根据等腰三角形的三线合一定理,我们知道线段BD、CE和AH相交于一个点H,即三角形ABC的垂心。

接下来,我们可以利用这个性质来解决几何问题。

我们可以通过这个定理来证明等腰三角形的顶角相等,或者计算等腰三角形的面积等等。

第二篇示例:等腰三角形是指具有两条边相等的三角形,其特点是具有对称性和稳定性,是几何学中常见的形状之一。

在等腰三角形中,有一定的定理和性质可以应用,在解决几何问题时起到重要作用。

本文将重点介绍等腰三角形的三线合一定理及其应用。

一、三线合一定理的概念在等腰三角形中,连接等腰三角形顶点与底边中点的直线被称为等腰三角形的三线合一。

三线合一定理指的是在等腰三角形中,三条线段的端点在同一直线上。

这是等腰三角形的一个重要性质,可以通过几何推理和证明加以验证。

假设在等腰三角形ABC中,AB=AC。

连接顶点A与底边BC的中点D,并将直线AD延长至E点。

因为AD是BC的中线,根据中线定理可知AD=DC。

又因为ABC 为等腰三角形,所以AB=AC,由此可得BD=DC。

考虑△ADE和△ACD,根据两边相等、夹角相等、以及对应边角对应相等的条件可以得出△ADE≌△ACD。

初二第二讲---三线合一

初二第二讲---三线合一

“三线合一”专题等腰三角形有一个重要的性质:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合。

这就是著名的等腰三角形“三线台一”性质。

例1. 如图所示,在等腰△ABC 中,AD 是BC 边上的中线,点E 在AD 上。

求证:BE=CE 。

变式练习1-1 如图,在△ABC 中,AB=AC ,D 是形外一点,且BD=CD 。

求证:AD 垂直平分BC 。

变式练习1-2 已知,如图所示,AD 是△ABC ,DE 、DF 分别是△ABD 和△ACD 的高。

求证:AD 垂直平分EF 。

例2. 如图△ABC 中,AB =AC ,∠A =36°,BD 平分∠ABC ,DE ⊥AB 于E ,若CD =4,且△BDC 周长为24,求AE 的长度。

【巩固练习】1、 等腰三角形一边等于5,另一边等于8,则周长是________。

2、 在△ABC 中,已知AB =AC ,AD 是中线,∠B =70°,BC =15cm , 则∠BAC =________,∠DAC =________,BD =________cm 。

ABC E D3、 在△ABC 中,∠BAC =90°,AD ⊥BC 于D ,AB =3,AC =4,则AD =________。

4、 已知△ABC 中,∠A =n °,角平分线BE 、CF 相交于O ,则∠BOC 的度数应为( )(A )90°-n 21°(B )90°+ n 21°(C )180°-n °(B )180°-n 21° 5、 下列两个三角形中,一定全等的是( )(A )有一个角是40°,腰相等的两个等腰三角形(B )两个等边三角形(C )有一个角是100°,底相等的两个等腰三角形(D )有一条边相等,有一个内角相等的两个等腰三角形6、已知:如图,△ABC 中,AB=AC 。

上海初一下数学等腰三角形三合一专题复习

上海初一下数学等腰三角形三合一专题复习

第1、2、3、4、5题A第7题E D C B AF E D C BA F E D CB A 等腰三角形“三线合一”专题复习一、填空题:1、 如图,AB=AC ,AD ⊥BC(1)若∠BAC=140°,则∠1= ,∠C= ; (2)若BC=4cm ,则BD= 。

2、如图,AB=AC ,∠1=∠2,则∠ADB= ,若CD=1.5cm 则BC= 。

3、如图,已知AB=2cm ,∠1=∠2,AD ⊥BC ,则AC= 。

4、如图,AD 垂直平分BC ,AB+CD=5cm , 则△ABC 的周长是 。

5、如图,∠1=∠2,BD=CD ,则△ABC (填“是”或“不一定是”)等腰三角形。

6、在等腰直角三角形中,斜边上的高为2cm ,则面积为 。

7、如图,△AEC 中,点B 是AC 上中点,EB ⊥AC ,AD+CD=40,则△DEC 的周长是 。

8、等腰三角形是轴对称图形,它的对称轴是 的中垂线。

二、解答题剖析:1、如图已知在五边形ABCDE 中,AE=AB ,BC=DE ,∠B=∠E ,点F 是CD 的中点, 试说明(1)AF ⊥CD 的理由;(2)AF 平分∠BAE 的理由。

2、已知BD 是等边三角形ABC 的高,E 是BC 延长线上一点,且CE=CD ,DF ⊥BC 于点F ,试说明DF 平分∠BDE 。

E D CB A 21DCB A 1E DC AE D C B A 3、如图点A 、B 、C 、D 在同一直线上,EA=ED ,EB=EC ,请说明AB=CD 的理由。

4、如图∠1=∠2,AD 是BC 边上的中线, 试说明△ABC 是等腰三角形的理由。

5、如图AD 平分∠CAE ,AD ⊥CD 。

试猜想∠E ,∠1,∠ACD 之间的关系,并说明理由。

6、在等腰直角三角形ABC 中,∠BAC=90°,BD 平分∠ABC ,CE ⊥BD 于点E ,试说明BD=2CE 的理由。

利用等腰三角形的“三线合一”性质解题

利用等腰三角形的“三线合一”性质解题
分析 要证明CD=AB+BD,可以A为圆心,AB长为半径画弧交CD于点E,连结AE,趁下来的问题只要能证明DE=DB,CE=AE即可,而由已知条件结合等腰三角形的“三线合一”性质和等腰三角形顶角的外角与底角的关系即证.
证明 以A为圆心,AB长为半径画弧交CD于点E,连结AE,则AE=AB,即∠AEB=∠ABC.
因为AD⊥BC,所以AD是BE的中线,即DE=BD.
又因为∠ABC=2∠C,所以∠AEB3;∠C,所以∠CAE=∠C,即CE=AE=AB,
故CD=AB+BD.
分析 由于DE⊥AB,DF⊥AC,所以要证明DE=DF,只要证明点D是∠BAC的平分线上的点,于是连结AD,而由AB=AC,BD=CD即可证明AD是∠BAC的平分线.
证明 连结AD.因为AB=AC,BD=CD,所以AD是等腰三角形底边BC上的中线,即AD又是顶角的平分线.
又因为DE⊥AB,DF⊥AC,所以DE=DF.
证明 延长线BA、CD交于点E.因为BF平分∠ABC,CD⊥BD,所以可得BC=BE,DE=DC,
又因为∠BAC=90°,∠AFB=∠DFC,所以可得∠ABF=∠DCF,
又AB=AC,∠BAF=∠CAE,所以△ABF≌△ACE(SAS),即BF=CE,
故BF=2CD.
五、证明一个角是直角
例5如图5,△ABC中,∠ACB=2∠B,BC=2AC.求证:∠A=90°.
利用等腰三角形的“三线合一”性质解题
我们知道,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合,被称做为“三线合一”.等腰三角形的“三线合一”性质在几何解题中有着广泛地运用,现举例说明.
一、证明线段相等
例1如图1,在△ABC中,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F.求证:DE=DF.

专题08 等腰三角形(考点串讲)(解析版)

专题08 等腰三角形(考点串讲)(解析版)

专题08 等腰三角形【考点剖析】1.等腰三角形的性质(1)等腰三角形性质1:等腰三角形的两个底角相等(简称:等边对等角) (2)等腰三角形性质2:文字:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称:等腰三角的三线合一) 图形:如下所示;21DCBA符号:在ABC ∆中,AB =AC ,1212,,;,,;,12.BD CD AD BC AD B BD CD AD BC C BD CD ∠=∠⎧⎪=⊥∠=∠⊥∠=∠⎨⎪⊥⎩==若则若则若,则2.等腰三角形的判定(1)等腰三角形的判定方法1:(定义法)有两条边相等的三角形是等腰三角形;(2) 等腰三角形的判定方法2:有两个角相等的三角形是等腰三角形;(简称:等角对等边)3.等边三角形的性质(1)等边三角形性质1:等边三角形的三条边都相等; (2) 等边三角形性质2:等边三角形的每个内角等于60︒; (3)等边三角形性质3:等边三角形是轴对称图形,有三条对称轴.4.等边三角形的判定(1)等边三角形的判定方法1:(定义法:从边看)有三条边相等的三角形是等边三角形; (2)等边三角形的判定方法2:(从角看)三个内角都相等的三角形是等边三角形;(3)等边三角形的判定方法3:(从边、角看)有一个内角等于60︒的等腰三角形是等边三角形. 【典例分析】例1 (杨浦2019期末14)在ABC ∆中,AB=AC ,把ABC ∆折叠,使点B 与点A 重合,折痕交AB 于点M ,交BC 于点N. 如果CAN ∆是等腰三角形,则B ∠的度数为 . 【答案】4536︒︒或;【解析】因为把ABC ∆折叠,使点B 与点A 重合,折痕交AB 于点M ,交BC 于点N.所以MN 是AB 的中垂线,∴NB=BA ,B BAN ∴∠=∠,AB AC B C =∴∠=∠Q ,设B x ∠=,则C BAN x ∠=∠=. (1)当AN=NC 时,CAN C x ∠=∠=,在ABC ∆中,根据三角形内角和定理得4180x =︒,得45x =︒,故45B ∠=︒;(2)当AN=AC 时,ANC C x ∠=∠=,而ANC B BAN ∠=∠+∠,故此时不成立;(3)当CA=CN 时,1802x NAC ANC ︒-∠=∠=,于是得1801802xx x x ︒-+++=︒,解得36x =︒. 综上所述:4536B ∠=︒︒或.NM CBA例2 (浦东2018期末18)如图,在ABC ∆中,A=120,=40B ∠︒∠︒,如果过点A 的一条直线把ABC ∆分割成两个等腰三角形,直线l 与BC 交于点D ,那么ADC ∠的度数是 .CBA【答案】14080︒︒或;【解析】如图所示,把BAC ∠分为1000︒︒和2或者4080︒︒和,可得ADC=14080∠︒︒或.ABCDC BA20°80°80°40°40°20°20°40°40°100°例3 (闵行2018期末17)有下列三个等式①AB =DC ;②BE =CE ;②∠B =∠C .如果从这三个等式中选出两个作为条件,能推出Rt △AED 是等腰三角形,你认为这两个条件可以是 (写出一种即可)EDCBA【答案】①②或①③或②③.(答案不唯一)【解析】解:当AB =DC ,BE =CE ,∠AEB =∠DEC 时,Rt △ABE ≌Rt △DCE (HL ),故AE =DE ,即Rt △AED 是等腰三角形;当AB =DC ,∠B =∠C ,∠AEB =∠DEC 时,△ABE ≌△DCE (AAS ),故AE =DE ,即Rt △AED 是等腰三角形;当BE =CE ,∠B =∠C ,∠AEB =∠DEC 时,△ABE ≌△DCE (ASA ),故AE =DE ,即Rt △AED 是等腰三角形.故答案为:①②或①③或②③.(答案不唯一)例4 (黄浦2018期末27)如图,在ABC ∆中,AD BC ⊥,垂足为点D ,AD 平分BAC ∠,点O 是线段AD 上一点,线段的延长线交边AC 于点F ,线段CO 的延长线交边AB 于点E . (1)说明ABC ∆是等腰三角形的理由; (2)说明BF=CE 的理由.O FE DC BA【答案与解析】(1)AD BC ADB=ADC ⊥∴∠∠Q ,Q AD 平分BAC ∠,BAD=CAD ∴∠∠.ADB=DAC+ACD ADC=BAD+ABD ∠∠∠∠∠∠Q ,,ABD=ACD ∴∠∠,AB=AC ∴即ABC ∆是等腰三角形;(2)ABC ∆Q 是等腰三角形,AD BC ⊥,BD=CD ∴.在BDO CDO ∆∆与中,DO DO ADB ADC BD CD =⎧⎪∠=∠⎨⎪=⎩,BDO CDO ∴∆∆≌OBD OCD ∴∠=∠.在BEC CFB ∆∆与中ECB FBCBC CBABC ACB ∠=∠⎧⎪=⎨⎪∠=∠⎩BEC CFB ∴∆∆≌,BF CE ∴=. 【真题训练】 一、选择题1.(宝山2018期末18)如图7,在ABC ∆中,AB=AC ,30A ∠=︒,以B 为圆心,BC 的长为半径作弧,交AC 于点D ,联结BD ,则ABD ∠等于( )A. 45︒;B. 50︒;C. 60︒;D. 75︒.DABC【答案】A ;【解析】因为在ABC ∆中,AB=AC ,30A ∠=︒,所以18030752ABC ACB ︒-︒∠=∠==︒,又因为以B为圆心,BC 的长为半径作弧,交AC 于点D ,所以,75BD BC BCA BDC =∴∠=∠=︒,30CBD ∴∠=︒,故753045ABD ABC CBD ∠=∠-∠=︒-︒=︒. 故答案选A.2.(长宁2019期末20)在平面直角坐标系,O 为坐标原点,点A的坐标为,M 为坐标轴上一点,且使得MOA ∆为等腰三角形,那么满足条件的点M 的个数为( ) A. 4; B.5; C.6; D.8 【答案】C ;【解析】分三种情况:(1)当OA=OM 时,可得M 点坐标可以为:(0,2)、(0,-2)、(2,0)、(-2,0);当AO=AM 时,M 点坐标可以为(2,0)、(0,;当MO=MA 时,(2,0)、(0,3;故一共有6个不同的点. 故选C. 二、填空题3.(浦东2018期末13)已知一个等腰三角形两边长分别为2和4,那么这个等腰三角形的周长是 . 【答案】10;【解析】依题,(1)若腰长为2、底为4,不可能构成等腰三角形,舍去;(2)若腰长为4、底为2,符合题意,周长为4+4+2=10;由上可知,这个等腰三角形的周长为10. 4.(宝山2018期末7)已知实数x 、y满足|3|0x -=,那么以x 、y 的值为两边长的等腰三角形的周长是 . 【答案】15;【解析】因为实数x 、y满足|3|0x -=,所以x=3,y=6,故符合题意的等腰三角形三边长分别为6、6、3,故此等腰三角形的周长为6+6+3=15.5.(闵行2018期末15)如图,直线l 1∥l 2∥l 3,等边△ABC 的顶点B 、C 分别在直线l 2、l 3上,若边BC 与直线l 3的夹角∠1=25°,则边AB 与直线l 1的夹角∠2= .l 3l 2l 1【答案】35°.【解析】解:∵直线l 1∥l 2∥l 3,∠1=25°,∴∠1=∠3=25°.∵△ABC 是等边三角形, ∴∠ABC =60°,∴∠4=60°﹣25°=35°,∴∠2=∠4=35°.故答案为:35°.1l 2l 36.(普陀2018期末17)如图,已知△ABC 中,∠ABC 的角平分线BE 交AC 于点E ,DE ∥BC ,如果点D 是边AB 的中点,AB=8,那么DE 的长是 .E D CBA【答案】4;【解析】解:连接BE ,∵BE 平分∠ABC ,∴∠ABE=∠CBE ,∵DE ∥BC ,∴∠DEB=∠ABE , ∴∠ABE=∠DEB ,∴BD=DE ,∵D 是AB 的中点,∴AB=BD ,∴DE=12AB=4,故答案为:4 AD BCE7.(宝山2018期末13)如图,已知Rt ABC ∆中,90ACB ∠=︒,AC=AE ,BC=BD ,则ACD BCE ∠+∠= ______-︒.ECBA【答案】45;【解析】过点C 作CH AB ⊥于点H ,因为AC =AE ,所以ACE AEC ∠=∠,因为CH AB ⊥,所以90AEC HCE ∠+∠=︒, 又90ACE BCE ∠+∠=︒,所以=BCE HCE ∠∠;同理可得:ACD HCD ∠=∠; 故+=+BCE ACD HCE HCD ∠∠∠∠即+=45BCE ACD ∠∠︒.HED CBA8.(黄浦2018期末19)已知等腰三角形的一个内角为50度,则这个等腰三角形的顶角为 ︒. 【答案】50︒或80︒;【解析】(1)当顶角为50︒时,这个等腰三角形的顶角为50︒;(2)当底角为50︒时,则顶角为180-250=80︒⨯︒︒;综上述,这个等腰三角形的顶角为50︒或80︒.9.(长宁2018期末14)等腰三角形一腰上的高与另一腰的夹角为40︒,那么这个等腰三角形的顶角为____度.【答案】50130︒︒或.【解析】(1)如下图1,4050ABD A ∠=︒∴∠=︒,(2)如图2,40130ABD BAC ∠=︒∴∠=︒,故这个等腰三角形的顶角为50130︒︒或(图2)(图1)10.(黄浦2018期末14)等腰三角形底边上的中线垂直于底边且平分顶角,用符号来表示为:如图,如果在ABC ∆中,AB=AC ,且 ,那么AD BC ⊥且 .DCBA【答案】BD=CD ;BAD CAD ∠=∠;【解析】等腰三角形底边上的中线垂直于底边且平分顶角,用符号来表示为:如图,如果在ABC ∆中,AB=AC ,且BD=CD ,那么AD BC ⊥且BAD CAD ∠=∠.故答案为:BD=CD ;BAD CAD ∠=∠. 11.(杨浦2019期末13)如图,已知在ABC ∆中,AB=AC ,点D 在边BC 上,要使BD=CD ,还需添加一个条件,这个条件是 .(只需填上一个正确的条件)D B A【答案】BAD CAD ∠=∠或者AD BC ⊥(只填一个)【解析】解:在ABC ∆中,AB=AC ,BAD CAD ∠=∠,BD CD ∴=;或者 在ABC ∆中,AB=AC ,AD BC ⊥,BD CD ∴=;故答案为:BAD CAD ∠=∠或者AD BC ⊥. 考查等腰三角形的三线合一。

解题技巧专题:利用等腰三角形的'三线合一'作辅助线与构造等腰三角形的解题技巧(6类热点题型讲练)解析

解题技巧专题:利用等腰三角形的'三线合一'作辅助线与构造等腰三角形的解题技巧(6类热点题型讲练)解析

第05讲解题技巧专题:利用等腰三角形的'三线合一'作辅助线与构造等腰三角形的解题技巧(6类热点题型讲练)目录【考点一等腰三角形中底边有中点时,连中线】 (1)【考点二等腰三角形中底边无中点时,作高】 (6)【考点三利用平行线+角平分线构造等腰三角形】 (12)【考点四过腰或底作平行线构造等腰(边)三角形】 (15)【考点五巧用“角平分线+垂线合一”构造等腰三角形】 (24)【考点六利用倍角关系构造新等腰三角形】 (28)【考点一等腰三角形中底边有中点时,连中线】例题:(2023上·浙江宁波·八年级统考期末)如图,在ABC 中,120BAC ∠=︒,AB AC =,D 为BC 的中点,DE AC ⊥于E .(1)求EDC ∠的度数;(2)若2AE =,求CE 的长.【答案】(1)60︒(2)6【分析】本题考查了等腰三角形的“三线合一”,含30︒角的直角三角形的性质等知识,(1)连接AD ,根据等腰三角形的“三线合一”即可作答;(2)根据含30︒角的直角三角形的性质即可作答.【详解】(1)连接AD ,∵AB AC =,120BAC ∠=︒,∴AD BC ⊥,AD 平分BAC ∠,∴1602∠=∠=︒DAC BAC ,ADC ∠1.(2023上·北京·八年级期末)如图,在ABC 中,AB AC =,D 是BC 的中点,过A 作EF BC ∥,且AE AF =.求证:(1)DE DF =;(2)BG CH =.【答案】(1)见解析(2)见解析【分析】(1)连接AD ,利用等腰三角形“三线合一"的性质得AD BC ⊥,再利用平行线的性质得90DAF ADB ∠=∠=︒,从而说明AD 垂直平分EF ,则有DE DF =;(2)利用等角的余角相等EDB FDC ∠=∠,再利用ASA 证明BDG CDH ≌,从而证明结论.【详解】(1)证明:连接AD ,ABAC =,点D 为BC 的中点,∴AD BC ⊥,∴90ADB ∠=︒,EF BC ∥,∴90DAF ADB ∠=∠=︒,∴AD EF ⊥,AE AF =,∴AD 垂直平分EF ,∴DE DF =;(2),,DE DF DA EF =⊥ ,EAD FAD ∴∠=∠,ADB ADC ∠=∠ ,EDB FDC ∴∠=∠,AB AC =,B C ∴∠=∠在BDG 和CDH △中,,B C BD CD BDG CDH ∠=∠⎧⎪=⎨⎪∠=∠⎩(ASA),BDG CDH ∴△≌△.BG CH ∴=【点睛】本题主要考查了等腰三角形的性质,全等三角形的判定与性质,线段垂直平分线的性质,余角的性质,熟练掌握等腰三角形“三线合一"的性质是解题的关键.2.(2023上·辽宁葫芦岛·八年级统考期末)如图,在ABC 中,AB 的垂直平分线EF 交BC 于点E ,交AB 于点F ,D 为线段CE 的中点,且BE AC =.(1)求证:AD BC ⊥.(2)若90BAC ∠=︒,2DC =,求BD 的长.【答案】(1)见解析(2)6【分析】(1)连接AE ,根据线段垂直平分线的性质得到BE AE =,证明AE AC =,根据等腰三角形的三线合一证明结论;(2)证明AEC △为等边三角形,根据等边三角形的性质解答即可.【详解】(1)证明:连接AE ,EF 是AB 的垂直平分线,BE AE ∴=,BE AC = ,AE AC ∴=,AEC ∴ 是等腰三角形,D 为线段CE 的中点,AD BC ∴⊥;(2)解:BE AE = ,EAB B ∴∠=∠,2AEC EAB B B ∴∠=∠+∠=∠,AE AC = ,AEC C ∴∠=∠,2C B ∴∠=∠,90BAC ∠=︒ ,60C ∴∠=︒,AEC ∴ 为等边三角形,2DC ED ==,24AE EC BE DC ∴====,426BD BE ED ∴=+=+=.【点睛】本题考查的是线段垂直平分线的性质、等腰三角形的性质、等边三角形的判定和性质,掌握等腰三角形的三线合一是解题的关键.3.(2023上·全国·八年级专题练习)如图,已知ABC 中,AB AC =,90BAC ∠=︒,点D 为BC 的中点,点E 、F 分别在直线AB AC 、上运动,且始终保持AE CF =.(1)如图①,若点E F 、分别在线段AB AC 、上,DE 与DF 相等且DE 与DF 垂直吗?请说明理由;(2)如图②,若点E F 、分别在线段AB CA 、的延长线上,(1)中的结论是否依然成立?说明理由.【答案】(1)DE DF =且DE DF ⊥,见解析(2)成立,见解析【分析】(1)先利用等腰直角三角形的性质得到45BAD DAC B C ∠=∠=∠=∠=︒和AD BD DC ==,再证明AED CFD SAS ≌(),利用全等三角形的性质即可求解;(2)利用等腰直角三角形的性质得到45BAD DAC B C ∠=∠=∠=∠=︒和AD BD DC ==,再证明AED CFD SAS ≌(),利用全等三角形的性质即可求解.【详解】(1)DE DF =且DE DF ⊥,理由是:如图①,连接AD ,∵90BAC ∠=︒,AB AC =,D 为BC 中点,∴45BAD DAC B C ∠=∠=∠=∠=︒,∴AD BD DC ==,在AED △和CFD △中,AE CF EAD DAC AD DC =⎧⎪∠=∠⎨⎪=⎩∴AED CFD SAS ≌(),∴DE DF =,ADE CDF ∠=∠,又∵90CDF ADF ∠+∠=︒,∴90ADE ADF ∠+∠=︒,∴90EDF ∠=︒,∴DE DF ⊥.(2)若点E F 、分别在线段AB ,CA 的延长线上,(1)中的结论依然成立,如图②,连接AD ,理由如下:∵AB AC =,90BAC ∠=︒,点D 为BC 的中点,∴45BAD DAC B C ∠=∠=∠=∠=︒,∴AD BD DC ==,在AED △和CFD △中,AE CF EAD DAC AD DC =⎧⎪∠=∠⎨⎪=⎩∴AED CFD SAS ≌();∴DE DF ADE CDF =∠=∠,,又∵90CDF ADF ∠-∠=︒,∴90ADE ADF ∠-∠=︒,∴90EDF ∠=︒,∴DE DF ⊥.【点睛】本题考查了等腰直角三角形的性质和全等三角形的判定与性质,解题关键是正确作出辅助线构造全等三角形.【考点二等腰三角形中底边无中点时,作高】例题:(2023上·福建厦门·八年级厦门一中校考期中)如图,已知60AOB ∠=︒,点P 在边OA 上,12OP =,点M N 、在边OB 上,PM PN =,若5OM =,求MN 的长.【答案】2【分析】本题考查了等腰三角形的性质、含角形的性质可得CM 练掌握等腰三角形的三线合一以及直角三角形中PM PN = ,PC ⊥CM CN ∴=,在OPC 中,PCO ∠162OC OP ∴==,5OM = ,1.(2023上·河南省直辖县级单位·八年级校联考期末)在ABC 中,点,D E 是边BC 上的两点.(1)如图1,若AB AC =,AD AE =.求证:BD CE =;(2)如图2,若90BAC ∠=︒,BA BD =,设B x ∠=︒,CAD y ∠=︒.(2)①猜想:2x y =,理由是:∵BA BD =,B x ∠=︒,∴(11802BAD BDA ∠=∠=︒-∠∵90BAC ∠=︒,CAD y ∠=︒,∴90BAD CAD ∠+∠=︒,即90整理得:2x y =;(1)如图1,当点E 与点C 重合时,AD 与CB '的位置关系是表示)(2)如图2,当点E 与点C 不重合时,连接DE .①用等式表示BAC ∠与DAE ∠之间的数量关系,并证明;②用等式表示线段BE ,CD ,DE 之间的数量关系,并证明.则90AMC ADC ∠∠=︒=∵AB AC =,∴1122CM BM BC ===在ACD 与ACM △中,∵AB AC =,∴B ACB ∠=∠,∵ACB ACB '∠=∠,∴B ACB ACD '∠=∠=∠【考点三利用平行线+角平分线构造等腰三角形】例题:(2024上·北京西城·八年级校考期中)如图,在ABC 中,BD 平分ABC ∠,DE CB ∥,F 是BD 的中点.(1)求证:BDE 是等腰三角形(2)若50ABC ∠=︒,求DEF ∠的度数.【答案】(1)见解析(2)65︒【分析】本题考查了等腰三角形的判定与性质,熟记相关定理内容是解题关键.(1)由角平分线的定义得EBD CBD ∠=∠,由DE CB ∥得EDB CBD ∠=∠即可求证;(2)先求出EDB ∠,根据“三线合一”得EF BD ⊥,即可求解.【详解】(1)证明:∵BD 平分ABC ∠,∴EBD CBD ∠=∠,∵DE CB ∥,是等腰三角形;(1)如图1,求证:CDE∠交AC于E,(2)如图2,若DE平分ADC的长.【答案】(1)见解析(2)4【分析】本题考查角平分线、平行线的性质以及直角三角形的边角关系,掌握角平分线的定义,平行线的性质是解决问题的关键.∠=∠(1)根据角平分线的定义得出BCD(1)当53BE CF ==,,则EF =___________;(2)当BE CF >时,若CO 是ACB ∠的外角平分线,如图2,它仍然和∠作EF BC ∥,交AB 于E ,交AC 于F ,试判断EF BE ,,CF 之间的关系,并说明理由.【答案】(1)8(2)EF BE CF =-,见解析∴∠EOB =∠OBC ,∠FOC =∠OCB ,∵ABC ∠和ACB ∠的平分线交于点O ,∴∠EBO =∠OBC ,∠FCO =∠BCO ,∴∠EBO =∠EOB ,∠FCO =∠FOC ,∴53BE OE OF CF ====,,∴8EF EO FO =+=,故答案为:8;(2)EF BE CF =-,理由如下:∵BO 平分ABC ∠,∴ABO OBC ∠=∠,∵EO BC ∥,∴EOB OBC ∠=∠,∴ABO EOB ∠=∠,∴BE EO =,同理可得FO CF =,∴EF EO FO BE CF =-=-.【考点四过腰或底作平行线构造等腰(边)三角形】例题:(2023上·吉林通化·八年级统考期末)如图,ABC 是等边三角形,点D 在AC 上,点E 在BC 的延长线上,且BD DE =.(1)若点D 是AC 的中点,如图1,则线段AD 与CE 的数量关系是__________;(2)若点D 不是AC 的中点,如图2,试判断AD 与CE 的数量关系,并证明你的结论;(提示:过点D 作DF BC ∥,交AB 于点F )(3)若点D 在线段AC 的延长线上,(2)中的结论是否仍成立?如果成立,请给予证明;如果不成立,请说明理由.【答案】(1)AD CE =,理由见解析(2)AD CE =,理由见解析(3)成立,理由见解析【分析】本题考查全等三角形判定与性质,平行线性质,等腰三角形性质,等边三角形性质与判定.(1)求出E CDE ∠=∠,推出CD CE =,根据等腰三角形性质求出AD DC =,即可得出答案;(2)过D 作DF BC ∥,交AB 于F ,证明BFD DCE ≌,推出DF CE =,证ADF △是等边三角形,推出AD DF =,即可得出答案;(3)过点D 作DP BC ∥,交AB 的延长线于点P ,证明BPD DCE ≌,得到PD CE =,即可得到AD CE =.【详解】(1)解:AD CE =,理由如下:ABC 是等边三角形,60,ABC ACB AB AC BC ∴∠=∠=== .∵点D 为AC 中点,30,DBC AD DC ∴∠== ,BD DE = ,30E DBC ∴∠=∠= ,ACB E CDE ∠=∠+∠ ,30CDE E ∴∠=∠= ,CD CE ∴=,又AD DC = ,AD CE ∴=.故答案为:AD CE =;(2)解:AD CE =,理由如下:如图,过点D 作DF BC ∥,交AB 于点F ,则60ADF ACB ∠=∠= ,60A ∠= ,AFD ∴ 是等边三角形,,60AD DF AF AFD ∴==∠= ,18060120BFD DCE ∴∠=∠=-= ,D F B C ∥ ,FDB DBE E ∴∠=∠=∠,在BFD △和DCE △中,FDB E BFD DCE BD DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,BFD DCE ∴ ≌()AAS ,DF CE ∴=,又AD DF = ,AD CE ∴=;(3)解:结论仍成立,理由如下:如图,过点D 作DP BC ∥,交AB 的延长线于点P ,则60,60ABC APD ACB ADP ∠=∠=∠=∠= ,60A ∠= ,APD ∴ 是等边三角形,AP PD AD ∴==,ACB DCE ∠=∠ ,DCE ACB P ∴∠=∠=∠,DP BC ∥ ,PDB CBD ∴∠=∠,DB DE = ,DBC DEC ∴∠=∠,PDB DEC ∴∠=∠,在BPD △和DCE △中,PDB CED P DCE BD DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,BPD DCE ∴ ≌()AAS ,PD CE ∴=,又AD PD = ,AD CE ∴=.【变式训练】(1)如图1,当点E 运动到线段AB 的中点,点D 在线段(2)如图2,当点E 在线段AB 上运动,点D 在线段说明理由.【答案】(1)12∵EF BC ∥,∴60AFE ACB ∠=∠=︒120,EFC AFE ∴∠=︒∠EF EA∴=∵60ABC ∠=︒,(1)【感知】如图1,当点E为AB的中点时,则线段(2)【类比】如图2,当点E为AB边上任意一点时,∥,交AC于点F.示如下:过点E作EF BC(3)【拓展】在等边三角形ABC中,点E在直线(2)AE DB =,理由如下:过点E 作EF BC ∥,交AC 于点F ,则AEF ABC AFE ACB ∠=∠∠=∠,,FEC ECD ∠=∠,∵ABC 是等边三角形,∴60AB AC A ABC ACB =∠=∠=∠=︒,,∴60120AEF AFE A DBE ∠=∠=∠=︒∠=︒,,∴AEF △为等边三角形,120EFC ∠=︒,∴AE EF =,∵ED EC =,∴D ECD ∠=∠,∴D FEC ∠=∠,在DBE 和EFC 中,DBE EFC D FEC ED EC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS DBE EFC ≌,∴DB EF =,∴AE DB =;(3)过点E 作EF BC ∥,交AC 于点F ,如图3所示:同(2)得:AEF △是等边三角形,()AAS DBE EFC ≌,∴33AE EF DB EF ====,,∵2BC =,∴235CD BC DB =+=+=.故答案为:5.【点睛】本题是三角形综合题目,考查了等边三角形的判定与性质、全等三角形的判定与性质、等腰三角形的性质、平行线的性质等知识,熟练掌握等边三角形的判定与性质,证明三角形全等是解题的关键.(1)求证:2AP AQ AB +=(2)求证:PD DQ =;(3)如图,过点P 作PE ⊥出这个长度;如果变化,请说明理由.【答案】(1)见解析(2)见解析(3)ED 为定值5,理由见解析【分析】本题考查了全等三角形的判定与性质,等腰三角形的判定与性质,平行线的性质,线段的和差,准确作出辅助线找出全等三角形是解题关键.(1)利用P 、Q 的移动速度相同,得到CQ PB ∴=,AB AC = ,2AP AQ AB PB AC CQ AB ∴+=-++=;(2)如图,过点P 作PF AC ∥,交BC 于点F ,PF AC ∥,,PFB ACB DPF DQC ∴∠=∠∠=∠,AB AC = ,B ACB ∴∠=∠,B PFB ∴∠=∠,BP PF ∴=,由(1)得BP CQ =,PF CQ ∴=,在PFD 与QCD 中,PDF QDC DPF DQC PF CQ ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS PFD QCD ∴ ≌,PD DQ ∴=;(3)解:ED 为定值5,理由如下:如图,过点P 作PF AC ∥,交BC 于点F ,由(2)得:PB PF =,【考点五巧用“角平分线+垂线合一”构造等腰三角形】例题:如图,在ABC 中,AD 平分BAC ∠,E 是BC 的中点,过点E 作FG AD ⊥交AD 的延长线于H ,交AB 于F ,交AC 的延长线于G .求证:(1)AF AG =;(2)BF CG =.【答案】(1)见解析(2)见解析【分析】(1)根据ASA 证明AHF AHG ≌ ,即可得出AF AG =;(2)过点C 作CM AB ∥交FG 于点M ,由AHF AHG ≌ 可得AFH G ∠=∠,根据平行线的性质得出CMG AFH ∠=∠,可得CMG G ∠=∠,进而得出CM CG =,再根据据ASA 证明BEF CEM ≌ ,得出BF CM =,等量代换即可得到BF CG =.【详解】(1)证明:∵AD 平分BAC ∠,∴FAH GAH ∠=∠,∵FG AH ⊥,∴90AHF AHG ∠=∠=︒,在AHF △和AHG 中,FAH GAH AH AH AHF AHG ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA AHF AHG ≌ ,∴AF AG =;(2)证明:过点C 作CM AB ∥交FG 于点M ,∵AHF AHG ≌ ,∴AFH G ∠=∠,∵CM AB ∥,∴CMG AFH ∠=∠,∴CMG G ∠=∠,∴CM CG =,∵E 是BC 的中点,∴BE CE =,∵CM AB ∥,∴B ECM ∠=∠,在BEF △和CEM 中,B ECM BE CE BEF CEM ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA BEF CEM ≌ ,∴BF CM =,∴BF CG =.【点睛】此题考查了全等三角形的判定与性质,等角对等边,平行线的性质,熟记全等三角形的判定定理、性质定理及作出合适的辅助线是解此题的关键.【变式训练】1.如图:(1)【问题情境】利用角平分线构造全等三角形是常用的方法,如图1,OP 平分MON ∠.点A 为OM 上一点,过点AC OP ⊥,垂足为C ,延长AC 交ON 于点B ,可根据证明AOC BOC ≌△△,则AO 点C 为AB 的中点).(2)【类比解答】如图2,在ABC 中,CD 平分ACB ∠,AE CD ⊥于E ,若63EAC ∠=︒,37B ∠=︒,通过上述构造全等的办法,可求得DAE ∠=.(3)【拓展延伸】如图3,ABC 中,AB AC =,90BAC ∠=︒,CD 平分ACB ∠,BE CD ⊥,垂足E 在CD 究BE 和CD 的数量关系,并证明你的结论.(4)【实际应用】如图4是一块肥沃的三角形土地,其中AC 边与灌渠相邻,李伯伯想在这块地中划出一块直角三角形土地进行水稻试验,故进行如下操作:①用量角器取ACB ∠的角平分线CD ;②过点A 作AD 13BC =,10AC =,ABC 面积为20,则划出的ACD 的面积是多少?请直接写出答案.【答案】(1)ASA(2)26︒(3)12BE CD =,证明见解析100【考点六利用倍角关系构造新等腰三角形】例题:(2023上·河南信阳·八年级统考期中)阅读材料:截长补短法,是初中数学几何题中一种辅助线的添加方法.截长就是在长边上截取一条线段与某一短边相等,补短是通过在一条短边上延长一条线段与另一长边相等,解答下列问题:如图1,在ABC 中,交BC 于点D ,AD 平分BAC ∠,且2B C ∠=∠.(1)为了证明结论“AB BD AC +=”,小亮在AC 上截取AE ,使得AE AB =,解答了这个问题,请按照小亮的思路写证明过程;(2)如图2,在四边形ABCD 中,已知58BAD ∠=︒,109D ∠=︒,42ACD ∠=︒,80ACB ∠=︒,10AD =,CE AB ⊥3EB =,求AB 的长.【答案】(1)见解析(2)16【分析】本题考查了全等三角形的判定与性质,等腰三角形的判定及性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.(1)在AC 上截取AE ,使得AE AB =,连接DE ,根据角平分线的定义可得BAD DAC ∠=∠,再利用SAS 证明ABD AED ≌,从而可得B AED ∠=∠,BD DE =,进而可得2AED C ∠=∠,然后利用三角形的外角性质可得AED C EDC ∠=∠+∠,从而可得C EDC ∠=∠,进而可得DE CE =,再根据等量代换可得BD EC =,最后利用线段的和差关系进行计算,即可解答;(2)在AE 上截取AF AD =,连接CD ,先利用三角形内角和定理可得29DAC ∠=︒,从而可得29DAC FAC ∠=∠=︒,再利用SAS 证明DAC FAC ≌,从而可得109AFC D ∠=∠=︒,进而可得71CFE ∠=︒,然后利用三角形内角和定理可得71B CFE ∠=∠=︒,从而可得CF BC =,再利用等腰三角形的三线合一性质可得26BF BE ==,最后利用线段的和差关系进行计算,即可解答.【详解】(1)解:证明:在AC 上截取AE ,使得AE AB =,∵AD 平分BAC ∠,∴BAD DAC ∠=∠,∵AD AD =,∴()SAS ABD AED ≌,∴B AED ∠=∠,BD DE =,∵2B C ∠=∠,∴2AED C ∠=∠,∵AED ∠是DEC 的一个外角,∴AED C EDC ∠=∠+∠,∴C EDC ∠=∠,∴DE CE =,∴BD EC =,∵AE EC AC +=,∴AB BD AC +=;(2)在AE 上截取AF AD =,连接CF ,∵109D ∠=︒,42ACD ∠=︒,∴18029DAC D ACD ∠=︒-∠-∠=︒,∵58BAD ∠=︒,∴29FAC BAD DAC ∠=∠-∠=︒,∴29DAC FAC ∠=∠=︒,∵AC AC =,∴()SAS DAC FAC ≌,∴109AFC D ∠=∠=︒,∴18071CFE AFC ∠=︒-∠=︒,∵80ACB ∠=︒,29FAC ∠=︒,∴18071B ACB FAC ∠=︒-∠-∠=︒,∴B CFE ∠=∠,∴CF BC =,∵CE AB ⊥,∴26BF BE ==,∴10616AB AF BF =+=+=,∴AB 的长为16.【变式训练】1.在Rt ABC 中,90BAC ∠=︒,点D 在边BC 上,AB AD =,点E 在线段BD 上,3BAE EAD ∠=∠.(1)如图1,若点D 与点C 重合,则AEB ∠=______︒;(2)如图2,若点D 与点C 不重合,试说明C ∠与EAD ∠的数量关系;(3)在(1)的情况下,试判断BE ,CD 与AC 的数量关系,并说明你的理由.【答案】(1)67.5(2)2C EAD∠=∠(3)BE CD AC +=,理由见解析【分析】(1)根据等腰直角三角形的性质得到45D ∠=︒,根据题意求出EAD ∠,根据三角形的外角性质计算,得到答案;(2)根据直角三角形的两锐角互余得到90B C ∠=︒-∠,根据等腰三角形的性质、三角形内角和定理得到2BAD C ∠=∠,进而证明结论;(3)在BD 上截取BF DE =,连接AF ,证明ABF △≌ADE V ,根据求等三角形的性质得到BAF DAE ∠=∠,根据三角形的外角性质得到CAF CFA ∠=∠,得到AC CF =,进而得出结论.【详解】(1)解:在Rt BAD 中,90BAD ∠=︒,AB AD =,则45D ∠=︒,90BAD ∠=︒Q ,3BAE EAD ∠=∠,22.5EAD ∴∠=︒,67.5AEB EAD D ∴∠=∠+∠=︒,故答案为:67.5;(2)解:2C EAD ∠=∠,理由如下:90BAC ∠=︒ ,90B C ∴∠=︒-∠,AB AD = ,则BE BF EF DE EF DF =+=+=,BE CD DF CD CF ∴+=+=,在ABF △和ADE V 中,AB AD B ADE BF DE =⎧⎪∠=∠⎨⎪=⎩,()SAS ADE △(1)写出图1中与BAC ∠相等的角,BAC ∠=______(2)如图1,若GFC FGE ∠=∠,在图中找出与AG (3)如图2,若2,3HC CE ==,求BC 的长度.【答案】(1)AGF∠(2)AG CE =,证明见解析(3)72MGN AGF BAC∠=∠=∠,∠=∠,则N BAC∴∠=∠,N MGNMG MN∴=,∠=∠=∠+∠FGE BEG BEG2∴∠=∠,BEG GME∴=,MG GE,=AC GE∴=,MN AC。

等腰三角形性质_三线合一专题

等腰三角形性质_三线合一专题

等腰三角形性质:三线合一”专题等腰三角形有一个重要的性质:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合。

这就是 著名的等腰三角形“三线台一”性质。

“三线合一”性质常用来证明两线垂直、两线段相等和两角相等。

反之, 如果三角形一边上的中线、 这边上的高、这边所对角的角平分线中有两条重合, 那么这个三角形就是等腰三角形。

【例题讲解】垂直平分 BC 。

AD 是△ABC ,DE 、DF 分别是△ ABD 和△ ACD 的高。

求证: AD 垂直平分EF 。

例二:如图△ ABC 中,AB =AC ,∠A =36°,BD 平分∠ ABC , DE ⊥AB 于 E ,若 CD =4 ,且△ BDC 周长为24 ,求 AE 的长度。

例 1 . 如图所示,在等腰△ ABC 中, AD 是 BC 边上的中线,点 求证:BE=CE 。

变式练习 1-1 如图,在△ ABC 中, AB=AC ,D 是形外一点,且 BD=CD 。

求证: AD变式练习 1-2 已知,如图所示,∴ Rt △ABD ≌Rt △ACE (HL )。

∴∠ ACE= ∠B例五 . 已知:如图 3,等边三角形 ABC 中, M ,求证: M 是 BE 的中点。

图3分析:欲证 M 是 BE 的中点,已知 DM ⊥BC ,因此只需证 DB=DE ,即证∠ DBE= ∠E ,根据等边△ ABC , BD 是中线,可知∠ DBC=30 °,因此只需证∠ E=30 °。

证明:联结 BD , ∵△ ABC 是等边三角形, ∴∠ ABC= ∠ACB=60 ° ∵CD=CE ,∴∠ CDE= ∠E=30 ° ∵BD 是 AC 边上中线,∴BD 平分∠ ABC ,即∠ DBC=30 °例三 . 等腰三角形顶角为 ,一腰上的高与底边所夹的角是 的关系式为图1分析:如图 1, AB=AC ,BD ⊥ AC 于 D ,作底边 BC 上的高 AE为垂足,则可知∠ EAC= ∠ EAB1,2又∠ EAC 90 ∠C ,90° ∠C ,所以 ∠EAC例四 . 已知:如图2,△ ABC 中, AB=AC , CE ⊥AE 于E , CE BC ,E 在△ ABC 外,求证:∠ ACE= ∠B 。

等腰三角形三线合一典型题型

等腰三角形三线合一典型题型

等腰三角形三线合一专题训练例1:如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。

求证:BC=AB+DC。

变1:如图,AB∥CD,∠A=90°,AB=2,BC=3,CD=1,E是AD边中点。

求证:CE⊥BE。

变2:如图,四边形ABCD中,AD∥BC,E是CD上一点,且AE、BE分别平分∠BAD、∠ABC.(1)求证:AE⊥BE;(2)求证:E是CD的中点;(3)求证:AD+BC=AB.CEA D变3:△ABC 是等腰直角三角形 ,∠BAC=90°,AB=AC.⑴若D 为BC 的中点,过D 作DM ⊥DN 分别交AB 、AC 于M 、N ,求证:(1)DM =DN 。

⑵若DM ⊥DN 分别和BA 、AC 延长线交于M 、N 。

问DM 和DN 有何数量关系。

(1) 已知:如图,AB=AC ,E 为AB 上一点,F 是AC 延长线上一点,且BE=CF ,EF 交BC 于点D . 求证:DE=DF .DBCF AEM N D C BA M ND CB A(2)已知:如图,AB=AC ,E 为AB 上一点,F 是AC 延长线上一点,且,EF 交BC 于点D ,且D 为EF 的中点. 求证:BE=CF .DBCF AE利用面积法证明线段之间的和差关系1、如图,在△ABC 中,AB=AC ,P 为底边BC 上的一点,PD ⊥AB 于D ,PE ⊥AC 于E ,•CF ⊥AB 于F ,那么PD+PE 与CF 相等吗?变1:若P点在直线BC上运动,其他条件不变,则PD 、PE与CF的关系又怎样,请你作图,证明。

FF1、已知等腰三角形的两边长分别为4、9,则它的周长为()A 17B 22C 17或22D 13根据等腰三角形的性质寻求规律例1.在△ABC中,AB=AC,∠1=12∠ABC,∠2=12∠ACB,BD与CE相交于点O,如图,∠BOC的大小与∠A的大小有什么关系?若∠1=13∠ABC,∠2=13∠ACB,则∠BOC与∠A大小关系如何?若∠1=1n∠ABC,∠2=1n∠ACB,则∠BOC与∠A大小关系如何?会用等腰三角形的判定和性质计算与证明例2.如图,等腰三角形ABC中,AB=AC,一腰上的中线BD•将这个等腰三角形周长分成15和6两部分,求这个三角形的腰长及底边长.利用等腰三角形的性质证线段相等例3.如图,P 是等边三角形ABC 的一点,连结PA 、PB 、PC ,•以BP 为边作∠PBQ=60°,且BQ=BP ,连结CQ .(1)观察并猜想AP 与CQ 之间的大小关系,并证明你的结论.(2)若PA :PB :PC=3:4:5,连结PQ ,试判断△PQC 的形状,并说明理由.例1、等腰三角形底边长为5cm ,腰上的中线把三角形周长分为差是3cm 的两部分,则腰长为( ) A 、2cm B 、8cm C 、2cm 或8cm D 、不能确定例2、已知AD 为△ABC 的高,AB=AC ,△ABC 周长为20cm ,△ADC 的周长为14cm ,求AD 的长。

人教版 八年级数学讲义 等腰三角形“三线合一”的性质 (含解析)

人教版 八年级数学讲义  等腰三角形“三线合一”的性质 (含解析)

第5讲等腰三角形“三线合一”的性质知识定位讲解用时:5分钟A、适用范围:人教版初二,基础较好;B、知识点概述:本讲义主要用于人教版初二新课,本节课我们要重点学习等腰三角形“三线合一”的性质。

我们知道等腰三角形是一种特殊的三角形,它除了具有一般三角形所有的性质外,还有许多特殊性,正是由于它的这些特殊性,使得它比一般三角形的应用更广泛。

因此,我们有必要把这部分内容学得更扎实。

知识梳理讲解用时:20分钟等腰三角形1、等腰三角形的概念:有两条边相等的三角形叫做等腰三角形,相等的两条边叫做腰,另外一条边叫做底,两腰所夹的角叫做顶角,底边和腰的夹角叫做底角。

2、等腰三角形的性质:(1)等腰三角形的两个底角相等;(简写成“等边对等角”)(2)等腰三角形的角平分线、底边上的中线、底边上的高互相重合.(简写成“三线合一”)3、等腰三角形的判定方法:(1)有两条边相等的三角形叫做等腰三角形;(定义法)(2)如果一个三角形有两个角相等,那么这两个角对应的边也相等.(简写成“等角对等边”)AB C等边三角形我们知道等边三角形是特殊的等腰三角形,所以接下来要研究等边三角形的性质和判定!1、等边三角形的概念:在等腰三角形中,有一种特殊的等腰三角形——三条边都相等的三角形,我们把这样的三角形叫做等边三角形。

2、等边三角形的性质:(1)等边三角形的三条边都相等;(定义)(2)等边三角形的三个内角都相等,都等于60°;(3)等腰三角形“三线合一”的性质同样适用于等边三角形.3、等边三角形的判定方法:(1)有两条边相等的三角形叫做等腰三角形;(定义)(2)三个内角都相等的三角形是等边三角形;(3)有一个角是60°的等腰三角形是等边三角形.AB C课堂精讲精练【例题1】如图,点D、E在△ABC的BC边上,AB=AC,AD=AE.求证:BD=CE.【答案】BD=CE【解析】要证明线段相等,只要过点A作BC的垂线,利用三线合一得到P为DE及BC的中点,线段相减即可得证.证明:如图,过点A作AP⊥BC于P.∵AB=AC,∴BP=PC;∵AD=AE,∴DP=PE,∴BP﹣DP=PC﹣PE,∴BD=CE.讲解用时:3分钟解题思路:本题考查了等腰三角形的性质;做题时,两次用到三线合一的性质,由等量减去等量得到差相等是解答本题的关键;教学建议:熟练运用等腰三角形“三线合一”的性质.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习1.1】如图,在△ABC中,AB=AC,AD是BC边上的高,过点C作CE∥AB交AD的延长线于点E,求证:CE=AB.【答案】CE=AB【解析】先根据等腰三角形的性质,得到∠BAE=∠CAE,再根据平行线的性质,得到∠E=∠CAE,最后根据等量代换即可得出结论.证明:∵AB=AC,AD是BC边上的高,∴∠BAE=∠CAE.∵CE∥AB,∴∠E=∠BAE.∴∠E=∠CAE.∴CE=AC.∵AB=AC,∴CE=AB.讲解用时:3分钟解题思路:本题主要考查了等腰三角形的性质以及平行线的性质,解题时注意:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.教学建议:熟练运用等腰三角形“三线合一”的性质以及平行线的性质.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题2】如图,在△ABC中,AB=AC,点D,点E分别是BC,AC上一点,且DE⊥AD.若∠BAD=55°,∠B=50°,求∠DEC的度数.【答案】115°【解析】根据等腰三角形的性质和三角形的内角和得到∠C=50°,进而得到∠BAC=80°,由∠BAD=55°,得到∠DAE=25°,由DE⊥AD,进而求出结论.解:∵AB=AC,∴∠B=∠C,∵∠B=50°,∴∠C=50°,∴∠BAC=180°﹣50°﹣50°=80°,∵∠BAD=55°,∴∠DAE=25°,∵DE⊥AD,∴∠ADE=90°,∴∠DEC=∠DAE+∠ADE=115°.讲解用时:3分钟解题思路:本题主要考查了等腰三角形的性质,三角形的内角和定理,垂直定义,熟练应用等腰三角形的性质是解题的关键.教学建议:熟练掌握等腰三角形等腰对等角的性质以及三角形的内角和定理. 难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习2.1】已知等腰三角形一腰上的中线将三角形的周长分成6cm和15cm的两部分,求这个三角形的腰和底边的长度.【答案】10cm,10cm,1cm【解析】根据题意,分两种情况进行分析,从而得到腰和底边的长,注意运用三角形的三边关系对其进行检验.解:①如图,AB+AD=6cm,BC+CD=15cm,∵AD=DC,AB=AC,∴2AD+AD=6cm,∴AD=2cm,∴AB=4cm,BC=13cm,∵AB+AC<BC,∴不能构成三角形,故舍去;②如图,AB+AD=15cm,BC+CD=6cm,同理得:AB=10cm,BC=1cm,∵AB+AC>BC,AB﹣AC<BC,∴能构成三角形,∴腰长为10cm,底边为1cm.故这个等腰三角形各边的长为10cm,10cm,1cm.讲解用时:3分钟解题思路:本题考查等腰三角形的性质及三角形三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这是解题的关键.教学建议:熟练掌握等腰三角形的性质以及三角形的三边关系.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题3】如图,在△ACB中,AC=BC,AD为△ACB的高线,CE为△ACB的中线.求证:∠DAB=∠ACE.【答案】∠DAB=∠ACE【解析】根据等腰三角形的性质证明即可.证明:∵AC=BC,CE为△ACB的中线,∴∠CAB=∠B,CE⊥AB,∴∠CAB+∠ACE=90°,∵AD为△ACB的高线,∴∠D=90°.∴∠DAB+∠B=90°,∴∠DAB=∠ACE.讲解用时:3分钟解题思路:此题考查等腰三角形的性质,关键是根据等腰三角形的性质解答.教学建议:熟练掌握等腰三角形“三线合一”的性质.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习3.1】如图,在△ABC中,AB=AC,AD是BC边上的中线,E是AC 边上的一点,且∠CBE=∠CAD.求证:BE⊥AC.【答案】BE⊥AC【解析】根据等腰三角形的性质得出AD⊥BC,再得出∠CBE+∠C=90°.证明:∵AB=AC,AD是BC边上的中线,∴AD⊥BC,∴∠CAD+∠C=90°,又∵∠CBE=∠CAD,∴∠CBE+∠C=90°,∴BE⊥AC.讲解用时:3分钟解题思路:本题主要考查等腰三角形的性质,掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合是解题的关键.教学建议:熟练掌握等腰三角形“三线合一”的性质.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题4】如图所示,已知△ABC中,AB=AC,∠BAD=30°,AD=AE,求∠EDC的度数.【答案】15°【解析】可以设∠EDC=x,∠B=∠C=y,根据∠ADE=∠AED=x+y,∠ADC=∠B+∠BAD即可列出方程,从而求解.解:设∠EDC=x,∠B=∠C=y,∠AED=∠EDC+∠C=x+y,又因为AD=AE,所以∠ADE=∠AED=x+y,则∠ADC=∠ADE+∠EDC=2x+y,又因为∠ADC=∠B+∠BAD,所以2x+y=y+30,解得x=15.所以∠EDC的度数是15°.讲解用时:3分钟解题思路:本题主要考查了等腰三角形的性质,等边对等角.正确确定相等关系列出方程是解题的关键.教学建议:熟练掌握等腰三角形等边对等角的性质.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习4.1】在△ABC中,AB=AC,AD⊥BC,∠BAD=40°,AD=AE,求∠CDE的度数.【答案】20°【解析】根据等腰三角形的性质得到∠CAD=∠BAD=40°,由于AD=AE,于是得到∠ADE==70°,根据三角形的内角和即可得到∠CDE=90°﹣70°=20°.解:∵AB=AC,AD⊥BC,∴∠CAD=∠BAD=40°,∠ADC=90°,又∵AD=AE,∴∠ADE==70°,∴∠CDE=90°﹣70°=20°.讲解用时:3分钟解题思路:本题考查等腰三角形的性质,三角形外角的性质,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.教学建议:熟练掌握等腰三角形“三线合一”的性质以及等边对等角的性质.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题5】如图,在△ABC中,AB=AC,D为BC上一点,∠B=30°,连接AD.(1)若∠BAD=45°,求证:△ACD为等腰三角形;(2)若△ACD为直角三角形,求∠BAD的度数.【答案】(1)△ACD为等腰三角形;(2)60°或30°【解析】(1)根据等腰三角形的性质求出∠B=∠C=30°,根据三角形内角和定理求出∠BAC=120°,求出∠CAD=∠ADC,根据等腰三角形的判定得出即可;(2)有两种情况:①当∠ADC=90°时,当∠CAD=90°时,求出即可.(1)证明:∵AB=AC,∠B=30°,∴∠B=∠C=30°,∴∠BAC=180°﹣30°﹣30°=120°,∵∠BAD=45°,∴∠CAD=∠BAC﹣∠BAD=120°﹣45°=75°,∠ADC=∠B+∠BAD=75°,∴∠ADC=∠CAD,∴AC=CD,即△ACD为等腰三角形;(2)解:有两种情况:①当∠ADC=90°时,∵∠B=30°,∴∠BAD=∠ADC﹣∠B=90°﹣30°=60°;②当∠CAD=90°时,∠BAD=∠BAC﹣∠CAD=120°﹣90°=30°;即∠BAD的度数是60°或30°.讲解用时:4分钟解题思路:本题考查了三角形内角和定理,等腰三角形的判定的应用,能根据定理求出各个角的度数是解此题的关键,用了分类讨论思想.教学建议:学会通过等角对等边证明三角形是全等三角形.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习5.1】如图,△ABC中BA=BC,点D是AB延长线上一点,DF⊥AC于F交BC于E,求证:△DBE是等腰三角形.【答案】△DBE是等腰三角形【解析】首先根据等腰三角形的两个底角相等得到∠A=∠C,再根据等角的余角相等得∠FEC=∠D,同时结合对顶角相等即可证明△DBE是等腰三角形.证明:在△ABC中,BA=BC,∵BA=BC,∴∠A=∠C,∵DF⊥AC,∴∠C+∠FEC=90°,∠A+∠D=90°,∴∠FEC=∠D,∵∠FEC=∠BED,∴∠BED=∠D,∴BD=BE,即△DBE是等腰三角形.讲解用时:3分钟解题思路:此题主要考查等腰三角形的判定和性质,关键是根据等腰三角形的基本性质及综合运用等腰三角形的性质来判定三角形是否为等腰三角形.教学建议:熟练掌握等腰三角形的判定和性质.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题6】如图:已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,垂足为M,求证:M是BE的中点.【答案】M是BE的中点【解析】要证M是BE的中点,根据题意可知,证明△BDE△为等腰三角形,利用等腰三角形的高和中线向重合即可得证.证明:连接BD,∵在等边△ABC,且D是AC的中点,∴∠DBC=∠ABC=×60°=30°,∠ACB=60°,∵CE=CD,∴∠CDE=∠E,∵∠ACB=∠CDE+∠E,∴∠E=30°,∴∠DBC=∠E=30°,∴BD=ED,△BDE为等腰三角形,又∵DM⊥BC,∴M是BE的中点.讲解用时:4分钟解题思路:本题考查了等腰三角形顶角平分线、底边上的中线和高三线合一的性质以及等边三角形每个内角为60°的知识.辅助线的作出是正确解答本题的关键.教学建议:熟练掌握等腰三角形“三线合一”的性质以及等边三角形的性质. 难度: 4 适应场景:当堂例题例题来源:无年份:2018【练习6.1】如图,等边三角形ABC中,D为AC上一点,E为AB延长线上一点,DE⊥AC交BC 于点F,且DF=EF.(1)求证:CD=BE;(2)若AB=12,试求BF的长.【答案】(1)CD=BE;(2)4【解析】(1)先作DM∥AB,交CF于M,可得△CDM为等边三角形,再判定△DMF ≌△EBF,最后根据全等三角形的性质以及等边三角形的性质,得出结论;(2)根据ED⊥AC,∠A=60°=∠ABC,可得∠E=∠BFE=∠DFM=∠FDM=30°,由此得出CM=MF=BF=BC,最后根据AB=12即可求得BF的长.解:(1)如图,作DM∥AB,交CF于M,则∠DMF=∠E,∵△ABC是等边三角形,∴∠C=60°=∠CDM=∠CMD,∴△CDM是等边三角形,∴CD=DM,在△DMF和△EBF中,,∴△DMF≌△EBF(ASA),∴DM=BE,∴CD=BE;(2)∵ED⊥AC,∠A=60°=∠ABC,∴∠E=∠BFE=∠DFM=∠FDM=30°,∴BE=BF,DM=FM,又∵△DMF≌△EBF,∴MF=BF,∴CM=MF=BF,又∵AB=BC=12,∴CM=MF=BF=4.解题思路:本题主要考查了等边三角形的性质、全等三角形的判定与性质的综合应用,解决问题的关键是作平行线,构造等边三角形和全等三角形,根据全等三角形的性质以及等边三角形的性质进行求解.教学建议:熟练掌握等边三角形的性质以及全等三角形的判定和性质.难度:4 适应场景:当堂练习例题来源:无年份:2018【例题7】如图所示,BO平分∠CBA,CO平分∠ACB,过O作EF∥BC,若AB=12,AC=8,求△AEF的周长.【答案】20【解析】根据角平分线的定义可得∠OBE=∠OBC,∠OCF=∠OCB,再根据两直线平行,内错角相等可得∠OBC=∠BOE,∠OCB=∠COF,然后求出∠OBE=∠BOE,∠OCF=∠COF,再根据等角对等边可得OE=BE,OF=CF,即可得证.解:∵BO平分∠CBA,∴∠EBO=∠OBC,∵CO平分∠ACB,∴∠FCO=∠OCB,∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∴∠EBO=∠EOB,∠FOC=∠FCO,∴BE=OE,CF=OF,∴△AEF的周长=AE+OE+OF+AF=AE+BE+CF+AF=AB+AC,∵AB=12,AC=8,∴C=12+8=20.△AEF解题思路:本题考查了等腰三角形的判定与性质,平行线的性质,主要利用了角平分线的定义,等角对等边的性质,两直线平行,内错角相等的性质,熟记各性质是解题的关键.教学建议:熟练掌握等腰三角形的判定和性质以及平行线的性质.难度:4 适应场景:当堂例题例题来源:无年份:2018【练习7.1】在△ABC中,AB=AC,DE∥BC,若M为DE上的点,且BM平分∠ABC,CM平分∠ACB,若△ADE的周长为20,BC=8,求△ABC的周长.【答案】28【解析】分别利用角平分线的性质和平行线的性质,说明DB=DM,EM=EC.把求△ABC的周长转化为△ADE的周长+BC边的长.解:∵BM平分∠ABC,∴∠ABM=∠CBM,∵DE∥BC,∴∠CBM=∠DMB,∴∠ABM=∠DMB,∴DB=DM.同理可证EM=CE∴AB+AC=AD+DB+AE+EC=AD+DM+ME+AE=AD+DE+AE∵△ADE的周长为20∴AB+AC=20∴△ABC的周长=AB+AC+BC=20+8=28.答:△ABC的周长为28.讲解用时:3分钟解题思路:此题主要考查了平行线的性质,角平分线的性质及等腰三角形的判定.本题的关键是利用平行线和角平分线的性质将△ABC的周长转化为△ADE的周长+BC边的长.教学建议:熟练掌握平行线的性质、角平分线的性质以及等腰三角形的判定. 难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题8】如图,D为等边三角形ABC内一点,将△BDC绕着点C旋转成△AEC,则△CDE是怎样的三角形?请说明理由.【答案】△CDE是等边三角形【解析】因为△ABC为等边三角形,所以△BDC绕着点C旋转60°成△AEC,则∠DCE=60°,DC=EC,故可判定△CDE是等边三角形.解:△CDE是等边三角形.理由:∵△ABC为等边三角形,∴∠ACB=60°∴将△BDC绕着点C旋转成△AEC,旋转角为60°∴∠DCE=60°∴DC=EC∴△CDE是等边三角形.讲解用时:3分钟解题思路:本题利用了等边三角形的判定和性质,旋转的性质等知识解决问题.考查学生综合运用数学知识的能力.教学建议:熟练掌握等边三角形的判定和性质,了解“手拉手”模型.难度: 4 适应场景:当堂例题例题来源:无年份:2018【练习8.1】已知,如图,△ABC是正三角形,D,E,F分别是各边上的一点,且AD=BE=CF.请你说明△DEF是正三角形.【答案】△DEF是正三角形【解析】根据等边△ABC中AD=BE=CF,证得△ADE≌△BEF≌△CFD即可得出△DEF是等边三角形.解:∵△ABC为等边三角形,且AD=BE=CF,∴AE=BF=CD,又∵∠A=∠B=∠C=60°,∴△ADE≌△BEF≌△CFD(SAS),∴DF=ED=EF,∴△DEF是等边三角形.讲解用时:3分钟解题思路:本题主要考查了等边三角形的判定与性质和全等三角形判定,根据已知得出△ADE≌△BEF≌△CFD是解答此题的关键.教学建议:熟练掌握等边三角形的判定和性质以及全等三角形的判定.难度: 4 适应场景:当堂练习例题来源:无年份:2018课后作业【作业1】如图,D,E在△ABC的边BC上,AB=AC,AD=AE,在图中找出一条与BE相等的线段,并说明理由.【答案】BE=CD【解析】根据等腰三角形的性质可得到两组角相等,再根据AAS可判定△ABE ≌△ACD,由全等三角形的性质即可证得BE=CD.解:BE=CD.理由如下:∵AB=AC,AD=AE,∴∠B=∠C,∠ADE=∠AED.在△ABE与△ACD中,,∴△ABE≌△ACD,∴BE=CD.故答案为CD.讲解用时:3分钟难度: 3 适应场景:练习题例题来源:无年份:2018【作业2】如图,已知∠BAC=60°,D是BC边上一点,AD=CD,∠ADB=80°,求∠B的度数.【答案】80°【解析】先根据三角形外角的性质求出∠C的度数,再根据三角形内角和定理即可得出∠B的度数.解:∵∠ADB=80°又∵AD=CD∴∠DAC=∠C=40°,∴∠B=180°﹣∠BAC﹣∠C=180°﹣60°﹣40°=80°.讲解用时:3分钟难度: 3 适应场景:练习题例题来源:无年份:2018【作业3】已知:如图,AB=BC,∠A=∠C.求证:AD=CD.【答案】AD=CD【解析】连接AC,根据等边对等角得到∠BAC=∠BCA,因为∠A=∠C,则可以得到∠CAD=∠ACD,根据等角对等边可得到AD=DC.证明:连接AC,∵AB=BC,∴∠BAC=∠BCA.∵∠BAD=∠BCD,∴∠CAD=∠ACD.∴AD=CD.讲解用时:3分钟难度: 3 适应场景:练习题例题来源:无年份:2018【作业4】如图,在△ABC中,∠ABC、∠ACB的平分线相交于F,过F作DE∥BC,分别交AB、AC于点D、E.判断DE=DB+EC是否成立?为什么?【答案】成立【解析】根据BF和CF分别平分∠ABC和∠ACB,和DE∥BC,利用两直线平行,内错角相等和等量代换,求证出DB=DF,FE=EC.然后即可得出答案.解:DE=DB+EC成立.理由如下:∵在△ABC中,FB和FC分别平分∠ABC和∠ACB,∴∠DBF=∠FBC,∠ECF=∠FCB,∵DE∥BC,∴∠DFB=∠FBC=∠DBF,∠EFC=∠FCB=∠ECF,∴DB=DF,FE=EC,∵DE=DF+FE,∴DE=BD+EC.讲解用时:3分钟难度:4 适应场景:练习题例题来源:无年份:2018【作业5】如图,等边△ABC中,点D在延长线上,CE平分∠ACD,且CE=BD.说明:△ADE是等边三角形.【答案】△ADE是等边三角形【解析】由条件可以容易证明△ABD≌△ACE,进一步得出AD=AE,∠BAD=∠CAE,加上∠DAE=60°,即可证明△ADE为等边三角形.证明:∵△ABC为等边三角形,∴∠B=∠ACB=60°,AB=AC,即∠ACD=120°,∵CE平分∠ACD,∴∠ACE=∠DCE=60°,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴AD=AE,∠BAD=∠CAE,又∵∠BAC=60°,∴∠DAE=60°,∴△ADE为等边三角形.讲解用时:3分钟难度: 4 适应场景:练习题例题来源:无年份:2018。

等腰三角形三线合一性质的证明

等腰三角形三线合一性质的证明
形 ∴AB=AC ∠B=∠C(等边对等角) ∵AD⊥BC ∴∠BDA=∠CDA=90° B C 在△ABD和在△ACD中 D ∠B=∠C 已知:在等腰△ABC中, ∠BDA=∠CDA AD⊥BC AB=AC 求证:点D为BC中点,AD ∴△ABD≌△ACD(AAS) 平分∠BAC ∴∠BAD=∠CAD BD=CD ∴点D为BC中点,AD平分∠BAC
证明: A ∵点D为BC中点 ∴BD=CD ∵△ABC为等腰三角形 ∴∠B=∠C(等边对等角) AB=AC B C 在△ABD和在△ACD中 D AB=AC 已知:在等腰△ABC中, ∠B=∠C BD=CD 点D为BC中点 ∴△ABD≌△ACD(SAS) 求证:AD平分∠BAC ∴∠BAD=∠CAD,∠BDA=∠CDA ,AD⊥BC ∵∠BDA+∠CDA=180° ∴∠BDA=∠CDA=90° ∴AD平分∠BAC,AD⊥BC
等腰三角形“三线合一”性质的证明
等腰三角形顶角的平分线、底边上的中线、底边上 的高互相重合(三线合一).
证明: ∵AD平分∠BAC A ∴∠1=∠2 ∵△ABC为等腰三角形 1 2 ∴∠B=∠C(等边对等角) 在△ABD和在△ACD中 B C ∠B=∠C D AB=AC ∠1=∠2 已知:在等腰△ABC ∴△ABD≌△ACD(ASA) 中,AD平分∠BAC ∴BD=CD,∠BDA=∠CDA 求证:点D为BC中点, ∵∠BDA+∠CDA=180° AD⊥BC ∴∠BDA=∠CDA=90° ∴点D为BC中点,AD⊥BC

等腰三角形三线合一典型题型

等腰三角形三线合一典型题型

专题训练等腰三角形三线合一姓名上。

在AD、∠BCD,且点EDC中,AB∥,BE、CE分别平分∠ABC例1:如图,四边形ABCD BC=AB+DC求证:。

AD边中点。

求证:CE⊥BE1,E是。

,,A=90°AB=2,BC=3CD=,∠:如图,变1AB∥CD变2:如图,四边形ABCD中,AD∥BC,E是CD上一点,且AE、BE分别平分∠BAD、∠ABC.(1)求证:AE⊥BE;(2)求证:E是CD的中点;(3)求证:AD+BC=AB.ADECBDNDM⑴若D为BC的中点,过D作,AB=AC.变3:△ABC是等腰直角三角形,∠BAC=90。

°分别交⊥=,求证:(1)DMDNMAB、AC于、N AMNCDB⊥DN分别和BA、AC延长线交于MDM、N。

问DM和DN有何数量关系。

⑵若M AC DBN(1)已知:如图,AB=AC,E为AB上一点,F是AC延长线上一点,且BE=CF,EF交BC于点D.求证:DE=DF.AEBCDFEF,且D为延长线上一点,且,EF交BC于点DACAB=AC(2)已知:如图,,E为AB上一点,F是求证:BE=CF.的中点.AECBDF利用面积法证明线段之间的和差关系1、如图,在△ABC中,AB=AC,P为底边BC上的一点,PD⊥AB于D,PE⊥AC于E,?CF ⊥相等吗?与于ABF,那么PD+PECF的关系又怎样,请你作变与CFPE点在直线BC上运动,其他条件不变,则PD 、1:若P图,证明。

FF)41、已知等腰三角形的两边长分别为、9,则它的周长为(1322 C 17或 D A 17 B 22根据等腰三角形的性质寻求规律11的大小BOC相交于点中,例1.在△ABCAB=AC,∠O,如图,∠BD2=∠ACB,1=与∠CEABC,∠22A与∠的大小有什么关系?11∠ABC,∠2=∠ACB若∠ 1=,则∠BOC与∠A大小关系如何?3311若∠1=∠ABC,∠2=∠ACB,则∠BOC与∠A大小关系如何?nn会用等腰三角形的判定和性质计算与证明两部分,15和6,一腰上的中线ABC中,AB=ACBD?将这个等腰三角形周长分成例2.如图,等腰三角形求这个三角形的腰长及底边长.利用等腰三角形的性质证线段相等例3.如图,P是等边三角形ABC内的一点,连结PA、PB、PC,?以BP为边作∠PBQ=60°,且BQ=BP,连结CQ.(1)观察并猜想AP与CQ之间的大小关系,并证明你的结论.(2)若PA:PB:PC=3:4:5,连结PQ,试判断△PQC的形状,并说明理由.例1、等腰三角形底边长为5cm,腰上的中线把三角形周长分为差是3cm的两部分,则腰长为()A、2cmB、8cmC、2cm或8cmD、不能确定例2、已知AD为△ABC的高,AB=AC,△ABC周长为20cm,△ADC的周长为14cm,求AD的长。

等腰三角形三线合一性质的证明

等腰三角形三线合一性质的证明
Байду номын сангаас
证明: A ∵△ABC为等腰三角形 ∴AB=AC ∠B=∠C(等边对等角) ∵AD⊥BC ∴∠BDA=∠CDA=90° B C 在△ABD和在△ACD中 D ∠B=∠C 已知:在等腰△ABC中, ∠BDA=∠CDA AD⊥BC AB=AC 求证:点D为BC中点,AD ∴△ABD≌△ACD(AAS) 平分∠BAC ∴∠BAD=∠CAD BD=CD ∴点D为BC中点,AD平分∠BAC
等腰三角形“三线合一”性质的证明
等腰三角形顶角的平分线、底边上的中线、底边上 的高互相重合(三线合一).
证明: ∵AD平分∠BAC A ∴∠1=∠2 ∵△ABC为等腰三角形 1 2 ∴∠B=∠C(等边对等角) 在△ABD和在△ACD中 B C ∠B=∠C D AB=AC ∠1=∠2 已知:在等腰△ABC ∴△ABD≌△ACD(ASA) 中,AD平分∠BAC ∴BD=CD,∠BDA=∠CDA 求证:点D为BC中点, ∵∠BDA+∠CDA=180° AD⊥BC ∴∠BDA=∠CDA=90° ∴点D为BC中点,AD⊥BC
证明: A ∵点D为BC中点 ∴BD=CD ∵△ABC为等腰三角形 ∴∠B=∠C(等边对等角) AB=AC B C 在△ABD和在△ACD中 D AB=AC 已知:在等腰△ABC中, ∠B=∠C BD=CD 点D为BC中点 ∴△ABD≌△ACD(SAS) 求证:AD平分∠BAC ∴∠BAD=∠CAD,∠BDA=∠CDA ,AD⊥BC ∵∠BDA+∠CDA=180° ∴∠BDA=∠CDA=90° ∴AD平分∠BAC,AD⊥BC

等腰三角形三线合一典型题型1

等腰三角形三线合一典型题型1

添加标题
解题思路:首先,由于AB=AC,所以∠B=∠C。再根据等腰三角形的性质,∠B+∠C=∠BAC。由于AD是BC上的高,所以∠ADB=∠ADC=90°。最后,利用等腰三角形的性质和角平分线的性质进行证明。
添加标题
解题过程:第一步,由题目已知,AB=AC,所以∠B=∠C。第二步,根据等腰三角形的性质,∠B+∠C=∠BAC。第三步,由于AD是BC上的高,所以∠ADB=∠ADC=90°。第四步,利用等腰三角形的性质和角平分线的性质进行证明。
证明方法:利用等腰三角形的性质和全等三角形的判定定理进行证明
典型例题:通过具体例题展示如何运用三线合一的性质解题
注意事项:强调解题时需要注意的细节和易错点
02
等腰三角形三线合一的典型例题解析
题目1解析
添加标题
题目描述:一个等腰三角形ABC,其中AB=AC,D是BC的中点,AD垂直于BC,E是AD上的一点。
等腰三角形是轴对称图形
等腰三角形高、中线、角平分线三线合一
等腰三角形两底角相等
三线合一的定义
等腰三角形的高、中线、角平分线重合
等腰三角形顶角的角平分线与底边的垂直平分线重合
等腰三角形底边的垂直平分线与顶角平分线重合
三线合一的证明方法
定义:等腰三角形三线合一是指等腰三角形的顶角平分线、底边上的中线和高线重合
结合题目给出的条件,利用三线合一的性质求解
总结解题思路,强调等腰三角形三线合一的重要性和应用
解题思路三
确定等腰三角形三线合一的条件
利用等腰三角形的性质,将问题转化为求证线段相等或垂直
结合已知条件,利用全等三角形或相似三角形的性质进行证明
总结解题思路,强调等腰三角形三线合一在解题中的应用
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等腰三角形性质:三线合一”专题
等腰三角形有一个重要的性质:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合。

这就是著名的等腰三角形“三线台一”性质。

“三线合一”性质常用来证明两线垂直、两线段相等和两角相等。

反之,如果三角形一边上的中线、这边上的高、这边所对角的角平分线中有两条重合,那么这个三角形就是等腰三角形。

【例题讲解】
例1.如图所示,在等腰△ABC中,AD是BC边上的中线,点E在AD上。

求证:BE=CE。

变式练习1-1 如图,在△ABC中,AB=AC,D是形外一点,且BD=CD。

求证:AD垂直平分BC。

变式练习1-2 已知,如图所示,AD是△ABC,DE、DF分别是△ABD和△ACD的高。

求证:AD垂直平分EF。

例二:如图△ABC中,AB=AC,∠A=36°,BD平分∠ABC,DE⊥AB于E,若CD=4,且△BDC周长为24,求AE
的长度。

A
例三. 等腰三角形顶角为α,一腰上的高与底边所夹的角是β,则β与α的关系式为β=___________。

图1
分析:如图1,AB=AC ,BD ⊥AC 于D ,作底边BC 上的高AE ,E 为垂足,则可知∠EAC=∠EAB =
1
2
α,又∠EAC C C =-=-9090°∠,∠°∠β,所以∠,EAC ==
ββα1
2。

例四. 已知:如图2,△ABC 中,AB=AC ,CE ⊥AE 于E ,CE BC =
1
2
,E 在△ABC 外,求证:∠ACE=∠B 。

图2
分析:欲证∠ACE=∠B ,由于AC=AB ,因此只需构造一个与Rt △ACE 全等的三角形,即做底边BC 上的高即可。

证明:作AD ⊥BC 于D , ∵AB=AC ,
∴BD BC =
1
2 又∵CE BC =1
2

∴BD=CE 。

在Rt △ABD 和Rt △ACE 中, AB =AC ,BD=CE ,
∴Rt △ABD ≌Rt △ACE (HL )。

∴∠ACE=∠B
例五. 已知:如图3,等边三角形ABC 中,D 为AC 边的中点,E 为BC 延长线一点,CE=CD ,DM ⊥BC 于M ,求证:M 是BE 的中点。

图3
分析:欲证M 是BE 的中点,已知DM ⊥BC ,因此只需证DB=DE ,即证∠DBE=∠E ,根据等边△ABC ,BD 是中线,可知∠DBC=30°,因此只需证∠E=30°。

证明:联结BD ,
∵△ABC 是等边三角形, ∴∠ABC=∠ACB=60° ∵CD=CE ,
∴∠CDE=∠E=30° ∵BD 是AC 边上中线,
∴BD 平分∠ABC ,即∠DBC=30° ∴∠DBE=∠E 。

∴DB=DE
又∵DM ⊥BE ,
∴DM 是BE 边上的中线,即M 是BE 的中点。

巩固练习一:
1、已知ABC ∆的周长为cm 36,且AC AB =,又BC AD ⊥,D 为垂足,ABD ∆的周长为cm 30,那么AD 的长为( )
A .cm 6 B. cm 8 C. cm 12 D. cm 20
2、如图2,在△ABC 中,AB=AC ,∠BAD=300
,AD=AE ,则∠EDC=( )
A .100 B. 12.50 C.150 D.200
3、如图,在△ABC 中,AB =AC ,D 是BC 的中点,DE ⊥AB 于E ,DF ⊥AC 于F ,则图中全等三角形共有( ) A 、 2对 B 、3对 C 、4对 D 、5对
4 、如图,在等腰直角△ABC 中,AD 为斜边上的高,以D 为端点任作两条互相垂直的射线与两腰相交于E 、F ,连
结EF 与AD 相交于G ,则∠AED 与∠AGF 的关系为( )
A .∠AED>∠AGF
B .∠AED =∠AGF
C .∠AED<∠AGF
D .不能确定
5、如图,在△ABC 中,AB=AC ,BD 平分∠ABC ,且BD=BE ,∠A=84°,则∠DEC=
6、如图,CE 平分∠ACB ,且CE ⊥BD ,DA=DB ,又知AC=18,△CDB 的周长为28,那么BE 的长为 。

D A
B C E F 第3题图 A B D
E
C 第2题图
第4题图
A D
D E
A
E
D
7、如图,在等腰△ABC 中,∠ABC=90°,D 为AC 边上中点,过D 点作DE ⊥DF ,交AB 于E ,交BC 于F ,若AE=4,FC=3,则△ABC 的面积为
8、、如图,四边形ABCD 中,对角线AC 与BD 相交于E 点,若AC 平分∠DAB ,且AB=AE ,AC=AD ,有如下四个结论: ①AC ⊥BD ;②BC=DE ;③∠DBC=
2
1
∠DAB ; ④△ABE 是等边三角形.请写出正确结论的序号 .(把你认为正确结论的序号都填上)
9、已知:如图2,△ABC 中,AB=AC ,CE ⊥AE 于E ,CE BC
1
2
,E 在△ABC 外,求证:∠ACE=∠B 。

10、如图△ABC 中,AB=AC D 为AC 上任意一点,延长BA 到E 使得AE=AD 连接DE ,求证DE ⊥BC
11、已知:如图1,△ABC中,AB=AC,D是BC上一点,E、F分别为AB、AC上的点,且BD=CF,CD=BE,G为EF的中点,求证:DG⊥EF.
E
D
C
B
A
12、如图,以△ABC 的边AB ,AC 为边分别向形外作正方形ABDE 和ACFG ,DM 、FN 分别垂直直线BC 于M 、N.若DM=FN,求证: ∠ABC=∠ACB
【巩固练习二】
1、 等腰三角形一边等于5,另一边等于8,则周长是________。

2、 在△ABC 中,已知AB =AC ,AD 是中线,∠B =70°,BC =15cm , 则∠BAC =________,∠DAC =________,BD
=________cm 。

3、 在△ABC 中,∠BAC =90°,AD ⊥BC 于D ,AB =3,AC =4,则AD =________。

4、 已知△ABC 中,∠A =n °,角平分线BE 、CF 相交于O ,则∠BOC 的度数应为( ) (A )90°-
n 21°(B )90°+ n 21°(C )180°-n °(B )180°-n 2
1
° 5、 下列两个三角形中,一定全等的是( ) (A )有一个角是40°,腰相等的两个等腰三角形 (B )两个等边三角形
(C )有一个角是100°,底相等的两个等腰三角形 (D )有一条边相等,有一个内角相等的两个等腰三角形
6、 已知:如图,△ABC 中,AB=AC 。

小强想做∠BAC 的平分线,但他没有量角器,只有刻度尺,他如何做出∠BAC
的平分线?
7、 已知:如图,B 、D 、E 、C 在同一直线上,AB=AC ,AD=AE 。

求证:BD=CE 。

N
M
G
F
E
D
C
B
A
A
C
B
D
E
8、如图,Rt△ABC中,∠ABC=90°,D是AB上一点,且BD=BC。

DE⊥AB交AC于E。

求证:CD⊥BE。

9、如图,锐角△ABC中,∠B=2∠C,AD为BC边上的高,求证:DC=AB+BD。

10、如图2,BM,CN分别是△ABC的外角∠BAD、∠ACE的平分线。

AM⊥BM,M、N为垂足。

求证:MN∥CN。

相关文档
最新文档