2019届高考数学一轮复习第十章算法初步统计与统计案例考点规范练52变量间的相关关系统计案例文新人教

合集下载

2019高考数学一轮复习 第10章 概率、统计和统计案例 第5讲 变量间的相关关系与统计案例分层演练 文

2019高考数学一轮复习 第10章 概率、统计和统计案例 第5讲 变量间的相关关系与统计案例分层演练 文

第5讲 变量间的相关关系与统计案例一、选择题1.某商品的销售量y (件)与销售价格x (元/件)存在线性相关关系.根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为y ^=-5x +150,则下列结论正确的是( )A .y 与x 具有正的线性相关关系B .若r 表示y 与x 之间的线性相关系数,则r =-5C .当销售价格为10元时,销售量为100件D .当销售价格为10元时,销售量为100件左右解析:选D .由回归直线方程知,y 与x 具有负的线性相关关系,A 错,若r 表示y 与x 之间的线性相关系数,则|r |≤1,B 错.当销售价格为10元时,y ^=-5×10+150=100,即销售量为100件左右,C 错,故选D .2.(2018·湖南湘中名校联考)利用独立性检验来考虑两个分类变量X 和Y 是否有关系时,通过查阅下表来确定“X 和Y 有关系”的可信度.如果k >3.841,那么有把握认为“X 和Y 有关系”的百分比为( )C .99.5%D .95%解析:选D .由图表中数据可得,当k >3.841时,有95%的把握认为“X 和Y 有关系”,故选D .3.(2018·湖北七市(州)联考)广告投入对商品的销售额有较大影响.某电商对连续5个年度的广告费x 和销售额y 进行统计,得到统计数据如下表(单位:万元):由上表可得回归方程为y =10.2x +a ,据此模型,预测广告费为10万元时销售额约为( )A .101.2万元B .108.8万元C .111.2万元D .118.2万元解析:选C .根据统计数据表,可得x -=15×(2+3+4+5+6)=4,y -=15×(29+41+50+59+71)=50,而回归直线y ^=10.2x +a ^经过样本点的中心(4,50),所以50=10.2×4+a ^,解得a ^=9.2,所以回归方程为y ^=10.2x +9.2,所以当x =10时,y =10.2×10+9.2=111.2,故选C .4.某考察团对10个城市的职工人均工资x (千元)与居民人均消费y (千元)进行调查统计,得出y 与x 具有线性相关关系,且回归方程为y ^=0.6x +1.2.若某城市职工人均工资为5千元,估计该城市人均消费额占人均工资收入的百分比为( )A .66%B .67%C .79%D .84%解析:选D .因为y 与x 具有线性相关关系,满足回归方程y ^=0.6x +1.2,该城市居民人均工资为x =5,所以可以估计该城市的职工人均消费水平y ^=0.6×5+1.2=4.2,所以可以估计该城市人均消费额占人均工资收入的百分比为4.25=84%.二、填空题5.经调查某地若干户家庭的年收入x (万元)和年饮食支出y (万元)具有线性相关关系,并得到y 关于x 的回归直线方程:y ^=0.245x +0.321,由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加________万元.解析:x 变为x +1,y ^=0.245(x +1)+0.321=0.245x +0.321+0.245,因此家庭年收入每增加1万元,年饮食支出平均增加0.245万元.答案:0.2456.在2018年1月15日那天,某市物价部门对本市的5家商场的某商品的一天销售量及其价格进行调查,5家商场的售价x 元和销售量y 件之间的一组数据如下表所示:由散点图可知,销售量y 与价格x 之间有较强的线性相关关系,其线性回归方程是y ^=-3.2x +40,且m +n =20,则n =________.解析:x -=9+9.5+m +10.5+115=8+m 5,y -=11+n +8+6+55=6+n 5,回归直线一定经过样本中心(x -,y -),即6+n 5=-3.2⎝ ⎛⎭⎪⎫8+m 5+40,即3.2m +n =42.又因为m +n =20,即⎩⎪⎨⎪⎧3.2m +n =42,m +n =20,解得⎩⎪⎨⎪⎧m =10,n =10,故n =10.答案:10 三、解答题7.某公司的广告费支出x (单位:万元)与销售额y (单位:万元)之间有下列对应数据:(1) (2)根据表中提供的数据,求出y 与x 的回归方程y ^=b ^x +a ^; (3)预测销售额为115万元时,大约需要多少万元广告费. 解:(1)散点图如图.由图可判断:广告费与销售额具有相关关系.(2)x -=15×(2+4+5+6+8)=5,y -=15×(30+40+60+50+70)=50,∑5i =1x i y i =2×30+4×40+5×60+6×50+8×70=1 380, ∑5i =1x 2i =22+42+52+62+82=145,b ^=∑5i =1x i y i -5x -y -∑5i =1x 2i -5x -2=1 380-5×5×50145-5×52=6.5, a ^=y --b ^x -=50-6.5×5=17.5.所以线性回归方程为y ^=6.5x +17.5.(3)由题得y =115时,6.5x +17.5=115,得x =15. 故预测销售额为115万元时,大约需要15万元的广告费.8.(2018·郑州第一次质量预测)近年来郑州空气污染较为严重,现随机抽取一年(365天)内100天的空气中PM2.5指数的检测数据,统计结果如下:间[0,100]内时对企业没有造成经济损失;当x 在区间(100,300]内时对企业造成的经济损失成直线模型(当PM2.5指数为150时造成的经济损失为500元,当PM2.5指数为200时,造成的经济损失为700元);当PM2.5指数大于300时造成的经济损失为2 000元.(1)试写出S (x )的表达式;(2)试估计在本年内随机抽取一天,该天经济损失S 大于500元且不超过900元的概率; (3)若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染,完成下面列联表,并判断是否有95%的把握认为郑州市本年度空气重度污染与供暖有关?附:K 2=(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .解:(1)依题意,可得S (x )=⎩⎪⎨⎪⎧0,x ∈[0,100]4x -100,x ∈(100,300].2 000,x ∈(300,+∞)(2)设“在本年内随机抽取一天,该天经济损失S 大于500元且不超过900元”为事件A ,由500<S ≤900,得150<x ≤250,频数为39,P (A )=39100.(3)根据题中数据得到如下2×2列联表:K 2的观测值k =85×15×30×70≈4.575>3.841,所以有95%的把握认为空气重度污染与供暖有关.1.中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”.为了了解人们对“延迟退休年龄政策”的态度,责成人社部进行调研.人社部从网上年龄在15~65的人群中随机调查100人,调查数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:不同人群对“延迟退休年龄政策”的支持度有差异;(2)若以458人参加某项活动.现从这8人中随机抽取2人,求至少有1人是45岁以上的概率.参考数据:K2=(a+b)(c+d)(a+c)(b+d)解:(1)因为K2==6.25>3.841,50×50×80×20所以有95%的把握认为以45岁为分界点的不同人群对“延迟退休年龄政策”的支持度有差异.(2)从不支持“延迟退休”的人中,45岁以下应抽6人,45岁以上应抽2人. 记45岁以下的为1,2,3,4,5,6;45岁以上的为A ,B , 则有1→2,3,4,5,6,A ,B , 2→3,4,5,6,A ,B , 3→4,5,6,A ,B , 4→5,6,A ,B , 5→6,A ,B , 6→A ,B ,A →B ,故所求概率为1328.2.(2018·广东汕头模拟)二手车经销商小王对其所经营的A 型号二手汽车的使用年数x 与销售价格y (单位:万元/辆)进行整理,得到如下数据:下面是(1)由折线图可以看出,可以用线性回归模型拟合z 与x 的关系,请用相关系数加以说明;(2)求y 关于x 的回归方程,并预测某辆A 型号二手车当使用年数为9年时售价约为多少;(b ^、a ^小数点后保留两位有效数字)(3)基于成本的考虑,该型号二手车的售价不得低于7 118元,请根据(2)求出的回归方程预测在收购该型号二手车时车辆的使用年数不得超过多少年.参考公式:b ^=∑ni =1(x i -x -)(y i -y -)∑ni =1(x i -x -)2=∑ni =1x i y i -n x -y -∑ni =1x 2i -n x -2,a ^=y --b ^x -,r =∑ni =1(x i -x -)(y i -y -)∑ni =1(x i -x -)2∑ni =1(y i -y -)2参考数据:∑6i =1x i y i =187.4,∑6i =1x i z i =47.64,∑6i =1x 2i =139, ∑6i =1(x i -x -)2≈4.18, ∑6i =1(y i -y -)2≈13.96, ∑6i =1(z i -z -)2≈1.53,ln 1.46≈0.38,ln 0.711 8≈-0.34. 解:(1)由题意,知x -=16×(2+3+4+5+6+7)=4.5,z -=16×(3+2.48+2.08+1.86+1.48+1.10)=2,又∑6i =1x i z i =47.64, ∑6i =1(x i -x -)2≈4.18, ∑6i =1(z i -z -)2≈1.53, 所以r =47.64-6×4.5×24.18×1.53=- 6.366.395 4≈-0.99,所以z 与x 的相关系数大约为-0.99,说明z 与x 的线性相关程度很高. (2)b ^=47.64-6×4.5×2139-6×4.52=-6.3617.5≈-0.36, 所以a ^=z --b ^x -=2+0.36×4.5=3.62, 所以z 与x 的线性回归方程是z ^=-0.36x +3.62, 又z =ln y ,所以y 关于x 的回归方程是y ^=e -0.36x +3.62. 令x =9,得y ^=e -0.36×9+3.62=e 0.38,因为ln 1.46≈0.38,所以y ^=1.46, 即预测某辆A 型号二手车当使用年数为9年时售价约为1.46万元. (3)当y ^≥0.711 8, 即e-0.36x +3.62≥0.711 8=eln 0.711 8=e-0.34时,则有-0.36x +3.62≥-0.34, 解得x ≤11,因此,预测在收购该型号二手车时车辆的使用年数不得超过11年.。

2019届高考数学一轮复习 第10单元 算法初步、统计、统计案例听课学案 理

2019届高考数学一轮复习 第10单元 算法初步、统计、统计案例听课学案 理

第十单元算法初步、统计、统计案例第63讲算法初步课前双击巩固1.算法(1)算法通常是指按照解决某一类问题的和的步骤.(2)应用:算法通常可以编成计算机,让计算机执行并解决问题.2.程序框图定义:程序框图又称流程图,是一种用、流程线及来表示算法的图形.3.三种基本逻辑结构名称内容顺序结构条件结构循环结构定义由若干个的步骤组成,这是任何一个算法都离不开的算法的流程根据有不同的流向,条件结构就是处理这种过程的结构从某处开始,按照一定的条件某些步骤的情况,反复执行的步骤称为程序框图4.基本算法语句(1)输入语句、输出语句和赋值语句的格式与功能:语句一般格式功能输入语句INPUT“提示内容”;变量输出语句PRINT “提示内容”;表达式输出常量、变量的值和系统信息赋值语句将表达式所代表的值赋给变量(2)条件语句的格式及框图:①IF-THEN格式:图10-63-1②IF-THEN-ELSE格式:图10-63-2(3)循环语句的格式及框图:①UNTIL语句:图10-63-3②WHILE语句:图10-63-4题组一常识题1.[教材改编]执行如图10-63-5所示的程序框图,运行相应的程序,若输入x的值为2,则输出S的值为.图10-63-52.[教材改编]运行如图10-63-6所示的程序后输出的结果是3,则输入的x值是.图10-63-6题组二常错题◆索引:注意循环结构中控制循环的条件;注意区分程序框图是条件结构还是循环结构.3.若[x]表示不超过x的最大整数,执行如图10-63-7所示的程序框图,则输出S的值为.图10-63-74.操作图10-63-8中的流程图,使得当成绩不低于60分时,输出“及格”,当成绩低于60分时,输出“不及格”,则①处填,②处填.图10-63-85.更相减损术是出自中国古代数学专著《九章算术》的一种算法,其内容如下:“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也.以等数约之.”图10-63-9是关于该算法的程序框图,如果输入a= 153,b= 119,则输出的a的值是.图10-63-9课堂考点探究探究点一算法的基本结构1 (1)[2017·咸阳三模]已知如图10-63-10所示的程序框图的输入值x∈[-1,4],则输出y值的取值范围是()A.[0,2]B.[-1,2]C.[-1,15]D.[2,15]图10-63-10(2)如图10-63-11所示的程序框图的运行结果为S=20,则判断框中可以填入的关于k的条件是()图10-63-11A.k>9?B.k≤8?C.k<8?D.k>8?[总结反思] 解决程序框图问题时一定要注意以下几点:(1)不要混淆处理框和输入框;(2)注意区分程序框图是条件结构还是循环结构;(3)注意区分“当型循环结构”和“直到型循环结构”;(4)处理关于循环结构的问题时,一定要正确控制循环次数;(5)要注意各个程序框的顺序.式题 (1)[2017·雅安三诊]执行如图10-63-12所示的程序框图,为使输出的数据为31,则判断框中可以填入的条件为()A.i≤3?B.i≤4?C.i≤6?D.i≤7?图10-63-12(2)[2017·银川一中二模]执行如图10-63-13所示的程序框图,输入n=6,m=4,那么输出的p 等于()A.720B.360C.240D.120图10-63-13探究点二算法的交汇性问题考向1与统计的交汇问题2 图10-63-14(1)是某县参加2017年高考的学生身高(单位:cm)的条形统计图,将从左到右的各条形表示的学生人数依次记为A1,A2,…,A10(如A2表示身高(单位:cm)在[150,155)内的学生人数).图(2)是统计图(1)中身高在一定范围内学生人数的一个程序框图.现要统计身高在[160,180)内的学生人数,则在程序框图中的判断框内应填写()图10-63-14A.i<6?B.i<7?C.i<8?D.i<9?[总结反思] 与统计交汇的程序框图问题,多体现在将统计的图表知识(如频率分布直方图、茎叶图等)与程序框图交汇在一起,解决此类问题时应根据题意读懂统计的图表数据后,再根据程序框图的算法进行推理演算.考向2与函数的交汇问题3 [2017·四川绵阳中学三模]某市乘坐出租车的收费办法如下:图10-63-15(1)不超过3千米的里程收费10元;(2)超过3千米的里程按每千米2元收费(对于其中不足千米的部分, 若其小于0.5千米则不收费,若其大于或等于0.5千米则按1千米收费),当车程超过3千米时,另收燃油附加费1元.相应系统收费的程序框图如图10-63-15所示,其中x(单位:千米)为行驶里程,y(单位:元)为所收费用,用[x]表示不大于x的最大整数,则图中①处应填 ()A.y=2[x+0.5]+4B.y=2[x+0.5]+5C.y=2[x-0.5]+4D.y=2[x-0.5]+5[总结反思] 与函数交汇的程序框图问题,常见的有条件结构的应用、分段函数的求值问题,读图时应正确理解题意,根据相应条件选择与之对应的运算法则求值.考向3与数列求和的交汇问题4 图10-63-16图10-63-16是一个算法的程序框图,如果输入i=0,S=0,那么输出的结果为()A.B.C.D.[总结反思] 解决与数列求和交汇的程序框图问题的关键有以下两个方面:一是循环结构的识图、推理,将其输出结果呈现为一个数列求和的形式;二是结合数列求和的知识对结果进行求和运算.常见题型为等差数列、等比数列求和,裂项相消法求和以及周期分组法求和.强化演练1.【考向3】[2017·岳阳二模]执行如图10-63-17所示的程序框图,输出s的值为()图10-63-17A.1B.C.D.2.【考向2】[2017·江西八校联考]执行如图10-63-18所示的程序框图,若输出S的值为4,则判断框中填入的条件可能是()图10-63-18A.k<18?B.k<17?C.k<16?D.k<15?3.【考向3】执行如图10-63-19所示的程序框图,若输出的结果是,则输入的a为()A.6B.5C.4D.3图10-63-194.【考向2】[2017·福州一中质检]执行如图10-63-20所示的程序框图,则输出的结果是()A.1B.C.D.2图10-63-205.【考向1】图10-63-21是计算某年级500名学生期末考试成绩(满分为100分)及格率q 的程序框图,则图中处理框内应填入.图10-63-21探究点三基本算法语句5 图10-63-22为一个求50个数的平均数的程序,在横线上应填充的语句为 ()图10-63-22A.i>50B.i<50C.i>=50D.i<=50[总结反思] 应用基本算法语句的四个关注点:(1)输入、输出语句:在输入、输出语句中加提示信息时要加引号,变量之间用逗号隔开.(2)赋值语句:左、右两边不能对换,赋值号左边只能是变量.(3)条件语句:条件语句中包含其他条件语句时,要分清内外条件结构,保证结构完整性.(4)循环语句:分清“UNTIL”语句和“WHILE”语句的格式和特征,不能混用.式题 (1)当a=3时,如图10-63-23所示的程序输出的结果是()A.9B.3C.10D.6图10-63-23(2)在执行图10-63-24中的程序时,如果输入n的值为6,那么输出的结果为()A.6B.720C.120D.1图10-63-24第64讲随机抽样课前双击巩固1.简单随机抽样(1)抽取方式:逐个;(2)每个个体被抽到的概率;(3)常用方法:和.2.分层抽样(1)定义:在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.(2)分层抽样的应用范围:当总体是由组成时,往往选用分层抽样.3.系统抽样的步骤假设要从容量为N的总体中抽取容量为n的样本.(1)先将总体的N个个体;(2)确定,对编号进行,当(n是样本容量)是整数时,取k=;(3)在第1段用确定第1个个体编号l(l≤k);(4)按照一定的规则抽取样本,通常是将l加上间隔k得到第2个个体编号(l+k),再加k得到第3个个体编号,依次进行下去,直到获取整个样本.题组一常识题1.[教材改编]为了了解一批零件的长度,抽测了其中200个零件的长度,在这个抽样中,总体的一个样本是.2.[教材改编]某中学从编号为1~60的60个班级中,随机抽取6个班级进行卫生检查,所抽班级的号码是6,16,26,36,46,56,则这种抽样方法是.3.[教材改编]某学校高三年级有男同学200人,女同学300人,用分层抽样的方法抽取一个容量为50的样本,则应抽取男同学人,女同学人.4.[教材改编]总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为.7816657208026314021443199714019832049234493682003623486969387181题组二常错题◆索引:系统抽样中剔除的个体随机;分层抽样每层抽取的个数比例是相同的;简单随机抽样、系统抽样、分层抽样都是等可能抽样.5.某学校为了解高一年级1203 名学生对某项教改试验的意见,打算从中抽取一个容量为40 的样本,若采用系统抽样,则分段间隔为.6.某公司有员工500人,其中不到35岁的有125人,35~50岁的有280人,50岁以上的有95人,为了调查员工的身体健康状况,从员工中抽取了100人,则应在这三个年龄段中抽取的人数分别为.7.某校要从高一、高二、高三共2012名学生中选取50名组成志愿团,若先用简单随机抽样的方法从2012名学生中剔除12名,再从剩下的2000名学生中按分层抽样的方法抽取50名,则下面对每名学生入选的概率描述正确的是.(填序号)①都相等且为;②都相等且为;③不完全相等.课堂考点探究探究点一简单随机抽样1 (1)某班级有男生20人,女生30人,从中抽取10人组成样本,其中一次抽样结果是抽到了4名男生、6名女生, 则下列说法正确的是()A.这次抽样可能采用的是简单随机抽样B.这次抽样一定没有采用系统抽样C.这次抽样中每个女生被抽到的概率大于每个男生被抽到的概率D.这次抽样中每个女生被抽到的概率小于每个男生被抽到的概率(2)[2017·辽宁实验中学模拟]福利彩票“双色球”中红色球的号码可以从01,02,03,…,32,33这33个两位数号码中选取,小明利用下面的随机数表选取红色球的6个号码,选取方法是从第1行第9列和第10列的数字开始从左到右依次选取两个数字,则第4个被选中的红色球号码为()81 47 23 68 63 93 17 90 12 69 86 81 62 93 50 60 91 33 75 85 61 39 8506 32 35 92 46 22 54 10 02 78 49 82 18 86 70 48 05 46 88 15 19 20 49A.12B.33C.06D.16[总结反思] (1)简单随机抽样满足:①抽取的个体数有限;②逐个抽取;③不放回抽取;④等可能抽取.(2)抽签法适用于总体中个体数较少的情况,随机数表法适用于总体中个体数较多的情况.式题假设要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋牛奶进行检测,利用随机数表抽样时,先将800袋牛奶按000,001,…,799进行编号,如果从下面随机数表第2行第7列开始向右读取,那么抽取检测的第5袋牛奶的编号为.8442 1753 3157 2455 0688 7704 7447 6721 7633 5025 8392 12066301 6378 5916 9556 6719 9810 5071 7512 8673 5807 4439 52383321 1234 2978 6456 0782 5242 0744 3815 5100 1342 9966 0279探究点二系统抽样2 某学校高一、高二、高三年级学生人数分别为720,720,800,现从全校学生中随机抽取56人参加防火防灾问卷调查.先采用分层抽样方法确定各年级参加调查的人数,再在各年级内采用系统抽样方法确定参加调查的学生.若将高三年级的学生依次编号为001,002,…,800,则高三年级抽取的学生的编号不可能为()A.001,041,…,761B.031,071,…,791C.027,067,…,787D.055,095,…,795[总结反思] 解决系统抽样问题的两个关键步骤:(1)分组的方法应依据抽样比例而定,即根据定义每组抽取一个样本.(2)起始编号的确定应用简单随机抽样的方法,一旦起始编号确定,其他编号便随之确定了.式题 (1)某种饮料每箱装6瓶,库存23箱未开封的饮料,现欲对这种饮料进行质量检测,工作人员需从中随机取出10瓶,若采用系统抽样法,则要剔除的饮料的瓶数是 ()A.2B.8C.6D.4(2)[2018.长沙长郡中学月考]某中学将参加摸底测试的1200名学生编号为1,2,3, (1200)从中抽取一个容量为50的样本进行学习情况调查,按系统抽样的方法分为50组,如果第一组中抽出的学生编号为20,则第四组中抽取的学生编号为()A.68B.92C.82D.170探究点三分层抽样3 (1)某工厂生产A,B,C三种不同型号的产品,产品数量之比依次为k∶5∶3,现用分层抽样方法抽出一个容量为120的样本,已知A种型号产品共抽取了24件,则抽取的C种型号产品件数为()A.24B.30C.36D.40(2)[2017·衡水中学二模]某学校为了解学生学习的情况,采用分层抽样的方法从高一年级的2400名学生、高二年级的2000名学生、高三年级的n名学生中,抽取90人进行问卷调查.已知高一年级被抽取的学生人数为36,那么高三年级被抽取的学生人数为()A.20B.24C.30D.32[总结反思] 进行分层抽样的相关计算时,常用到的两个关系:(1)=;(2)总体中某两层的个体数之比等于样本中这两层所抽取的个体数之比.式题 (1)为了调研雄安新区的空气质量状况,某课题组对雄县、容城、安新三县空气质量进行调查,按地域特点在三县内设置空气质量观测点.已知三县内观测点的个数分别为6,y,z,依次构成等差数列,且6,y,z+6成等比数列,若采用分层抽样的方法抽取12个观测点的数据,则应从容城抽取的观测点的数据个数为()A.8B.6C.4D.2(2)[2017·乌鲁木齐模拟]某高中有学生2000人,其中高一年级有760人,若从全校学生中随机抽出1人,抽到的学生是高二年级学生的概率为0.37,现采用分层抽样(按年级分层)方法在全校抽取20人,则应在高三年级中抽取的学生人数为.第65讲用样本估计总体课前双击巩固1.作频率分布直方图的步骤(1)求极差(即一组数据中与的差);(2)决定与;(3)将数据;(4)列;(5)画.2.频率分布折线图和总体密度曲线(1)频率分布折线图:连接频率分布直方图中各小长方形上端的,就得到频率分布折线图.(2)总体密度曲线:随着样本容量的增加,作图时增加,减小,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.3.茎叶图的优点茎叶图的优点是不但可以保留所有信息,而且可以记录,这对数据的记录和表示都能带来方便.4.样本的数字特征(1)众数、中位数、平均数数字特征定义与求法优点与缺点众数一组数据中重复出现次数的数众数通常用于描述变量的值出现次数最多的数,但它对其他数据信息的忽视比较明显,使它无法客观地反映总体特征中位数把一组数据按的顺序排列,处在位置的一个数据(或两个数据的平均数)中位数等分样本数据所占频率,它不受少数几个极端值的影响,这在某些情况下是优点,但它对极端值的不敏感有时也会成为缺点平均数如果有n个数据x1,x2,…,x n,那么这n个数的平均数=平均数与每一个样本数据有关,可以反映出更多的关于样本数据全体的信息,但平均数受数据中的极端值的影响较大,使平均数在估计总体时可靠性降低(2)标准差、方差①标准差:样本数据到平均数的一种平均距离,一般用s表示,s=.②方差:标准差的平方s2.s2=[(x1-)2+(x2-)2+…+(x n-)2],其中x i(i=1,2,3,…,n)是,n是,是.题组一常识题1.[教材改编]如图10-65-1是100位居民月均用水量的频率分布直方图,则月均用水量在[2,2.5)(单位:t)范围内的居民有人.图10-65-12.[教材改编]某赛季甲、乙两名篮球运动员每场比赛得分数据用茎叶图(如图10-65-2)表示,从茎叶图的分布情况看,运动员的发挥更稳定.图10-65-23.[教材改编]某射手在一次训练中五次射击的成绩(单位:环)分别为9.4,9.4,9.4,9.6,9.7,则该射手成绩的方差是.4.[教材改编]从某项综合能力测试中抽取100人的成绩,统计如下,则这100个成绩的平均数为.分数 1 2 3 4 5人数20 10 40 10 20题组二常错题◆索引:频率分布直方图与茎叶图中识图不清致误;中位数、平均数、众数的概念混淆不清致误;方差、平均数的统计意义不清楚致误.5.如图10-65-3所示的茎叶图记录了甲、乙两组各5名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x= ,y= .图10-65-36.如图10-65-4是某学校抽取的部分学生体重的频率分布直方图,已知图中从左到右的前3个分组的频率依次成等差数列,第2个分组的频数为10,则抽取的学生人数为.图10-65-47.甲、乙、丙三个班各有20名学生,一次数学考试后,三个班学生的成绩与人数统计如下:甲班成绩分数70 80 90 100人数 5 5 5 5乙班成绩分数70 80 90 100人数 6 4 4 6丙班成绩分数70 80 90 100人数 4 6 6 4用s1,s2,s3分别表示甲、乙、丙三个班本次考试成绩的标准差,则s1,s2,s3的大小关系是.课堂考点探究探究点一频率分布直方图1 某手机厂商推出一款6寸大屏手机,现对500名该手机使用者(200名女性,300名男性)进行调查,使其对手机进行打分,得分的频数分布表如下:女性分值区间[50,60)[60,70)[70,80)[80,90) [90,100]用户频数20 40 80 50 10男性用户分值区间[50,60)[60,70)[70,80)[80,90) [90,100] 频数45 75 90 60 30(1)完成如图10-65-5所示的频率分布直方图,并比较女性用户和男性用户评分的波动大小(不计算具体值,给出结论即可);图10-65-5(2)根据评分的不同,利用分层抽样的方法从男性用户中抽取20名用户,在这20名用户中,从评分不低于80分的用户中任意抽取3名用户,求3名用户中评分小于90分的人数的分布列和数学期望.[总结反思] (1)绘制频率分布直方图时的两个注意点:①制作好频率分布表后,可以利用各组的频率之和是否为1来检验该表是否正确;②频率分布直方图的纵坐标是,而不是频率.(2)由频率分布直方图进行相关计算时,需掌握的两个关系式:①×组距=频率;②=频率,此关系式的变形为=样本容量,样本容量×频率=频数.式题 [2017·淮北二模]交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念.记交通指数为T,其范围为[0,10],分别有5个级别:T∈[0,2)畅通;T∈[2,4)基本畅通;T∈[4,6)轻度拥堵;T∈[6,8)中度拥堵;T∈[8,10]严重拥堵.一般早高峰时段T≥3,从贵阳市交通指挥中心随机选取了早高峰时段二环以内50个交通路段,依据交通指数数据绘制的频率分布直方图如图10-65-6所示.(1)据此直方图估算T∈[4,8)时交通指数的中位数和平均数.(2)据此直方图求出早高峰时段二环以内的3个路段中至少有2个严重拥堵的概率.(3)某人上班路上所用时间:畅通时为20分钟,基本畅通时为30分钟,轻度拥堵时为35分钟,中度拥堵时为45分钟,严重拥堵时为60分钟.求此人早高峰时所用时间的数学期望.图10-65-6探究点二茎叶图2 “一带一路”经济带的发展规划已经得到了越来越多相关国家的重视和参与.某市顺潮流、乘东风,闻迅而动,决定利用旅游资源优势,撸起袖子大干一场.该市相关部门为了了解游客的情况,以便制定相应的策略,在某月中随机抽取甲、乙两个景点各10天的游客数,画出茎叶图如图10-65-7所示.(1)若景点甲中的数据的中位数是125,景点乙中的数据的平均数是124,求x,y的值;(2)若将图中景点甲中的数据作为该景点较长一段时期内的样本数据,今从这段时期中任取4天,记其中游客数超过120人的天数为ξ,求P(ξ≤2);(3)现从图中共20天的数据中任取2天的数据(甲、乙两景点中各取1天),记其中游客数不低于115人且不高于125人的天数为η,求η的分布列和数学期望.图10-65-7[总结反思] 使用茎叶图时的两个注意点:(1)观察所有的样本数据,弄清图中数字的特点,注意不要漏掉数据;(2)注意不要混淆茎叶图中茎与叶的含义.式题 (1)[2017·北京海淀区一模]《中国诗词大会》是中央电视台首档全民参与的诗词节目,节目以“赏中华诗词、寻文化基因、品生活之美”为基本宗旨,力求通过对诗词知识的比拼及赏析,带动全民重温那些曾经学过的古诗词,分享诗词之美,感受诗词之趣,从古人的智慧和情怀中汲取营养,涵养心灵.如图10-65-8是2016年《中国诗词大会》节目中,七位评委为甲、乙两名选手打出的分数的茎叶图(其中m为数字0~9中的一个),去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别为a1,a2,则一定有()A.a1>a2B.a2>a1C.a1=a2D.a1,a2的大小与m的值有关图10-65-8(2)[2017·宜宾二诊]某生产车间的甲、乙两位工人生产同一种零件,这种零件的标准尺寸为85 mm,现分别从他们生产的零件中各随机抽取8件进行检测,其尺寸(单位:mm)用茎叶图表示如图10-65-9所示,则估计 ()A.甲、乙生产的零件尺寸的中位数相等B.甲、乙生产的零件质量相当C.甲生产的零件质量比乙生产的零件质量好D.乙生产的零件质量比甲生产的零件质量好图10-65-9探究点三样本数字特征3[2017·蚌埠质检]某学校高一、高二、高三三个年级共有300名教师,为了调查他们的备课时间情况,通过分层抽样获得了20名教师一周的备课时间,统计数据如下表(单位:小时):高一年级 7 7.5 8 8.5 9高二年级 7 8 9 10 11 12 13高三年级 6 6.5 7 8.5 11 13.5 17 18.5(1)试估计该校高三年级的教师人数;(2)从高一年级和高二年级抽出的教师中,各随机选取一人,高一年级选出的人记为甲,高二年级选出的人记为乙,求该周甲的备课时间不比乙的备课时间长的概率;(3)再从高一、高二、高三三个年级中各随机抽取一名教师,他们该周的备课时间分别是8,9,10(单位: 小时),这三个数据与表格中的数据构成的新样本的平均数记为,表格中数据的平均数记为,试判断与的大小(结论不要求证明).[总结反思] 利用频率分布直方图估计样本数字特征的方法:(1)中位数:在频率分布直方图中,中位数左边和右边的直方图面积相等,由此可以估计中位数.(2)平均数:平均数的估计值等于每个小矩形的面积乘矩形底边中点横坐标之和.(3)众数:最高的矩形底边中点的横坐标.式题 (1)[2017·广西贵港、玉林联考]随着人民生活水平的提高,对城市空气质量的关注度也逐渐增高,图10-65-10是某城市1月至8月的空气质量检测情况,图中一、二、三、四级是空气质量等级,一级空气质量最好,一级和二级都是质量合格空气,下面叙述不正确的是()图10-65-10A.1月至8月空气质量合格天数超过20天的月份有5个B.第二季度与第一季度相比,空气质量达标天数的比重下降了C.8月份是空气质量最好的一个月D.6月份的空气质量最差(2)[2017·佛山一模]本学期王老师任教高三(1)班、高三(2)班两个平行班,两个班都是50名学生,如图10-65-11反映的是两个班学生在本学期5次数学测试中班级平均分的对比,由图可知不正确的结论是()图10-65-11A.(1)班的数学成绩平均水平好于(2)班B.(2)班的数学成绩没有(1)班稳定C.下次考试(2)班的数学平均分要高于(1)班D.在第1次考试中,(1),(2)两个班的总平均分为98第66讲变量间的相关关系、统计案例课前双击巩固1.变量间的相关关系(1)常见的两变量之间的关系有两类:一类是函数关系;另一类是,与函数关系不同,是一种非确定性关系.(2)从散点图上看,点散布在从左下角到右上角的区域内,两个变量的这种相关关系称为,点散布在从左上角到右下角的区域内,两个变量的相关关系为.2.两个变量的线性相关(1)从散点图上看,如果这些点从整体上看大致分布在通过散点图中心的一条直线附近,称两个变量之间具有,这条直线叫作.(2)回归方程为=x+,其中=,=-.(3)通过求Q=(y i-bx i-a)2的最小值而得到回归直线的方法,即使得样本数据的点到回归直线的距离的平方和最小,这一方法叫作最小二乘法.(4)相关系数:当r>0时,表明两个变量;当r<0时,表明两个变量.r的绝对值越接近于1,表明两个变量的线性相关性越强.r的绝对值越接近于0时,表明两个变量之间.通常|r|大于时,认为两个变量有很强的线性相关性.3.独立性检验假设有两个分类变量X和Y,它们的取值分别为{x1,x2}和{y1,y2},其样本频数列联表(称为2×2列联表)为:y1y2总计x1a b a+bx2c d c+d总计a+c b+d a+b+c+dK2=(其中n=a+b+c+d为样本容量).题组一常识题1.[教材改编]下列关系中,属于相关关系的是.(填序号)①正方形的边长与面积;②农作物的产量与施肥量;③人的身高与眼睛近视的度数;④哥哥的数学成绩与弟弟的数学成绩.2.[教材改编]对变量x,y有观测数据(x i,y i)(i=1,2,…,10),得散点图如图10-66-1①;对变量u,v有观测数据(u i,v i)(i=1,2,…,10),得散点图如图②.由这两个散点图可以判断变量x 与y, u与v .(填正相关、负相关或不相关)图10-66-13.[教材改编]某医疗机构通过抽样调查(样本容量n=1000),利用2×2列联表和K2统计量研究患肺病是否与吸烟有关.计算得K2的观测值k≈4.453,经查对临界值表知P(K2≥3.841)=0.05,现给出下列四个结论,其中正确的是.(填序号)①在100个吸烟的人中约有95个人患肺病;②若某人吸烟,则他有95%的可能性患肺病;③有95%的把握认为“患肺病与吸烟有关”;④只有5%的把握认为“患肺病与吸烟有关”.4.[教材改编]对具有线性相关关系的变量x和y,测得一组数据如下表所示.x 2 4 5 6 8y30 40 60 50 70若已求得x与y之间的回归直线的斜率为6.5,则这条回归直线的方程为.题组二常错题◆索引:易混淆相关关系与函数关系;误认为样本数据必在回归直线上;利用回归方程分析问题时,所得的数据易误认为是准确值.。

[配套K12]2019届高考数学一轮复习 第十章 算法初步、统计与统计案例单元质检 文 新人教B版

[配套K12]2019届高考数学一轮复习 第十章 算法初步、统计与统计案例单元质检 文 新人教B版

单元质检十算法初步、统计与统计案例(时间:45分钟满分:100分)一、选择题(本大题共6小题,每小题7分,共42分)1.(2017江西鹰潭一模拟)如图的程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入a,b,i的值分别为6,8,0,则输出a和i的值分别为()A.2,4B.2,5C.0,4D.0,52.某大学对1 000名学生的自主招生水平测试成绩进行统计,得到样本频率分布直方图(如图),则这1 000名学生在该次自主招生水平测试中成绩不低于70分的学生数是()A.300B.400C.500D.6003.某校共有2 000名学生,各年级男、女生人数如表所示.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.18.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为()A.12B.16C.18D.244.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.根据某地某日早7点到晚8点甲、乙两个PM2.5监测点统计的数据(单位:毫克/立方米)列出的茎叶图如图所示,则甲、乙两地PM2.5的方差较小的是()A.甲B.乙C.甲、乙相等D.无法确定5.某高校进行自主招生,先从报名者中筛选出400人参加笔试,再按笔试成绩择优选出100人参加面试.现随机调查了24名笔试者的成绩,如下表所示:据此估计允许参加面试的分数线是()A.75B.80C.85D.906.由下列表格中的数据求得的线性回归方程为=0.8x-155,则实数m的值为()A.8B.8.2C.8.4D.8.5二、填空题(本大题共3小题,每小题7分,共21分)7.(2017河北衡水金卷一)在高三某次数学测试中,40名优秀学生的成绩如图所示.若将成绩由低到高编为1~40号,再用系统抽样的方法从中抽取8人,则其中成绩在区间[123,134]上的学生人数为.8.某高中1 000名学生的身高情况如下表,已知从这批学生随机抽取1名,抽到偏矮男生的概率为0.12,若用分层抽样的方法,从这批学生中随机抽取50名,偏高学生有名.9.(2017湖北武汉二月调考改编)执行如图所示的程序框图,若输出的结果为80,则判断框内应填入.三、解答题(本大题共3小题,共37分)10.(12分)从某校随机抽取200名学生,获得了他们的一周课外阅读时间(单位:小时)的数据,整理得到数据的频数分布表和频数分布直方图(如图).续表9 [16,18) 4合计200(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率;(2)求频率分布直方图中的a,b的值;(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的200名学生该周课外阅读时间的平均数在第几组.11.(12分)随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:(1)求y关于t的线性回归方程t+;(2)用所求回归方程预测该地区2018年(t=7)的人民币储蓄存款.附:回归方程t+中,.12.(13分)某中学为研究学生的身体素质与课外体育锻炼时间的关系,对该校200名学生的课外体育锻炼平均每天运动的时间(单位:分钟)进行调查,将收集到的数据分成[0,10),[10,20),[20,30),[30,40),[40,50),[50,60]六组,并作出频率分布直方图(如图).将日均课外体育锻炼时间不低于40分钟的学生评价为“课外体育达标”.(1)请根据频率分布直方图中的数据填写下面的2×2列联表,并通过计算判断是否有99%的把握认为“课外体育达标”与性别有关.(2)现从“课外体育达标”学生中按分层抽样抽取5人,再从这5名学生中随机抽取2人参加体育知识问卷调查,求抽取的这2人课外体育锻炼时间都在[40,50)内的概率.附参考公式与数据:χ2=P(χ2>k0) 0.05 0.010k03.841 6.635参考答案单元质检十算法初步、统计与统计案例1.A解析执行程序框图,可得a=6,b=8,i=0,i=1,不满足a>b,不满足a=b,b=8-6=2;i=2,满足a>b,a=6-2=4;i=3,满足a>b,a=4-2=2;i=4,不满足a>b,满足a=b,输出a的值为2,i的值为4,故选A.2.D解析依题意得,题中的1000名学生在该次自主招生水平测试中成绩不低于70分的学生数是1000×(0.035+0.015+0.010)×10=600,故选D.3.B解析由题意可得二年级的女生的人数为2000×0.18=360,则一、二年级学生总数363+387+360+390=1500,故三年级学生总数是2000-1500=500.因此,用分层抽样法在三年级抽取的学生数为64×=16.故选B.4.A解析从茎叶图上可以观察到:甲监测点的样本数据比乙监测点的样本数据更加集中,因此甲地PM2.5的方差较小.5.B解析因为参加笔试的400人中择优选出100人,所以每个人被择优选出的概率P=.因为随机调查24名笔试者,所以估计能够参加面试的人数为24×=6.观察表格可知,分数在[80,85)的有5人,分数在[85,90)的有1人,故面试的分数线大约为80分,故选B.6.A解析=200,.样本中心点为,将样本中心点代入=0.8x-155,可得m=8.故A正确.7.3解析根据茎叶图,成绩在区间[123,134]上的学生有15人,所以用系统抽样的方法从40人中抽取8人,成绩在区间[123,134]上的学生人数为8×=3.8.11解析由题意可知x=1000×0.12=120,所以y+z=220.所以偏高学生占学生总数的比例为,所以随机抽取50名学生中偏高学生有50×=11(名).9.n>7解析模拟程序的运行,可得S=0,n=1,a=3,执行循环体,S=3,a=5,不满足条件,执行循环体,n=2;S=8,a=7,不满足条件,执行循环体,n=3;S=15,a=9,不满足条件,执行循环体,n=4;S=24,a=11,不满足条件,执行循环体,n=5;S=35,a=13,不满足条件,执行循环体,n=6;S=48,a=15,不满足条件,执行循环体,n=7;S=63,a=17,不满足条件,执行循环体,n=8;S=80,a=19,由题意,此时满足条件,退出循环,输出的S结果为80,则判断框内应填入n>7.10.解(1)由频率分布表可知该周课外阅读时间不少于12小时的频数为12+4+4=20,故可估计该周课外阅读时间少于12小时的概率为1-=0.9.(2)由频率分布表可知数据在[4,6)的频数为34,故这一组的频率为0.17,即a=0.085,数据在[8,10)的频数为50,故这一组的频率为0.25,即b=0.125.(3)数据的平均数为(12×1+3×16+5×34+7×44+9×50+11×24+13×12+15×4+17×4)=7.68(小时),故样本中的200名学生该周课外阅读时间的平均数在第四组.11.解(1)列表计算如下:这里n=5,t i==3,y i==7.2.又-n=55-5×32=10,t i y i-n=120-5×3×7.2=12,从而=1.2,=7.2-1.2×3=3.6,故所求回归方程为=1.2t+3.6.(2)将t=7代入回归方程可预测该地区2018年的人民币储蓄存款为=1.2×7+3.6=12(千亿元).12.解(1)根据频率分布直方图,得“课外体育达标”的学生数为200×(0.020+0.005)×10=50.又由2×2列联表可知“课外体育达标”的男生人数为30,女生人数为20.补全2×2列联表如下:因为χ2=≈6.061<6.635,所以没有99%的把握认为“课外体育达标”与性别有关.(2)从“课外体育达标”学生中按分层抽样抽取5人,其中课外锻炼时间在[40,50)内有5×=4人,分别记为a,b,c,d;在[50,60]上有1人,记为E.从这5人中抽取2人,总的基本事件有ab,ac,ad,aE,bc,bd,bE,cd,cE,dE共10种,其中2人都在[40,50)内的基本事件有ab,ac,ad,bc,bd,cd共6种,故所求的概率为=0.6.。

2019年高考数学一轮复习 第10章 算法初步、统计与统计案例、概率、推理与证明、数系的扩充与复数的

2019年高考数学一轮复习 第10章 算法初步、统计与统计案例、概率、推理与证明、数系的扩充与复数的

2019年高考数学一轮复习 第10章 算法初步、统计与统计案例、概率、推理与证明、数系的扩充与复数的引入测试题一、填空题:请把答案直接填写在答题卡相应的位置........上(共10题,每小题6分,共计60分). 1.复数其中i 为虚数单位,则z 的实部是________▲________.【答案】5【解析】,故z 的实部是52. 把“二进制”数1011001(2)化为“五进制”数是________.【答案】324(5)【解析】1011001(2)=6543105120212121(89)(324)⨯+⨯+⨯+⨯+==3.如图是一个算法的流程图,则输出的a 的值是 ▲ .【答案】9【解析】第一次循环:,第二次循环:,此时循环结束,故答案应填:94. (推理)三段论:“①只有船准时起航,才能准时到达目的港;②这艘船是准时到达目的港;③所以这艘船是准时起航的”中的“小前提”是________.【答案】②【解析】本题中大前提是①只有船准时起航,才能准时到达目的港,小前提是②这艘船是准时到达目的港,选B.5.观察下列等式3233233323333211,123,1236,123410,,=+=++=+++=根据上述规律,第n 个等式为________. 【答案】22333(1)124n n n +++⋅⋅⋅+= 【解析】观察式子等式右边正好为等式左边各项的和的平方,所以答案为 即6. 四个小动物换座位,开始是鼠、猴、兔、猫分别坐、、、号位上(如图),第一次前后排动物互换座位,第二次左右列动物互换座位,这样交替进行下去,那么第次互换座位后,小兔坐 在第 号座位上【答案】27. 若复数2(2)(32)m m m m i-+-+是纯虚数,则实数的值为________.【答案】【解析】因为复数2(2)(32)m m m m i-+-+是纯虚数,所以且,因此注意不要忽视虚部不为零这一隐含条件.8. 已知2()(1),(1)1(),()2f xf x f x Nf x*+==∈+猜想的表达式为________.【答案】【解析】∵,,∴)(121)(22)()1(1xfxfxfxf+=+=+.∴数列是以为首项,为公差的等差数列.∴21)1(211)(1+=-+=xxxf,.9.执行如图所示的程序框图,输出的M值是________.【答案】开始M=2 i=1 i<5? i=i+1输出M 结束否是10. 给出命题:若是正常数,且,,则(当且仅当时等号成立).根据上面命题,可以得到函数()的最小值及取最小值时的值分别为________.【答案】,【解析】本题先从给出的命题中进行学习,获取一些基本的信息,进而利用这一信息进行作答.依题意可得2222923(23)()2512212212f x x x x x x x+=+=+≥=--+-,当且仅当即时等号成立. 二、解答题:解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内.....。

全国通用近年高考数学大一轮复习第十章算法初步、统计、统计案例课时达标56变量间的相关关系与统计案例

全国通用近年高考数学大一轮复习第十章算法初步、统计、统计案例课时达标56变量间的相关关系与统计案例

(全国通用版)2019版高考数学大一轮复习第十章算法初步、统计、统计案例课时达标56 变量间的相关关系与统计案例编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((全国通用版)2019版高考数学大一轮复习第十章算法初步、统计、统计案例课时达标56 变量间的相关关系与统计案例)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(全国通用版)2019版高考数学大一轮复习第十章算法初步、统计、统计案例课时达标56 变量间的相关关系与统计案例的全部内容。

课时达标第56讲变量间的相关关系与统计案例[解密考纲]本节内容在高考中,三种题型均有考查,文字量比较大,但题目较容易.一、选择题1.四名同学根据各自的样本数据研究变量x,y之间的相关关系,并求得回归直线方程,分别得到以下四个结论:①y与x负相关且错误!=2。

347x-6。

423;②y与x负相关且错误!=-3.476x+5。

648;③y与x正相关且y,^=5。

437x+8.493;④y与x正相关且错误!=-4。

326x-4.578.其中一定不正确的结论序号是( D)A.①②B.②③C.③④D.①④解析对线性回归方程错误!=错误!x+错误!,当错误!>0时,正相关,当错误!〈0时,负相关,结合选项知①④一定不正确.2.若回归直线错误!=错误!+错误!x,错误!<0,则x与y之间的相关系数r满足的条件是(D)A.r=0 B.r=1C.0<r<1 D.-1<r<0解析∵回归直线方程为错误!=错误!+错误!x,错误!<0,∴两个变量x,y之间是负相关的关系,∴相关系数是负数,∴-1<r〈0.故选D。

2019届高考数学一轮复习 第十章 算法初步、统计、统计案例 第一节 算法初步课件 理.pptx

2019届高考数学一轮复习 第十章 算法初步、统计、统计案例 第一节 算法初步课件 理.pptx
的步骤. (2)应用:算法通常可以编成计算机 程序 ,让计算机执行并解决
问题. 2.程序框图
程序框图又称流程图,是一种用程序框、流程线及文字说明 来表示算法的图形.
6
3.三种基本逻辑结构及相应语句
名称 示意图
相应语句
①输入语句:
INPUT “提示内容”;变量
顺序结构
②输出语句: PRINT “提示内容”;表达式
分清“当型”和“直到型”的格式,不能混用
24
考点二 顺序结构和条件结构 [考什么·怎么考]
顺序结构和条件结构在高考中单独命题的机会较 小,且多为选择题,难度较小,属于低档题.
25
1.执行如图所示的程序框图.若输出 y=- 3,则输入角 θ=( )
π A.6
B.-π6
π C.3
D.-π3
解析:由输出 y=- 3<0,排除 A、C,又当 θ=-π3时,输出
(2)领悟该语句的功能;
(3)根据语句的功能运行程序,解决问题.
2.算法语句应用的 4 关注
输入、输 在输入、输出语句中加提示信息时,要加引号, 出语句 变量之间用逗号隔开
赋值语句 左、右两边不能对换,赋值号左边只能是变量
条件语句
条件语句中包含多个条件语句时,要分清内外条 件结构,保证结构的完整性
循环语句
第十章
算法初步、统计、统计案例
1
第一 节
算法初步
2
课前·双基落实
知识回扣,小题热身,基稳才能楼高
课堂·考点突破
练透基点,研通难点,备考不留死角
课后·三维演练
分层训练,梯度设计,及时查漏补缺
3
课 前 双基落实
知识回扣,小题热身,基稳才能楼高

2019届高考数学一轮复习第10单元算法初步、统计、统计案例第66讲变量间的相关关系、统计案例课件理

2019届高考数学一轮复习第10单元算法初步、统计、统计案例第66讲变量间的相关关系、统计案例课件理

������ =1
∑ (������ ������ -t) ∑ (������ ������ -y)2
������ =1
为:b=������ =1 ������
∑ (������ ������ -t)(������ ������ -y)
������ =1
∑ (������ ������ -t)2
,a=y-bt.
教学参考
解:(1)记 B 表示事件“旧养殖法的箱产量低于 50 kg”,C 表示事件“新养殖法的箱产量不低于 50 kg”. 由题意知 P(A)=P(BC)=P(B)P(C). 旧养殖法的箱产量低于 50 kg 的频率为 (0.012+0.014+0.024+0.034+0.040)×5=0.62, 故 P(B)的估计值为 0.62. 新养殖法的箱产量不低于 50 kg 的频率为 (0.068+0.046+0.010+0.008)×5=0.66, 故 P(C)的估计值为 0.66. 因此,事件 A 的概率估计值为 0.62×0.66=0.409 2.
教学参考
(2)根据箱产量的频率分布直方图得列联表:
箱产量<50 kg 旧养殖法 新养殖法
2 200 × (62 × 66-34 × 38) 2 K= ≈15.705. 100× 100× 96× 104
箱产量≥50 kg 38 66
62 34
由于 15.705>6.635,故有 99%的把握认为箱产量与养殖方法有关. (3)因为新养殖法的箱产量频率分布直方图中,箱产量低于 50 kg 的直方图面积为 (0.004+0.020+0.044)×5=0.34<0.5, 箱产量低于 55 kg 的直方图面积为(0.004+0.020+0.044+0.068)×5=0.68>0.5, 故新养殖法箱产量的中位数的估计值为

2019届高考数学(文)一轮复习课件-第十章 算法初步、统计、统计案例 10.3

2019届高考数学(文)一轮复习课件-第十章 算法初步、统计、统计案例 10.3

解析:由题意知,在区间[10,50)上的数据的频数是 2+3+4+5 14 =14,故其频率为20=0.7. 答案:D
算法初步、统计、统计案例
高考数学
2.如图是某大学自主招生面试环节中,七位评委为某考生打 出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数 据的平均数和众数依次为( )
A.85,84 B.84,85 C.86,84 D.84,86
算法初步、统计、统计案例
高考数学
2.众数,中位数,平均数 (1)众数:在一组数据中,出现次数最多的数据叫做这组数据的 众数. (2)中位数:将一组数据按大小依次排列,把处在最中间位置的 一个数据(或最中间两个数据的平均数)叫做这组数据的中位数. 1 (3) 平均数:样本数据的算术平均数.即 x = n (x1 + x2 +„+ xn).在频率分布直方图中,中位数左边和右边的直方图的面积应该 相等.
解析:这组数据从小到大排列为:12,15,16,20,20,23,23,28,∴ 20+20 这组数据的中位数是 2 =20. 答案:20
算法初步、统计、统计案例
高考数学
6. (教材习题改编)某校为了了解教科研工作开展状况与教师年 龄之间的关系,将该校不小于 35 岁的 80 名教师按年龄分组,分组 区间为[35,40),[40,45),[45,50),[50,55),[55,60],由此得到频率 分布直方图如图, 则这 80 名教师中年龄小于 45 岁的有________人.
算法初步、统计、统计案例
高考数学
解析:由题意得组距为 5,故样本质量在[5,10),[10,15)内的频 率分别为 0.3 和 0.5, 所以样本质量在[15,20]内的频率为 1-0.3-0.5 =0.2,频数为 100×0.2=20,故选 B. 答案:B

2019高考数学(理)一轮复习全套学案

2019高考数学(理)一轮复习全套学案

2019高考数学(理)一轮复习全套学案目录第一章集合与常用逻辑用语第1节集合第2节命题及其关系、充分条件与必要条件第3节全称量词与存在量词、逻辑联结词“且”“或”“非”第二章函数、导数及其应用第1节函数及其表示第2节函数的单调性与最值第3节函数的奇偶性、周期性与对称性第4节二次函数与幂函数第5节指数与指数函数第6节对数与对数函数第7节函数的图像第8节函数与方程第9节函数模型及其应用第10节变化率与导数、计算导数第11节第1课时导数与函数的单调性第11节第2课时导数与函数的极值、最值学案第11节第3课时导数与函数的综合问题学案第12节定积分与微积分基本定理第三章三角函数、解三角形第1节任意角、弧度制及任意角的三角函数第2节同角三角函数的基本关系与诱导公式第3节三角函数的图像与性质第4节函数y=Asin(ωx+φ)的图像及应用学案第5节两角和与差及二倍角的三角函数第6节正弦定理和余弦定理第6节简单的三角恒等变换第7节正弦定理和余弦定理第8节解三角形实际应用举例第四章平面向量、数系的扩充与复数的引入第1节平面向量的概念及线性运算第2节平面向量的基本定理及坐标表示第3节平面向量的数量积与平面向量应用举例第4节数系的扩充与复数的引入第五章数列第1节数列的概念与简单表示法第2节等差数列及其前n项和第3节等比数列及其前n项和第4节数列求和第六章不等式、推理与证明第1节不等式的性质与一元二次不等式第2节基本不等式及其应用第3节二元一次不等式(组)与简单的线性规划问题第4节归纳与类比第5节综合法、分析法、反证法第6节数学归纳法第七章立体几何第1节简单几何体的结构及其三视图和直观图第2节空间图形的基本关系与公理第3节平行关系第4节垂直关系第5节简单几何体的表面积与体积第6节空间向量及其运算第7节第1课时利用空间向量证明平行与垂直第7节第2课时利用空间向量求空间角第八章平面解析几何第1节直线的倾斜角与斜率、直线的方程第2节两条直线的位置关系第3节圆的方程第4节直线与圆、圆与圆的位置关系第5节椭圆第6节抛物线第7节双曲线第8节曲线与方程第9节第1课时直线与圆锥曲线的位置关系第9节第2课时定点、定值、范围、最值问题第九章算法初步、统计与统计案例第1节算法与算法框图第2节随机抽样第3节统计图表、用样本估计总体学案第4节变量间的相关关系与统计案例第十章计数原理、概率、随机变量及其分布第1节分类加法计数原理与分步乘法计数原理第2节排列与组合第3节二项式定理第4节随机事件的概率学案第5节古典概型第6节几何概型第7节离散型随机变量及其分布列第8节二项分布与正态分布第9节离散型随机变量的均值与方差不等式选讲第1节绝对值不等式不等式选讲第2节不等式的证明坐标系与参数方程第1节坐标系坐标系与参数方程第2节参数方程第一节 集 合[考纲传真] 1.了解集合的含义,体会元素与集合的属于关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2.理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中,了解全集与空集的含义.3.(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.(3)能使用Venn 图表达集合间的基本关系及集合的基本运算.[基础知识填充]1.元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性. (2)元素与集合的关系是属于或不属于,表示符号分别为∈和∉. (3)集合的三种表示方法:列举法、描述法、Venn 图法. (4)常见数集的记法2.中至少有一AB3.A ∪BA ∩B∁A[(1)若有限集A 中有n 个元素,则A 的子集有2n个,真子集有2n-1个. (2)任何集合是其本身的子集,即:A ⊆A . (3)子集的传递性:A ⊆B ,B ⊆C ⇒A ⊆C . (4)A ⊆B ⇔A ∩B =A ⇔A ∪B =B .(5)∁U (A ∩B )=(∁U A )∪(∁U B ),∁U (A ∪B )=(∁U A )∩(∁U B ).[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)任何集合都有两个子集.( )(2){x |y =x 2}={y |y =x 2}={(x ,y )|y =x 2}.( ) (3)若{x 2,1}={0,1},则x =0,1.( ) (4){x |x ≤1}={t |t ≤1}.( )(5)对于任意两个集合A ,B ,关系(A ∩B )⊆(A ∪B )恒成立. (6)若A ∩B =A ∩C ,则B =C .( )[解析] (1)错误.空集只有一个子集,就是它本身,故该说法是错误的.(2)错误.三个集合分别表示函数y =x 2的定义域(-∞,+∞),值域[0,+∞),抛物线y =x 2上的点集.(3)错误.当x =1时,不满足互异性.(4)正确.两个集合均为不大于1的实数组成的集合. (5)正确.由交集、并集、子集的概念知,正确. (6)错误.当A =∅时,B ,C 可为任意集合.[答案] (1)× (2)× (3)× (4)√ (5)√ (6)×2.(教材改编)若集合A ={x ∈N |x ≤22},a =2,则下列结论正确的是( )A .{a }⊆AB .a ⊆AC .{a }∈AD .a ∉A D [由题意知A ={0,1,2},由a =2,知a ∉A .]3.若集合A ={x |-2<x <1},B ={x |x <-1或x >3},则A ∩B =( )A .{x |-2<x <-1}B .{x |-2<x <3}C .{x |-1<x <1}D .{x |1<x <3}A [∵A ={x |-2<x <1},B ={x |x <-1或x >3}, ∴A ∩B ={x |-2<x <-1}.故选A.]4.设全集U ={x |x ∈N +,x <6},集合A ={1,3},B ={3,5},则∁U (A ∪B )等于( )A .{1,4}B .{1,5}C .{2,5}D .{2,4}D [由题意得A ∪B ={1,3}∪{3,5}={1,3,5}.又U ={1,2,3,4,5},∴∁U (A ∪B )={2,4}.] 5.已知集合A ={x 2+x,4x },若0∈A ,则x =________.-1 [由题意,得⎩⎪⎨⎪⎧x 2+x =0,4x ≠0或⎩⎪⎨⎪⎧4x =0,x 2+x ≠0,解得x =-1.](第2页)(1)设集合A ={1,2,3},B ={4,5},M ={x |x =a +b ,a ∈A ,b ∈B },则M 中的元素个数为( ) A .3 B .4 C .5 D .6(2)已知a ,b ∈R ,若⎩⎨⎧⎭⎬⎫a ,b a,1={a 2,a +b,0},则a 2 019+b 2 019为( )A .1B .0C .-1D .±1(1)B (2)C [(1)因为集合M 中的元素x =a +b ,a ∈A ,b ∈B ,所以当b =4,a =1,2,3时,x =5,6,7. 当b =5,a =1,2,3时,x =6,7,8. 由集合元素的互异性,可知x =5,6,7,8. 即M ={5,6,7,8},共有4个元素. (2)由已知得a ≠0,则b a=0,所以b =0,于是a 2=1,即a =1或a =-1,又根据集合中元素的互异性可知a =1应舍去,因此a =-1,故a2 019+b2 019=(-1)2 019+02 019=-1.]确定集合中的元素是什么,即集合是数集还是点集看这些元素满足什么限制条件根据限制条件列式求参数的值或确定集合中元素的个数,要注意检验集合是否满足元素的互异性[跟踪训练A.92 B.98 C .0 D .0或98(2)已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________.【79140001】(1)D (2)-32 [(1)若集合A 中只有一个元素,则方程ax 2-3x +2=0只有一个实根或有两个相等实根.当a =0时,x =23,符合题意;当a ≠0时,由Δ=(-3)2-8a =0得a =98,所以a 的取值为0或98.(2)因为3∈A ,所以m +2=3或2m 2+m =3.当m +2=3,即m =1时,2m 2+m =3, 此时集合A 中有重复元素3, 所以m =1不符合题意,舍去;当2m 2+m =3时,解得m =-32或m =1(舍去),此时当m =-32时,m +2=12≠3符合题意.所以m =-32.](1)已知集合A ={x |y =1-x 2,x ∈R },B ={x |x =m 2,m ∈A },则( ) A .A B B .B A C .A ⊆BD .B =A(2)已知集合A ={x |(x +1)(x -3)<0},B ={x |-m <x <m }.若B ⊆A ,则m 的取值范围为________. (1)B (2)m ≤1 [(1)由题意知A ={x |-1≤x ≤1}, 所以B ={x |x =m 2,m ∈A }={x |0≤x ≤1}, 因此B A .(2)当m ≤0时,B =∅,显然B ⊆A ,当m >0时,因为A ={x |(x +1)(x -3)<0}={x |-1<x <3}. 当B ⊆A 时,有所以⎩⎪⎨⎪⎧-m ≥-1,m ≤3,-m <m .所以0<m ≤1.综上所述,m 的取值范围为m ≤1.] 化简集合,从表达式中寻找两集合的关系用列举法或图示法等表示各个集合,从元素或图形中寻找关系2.根据集合间的关系求参数的方法已知两集合间的关系求参数时,关键是将两集合间的关系转化为元素或区间端点间的关系,进而转化为参数满足的关系,解决这类问题常常要合理利用数轴、A ≠,应分[跟踪训练] (1)已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( ) A .1 B .2 C .3 D .4(2)已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,则实数m 的取值范围是________. (1)D (2)(-∞,4] [(1)由x 2-3x +2=0,得x =1或x =2,所以A ={1,2}. 由题意知B ={1,2,3,4},所以满足条件的C 可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}. (2)∵B ⊆A ,∴当B =∅时,有m +1≥2m -1,则m ≤2. 当B ≠∅时,若B ⊆A ,如图.则⎩⎪⎨⎪⎧m +1≥-2,2m -1≤7,m +1<2m -1,解得2<m ≤4.综上,m 的取值范围为m ≤4.]◎角度1 集合的运算(1)(2017·全国卷Ⅰ)已知集合A ={x |x <1},B ={x |3x<1},则( ) A .A ∩B ={x |x <0} B .A ∪B =R C .A ∪B ={x |x >1}D .A ∩B =∅(2)(2018·九江一中)设U =R ,A ={-3,-2,-1,0,1,2},B ={x |x ≥1},则A ∩(∁U B )=( ) A .{1,2}B .{-1,0,1,2}C .{-3,-2,-1,0}D .{2}(1)A (2)C [(1)∵B ={x |3x<1},∴B ={x |x <0}.又A ={x |x <1},∴A ∩B ={x |x <0},A ∪B ={x |x <1}.故选A. (2)由题意得∁U B ={x |x <1},∴A ∩(∁U B )={-3,-2,-1,0},故选C.] ◎角度2 利用集合的运算求参数(2018·合肥第二次质检)已知A =[1,+∞),B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈R ⎪⎪⎪12a ≤x ≤2a -1,若A ∩B ≠∅,则实数a 的取值范围是( )A .[1,+∞)B .⎣⎢⎡⎦⎥⎤12,1 C.⎣⎢⎡⎭⎪⎫23,+∞ D .(1,+∞)A [集合A ∩B ≠∅,则⎩⎪⎨⎪⎧12a ≤2a -1,2a -1≥1,解得a ≥1,故选A.] ◎角度3 新定义集合问题如果集合A 满足若x ∈A ,则-x ∈A ,那么就称集合A 为“对称集合”.已知集合A ={2x,0,x 2+x },且A 是对称集合,集合B 是自然数集,则A ∩B =______.{0,6} [由题意可知-2x =x 2+x ,所以x =0或x =-3.而当x =0时不符合元素的互异性,所以舍去.当x =-3时,A ={-6,0,6},所以A ∩B ={0,6}.]看元素组成,集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提看集合能否化简,集合能化简的先化简,再研究其关系并进行运算,可使问题简单明了,易于求解要借助用数轴表示,并注意端点值的取舍以集合为依托,对集合的定义、运算、性质加以创新,但最终应转化为原来的集合问题来解决[跟踪训练A .{1,-3} B .{1,0} C .{1,3}D .{1,5}(2)已知全集U =R ,集合M ={x |(x -1)(x +3)<0},N ={x ||x |≤1},则阴影部分(如图1­1­1)表示的集合是( )图1­1­1A .[-1,1)B .(-3,1]C .(-∞,-3)∪[-1,+∞)D .(-3,-1)(3)设A ,B 是非空集合,定义A ⊗B ={x |x ∈A ∪B 且x ∉A ∩B }.已知集合A ={x |0<x <2},B ={y |y ≥0},则A ⊗B =________.【79140002】(1)C (2)D (3){0}∪[2,+∞) [(1)∵A ∩B ={1}, ∴1∈B .∴1-4+m =0,即m =3. ∴B ={x |x 2-4x +3=0}={1,3}.故选C.(2)由题意可知,M=(-3,1),N=[-1,1],∴阴影部分表示的集合为M∩(∁U N)=(-3,-1).(3)由已知A={x|0<x<2},B={y|y≥0},又由新定义A⊗B={x|x∈A∪B且x∉A∩B},结合数轴得A⊗B={0}∪[2,+∞).]第二节命题及其关系、充分条件与必要条件[考纲传真] 1.理解命题的概念;了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.2.理解必要条件、充分条件与充要条件的意义.(第3页)[基础知识填充]1.四种命题及其相互关系(1)四种命题间的相互关系图1­2­1(2)四种命题的真假关系①两个命题互为逆否命题,它们有相同的真假性;②两个命题互为逆命题或互为否命题,它们的真假性没有关系.2.充分条件与必要条件(1)若p⇒q,则p是q的充分条件,q是p的必要条件;(2)若p⇒q,且⇒/p,则p是q的充分不必要条件;(3)若p⇒/q且q⇒p,则p是q的必要不充分条件;(4)若p⇔q,则p是q的充要条件;(5)若p⇒/q且q⇒/p,则p是q的既不充分也不必要条件.[知识拓展] 集合与充要条件设集合A={x|x满足条件p},B={x|x满足条件q},则有:(1)若A⊆B,则p是q的充分条件,若A B,则p是q的充分不必要条件.(2)若B⊆A,则p是q的必要条件,若B A,则p是q的必要不充分条件.(3)若A=B,则p是q的充要条件.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)“x 2+2x -3<0”是命题.( )(2)命题“若p ,则q ”的否命题是“若p ,则﹁q ”.( ) (3)四种形式的命题中,真命题的个数为0或2或4.( ) (4)当q 是p 的必要条件时,p 是q 的充分条件.( )(5)“若p 不成立,则q 不成立”等价于“若q 成立,则p 成立”.( ) [解析] (1)错误.该语句不能判断真假,故该说法是错误的. (2)错误.否命题既否定条件,又否定结论.(3)正确.因为两个命题互为逆否命题,它们有相同的真假性. (4)正确.q 是p 的必要条件说明p ⇒q ,所以p 是q 的充分条件. (5)正确.原命题与逆否命题是等价命题. [答案] (1)× (2)× (3)√ (4)√ (5)√2.(教材改编)命题“若α=π4,则tan α=1”的逆否命题是( )A .若α≠π4,则tan α≠1B .若α=π4,则tan α≠1C .若tan α≠1,则α≠π4D .若tan α≠1,则α=π4C [“若p ,则q ”的逆否命题是“若﹁q ,则﹁p ”,显然﹁q :tan α≠1,﹁p :α≠π4,所以该命题的逆否命题是“若tan α≠1,则α≠π4”.]3.“x =1”是“(x -1)(x +2)=0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件A [若x =1,则(x -1)(x +2)=0显然成立,但反之不一定成立,即若(x -1)(x +2)=0,则x =1或-2.]4.命题“若a >-3,则a >-6”以及它的逆命题、否命题、逆否命题中真命题的个数为( )A .1B .2C .3D .4B [原命题正确,从而其逆否命题也正确;其逆命题为“若a >-6,则a >-3”是假命题,从而其否命题也是假命题.因此4个命题中有2个真命题.]5.(2017·天津高考)设x ∈R ,则“2-x ≥0”是“|x -1|≤1”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 B [∵2-x ≥0,∴x ≤2. ∵|x -1|≤1,∴0≤x ≤2.∵当x ≤2时不一定有x ≥0,当0≤x ≤2时一定有x ≤2, ∴“2-x ≥0”是“|x -1|≤1”的必要而不充分条件. 故选B.](第4页)(1)命题“若a 2>b 2,则a >b ”的否命题是( ) A .若a 2>b 2,则a ≤b B .若a 2≤b 2,则a ≤b C .若a ≤b ,则a 2>b 2D .若a ≤b ,则a 2≤b 2(2)(2017·河南开封二十五中月考)下列命题中为真命题的是( ) A .命题“若x >1,则x 2>1”的否命题 B .命题“若x >y ,则x >|y |”的逆命题 C .命题“若x =1,则x 2+x -2=0”的否命题 D .命题“若1x>1,则x >1”的逆否命题(1)B (2)B [(1)根据命题的四种形式可知,命题“若p ,则q ”的否命题是“若﹁p ,则﹁q ”.该题中,p 为a 2>b 2,q 为a >b ,故﹁p 为a 2≤b 2,﹁q 为a ≤b .所以原命题的否命题为:若a 2≤b 2,则a ≤b .(2)对于A ,命题“若x >1,则x 2>1”的否命题为“若x ≤1,则x 2≤1”,易知当x =-2时,x2=4>1,故为假命题;对于B ,命题“若x >y ,则x >|y |”的逆命题为“若x >|y |,则x >y ”,分析可知为真命题;对于C ,命题“若x =1,则x 2+x -2=0”的否命题为“若x ≠1,则x 2+x -2≠0”,易知当x =-2时,x 2+x -2=0,故为假命题;对于D ,命题“若1x>1,则x >1”的逆否命题为“若x ≤1,则1x≤1”,易知为假命题,故选B.]联系已有的数学公式、定理、结论进行正面直接判断利用原命题与逆否命题,逆命题与否命题的等价关系进行判断易错警示:写一个命题的其他三种命题时,需注意:判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例[跟踪训练个等于0”,在该命题的逆命题、否命题、逆否命题中,真命题的个数为( )【79140007】A.0 B.1C.2 D.3D[原命题为真命题,逆命题为“已知a,b,c为实数,若a,b,c中至少有一个等于0,则abc=0”,也为真命题.根据命题的等价关系可知其否命题、逆否命题也是真命题,故在该命题的逆命题、否命题、逆否命题中,真命题的个数为3.](1)(2017·北京高考)设m,n为非零向量,则“存在负数λ,使得m=λn”是“m·n<0”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件(2)(2017·安徽百所重点高中二模)“a3>b3”是“ln a>ln b”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(1)A(2)B[(1)法一:由题意知|m|≠0,|n|≠0.设m与n的夹角为θ.若存在负数λ,使得m=λn,则m与n反向共线,θ=180°,∴m·n=|m||n|cos θ=-|m||n|<0.当90°<θ<180°时,m·n<0,此时不存在负数λ,使得m=λn.故“存在负数λ,使得m=λn”是“m·n<0”的充分而不必要条件.故选A.法二:∵m=λn,∴m·n=λn·n=λ|n|2.∴当λ<0,n≠0时,m·n<0.反之,由m ·n =|m ||n |cos 〈m ,n 〉<0⇔cos 〈m ,n 〉<0⇔〈m ,n 〉∈⎝ ⎛⎦⎥⎤π2,π, 当〈m ,n 〉∈⎝⎛⎭⎪⎫π2,π时,m ,n 不共线.故“存在负数λ,使得m =λn ”是“m ·n <0”的充分而不必要条件. 故选A.(2)由a 3>b 3可得a >b ,当a <0,b <0时,ln a ,ln b 无意义;反之,由ln a >ln b 可得a >b ,故a 3>b 3.因此“a 3>b 3”是“ln a >ln b ”的必要不充分条件.]定义法:根据集合法:根据断问题.等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断,适用于条件和结论带有否定性词语的命题[跟踪训练] (1)(2017·天津高考)设θ∈R ,则“⎪⎪⎪⎪⎪⎪θ-12<12”是“sin θ<2”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件(2)(2018·合肥第一次质检)祖暅原理:“幂势既同,则积不容异”.它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如在等高处的截面积恒相等,则体积相等.设A ,B 为两个同高的几何体,p :A ,B 的体积不相等,q :A ,B 在等高处的截面积不恒相等,根据祖暅原理可知,p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(1)A (2)A [(1)∵⎪⎪⎪⎪⎪⎪θ-π12<π12,∴-π12<θ-π12<π12,即0<θ<π6.显然0<θ<π6时,sin θ<12成立.但sin θ<12时,由周期函数的性质知0<θ<π6不一定成立.故0<θ<π6是sin θ<12的充分而不必要条件.故选A.(2)由祖暅原理可得﹁q ⇒﹁p ,即p ⇒q ,则充分性成立;反之不成立,如将同一个圆锥正放和倒放,在等高处的截面积不恒相等,但体积相等,∴p 是q 的充分不必要条件,故选A.]m 的取值范围为________.[0,3] [由x 2-8x -20≤0得-2≤x ≤10, ∴P ={x |-2≤x ≤10},由x ∈P 是x ∈S 的必要条件,知S ⊆P . 则⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≥-2,1+m ≤10,∴0≤m ≤3.即所求m 的取值范围是[0,3].]1.把本例中的“必要条件”改为“充分条件”,求m 的取值范围.[解] 由x ∈P 是x ∈S 的充分条件,知P ⊆S ,则⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≤-2,1+m ≥10,解得m ≥9,即所求m 的取值范围是[9,+∞).2.本例条件不变,问是否存在实数m ,使x ∈P 是x ∈S 的充要条件?并说明理由.[解] 不存在.理由:若x ∈P 是x ∈S 的充要条件,则P =S ,∴⎩⎪⎨⎪⎧1-m =-2,1+m =10,∴⎩⎪⎨⎪⎧m =3,m =9,无解,∴不存在实数m ,使x ∈P 是x ∈S 的充要条件. 组求解易错警示:求解参数的取值范围时,一定要注意区间端点值的检验,尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象[跟踪训练] (1)已知p :x ≥k ,q :x +1<1,如果p 是q 的充分不必要条件,则实数k 的取值范围是( ) A .[2,+∞) B .(2,+∞) C .[1,+∞)D .(-∞,-1)(2)已知条件p :2x 2-3x +1≤0,条件q :a ≤x ≤a +1.若﹁p 是﹁q 的必要不充分条件,则实数a 的取值范围是________.【79140008】(1)B (2)⎣⎢⎡⎦⎥⎤0,12 [(1)∵3x +1<1,∴3x +1-1=2-x x +1<0,即(x -2)(x +1)>0,∴x >2或x <-1, ∵p 是q 的充分不必要条件,∴k >2.(2)命题p 为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12≤x ≤1, 命题q 为{x |a ≤x ≤a +1}.﹁p 对应的集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >1或x <12, ﹁q 对应的集合B ={}x |x >a +1或x <a .∵﹁p 是﹁q 的必要不充分条件,∴⎩⎪⎨⎪⎧a +1>1,a ≤12或⎩⎪⎨⎪⎧a +1≥1,a <12,∴0≤a ≤12.]第三节 全称量词与存在量词、逻辑联结词“且”“或”“非”[考纲传真] 1.了解逻辑联结词“且”“或”“非”的含义.2.理解全称量词与存在量词的意义.3.能正确地对含有一个量词的命题进行否定.(第5页) [基础知识填充]1.简单的逻辑联结词(1)命题中的“且”“或”“非”叫作逻辑联结词. (2)命题p 且q ,p 或q ,﹁p 的真假判断2.(1)常见的全称量词有:“任意一个”“一切”“每一个”“任给”“所有的”等.(2)常见的存在量词有:“存在一个”“至少有一个”“有些”“有一个”“某个”“有的”等.3.全称命题与特称命题(1)含有全称量词的命题叫全称命题. (2)含有存在量词的命题叫特称命题.4.命题的否定(1)全称命题的否定是特称命题;特称命题的否定是全称命题. (2)p 或q 的否定为:﹁p 且﹁q ;p 且q 的否定为:﹁p 或﹁q .[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)命题“5>6或5>2”是假命题.( )(2)命题﹁(p 且q )是假命题,则命题p ,q 中至少有一个是假命题.( ) (3)“长方形的对角线相等”是特称命题.( )(4)命题“对顶角相等”的否定是“对顶角不相等”.( ) [解析] (1)错误.命题p 或q 中,p ,q 有一真则真. (2)错误.p 且q 是真命题,则p ,q 都是真命题.(3)错误.命题“长方形的对角线相等”可叙述为“所有长方形的对角线相等”,是全称命题. (4)错误.“对顶角相等”是全称命题,其否定为“有些对顶角不相等”. [答案] (1)× (2)× (3)× (4)×2.(教材改编)已知p :2是偶数,q :2是质数,则命题﹁p ,﹁q ,p 或q ,p 且q 中真命题的个数为( )A .1B .2C .3D .4B [p 和q 显然都是真命题,所以﹁p ,﹁q 都是假命题,p 或q ,p 且q 都是真命题.] 3.下列四个命题中的真命题为( )A .存在x 0∈Z,1<4x 0<3B .存在x 0∈Z,5x 0+1=0C .任意x ∈R ,x 2-1=0 D .任意x ∈R ,x 2+x +2>0D [选项A 中,14<x 0<34且x 0∈Z ,不成立;选项B 中,x 0=-15,与x 0∈Z 矛盾;选项C 中,x ≠±1时,x 2-1≠0;选项D 正确.]4.命题:“存在x 0∈R ,x 20-ax 0+1<0”的否定为________.任意x ∈R ,x 2-ax +1≥0 [因为特称命题的否定是全称命题,所以命题“存在x 0∈R ,x 20-ax 0+1<0”的否定是“任意x ∈R ,x 2-ax +1≥0”.]5.若命题“任意x ∈R ,ax 2-ax -2≤0”是真命题,则实数a 的取值范围是________.[-8,0] [当a =0时,不等式显然成立.当a ≠0时,依题意知⎩⎪⎨⎪⎧a <0,Δ=a 2+8a ≤0,解得-8≤a <0.综上可知-8≤a≤0.](第6页)(1)(2018·东北三省四市模拟(一))已知命题p:函数y=lg(1-x)在(-∞,1)上单调递减,命题q:函数y=2cos x是偶函数,则下列命题中为真命题的是( )A.p且q B.(﹁p)或(﹁q)C.(﹁p)且q D.p且(﹁q)(2)若命题“p或q”是真命题,“﹁p为真命题”,则( )A.p真,q真B.p假,q真C.p真,q假D.p假,q假(1)A(2)B[(1)命题p中,因为函数u=1-x在(-∞,1)上为减函数,所以函数y=lg(1-x)在(-∞,1)上为减函数,所以p是真命题;命题q中,设f(x)=2cos x,则f(-x)=2cos(-x)=2cos x=f(x),x∈R,所以函数y=2cos x是偶函数,所以q是真命题,所以p且q是真命题,故选A.(2)因为﹁p为真命题,所以p为假命题,又因为p或q为真命题,所以q为真命题.]确定命题的构成形式;判断依据“或”——一真即真,p”等形式命题的真假是y=|tan x| [跟踪训练] (2018·呼和浩特一调)命题p:x=2π是函数y=|sin x|的一条对称轴,q:2的最小正周期,下列命题①p或q;②p且q;③p;④﹁q,其中真命题有( )【79140013】A.1个B.2个C.3个D.4个C[由已知得命题p为真命题,命题q为假命题,所以p或q为真命题,p且q为假命题,﹁q为真命题,所以真命题有①③④,共3个,故选C.]◎角度1 全称命题、特称命题的真假判断下列命题中,真命题是( ) A .任意x ∈R ,x 2-x -1>0B .任意α,β∈R ,sin(α+β)<sin α+sin βC .存在x ∈R ,x 2-x +1=0D .存在α,β∈R ,sin(α+β)=cos α+cos βD [因为x 2-x -1=⎝ ⎛⎭⎪⎫x -122-54≥-54,所以A 是假命题.当α=β=0时,有sin(α+β)=sin α+sin β,所以B 是假命题.x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34≥34,所以C 是假命题.当α=β=π2时,有sin(α+β)=cos α+cos β,所以D 是真命题,故选D.] ◎角度2 含有一个量词的命题的否定命题“任意n ∈N +,f (n )∈N +且f (n )≤n ”的否定形式是( ) A .任意n ∈N +,f (n )∉N +且f (n )>n B .任意n ∈N +,f (n )∉N +或f (n )>n C .存在n 0∈N +,f (n 0)∉N +且f (n 0)>n 0 D .存在n 0∈N +,f (n 0)∉N +或f (n 0)>n 0D [写全称命题的否定时,要把量词“任意”改为“存在”,并且否定结论,注意把“且”改为“或”.]要判断一个全称命题是真命题,必须对限定集合x 成立;但要判断全称命题是假命题,只要能找出集合x 0不成立即可要判断一个特称命题是真命题,只要在限定集合中,至少能找到一个=x 0,使x 0成立即可,否则,这一特称命题就是假命题2.全称命题与特称命题的否定改写量词:确定命题所含量词的类型,省去量词的要结合命题的含义加上量词,再对量词进行改写否定结论:对原命题的结论进行否定[跟踪训练] (1)已知命题p :存在x ∈⎝⎭⎪⎫0,2,使得cos x ≤x ,则﹁p 为( )A .存在x ∈⎝ ⎛⎭⎪⎫0,π2,使得cos x >xB .存在x ∈⎝ ⎛⎭⎪⎫0,π2,使得cos x <xC .任意x ∈⎝⎛⎭⎪⎫0,π2,总有cos x >xD .任意x ∈⎝⎛⎭⎪⎫0,π2,总有cos x ≤x(2)下列命题中的假命题是( ) A .存在x 0∈R ,lg x 0=0 B .存在x 0∈R ,tan x 0= 3 C .任意x ∈R ,x 3>0D .任意x ∈R,2x>0(1)C (2)C [(1)原命题是一个特称命题,其否定是一个全称命题,而“cos x ≤x ”的否定是“cos x >x ”.故选C.(2)当x =1时,lg x =0,故命题“存在x 0∈R ,lg x 0=0”是真命题;当x =π3时,tan x =3,故命题“存在x 0∈R ,tan x 0=3”是真命题;由于x =-1时,x 3<0,故命题“任意x ∈R ,x 3>0”是假命题;根据指数函数的性质,对任意x ∈R,2x>0,故命题“任意x ∈R,2x>0”是真命题.]给定命题p :对任意实数x 都有ax 2+ax +1>0成立;q :关于x 的方程x 2-x +a =0有实数根.如果p 或q 为真命题,p 且q 为假命题,求实数a 的取值范围.[解] 当p 为真命题时,“对任意实数x 都有ax 2+ax +1>0成立”⇔a =0或⎩⎪⎨⎪⎧a >0,Δ<0,∴0≤a <4.当q 为真命题时,“关于x 的方程x 2-x +a =0有实数根”⇔Δ=1-4a ≥0,∴a ≤14.∵p 或q 为真命题,p 且q 为假命题, ∴p ,q 一真一假.∴若p 真q 假,则0≤a <4,且a >14,∴14<a <4;若p 假q 真,则⎩⎪⎨⎪⎧a <0或a ≥4,a ≤14,即a <0.故实数a 的取值范围为(-∞,0)∪⎝ ⎛⎭⎪⎫14,4.先求出每个简单命题是真命题时参数的取值范围再根据复合命题的真假确定各个简单命题的真假情况有时不一定只有一种情况最后由的结果求出满足条件的参数取值范围[跟踪训练] (1)(2018·太原模拟(二))若命题“任意x ∈(0,+∞),x +x≥m ”是假命题,则实数m 的取值范围是________.【79140014】(2)已知p :存在x 0∈R ,mx 20+1≤0,q :任意x ∈R ,x 2+mx +1>0,若p 或q 为假命题,则实数m 的取值范围为( ) A .m ≥2B .m ≤-2C .m ≤-2或m ≥2D .-2≤m ≤2(1)(2,+∞) (2)A [(1)由题意,知“存在x ∈(0,+∞),x +1x<m ”是真命题,又因为x ∈(0,+∞),所以x +1x≥2,当且仅当x =1时等号成立,所以实数m 的取值范围为(2,+∞).(2)依题意知,p ,q 均为假命题.当p 是假命题时,任意x ∈R ,mx 2+1>0恒成立,则有m ≥0;当q 是假命题时,则有Δ=m 2-4≥0,m ≤-2或m ≥2.因此,由p ,q 均为假命题得⎩⎪⎨⎪⎧m ≥0,m ≤-2或m ≥2,即m ≥2.]第一节 函数及其表示[考纲传真] 1.了解构成函数的要素,会求一些简单函数的定义域和值域,了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用(函数分段不超过三段).(第8页) [基础知识填充]1.函数与映射的概念2.(1)函数的定义域、值域:数集A 叫作函数的定义域;函数值的集合{f (x )|x ∈A }叫作函数的值域. (2)函数的三要素:定义域、对应关系和值域.(3)相等函数:如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数. (4)函数的表示法:表示函数的常用方法有解析法、图像法和列表法. 3.分段函数若函数在其定义域内,对于定义域的不同取值区间,有着不同的对应关系,这样的函数通常叫作分段函数.分段函数是一个函数,分段函数的定义域是各段定义域的并集,值域是各段值域的并集.[知识拓展]1.函数与映射的本质是两个集合间的“多对一”和“一对一”关系.2.分段函数是高考必考内容,常考查(1)求最值;(2)求分段函数单调性;(3)分段函数解析式;(4)利用分段函数求值,解题的关键是分析用哪一段函数,一般需要讨论.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)函数是特殊的映射.( )(2)函数y =1与y =x 0是同一个函数.( )(3)与x 轴垂直的直线和一个函数的图像至多有一个交点.( ) (4)分段函数是两个或多个函数.( ) [答案] (1)√ (2)× (3)√ (4)×2.(教材改编)函数y =2x -3+1x -3的定义域为( ) A.⎣⎢⎡⎭⎪⎫32,+∞ B .(-∞,3)∪(3,+∞) C.⎣⎢⎡⎭⎪⎫32,3∪(3,+∞) D .(3,+∞)C [由题意知⎩⎪⎨⎪⎧2x -3≥0,x -3≠0,解得x ≥32且x ≠3.]3.如图2­1­1所示,所给图像是函数图像的有( )图2­1­1A .1个B .2个C .3个D .4个B [(1)中,当x >0时,每一个x 的值对应两个不同的y 值,因此(1)不是函数图像;(2)中,当x =x 0时,y 的值有两个,因此(2)不是函数图像;(3)(4)中,每一个x 的值对应唯一的y 值,因此(3)(4)是函数图像,故选B.]4.设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x,x >1,则f (f (3))=________.139 [f (3)=23,f (f (3))=⎝ ⎛⎭⎪⎫232+1=139.]5.(2015·全国卷Ⅱ)已知函数f (x )=ax 3-2x 的图像过点(-1,4),则a =________.-2 [∵f (x )=ax 3-2x 的图像过点(-1,4), ∴4=a ×(-1)3-2×(-1),解得a =-2.](第9页)(1)(2018·济南一模)函数f (x )=2x-12+3x +1的定义域为________.(2)若函数y =f (x )的定义域为[0,2],则函数g (x )=f x x -1的定义域是________.(1)(-1,+∞) (2)[0,1) [(1)由题意得⎩⎨⎧2x -12≥0,x +1≠0,解得x >-1,所以函数f (x )的定义域为(-1,+∞).(2)由0≤2x ≤2,得0≤x ≤1,又x -1≠0,即x ≠1,所以0≤x <1,即g (x )的定义域为[0,1).]已知函数解析式,构造使解析式有意义的不等式组求解实际问题:由实际意义及使解析式有意义构成的不等式组求解抽象函数:①若已知函数x 的定义域为g x 的定义域由不等式x b 求出;②若已知函数g x 的定义域为x 的定义域为x 在时的值域.x 定义域为[m x 定义域,先求φx 值域[a a ≤h xb ,.[跟踪训练] (1)函数f (x )=1-x+lg(3x +1)的定义域是( )A.⎝ ⎛⎭⎪⎫-13,1 B.⎝ ⎛⎭⎪⎫-13,+∞C.⎝ ⎛⎭⎪⎫-13,13 D.⎝⎛⎭⎪⎫-∞,-13 (2)已知函数f (2x)的定义域为[-1,1],则f (x )的定义域为________.【79140019】(1)A (2)⎣⎢⎡⎦⎥⎤12,2 [(1)由题意可知{ 1-x >0,x +1>0,解得⎩⎨⎧x <1,x >-13,∴-13<x <1,故选A.(2)∵f (2x)的定义域为[-1,1], ∴12≤2x ≤2,即f (x )的定义域为⎣⎢⎡⎦⎥⎤12,2.](1)已知f ⎝⎛⎭⎪⎫x +1x =x 2+1x2,求f (x )的解析式;(2)已知f ⎝ ⎛⎭⎪⎫2x+1=lg x ,求f (x )的解析式;(3)已知f (x )是二次函数且f (0)=2,f (x +1)-f (x )=x -1,求f (x )的解析式;(4)已知f (x )+2f ⎝ ⎛⎭⎪⎫1x =x (x ≠0),求f (x )的解析式.[解] (1)由于f ⎝ ⎛⎭⎪⎫x +1x =x 2+1x2=⎝ ⎛⎭⎪⎫x +1x 2-2,令t =x +1x,当x >0时,t ≥2x ·1x=2,当且仅当x =1时取等号;当x <0时,t =-⎝ ⎛⎭⎪⎫-x -1x ≤-2,当且仅当x =-1时取等号,∴f (t )=t 2-2t ∈(-∞,-2]∪[2,+∞).综上所述.f (x )的解析式是f (x )=x 2-2,x ∈(-∞,-2]∪[2,+∞).(2)令2x +1=t ,由于x >0,∴t >1且x =2t -1,∴f (t )=lg2t -1,即f (x )=lg 2x -1(x >1). (3)设f (x )=ax 2+bx +c (a ≠0),由f (0)=2,得c =2,f (x +1)-f (x )=a (x +1)2+b (x +1)-ax 2-bx =x -1,即2ax +a +b =x -1,∴{ 2a =1,a +b =-1,即⎩⎨⎧a =12,b =-32,∴f (x )=12x 2-32x +2.(4)∵f (x )+2f ⎝ ⎛⎭⎪⎫1x =x ,∴f ⎝ ⎛⎭⎪⎫1x+2f (x )=1x.联立方程组⎩⎨⎧fx +2f ⎝ ⎛⎭⎪⎫1x =x ,f ⎝ ⎛⎭⎪⎫1x +2f x =1x ,解得f (x )=23x -x3(x ≠0).待定系数法:若已知函数的类型,可用待定系数法换元法:已知复合函数gx 的解析式,可用换元法,此时要注意新元的取值范围构造法:已知关于x 与f ⎝ ⎛⎭⎪⎫1x 或f -x 的表达式,可根据已知条件再构造出另外一个等式,通过解方程组求出x已知f x +1)=,求f (x )的解析式;(2)设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的解析式. [解] (1)法一:(换元法)设x +1=t (t ≥1),则x =t -1,所以f (t )=(t -1)2+2(t -1)=t 2-1(t ≥1),所以f (x )=x 2-1(x ≥1).法二:(配凑法)f (x +1)=x +2x =(x +1)2-1, 又x +1≥1,所以f (x )=x 2-1(x ≥1). (2)设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b =2x +2, 所以a =1,b =2,f (x )=x 2+2x +c . 又因为方程f (x )=0有两个相等的实根, 所以Δ=4-4c =0,c =1, 故f (x )=x 2+2x +1.◎角度1 求分段函数的函数值(2015·全国卷Ⅱ)设函数f (x )={ 1+log 2-x ,x <1,x -1,x ≥1,则f (-2)+f (log 212)=( )A .3B .6C .9D .12C [∵-2<1,∴f (-2)=1+log 2(2+2)=1+log 24=1+2=3. ∵log 212>1,∴f (log 212)=2log 212-1=122=6.∴f (-2)+f (log 212)=3+6=9.故选C.]。

2019年高考数学(文)一轮复习第十章 算法初步、统计、统计案例 第十章 算法初步、统计、统计案例及答案

2019年高考数学(文)一轮复习第十章 算法初步、统计、统计案例 第十章 算法初步、统计、统计案例及答案

第十章⎪⎪⎪算法初步、统计、统计案例第一节算法初步1.算法(1)算法通常是指按照一定规则解决某一类问题的明确和有限的步骤.(2)应用:算法通常可以编成计算机程序,让计算机执行并解决问题.2.程序框图定义:程序框图又称流程图,是一种用程序框、流程线及文字说明表示算法的图形.3.三种基本逻辑结构及相应语句1.(教材习题改编)如图所示的程序框图的运行结果为________.解析:因为a =2,b =4,所以输出S =24+42=2.5.答案:2.52.执行如图的程序框图,则输出的结果为________.解析:进行第一次循环时,S=1005=20,i=2,S=20>1;进行第二次循环时,S=205=4,i=3,S=4>1;进行第三次循环时,S=45=0.8,i=4,S=0.8<1,此时结束循环,输出的i=4.答案:41.易混淆处框与输入框,处框主要是赋值、计算,而输入框只是表示一个算法输入的信息.2.易忽视循环结构中必有选择结构,其作用是控制循环进程,避免进入‚死循环‛,是循环结构必不可少的一部分.3.易混淆当型循环与直到型循环.直到型循环是‚先循环,后判断,条件满足时终止循环‛;而当型循环则是‚先判断,后循环,条件满足时执行循环‛;两者的判断框内的条件表述在解决同一问题时是不同的,它们恰好相反.1.按如下程序框图,若输出结果为170,则判断框内应补充的条件为( )A .i >7?B .i >9?C .i >10?D .i>11?解析:选 A ∵21+23+25+27=170,∴判断框内应补充的条件为i >7?或i ≥9?.2.如图所示,程序框图的输出结果是________.解析:第一次循环:S =12,n =4;第二次循环:n =4<8,S =12+14,n =6;第三次循环:n =6<8,S =12+14+16,n =8;第四次循环:n =8<8不成立,输出S =12+14+16=1112.答案:1112考点一 算法的三种基本结构 基础送分型考点——自主练透1.(2016²北京高考)执行如图所示的程序框图,若输入的a 值为1,则输出的k 值为( )A .1B .2C .3D .4解析:选B 开始a =1,b =1,k =0;第一次循环a =-12,k =1;第二次循环a =-2,k =2;第三次循环a =1,条件判断为‚是‛,跳出循环,此时k =2.2.定义运算a ⊗b 为执行如图所示的程序框图输出的S 值,则⎝⎛⎭⎪⎫2cos 5π3⊗⎝ ⎛⎭⎪⎫2tan 5π4的值为( )A .4B .3C .2D .-1解析:选A 由程序框图可知,S =⎩⎪⎨⎪⎧a a -b ,a ≥b ,b a +1 ,a <b ,因为2cos 5π3=1,2tan 5π4=2,1<2,所以⎝ ⎛⎭⎪⎫2cos 5π3⊗⎝ ⎛⎭⎪⎫2tan 5π4=2(1+1)=4.秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s=( )A.7B.12C.17D.34解析:选C 第一次运算:s=0³2+2=2,k=1;第二次运算:s=2³2+2=6,k=2;第三次运算:s=6³2+5=17,k=3>2,结束循环,输出s=17.4.(2016²河南省六市第一次联考)如图所示的程序框图,若输出的S=88,则判断框内应填入的条件是( )A.k>3?B.k>4?C.k>5?D.k>6?解析:选C 依次运行程序框图中的语句:k=2,S=2;k=3,S=7;k=4,S=18;k=5,S=41;k=6,S=88,此时跳出循环,故判断框中应填入‚k>5?‛.程序框图的3个常用变量(1)计变量:用记录某个事件发生的次,如i=i+1.(2)累加变量:用计算据之和,如S=S+i.(3)累乘变量:用计算据之积,如p=p³i.处循环结构的框图问题,关键是解并认清终止循环结构的条件及循环次.考点二算法的交汇性问题 题点多变型考点——多角探明算法是高考热点内容之一,算法的交汇性问题是高考的一大亮点.常见的命题角度有:(1)与概率、统计的交汇问题;(2)与函的交汇问题;(3)与不等式的交汇问题;(4)与列求和的交汇问题.角度一:与概率、统计的交汇问题1.(2016²黄冈模拟)随机抽取某中学甲、乙两个班各10名同学,测量他们的身高获得身高据的茎叶图如图(1),在样本的20人中,记身高在+(20+21+22+…+2n)的值解析:选C 初始值k=1,S=0,第1次进入循环体时,S=1+20,k=2;第2次进入循环体时,S=1+20+2+21,k=3,第3次进入循环体时,S=1+20+2+21+3+22,k=4.…;给定正整n,当k=n时,最后一次进入循环体,则有S=1+20+2+21+…+n+2n-1,k=n+1,终止循环体,输出S=(1+2+3+…+n)+(20+21+22+…+2n-1),故选C.解决算法交汇问题的3个关键点(1)读懂程序框图,明确交汇知识;(2)根据给出问题与程序框图处问题;(3)注意框图中结构的判断.1.(2017²南昌模拟)从1,2,3,4,5,6,7,8中随机取出一个为x ,执行如图所示的程序框图,则输出的x 不小于40的概率为( )A .34B .58C .78D .12解析:选 B 依次执行程序框图中的语句,输出的结果分别为13,22,31,40,49,58,67,76,所以输出的x 不小于40的概率为58.2.(2016²长春市质检)运行如图所示的程序框图,则输出的S 值为( )A .29-129B .29+129C .210-1210D .210210+1解析:选 A 由程序框图可知,输出的结果是首项为12,公比也为12的等比列的前9项和,即为29-129,故选A . 3.执行如图所示的程序框图,若输入x =9,则输出y =________.解析:第一次循环:y=5,x=5;第二次循环:y=113,x=113;第三次循环:y=299,此时|y-x|=⎪⎪⎪⎪⎪⎪299-113=49<1,故输出y=299.答案:29 9考点三算法基本语句 重点保分型考点——师生共研设计一个计算1³3³5³7³9³11³13的算法.图中给出了程序的一部分,则在横线上不能填入的是( )A.13 B.13.5C.14 D.14.5解析:选A 当填13时,i值顺次执行的结果是5,7,9,11,当执行到i=11时,下次就是i=13,这时要结束循环,因此计算的结果是1³3³5³7³9³11,故不能填13,但填的字只要超过13且不超过15均可保证最后一次循环时,得到的计算结果是1³3³5³7³9³11³13,故选A .算法语句应用的4个关注点(1)输入、输出语句:在输入、输出语句中加提示信息时,要加引号,变量之间用逗号隔开.(2)赋值语句:左、右两边不能对换,赋值号左边只能是变量.(3)条件语句:条件语句中包含条件语句时,要分清内外条件结构,保证结构完整性.(4)循环语句:分清‚for‛和‚while‛的格式,不能混用.1.根据下列算法语句,当输入x 为60时,输出y 的值为( )A .25B .30C .31D .61 解析:选C 该语句表示分段函y =⎩⎪⎨⎪⎧ 0.5x ,x≤50,25+0.6³ x-50 ,x>50,当x =60时,y =25+0.6³(60-50)=31.∴输出y 的值为31.2.按照如图程序运行,则输出K 的值是________.解析:第一次循环,X=7,K=1;第二次循环,X=15,K=2;第三次循环,X=31,K=3,X>16,终止循环,则输出K的值是3.答案:3一抓基础,多练小题做到眼疾手快1.执行如图所示的程序框图,如果输入的t∈,则输出的s属于( )A.B.C.D.解析:选A 当-1≤t<1时,s=3t,则s∈上单调递增,在上单调递减.∴s∈.综上知s∈.2.(2016²沈阳市教学质量监测)执行如图所示的程序框图,如果输入的a=-1,b=-2,则输出的a的值为( ) A.16B.8C.4D.2解析:选B 当a=-1,b=-2时,a=(-1)³(-2)=2<6;a =2,b=-2时,a=2³(-2)=-4<6;当a=-4,b=-2时,a=(-4)³(-2)=8>6,此时输出的a=8,故选B.3.(2017²合肥质检)执行如图所示的程序框图,如果输出的k的值为3,则输入的a的值可以是( )A.20 B.21C.22 D.23解析:选A 根据程序框图可知,若输出的k=3,则此时程序框图中的循环结构执行了3次,执行第1次时,S=2³0+3=3,执行第2次时,S=2³3+3=9,执行第3次时,S=2³9+3=21,因此符合题意的实a的取值范围是9≤a<21,故选A.4.(2016²四川高考)秦九韶是我国南宋时期的学家,普州(现四川省安岳县)人,他在所著的《书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例.若输入n,x的值分别为3,2,则输出v 的值为( )A .9B .18C .20D .35解析:选B 由程序框图知,初始值:n =3,x =2,v =1,i =2,第一次循环:v =4,i =1;第二次循环:v =9,i =0;第三次循环:v =18,i =-1.结束循环,输出当前v 的值18.故选B .二保高考,全练题型做到高考达标1.已知实x ∈,执行如图所示的程序框图,则输出的x 不小于103的概率为( )A .514B .914C .59D .49解析:选B 由程序框图可知,经过3次循环跳出,设输入的初始值为x =x 0,则输出的x =2+1≥103,所以8x 0≥96,即x 0≥12,故输出的x 不小于103的概率为P =30-1230-2=1828=914. 2.(2017²长春模拟)执行如图所示的程序框图,若输出的n =7,则输入的整K的最大值是( )A.18 B.50C.78 D.306解析:选C 第一次循环S=2,n=2,第二次循环S=6,n=3,第三次循环S=2,n=4,第四次循环S=18,n=5,第五次循环S=14,n=6,第六次循环S=78,n=7,需满足S≥K,此时输出n=7,所以18<K≤78,所以整K的最大值为78.3.(2016²福建省毕业班质量检测)执行如图所示的程序框图,若要使输出的y的值等于3,则输入的x的值可以是( )A.1 B.2C.8 D.9解析:选 C 由程序框图可知,其功能是运算分段函y=⎩⎪⎨⎪⎧x 2-1,x ≤1,3x ,1<x ≤2,log 2x ,x >2因为y =3,所以⎩⎪⎨⎪⎧ x ≤1,x 2-1=3或⎩⎪⎨⎪⎧ 1<x ≤2,3x =3或⎩⎪⎨⎪⎧ x >2,log 2x =3,解得x =-2或x =8,故选C .4.执行如图所示的程序框图,如果输入n 的值为4,则输出S 的值为( )A .15B .6C .-10D .-21解析:选C 当k =1,S =0时,k 为奇,所以S =1,k =2,2<4;k =2不是奇,所以S =1-4=-3,k =3,3<4;k =3是奇,所以S =-3+9=6,k =4,4=4;k =4不是奇,所以S =6-16=-10,k =5,5>4,所以输出的S =-10,故选C .5.(2017²黄山调研)我国古代学典籍《九章算术》‚盈不足‛中有一道两鼠穿墙问题:‚今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?‛现用程序框图描述,如图所示,则输出结果n =( )A .4B .5C .2D .3解析:选A 第一次循环,得S =2,否;第二次循环,得n =2,a =12,A =2,S =92,否;第三次循环,得n =3,a =14,A =4,S =354,否;第四次循环,得n =4,a =18,A =8,S =1358>10,是,输出的n =4,故选A .6.(2017²北京东城模拟)如图给出的是计算12+14+16+18+…+1100的一个程序框图,其中判断框内应填入的条件是( )A .i <50?B .i >50?C .i <25?D .i >25?解析:选B 因为该循环体需要运行50次,i的初始值是1,间隔是1,所以i=50时不满足判断框内的条件,而i=51时满足判断框内条件,所以判断框内的条件可以填入i>50?.7.如图(1)是某县参加2 016年高考的学生身高条形统计图,从左到右的各条形表示的学生人依次记为A1,A2,…,A10(如A2表示身高(单位:cm)在1.(教材习题改编)老师在班级50名学生中,依次抽取学号为5,10,15,20,25,30,35,40,45,50的学生进行作业检查,这种抽样方法是( )A.随机抽样 B.分层抽样C.系统抽样D.以上都不是解析:选C 因为抽取学号是以5为公差的等差列,故采用的抽样方法应是系统抽样.2.(教材习题改编)某学校高一、高二、高三年级的学生人之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.解析:设应从高二年级抽取x名学生,则x50=310.解得x=15.答案:151.简单随机抽样中易忽视样本是从总体中逐个抽取,是不放回抽样,且每个个体被抽到的概率相等.2.系统抽样中,易忽视抽取的样本也就是分段的段,当Nn不是整时,注意剔除,剔除的个体是随机的,各段入样的个体编号成等差列.3.分层抽样中,易忽视每层抽取的个体的比例是相同的,即样本容量n总体个N.1.利用简单随机抽样从含有8个个体的总体中抽取一个容量为4的样本,则总体中每个个体被抽到的概率是________.解析:总体个为N=8,样本容量为M=4,则每一个个体被抽到的概率为P=MN=48=12.答案:1 22.已知某商场新进3 000袋奶粉,为检查其三聚氰胺是否超标,现采用系统抽样的方法从中抽取150袋检查,若第一组抽出的号码是11,则第六十一组抽出的号码为________.解析:每组袋:d=3 000150=20,由题意知这些号码是以11为首项,20为公差的等差列.a61=11+60³20=1 211.答案:1 211考点一简单随机抽样 基础送分型考点——自主练透 1.总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机表选取5个个体,选取方法是从随机表第1行的第5列和第6列字开始由左到右依次选取两个字,则选出的第5个个体的编号为( )A.08 B.07C.02 D.01解析:选D 由随机表法的随机抽样的过程可知选出的5个个体是08,02,14,07,01,所以第5个个体的编号是01.2.下列抽样试验中,适合用抽签法的有( )A.从某厂生产的5 000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱18件)产品中抽取6件进行质量检验C.从甲、乙两厂生产的两箱(每箱18件)产品中抽取6件进行质量检验D.从某厂生产的5 000件产品中抽取10件进行质量检验解析:选B A,D中的总体中个体较多,不适宜抽签法,C中甲、乙两厂的产品质量有区别,也不适宜抽签法,故选B.3.利用简单随机抽样,从n个个体中抽取一个容量为10的样本.若第二次抽取时,余下的每个个体被抽到的概率为13,则在整个抽样过程中,每个个体被抽到的概率为( )A.14B.13C.514D.1027解析:选C 根据题意,9n-1=13,解得n=28.故在整个抽样过程中每个个体被抽到的概率为1028=514.简单随机抽样的特点(1)抽取的个体较少.(2)是逐个抽取.(3)是不放回抽取.(4)是等可能抽取.只有四个特点都满足的抽样才是简单随机抽样.考点二系统抽样 重点保分型考点——师生共研(2016²兰州市实战考试)采用系统抽样方法从 1 000人中抽取50人做问卷调查,将他们随机编号1,2,…,1 000.适当分组后在第一组采用简单随机抽样的方法抽到的号码为8.若抽到的50人中,编号落入区间的人做问卷A,编号落入区间的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷C的人为( )A.12 B.13C.14 D.15解析:选A 根据系统抽样的特点可知,所有做问卷调查的人的编号构成首项为8,公差d=1 00050=20的等差列{a n},∴通项公式a n =8+20(n -1)=20n -12,令751≤20n -12≤1 000,得76320≤n ≤2535,又∵n ∈N *,∴39≤n ≤50,∴做问卷C 的共有12人,故选A .系统抽样的3个关注点(1)若不改变抽样规则,则所抽取的号码构成一个等差列,其首项为第一组所抽取的号码,公差为样本间隔.故问题可转为等差列问题解决.(2)抽样规则改变,应注意每组抽取一个个体这一特性不变.(3)如果总体容量N 不能被样本容量n 整除,可随机地从总体中剔除余,然后再按系统抽样的方法抽样.1.(2016²江西八校联考)从编号为001,002,…,500的500个产品中用系统抽样的方法抽取一个样本,已知样本中编号最小的两个编号分别为007,032,则样本中最大的编号应该为( )A .480B .481C .482D .483解析:选C 根据系统抽样的定义可知样本的编号成等差列,令a 1=7,a 2=32,d =25,所以7+25(n -1)≤500,所以n ≤20,最大编号为7+25³19=482.2.(2017²安徽皖北联考)某学校采用系统抽样方法,从该校高一年级全体800名学生中抽50名学生做视力检查.现将800名学生从1到800进行编号.已知从33~48这16个中抽到的是39,则在第1小组1~16中随机抽到的是( )A .5B .7C .11D .13解析:选B 把800名学生分成50组,每组16人,各小组抽到的构成一个公差为16的等差列,39在第3组,所以第1组抽到的为39-32=7.考点三 分层抽样 重点保分型考点——师生共研1.(2015²湖北高考)我国古代学名著《书九章》有‚米谷粒分‛题:粮仓开仓收粮,有人送米1 534石,验得米内夹谷,抽样取米一把,得254粒内夹谷28粒,则这批米内夹谷约为( )A .134石B .169石C .338石D .1 365石解析:选B 设1 534石米内夹谷x 石,则由题意知x 1 534=28254,解得x ≈169.故这批米内夹谷约为169石. 2.(2015²福建高考)某校高一年级有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人为________.解析:设男生抽取x 人,则有45900=x 900-400, 解得x =25.答案:25进行分层抽样的相关计算时,常用到的2个关系(1)样本容量n 总体的个N =该层抽取的个体该层的个体;(2)总体中某两层的个体之比等于样本中这两层抽取的个体之比.1.某地区有小学150所,中学75所,大学25所,现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取________所学校,中学中抽取________所学校.解析:因为分层抽样也叫按比例抽样,所以应从小学中抽取150150+75+25³30=35³30=18(所),同可得从中学中抽取75150+75+25³30=310³30=9(所). 答案:18 92.某企业三月中旬生产A 、B 、C 三种产品共3 000件,根据分层抽样的结果,企业统计员制作了如下的统计表格:计员记得A 产品的样本容量比C 产品的样本容量多10,根据以上信息,可得C 的产品量是________件.解析:设样本容量为x ,则x3 000³1 300=130, ∴x =300.∴A 产品和C 产品在样本中共有300-130=170(件).设C 产品的样本容量为y ,则y +y +10=170,∴y =80.∴C 产品的量为3 000300³80=800(件).答案:800一抓基础,多练小题做到眼疾手快1.下面的抽样方法是简单随机抽样的是( )A.在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位为2 709的为三等奖B.某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,称其重量是否合格C.某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解对学校机构改革的意见D.用抽签法从10件产品中抽取3件进行质量检验解析:选D A、B是系统抽样,因为抽取的个体间的间隔是固定的;C是分层抽样,因为总体的个体有明显的层次;D是简单随机抽样.2.某工厂生产A,B,C三种不同型号的产品,产品的量之比依次为3∶4∶7,现在用分层抽样的方法抽取容量为n的样本,样本中A型号产品有15件,那么样本容量n为( )A.50 B.60C.70 D.80解析:选C 由分层抽样方法得33+4+7³n=15,解之得n=70.3.某班共有52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号、29号、42号同学在样本中,那么样本中还有一个同学的学号是( )A.10 B.11C.12 D.16解析:选D 因为29号、42号的号码差为13,所以3+13=16,即另外一个同学的学号是16.4.某单位有职工480人,其中青年职工210人,中年职工150人,老年职工120人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本.若样本中的青年职工为7人,则样本容量为________.解析:设样本容量为n,则n480=7210,n=16.则样本容量为16.答案:165.为了了解1 200名学生对学校某项教改实验的意见,打算从中抽取一个容量为30的样本,考虑采取系统抽样,则分段的间隔k 为________.解析:在系统抽样中,确定分段间隔k,对编号进行分段,k=N n(N为总体的容量,n为样本的容量),所以k=Nn=1 20030=40.答案:40二保高考,全练题型做到高考达标1.从30个个体中抽取10个样本,现给出某随机表的第11行到第15行(见下表),如果某人选取第12行的第6列和第7列中的作为第一个并且由此向右读,则选取的前4个的号码分别为( ) 9264 4607 2021 3920 7766 3817 3256 16405858 7766 3170 0500 2593 0545 5370 78142889 6628 6757 8231 1589 0062 0047 38155131 8186 3709 4521 6665 5325 5383 27029055 7196 2172 3207 1114 1384 4359 4488A.76,63,17,00 B.16,00,02,30C.17,00,02,25 D.17,00,02,07解析:选D 在随机表中,将处于00~29的号码选出,第一个76不合要求,第2个63不合要求,满足要求的前4个号码为17,00,02,07.2.一个总体中有90个个体,随机编号0,1,2,…,89,依从小到大编号顺序平均分成9个小组,组号依次为1,2,3,…,9.现用系统抽样方法抽取一个容量为9的样本,规定如果在第1组随机抽取的号码为m,那么在第k组中抽取的号码个位字与m+k的个位字相同,若m=8,则在第8组中抽取的号码是( )A.72 B.74C.76 D.78解析:选C 由题意知:m=8,k=8,则m+k=16,也就是第8组抽取的号码个位字为6,十位字为8-1=7,故抽取的号码为76.故选C.3.(2017²兰州双基测试)从一个容量为N的总体中抽取一个容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则( )A.p1=p2<p3B.p2=p3<p1C.p1=p3<p2D.p1=p2=p3解析:选D 根据简单随机抽样、系统抽样和分层抽样的定义可知,无论哪种抽样,每个个体被抽中的概率都是相等的,所以p1=p2=p3.4.某工厂在12月份共生产了3 600双皮靴,在出厂前要检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品分别为a,b,c,且a,b,c构成等差列,则第二车间生产的产品为( )A.800双B.1 000双C.1 200双D.1 500双解析:选C 因为a,b,c成等差列,所以2b=a+c,即第二车间抽取的产品占抽样产品总的三分之一,根据分层抽样的性质可知,第二车间生产的产品占12月份生产总的三分之一,即为1 200双皮靴.5.将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样的方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在A营区,从301到495在B营区,从496到600在C营区,则三个营区被抽中的人依次为( )A.26,16,8 B.25,17,8C.25,16,9 D.24,17,9解析:选B 依题意及系统抽样的意义可知,将这600名学生按编号依次分成50组,每一组各有12名学生,第k(k∈N*)组抽中的号码是3+12(k-1).令3+12(k-1)≤300,得k≤1034,因此A营区被抽中的人是25;令300<3+12(k-1)≤495,得1034<k≤42,因此B营区被抽中的人是42-25=17,故C营区被抽中的人为50-25-17=8.故选B.6.一汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):50辆,其中有A类轿车10辆,则z的值为________.解析:由题意可得50100+300+150+450+z+600=10100+300,解得z=400.答案:4007.(2017²北京海淀模拟)某企业三个分厂生产同一种电子产品,三个分厂产量分布如图所示,现在用分层抽样方法从三个分厂生产的该产品中共抽取100件做使用寿命的测试,则第一分厂应抽取的件为________;由所得样品的测试结果计算出一、二、三分厂取出的产品的使用寿命平均值分别为1 020小时、980小时、1 030小时,估计这个企业所生产的该产品的平均使用寿命为________小时.解析:第一分厂应抽取的件为100³50%=50;该产品的平均使用寿命为1 020³0.5+980³0.2+1 030³0.3=1 015.答案:50 1 0158.哈六中2016届有840名学生,现采用系统抽样方法,抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间的人为________.解析:使用系统抽样方法,从840名学生中抽取42人,即从20人中抽取1人.所以从编号1~480的人中,恰好抽取48020=24(人),接着从编号481~720共240人中抽取24020=12人.答案:129.某初级中学共有学生2 000名,各年级男、女生人如下表:0.19.(1)求x的值;(2)现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名?解:(1)∵x2 000=0.19.∴x=380.(2)初三年级人为y+z=2 000-(373+377+380+370)=500,现用分层抽样的方法在全校抽取48名学生,应在初三年级抽取的人为:482 000³500=12(名).10.某公路设计院有工程师6人,技术员12人,技工18人,要从这些人中抽取n人参加市里召开的科学技术大会.如果采用系统抽样和分层抽样的方法抽取,不用剔除个体,如果参会人增加1个,则在采用系统抽样时,需要在总体中先剔除1个个体,求n.解:总体容量为6+12+18=36.当样本容量是n时,由题意知,系统抽样的间隔为36n,分层抽样的比例是n36,抽取的工程师人为n36³6=n6,技术员人为n36³12=n3,技工人为n36³18=n2.所以n应是6的倍,36的约,即n=6,12,18.当样本容量为(n+1)时,总体容量是35人,系统抽样的间隔为35n+1,因为35n+1必须是整,所以n只能取6.即样本容量为n=6.三上台阶,自主选做志在冲刺名校1.某中学有高中生3 500人,初中生1 500人.为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为( )A.100 B.150C.200 D.250解析:选A 样本抽取比例为703 500=150,该校总人为1 500+3500=5 000,则n5 000=150,故n=100,选A.2.(2017²东北四市联考)为迎接校运动会的到,某校团委在高一年级招募了12名男志愿者和18名女志愿者(18名女志愿者中有6人喜欢运动).(1)如果用分层抽样的方法从男、女志愿者中共抽取10人组成服务队,求女志愿者被抽到的人;(2)如果从喜欢运动的6名女志愿者中(其中恰有4人懂得医疗救护),任意抽取2名志愿者负责医疗救护工作,则抽出的志愿者中2人都能胜任医疗救护工作的概率是多少?解:(1)用分层抽样的方法,每个志愿者被抽中的概率是1030=13,∴女志愿者被抽中的有18³13=6(人).(2)喜欢运动的女志愿者有6人,分别设为A,B,C,D,E,F,其中A,B,C,D懂得医疗救护,则从这6人中任取2人有AB,AC,AD,AE,AF,BC,BD,BE,BF,CD,CE,CF,DE,DF,EF,共15种取法,其中2人都懂得医疗救护的有AB,AC,AD,BC,BD,CD,共6种.设‚抽出的志愿者中2人都能胜任医疗救护工作‛为事件K,则P(K)=615=25.第三节用样本估计总体1.作频率分布直方图的步骤(1)求极差(即一组据中最大值与最小值的差);(2)决定组距与组;(3)将据分组;(4)列频率分布表;(5)画频率分布直方图.2.频率分布折线图和总体密度曲线(1)频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.(2)总体密度曲线:随着样本容量的增加,作图时所分的组增加,组距减小,相应的频率折线图会越越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.3.茎叶图的优点茎叶图的优点是不但可以保留所有信息,而且可以随时记录,这对据的记录和表示都能带方便.茎叶图中茎是指中间的一列,叶是从茎的旁边生长出的.4.样本的字特征(1)众、中位、平均(2)标准差、方差①标准差:样本据到平均的一种平均距离,一般用s 表示,s =②方差:标准差的平方s 2s 2=1n,其中x i (i =1,2,3,…,n )是样本据,n 是样本容量,x -是样本平均.1.(教材习题改编)一组据分别为:12,16,20,23,20,15,28,23,则这组据的中位是________.解析:这组据从小到大排列为:12,15,16,20,20,23,23,28,∴这组据的中位是20+202=20.答案:202.(教材习题改编)某校为了了解教科研工作开展状况与教师年龄之间的关系,将该校不小于35岁的80名教师按年龄分组,分组区间为,由此得到频率分布直方图如图,则这80名教师中年龄小于45岁的有________人.解析:由频率分布直方图可知45岁以下的教师的频率为5³(0.040+0.080)=0.6,所以共有80³0.6=48(人).答案:481.易把直方图与条形图混淆两者的区别在于条形图是离散随机变量,纵坐标刻度为频或频率,直方图是连续随机变量,连续随机变量在某一点上是没有频率的.2.易忽视频率分布直方图中纵轴表示的应为频率组距.3.在绘制茎叶图时,易遗漏重复出现的据,重复出现的据要重复记录,同时不要混淆茎叶图中茎与叶的含义.1.如图是某班8位学生诗词比赛得分的茎叶图,那么这8位学生得分的众和中位分别为________.解析:依题意,结合茎叶图,将题中的由小到大依次排列得到:86,86,90,91,93,93,93,96,因此这8位学生得分的众是93,中位是91+932=92.答案:93 922.对某市‚四城同创‛活动中800名志愿者的年龄抽样调查统计后得到频率分布直方图(如图),但是年龄组为1.如图是某大学自主招生面试环节中,七位评委为某考生打出。

2019届高考数学(文)一轮复习课件-第十章 算法初步、统计、统计案例 10.1

2019届高考数学(文)一轮复习课件-第十章 算法初步、统计、统计案例 10.1

算法初步、统计、统计案例
高考数学
解析:第一次运行后,S=2,a=3,n=1; 第二次运行后,S=5,a=5,n=2; 第三次运行后,S=10,a=9,n=3; 第四次运行后,S=19,a=17,n=4; 第五次运行后,S=36,a=33,n=5; 第六次运行后,S=69,a=65,n=6, 此时不满足 S<t,输出 n=6,故选 B. 答案:B
算法初步、统计、统计案例
高考数学
5.(教材习题改编)如图所示的程序框图的运行结果为 ________.
2 4 解析:因为 a=2,b=4,所以输出 S=4+2=2.5. 答案:2.5
算法初步、统计、统计案例
高考数学
4 6.执行如图的程序框图,则输出的结果为________ .
算法初步、统计、统计案例
高考数学
解析:进行第一次循环时, 100 S= 5 =20,i=2,S=20>1; 进行第二次循环时, 20 S= 5 =4,i=3,S=4>1; 进行第三次循环时, 4 S=5=0.8,i=4,S=0.8<1, 此时结束循环,输出的 i=4.
算法初步、统计、统计案例
高考数学
考向一
顺序结构与条件结构
[自主练透型]
1.(2017· 山东卷)执行两次下图所示的程序框图,若第一次输 入的 x 的值为 7,第二次输入的 x 的值为 9,则第一次、第二次输 出的 a 的值分别为( ) A.0,0 B.1,1 C.0,1 D.1,0
算法初步、统计、统计案例
高考数学
解析:当 x=7 时,∵ b=2,∴ b2=4<7=x. 又 7 不能被 2 整除,∴ b=2+1=3. 此时 b2=9>7=x,∴ 退出循环,a=1,∴ 输出 a=1. 当 x=9 时,∵ b=2,∴ b2=4<9=x. 又 9 不能被 2 整除,∴ b=2+1=3. 此时 b2=9=x,又 9 能被 3 整除,∴ 退出循环,a=0. ∴ 输出 a=0. 故选 D. 答案:D

2019版高考数学一轮复习 第一部分 基础与考点过关 第十章 算法、统计与概率学案

2019版高考数学一轮复习 第一部分 基础与考点过关 第十章 算法、统计与概率学案

第十章算法、统计与概率① 算法初步是高中数学新课程标准中新添加的内容,高考对本章的考查主要以填空题的形式出现,单独命题以考查考生对流程图的识别能力为主,对算法语言的阅读理解能力次之,考查用自然语言叙述算法思想的可能性不大.②算法可结合在任何试题中进行隐性考查,因为算法思想在其他数学知识中的渗透是课标的基本要求,常见的与其他知识的结合有分段函数、方程、不等式、数列、统计等知识综合,以算法为载体,以算法的语言呈现,实质考查其他知识.① 了解算法的含义、算法的思想.②理解程序框图的三种基本逻辑结构:顺序、选择、循环.③理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义.1. (必修3P37测试1改编)如图所示的流程图中,输出的x=,y=W.答案:4 5解析:S1 先把1赋给x;S2 把3赋给y;S3 把y+1赋给x,即将3+1赋给x;∴ x现在的值是4,它将x原来的值x=1覆盖了.S4 把x+1赋给y,即4+1赋给y,∴ y现在的值是5,它将y原来值y=3覆盖了.∴输出x=4,y=5.2. (必修3P37测试2改编)运行如图所示的流程图.若输入值x∈[-2,2],则输出值y的取值范围是W.答案:[-1,4]解析:实际上是求函数y={-2x,-2≤x<0,x(x-2),0≤x≤2的值域,作出函数的图象(图略)得到y的取值范围是[-1,4] .3. (原创)根据下面流程图,当输入x为6时,输出的y=W.答案:10解析:该流程图运行如下:x=6-3=3>0,x=3-3=0,x=0-3=-3<0,y=(-3)2+1=10.4. (必修3P37测试3改编)根据下列算法语句,当输入x为60时,输出y的值为W.Read xIf x≤50 Theny←0.5xElsey←25+0.6 (x-50)End IfPrint y答案:31解析:算法语言给出的是分段函数y={0.5x,x≤50,25+0.6(x-50),x>50,输入x=60时,y=25+0.6(60-50)=31.5. (必修3P37测试5改编)运行如图所示的伪代码表示的算法,其输出值为W.i←1S←0While i<8i←i+3S←2×i+SEnd WhilePrint S答案:42解析:由题设可知,循环体执行3次,从而有S=0+8+14+20=42.1. 流程图是由一些图框和流程线组成的,其中图框表示各种操作的类型,图框中的文字和符号表示操作的内容,流程线表示操作的先后次序.2. 常见的图框、流程线及功能图形符号名称功能起止框表示算法的开始或结束,一般画成圆角矩形输入、输出框表示输入、输出操作,一般画成平行四边形处理框表示赋值或计算,一般画成矩形判断框根据条件决定执行两条路径中的某一条,一般画成菱形流程线表示执行步骤的路径,可用箭头线表示算法都可以由顺序结构、选择结构、循环结构组成.名称内容顺序结构选择结构循环结构定义由若干个依次执行的步骤组成,这是任何一个算法都离不开的基本结构算法的流程根据条件是否成立有不同的流向,条件结构就是处理这种过程的结构从某处开始,按照一定的条件反复执行某些步骤的情况,反复执行的步骤称为循环体流程图用符号“x←y”表示将y的值赋给x,其中x是一个变量,y是一个与x同类型的变量或表达式W.5. 输入语句、输出语句(1)输入语句:“Read a,b”表示输入的数据依次送给a,bW.(2)输出语句:“Print x”表示输出运算结果xW.6. 条件语句条件语句的一般形式是If A ThenBElseCEnd If其中A表示判断的条件,B表示满足条件时执行的操作内容,C表示不满足条件时执行的操作内容,End If表示条件语句结束W.7. 循环语句循环语句一般有三种:“While循环”“Do循环”“For循环”.(1)当型循环一般采用“While循环”描述循环结构.格式:While条件循环体End While功能:先判断条件是否成立,当条件成立时,执行循环体,遇到End While语句时,就返回继续判断条件,若仍成立,则重复上述过程,若不成立,则退出循环.当型语句的特点是先判断,后执行.(2)直到型循环可采用“Do循环”描述循环结构.格式:Do循环体Until 条件End Do功能:先执行循环体部分,然后再判断所给条件是否成立.如果条件不成立,那么再次执行循环体部分,如此反复,直到所给条件成立时退出循环.直到型语句的特点是先执行,后判断.(3)当循环的次数已经确定,可用“For”语句表示.格式:For I From “初值”To“终值” Step“步长”循环体End For功能:根据For语句中所给定的初值、终值和步长来确定循环次数,反复执行循环体内各语句.通过For语句进入循环,将初值赋给变量I,当循环变量的值不超过终值时,则顺序执行循环体内的各个语句,遇到End For,将循环变量增加一个步长的值,再与终值比较,如果仍不超过终值范围,则再次执行循环体.这样重复执行,直到循环变量的值超过终值,则跳出循环., 1 选择结构的算法功能), 1) (2017·江苏卷)如图是一个算法流程图.若输入x 的值为116,则输出y 的值是 W.答案:-2解析:因为输入x 的值为116,不满足x≥1,所以y =2+log 2116=-2.变式训练(2017·南京三模)执行如图所示的伪代码,若输出y 的值为1,则输入x 的值为 W.Read xIf x ≥0 Theny←2x +1Elsey←2-x 2End If Print y 答案:-1解析:若x≥0,则2x +1=1,解得x =-1(舍去);若x <0,则2-x 2=1,解得x =±1,所以x =-1.综上所述,输入x 的值为-1., 2 循环结构的算法功能), 2) 根据如图所示的伪代码,最后输出的S 的值为 W. S ←0For I From 1 To 28 Step 3 S ←S +I End For Print S 答案:145解析:由算法伪代码知,此算法为计算首项为1,公差为3的等差数列的前10项的和,所以S =1+4+…+28=10(1+28)2=145.变式训练根据如图所示的伪代码,可以输出的结果S 为 W. I ←1 DoS←2I+3 Until I ≥8 End Do Print S 答案:21解析:I =1,第一次循环,I =3,S =9;第二次循环,I =5,S =13;第三次循环,I =7,S =17;第四次循环,I =9,S =21;退出循环,故输出的结果为21., 3 算法的综合运用), 3) 执行如图所示的算法流程图,则输出的结果是 W.答案:-1解析:由流程图知循环体执行8次,第1次循环S =12,n =2;第2次循环S =-1,n=3;第3次循环S =2,n =4,…,第8次循环S =-1,n =9.变式训练(2017·苏锡常镇二模)下图是一个求前n 个自然数平方和的算法流程图,若输入x 的值为1,则输出S 的值为 W.解析:模拟执行程序,可得,输入x 的值为1, S =1, 不满足条件S >5,x =2,S =5;不满足条件S >5,x =3,S =14;满足条件S >5,退出循环,输出S 的值为14.1. (2017·扬州期末)如图是一个求函数值的算法流程图,若输入的x 的值为5,则输出的y 的值为 W.答案:-15解析:由题意,y =⎩⎪⎨⎪⎧2x -3,x<0,5-4x ,x ≥0,当x =5时,y =5-4×5=-15,所以输出的y 的值为-15.2. (2017·南京、盐城一模)如图是一个算法流程图,则输出的x 的值是 W.答案:9解析:由题意,x =1,y =9,x <y ,第1次循环,x =5,y =7,x <y ;第2次循环,x =9,y =5,x >y ,退出循环,输出9.3. (2017·苏州期末)阅读下面的流程图,如果输出的函数f (x )的值在区间⎣⎢⎡⎦⎥⎤14,12内,那么输入的实数x 的取值范围是 W.答案:[-2,-1]解析:由题意,f (x )=⎩⎪⎨⎪⎧2x,x ∈[-2,2],2,x ∉[-2,2],当f (x )∈⎣⎢⎡⎦⎥⎤14,12时,⎩⎪⎨⎪⎧x∈[-2,2],2x ∈⎣⎢⎡⎦⎥⎤14,12,所以⎩⎪⎨⎪⎧x∈[-2,2],x ∈[-2,-1],所以输入的实数x 的取值范围是[-2,-1]. 4. (2017·南通、泰州一调)如图是一个算法的流程图,则输出的n 的值为 W.答案:5解析:由题意,n =1,a =1,第1次循环,a =5,n =3,满足a <16,第2次循环,a =17,n =5,不满足a <16,退出循环,输出的n 的值为5.5. (2017·苏北四市期末)根据如图所示的伪代码,则输出S 的值为 W. S ←0 I ←1While I ≤5 I←I+1 S←S+I End While Print S 答案:20解析:第一次I =1,满足条件I≤5,I =1+1=2,S =0+2=2; 第二次I =2,满足条件I≤5,I =2+1=3,S =2+3=5; 第三次I =3,满足条件I≤5,I =3+1=4,S =5+4=9;第四次I =4,满足条件I≤5,I =4+1=5,S =9+5=14; 第五次I =5,满足条件I≤5,I =5+1=6,S =14+6=20; 第六次I =6,不满足条件I≤5,循环终止,输出S =20.1. 运行如图所示的伪代码,其结果为W. S ←1For I From 1 To 7 Step 2 S←S+I End For Print S 答案:17解析:题设伪代码的循环体执行如下:S =1+1+3+5+7=17.2. (2017·无锡期末)根据如图所示的伪代码可知,输出的结果为 W. i ←1 S ←-2While i <8 i←i+2 S←3i+S End While Print S 答案:70解析:第一次i =1,满足条件i <8,i =1+2=3,S =3×3-2=7; 第二次i =3,满足条件i <8,i =3+2=5,S =3×5+7=22; 第三次i =5,满足条件i <8,i =5+2=7,S =3×7+22=43; 第四次i =7,满足条件i <8,i =7+2=9,S =3×9+43=70; 第五次i =9,不满足条件i <8,循环终止,输出S =70.3. (2017·北京卷)执行如图所示的程序框图,输出s 的值为 W.答案:53解析:k =0,s =1,满足k<3;k =1,s =1+11=2,满足k<3;k =2,s =2+12=32,满足k<3;k =3,s =32+132=53,不满足k<3,故输出s 的值为53.4. (2017·全国卷Ⅰ)下面程序框图是为了求出满足3n-2n>1 000的最小偶数n,那么在两个空白框中,可以分别填入W.(填序号)① A>1 000和n←n+1;② A>1 000和n←n+2;③ A≤1 000和n←n+1;④ A≤1 000和n←n+2.答案:④解析:根据程序框图可知,判断框中如果满足条件则再次进入循环,不满足则结束循环,所以不能填“A>1 000”,只能填“A≤1 000”.由于要求解的是最小偶数n,而n的初始值为0,所以处理框中应填“n←n+2”.1. 求解伪代码问题的基本思路关键是理解基本算法语言.在一个赋值语句中,只能给一个变量赋值,同一个变量的多次赋值的结果以算法顺序的最后一次为准.对于条件语句要注意准确判断和语句格式的完整性理解.对于循环语句,要注意是当型循环,还是直到型循环,弄清何时退出循环.2. 注意算法与其他知识的综合交汇,特别是用流程图来设计数列的求和是高考的常考题型.数列的求和计算问题是典型的算法问题,要求能看懂流程图和伪代码,能把流程图或伪代码转化为数列问题,体现了化归的思想方法.[备课札记]第2课时 统 计 初 步(对应学生用书(文)156~158页、(理)161~162页)1. (必修3P 47练习2改编)为了解1 200名学生对学校某项教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样的方法,则分段间隔k 为 W.答案:40解析:k =N n =1 20030=40.2. (必修3P 49练习4改编)某中学三个年级共240人,其中七年级100人,八年级80人,九年级60人,为了了解初中生的视力状况,抽查12人参加体检,应采用 W.(填序号)① 简单随机抽样法;② 系统抽样法;③ 分层抽样法. 答案:③解析:学生视力会随年级的不同而变化,应用分层抽样法.3. (必修3P 62习题2改编)一个容量为20的样本数据分组后,组距与频数如下:(10,20],2;(20,30],3;(30,40],4;(40,50],5;(50,60],4;(60,70],2.则样本在(10,50]上的频率为 W.答案:0.7解析:样本在(10,50]上的频数为2+3+4+5=14,故频率为14÷20=0.7.4. (必修3P 68练习3改编)某校举行歌咏比赛,7位评委给各班演出的节目评分,去掉一个最高分,再去掉一个最低分后,所得平均分作为该班节目的实际得分.对于某班的演出,7位评委的评分分别为9.65,9.70,9.68,9.75,9.72,9.65,9.78,则这个班节目的实际得分是 W.答案:9.70解析:x =15×(9.65+9.70+9.68+9.75+9.72)=9.70.5. (必修3P 71练习4改编)甲、乙、丙、丁四人参加奥运会射击项目选拔赛,四人的平均成绩和方差如下表:从这四个人中选择一人参加奥运会射击项目比赛,最佳人选是 W. 答案:丙解析:乙与丙的平均成绩好于甲与丁的平均成绩,而且丙的方差小于乙的方差,说明丙的成绩比乙稳定,所以应派丙参加比赛.1. 简单随机抽样 (1) 定义从个体数为N 的总体中逐个不放回地取出n 个个体作为样本(n<N ),如果每个个体都有相同的机会被取到,那么这样的抽样方法称为简单随机抽样.(2) 分类简单随机抽样⎩⎪⎨⎪⎧抽签法,随机数表法W.2. 系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本,系统抽样的步骤为: (1) 采用随机的方式将总体中的N 个个体编号;(2) 将编号按间隔k 分段,当N n 是整数时,取k =N n ;当Nn不是整数时,从总体中剔除一些个体,使剩下的总体中个体的个数N′能被n 整除,这时取k =N′n,并将剩下的总体重新编号;(3) 在第一段中用简单随机抽样确定起始的个体编号l ;(4)按照一定的规则抽取样本,通常将编号为l ,l +k ,l +2k ,…,l +(n -1)k 的个体抽出.3. 分层抽样当总体由差异明显的几个部分组成时,为了使样本更客观地反映总体情况,我们常常将总体中的个体按不同的特点分成层次比较分明的几个部分,然后按各个部分在总体中所占的比实施抽样,这种抽样方法叫分层抽样.4. 绘制频率分布表的步骤(1) 求全距,决定组数和组距,组距=全距组数;(2) 分组,通常对组内数值所在区间取左闭右开区间,最后一组取闭区间; (3) 登记频数,计算频率,列出频率分布表. 5. 作频率分布直方图的方法(1) 先制作频率分布表,然后作直角坐标系.(2) 把横轴分成若干段,每一线段对应1个组的组距,然后以此线段为底作矩形,它的高等于该组的频率组距,这样得出一系列的矩形W.(3) 每个矩形的面积恰好是该组的频率,这些矩形就构成了频率分布直方图. 6. 茎叶图茎相同者共用一个茎(如两位数中的十位数),茎按从小到大的顺序从上向下列出,共茎的叶(如两位数中的个位数)一般按从小到大(或从大到小)的顺序同行列出.这样将样本数据有条理地列出来的图形叫做茎叶图.其优点是当样本数据较少时,茎叶图可以保留样本数据的所有信息,直观反映出数据的水平状况、稳定程度,且便于记录和表示;缺点是对差异不大的两组数据不易分析,且样本数据很多时效果不好.7. 平均数、标准差和方差设一组样本数据x 1,x 2,…, x n ,其平均数为x -,则x -=x 1+x 2+…+x n n,称s2=为这个样本的方差,其算术平方根s =为这个样本的标准差W.[备课札记], 1 抽样), 1) (2017·南通三模)为调查某高校学生对“一带一路”政策的了解情况,现采用分层抽样的方法抽取一个容量为500的样本.其中大一年级抽取200人,大二年级抽取100人.若其他年级共有学生3 000人,则该校学生总人数是 W.答案: 7 500解析:设该校学生总人数为n ,则1-200+100500=3 000n,解得n =7 500.变式训练某单位有840名职工,现采用系统抽样的方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为 W.答案:12解析:抽样间隔为84042=20.设在1,2,…,20中抽取号码x 0(x 0∈[1,20]),在[481,720]之间抽取的号码记为20k +x 0,则481≤20k+x 0≤720,k ∈N *.∴ 24120≤k +x 020≤36.∵ x 020∈⎣⎢⎡⎦⎥⎤120,1,∴ k =24,25,26,…,35, ∴ k 的值共有35-24+1=12(个),即所求人数为12. , 2 频率分布直方图), 2) (2017·扬州考前调研)随着社会的发展,食品安全问题渐渐成为社会关注的热点,为了提高学生的食品安全意识,某学校组织全校学生参加食品安全知识竞赛,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100].若该校的学生总人数为3 000,则成绩不超过60分的学生人数大约为 W.答案:900解析:由图知,成绩不超过60分的学生的频率为(0.005+0.01)×20=0.3,所以成绩不超过60分的学生人数大约为0.3×3 000=900.变式训练为了了解居民家庭网上购物消费情况,某地区调查了10 000户家庭的月消费额(单位:元),所有数据均在区间[0,4 500]内,其频率分布直方图如图所示,则被调查的10 000户家庭中,有 户月消费额在1 000元以下.答案:750解析:月消费额在1 000元以下的频率为0.000 15×500=0.075,总户数为10 000,则所求的户数为10 000×0.075=750., 3 样本的数字特征), 3) (2017·南京三模)如图是甲、乙两名篮球运动员在五场比赛中所得分数的茎叶图,则在这五场比赛中得分较为稳定(方差较小)的那名运动员得分的方差为 W.答案:6.8解析:由茎叶图知,得分较为稳定的那名运动员是乙,他在五场比赛中得分分别为8,9,10,13,15,所以他的平均得分x 乙=8+9+10+13+155=11,他的方差s 2乙=(8-11)2+(9-11)2+(10-11)2+(13-11)2+(15-11)25=6.8.变式训练(2017·南通、泰州一调)抽样统计甲、乙两名学生的5次训练成绩(单位:分),结果如下:学生 第1次 第2次 第3次 第4次 第5次 甲 65 80 70 85 75 乙 80 70 75 80 70则成绩较为稳定(方差较小)的那名学生的成绩的方差为 W答案:20分2解析:根据表格知,成绩较为稳定(方差较小)的那名学生是乙,x 乙=15×(80+70+75+80+70)=75(分),其方差s 2乙=15×[(80-75)2+(70-75)2+(75-75)2+(80-75)2+(70-75)2]=20(分2).1. (2017·苏州期末)用分层抽样的方法从某高中学生中抽取一个容量为45的样本,其中高一年级抽20人,高三年级抽10人,已知该校高二年级共有学生300人,则该校学生的总人数为 W.答案:900解析:样本中高二年级抽45-20-10=15(人),设该校学生的总人数为n ,则45n =15300,所以n =900.2. (2017·苏北三市三模)已知一组数据3,6,9,8,4,则该组数据的方差是 W.答案:265(或5.2)解析:x =15×(3+6+9+8+4)=6,s 2=15×[(3-6)2+(6-6)2+(9-6)2+(8-6)2+(4-6)2]=265=5.2.3. 为了解一批灯泡(共5 000只)的使用寿命,从中随机抽取了100只进行测试,其使用寿命(单位:h )如下表:使用寿命 [500,700) [700,900) [900,1 100) [1100,1300)[1 300,1500]只数 5 23 44 25 3的灯泡约有 只.答案:1 400解析:使用寿命不低于1 100 h 的灯泡约有25+3100×5 000=1 400(只).4. (2017·苏锡常镇二模)下表是一个容量为10的样本数据分组后的频数分布.若利用组中值近似计算本组数据的平均数x ,则x 的值为 W.数据 [12.5,15.5) [15.5,18.5) [18.5,21.5) [21.5,24.5) 频数 2 1 3 4 解析:x =110×(14×2+17×1+20×3+23×4)=19.7.5. 随机抽取100名年龄在[10,20),[20,30),…,[50,60]年龄段的市民进行问卷调查,由此得到样本的频率分布直方图如图所示,从不小于40岁的人中按年龄段分层抽样的方法随机抽取8人,则在[50,60]年龄段抽取的人数为 W.答案:2解析:不小于40岁的人数为100×(0.015+0.005)×10=20,在[50,60]年龄段的人数为100×0.005×10=5,设在[50,60]年龄段抽取的人数为x ,则820=x5,则x =2.1. (2017·南京、盐城二模)下表是关于青年观众的性别与是否喜欢戏剧的调查数据,人数如表:不喜欢戏剧 喜欢戏剧 男性青年观众 40 10 女性青年观众 40 60现要在所有参与调查的人中用分层抽样的方法抽取n 个人做进一步的调研,若在“不喜欢戏剧的男性青年观众”中抽取了8人,则n 的值为 W.答案:30解析:由题意得840=n40+10+40+60,解得n =30.2. 某班共有52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号、29号、42号学生在样本中,那么样本中还有一个学生的学号是 W.答案:16解析:根据系统抽样的方法和特点,知样本的编号成等差数列,一个容量为4的样本,已知3号、29号、42号学生在样本中,故此等差数列的公差为13,故还有一个学生的学号是16.3. (2017·苏北四市期末)某次比赛甲得分的茎叶图如图,若去掉一个最高分,去掉一个最低分,则剩下4个分数的方差为 W.答案:14解析:剩下的4个分数是42,44,46,52,这4个数的平均数是46,方差是14×[(42-46)2+ (44-46)2+ (46-46)2+ (52-46)2]=14.4. 如图所示,一家面包销售店根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图.若一个月以30天计算,估计这家面包店一个月内日销售量不少于150个的天数为 W.答案:9 解析:(0.004+0.002)×50×30=9.5. (2017·山东卷)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为 、 W.答案:3 5解析:由茎叶图知,甲组的中位数为65,当乙组的中位数也为65时,y =5,此时乙组的平均数为59+61+65+67+785=66,所以甲组中的未知数为66×5-(56+65+62+74)=73,所以x =3.1. 总体分布反映的是总体在各个范围内取值的比例情况,而这种分布一般是不清晰的,所以用样本的分布估计总体分布,解频率分布表问题的关键是正确理解频率分布表,注意区分频数、频率的意义.2. 对于个体所取不同数值较少的总体,常用条形统计图表示其样本分布,而对于个体所取不同数值较多或无限的总体,常用频率分布直方图表示其样本分布.解频率分布直方图问题,识图掌握信息是关键,特别要注意纵、横坐标所代表的意义及单位.3. 描述数据数字特征的有平均数、众数、中位数、方差等,其中平均数、众数、中位数描述其集中趋势,方差反映各个数据与其平均数的离散程度.解题时重在理解概念、公式并正确进行计算.[备课札记]第3课时 古典概型(1) (对应学生用书(文)159~162页、(理)163~165页)1. (必修3P 94练习2改编)下列事件是随机事件的有 W.(填序号) ① 若a ,b ,c 都是实数,则a·(b·c)=(a·b)·c; ② 没有空气和水,人也可以生存下去; ③ 掷一枚硬币,出现反面;④ 在标准大气压下,水的温度达到90 ℃时沸腾. 答案:③解析:①为必然事件,③为随机事件,②④为不可能事件.2. (必修3P 97练习1改编)某地气象局预报说,明天本地降雨的概率为80%,则下列解释正确的是 W.(填序号)① 明天本地有80%的区域降雨,20%的区域不降雨; ② 明天本地有80%的时间降雨,20%的时间不降雨; ③ 明天本地降雨的可能性是80%; ④ 以上说法均不正确. 答案:③解析:本题主要考查对概率的意义的理解.选项①②显然不正确,因为80%的概率是指降雨的概率,而不是指80%的区域降雨,更不是指有80%的时间降雨,是指降雨的可能性是80%.3. (必修3P 101例3改编)同时投掷两枚大小相同的骰子,用(x ,y )表示结果,记A 为“所得点数之和小于5”,则事件A 包含的基本事件有 个.答案:6解析:由题意知,事件A 包含的基本事件有(1,1),(1,2),(1,3),(2,1),(2,2),(3,1),共6个.4. (必修3P 103练习6改编)从A ,B ,C 三名同学中选2名为代表,则A 被选中的概率为 W.答案:23解析:从A ,B ,C 三名同学中选2名为代表,有AB ,AC ,BC 三种可能,则A 被选中的概率为23.5. (必修3P 94练习4改编)从16个同类产品(其中有14个正品,2个次品)中任意抽取3个,则下列事件中概率为1的是 W.(填序号)① 三个都是正品; ② 三个都是次品;③ 三个中至少有一个是正品; ④ 三个中至少有一个是次品. 答案:③解析:16个同类产品中,只有2个次品,从中抽取三件产品,则①是随机事件,②是不可能事件,③是必然事件,④是随机事件.又必然事件的概率为1,所以答案为③.1. 确定性现象与随机现象(1) 定义:对于某个现象,如果能让其条件实现1次,那么就是进行了1次试验,而试验的每一种可能的结果,都是一个事件W.(2) 分类一般地,对于给定的随机事件A ,在相同条件下,随着试验次数的增加,事件A 发生的频率会在某个常数附近摆动并趋于稳定,我们可以用这个常数来刻画随机事件A 发生的可能性大小,并把这个常数称为随机事件A 的概率,记作P (A )W.(1) 有界性:对任意事件A ,有0≤P(A )≤1W.(2) 规范性:若Ω,Ø分别代表必然事件和不可能事件,则P (Ω)=1,P (Ø)=0W.4. 事件(1) 基本事件:在1次试验中可能出现的每一个基本结果W.(2) 等可能基本事件:若在1次试验中,每个基本事件发生的可能性都相同,则称这些基本事件为等可能基本事件.5. 古典概型的特点(1) 所有的基本事件只有有限个;(2) 每个基本事件的发生都是等可能的W. 6. 古典概型的计算公式如果1次试验的等可能基本事件共有n 个,那么每一个等可能基本事件发生的概率都是1n W.如果某个事件A 包含了其中m 个等可能基本事件,那么事件A 发生的概率为P (A )=m n,即P (A )=事件A 包含的基本事件数试验的基本事件总数.[备课札记], 1 随机事件的频率与概率), 1) (2017·全国卷Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25 ℃,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20 ℃,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得到下面的频数分布表:(1) 估计六月份这种酸奶一天的需求量不超过300瓶的概率; (2) 设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y 大于零的概率.解: (1) 当且仅当最高气温低于25 ℃时,这种酸奶一天的需求量不超过300瓶,由表格数据知,最高气温低于25 ℃的频率为2+16+3690=0.6,所以六月份这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6.(2) 当这种酸奶一天的进货量为450瓶时,若最高气温不低于25 ℃,则Y =6×450-4×450=900; 若最高气温位于区间[20,25),则Y =6×300+2×(450-300)-4×450=300; 若最高气温低于20 ℃,则Y =6×200+2×(450-200)-4×450=-100. 所以,Y 的所有可能值为900,300,-100.Y 大于零是在最高气温不低于20 ℃时,由表格中数据知,最高气温不低于20 ℃的频率为36+25+7+490=0.8,因此Y 大于零的概率的估计值为0.8.备选变式(教师专享)有一个容量为66的样本,数据的分组及各组的频数如下:)的概率约是 .答案:611解析:根据数据分组,数据落在[5.5,9.5)的频率为16+2066=611,用频率估计概率,所以数据落在[5.5,9.5)的概率约是611., 2 简单的古典概型问题), 2) 先后抛掷两枚质地均匀的骰子,求: (1) 向上的点数之和是4的倍数的概率;(2) 向上的点数之和大于5且小于10的概率. 解:从图中容易看出,基本事件共36个.(1) 记“点数之和是4的倍数”的事件为A ,从图中可以看出,事件A 包含的基本事件为(1,3),(2,2),(2,6),(3,1),(3,5),(4,4),(5,3),(6,2),(6,6),共9个,所以P (A )=936=14. (2) 记“点数之和大于5且小于10”的事件为B ,从图中可以看出,事件B 包含的基本事件为(1,5),(1,6),(2,4),(2,5),(2,6),(3,3),(3,4),(3,5),(3,6),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(6,1),(6,2),(6,3),共20个,所以P (B )=2036=59. 变式训练用大小完全相同的黑、白两种颜色的正六边形积木拼成如图所示的图案,按此规律再拼5个图案,并将这8个图案中的所有正六边形积木充分混合后装进一个盒子中,现从盒子中随机取出一个积木,则取出黑色积木的概率是 W.答案:949解析:由图案的规律可知:黑色积木共有1+2+3+…+8=36(个),白色积木共有6+(6+4)+(6+4×2)+…+(6+4×7)=160(个),则黑、白两种颜色的正六边形积木共有196个,则取出黑色积木的概率为36196=949. , 3 古典概型与统计的综合), 3) 20名学生某次数学考试成绩(单位:分)的频率分布直方图如图所示.(1) 求频率分布直方图中a 的值;(2) 分别求出成绩落在[50,60)与[60,70)中的学生人数;(3) 从成绩在[50,70)的学生中任选2人,求此2人的成绩都在[60,70)中的概率.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考点规范练52 变量间的相关关系、统计案例
基础巩固
1.根据如下样本数据:
得到的回归方程为x+,则()
A.>0,>0
B.>0,<0
C.<0,>0
D.<0,<0
2.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是()
A.若χ2的值为6.635,则有99%的把握认为吸烟与患肺病有关系,因此在100个吸烟的人中必有99个患有肺病
B.由独立性检验知,当有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,则他有99%的可能患肺病
C.有99%的把握认为吸烟与患肺病有关系,是指有1%的可能性使得推断出现错误
D.以上三种说法都不正确
3.为研究语文成绩和英语成绩之间是否具有线性相关关系,统计两科成绩得到如图所示的散点图
(两坐标轴单位长度相同),用回归直线x+近似地刻画其相关关系,根据图形,以下结论最有可能成立的是()
A.线性相关关系较强,b的值为3.25
B.线性相关关系较强,b的值为0.83
C.线性相关关系较强,b的值为-0.87
D.线性相关关系太弱,无研究价值
4.两个随机变量x,y的取值如下表:
若x,y具有线性相关关系,且x+2.6,则下列四个结论错误的是()
A.x与y是正相关
B.当x=6时,y的估计值为8.3
C.x每增加一个单位,y大约增加0.95个单位
D.样本点(3,4.8)的残差为0.56
5.2017年春节期间,“厉行节约,反对浪费”之风悄然吹开,某市通过随机询问100名性别不同的居民是否能做到“光盘”行动,得到如下的列联表:
则下面的正确结论是()
A.有99%的把握认为“该市居民能否做到‘光盘’与性别有关”
B.有99%的把握认为“该市居民能否做到‘光盘’与性别无关”
C.有95%的把握认为“该市居民能否做到‘光盘’与性别有关”
D.有95%的把握认为“该市居民能否做到‘光盘’与性别无关”
6.(2017山东潍坊二模)某公司未来对一种新产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
由表中数据,求得线性回归方程为=-4x+,当产品销量为76件时,产品定价大致为
元.
7.某单位为了了解用电量y(单位:千瓦时)与气温x(单位:℃)之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:
气温/℃18 13 10 -1
用电量/千瓦时24 34 38 64
由表中数据得回归直线方程x+=-2,预测当气温为-4 ℃时,用电量的千瓦时数约
为.
8.从某居民区随机抽取10个家庭,获得第i个家庭的月收入x i(单位:千元)与月储蓄y i(单位:千元)的数据资料,算得x i=80,y i=20,x i y i=184,=720.
(1)求家庭的月储蓄对月收入x的线性回归方程x+;
(2)判断变量x与y之间是正相关还是负相关;
(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.
能力提升
9.通过随机询问110名性别不同的学生是否爱好某项运动,得到如下的列联表:
总计60 50 110
附表:
P(χ2>k0) 0.050 0.010
k03.841 6.635
参照附表,得到的正确结论是()
A.有99%的把握认为“爱好该项运动与性别有关”
B.有99%的把握认为“爱好该项运动与性别无关”
C.有95%的把握认为“爱好该项运动与性别有关”
D.有95%的把握认为“爱好该项运动与性别无关”
10.已知x与y之间的几组数据如下表:
假设根据上表数据所得线性回归直线方程x+,若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为y=b'x+a',则以下结论正确的是()
A.>b',>a'
B.>b',<a'
C.<b',>a'
D.<b',<a'
11.有甲、乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩,得到如下的列联表:
总计
已知在全部105人中随机抽取1人,成绩优秀的概率为,则下列说法正确的是.
①列联表中c的值为30,b的值为35
②列联表中c的值为15,b的值为50
③根据列联表中的数据,有95%的把握认为“成绩与班级有关系”
④根据列联表中的数据,有95%的把握不能认为“成绩与班级有关系”
高考预测
12.(2017宁夏石嘴山第三中学模拟)为推行“新课堂”教学法,某化学老师分别用传统教学和“新课堂”两种不同的教学方式,在甲、乙两个平行班进行教学实验,为了解教学效果,期中考试后,分别从两个班级中各随机抽取20名学生的成绩进行统计,作出的茎叶图如下图,记成绩不低于70分者为“成绩优良”.
(1)分别计算甲、乙两班20个样本中,化学成绩前十的平均分,并据此判断哪种教学方式的教学效果更佳;
(2)由以上统计数据填写下面2×2列联表,是否有95%的把握认为“成绩优良与教学方式有关”?
附:
P(χ2>k0) 0.05 0.010
k03.841 6.635
χ2=.
参考答案
考点规范练52变量间的相关关系、统计案例
1.B解析由表中数据画出散点图,如图,
由散点图可知<0,>0,故选B.
2.C解析独立性检验只表明两个分类变量的相关程度,而不是事件是否发生的概率估计.
3.B解析依题意,注意到题中的相关的点均集中在某条直线的附近,且该直线的斜率小于1,结合各选项知,应选B.
4.D解析由表格中的数据可知选项A正确;
∵(0+1+3+4)=2,(2.2+4.3+4.8+6.7)=4.5,∴4.5=2+2.6,即
=0.95,∴=0.95x+2.6.
当x=6时,=0.95×6+2.6=8.3,故选项B正确;
由=0.95+2.6可知选项C正确;
当x=3时,=0.95×3+2.6=5.45,残差是5.45-4.8=0.65,故选项D错误.
5.A解析由2×2列联表得到a=45,b=10,c=25,d=20,则
a+b=55,c+d=45,a+c=70,b+d=30,ad=900,bc=250,n=100,计算得χ2=≈8.129.
因为8.129>6.635,有99%的把握认为“该市居民能否做到‘光盘’与性别有关”,故选A.
6.7.5解析∵=6.5,=80,∴=80-(-4)×6.5,解得=106,∴回归方程为=-4x+106.
当y=76时,76=-4x+106,∴x=7.5,故答案为7.5.
7.68解析=10,=40,
∵回归直线方程过点(),∴40=-2×10+.
∴=60.∴=-2x+60.
令x=-4,得=(-2)×(-4)+60=68.
8.解(1)由题意知n=10,x i==8,y i==2,
又-n=720-10×82=80,
x i y i-n=184-10×8×2=24,
由此得=0.3,=2-0.3×8=-0.4,
故所求线性回归方程为=0.3x-0.4.
(2)由于变量y的值随x值的增加而增加(=0.3>0),故x与y之间是正相关.
(3)将x=7代入回归方程可以预测该家庭的月储蓄为=0.3×7-0.4=1.7(千元).
9.A解析依题意,由χ2=,
得χ2=≈7.8.
因为7.8>6.635,所以有99%的把握认为“爱好该项运动与性别有关”,故选A. 10.C解析由题意可知,
b'=2,a'=-2,.
=-,
故<b',>a',选C.
11.③解析由题意知,成绩优秀的学生数是30,成绩非优秀的学生数是75,所以c=20,b=45,①②错误.
根据列联表中的数据,得到χ2=≈6.6>3.841,
因此在犯错误的概率不超过0.025的前提下认为“成绩与班级有关系”.故③正确,④错误. 12.解(1)甲班化学成绩前十的平均分
(72+74+74+79+79+80+81+85+89+96)=80.9;
乙班化学成绩前十的平均分
(78+80+81+85+86+93+96+97+99+99)=89.4.
∵,∴大致可以判断新课堂教学的教学效果更佳.
(2)
根据2×2列联表中的数据,
得χ2=≈3.956>3.841,
∴有95%的把握认为“成绩优良与教学方式有关”.。

相关文档
最新文档