等腰三角形三线合一专题练习[1]
等腰三角形性质三线合一”专题

等腰三角形性质:三线合一”专题等腰三角形有一个重要的性质:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合。
这就是 著名的等腰三角形“三线台一”性质。
“三线合一”性质常用来证明两线垂直、两线段相等和两角相等。
反之, 如果三角形一边上的中线、这边上的高、这边所对角的角平分线中有两条重合, 那么这个三角形就是等腰三角形。
【例题讲解】例二:如图△ ABC 中,AB = AC, / A = 36°, BD 平分/ ABQ DE 丄 AB 于 E ,若 CD= 4,且△ BDC 周长为 24,求 AE 的长度。
变式练习1-2 已知,如图所示, 求证:AD 垂直平分EF 。
AD >△ ABC ,DE DF 分另U >△ ABDA ACD 的高。
求证:AD 垂直平分BG例三•等腰三角形顶角为 ,一腰上的高与底边所夹的角是 ,则 与 的关系式为图2分析:欲证/ ACE=/ B,由于AC=AB 因此只需构造一个与 Rt △ ACE 全等的三角形,即做底边 BC 上的高即可。
证明:作ADL BC 于D, •/ AB=AC1••• BD BC2 1又••• CE BC ,2• - BD=CE在 Rt △ ABD 和 Rt △ ACE 中,AB = AC, BD=CE• Rt △ ABD^ Rt △ ACE( HL )。
• / ACE 玄 B例五•已知:如图3,等边三角形 ABC 中,D 为AC 边的中点,E 为BC 延长线一点,CE=CD DM L BC 于M,求证: M 是BE 的中点。
分析:如图1,AB=ACEAC 90° / C ,/BD 丄AC 于D,作底边BC 上的高 AE, E 为垂足,则可知/ EAC=/ EAB - 又/2 ,90° / C ,所以例四•已知:如图2, △ ABC 中,AB=AC CE!AE 于E , CE1— 。
21 BC , E 在厶 ABC 外,求证:/ ACE / B 。
等腰三角形性质:三线合一”专题

1 / 4分析:如图1, AB 二AC, BD 丄AC 于D,作底边BC E 为垂足,则可知ZEAC=ZEAB=-a ,又Z2E4C = 90° - ZC, Zp = 90° - ZC,所以 ZEAC = p, P = *cc 。
例四.已知:如图 2, A ABC 中,AB 二 AC, CE 丄 AE 于 E, CE = - BC , E 在△/(:外,求证:ZACE 二 ZB 。
2分析:欲证ZACE=ZB,由于AC 二AB,因此只需构造一个与RtAACE 全等的三角形,即做底边BC 上的高即可。
等腰三角形性质:三线合一”专题等腰三角形有一个重要的性质:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合。
这就是 著爼的等腰三角形“三线台一”性质。
"三线合一”性质常用来证明两线垂直、两线段相等和两角相等。
反之, 如果三角形一边上的中线、这边上的高、这边所对角的角平分线中有两条重合,那么这个三角形就是等腰三角形。
【例题讲解】 例1・ 如图所示,在等腰AABC 中,AD 是BC 边上的中线,点E 在AD 上。
求证:BE=CEo 变式练习1-1如鮒 在Z\ABC 中,AB 二AC D 是形外一点 且BD 二CD 变式练习1-2已知,如图所示,AD 是△ABC, DE 、DF 分别 求证:AD 垂直平分EF 。
求证:AD 垂直平分BC 。
是Z\ABD 和ZXACD 的髙。
例二:如图ZkABC 中,AB=AG ZA=36° , BD 平分ZABC, 4,且ABDC 周长为24,求AE 的长度。
例三.等腰三角形顶角为ou —腰上的高与底边所夹的角 DE 丄AB 于E,若CD=系式为P二 是(3,则p 与a 的关上的高AE,/?2 / 4证明:作AD 丄BC 于D, VAB=AC, ••• BD = -BC2又-CE = -BC. •••BD=CE°在 RtAABD 和 RtZkACE 中,AB=AC> BD 二CE, /.RtAABD^RtAACE (HL)。
等腰三角形三线合一

1、如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC="CD."(1)求证:△BCE≌△DCF(2)若AB=17,AD=9,求AE的长.2、如图,已知AB=AC,∠A=36°,AB的中垂线MN交AC于点D,交AB于点M,求证:(1)BD平分∠ABC;(2)△BCD为等腰三角形.3、已知:如图∠BAC的角平分线与BC的垂直平分线DG交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F.⑴试说明:BE=CF;⑵若AF=3,BC=4,求△ABC的周长.4、如图,△ABC中,AC=BC,∠ACB=90°,点D为BC的中点,点E与点C关于直线AD对称,CE与AD、AB分别交于点F、G,连接BE、BF、GD求证:(1) △BEF为等腰直角三角形;(2) ∠ADC=∠BDG.5、如图,在等腰Rt△ABC中,∠C=90°,D是斜边上AB上任一点,AE⊥CD于E,BF⊥CD交CD的延长线于F,CH⊥AB于H点,交AE于G.(1)试说明AH=BH(2)求证:BD=CG.(3)探索AE与EF、BF之间的数量关系6、(本题14分)如图(1),在△ABC和△EDC中,D为△ABC边AC上一点,CA平分∠BCE,BC=CD,AC=CE.(1)求证:△ABC≌△EDC;(2)如图(2),若∠ACB=60°,连接BE交AC于F,G为边CE上一点,满足CG=CF,连接DG交BE于H.①求∠DHF的度数;②若EB平分∠DEC,试说明:BE平分∠ABC.参考答案1、(1)证明见解析(2)12、(1)证明见解析(2)证明见解析3、(1)证明详见解析;(2)10.4、(1)证明见解析;(2)证明见解析.5、(1)见解析;(2)见解析;(3)AE=EF+BF,理由见解析6、(1)略(2)①∠DHF="60°" ②略【解析】1、试题分析:(1)根据角平分线的性质可以得出CF="CE," 在证明就可以得出DF=BE;(2)先证明,就可以得出AF=AE,设DF=BE=x,就可以得出8+x=10-x,求出方程的解即可.试题解析:(1)∵AC平分∠BAD,CE⊥AB于E,CF⊥AD于F∴CE=CF,在Rt△BCE和Rt△DCF中,∵ CE=CFBC=CD,∴Rt△BCE≌Rt△DCF (HL).(2)由(1)得,Rt△BCE≌Rt△DCF∴DF=EB,设DF=EB=X由Rt△AFC≌Rt△AEC(HL)可知AF=AE 即:AD+DF=AB-BE∵AB=17,AD=9,DF=EB=x∴9+x=17-x 解得,x=4∴AE=AB-BE=17-4=1点睛:本题考查了角平分线性质,全等三角形的性质和判定的应用,注意:全等三角形的对应边相等,对应角相等.直角三角形全等的判定定理是SAS,ASA,AAS,SSS,HL.2、试题分析:(1)由AB的中垂线MN交AC于点D,交AB于M,求得△ABD是等腰三角形,即可求得∠ABD的度数,然后根据等边对等角,求得∠DBC的度数,从而得证;(2)根据(1)的结论和外角的性质,可得∠BDC=∠C,再根据等角对等边得证.试题解析:(1)∵MN为AB的中垂线,∴AD=BD,则∠A=∠ABD=36°,∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∴∠DBC=36°,因此,BD平分∠ABC;(2)由①和∠2="36°" ∠C="72°" ,∵∠BDC=180°-36°-72°=72°,∴∠C=∠ABD+∠DBC=∠BDC,∴△BCD为等腰三角形.3、试题分析:(1)连接DB、DC,根据角平分线性质和垂直平分线的性质得:DE=DF,DB=DC,证明Rt△BED≌Rt△CFD(HL),得出结论;(2)先证明△AED≌△AFD,得AF=AE=3,再将△ABC的周长进行等量代换,即△ABC 的周长=AB+AC+BC=AE+EB+AF﹣CF+BC,代入求值即可.试题解析:连接DB、DC,(1)∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∵DG垂直平分BC,∴DB=DC,在Rt△BED和Rt△CFD中,DE=DF,BD=CD,∴Rt△BED≌Rt△CFD(HL),∴BE=CF;(2)∵∠DAE=∠DAF,∠AED=∠AFD=90°,AD=AD,∴△AED≌△AFD,∴AF=AE=3,由(1)得:BE=CF,∴△ABC的周长=AB+AC+BC=AE+EB+AF﹣CF+BC=AE+AF+BC=3+3+4=10.考点:全等三角形的判定与性质;角平分线的性质;线段垂直平分线的性质.4、试题分析:(1)连接DE,根据对称轴和线段垂直平分线的性质,求出CF=EF,CD=DE,推出CD=ED=BD,根据直角三角形的判定推出△BEF是直角三角形,求出∠AFC=∠BEC=∠ACD=90°,∠CAF=∠ECB,根据全等三角形的判定定理得出△ACF≌△CBE,根据全等三角形的性质得证;(2)作∠ACB的平分线交AD于M,根据ASA推出△ACM≌△CBG得出∠ADC=∠M,CD=BM,根据SAS推出△DCM≌△DBG,求出∠M=∠BDG,即可得出答案.试题解析:(1)连接DE,∵点E、C关于AD对称,∴AD为CE的垂直平分线,∴CD=DE,∵D为CB中点,∴CD=DE=DB,∴∠DCE=∠CED,∠DEB=∠DBE,∵∠DCE+∠CED+∠DEB+∠DBE=180°,∴∠CEB=90°,∵∠ECB+∠ACF=90°,∠CAF+∠ACF=90°,∴∠ECB=∠CAF,在△ACF和△CBE中,∵∴△ACF≌△CBE(AAS),∴CF=BE,右∵CF=EF,∴EF=EB,∴△EFB为等腰直角三角形.(2)作∠ACB的平分线交AD于M,在△ACM和△CBG中,∵∴△ACM≌△CBG(ASA),∴CM=BG,在△DCM和△DBG中,∵∴△DCM≌△DBG(SAS),∴∠ADC=∠GDB.5、试题分析:(1)根据等腰三角形的三线合一证明;(2)证明△ACG≌△CBD,根据全等三角形的性质证明;(3)证明△ACE≌△CBF即可.试题解析:(1)∵AC=BC,CH⊥AB∴AH=BH(2)∵ABC为等腰直角三角形,且CH⊥AB∴∠ACG=45°∵∠CAG+∠ACE=90°,∠BCF+∠ACE=90°∴∠CAG=∠BCF在△ACG和△CBD中∴△ACG≌△CBD(ASA)∴BD=CG(3)AE=EF+BF理由如下:在△ACE和△CBF中,∴△ACE≌△CBF,∴AE=CF,CE=BF,∴AE=CF=CE+EF=BF+EF.6、(1)∵CA平分∠BCE,∴∠ACB=∠ACE.在△ABC和△EDC中∵BC=CD,∠ACB=∠ACE,AC=CE∴△ABC≌△EDC(SAS)(2)①在△BCF和△DCG中∵BC=DC,∠BCD=∠DCE,CF=CG,∴△BCF≌△DCG(SAS),∴∠CBF=∠CDG.∵∠CBF+∠BCF=∠CDG+∠DHF∴∠BCF=∠DHF=60°.②∵EB平分∠DEC,∴∠DEH=∠BEC.∵∠DHF=60°,∴∠HDE=60°-∠DEH.∵∠BCE=60°+60°=120°,∴∠CBE=180°-120°-∠BEC=60°-∠BEC.∴∠HDE=∠CBE. ∠A=∠DEG.∵△ABC≌△EDC, △BCF≌△DCG(已证)∴∠∠BFC=∠DGC,∵∠ABF=∠BFC-∠A,∠HDE=∠DGC-∠DEG,∴∠ABF=∠HDE,∴∠ABF=∠CBE,∴BE平分∠ABC.(注:文档可能无法思考全面,请浏览后下载,供参考。
(完整版)等腰三角形三线合一专题练习[1]
![(完整版)等腰三角形三线合一专题练习[1]](https://img.taocdn.com/s3/m/8aae49df844769eae109ed54.png)
等腰三角形三线合一专题训练1例1 如图,四边形ABCD中,AB // DC, BE、CE分别平分/ ABC、/ BCD,且点E在AD上。
求BC=AB+DC 。
变 1 如图,AB // CD,/ A = 90° AB = 2, BC = 3, CD = 1, E 是AD 边中点。
求证:CE丄BE。
变2:如图,四边形ABCD中,AD / BC, E是CD上一点,且AE、BE分别平分/ BAD、/ ABC.(1)求证:AE丄BE; (2)求证:E是CD的中点;(3)求证:AD+BC=AB.A n变3:\ ABC是等腰直角三角形,/ BAC=90 ,AB=AC.⑴若D为BC的中点,过D作DM丄DN分别交AB、AC 于M、N,求证:(1)DM = DN。
A⑵若DM丄DN分别和BA、AC延长线交于M、N。
问DM和DN有何数量关系。
|\/|⑴已知:如图,AB=AC , E为AB上一点,F是AC延长线上一点,且BE=CF , EF交BC于点D .求证:DE=DF .⑵已知:如图,AB=AC , E为AB上一点,F是AC延长线上一点,且,EF交BC于点D,且D为EF的中点. 求证:BE=CF .利用面积法证明线段之间的和差关系1、如图,在△ ABC中, AB=AC P为底边BC上的一点,PC L AB于D, PEL AC于E, ?CF丄AB于F,那么PD+PE与CF相等吗?变1若P点在直线BC上运动,其他条件不变,则PD、PE与CF的关系又怎样,请你作图,证明。
1、已知等腰三角形的两边长分别为4、9,则它的周长为()A 17B 22C 17 或22D 13根据等腰三角形的性质寻求规律1 1例1.在△ ABC中,AB=AC /仁一 / ABC / 2= —/ ACB BD与CE相交于点0,如图,/ B0C勺大小2 2与/A的大小有什么关系?1 1若/ 1= / ABC / 2= / ACB则/ BOC WZ A大小关系如何?3 31 1若/ 1= / ABC / 2= / ACB则/ B0C与Z A大小关系如何?n n会用等腰三角形的判定和性质计算与证明例2.如图,等腰三角形ABC中,AB=AC —腰上的中线BD?各这个等腰三角形周长分成15和6两部分,利用等腰三角形的性质证线段相等例3.如图,P是等边三角形ABC内的一点,连结PA PB PC, ?以BP为边作/ PBQ=60,且BQ=BP 连结CQ (1)观察并猜想AP与CQ之间的大小关系,并证明你的结论.2)若PA PB: PC=3: 4: 5,连结PQ试判断△ PQC的形状,并说明理由.例1、等腰三角形底边长为5cm,腰上的中线把三角形周长分为差是3cm的两部分,则腰长为()A、2cm B 、8cm C 、2cm 或8cm D 、不能确定例2、已知AD^^ ABC的高,AB=AC △ ABC周长为20cm,A ADC的周长为14cm,求AD的长。
等腰三角形三线合一练习题

等腰三角形三线合一练习题十一初中八班姓名:1、已知?ABC的周长为36cm,且AB?AC,又AD?BC,D 为垂足,?ABD的周长为30cm,那么AD的长为A.6cmB.cm C. 12cmD.0cm如图2,在△ABC中,AB=AC,∠BAD=30,AD=AE,则∠EDC= 0000A.10B.12.C.1D.20DC第3题图FDC第4题图第2题图3、如图,在△ABC中,AB=AC,D是BC的中点,DE⊥AB 于E,DF⊥AC于F,则图中全等三角形共有A、对B、3对C、4对D、5对、如图,在等腰直角△ABC中,AD为斜边上的高,以D为端点任作两条互相垂直的射线与两腰相交于E、F,连结EF与AD相交于G,则∠AED与∠AGF的关系为 A.∠AED>∠AGF B.∠AED=∠AGFC.∠AED 5、如图,在△ABC中,AB=AC,BD平分∠ABC,且BD=BE,∠A=84°,则∠DEC=6、如图,CE平分∠ACB,且CE⊥BD,DA=DB,又知AC=18,△CDB 的周长为28,那么BE的长为。
CC第5题图B第7题图 F C第6题图7、如图,在等腰△ABC中,∠ABC=90°,D为AC边上中点,过D点作DE⊥DF,交AB于E,交BC于F,若AE=4,FC=3,则△ABC的面积为、、如图,四边形ABCD中,对角线AC与BD相交于E点,若AC平分∠DAB,且AB=AE,AC=AD,有如下四个结论:①AC⊥BD;②BC=DE;③∠DBC=1∠DAB;④△ABE是等边三角形.请写出正确结论的序号.19、已知:如图2,△ABC中,AB=AC,CE⊥AE于E,CE?证:∠ACE=∠B。
10、如图△ABC中,AB=AC D为AC上任意一点,延长BA到E 使得AE=AD 连接DE,求证DE⊥BCBC,E在△ABC外,求2EADBC11、已知:如图1,△ABC中,AB=AC,D是BC上一点,E、F分别为AB、AC上的点,且BD=CF,CD=BE,G为EF的中点,求证:DG⊥EF. 12、如图,以△ABC的边AB,AC为边分别向形外作正方形ABDE和ACFG,DM、FN分别垂直直线BC于M、N.若DM=FN,求证:∠ABC=∠ACBEADGFMBCN三线合一专项练习一、选择题:1、已知?ABC的周长为36cm,且AB?AC,又AD?BC,D 为垂足,?ABD的周长为30cm,那么AD的长为A.6cmB.cm C. 12cmD.0cm2、如图2,在△ABC中,AB=AC,∠BAD=30,AD=AE,则∠EDC= A.10B.12.C.1D.20D第2题图C第3题图FDC第4题图3、如图,在△ABC中,AB=AC,D是BC的中点,DE⊥AB 于E,DF⊥AC于F,则图中全等三角形共有A、对B、3对C、4对D、5对、如图,在等腰直角△ABC中,AD为斜边上的高,以D为端点任作两条互相垂直的射线与两腰相交于E、F,连结EF与AD相交于G,则∠AED与∠AGF的关系为 A.∠AED>∠AGF B.∠AED=∠AGFC.∠AED 5、如图,在△ABC中,AB=AC,BD平分∠ABC,且BD=BE,∠A=84°,则∠DEC=6、如图,CE平分∠ACB,且CE⊥BD,DA=DB,又知AC=18,△CDB的周长为28,那么BE的长为。
等腰三角形性质_三线合一专题

等腰三角形性质:三线合一”专题等腰三角形有一个重要的性质:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合。
这就是 著名的等腰三角形“三线台一”性质。
“三线合一”性质常用来证明两线垂直、两线段相等和两角相等。
反之, 如果三角形一边上的中线、 这边上的高、这边所对角的角平分线中有两条重合, 那么这个三角形就是等腰三角形。
【例题讲解】垂直平分 BC 。
AD 是△ABC ,DE 、DF 分别是△ ABD 和△ ACD 的高。
求证: AD 垂直平分EF 。
例二:如图△ ABC 中,AB =AC ,∠A =36°,BD 平分∠ ABC , DE ⊥AB 于 E ,若 CD =4 ,且△ BDC 周长为24 ,求 AE 的长度。
例 1 . 如图所示,在等腰△ ABC 中, AD 是 BC 边上的中线,点 求证:BE=CE 。
变式练习 1-1 如图,在△ ABC 中, AB=AC ,D 是形外一点,且 BD=CD 。
求证: AD变式练习 1-2 已知,如图所示,∴ Rt △ABD ≌Rt △ACE (HL )。
∴∠ ACE= ∠B例五 . 已知:如图 3,等边三角形 ABC 中, M ,求证: M 是 BE 的中点。
图3分析:欲证 M 是 BE 的中点,已知 DM ⊥BC ,因此只需证 DB=DE ,即证∠ DBE= ∠E ,根据等边△ ABC , BD 是中线,可知∠ DBC=30 °,因此只需证∠ E=30 °。
证明:联结 BD , ∵△ ABC 是等边三角形, ∴∠ ABC= ∠ACB=60 ° ∵CD=CE ,∴∠ CDE= ∠E=30 ° ∵BD 是 AC 边上中线,∴BD 平分∠ ABC ,即∠ DBC=30 °例三 . 等腰三角形顶角为 ,一腰上的高与底边所夹的角是 的关系式为图1分析:如图 1, AB=AC ,BD ⊥ AC 于 D ,作底边 BC 上的高 AE为垂足,则可知∠ EAC= ∠ EAB1,2又∠ EAC 90 ∠C ,90° ∠C ,所以 ∠EAC例四 . 已知:如图2,△ ABC 中, AB=AC , CE ⊥AE 于E , CE BC ,E 在△ ABC 外,求证:∠ ACE= ∠B 。
等腰三角形三线合一典型题型

等腰三角形三线合一专题训练例1:如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。
求证:BC=AB+DC。
变1:如图,AB∥CD,∠A=90°,AB=2,BC=3,CD=1,E是AD边中点。
求证:CE⊥BE。
变2:如图,四边形ABCD中,AD∥BC,E是CD上一点,且AE、BE分别平分∠BAD、∠ABC.(1)求证:AE⊥BE;(2)求证:E是CD的中点;(3)求证:AD+BC=AB.CEA D变3:△ABC 是等腰直角三角形 ,∠BAC=90°,AB=AC.⑴若D 为BC 的中点,过D 作DM ⊥DN 分别交AB 、AC 于M 、N ,求证:(1)DM =DN 。
⑵若DM ⊥DN 分别和BA 、AC 延长线交于M 、N 。
问DM 和DN 有何数量关系。
(1) 已知:如图,AB=AC ,E 为AB 上一点,F 是AC 延长线上一点,且BE=CF ,EF 交BC 于点D . 求证:DE=DF .DBCF AEM N D C BA M ND CB A(2)已知:如图,AB=AC ,E 为AB 上一点,F 是AC 延长线上一点,且,EF 交BC 于点D ,且D 为EF 的中点. 求证:BE=CF .DBCF AE利用面积法证明线段之间的和差关系1、如图,在△ABC 中,AB=AC ,P 为底边BC 上的一点,PD ⊥AB 于D ,PE ⊥AC 于E ,•CF ⊥AB 于F ,那么PD+PE 与CF 相等吗?变1:若P点在直线BC上运动,其他条件不变,则PD 、PE与CF的关系又怎样,请你作图,证明。
FF1、已知等腰三角形的两边长分别为4、9,则它的周长为()A 17B 22C 17或22D 13根据等腰三角形的性质寻求规律例1.在△ABC中,AB=AC,∠1=12∠ABC,∠2=12∠ACB,BD与CE相交于点O,如图,∠BOC的大小与∠A的大小有什么关系?若∠1=13∠ABC,∠2=13∠ACB,则∠BOC与∠A大小关系如何?若∠1=1n∠ABC,∠2=1n∠ACB,则∠BOC与∠A大小关系如何?会用等腰三角形的判定和性质计算与证明例2.如图,等腰三角形ABC中,AB=AC,一腰上的中线BD•将这个等腰三角形周长分成15和6两部分,求这个三角形的腰长及底边长.利用等腰三角形的性质证线段相等例3.如图,P 是等边三角形ABC 的一点,连结PA 、PB 、PC ,•以BP 为边作∠PBQ=60°,且BQ=BP ,连结CQ .(1)观察并猜想AP 与CQ 之间的大小关系,并证明你的结论.(2)若PA :PB :PC=3:4:5,连结PQ ,试判断△PQC 的形状,并说明理由.例1、等腰三角形底边长为5cm ,腰上的中线把三角形周长分为差是3cm 的两部分,则腰长为( ) A 、2cm B 、8cm C 、2cm 或8cm D 、不能确定例2、已知AD 为△ABC 的高,AB=AC ,△ABC 周长为20cm ,△ADC 的周长为14cm ,求AD 的长。
等腰三角形三线合一的练习题

等腰三角形的三线合一的预习作业
分别作出以下三个三角形BC 边上的高,中线,角平分线。
在△ABC 中,AB=AC,请作出AC 边上的高、中线、角平分线。
课堂练习
1.等腰三角形的两底角相等(简写为“
”) 几何语言:∵
∴ 注意:前提条件是在同一个角三形中。
2.等腰三角形底边上的高、中线及顶角的平分线互相重合。
(简称为“
”) (1)∵
A B C B C A
A B C
A B C
∴
(2)∵
∴
(3)∵
∴
一.解答题(共4小题)
1.如图,在△ABC中,AB=AC,D是BC边上的中
点,∠B=30°.求∠ADC和∠BAD的度数.
2.如图,在△ABC中,AB=AC,AD是BC上边的中线,BE⊥AC于点E,求证:∠CBE=∠BAD.
3.已知:三角形ABC中,∠A=90°,AB=AC,D为BC的中点,如图,E,F分别是AB,AC上的点,且BE=AF,求证:△DEF为等腰直角三角形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等腰三角形三线合一专题训练1例1:如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。
求证:BC=AB+DC。
变1:如图,AB∥CD,∠A=90°,AB=2,BC=3,CD=1,E是AD边中点。
求证:CE⊥BE。
变2:如图,四边形ABCD中,AD∥BC,E是CD上一点,且AE、BE分别平分∠BAD、∠ABC.(1)求证:AE⊥BE;(2)求证:E是CD的中点;(3)求证:AD+BC=AB.A DE变3:△ABC 是等腰直角三角形 ,∠BAC=90°,AB=AC.⑴若D 为BC 的中点,过D 作DM ⊥DN 分别交AB 、AC 于M 、N ,求证:(1)DM =DN 。
⑵若DM ⊥DN 分别和BA 、AC 延长线交于M 、N 。
问DM 和DN 有何数量关系。
(1) 已知:如图,AB=AC ,E 为AB 上一点,F 是AC 延长线上一点,且BE=CF ,EF 交BC 于点D . 求证:DE=DF .DBCF AEM ND CB A MND CBA(2)已知:如图,AB=AC ,E 为AB 上一点,F 是AC 延长线上一点,且,EF 交BC 于点D ,且D 为EF 的中点. 求证:BE=CF .DBCF AE利用面积法证明线段之间的和差关系1、如图,在△ABC 中,AB=AC ,P 为底边BC 上的一点,PD ⊥AB 于D ,PE ⊥AC 于E ,•CF ⊥AB 于F ,那么PD+PE 与CF 相等吗?变1:若P点在直线BC上运动,其他条件不变,则PD 、PE与CF的关系又怎样,请你作图,证明。
FF1、已知等腰三角形的两边长分别为4、9,则它的周长为()A 17B 22C 17或22D 13根据等腰三角形的性质寻求规律例1.在△ABC中,AB=AC,∠1=12∠ABC,∠2=12∠ACB,BD与CE相交于点O,如图,∠BOC的大小与∠A的大小有什么关系?若∠1=13∠ABC,∠2=13∠ACB,则∠BOC与∠A大小关系如何?若∠1=1n∠ABC,∠2=1n∠ACB,则∠BOC与∠A大小关系如何?会用等腰三角形的判定和性质计算与证明例2.如图,等腰三角形ABC 中,AB=AC ,一腰上的中线BD•将这个等腰三角形周长分成15和6两部分,求这个三角形的腰长及底边长.利用等腰三角形的性质证线段相等例3.如图,P 是等边三角形ABC 内的一点,连结PA 、PB 、PC ,•以BP 为边作∠PBQ=60°,且BQ=BP ,连结CQ .(1)观察并猜想AP 与CQ 之间的大小关系,并证明你的结论.(2)若PA :PB :PC=3:4:5,连结PQ ,试判断△PQC 的形状,并说明理由.例1、等腰三角形底边长为5cm ,腰上的中线把三角形周长分为差是3cm 的两部分,则腰长为( ) A 、2cm B 、8cm C 、2cm 或8cm D 、不能确定例2、已知AD 为△ABC 的高,AB=AC ,△ABC 周长为20cm ,△ADC 的周长为14cm ,求AD 的长。
例3、如图,已知BC=3,∠ABC 和∠ACB 的平分线相交于点O ,OE ∥AB ,OF ∥AC ,求△OEF 的周长。
A B C ABFCOE例4、如图,已知等边△ABC 中,D 为AC 上中点,延长BC 到E ,使CE=CD ,连接DE ,试说明DB=DE 。
例5、等腰三角形一腰上的高与底边的夹角为450,则这个三角形是( ) A 、锐角三角形 B 、钝角三角形 C 、等边三角形 D 、等腰直角三角形例6、(1)等腰三角形的腰长为10,底边上的高为6,则底边的长为 。
(2)直角三角形的周长为12cm ,斜边的长为5cm ,则其面积为 ; (3)若直角三角形三边为1,2,c ,则c= 。
例7、下列说法:①若在△ABC 中a 2+b 2≠c 2,则△ABC 不是直角三角形;②若△ABC 是直角三角形,∠C=900,则a 2+b 2=c 2; ③若在△ABC 中,a 2+b 2=c 2,则∠C=900;④若两直角边的平方和等于斜边的平方,可以判定这个三角形是直角三角形。
正确的有 (把你认为正确的序号填在横线上)。
例8、正三角形ABC 所在平面内有一点P ,使得△PAB 、△PBC 、△PCA 都是等腰三角形,则这样的P 点有( )(A )1个(B )4个(C )7个(D )10个例9. 四边形ABCD 中,AB =BC ,∠ABC =∠CDA =90°,BE ⊥AD 于点E ,且四边形ABCD 的面积为8,则BE =( ) A .2B .3C .22D .23例10. 已知△ABC 为正三角形,P 为其内一点,且AP=4,BP=32,CP=2,则△ABC 的边长为 ( )A B C DE(A ) 52 (B )72 (C )4 (D )24 三.巩固练习1、已知等腰三角形的一边等于5,另一边等于9,求它的周长。
2、在△ABC 中,AB=AC ,∠B=400,则∠A= 。
3、等腰三角形的一个内角是700,则它的顶角为 。
4、有一个内角为40°的等腰三角形的另外两个内角的度数为 .140°呢5、如图,在Rt △ABC 中,∠C =105o,直线BD 交AC 于D ,把直角三角形沿着直线BD 翻折,点C 恰好落在斜边AB 上, 如果△ABD 是等腰三角形,那么∠A 等于 ( ) (A)40o(B) 30o(C) 25o(D )15o6、若△ABC 三边分别为a 、b 、c ,且满足a 2+b 2+c 2+50=6a+8b+10c ,则△ABC 的形状为( ) (A )等腰三角形 (B )直角三角形 (C )等腰直角三角形 (D )等边三角形 7、判定两个等腰三角形全等的条件可以是…………………… ( )。
A 、有一腰和一角对应相等B 、有两边对应相等C 、有顶角和一个底角对应相等D 、有两角对应相等8、等腰三角形一腰上的高线与底边的夹角等于( )A 、顶角B 、底角C 、顶角的一半D 、底角的一半9、在等腰三角形ABC 中,∠A 与∠B 度数之比为5∶2,则∠A 的度数是( )A 、100°B 、75°C 、150°D 、75°或100°10、如图,P 、Q 是△ABC 边BC 上的两点,且QC =AP =AQ =BP =PQ ,则∠BAC =…( )A 、1250B 、1300C 、900D 、12011、如图,△ABC 中,AB =AC ,BD 、CE 为中线,图中共有等腰三角形( )个。
A 、4个B 、6个C 、3个D 、5个12、如图,AB =AC ,AE =EC ,∠ACE =280,则∠B 的度数是…………( )A 、60B 、70C 、76D 、45013、如图是一个等边三角形木框,甲虫P 在边框AC 上(端点A 、C 除外),设甲虫P 到另外两边距离之和为d ,等边三角形ABC 的高为h , 则d 与h 的大小关系是( )Q10题图11题图12题图DCB A【解题方法指导】例1. 已知,如图,AB=AC=CD,求证:∠B=2∠DAB C D例2. 已知,如图,△ABC是等边三角形,AD//BC,AD⊥BD,BC=6,求AD的长。
D AB C【考点指要】等腰三角形、等边三角形及含30°角的直角三角形是应用非常广泛的图形,因此,在中考试题中经常以证明题或计算题频频出现,而且经常把它们结合在一道题中加以应用,虽然题目的难度不是很大,但也要善于分析,找出图形中有关的性质。
【典型例题分析】例1. (2005年苏州)如图,等腰三角形ABC的顶角为120°,腰长为10,则底边上的高AD=________。
AB CD例2. 已知,如图,△ABC中,∠C=90°,AB的垂直平分线交AB于E,交AC于D,AD=8,∠A=30°,求CD的长。
CDA BE例3. 已知,如图,△ABC是等边三角形,E是AB上一点,D是AC上一点,且AE=CD,又BD与CE交于点F,试求∠BFE的度数。
AE DFB C【综合测试】1. 已知,如图,AB=AC,∠ABD=∠ACD,求证:DB=DCAB CD2. 已知,如图,D、E是BC上两点,AB=AC,AD=AE,求证:BD=CEAB D E C3. 已知,如图,△ABC中,DE//BC,AB=AC,求证:AD=AEAD EB C4. 已知,如图,△ABC中,AB=AC,D是AB上一点,E是AC延长线上一点,DE交BC于F,又BD=CE,求证:DF=EFADB CEF5. 已知,如图,D是BC上一点,△ABC、△BDE都是等边三角形,求证:AD=CEAB D CE6. 已知,如图,△ABC中,∠B=90°,AC的垂直平分线交AC于D,交BC于E,又∠C=15°,EC=10,求AB的长。
ADB CE例6、如图11,在△ABC中,∠A=90°,AB=AC,D为BC边中点,E、F分别在AB、AC上,且DE⊥DF,求证:AE+AF是一个定值.证明:连接AD,∵AB=AC,D为BC中点,∴AD⊥BC,∵∠BAC=90°,AB=AC,∴∠B=∠C=45°,∴∠BAD=45°,∠CAD=45°,∴AD=BD=CD,图11∵∠EDF =90°,∴∠EDA +∠ADF =90°,又由AD ⊥BC 得∠BDE +∠ADE =90°,∴∠BDE =∠ADF ,在△BDE 和△ADF 中,∠B =∠DAF ,BD =AD ,∠BDE =∠ADF ,∴△BDE ≌△ADF , ∴BE =AF ,∴AE +AF =AE +BE =AB (定值). 思考:四边形AEDF 的面积是否也是定值呢?为什么?例4、如图9,已知AD 为△ABC 的高,E 为AC 上一点,BE 交AD 于F ,且有BF =AC ,FD =CD ,你认为BE 与AC 之间有怎样的位置关系?你能证明它吗? 证明:线段BE ⊥AC ,理由如下: ∵AD ⊥BC ,∴∠ADB =∠ADC =90°, ∴∠FBD +∠BFD =90°,在Rt △BDF 和Rt △ADC 中,BF =AC ,FD =CD , ∴Rt △BDF ≌Rt △ADC ,∴∠BFD =∠C ,∴∠FBD +∠C =90°,∴∠BEC =180°-(∠FBD +∠C )=180°-90°=90°,即BE ⊥AC .例5、如图10,在△ABC 中,∠ACB =90°,AC =BC ,M 是AB 上一点,求证:2222AM BM CM +=. 证明:过C 作CD ⊥AB 于点D , ∵∠ACB =90°,AC =BC ,CD ⊥AB , ∴∠A =∠B =45°,∠ACD =∠BCD =45°, ∴∠A =∠ACD ,∠B =∠BCD ,∴AD =BD ,BD =CD ,即AD =BD =CD ,∵CD ⊥AB ,∴222DM CD CM +=,∴2222222()()2()2AM BM AD DM BD DM DM CD CM +=-++=+=. 思考:请同学们试试用另外的方法来证明本题.例1、如图5,在△ABC 中,AB =AC ,点O 在△ABC 内,OB =OC ,求证:AO ⊥BC . 证明:延长AO 交BC 于点D ,∵AB =AC ,OB =OC ,OA =OA ,∴△ABO ≌△ACO ,图9BCD图10AM图5D B∴∠BAO=∠CAO,即∠BAD=∠CAD,∴AD⊥BC,即AO⊥BC.例2、如图6,在等边△ABC中,D、E分别在边BC、BA的延长线上,且AE=BD,求证:CE=DE.证明:过E作EF⊥CD于点F,∵△ABC是等边三角形,∴∠B=60°,∴∠BEF=30°,∴BE=2BF,即BA+AE=BC+BD=2BC+CD=2(BC+CF),∴CD=2CF,∴CF=DF,在△CEF和△DEF中,CF=DF,∠CFE=∠DFE=90°,EF=EF,∴△CEF≌△DEF,∴CE=DE.例3、如图7,已知在△ABC中,AB=AC,P为底边BC上任意一点,PD⊥AB于点D,PE⊥AC于点E,求证:PD+PE是一个定值.解:连接AP,过点C作CF⊥AB于点F,由12ABCS AB CF∆=⋅,12PABS AB PD∆=⋅,1122PACS AC PE AB PE∆=⋅=⋅,ABC PAB PACS S S∆∆∆=+,得:111222AB CF AB PD AB PE ⋅=⋅+⋅,即,PD PE CF+=(定值).说明:本例的结论可用文字语言叙述为:等腰三角形底边上一点到两腰的距离之和等于腰上的高.拓展:如果点P不是在边BC上,而是在BC的延长线上,其它条件保持不变,那么PD与PE之间又有怎样的关系呢?解:连接AP,过点C作CF⊥AB于点F,(如图8)由12ABCS AB CF∆=⋅,12PABS AB PD∆=⋅,1122PACS AC PE AB PE∆=⋅=⋅,ABC PAB PACS S S∆∆∆=-,得:111222AB CF AB PD AB PE⋅=⋅-⋅,图6图7P即,PD PE CF -=(定值).即,当点P 在BC 延长线上时,PD 与PE 之差为一定值.基础训练:1、填空题:(1)等腰三角形中,如果底边长为6,一腰长为8,那么周长是 。