2019年高考数学分类汇编:算法初步

合集下载

专题11算法初步-2019年高考真题和模拟题分项汇编数学(文)(原卷版)

专题11算法初步-2019年高考真题和模拟题分项汇编数学(文)(原卷版)

Evaluation Only. Created with Aspose.PDF. Copyright 2002-2020 Aspose Pty Ltd.专题 11算法初步1.【 2019 年高考天津卷文数】阅读下面的程序框图,运转相应的程序,输出S 的值为A . 5B .8C. 24 D. 292.【 2019 年高考北京卷文数】履行如下图的程序框图,输出的s 值为A . 1B .2C. 3 D. 4Evaluation Only. Created with Aspose.PDF. Copyright 2002-2020 Aspose Pty Ltd.13.【 2019 年高考全国Ⅰ卷文数】如图是求2 1 的程序框图,图中空白框中应填入2 12A .A1B .A1 A22 AC.A1D.A12 A11 2 A4.【 2019 年高考全国Ⅲ卷文数】履行下面的程序框图,假如输入的为0.01,则输出s的值等于A .21B .21 24 25C.21D.21 26 275.【 2019 年高考江苏卷】下列图是一个算法流程图,则输出的S 的值是 ______________.Evaluation Only. Created with Aspose.PDF. Copyright 2002-2020 Aspose Pty Ltd.6.【天津市和平区2018-2019学年度第二学期高三年级第三次质量检查】在如下图的计算1 5 9 L2017 的程序框图中,判断框内应填入的条件是A .i 2017?B .i 2017?C.i 2013? D.i 2021?7.【吉林省长春市北京师范大学长春市隶属中学2019 届高三第四次模拟考试】依据如下图的程序框图,当输入的 x 值为3时,输出的y 值等于eA . 1B .C.e1 D.e28.【西南名校结盟重庆市第八中学2019 届高三 5 月高考适应性月考卷(六) 】履行如下图的程序框图,则输出的值为A . 4B .5C. 6 D. 79.【山东省济宁市2019 届高三二模】阅读如下图的程序框图,运转相应的程序,输出的S 的值等于A.30 B .31C. 62 D. 6310.【辽宁省大连市2019 届高三第二次模拟考试】履行如下图的程序框图,若输出结果为1,则可输入的实数 x 值的个数为A .1B .2 C. 3 D. 411.【江西省新八校2019 届高三第二次联考】如下图的程序框图所实现的功能是A .输入a的值,计算(a 1) 32021 1 的值B.输入a的值,计算(a 1) 32020 1 的值C.输入a的值,计算(a 1) 32019 1 的值D .输入a的值,计算(a 1) 32018 1的值12.【山西省 2019 届高三考前适应性训练(二模)】履行如下图的程序框图,则输出x 的值为1A .2B .31D.3C.213.【青海省西宁市第四高级中学、第五中学、第十四中学三校2019 届高三 4 月联考】若某程序框图如图所示,则该程序运转后输出的值是A .5B.4C. 3D.214.【江苏省七市 (南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019 届高三第三次调研】下列图是一个算法流程图.若输出的值为 4,则输入x 的值为______________.第 14题图第 15题图15.【北京市人大附中2019 届高三高考信息卷(三 )】履行如下图的程序框图,若输入 x 值知足 2 x 4,则输出 y 值的取值范围是______________.。

2019高考复习文数通用版:第十六单元 算法初步、复数、推理与证明

2019高考复习文数通用版:第十六单元  算法初步、复数、推理与证明

第十六单元 算法初步、复数、推理与证明教材复习课“算法初步、复数、推理与证明”相关基础知识一课过三种基本逻辑结构1.(2018·成都质检)阅读如图所示的程序框图,运行相应的程序,则输出的结果是( )A .-3B .0 C. 3D .336 3解析:选C 由框图知输出的结果 s =sin π3+sin 2π3+…+sin 2 018π3,因为函数y =sin π3x 的周期是6,所以s =336⎝⎛⎭⎫sin π3+sin 2π3+…+sin 6π3+sin π3+sin 2π3=336×0+32+32= 3. 2.执行如图所示的程序框图.若输出y =-3,则输入的角θ=( )A.π6 B .-π6C.π3D .-π3解析:选D 由输出y =-3<0,排除A 、C ,又当θ=-π3时,输出y =-3,故选D.3.执行如图所示的程序框图,已知输出的s ∈[0,4],若输入的t ∈[m ,n ],则实数n -m 的最大值为( )A .1B .2C .3D .4解析:选D 由程序框图得s =⎩⎪⎨⎪⎧3t ,t <1,4t -t 2,t ≥1,作出s 的图象如图所示.若输入的t ∈[m ,n ],输出的s ∈[0,4],则由图象得n -m 的最大值为4.4.某程序框图如图所示,若输出的p 值为31,则判断框内应填入的条件是( )A .n >2?B .n >3?C .n >4?D .n >5?解析:选B 运行程序:p =1,n =0;n =1,p =2;n =2,p =6;n =3,p =15;n =4,p =31,根据题意,此时满足条件,输出p =31,即n =3时不满足条件,n =4时满足条件,故选B.[清易错]某程序框图如图所示,若该程序运行后输出的值是74,则a =________.解析:由已知可得该程序的功能是计算并输出S =1+11×2+12×3+…+1a (a +1)=1+1-12+12-13+…+1a -1a +1=2-1a +1.若该程序运行后输出的值是74,则2-1a +1=74, 解得a =3.答案:31.复数的有关概念复数集C 和复平面内所有的点组成的集合是一一对应的,复数集C 与复平面内所有以原点O 为起点的向量组成的集合也是一一对应的,即(1)复数z =a +b i 一一对应复平面内的点Z (a ,b )(a ,b ∈R). (2)复数z =a +b i(a ,b ∈R)一一对应平面向量OZ ―→. 3.复数的运算设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R),则 ①加法:z 1+z 2=(a +b i)+(c +d i)=(a +c )+(b +d )i ; ②减法:z 1-z 2=(a +b i)-(c +d i)=(a -c )+(b -d )i ; ③乘法:z 1·z 2=(a +b i)·(c +d i)=(ac -bd )+(ad +bc )i ; ④除法:z 1z 2=a +b i c +d i =(a +b i )(c -d i )(c +d i )(c -d i )=ac +bd +(bc -ad )ic 2+d 2(c +d i ≠0).[小题速通]1.(2016·全国卷Ⅲ)若z =4+3i ,则z |z |=( ) A .1B .-1C.45+35iD.45-35i 解析:选D ∵z =4+3i ,∴z =4-3i ,|z |=42+32=5, ∴z |z |=4-3i 5=45-35i. 2.若复数z 满足(1+i)z =|3+i|,则在复平面内,z 对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选A 由题意,得z =(3)2+121+i =2(1-i )(1+i )(1-i )=1-i ,所以z =1+i ,其在复平面内对应的点为(1,1),位于第一象限.3.复数2i1+i (i 为虚数单位)实部与虚部的和为( )A .2B .1C .0D .-2解析:选A 因为2i 1+i =2i (1-i )(1+i )(1-i )=1+i ,所以复数2i1+i (i 为虚数单位)实部与虚部的和为2.4.已知(1+2i)z =4+3i ,则z =________. 解析:∵z =4+3i 1+2i =(4+3i )(1-2i )(1+2i )(1-2i )=10-5i5=2-i ,∴z =2+i. 答案:2+i[清易错]1.利用复数相等a +b i =c +d i 列方程时,注意a ,b ,c ,d ∈R 的前提条件. 2.注意不能把实数集中的所有运算法则和运算性质照搬到复数集中来.例如,若z 1,z 2∈C ,z 21+z 22=0,就不能推出z 1=z 2=0;z 2<0在复数范围内有可能成立.1.已知4+m i1+2i ∈R ,且m ∈R ,则|m +6i|=( )A .6B .8C .8 3D .10解析:选D4+m i 1+2i =(4+m i )(1-2i )(1+2i )(1-2i )=4+2m +(m -8)i5,因为复数4+m i1+2i ∈R ,故m =8,所以|m +6i|=|8+6i|=10.2.已知5i2-i =a +b i(a ,b ∈R ,i 为虚数单位),则a +b =______.解析:5i 2-i =5i (2+i )(2-i )(2+i )=-1+2i , 由5i 2-i =a +b i ,得-1+2i =a +b i ,∴a =-1,b =2, ∴a +b =1. 答案:11.合情推理(1)定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由一般到特殊的推理.(2)“三段论”是演绎推理的一般模式,包括: ①大前提——已知的一般原理; ②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况作出的判断. [小题速通]1.已知2和3都是无理数,试证:2+3也是无理数,某同学运用演绎推理证明如下:依题设2和3都是无理数,而无理数与无理数之和是无理数,所以2+3必是无理数.这个同学证明是错误的,错误原因是( )A .大前提错误B .小前提错误C .推理形式错误D .以上都可能解析:选A 大前提:无理数与无理数之和是无理数,错误; 小前提:2和3都是无理数,正确; 结论:2+3也是无理数,正确, 故只有大前提错误.2.我们在学习立体几何推导球的体积公式时,用到了祖暅原理:即两个等高的几何体,被等高的截面所截,若所截得的面积总相等,那么这两个几何体的体积相等.类比此方法:求双曲线x 2a 2-y 2b2=1(a >0,b>0)与x 轴,直线y =h (h >0)及渐近线y =ba x 所围成的阴影部分(如图)绕y 轴旋转一周所得的几何体的体积为________.解析:由题意可知,该几何体的横截面是一个圆环,设圆环的外半径与内半径分别为R ,r ,其面积S =π(R 2-r 2).∵x 2a 2-y 2b 2=1⇒R 2=a 2+a 2b2y 2, 同理:r 2=a 2b2y 2,∴R 2-r 2=a 2,由祖暅原理知,此旋转体的体积等价于一个半径为a ,高为h 的柱体的体积,为πa 2h .答案:πa 2h 3.有如下等式: 2+4=6;8+10+12=14+16;18+20+22+24=26+28+30;……以此类推,则2 018出现在第________个等式中. 解析:①2+4=6; ②8+10+12=14+16;③18+20+22+24=26+28+30, ……其规律为:各等式首项分别为2×1,2×(1+3),2×(1+3+5),…,所以第n 个等式的首项为2[1+3+…+(2n -1)]=2×n (1+2n -1)2=2n 2,当n =31时,等式的首项为2×312=1 922, 当n =32时,等式的首项为2×322=2 048, 所以2 018在第31个等式中. 答案:311.直接证明间接证明是不同于直接证明的又一类证明方法,反证法是一种常用的间接证明方法. (1)反证法的定义:假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立的证明方法.(2)用反证法证明的一般步骤: ①反设——假设命题的结论不成立;②归谬——根据假设进行推理,直到推出矛盾为止; ③结论——断言假设不成立,从而肯定原命题的结论成立. [小题速通]1.(2018·成都一模)要证a 2+b 2-1-a 2b 2≤0,只需证明( ) A .2ab -1-a 2b 2≤0 B .a 2+b 2-1-a 4+b 42≤0C.(a +b )22-1-a 2b 2≤0D .(a 2-1)(b 2-1)≥0解析:选D a 2+b 2-1-a 2b 2≤0⇔(a 2-1)(b 2-1)≥0.2.观察(x 2)′=2x ,(x 4)′=4x 3,(cos x )′=-sin x ,由归纳推理可得:若定义在R 上的函数f (x )满足f (-x )=f (x ),记g (x )为f (x )的导函数,则g (-x )=( )A .f (x )B .-f (x )C .g (x )D .-g (x )解析:选D 由所给函数及其导数知,偶函数的导函数为奇函数,因此当f (x )是偶函数时,其导函数应为奇函数,故g (-x )=-g (x ).3.下列命题适合用反证法证明的是________.(填序号) ①已知函数f (x )=a x +x -2x +1(a >1),证明:方程f (x )=0没有负实数根; ②若x ,y ∈R ,x >0,y >0,且x +y >2, 求证:1+x y 和1+yx 中至少有一个小于2; ③关于x 的方程ax =b (a ≠0)的解是唯一的;④同一平面内,分别与两条相交直线垂直的两条直线必相交.解析:①是“否定”型命题,②是“至少”型命题,③是“唯一”型命题,且命题中条件较少,④中条件较少,不足以直接证明,因此四个命题都适合用反证法证明.答案:①②③④一、选择题1.若z =i(3-2i)(其中i 为复数单位),则z =( ) A .3-2i B .3+2i C .2+3iD .2-3i解析:选D 由z =i(3-2i)=2+3i ,得z =2-3i.2.已知i 为虚数单位,a 为实数,复数z =a -3i1-i 在复平面上对应的点在y 轴上,则a 为( )A .-3B .-13C.13D .3解析:选A ∵z =a -3i 1-i =(a -3i )(1+i )(1-i )(1+i )=a +3-(3-a )i2,又复数z =a -3i1-i在复平面上对应的点在y 轴上,∴⎩⎪⎨⎪⎧a +3=0,3-a ≠0,解得a =-3. 3.分析法又称执果索因法,若用分析法证明“设a >b >c ,且a +b +c =0,求证:b 2-ac <3a ”索的因应是( )A .a -b >0B .a -c >0C .(a -b )(a -c )>0D .(a -b )(a -c )<0解析:选Cb 2-ac <3a ⇔b 2-ac <3a 2⇔(a +c )2-ac <3a 2⇔a 2+2ac +c 2-ac -3a 2<0 ⇔-2a 2+ac +c 2<0⇔2a 2-ac -c 2>0⇔(a -c )(2a +c )>0 ⇔(a -c )(a -b )>0.4.[n ]表示不超过 n 的最大整数. 若S 1=[ 1 ]+[ 2 ]+[ 3 ]=3,S 2=[ 4 ]+[ 5 ]+[ 6 ]+[7 ]+[8 ]=10,S 3=[9 ]+[10 ]+[11 ]+[12 ]+[13 ]+[14 ]+[15 ]=21, …… 则S n =( ) A .n (n +2)B .n (n +3)C .(n +1)2-1D .n (2n +1)解析:选D 观察得到:S n 是从n 2开始到(n +1)2(不含)之前共2n +1个n 的和,所以S n 为n (2n +1).即[n 2]+[n 2+1]+[n 2+2]+…+[(n +1)2-1]=n (2n +1). 5.(2017·北京高考)执行如图所示的程序框图,输出的s 值为( )A .2B.32C.53D.85解析:选C 运行该程序,k =0,s =1,k <3; k =0+1=1,s =1+11=2,k <3; k =1+1=2,s =2+12=32,k <3; k =1+2=3,s =32+132=53,此时不满足循环条件,输出s ,故输出的s 值为53.6.若数列{a n }是等差数列,b n =a 1+a 2+…+a nn,则数列{b n }也为等差数列.类比这一性质可知,若正项数列{c n }是等比数列,且{d n }也是等比数列,则d n 的表达式应为( )A .d n =c 1+c 2+…+c nnB .d n =c 1·c 2·…·c nnC .d n = n c n 1+c n 2+…+c nnn D .d n =n c 1·c 2·…·c n解析:选D 因为数列{a n }是等差数列,所以b n =a 1+a 2+…+a n n =a 1+(n -1)·d2(d 为等差数列{a n }的公差),{b n }也为等差数列,因为正项数列{c n }是等比数列,设公比为q ,则d n =n c 1·c 2·…·c n =n c 1·c 1q ·…·c 1q n -1=c 1q n -12,所以{d n}也是等比数列.7.执行如图所示的程序框图,若输出的结果是99199,则判断框内应填的内容是( )A .n <98?B .n <99?C .n <100?D .n <101?解析:选B 由14n 2-1=1(2n -1)(2n +1)=1212n -1-12n +1,可知程序框图的功能是计算并输出S =12⎝⎛⎭⎫1-13+⎝⎛⎭⎫13-15+…+⎝⎛⎭⎫12n -1-12n +1=12⎝⎛⎭⎫1-12n +1=n 2n +1的值.由题意令n 2n +1=99199,解得n =99,即当n <99时,执行循环体,若不满足此条件,则退出循环,输出S 的值.8.已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个“整数对”是( )A .(7,5)B .(5,7)C .(2,10)D .(10,1)解:选B 依题意,把“整数对”的和相同的分为一组,不难得知第n 组中每个“整数对”的和均为n +1,且第n 组共有n 个“整数对”,这样的前n 组一共有n (n +1)2个“整数对”,注意到10×(10+1)2<60<11×(11+1)2,因此第60个“整数对”处于第11组(每个“整数对”的和为12的组)的第5个位置,结合题意可知每个“整数对”的和为12的组中的各对数依次为:(1,11),(2,10),(3,9),(4,8),(5,7),…,因此第60个“整数对”是(5,7).二、填空题 9.M =1210+1210+1+1210+2+…+1211-1与1的大小关系为__________. 解析:因为M =1210+1210+1+1210+2+…+1211-1=1210+1210+1+1210+2+…+1210+(210-1)<1210+1210+1210+…+1210=1, 所以M <1. 答案:M <1 10.若复数z =a +ii(其中i 为虚数单位)的实部与虚部相等,则实数a =________. 解析:因为复数z =a +i i =a i +i 2i 2=1-a i ,所以-a =1,即a =-1. 答案:-111.下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a ,b 分别为14,18,则输出的a =________.解析:a =14,b =18.第一次循环:14≠18且14<18,b =18-14=4; 第二次循环:14≠4且14>4,a =14-4=10; 第三次循环:10≠4且10>4,a =10-4=6; 第四次循环:6≠4且6>4,a =6-4=2; 第五次循环:2≠4且2<4,b =4-2=2; 第六次循环:a =b =2,跳出循环,输出a =2. 答案:212.设n 为正整数,f (n )=1+12+13+…+1n ,计算得f (2)=32,f (4)>2,f (8)>52,f (16)>3,观察上述结果,可推测一般的结论为________.解析:∵f (21)=32,f (22)>2=42,f (23)>52,f (24)>62,∴归纳得f (2n )≥n +22(n ∈N *). 答案:f (2n )≥n +22(n ∈N *)三、解答题13.若a >b >c >d >0且a +d =b +c , 求证:d +a <b +c . 证明:要证d +a <b +c , 只需证(d +a )2<(b +c )2, 即证a +d +2ad <b +c +2bc ,因为a +d =b +c ,所以只需证ad <bc ,即证ad <bc , 设a +d =b +c =t ,则ad -bc =(t -d )d -(t -c )c =(c -d )(c +d -t )<0, 故ad <bc 成立,从而d +a <b +c 成立.14.等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2.(1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S nn (n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列.解:(1)由已知得⎩⎨⎧a 1=1+2,3a 1+3d =9+32,所以d =2,故a n =2n -1+2,S n =n (n +2).(2)证明:由(1),得b n =S nn =n + 2.假设数列{b n }中存在三项b p ,b q ,b r (p ,q ,r 互不相等)成等比数列,则b 2q =b p b r ,即(q +2)2=(p +2)(r +2),所以(q 2-pr )+2(2q -p -r )=0.因为p ,q ,r ∈N *,所以⎩⎪⎨⎪⎧q 2-pr =0,2q -p -r =0, 所以⎝⎛⎭⎫p +r 22=pr ,(p -r )2=0.所以p =r ,这与p ≠r 矛盾,所以数列{b n }中任意不同的三项都不可能成为等比数列. 高考研究课(一)算法与程序框图考查2类型——推结果、填条件 [全国卷5年命题分析][典例] =-1,则输出的S =( )A.2B.3C.4 D.5(2)(2017·山东高考)执行两次如图所示的程序框图,若第一次输入的x的值为7,第二次输入的x的值为9,则第一次、第二次输出的a的值分别为()A.0,0 B.1,1C.0,1 D.1,0[解析](1)运行程序框图,a=-1,S=0,K=1,K≤6成立;S=0+(-1)×1=-1,a=1,K=2,K≤6成立;S=-1+1×2=1,a=-1,K=3,K≤6成立;S=1+(-1)×3=-2,a=1,K=4,K≤6成立;S=-2+1×4=2,a=-1,K=5,K≤6成立;S=2+(-1)×5=-3,a=1,K=6,K≤6成立;S=-3+1×6=3,a=-1,K=7,K≤6不成立,输出S=3.(2)当输入x=7时,b=2,因为b2>x不成立且x不能被b整除,故b=3,这时b2>x成立,故a=1,输出a的值为1.当输入x=9时,b=2,因为b2>x不成立且x不能被b整除,故b=3,这时b2>x不成立且x能被b整除,故a=0,输出a的值为0.[答案](1)B(2)D[方法技巧]解决程序框图推结果问题要注意几个常用变量(1)计数变量:用来记录某个事件发生的次数,如i=i+1.(2)累加变量:用来计算数据之和,如S=S+i.(3)累乘变量:用来计算数据之积,如p=p×i.[即时演练]1.(2016·全国卷Ⅰ)执行如图所示的程序框图,如果输入的x =0,y =1,n =1,则输出x ,y 的值满足( )A .y =2xB .y =3xC .y =4xD .y =5x解析:选C 输入x =0,y =1,n =1, 运行第一次,x =0,y =1,不满足x 2+y 2≥36; 运行第二次,x =12,y =2,不满足x 2+y 2≥36;运行第三次,x =32,y =6,满足x 2+y 2≥36,输出x =32,y =6.由于点⎝⎛⎭⎫32,6在直线y =4x 上,故选C. 2.执行如图所示的程序框图,输出的s 是________.解析:第一次循环:i =1,s =1;第二次循环:i =2,s =-1;第三次循环:i =3,s =2;第四次循环:i =4,s =-2,此时i =5,执行s =3×(-2)=-6,故输出s =-6.答案:-6[典例] 第六章“均输”中,有一竹节容量问题,某教师根据这一问题的思想设计了如图所示的程序框图,若输出的m 的值为35,则输入的a 的值为( )A .4B .5C .7D .11(2)一个算法的程序框图如图所示,该程序输出的结果为3655,则空白处应填入的条件为( )A .i ≤9?B .i ≤6?C .i ≥9?D .i ≤8?[解析] (1)起始阶段有m =2a -3,i =1, 第一次循环:m =2×(2a -3)-3=4a -9,i =2, 第二次循环:m =2×(4a -9)-3=8a -21,i =3, 第三次循环:m =2×(8a -21)-3=16a -45,i =4, 第四次循环:m =2×(16a -45)-3=32a -93, 跳出循环,输出m =32a -93=35,解得a =4. (2)由1i (i +2)=12⎝⎛⎭⎫1i -1i +2及题意知,该程序框图的功能是计算S =121-13+12-14+…+1i -1-1i +1+1i -1i +2=34-121i +1+1i +2的值,由S =3655,得i =9.故空白处应填入的条件为:i ≤9. [答案] (1)A (2)A [方法技巧]程序框图的补全及逆向求解问题(1)先假设参数的判断条件满足或不满足;(2)运行循环结构,一直到运行结果与题目要求的输出结果相同为止; (3)根据此时各个变量的值,补全程序框图. [即时演练]1.执行如图所示的程序框图,若输出k 的值为16,则判断框内可填入的条件是( )A .S <1510?B .S >85?C .S >1510?D .S <85?解析:选D 运行程序:k =10,S =1;S =1110,k =11;S =1210,k =12;S =1310,k =13;S =1410,k =14;S =1510,k =15;S =1610=85,k =16,此时不满足条件,循环结束,输出k =16,所以判断框内可填入条件是S <85?.2.运行如图所示的程序框图,若输出的y 值的范围是[0,10],则输入的x 值的范围是________.解析:该程序的功能是计算分段函数的值, y =⎩⎪⎨⎪⎧3-x ,x <-1,x 2,-1≤x ≤1,x +1,x >1.当x <-1时,由0≤3-x ≤10,可得-7≤x <-1; 当-1≤x ≤1时,0≤x 2≤10成立;当x >1时,由0≤x +1≤10,可得1<x ≤9, 综上,输入的x 值的范围是[-7,9].答案:[-7,9]1.(2017·全国卷Ⅰ)如图所示的程序框图是为了求出满足3n-2n>1 000的最小偶数n,那么在◇和▭两个空白框中,可以分别填入()A.A>1 000和n=n+1B.A>1 000和n=n+2C.A≤1 000和n=n+1D.A≤1 000和n=n+2解析:选D程序框图中A=3n-2n,且判断框内的条件不满足时输出n,所以判断框中应填入A≤1 000,由于初始值n=0,要求满足A=3n-2n>1 000的最小偶数,故执行框中应填入n=n+2.2.(2017·全国卷Ⅲ)执行如图所示的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为()A.5 B.4C.3 D.2解析:选D执行程序框图,S=0+100=100,M=-10,t=2;S=100-10=90,M =1,t=3,S<91,输出S,此时,t=3不满足t≤N,所以输入的正整数N的最小值为2.3.(2016·全国卷Ⅱ)中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s=()A.7 B.12C.17 D.34解析:选C第一次运算:s=0×2+2=2,k=1;第二次运算:s=2×2+2=6,k=2;第三次运算:s=6×2+5=17,k=3>2,结束循环,s=17.4.(2016·全国卷Ⅲ)执行如图所示的程序框图,如果输入的a=4,b=6,那么输出的n=()A.3 B.4C.5 D.6解析:选B程序运行如下:开始a=4,b=6,n=0,s=0.第1次循环:a=2,b=4,a=6,s=6,n=1;第2次循环:a=-2,b=6,a=4,s=10,n=2;第3次循环:a =2,b =4,a =6,s =16, n =3;第4次循环:a =-2,b =6,a =4, s =20,n =4.此时,满足条件s >16, 退出循环,输出n =4.故选B.5.(2015·全国卷Ⅰ)执行如图所示的程序框图,如果输入的t =0.01,则输出的n =( )A .5B .6C .7D .8解析:选C 运行第一次:S =1-12=12=0.5,m =0.25,n =1,S >0.01;运行第二次:S =0.5-0.25=0.25,m =0.125,n =2,S >0.01; 运行第三次:S =0.25-0.125=0.125,m =0.062 5,n =3,S >0.01; 运行第四次:S =0.125-0.062 5=0.062 5,m =0.031 25,n =4,S >0.01; 运行第五次:S =0.031 25,m =0.015 625,n =5,S >0.01; 运行第六次:S =0.015 625,m =0.007 812 5,n =6,S >0.01; 运行第七次:S =0.007 812 5,m =0.003 906 25,n =7,S <0.01. 输出n =7.故选C.6.(2014·全国卷Ⅰ)执行如图所示程序框图,若输入的a ,b ,k 分别为1,2,3,则输出的M =( )A.203B.165C.72D.158解析:选D 第一次循环:M =32,a =2,b =32,n =2;第二次循环:M =83,a =32,b =83,n =3;第三次循环:M =158,a =83,b =158,n =4. 则输出M =158. 7.(2014·全国卷Ⅱ)执行如图的程序框图,如果输入的x ,t 均为2,则输出的S =( )A .4B .5C .6D .7解析:选D 执行循环体,第一次循环,M =2,S =5,k =2; 第二次循环,M =2,S =7,k =3. 故输出的S =7.一、选择题1.(2017·山东高考)执行如图所示的程序框图,当输入的x 的值为4时,输出的y 的值为2,则空白判断框中的条件可能为( )A .x >3B .x >4C .x ≤4D .x ≤5解析:选B 当x =4时,若执行“是”,则y =4+2=6,与题意矛盾;若执行“否”,则y =log 24=2,满足题意,故应执行“否”.故判断框中的条件可能为x >4.2.执行如图所示的程序框图,若输入的a 的值为2,则输出的b 的值为( )A .-2B .1C .2D .4解析:选A 第一次循环,a =12,b =1,i =2;第二次循环,a =-1,b =-2,i =3;第三次循环,a =2,b =4,i =4;第四次循环,a =12,b =1,i =5;……;由此可知b 的值以3为周期出现,且当i =2 019时退出循环,此时共循环2 018次,又2 018=3×672+2,所以输出的b 的值为-2.3.某班有50名学生,在一次数学考试中,a n 表示学号为n 的学生的成绩,则执行如图所示的程序框图,下列结论正确的是( )A .P 表示成绩不高于60分的人数B .Q 表示成绩低于80分的人数C .R 表示成绩高于80分的人数D .Q 表示成绩不低于60分,且低于80分的人数解析:选D P 表示成绩低于60分的人数,Q 表示成绩低于80分且不低于60分的人数,R 表示成绩不低于80分的人数.4.(2017·天津高考)阅读如图所示的程序框图,运行相应的程序,若输入N 的值为24,则输出N 的值为( )A .0B .1C .2D .3解析:选C 第一次循环,24能被3整除,N =243=8>3;第二次循环,8不能被3整除,N =8-1=7>3; 第三次循环,7不能被3整除,N =7-1=6>3;第四次循环,6能被3整除,N=63=2<3,结束循环,故输出N的值为2.5.执行如图所示的程序框图,则输出S的值为()A.3 B.-6C.10 D.-15解析:选D第一次执行程序,得到S=0-12=-1,i=2;第二次执行程序,得到S=-1+22=3,i=3;第三次执行程序,得到S=3-32=-6,i=4;第四次执行程序,得到S=-6+42=10,i=5;第五次执行程序,得到S=10-52=-15,i=6,结束循环,输出的S=-15.6.某校为了了解高三学生日平均睡眠时间(单位:h),随机选择了50位学生进行调查.下表是这50位同学睡眠时间的频率分布表:现根据如下程序框图用计算机统计平均睡眠时间,则判断框①中应填入的条件是()A .i >4?B .i >5?C .i >6?D .i >7?解析:选B 根据题目中程序框图,用计算机统计平均睡眠时间,总共执行6次循环,则判断框①中应填入的条件是i >5(或i ≥6?).7.下图为某一函数的求值程序框图,根据框图,如果输出y 的值为3,那么应输入x =( )A .1B .2C .3D .6解析:选B 该程序的作用是计算分段函数y =⎩⎪⎨⎪⎧x -3,x >66,2<x ≤6,5-x ,x ≤2的函数值,由题意,若x >6,则当y =3时,x -3=3,解得x =6,舍去; 若x ≤2,则当y =3时,5-x =3,解得x =2, 故输入的x 值为2.8.给出30个数:1,2,4,7,…,其规律是:第1个数是1;第2个数比第1个数大1;第3个数比第2个数大2;第4个数比第3个数大3,…,以此类推,要计算这30个数的和,现已给出了该问题的程序框图如图所示,那么框图中判断框①处和执行框②处应分别填入( )A .i ≤30?;p =p +i -1B .i ≤29?;p =p +i +1C .i ≤31?;p =p +iD .i ≤30?;p =p +i解析:选D 由于要计算30个数的和,故循环要执行30次,由于循环变量的初值为1,步长为1,故①中应填写“i ≤30?”.又由第1个数是1,第2个数比第1个数大1,第3个数比第2个数大2,第4个数比第3个数大3,…,故②中应填p =p +i .二、填空题9.(2017·江苏高考)如图是一个算法流程图.若输入x 的值为116,则输出y 的值是________.解析:由流程图可知其功能是运算分段函数y =⎩⎪⎨⎪⎧2x ,x ≥1,2+log 2x ,0<x <1,所以当输入的x 的值为116时,y =2+log 2116=2-4=-2.答案:-210.按下列程序框图来计算:如果输入的x =5,则应该运算________次才停止. 解析:由题意,该程序按如下步骤运行:经过第一次循环得到x =3×5-2=13,不满足x >200,进入下一步循环; 经过第二次循环得到x =3×13-2=37,不满足x >200,进入下一步循环;经过第三次循环得到x=3×37-2=109,不满足x>200,进入下一步循环;经过第四次循环得到x=3×109-2=325,因为325>200,结束循环并输出x的值因此,运算进行了4次后,输出x值而程序停止.故答案为4.答案:411.中国古代有计算多项式值的秦九韶算法,该算法的程序框图如图所示. 执行该程序框图,若输入的x=3,n=3,输入的a依次为由小到大顺序排列的质数(从最小质数开始),直到结束为止,则输出的s=________.解析:运行程序:x=3,n=3,k=0,s=0;a=2,s=2,k=1;a=3,s=9,k=2;a=5,s=32,k=3;a=7,s=103,k=4,此时满足条件,循环结束,输出s=103.答案:10312.阅读如图所示的程序框图,运行相应的程序,输出的结果是a=________.解析:运行程序,可得a=10,i=1,不满足i≥5,不满足a是奇数,a=5,i=2,不满足i≥5,满足a是奇数,a=16,i=3,不满足i≥5,不满足a是奇数,a=8,i=4,不满足i≥5,不满足a是奇数,a=4,i=5,满足i≥5,退出循环,输出a的值为4.答案:413.已知某程序框图如图所示,则程序运行结束时输出的结果为________.解析:第一次循环结束时,n=2,x=3,y=1;第二次循环结束时,n=4,x=9,y=3;第三次循环结束时,n=6,x=27,y=3.此时满足n>4,结束循环,输出log y x=log327=3.答案:314.(2018·黄山调研)我国古代数学典籍《九章算术》“盈不足”中有一道两鼠穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”现用程序框图描述,如图所示,则输出结果n=________.解析:第一次循环,得S=2;第二次循环,得n=2,a=12,A=2,S=92;第三次循环,得n=3,a=14,A=4,S=354;第四次循环,得n=4,a=18,A=8,S=1358>10,结束循环,输出的n=4.答案:41.图1是某学习小组学生数学考试成绩的茎叶图,1号到16号同学的成绩依次是A1,A2,…,A16,图2是统计茎叶图中成绩在一定范围内的学生情况的程序框图,那么该程序框图输出的结果是()图1图2A.6B.7C.10D.16解析:选C由程序框图可知,其统计的是数学成绩大于等于90的人数,所以由茎叶图知,数学成绩大于等于90的人数为10,因此输出结果为10.2.如果执行程序框图,如果输出的S=2 550,则判断框内应填入的条件是()A.k≤50? B.k≥51?C.k<50? D.k>51?解析:选A根据题中的程序框图,可得该程序经过第一次循环得到S=2,k=2;经过第二次循环得到S=2+4,k=3;经过第三次循环得到S=2+4+6,k=4;……设经过第n 次循环得到2+4+6+…+2n =n 2+n =2 550, 解得n =50,由此说明,当n >50时不满足判断框中的条件,则正好输出S =2 550, ∴判断框应填入的条件是k ≤50?. 高考研究课(二)数系的扩充与复数的引入的命题3角度——概念、运算、意义 [全国卷5年命题分析][典例] (1)设i 是虚数单位.若复数a -103-i(a ∈R)是纯虚数,则a 的值为( ) A .-3 B .-1 C .1D .3(2)已知复数z 满足z1+i=|2-i|,则z 的共轭复数对应的点位于复平面内的( ) A .第一象限 B .第二象限 C .第三象限D .第四象限(3)若复数 z 满足z (1+i)=2i(i 为虚数单位),则|z |=( ) A .1 B .2C. 2D. 3 [解析] (1)∵复数a -103-i=a -10(3+i )10=(a -3)-i 为纯虚数,∴a -3=0,∴a =3.(2)∵z1+i=|2-i|=5,∴z =5+5i , 则z 的共轭复数5-5i 对应的点(5,-5)位于复平面内的第四象限.(3)法一:设z =a +b i(a ,b ∈R),则由z (1+i)=2i ,得(a +b i)·(1+i)=2i ,所以(a -b )+(a+b )i =2i ,由复数相等的条件得⎩⎪⎨⎪⎧a -b =0,a +b =2,解得a =b =1,所以z =1+i ,故|z |=12+12=2.法二:由z (1+i)=2i ,得z =2i 1+i=2i (1-i )2=i -i 2=1+i ,所以|z |=12+12= 2.[答案] (1)D (2)D (3)C [方法技巧]求解与复数概念相关问题的技巧复数的分类、复数的相等、复数的模,共轭复数的概念都与复数的实部与虚部有关,所以解答与复数相关概念有关的问题时,需把所给复数化为代数形式,即a +b i(a ,b ∈R)的形式,再根据题意求解.[即时演练]1.(2017·山东高考)已知a ∈R ,i 是虚数单位.若z =a + 3 i ,z ·z =4,则a =( ) A .1或-1 B.7或-7 C .- 3 D. 3解析:选A 法一:由题意可知z =a -3i , ∴z ·z =(a +3i)(a -3i)=a 2+3=4,故a =1或-1. 法二:z ·z =|z |2=a 2+3=4,故a =1或-1.2.若复数2+a i 1-i (a ∈R)是纯虚数(i 是虚数单位),则复数z =a +(a -3)i 在复平面内对应的点位于第________象限.解析:∵2+a i 1-i =(2+a i )(1+i )(1-i )(1+i )=2-a +(2+a )i 2=2-a 2+2+a2i 是纯虚数,∴⎩⎨⎧2-a2=0,2+a2≠0,解得a =2.∴z =2-i ,在复平面内对应的点(2,-1)位于第四象限. 答案:四3.(2017·浙江高考)已知a ,b ∈R ,(a +b i)2=3+4i(i 是虚数单位),则a 2+b 2=________,ab =________.解析:∵(a +b i)2=a 2-b 2+2ab i =3+4i ,∴⎩⎪⎨⎪⎧a 2-b 2=3,2ab =4,∴⎩⎪⎨⎪⎧ a =2,b =1或⎩⎪⎨⎪⎧a =-2,b =-1,∴a 2+b 2=5,ab =2. 答案:5 2复数的代数运算[典例] (1)i 为虚数单位,则⎝ ⎛⎭⎪⎫1-i 1+i 2 018=( )A .-iB .-1C .iD .1(2)(2017·全国卷Ⅱ)3+i1+i =( )A .1+2iB .1-2iC .2+iD .2-i(3)(2017·全国卷Ⅱ)(1+i)(2+i)=( ) A .1-i B .1+3i C .3+iD .3+3i[解析] (1)∵1-i 1+i =(1-i )2(1+i )(1-i )=1-2i -12=-i ,∴⎝ ⎛⎭⎪⎫1-i 1+i 2 018=(-i)2 018 =(-i)2 016·(-i)2=-1.(2)3+i 1+i =(3+i )(1-i )(1+i )(1-i )=4-2i 2=2-i.(3)(1+i)(2+i)=2+i 2+3i =1+3i. [答案] (1)B (2)D (3)B [方法技巧]复数代数形式运算问题的解题策略(1)复数的乘法复数的乘法类似于多项式的四则运算,可将含有虚数单位i 的看作一类同类项,不含i 的看作另一类同类项,分别合并即可.(2)复数的除法除法的关键是分子分母同乘以分母的共轭复数,解题中要注意把i 的幂写成最简形式. [提醒] 在进行复数的代数运算时,记住以下结论,可提高计算速度. (1)(1±i)2=±2i ;1+i 1-i =i ;1-i 1+i=-i ; (2)-b +a i =i(a +b i);(3)i 4n =1,i 4n +1=i ,i 4n +2=-1,i 4n +3=-i ,i 4n +i 4n +1+i 4n +2+i 4n +3=0,n ∈N *.[即时演练]1.设复数z =1+i(i 是虚数单位),则2z +z 2=( ) A .1+i B .1-i C .-1-iD .-1+i解析:选A 2z +z 2=21+i +(1+i)2=1-i +2i =1+i.2.已知复数z =3+i(1-3i )2,z 是z 的共轭复数,则z ·z =________.解析:∵z =3+i (1-3i )2=3+i-2-23i=3+i-2(1+3i )=(3+i )(1-3i )-2(1+3i )(1-3i ) =23-2i -8=-34+14i ,故z =-34-14i , ∴z ·z =⎝⎛⎭⎫-34+14i ⎝⎛⎭⎫-34-14i =316+116=14. 答案:143.已知i 是虚数单位,⎝ ⎛⎭⎪⎫21-i 2 018+⎝ ⎛⎭⎪⎫1+i 1-i 6=________.解析:原式=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫21-i 2 1 009+⎝ ⎛⎭⎪⎫1+i 1-i 6=⎝⎛⎭⎫2-2i 1 009+i 6=i 1 009+i 6=i 4×252+1+i 4+2=i +i 2=-1+i.答案:-1+i[典例] (1)( ) A .第一象限 B .第二象限 C .第三象限D .第四象限(2)(2017·北京高考)若复数(1-i)(a +i)在复平面内对应的点在第二象限,则实数a 的取值范围是( )A .(-∞,1)B .(-∞,-1)C .(1,+∞)D .(-1,+∞)[解析] (1)因为复数z =a +i(a ∈R).若|z |<2,则a 2+1<2,解得-1<a <1,所以z +i 2=a -1+i 在复平面内对应的点(a -1,1)位于第二象限.(2)复数(1-i)(a +i)=a +1+(1-a )i ,其在复平面内对应的点(a +1,1-a )在第二象限,故⎩⎪⎨⎪⎧a +1<0,1-a >0,解得a <-1. [答案] (1)B (2)B [方法技巧](1)复数z 、复平面上的点Z 及向量OZ ―→相互联系,即z =a +b i(a ,b ∈R)⇔Z (a ,b )⇔OZ ―→. (2)由于复数、点、向量之间建立了一一对应的关系,因此可把复数、向量与解析几何联系在一起,解题时可运用数形结合的方法,使问题的解决更加直观.[即时演练]1.如图,若向量OZ ―→对应的复数为z ,则z +4z表示的复数为( )A .1+3iB .-3-iC .3-iD .3+i解析:选D 由图可得Z (1,-1),即z =1-i ,所以z +4z =1-i +41-i =1-i +4(1+i )(1-i )(1+i )=1-i +4+4i2=1-i +2+2i =3+i.2.若z =(a -2)+(a +1)i 在复平面内对应的点在第二象限,则实数a 的取值范围是________.解析:∵z =(a -2)+(a +1)i 在复平面内对应的点在第二象限,∴⎩⎪⎨⎪⎧a -2<0,a +1>0,解得-1<a <2. 即实数a 的取值范围是(-1,2). 答案:(-1,2)1.(2017·全国卷Ⅰ)设有下面四个命题: p 1:若复数z 满足1z ∈R ,则z ∈R ; p 2:若复数z 满足z 2∈R ,则z ∈R ; p 3:若复数z 1,z 2满足z 1z 2∈R ,则z 1=z 2;p 4:若复数z ∈R ,则z ∈R. 其中的真命题为( ) A .p 1,p 3 B .p 1,p 4 C .p 2,p 3D .p 2,p 4解析:选B 设复数z =a +b i(a ,b ∈R),对于p 1,∵1z =1a +b i =a -b i a 2+b 2∈R ,∴b =0,∴z ∈R ,∴p 1是真命题;对于p 2,∵z 2=(a +b i)2=a 2-b 2+2ab i ∈R ,∴ab =0,∴a =0或b =0,∴p 2不是真命题; 对于p 3,设z 1=x +y i(x ,y ∈R),z 2=c +d i(c ,d ∈R),则z 1z 2=(x +y i)(c +d i)=cx -dy +(dx +cy )i ∈R ,∴dx +cy =0,取z 1=1+2i ,z 2=-1+2i ,z 1≠z 2, ∴p 3不是真命题;对于p 4,∵z =a +b i ∈R ,∴b =0,∴z =a -b i =a ∈R , ∴p 4是真命题.2.(2017·全国卷Ⅲ)复平面内表示复数z =i(-2+i)的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选C z =i(-2+i)=-2i +i 2=-1-2i ,故复平面内表示复数z =i(-2+i)的点位于第三象限.3.(2016·全国卷Ⅰ)设(1+i)x =1+y i ,其中x ,y 是实数,则|x +y i|=( ) A .1 B. 2 C. 3D .2解析:选B ∵(1+i)x =1+y i ,∴x +x i =1+y i. 又∵x ,y ∈R ,∴x =1,y =1. ∴|x +y i|=|1+i|= 2.4.(2016·全国卷Ⅱ)已知z =(m +3)+(m -1)i 在复平面内对应的点在第四象限,则实数m 的取值范围是( )A .(-3,1)B .(-1,3)C .(1,+∞)D .(-∞,-3)解析:选A 由题意知⎩⎪⎨⎪⎧m +3>0,m -1<0,即-3<m <1.故实数m 的取值范围为(-3,1).5.(2016·全国卷Ⅲ)若z =1+2i ,则4iz z -1=( )A .1B .-1C .iD .-i解析:选C 因为z =1+2i ,则z =1-2i ,所以z z =(1+2i)(1-2i)=5,则4iz z -1=4i 4=i. 6.(2015·全国卷Ⅰ)设复数z 满足1+z1-z=i ,则|z |=( ) A .1 B. 2 C. 3D .2解析:选A 由1+z 1-z =i ,得z =-1+i 1+i =(-1+i )(1-i )2=2i2=i ,所以|z |=|i|=1.7.(2015·全国卷Ⅱ)若a 为实数,且(2+a i)(a -2i)=-4i ,则a =( ) A .-1 B .0 C .1D .2解析:选B ∵(2+a i)(a -2i)=-4i , ∴4a +(a 2-4)i =-4i.∴⎩⎪⎨⎪⎧4a =0,a 2-4=-4.解得a =0.一、选择题1.(2017·山东高考)已知i 是虚数单位,若复数z 满足z i =1+i ,则z 2=( ) A .-2i B .2i C .-2D .2解析:选A ∵z i =1+i ,∴z =1+i i =1i +1=1-i.∴z 2=(1-i)2=1+i 2-2i =-2i.2.(2018·沈阳质量监测)已知i 为虚数单位,则复数21-i 在复平面内所对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选A 因为21-i =1+i ,其在复平面内对应的点(1,1)在第一象限.3.已知复数z 满足z =a +i2-i+a 为纯虚数,则|z |=( )A.12 B .2 C.37D.13解析:选C ∵z =(a +i )(2+i )(2-i )(2+i )+a =(7a -1)+(a +2)i5为纯虚数,∴7a -15=0,a +25≠0,解得a =17,∴z =37i ,∴|z |=37.4.设复数z 满足(1+i)z =-2i ,i 为虚数单位,则z =( ) A .-1+i B .-1-i C .1+iD .1-i解析:选B z =-2i 1+i =-2i (1-i )(1+i )(1-i )=-i -1.5.已知i 是虚数单位,复数z 满足(1-i)z =i ,则|z |=( ) A.12 B.22 C .1 D. 2 解析:选B ∵z =i 1-i =i (1+i )(1-i )(1+i )=-12+12i ,∴|z |=⎝⎛⎭⎫-122+⎝⎛⎭⎫122=22.6.(2018·遵义模拟)复数z =4i 2 018-5i1+2i(其中i 为虚数单位)在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选C z =4i 2 018-5i1+2i =4×i 2 016·i 2-5i (1-2i )(1+2i )(1-2i )=-4-5(2+i )5=-6-i ,故z在复平面内对应的点在第三象限.7.已知复数z =(cos θ-isin θ)(1+i),则“z 为纯虚数”的一个充分不必要条件是( ) A .θ=π4B .θ=π2C .θ=3π4D .θ=5π4解析:选C z =(cos θ-isin θ)(1+i)=(cos θ+sin θ)+(cos θ-sin θ)i.z 是纯虚数等价于⎩⎪⎨⎪⎧cos θ+sin θ=0,cos θ-sin θ≠0,等价于θ=3π4+k π,k ∈Z.故选C.8.已知t ∈R ,i 为虚数单位,复数z 1=3+4i ,z 2=t +i ,且z 1·z 2是实数,则t 等于( ) A.34 B.43 C .-43D .-34解析:选D 因为z 1=3+4i ,z 2=t +i , 所以z 1·z 2=(3t -4)+(4t +3)i ,又z 1·z 2是实数,所以4t +3=0,所以t =-34,故选D.二、填空题9.(2017·天津高考)已知a ∈R ,i 为虚数单位,若a -i2+i 为实数,则a 的值为________.解析:由a -i 2+i =(a -i )(2-i )(2+i )(2-i )=2a -15-2+a 5i 是实数,得-2+a5=0,所以a =-2.答案:-2 10.定义运算⎪⎪⎪⎪⎪⎪a cb d =ad -bc ,复数z 满足⎪⎪⎪⎪⎪⎪z i 1 i =1+i ,z 为z 的共轭复数,则z =________.解析:∵复数z 满足⎪⎪⎪⎪⎪⎪z i 1 i =z i -i =1+i ,∴z =1+2i i =i (2-i )i=2-i ,∴z =2+i. 答案:2+i11.(2017·江苏高考)已知复数z =(1+i)(1+2i),其中i 是虚数单位,则z 的模是________. 解析:法一:复数z =1+2i +i -2=-1+3i , 则|z |=(-1)2+32=10.法二:|z |=|1+i|·|1+2i|=2×5=10. 答案:1012.(2018·山东实验中学诊断)在复平面内,复数21-i 对应的点到直线y =x +1的距离是________.解析:因为21-i =2(1+i )(1-i )(1+i )=1+i ,所以复数21-i 对应的点为(1,1),点(1,1)到直线y =x+1的距离为|1-1+1|12+(-1)2=22. 答案:22三、解答题13.计算:(1)(-1+i )(2+i )i 3;(2)(1+2i )2+3(1-i )2+i ;(3)1-i (1+i )2+1+i (1-i )2; (4)1-3i (3+i )2. 解:(1)(-1+i )(2+i )i 3=-3+i-i=-1-3i.(2)(1+2i )2+3(1-i )2+i =-3+4i +3-3i 2+i =i2+i =i (2-i )5=15+25i.(3)1-i (1+i )2+1+i (1-i )2=1-i 2i +1+i -2i =1+i -2+-1+i2=-1. (4)1-3i (3+i )2=(3+i )(-i )(3+i )2 =-i 3+i=(-i )(3-i )4=-14-34i.14.已知复数z =x +y i(x ,y ∈R)满足z ·z +(1-2i)·z +(1+2i)·z =3,求复数z 在复平面内对应的点的轨迹.解:∵z =x +y i(x ,y ∈R)且z ·z +(1-2i)·z +(1+2i)·z =3. ∴x 2+y 2+(1-2i)(x +y i)+(1+2i)(x -y i)=3, 即x 2+y 2+x +2y +y i -2x i +x +2y -y i +2x i =3, ∴x 2+y 2+2x +4y -3=0, 即(x +1)2+(y +2)2=8.∴复数z 在复平面内对应的点的轨迹是以(-1,-2)为圆心,以22为半径的圆.1.已知t ∈R ,若复数z =1-t i1+i(i 为虚数单位)为纯虚数,则|3+t i|=( ) A .2 B .4 C .6D .8解析:选A ∵z =1-t i 1+i =(1-t i )(1-i )(1+i )(1-i )=1-t 2+-t -12i 为纯虚数,∴1-t 2=0,-t -12≠0,解得t =1.则|3+t i|=|3+i|=(3)2+12=2.2.甲、乙两人各抛掷一次正方体骰子(它们的六个面分别标有数字1,2,3,4,5,6),设甲、乙所抛掷骰子朝上的面的点数分别为x ,y ,则满足复数x +y i 的实部大于虚部的概率为________.解析:∵试验发生所包含的事件是甲、乙两人各抛掷一次正方体骰子,所得点数分别为x ,y ,得到复数x +y i 共有36个,满足条件的事件是复数x +y i 的实部大于虚部, 当实部是2时,虚部是1; 当实部是3时,虚部是1,2; 当实部是4时,虚部是1,2,3; 当实部是5时,虚部是1,2,3,4; 当实部是6时,虚部是1,2,3,4,5, 共有15个,故实部大于虚部的概率是1536=512.答案:512高考研究课(三)推理3方法——类比、归纳、演绎 [全国卷5年命题分析][典例] (1)若{a n }则有:(m -n )a p +(n -p )a m+(p -m )a n =0,类比上述性质,相应地,对等比数列{b n },m ,n ,p 是互不相等的正整数,有________________.(2)若P 0(x 0,y 0)在椭圆x 2a 2+y 2b 2=1(a >b >0)外,过P 0作椭圆的两条切线的切点为P 1,P 2,则切点弦P 1P 2所在的直线方程是x 0x a 2+y 0yb 2=1,那么对于双曲线则有如下命题:若P (x 0,y 0)在双曲线x 2a 2-y 2b 2=1(a >0,b >0)外,过P 0作双曲线的两条切线,切点为P 1,P 2,则切点弦P 1P 2所在直线的方程是________.[解析] (1)等差数列的三项之和类比等比数列的三项之积,等差数列中(m -n )a p 类比等。

高考数学真题专题分类汇编算法初步文

高考数学真题专题分类汇编算法初步文

专题16 算法初步1.【2019年高考天津卷文数】阅读下边的程序框图,运行相应的程序,输出S 的值为A .5B .8C .24D .29【答案】B【分析】根据程序框图,逐步写出运算结果即可.【解析】1,2S i ==;11,1225,3j S i ==+⨯==;8,4S i ==,结束循环,输出8S =.故选B .【名师点睛】解答本题要注意要明确循环体终止的条件是什么,会判断什么时候终止循环体. 2.【2019年高考北京卷文数】执行如图所示的程序框图,输出的s 值为A .1B .2C .3D .4【答案】B【分析】根据程序框图中的条件逐次运算即可. 【解析】初始:1s =,1k =,运行第一次,2212312s ⨯==⨯-,2k =,运行第二次,2222322s ⨯==⨯-,3k =,运行第三次,2222322s ⨯==⨯-,结束循环,输出2s =,故选B .【名师点睛】本题考查程序框图,属于容易题,注重基础知识、基本运算能力的考查.3.【2019年高考全国Ⅰ卷文数】如图是求112122++的程序框图,图中空白框中应填入A .12A A =+B .12A A=+C .112A A=+D .112A A=+【答案】A【分析】本题主要考查算法中的程序框图,渗透阅读、分析与解决问题等素养,认真分析式子结构特征与程序框图结构,即可找出作出选择.【解析】初始:1,122A k ==≤,因为第一次应该计算1122+=12A +,1k k =+=2; 执行第2次,22k =≤,因为第二次应该计算112122++=12A +,1k k =+=3,结束循环,故循环体为12A A=+,故选A .【秒杀速解】认真观察计算式子的结构特点,可知循环体为12A A=+.4.【2019年高考全国Ⅲ卷文数】执行下边的程序框图,如果输入的ε为0.01,则输出s 的值等于A .4122- B .5122-C .6122-D .7122-【答案】C【分析】根据程序框图,结合循环关系进行运算,可得结果. 【解析】输入的ε为0.01,11,01,0.01?2x s x ==+=<不满足条件; 1101,0.01?24s x =++=<不满足条件;⋅⋅⋅611101,0.00781250.01?22128S x =++++==<L 满足条件,结束循环;输出676111112(1)22222S =+++=⨯-=-L ,故选C .【名师点睛】解答本题关键是利用循环运算,根据计算精确度确定数据分析.5.【2018年高考全国Ⅱ卷文数】为计算11111123499100S =-+-++-L ,设计了下面的程序框图,则在空白框中应填入A .1i i =+B .2i i =+C .3i i =+D .4i i =+【答案】B 【解析】由11111123499100S =-+-++-L 得程序框图先对奇数项累加,偶数项累加,最后再相减.因此在空白框中应填入i =i +2,故选B .6.【2018年高考北京卷文数】执行如图所示的程序框图,输出的s 值为A.12B.56C.76D.712【答案】B【解析】执行循环前:k=1,S=1.在执行第一次循环时,S=1–1122=.由于k=2≤3,所以执行下一次循环.S=115236+=,k=3,直接输出S=56,故选B.7.【2018年高考天津卷文数】阅读如图的程序框图,运行相应的程序,若输入N的值为20,则输出T 的值为A.1 B.2C.3 D.4【答案】B【解析】若输入N=20,则i=2,T=0,202Ni==10是整数,满足条件.T=0+1=1,i=2+1=3,i≥5不成立,循环,203Ni=不是整数,不满足条件,i=3+1=4,i≥5不成立,循环,204Ni==5是整数,满足条件,T=1+1=2,i=4+1=5,i≥5成立,输出T=2,故选B.8.【2017年高考全国Ⅱ卷文数】执行下面的程序框图,如果输入的1a=-,则输出的S=A .2B .3C .4D .5【答案】B【解析】阅读流程图,初始化数值1,1,0a k S =-==. 循环结果执行如下:第一次:011,1,2S a k =-=-==;第二次:121,1,3S a k =-+==-=;第三次:132,1,4S a k =-=-==; 第四次:242,1,5S a k =-+==-=;第五次:253,1,6S a k =-=-==; 第六次:363,1,7S a k =-+==-=;结束循环,输出3S =.故选B.【名师点睛】算法与流程图的考查,侧重于对流程图循环结构的考查.求解时,先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,如:是求和还是求项.9.【2017年高考全国Ⅰ卷文数】下面程序框图是为了求出满足321000n n ->的最小偶数n ,A .A >1000和n =n +1B .A >1000和n =n +2C .A ≤1000和n =n +1D .A ≤1000和n =n +2【答案】D【解析】由题意,因为321000n n ->,且框图中在“否”时输出,所以判定框内不能输入1000A >,故填1000A ≤,又要求n 为偶数且初始值为0,所以矩形框内填2n n =+,故选D.【名师点睛】解决此类问题的关键是读懂程序框图,明确顺序结构、条件结构、循环结构的真正含义.本题巧妙地设置了两个空格需要填写,所以需要抓住循环的重点,偶数该如何增量,判断框内如何进行判断可以根据选项排除.10.【2017年高考全国Ⅲ卷文数】执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .2【答案】D【解析】阅读程序框图,程序运行如下:首先初始化数值:1,100,0t M S ===,然后进入循环体:此时应满足t N ≤,执行循环语句:100,10,1210MS S M M t t =+==-=-=+=; 此时应满足t N ≤,执行循环语句:90,1,1310MS S M M t t =+==-==+=; 此时满足91S <,可以跳出循环,则输入的正整数N 的最小值为2. 故选D .【名师点睛】对算法与程序框图的考查,侧重于对程序框图中循环结构的考查.先明晰算法及程序框图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环的起始条件、循环次数、循环的终止条件,更要通过循环规律,明确程序框图研究的数学问题,是求和还是求项. 11.【2017年高考北京卷文数】执行如图所示的程序框图,输出的s 值为A .2B .32 C .53D .85【答案】C【解析】0k =时,03<成立,第一次进入循环:111,21k s +===; 13<成立,第二次进入循环:2132,22k s +===; 23<成立,第三次进入循环:31523,332k s +===, 33<不成立,此时输出53s =,故选C .【名师点睛】解决此类型问题时要注意:第一,要明确是当型循环结构,还是直到型循环结构,并根据各自的特点执行循环体;第二,要明确图中的累计变量,明确每一次执行循环体前和执行循环体后,变量的值发生的变化; 第三,要明确循环体终止的条件是什么,会判断什么时候终止循环体,争取写出每一个循环,这样避免出错.12.【2017年高考天津卷文数】阅读下面的程序框图,运行相应的程序,若输入N 的值为24,则输出N 的值为A .0B .1C .2D .3【答案】C【解析】初始:24N =,进入循环后N 的值依次为8,7,6,2N N N N ====,输出2N =,故选C .【名师点睛】识别算法框图和完善算法框图是近几年高考的重点和热点.对于此类问题: ①要明确算法框图中的顺序结构、条件结构和循环结构; ②要识别运行算法框图,理解框图解决的问题;③按照框图的要求一步一步进行循环,直到跳出循环体输出结果.近几年框图问题考查很活,常把框图的考查与函数、数列等知识相结合.13.【2019年高考江苏卷】下图是一个算法流程图,则输出的S 的值是______________.【答案】5【分析】结合所给的流程图运行程序确定输出的值即可. 【解析】执行第一次,1,1422x S S x =+==≥不成立,继续循环,12x x =+=; 执行第二次,3,2422x S S x =+==≥不成立,继续循环,13x x =+=; 执行第三次,3,342xS S x =+==≥不成立,继续循环,14x x =+=;执行第四次,5,442xS S x =+==≥成立,输出 5.S =【名师点睛】识别、运行程序框图和完善程序框图的思路: (1)要明确程序框图的顺序结构、条件结构和循环结构; (2)要识别、运行程序框图,理解框图所解决的实际问题; (3)按照题目的要求完成解答并验证.14.【2018年高考江苏卷】一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为______________.【答案】8【解析】由伪代码可得3,2;5,4;7,8I S I S I S ======,因为76>,所以结束循环,输出8.S =15.【2017年高考江苏卷】如图是一个算法流程图,若输入x 的值为116,则输出y 的值是______________.【答案】2- 【解析】由题意得212log 216y =+=-,故答案为2-. 【名师点睛】算法与流程图的考查,侧重于对流程图循环结构、条件结构和伪代码的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环的初始条件、循环次数、循环的终止条件,要通过循环规律,明确流程图研究的数学问题,是求和还是求项.。

2019版高考数学(文)第11章 算法初步、复数、推理与证明 第1讲算法初步 Word版含答案

2019版高考数学(文)第11章 算法初步、复数、推理与证明 第1讲算法初步 Word版含答案

第讲算法初步
板块一知识梳理·自主学习
[必备知识]
考点算法的框图及结构
.算法
算法通常是指按照一定规则解决某一类问题的明确程序或有限的步骤.这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.
.程序框图
程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.通常,程序框图由程序框和流程线组成,一个或几个程序框的组合表示算法中的一个步骤;流程线带有方向箭头,按照算法进行的顺序将程序框连接起来.
.三种基本逻辑结构
考点算法语句的格式及框图
.输入语句、输出语句、赋值语句的格式与功能。

2019年高考真题和模拟题分项汇编专题11算法初步(解析版)

2019年高考真题和模拟题分项汇编专题11算法初步(解析版)

专题 11算法初步1.【 2019 年高考天津卷理数】阅读下面的程序框图,运转相应的程序,输出S 的值为A . 5B .8C. 24 D. 29【答案】 B【剖析】依据程序框图,逐渐写出运算结果即可.【分析】 S 1,i 2 ; j 1, S 1 2 21 5, i 3 ; S 8,i 4 ,结束循环,输出S 8.应选B.【名师点睛】解答此题要注意要明确循环体停止的条件是什么,会判断什么时候停止循环体.2.【 2019 年高考北京卷理数】履行如下图的程序框图,输出的s 值为A . 1B .2 C. 3 D. 4 【答案】 B【剖析】依据程序框图中的条件逐次运算即可.【分析】初始:s 1 ,k 1 ,运转第一次,运转第二次,2 122 ,s12 ,k3 22 2 23,s22 ,k3 2运转第三次,2 2 2s22 ,结束循环,3 2输出 s 2 ,应选B.【名师点睛】此题考察程序框图,属于简单题,侧重基础知识、基本运算能力的考察.13.【 2019 年高考全国Ⅰ卷理数】如图是求2 1 的程序框图,图中空白框中应填入2 12A .A1B .A1 A22 AC.A1D.A12 A11 2A【答案】 A【剖析】此题主要考察算法中的程序框图,浸透阅读、剖析与解决问题等修养,仔细剖析式子构造特色1, k 111 , k k1=2;【分析】初始: A2,由于第一次应当计算 1 = 22 2 A21 k2 21 1 k k 1履行第 2 次, ,由于第二次应当计算21=2 A=3,,22结束循环,故循环体为 A1 ,应选 A .2 A1【秒杀速解】仔细察看计算式子的构造特色,可知循环体为A.2 A4.【 2019 年高考全国Ⅲ卷理数】履行下面的程序框图,假如输入的为 0. 01,则输出 s 的值等于A . 211 24B . 225 C . 21 126D . 227【答案】 C【剖析】依据程序框图,联合循环关系进行运算,可得结果. 【分析】输入的为,x 1,s 0 1, x1 0.01? 不知足条件;2s 0 1 1, x 1 0.01? 不知足条件;2 4S 01 11 , x 1 0.0078125 0.01? 知足条件,结束循环;2 26 128 输出 S 1 11 2 (1 11 22 6 2 7 ) 22 6,应选 C .【名师点睛】解答此题重点是利用循环运算,依据计算精准度确立数据剖析.5.【 2019 年高考江苏卷】下列图是一个算法流程图,则输出的 S 的值是 ______________.【答案】 5【剖析】联合所给的流程图运转程序确立输出的值即可. 【分析】履行第一次,S Sx 1 , x 1 4 不建立,持续循环,x x 1 2 ;2 2履行第二次, SS x 3, x2 2 履行第三次, SSx3, x 2履行第四次, SSx5, x 22 4 不建立,持续循环, x x 1 3;3 4 不建立,持续循环, x x 1 4 ; 4 4 建立,输出 S 5. 【名师点睛】辨别、运转程序框图和完美程序框图的思路:(1)要明确程序框图的次序构造、条件构造和循环构造;(2)要辨别、运转程序框图,理解框图所解决的实质问题;( 3)依据题目的要求达成解答并考证.6.【天津市和平区2018-2019 学年度第二学期高三年级第三次质量检查】在如下图的计算1 5 9 L 2017 的程序框图中,判断框内应填入的条件是A . i 2017?B . i 2017?【答案】 A【分析】由题意联合流程图可知当i 2017时,程序应履行S S i,i i 4 2021,再次进入判断框时应当跳出循环,输出S 的值;联合所给的选项可知判断框内应填入的条件是i2017?.应选A.7.【吉林省长春市北京师范大学长春市隶属中学2019 届高三第四次模拟考试】依据如下图的程序框图,当输入的 x 值为3时,输出的y 值等于A . 1B .eC.e1 D.e2【答案】 C【分析】由题x 3 , x x 2 3 1,此时 x 0 ,持续运转,x 1 2 1 0 ,程序运转结束,得y e 1,应选C.8.【西南名校结盟重庆市第八中学2019 届高三 5 月高考适应性月考卷(六) 】履行如下图的程序框图,则输出的值为A . 4B .5C. 6 D. 7【答案】 C【分析】由题可得 S 3,i 2 S 7,i 3 S 15,i 4 S 31,i 5 S 63,i 6 ,此时结束循环,输出i 6 ,应选C.9 2019届高三二模】阅读如下图的程序框图,运转相应的程序,输出的S 的值等于.【山东省济宁市A.30 B .31C. 62 D. 63【答案】 B【分析】由流程图可知该算法的功能为计算S 1 21 22 23 24的值,即输出的值为S 1 21 22 23 24 1 (1 25 ) 31.应选 B.1 210.【辽宁省大连市2019 届高三第二次模拟考试】履行如下图的程序框图,若输出结果为1,则可输入的实数 x 值的个数为A .1B .2 C. 3 D. 4【答案】 Bx2 1, x 2x 的方程,即可获得可【剖析】依据程序框图的含义,获得分段函数 y ,分段解出对于log 2 x, x 2输入的实数 x 值的个数.【分析】依据题意,该框图的含义是:当 x 2 时,获得函数y x2 1 ;当x 2 时,获得函数y log 2 x ,所以,若输出的结果为 1 时,若 x 2 ,获得x211,解得x 2 ,若 x 2 ,获得log2x1,无解,所以,可输入的实数x 的值可能为 2 ,2,共有2个.应选B.11.【江西省新八校2019 届高三第二次联考】如下图的程序框图所实现的功能是A .输入a的值,计算(a 1) 32021 1 的值B.输入a的值,计算(a 1) 32020 1 的值C.输入a的值,计算(a 1) 32019 1的值D .输入a的值,计算(a 1) 32018 1的值【答案】 B【分析】由程序框图,可知a1 a , a n 13a n 2 ,由i的初值为1,末值为2019,可知,此递推公式共履行了2019 1 2020次,又由 a n 1 3a n 2 ,得 a n 1 1 3(a n 1) ,得 a n 1 ( a 1) 3n 1即 a n (a 1) 3n 1 1,故 a2021 (a 1) 32021 1 1 (a 1) 32020 1,应选B.12.【山西省 2019 届高三考前适应性训练(二模)】履行如下图的程序框图,则输出x的值为1 A .2 B .13 D.3C.2【答案】 A【剖析】依据程序框图进行模拟运算获得x 的值具备周期性,利用周期性的性质进行求解即可.【分析】∵ x 1 12 ;,∴当 i 1 时,x ; i 2 时, x213i 3 时, x 3 , i 4时,x 4,,即 x 的值周期性出现,周期数为2∵ 2018 504 4 2 ,则输出x的值为2,应选 A.【名师点睛】此题主要考察程序框图的辨别和判断,联合条件判断x 的值具备周期性是解决此题的关键,属于中档题.13.【青海省西宁市第四高级中学、第五中学、第十四中学三校2019 届高三 4 月联考】若某程序框图如图所示,则该程序运转后输出的值是A .5B .4C. 3 D. 2【答案】 B【剖析】模拟履行循环构造的程序获得n 与i的值,计算获得n 2 时知足判断框的条件,退出循环,输出结果,即可获得答案.【分析】模拟履行循环构造的程序框图,可得: n 6, i 1,第 1 次循环:n 3, i 2 ;第 2 次循环: n 4, i 3 ;第 3 次循环: n 2, i 4 ,此时知足判断框的条件,输出i 4 .应选B.【名师点睛】此题主要考察了循环构造的程序框图的应用,此中解答中依据给定的程序框图,依据判断框的条件推出循环,逐项正确计算输出结果是解答的重点,侧重考察了考生的运算与求解能力,属于基础题.14.【江苏省七市 (南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019 届高三第三次调研】下列图是一个算法流程图.若输出的值为 4,则输入x 的值为______________.【答案】【分析】当1x 1时,由流程图得y 3x ,令 y 3 x 4 ,解得x 1 ,知足题意.当 x 1 时,由流程图得y 3 x ,令 y 3 x 4 ,解得x 1 ,不知足题意.故输入 x 的值为1.15.【北京市人大附中2019 届高三高考信息卷(三 )】履行如下图的程序框图,若输入 x 值知足 2 x 4,则输出 y 值的取值范围是______________.【答案】 [ 3,2]【分析】依据输入 x 值知足 2 x 4 ,利用函数的定义域,分红两部分:即﹣2 x 2 和 2 x 4 ,当﹣2 x 2 时,履行y x2 3 的关系式,故 3 y 1,当 2 x 4 时,履行y log 2 x 的关系式,故 1 y 2 .综上所述:y [ 3,2] ,故输出y 值的取值范围是[ 3,2] .。

(2017-2019)高考理数真题分类汇编专题16 算法初步(学生版)

(2017-2019)高考理数真题分类汇编专题16 算法初步(学生版)

专题16 算法初步1.【2019年高考天津卷理数】阅读下边的程序框图,运行相应的程序,输出S的值为A.5B.8C.24D.292.【2019年高考北京卷理数】执行如图所示的程序框图,输出的s值为A.1B.2C.3D.43.【2019年高考全国Ⅰ卷理数】如图是求112122++的程序框图,图中空白框中应填入A .12A A =+ B .12A A =+C .112A A=+D .112A A=+4.【2019年高考全国Ⅲ卷理数】执行下边的程序框图,如果输入的ε为0.01,则输出s 的值等于A .4122-B .5122-C .6122-D .7122-5.【2018年高考全国Ⅱ卷理数】为计算11111123499100S =-+-++-L ,设计了下面的程序框图,则在空白框中应填入A .1i i =+B .2i i =+C .3i i =+D .4i i =+6.【2018年高考北京卷理数】执行如图所示的程序框图,输出的s 值为A .12 B .56 C .76D .7127.【2018年高考天津卷理数】阅读如图的程序框图,运行相应的程序,若输入N 的值为20,则输出T 的值为A.1B.2C.3D.4a=-,则输出的S= 8.【2017年高考全国Ⅱ卷理数】执行下面的程序框图,如果输入的1A .2B .3C .4D .59.【2017年高考全国Ⅰ卷理数】下面程序框图是为了求出满足321000n n ->的最小偶数n ,那么在和两个空白框中,可以分别填入A .A >1000和n =n +1B .A >1000和n =n +2C .A ≤1000和n =n +1D .A ≤1000和n =n +210.【2017年高考全国Ⅲ卷理数】执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .211.【2017年高考北京卷理数】执行如图所示的程序框图,输出的s值为A.2B.3 2C.53D.8512.【2017年高考天津卷理数】阅读下面的程序框图,运行相应的程序,若输入N的值为24,则输出N的值为A.0B.1C.2D.313.【2019年高考江苏卷】下图是一个算法流程图,则输出的S的值是______________.14.【2018年高考江苏卷】一个算法的伪代码如图所示,执行此算法,最后输出的S的值为______________.15.【2017年高考江苏卷】如图是一个算法流程图,若输入的值为116,则输出y的值是______________.。

2019年高考数学一轮复习 算法初步

2019年高考数学一轮复习 算法初步

[怎样快解·准解]
1.解决算法语句的 3 步骤 (1)通读全部语句,把它翻译成数学问题; (2)领悟该语句的功能; (3)根据语句的功能运行程序,解决问题. 2.算法语句应用的 4 关注
返回
输入、输 在输入、输出语句中加提示信息时,要加引号, 出语句 变量之间用逗号隔开 赋值语句 左、右两边不能对换,赋值号左边只能是变量 条件语句中包含多个条件语句时,要分清内外条 条件语句 件结构,保证结构的完整性 循环语句 分清“当型”和“直到型”的格式,不能混用
π A. 6
π B.- 6
π C. 3
y=- 3,故选 D.
答案:D
返回
2.某程序框图如图所示,现输入如下四个函数,则可以输出的函 数为 ( )
π cos x π A.f(x)= x -2 <x<2 ,且x≠0
2x-1 B.f(x)= x 2 +1 D.f(x)=x2ln(x2+1)
返回
解析:进行第一次循环时, 100 S= =20,i=2,S=20>1; 5 进行第二次循环时, 20 S= =4,i=3,S=4>1; 5 进行第三次循环时, 4 4 S= ,i=4,S= <1, 5 5 此时结束循环,输出的 i=4.
答案:4
返回
5.执行如图所示的程序框图,则输出的结果为________.
返回
解析:该语句表示分段函数
0.5x,x≤50, y= 25+0.6×x-50,x>50,
当 x=60 时,y=25+0.6×(60-50)=31. 故输出 y 的值为 31.
答案:C
2.按照如图程序运行,则输出 K 的值是________.
返回
解析:第一次循环,X=7,K=1; 第二次循环,X=15,K=2; 第三次循环,X=31,K=3,X>16, 终止循环,则输出 K 的值是 3. 答案:3

《精品》专题11 算法初步-2019年高考真题和模拟题分项汇编数学(文)(解析版)

《精品》专题11 算法初步-2019年高考真题和模拟题分项汇编数学(文)(解析版)

专题11 算法初步1.【2019年高考天津卷文数】阅读下边的程序框图,运行相应的程序,输出S 的值为A .5B .8C .24D .29【答案】B【分析】根据程序框图,逐步写出运算结果即可.【解析】1,2S i ==;11,1225,3j S i ==+⨯==;8,4S i ==,结束循环,输出8S =.故选B .【名师点睛】解答本题要注意要明确循环体终止的条件是什么,会判断什么时候终止循环体. 2.【2019年高考北京卷文数】执行如图所示的程序框图,输出的s 值为A .1B .2C .3D .4【答案】B【分析】根据程序框图中的条件逐次运算即可. 【解析】初始:1s =,1k =,运行第一次,2212312s ⨯==⨯-,2k =,运行第二次,2222322s ⨯==⨯-,3k =,运行第三次,2222322s ⨯==⨯-,结束循环,输出2s =,故选B .【名师点睛】本题考查程序框图,属于容易题,注重基础知识、基本运算能力的考查.3.【2019年高考全国Ⅰ卷文数】如图是求112122++的程序框图,图中空白框中应填入A .12A A =+ B .12A A =+C .112A A=+D .112A A=+【答案】A【分析】本题主要考查算法中的程序框图,渗透阅读、分析与解决问题等素养,认真分析式子结构特征与程序框图结构,即可找出作出选择.【解析】初始:1,122A k ==≤,因为第一次应该计算1122+=12A +,1k k =+=2; 执行第2次,22k =≤,因为第二次应该计算112122++=12A +,1k k =+=3, 结束循环,故循环体为12A A=+,故选A .【秒杀速解】认真观察计算式子的结构特点,可知循环体为12A A=+.4.【2019年高考全国Ⅲ卷文数】执行下边的程序框图,如果输入的ε为0.01,则输出s 的值等于A .4122- B .5122-C .6122-D .7122-【答案】C【分析】根据程序框图,结合循环关系进行运算,可得结果. 【解析】输入的ε为0.01,11,01,0.01?2x s x ==+=<不满足条件; 1101,0.01?24s x =++=<不满足条件;⋅⋅⋅611101,0.00781250.01?22128S x =++++==<满足条件,结束循环;输出676111112(1)22222S =+++=⨯-=-,故选C .【名师点睛】解答本题关键是利用循环运算,根据计算精确度确定数据分析.5.【2019年高考江苏卷】下图是一个算法流程图,则输出的S 的值是______________.【答案】5【分析】结合所给的流程图运行程序确定输出的值即可. 【解析】执行第一次,1,1422x S S x =+==≥不成立,继续循环,12x x =+=; 执行第二次,3,2422x S S x =+==≥不成立,继续循环,13x x =+=; 执行第三次,3,342xS S x =+==≥不成立,继续循环,14x x =+=;执行第四次,5,442xS S x =+==≥成立,输出 5.S =【名师点睛】识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构;(2)要识别、运行程序框图,理解框图所解决的实际问题;(3)按照题目的要求完成解答并验证.6.【天津市和平区2018-2019学年度第二学期高三年级第三次质量调查】在如图所示的计算1592017++++L 的程序框图中,判断框内应填入的条件是A .2017?i ≤B .2017?i <C .2013?i <D .2021?i ≤【答案】A【解析】由题意结合流程图可知当2017i =时,程序应执行S S i =+,42021i i =+=, 再次进入判断框时应该跳出循环,输出S 的值;结合所给的选项可知判断框内应填入的条件是2017?i ≤.故选A .7.【吉林省长春市北京师范大学长春市附属中学2019届高三第四次模拟考试】根据如图所示的程序框图,当输入的x 值为3时,输出的y 值等于A .1B .eC .1e -D .2e -【答案】C【解析】由题3x =,231x x =-=-,此时0x >,继续运行,1210x =-=-<,程序运行结束,得1e y -=,故选C .8.【西南名校联盟重庆市第八中学2019届高三5月高考适应性月考卷(六)】执行如图所示的程序框图,则输出的值为A .4B .5【答案】C【解析】由题可得3,27,315,431,563,6S i S i S i S i S i ==→==→==→==→==, 此时结束循环,输出6i =,故选C .9.【山东省济宁市2019届高三二模】阅读如图所示的程序框图,运行相应的程序,输出的S 的值等于A .30B .31C .62D .63【答案】B【解析】由流程图可知该算法的功能为计算123412222S =++++的值,即输出的值为512341(12)122223112S ⨯-=++++==-.故选B .10.【辽宁省大连市2019届高三第二次模拟考试】执行如图所示的程序框图,若输出结果为1,则可输入的实数x 值的个数为A .1B .2【答案】B【分析】根据程序框图的含义,得到分段函数221,2log ,2x x y x x ⎧-≤⎪=⎨>⎪⎩,分段解出关于x 的方程,即可得到可输入的实数x 值的个数.【解析】根据题意,该框图的含义是:当2x ≤时,得到函数21y x =-;当2x >时,得到函数2log y x =, 因此,若输出的结果为1时,若2x ≤,得到211x -=,解得x = 若2x >,得到2log 1x =,无解,因此,可输入的实数x的值可能为,共有2个.故选B . 11.【江西省新八校2019届高三第二次联考】如图所示的程序框图所实现的功能是A .输入a 的值,计算2021(1)31a -⨯+的值B .输入a 的值,计算2020(1)31a -⨯+的值C .输入a 的值,计算2019(1)31a -⨯+的值D .输入a 的值,计算2018(1)31a -⨯+的值 【答案】B【解析】由程序框图,可知1a a =,132n n a a +=-,由i 的初值为1,末值为2019, 可知,此递推公式共执行了201912020+=次,又由132n n a a +=-,得113(1)n n a a +-=-,得11(1)3n n a a --=-⨯即1(1)31n n a a -=-⨯+,故2021120202021(1)31(1)31a a a -=-⨯+=-⨯+,故选B . 12.【山西省2019届高三考前适应性训练(二模)】执行如图所示的程序框图,则输出x 的值为A .2-B .13-C .12D .3【答案】A【分析】根据程序框图进行模拟运算得到x 的值具备周期性,利用周期性的性质进行求解即可.【解析】∵12x =,∴当1i =时,13x =-;2i =时,2x =-; 3i =时,3x =,4i =时,12x =,即x 的值周期性出现,周期数为4,∵201850442=⨯+,则输出x 的值为2-,故选A .【名师点睛】本题主要考查程序框图的识别和判断,结合条件判断x 的值具备周期性是解决本题的关键,属于中档题.13.【青海省西宁市第四高级中学、第五中学、第十四中学三校2019届高三4月联考】若某程序框图如图所示,则该程序运行后输出的值是A .5B .4C .3D .2【答案】B【分析】模拟执行循环结构的程序得到n 与i 的值,计算得到2n =时满足判断框的条件,退出循环,输出结果,即可得到答案.【解析】模拟执行循环结构的程序框图, 可得:6,1n i ==, 第1次循环:3,2n i ==; 第2次循环:4,3n i ==; 第3次循环:2,4n i ==,此时满足判断框的条件,输出4i =.故选B .【名师点睛】本题主要考查了循环结构的程序框图的应用,其中解答中根据给定的程序框图,根据判断框的条件推出循环,逐项准确计算输出结果是解答的关键,着重考查了考生的运算与求解能力,属于基础题.14.【江苏省七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第三次调研】下图是一个算法流程图.若输出 的值为4,则输入x 的值为______________.【答案】1-【解析】当1x ≤时,由流程图得3y x =-, 令34y x =-=,解得1x =-,满足题意. 当1x >时,由流程图得3y x =+, 令34y x =+=,解得1x =,不满足题意. 故输入x 的值为1-.15.【北京市人大附中2019届高三高考信息卷(三)】执行如图所示的程序框图,若输入x 值满足24x -<≤,则输出y 值的取值范围是______________.【答案】[3,2]-【解析】根据输入x 值满足24x -<≤,利用函数的定义域,分成两部分:即22x <<﹣和24x ≤≤,当22x <<﹣时,执行23y x =- 的关系式,故31y -≤<, 当24x ≤≤时,执行2log y x =的关系式,故12y ≤≤. 综上所述:[3,2]y ∈-,故输出y 值的取值范围是[3,2]-.11。

19年高考真题和模拟题分类汇编—理科数学11:算法初步

19年高考真题和模拟题分类汇编—理科数学11:算法初步

2019年高考数学理科真题和模拟题分类汇编:算法初步1.【19年高考北京卷 2】执行如图所示的程序框图,输出的s 值为( )(A )1(B )2(C )3(D )42.【19年高考天津卷 4】阅读如图的程序框图,运行相应的程序,输出S的值为( )(A )5(B )8(C )24(D )293.【19年高考全国Ⅰ卷 8】如图是求112122++的程序框图,图中空白框中应填入( )(A )12A A =+ (B )12A A=+ (C )112A A =+ (D )112A A =+ 4.【19年高考全国Ⅲ卷 9】执行下边的程序框图,如果输入的ε为0.01,则输出s 的值等于( )(A )4122-(B )5122- (C )6122- (D )7122-5.【19年高考江苏卷 3】下图是一个算法流程图,则输出的S 的值是________。

6.【天津市和平区19学年度下期高三第三次质量调查】在如图所示的计算1592017++++L 的程序框图中,判断框内应填入的条件是( )(A )2017?i ≤(B )2017?i <(C )2013?i <(D )2021?i ≤7.【吉林省长春市北师大长春附中19届高三第四次模拟考试】根据如图所示的程序框图,当输入的x 值为3时,输出的y 值等于( )(A )1(B )e(C )1e -(D )2e -8.【西南名校联盟重庆市第八中学19届高三5月高考适应性月考卷】执行如图所示的程序框图,则输出的值为( )(A )4(B )5(C )6(D )79.【山东省济宁市19届高三二模】阅读如图所示的程序框图,运行相应的程序,输出的S 的值等于( )(A )30(B )31(C )62(D )6310.【辽宁省大连市19届高三第二次模拟考试】执行如图所示的程序框图,若输出结果为1,则可输入的实数x 值的个数为( )(A )1(B )2(C )3(D )411.【江西省新八校19届高三第二次联考】如图所示的程序框图所实现的功能是( )(A )输入a 的值,计算()2021131a -⨯+的值 (B )输入a 的值,计算()2020131a -⨯+的值 (C )输入a 的值,计算()2019131a -⨯+的值(D )输入a 的值,计算()2018131a -⨯+的值12.【山西省19届高三考前适应性训练(二模)】执行如图所示的程序框图,则输出x 的值为( )(A )2-(B )13-(C )12(D )313.【青海省西宁市三校19届高三4月联考】若某程序框图如图所示,则该程序运行后输出的值是( )(A )5(B )4(C )3(D )214.【江苏省七市19届高三第三次调研】下图是一个算法流程图。

2019年高考真题+高考模拟题 专项版解析汇编 理数——专题11 算法初步(原卷版)

2019年高考真题+高考模拟题  专项版解析汇编 理数——专题11 算法初步(原卷版)

专题11 算法初步1.【2019年高考天津卷理数】阅读下边的程序框图,运行相应的程序,输出S的值为A.5 B.8C.24 D.292.【2019年高考北京卷理数】执行如图所示的程序框图,输出的s值为A.1 B.2C.3 D.43.【2019年高考全国Ⅰ卷理数】如图是求11 2122++的程序框图,图中空白框中应填入A.12AA=+B.12AA=+C.112AA=+D.112AA=+4.【2019年高考全国Ⅲ卷理数】执行下边的程序框图,如果输入的ε为0.01,则输出s的值等于A.4122-B.5122-C.6122-D.7122-5.【2019年高考江苏卷】下图是一个算法流程图,则输出的S的值是______________.6.【天津市和平区2018-2019学年度第二学期高三年级第三次质量调查】在如图所示的计算1592017++++L 的程序框图中,判断框内应填入的条件是A .2017?i ≤B .2017?i <C .2013?i <D .2021?i ≤7.【吉林省长春市北京师范大学长春市附属中学2019届高三第四次模拟考试】根据如图所示的程序框图,当输入的x 值为3时,输出的y 值等于A .1B .eC .1e -D .2e -8.【西南名校联盟重庆市第八中学2019届高三5月高考适应性月考卷(六)】执行如图所示的程序框图,则输出的值为A.4 B.5C.6 D.79.【山东省济宁市2019届高三二模】阅读如图所示的程序框图,运行相应的程序,输出的S的值等于A.30 B.31C.62 D.6310.【辽宁省大连市2019届高三第二次模拟考试】执行如图所示的程序框图,若输出结果为1,则可输入的实数x值的个数为A.1 B.2C.3 D.411.【江西省新八校2019届高三第二次联考】如图所示的程序框图所实现的功能是A .输入a 的值,计算2021(1)31a -⨯+的值B .输入a 的值,计算2020(1)31a -⨯+的值C .输入a 的值,计算2019(1)31a -⨯+的值D .输入a 的值,计算2018(1)31a -⨯+的值12.【山西省2019届高三考前适应性训练(二模)】执行如图所示的程序框图,则输出x 的值为A .2-B .13-C .12D .313.【青海省西宁市第四高级中学、第五中学、第十四中学三校2019届高三4月联考】若某程序框图如图所示,则该程序运行后输出的值是A .5B .4C .3D .214.【江苏省七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第三次调研】下图是一个算法流程图.若输出的值为4,则输入x 的值为______________.第14题图 第15题图15.【北京市人大附中2019届高三高考信息卷(三)】执行如图所示的程序框图,若输入x 值满足24x -<≤,则输出y 值的取值范围是______________.。

2019年高考数学试题分类汇编 L单元 算法初步与复数(含解析)

2019年高考数学试题分类汇编 L单元 算法初步与复数(含解析)

2019年高考数学试题分类汇编 L单元算法初步与复数(含解析)目录L单元算法初步与复数 (1)L1算法与程序框图 (1)L2基本算法语句 (1)L3算法案例 (1)L4复数的基本概念与运算 (1)L5 单元综合 (1)L1算法与程序框图【重庆一中高一期末·xx】5.如图. 程序输出的结果s=132 , 则判断框中应填()A. i≥10B. i≥11C. i≤11D. i≥12【知识点】程序框图.【答案解析】B解析:解:由题意,S表示从12开始的逐渐减小的若干个整数的乘积,由于12×11=132,故此循环体需要执行两次所以每次执行后i的值依次为11,10,由于i的值为10时,就应该退出循环,再考察四个选项,B符合题意故选B【思路点拨】由框图可以得出,循环体中的运算是每执行一次s就变成了s乘以i,i 的值变为i-2,故S的值是从12开始的逐渐减小的若干个整数的乘积,由此规律解题计算出循环体执行几次,再求出退出循环的条件,对比四个选项得出正确答案.【文·重庆一中高二期末·xx】6.执行如下图所示的程序框图,则输出的A.4B.5C.6D.7【知识点】程序框图.【答案解析】B解析:解:第一次循环得:k=1,s=3; 第二次循环得:k=2,s=5; 第三次循环得:k=3,s=8; 第四次循环得:k=4,s=10; 第五次循环得:k=5,s=12;所以输出的5.故选B.【思路点拨】由题意进行循环即可.14.【文·四川成都高三摸底·xx】14. 运行如图所示的程序框图,则输出的运算结果是____ 。

【答案解析】解析:解:该程序框图为循环结构,第一次执行循环体得S=,i=2,第二次执行循环体得S=,i=3,第三次执行循环体得S=,i=4,第四次执行循环体得S=,此时满足判断框,跳出循环体,所以输出结果为.【思路点拨】对于循环结构的程序框图,可依次执行循环体,直到满足判断框,若需要循环的次数较多时,可结合数列知识进行解答.【文·黑龙江哈六中高二期末考试·xx】7.为调查哈市高中三年级男生的身高情况,选取了人作为样本,右图是此次调查中的某一项流程图,若其输出的结果是,则身高在以下的频率为()【知识点】循环结构程序框图.【答案解析】A解析:解:由图知输出的人数的值是身高不小于170cm的学生人数,由于统计总人数是5000,又输出的S=3800,故身高在170cm以下的学生人数是5000-3800.身高在170cm以下的频率是:故选:A.【思路点拨】由图可以得出,此循环结构的功能是统计出身高不小于170cm的学生人数,由此即可解出身高在170cm以下的学生人数,然后求解频率即可.【文·黑龙江哈六中高二期末考试·xx】3.已知某程序框图如图所示,则执行该程序后输出的结果是()2 1【知识点】循环结构.【答案解析】A解析:解:程序运行过程中,各变量的值如下表示:a i 是否继续循环循环前 2 1 第一圈 2 是第二圈-1 3 是第三圈 2 4 是第四圈 5 是…第3n+1圈3n+2 是第3n+2圈-1 3n+3 是第3n+3圈 2 3n+4 是…第2011圈xx 是第xx圈-1 xx 否最后输出的a值为-1.故选A..【思路点拨】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算变量a的值并输出.【典型总结】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是:①分析流程图(或伪代码),从流程图(或伪代码)中既要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)②建立数学模型,根据第一步分析的结果,选择恰当的数学模型解模.【文·广东惠州一中高三一调·xx】7.执行如图所示的程序框图,若输入的值为,则输出的的值为()A.B.C.D.5π12-π32Oy x(7题) (8题)【知识点】循环结构的程序框图.【答案解析】B 解析 :解:程序执行过程中,的值依次为;;; ; ; ;,输出的值为16.【典型总结】依次取i,s 的值,可知当i=7时可得结果. C4 8.函数()2)(,0,)2f x x x R πωϕωϕ=+∈><的部分图象如图所示,则的值分别是 ( )A . B. C. D.【知识点】函数y=Asin (ωx+φ)的图象变换.【答案解析】A 解析 :解:由图知在时取到最大值,且最小正周期满足故,.所以 或由逐个检验知【典型总结】根据图象的两个点A 、B 的横坐标,得到四分之三个周期的值,得到周期的值,做出ω的值,把图象所过的一个点的坐标代入方程做出初相,写出解析式,代入数值得到结果.【理·四川成都高三摸底·xx 】14.运行如图所示的程序框图,则输出的运算结果是____ 。

2019年高考数学高考题和高考模拟题分项版汇编专题11算法初步理含解析20190809421

2019年高考数学高考题和高考模拟题分项版汇编专题11算法初步理含解析20190809421

专题11 算法初步1.【2019年高考天津卷理数】阅读下边的程序框图,运行相应的程序,输出S 的值为A .5B .8C .24D .29【答案】B【分析】根据程序框图,逐步写出运算结果即可.【解析】1,2S i ==;11,1225,3j S i ==+⨯==;8,4S i ==,结束循环,输出8S =.故选B .【名师点睛】解答本题要注意要明确循环体终止的条件是什么,会判断什么时候终止循环体. 2.【2019年高考北京卷理数】执行如图所示的程序框图,输出的s 值为A .1B .2C .3D .4【答案】B【分析】根据程序框图中的条件逐次运算即可. 【解析】初始:1s =,1k =,运行第一次,2212312s ⨯==⨯-,2k =,运行第二次,2222322s ⨯==⨯-,3k =,运行第三次,2222322s ⨯==⨯-,结束循环,输出2s =,故选B .【名师点睛】本题考查程序框图,属于容易题,注重基础知识、基本运算能力的考查.3.【2019年高考全国Ⅰ卷理数】如图是求112122++的程序框图,图中空白框中应填入A .12A A =+B .12A A=+C .112A A=+D .112A A=+【答案】A【分析】本题主要考查算法中的程序框图,渗透阅读、分析与解决问题等素养,认真分析式子结构特征与程序框图结构,即可找出作出选择.【解析】初始:1,122A k ==≤,因为第一次应该计算1122+=12A +,1k k =+=2; 执行第2次,22k =≤,因为第二次应该计算112122++=12A +,1k k =+=3,结束循环,故循环体为12A A=+,故选A .【秒杀速解】认真观察计算式子的结构特点,可知循环体为12A A=+.4.【2019年高考全国Ⅲ卷理数】执行下边的程序框图,如果输入的ε为0.01,则输出s 的值等于A .4122-B .5122-C .6122-D .7122-【答案】C【分析】根据程序框图,结合循环关系进行运算,可得结果. 【解析】输入的ε为0.01,11,01,0.01?2x s x ==+=<不满足条件; 1101,0.01?24s x =++=<不满足条件;⋅⋅⋅611101,0.00781250.01?22128S x =++++==<L 满足条件,结束循环;输出676111112(1)22222S =+++=⨯-=-L ,故选C .【名师点睛】解答本题关键是利用循环运算,根据计算精确度确定数据分析.5.【2019年高考江苏卷】下图是一个算法流程图,则输出的S 的值是______________.【答案】5【分析】结合所给的流程图运行程序确定输出的值即可. 【解析】执行第一次,1,1422x S S x =+==≥不成立,继续循环,12x x =+=; 执行第二次,3,2422x S S x =+==≥不成立,继续循环,13x x =+=; 执行第三次,3,342xS S x =+==≥不成立,继续循环,14x x =+=;执行第四次,5,442xS S x =+==≥成立,输出 5.S =【名师点睛】识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构;(2)要识别、运行程序框图,理解框图所解决的实际问题;(3)按照题目的要求完成解答并验证.6.【天津市和平区2018-2019学年度第二学期高三年级第三次质量调查】在如图所示的计算1592017++++L 的程序框图中,判断框内应填入的条件是A .2017?i ≤B .2017?i <C .2013?i <D .2021?i ≤【解析】由题意结合流程图可知当2017i =时,程序应执行S S i =+,42021i i =+=, 再次进入判断框时应该跳出循环,输出S 的值;结合所给的选项可知判断框内应填入的条件是2017?i ≤.故选A .7.【吉林省长春市北京师范大学长春市附属中学2019届高三第四次模拟考试】根据如图所示的程序框图,当输入的x 值为3时,输出的y 值等于A .1B .eC .1e -D .2e -【答案】C【解析】由题3x =,231x x =-=-,此时0x >,继续运行,1210x =-=-<,程序运行结束,得1e y -=,故选C .8.【西南名校联盟重庆市第八中学2019届高三5月高考适应性月考卷(六)】执行如图所示的程序框图,则输出的值为A .4B .5C .6D .7【解析】由题可得3,27,315,431,563,6S i S i S i S i S i ==→==→==→==→==, 此时结束循环,输出6i =,故选C .9.【山东省济宁市2019届高三二模】阅读如图所示的程序框图,运行相应的程序,输出的S 的值等于A .30B .31C .62D .63【答案】B【解析】由流程图可知该算法的功能为计算123412222S =++++的值,即输出的值为512341(12)122223112S ⨯-=++++==-.故选B .10.【辽宁省大连市2019届高三第二次模拟考试】执行如图所示的程序框图,若输出结果为1,则可输入的实数x 值的个数为A .1B .2C .3D .4【分析】根据程序框图的含义,得到分段函数221,2log ,2x x y x x ⎧-≤⎪=⎨>⎪⎩,分段解出关于x 的方程,即可得到可输入的实数x 值的个数.【解析】根据题意,该框图的含义是:当2x ≤时,得到函数21y x =-;当2x >时,得到函数2log y x =, 因此,若输出的结果为1时,若2x ≤,得到211x -=,解得2x =±, 若2x >,得到2log 1x =,无解,因此,可输入的实数x 的值可能为2-,2,共有2个.故选B .11.【江西省新八校2019届高三第二次联考】如图所示的程序框图所实现的功能是A .输入a 的值,计算2021(1)31a -⨯+的值 B .输入a 的值,计算2020(1)31a -⨯+的值 C .输入a 的值,计算2019(1)31a -⨯+的值 D .输入a 的值,计算2018(1)31a -⨯+的值【答案】B【解析】由程序框图,可知1a a =,132n n a a +=-,由i 的初值为1,末值为2019,可知,此递推公式共执行了201912020+=次,又由132n n a a +=-,得113(1)n n a a +-=-,得11(1)3n n a a --=-⨯即1(1)31n n a a -=-⨯+,故2021120202021(1)31(1)31a a a -=-⨯+=-⨯+,故选B . 12.【山西省2019届高三考前适应性训练(二模)】执行如图所示的程序框图,则输出x 的值为A .2-B .13- C .12D .3【答案】A【分析】根据程序框图进行模拟运算得到x 的值具备周期性,利用周期性的性质进行求解即可.【解析】∵12x =,∴当1i =时,13x =-;2i =时,2x =-; 3i =时,3x =,4i =时,12x =,即x 的值周期性出现,周期数为4,∵201850442=⨯+,则输出x 的值为2-,故选A .【名师点睛】本题主要考查程序框图的识别和判断,结合条件判断x 的值具备周期性是解决本题的关键,属于中档题.13.【青海省西宁市第四高级中学、第五中学、第十四中学三校2019届高三4月联考】若某程序框图如图所示,则该程序运行后输出的值是A .5B .4C .3D .2【答案】B【分析】模拟执行循环结构的程序得到n 与i 的值,计算得到2n =时满足判断框的条件,退出循环,输出结果,即可得到答案.【解析】模拟执行循环结构的程序框图, 可得:6,1n i ==, 第1次循环:3,2n i ==; 第2次循环:4,3n i ==; 第3次循环:2,4n i ==,此时满足判断框的条件,输出4i =.故选B .【名师点睛】本题主要考查了循环结构的程序框图的应用,其中解答中根据给定的程序框图,根据判断框的条件推出循环,逐项准确计算输出结果是解答的关键,着重考查了考生的运算与求解能力,属于基础题.14.【江苏省七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第三次调研】下图是一个算法流程图.若输出的值为4,则输入x 的值为______________.【答案】1-【解析】当1x ≤时,由流程图得3y x =-, 令34y x =-=,解得1x =-,满足题意. 当1x >时,由流程图得3y x =+, 令34y x =+=,解得1x =,不满足题意. 故输入x 的值为1-.15.【北京市人大附中2019届高三高考信息卷(三)】执行如图所示的程序框图,若输入x 值满足24x -<≤,则输出y 值的取值范围是______________.【答案】[3,2]-【解析】根据输入x 值满足24x -<≤,利用函数的定义域,分成两部分:即22x <<﹣和24x ≤≤,当22x <<﹣时,执行23y x =-的关系式,故31y -≤<, 当24x ≤≤时,执行2log y x =的关系式,故12y ≤≤. 综上所述:[3,2]y ∈-,故输出y 值的取值范围是[3,2]-.。

2019年高考数学(文)一轮复习第十章 算法初步、统计、统计案例 第十章 算法初步、统计、统计案例及答案

2019年高考数学(文)一轮复习第十章 算法初步、统计、统计案例 第十章 算法初步、统计、统计案例及答案

第十章⎪⎪⎪算法初步、统计、统计案例第一节算法初步1.算法(1)算法通常是指按照一定规则解决某一类问题的明确和有限的步骤.(2)应用:算法通常可以编成计算机程序,让计算机执行并解决问题.2.程序框图定义:程序框图又称流程图,是一种用程序框、流程线及文字说明表示算法的图形.3.三种基本逻辑结构及相应语句1.(教材习题改编)如图所示的程序框图的运行结果为________.解析:因为a =2,b =4,所以输出S =24+42=2.5.答案:2.52.执行如图的程序框图,则输出的结果为________.解析:进行第一次循环时,S=1005=20,i=2,S=20>1;进行第二次循环时,S=205=4,i=3,S=4>1;进行第三次循环时,S=45=0.8,i=4,S=0.8<1,此时结束循环,输出的i=4.答案:41.易混淆处框与输入框,处框主要是赋值、计算,而输入框只是表示一个算法输入的信息.2.易忽视循环结构中必有选择结构,其作用是控制循环进程,避免进入‚死循环‛,是循环结构必不可少的一部分.3.易混淆当型循环与直到型循环.直到型循环是‚先循环,后判断,条件满足时终止循环‛;而当型循环则是‚先判断,后循环,条件满足时执行循环‛;两者的判断框内的条件表述在解决同一问题时是不同的,它们恰好相反.1.按如下程序框图,若输出结果为170,则判断框内应补充的条件为( )A .i >7?B .i >9?C .i >10?D .i>11?解析:选 A ∵21+23+25+27=170,∴判断框内应补充的条件为i >7?或i ≥9?.2.如图所示,程序框图的输出结果是________.解析:第一次循环:S =12,n =4;第二次循环:n =4<8,S =12+14,n =6;第三次循环:n =6<8,S =12+14+16,n =8;第四次循环:n =8<8不成立,输出S =12+14+16=1112.答案:1112考点一 算法的三种基本结构 基础送分型考点——自主练透1.(2016²北京高考)执行如图所示的程序框图,若输入的a 值为1,则输出的k 值为( )A .1B .2C .3D .4解析:选B 开始a =1,b =1,k =0;第一次循环a =-12,k =1;第二次循环a =-2,k =2;第三次循环a =1,条件判断为‚是‛,跳出循环,此时k =2.2.定义运算a ⊗b 为执行如图所示的程序框图输出的S 值,则⎝⎛⎭⎪⎫2cos 5π3⊗⎝ ⎛⎭⎪⎫2tan 5π4的值为( )A .4B .3C .2D .-1解析:选A 由程序框图可知,S =⎩⎪⎨⎪⎧a a -b ,a ≥b ,b a +1 ,a <b ,因为2cos 5π3=1,2tan 5π4=2,1<2,所以⎝ ⎛⎭⎪⎫2cos 5π3⊗⎝ ⎛⎭⎪⎫2tan 5π4=2(1+1)=4.秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s=( )A.7B.12C.17D.34解析:选C 第一次运算:s=0³2+2=2,k=1;第二次运算:s=2³2+2=6,k=2;第三次运算:s=6³2+5=17,k=3>2,结束循环,输出s=17.4.(2016²河南省六市第一次联考)如图所示的程序框图,若输出的S=88,则判断框内应填入的条件是( )A.k>3?B.k>4?C.k>5?D.k>6?解析:选C 依次运行程序框图中的语句:k=2,S=2;k=3,S=7;k=4,S=18;k=5,S=41;k=6,S=88,此时跳出循环,故判断框中应填入‚k>5?‛.程序框图的3个常用变量(1)计变量:用记录某个事件发生的次,如i=i+1.(2)累加变量:用计算据之和,如S=S+i.(3)累乘变量:用计算据之积,如p=p³i.处循环结构的框图问题,关键是解并认清终止循环结构的条件及循环次.考点二算法的交汇性问题 题点多变型考点——多角探明算法是高考热点内容之一,算法的交汇性问题是高考的一大亮点.常见的命题角度有:(1)与概率、统计的交汇问题;(2)与函的交汇问题;(3)与不等式的交汇问题;(4)与列求和的交汇问题.角度一:与概率、统计的交汇问题1.(2016²黄冈模拟)随机抽取某中学甲、乙两个班各10名同学,测量他们的身高获得身高据的茎叶图如图(1),在样本的20人中,记身高在+(20+21+22+…+2n)的值解析:选C 初始值k=1,S=0,第1次进入循环体时,S=1+20,k=2;第2次进入循环体时,S=1+20+2+21,k=3,第3次进入循环体时,S=1+20+2+21+3+22,k=4.…;给定正整n,当k=n时,最后一次进入循环体,则有S=1+20+2+21+…+n+2n-1,k=n+1,终止循环体,输出S=(1+2+3+…+n)+(20+21+22+…+2n-1),故选C.解决算法交汇问题的3个关键点(1)读懂程序框图,明确交汇知识;(2)根据给出问题与程序框图处问题;(3)注意框图中结构的判断.1.(2017²南昌模拟)从1,2,3,4,5,6,7,8中随机取出一个为x ,执行如图所示的程序框图,则输出的x 不小于40的概率为( )A .34B .58C .78D .12解析:选 B 依次执行程序框图中的语句,输出的结果分别为13,22,31,40,49,58,67,76,所以输出的x 不小于40的概率为58.2.(2016²长春市质检)运行如图所示的程序框图,则输出的S 值为( )A .29-129B .29+129C .210-1210D .210210+1解析:选 A 由程序框图可知,输出的结果是首项为12,公比也为12的等比列的前9项和,即为29-129,故选A . 3.执行如图所示的程序框图,若输入x =9,则输出y =________.解析:第一次循环:y=5,x=5;第二次循环:y=113,x=113;第三次循环:y=299,此时|y-x|=⎪⎪⎪⎪⎪⎪299-113=49<1,故输出y=299.答案:29 9考点三算法基本语句 重点保分型考点——师生共研设计一个计算1³3³5³7³9³11³13的算法.图中给出了程序的一部分,则在横线上不能填入的是( )A.13 B.13.5C.14 D.14.5解析:选A 当填13时,i值顺次执行的结果是5,7,9,11,当执行到i=11时,下次就是i=13,这时要结束循环,因此计算的结果是1³3³5³7³9³11,故不能填13,但填的字只要超过13且不超过15均可保证最后一次循环时,得到的计算结果是1³3³5³7³9³11³13,故选A .算法语句应用的4个关注点(1)输入、输出语句:在输入、输出语句中加提示信息时,要加引号,变量之间用逗号隔开.(2)赋值语句:左、右两边不能对换,赋值号左边只能是变量.(3)条件语句:条件语句中包含条件语句时,要分清内外条件结构,保证结构完整性.(4)循环语句:分清‚for‛和‚while‛的格式,不能混用.1.根据下列算法语句,当输入x 为60时,输出y 的值为( )A .25B .30C .31D .61 解析:选C 该语句表示分段函y =⎩⎪⎨⎪⎧ 0.5x ,x≤50,25+0.6³ x-50 ,x>50,当x =60时,y =25+0.6³(60-50)=31.∴输出y 的值为31.2.按照如图程序运行,则输出K 的值是________.解析:第一次循环,X=7,K=1;第二次循环,X=15,K=2;第三次循环,X=31,K=3,X>16,终止循环,则输出K的值是3.答案:3一抓基础,多练小题做到眼疾手快1.执行如图所示的程序框图,如果输入的t∈,则输出的s属于( )A.B.C.D.解析:选A 当-1≤t<1时,s=3t,则s∈上单调递增,在上单调递减.∴s∈.综上知s∈.2.(2016²沈阳市教学质量监测)执行如图所示的程序框图,如果输入的a=-1,b=-2,则输出的a的值为( ) A.16B.8C.4D.2解析:选B 当a=-1,b=-2时,a=(-1)³(-2)=2<6;a =2,b=-2时,a=2³(-2)=-4<6;当a=-4,b=-2时,a=(-4)³(-2)=8>6,此时输出的a=8,故选B.3.(2017²合肥质检)执行如图所示的程序框图,如果输出的k的值为3,则输入的a的值可以是( )A.20 B.21C.22 D.23解析:选A 根据程序框图可知,若输出的k=3,则此时程序框图中的循环结构执行了3次,执行第1次时,S=2³0+3=3,执行第2次时,S=2³3+3=9,执行第3次时,S=2³9+3=21,因此符合题意的实a的取值范围是9≤a<21,故选A.4.(2016²四川高考)秦九韶是我国南宋时期的学家,普州(现四川省安岳县)人,他在所著的《书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例.若输入n,x的值分别为3,2,则输出v 的值为( )A .9B .18C .20D .35解析:选B 由程序框图知,初始值:n =3,x =2,v =1,i =2,第一次循环:v =4,i =1;第二次循环:v =9,i =0;第三次循环:v =18,i =-1.结束循环,输出当前v 的值18.故选B .二保高考,全练题型做到高考达标1.已知实x ∈,执行如图所示的程序框图,则输出的x 不小于103的概率为( )A .514B .914C .59D .49解析:选B 由程序框图可知,经过3次循环跳出,设输入的初始值为x =x 0,则输出的x =2+1≥103,所以8x 0≥96,即x 0≥12,故输出的x 不小于103的概率为P =30-1230-2=1828=914. 2.(2017²长春模拟)执行如图所示的程序框图,若输出的n =7,则输入的整K的最大值是( )A.18 B.50C.78 D.306解析:选C 第一次循环S=2,n=2,第二次循环S=6,n=3,第三次循环S=2,n=4,第四次循环S=18,n=5,第五次循环S=14,n=6,第六次循环S=78,n=7,需满足S≥K,此时输出n=7,所以18<K≤78,所以整K的最大值为78.3.(2016²福建省毕业班质量检测)执行如图所示的程序框图,若要使输出的y的值等于3,则输入的x的值可以是( )A.1 B.2C.8 D.9解析:选 C 由程序框图可知,其功能是运算分段函y=⎩⎪⎨⎪⎧x 2-1,x ≤1,3x ,1<x ≤2,log 2x ,x >2因为y =3,所以⎩⎪⎨⎪⎧ x ≤1,x 2-1=3或⎩⎪⎨⎪⎧ 1<x ≤2,3x =3或⎩⎪⎨⎪⎧ x >2,log 2x =3,解得x =-2或x =8,故选C .4.执行如图所示的程序框图,如果输入n 的值为4,则输出S 的值为( )A .15B .6C .-10D .-21解析:选C 当k =1,S =0时,k 为奇,所以S =1,k =2,2<4;k =2不是奇,所以S =1-4=-3,k =3,3<4;k =3是奇,所以S =-3+9=6,k =4,4=4;k =4不是奇,所以S =6-16=-10,k =5,5>4,所以输出的S =-10,故选C .5.(2017²黄山调研)我国古代学典籍《九章算术》‚盈不足‛中有一道两鼠穿墙问题:‚今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?‛现用程序框图描述,如图所示,则输出结果n =( )A .4B .5C .2D .3解析:选A 第一次循环,得S =2,否;第二次循环,得n =2,a =12,A =2,S =92,否;第三次循环,得n =3,a =14,A =4,S =354,否;第四次循环,得n =4,a =18,A =8,S =1358>10,是,输出的n =4,故选A .6.(2017²北京东城模拟)如图给出的是计算12+14+16+18+…+1100的一个程序框图,其中判断框内应填入的条件是( )A .i <50?B .i >50?C .i <25?D .i >25?解析:选B 因为该循环体需要运行50次,i的初始值是1,间隔是1,所以i=50时不满足判断框内的条件,而i=51时满足判断框内条件,所以判断框内的条件可以填入i>50?.7.如图(1)是某县参加2 016年高考的学生身高条形统计图,从左到右的各条形表示的学生人依次记为A1,A2,…,A10(如A2表示身高(单位:cm)在1.(教材习题改编)老师在班级50名学生中,依次抽取学号为5,10,15,20,25,30,35,40,45,50的学生进行作业检查,这种抽样方法是( )A.随机抽样 B.分层抽样C.系统抽样D.以上都不是解析:选C 因为抽取学号是以5为公差的等差列,故采用的抽样方法应是系统抽样.2.(教材习题改编)某学校高一、高二、高三年级的学生人之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.解析:设应从高二年级抽取x名学生,则x50=310.解得x=15.答案:151.简单随机抽样中易忽视样本是从总体中逐个抽取,是不放回抽样,且每个个体被抽到的概率相等.2.系统抽样中,易忽视抽取的样本也就是分段的段,当Nn不是整时,注意剔除,剔除的个体是随机的,各段入样的个体编号成等差列.3.分层抽样中,易忽视每层抽取的个体的比例是相同的,即样本容量n总体个N.1.利用简单随机抽样从含有8个个体的总体中抽取一个容量为4的样本,则总体中每个个体被抽到的概率是________.解析:总体个为N=8,样本容量为M=4,则每一个个体被抽到的概率为P=MN=48=12.答案:1 22.已知某商场新进3 000袋奶粉,为检查其三聚氰胺是否超标,现采用系统抽样的方法从中抽取150袋检查,若第一组抽出的号码是11,则第六十一组抽出的号码为________.解析:每组袋:d=3 000150=20,由题意知这些号码是以11为首项,20为公差的等差列.a61=11+60³20=1 211.答案:1 211考点一简单随机抽样 基础送分型考点——自主练透 1.总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机表选取5个个体,选取方法是从随机表第1行的第5列和第6列字开始由左到右依次选取两个字,则选出的第5个个体的编号为( )A.08 B.07C.02 D.01解析:选D 由随机表法的随机抽样的过程可知选出的5个个体是08,02,14,07,01,所以第5个个体的编号是01.2.下列抽样试验中,适合用抽签法的有( )A.从某厂生产的5 000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱18件)产品中抽取6件进行质量检验C.从甲、乙两厂生产的两箱(每箱18件)产品中抽取6件进行质量检验D.从某厂生产的5 000件产品中抽取10件进行质量检验解析:选B A,D中的总体中个体较多,不适宜抽签法,C中甲、乙两厂的产品质量有区别,也不适宜抽签法,故选B.3.利用简单随机抽样,从n个个体中抽取一个容量为10的样本.若第二次抽取时,余下的每个个体被抽到的概率为13,则在整个抽样过程中,每个个体被抽到的概率为( )A.14B.13C.514D.1027解析:选C 根据题意,9n-1=13,解得n=28.故在整个抽样过程中每个个体被抽到的概率为1028=514.简单随机抽样的特点(1)抽取的个体较少.(2)是逐个抽取.(3)是不放回抽取.(4)是等可能抽取.只有四个特点都满足的抽样才是简单随机抽样.考点二系统抽样 重点保分型考点——师生共研(2016²兰州市实战考试)采用系统抽样方法从 1 000人中抽取50人做问卷调查,将他们随机编号1,2,…,1 000.适当分组后在第一组采用简单随机抽样的方法抽到的号码为8.若抽到的50人中,编号落入区间的人做问卷A,编号落入区间的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷C的人为( )A.12 B.13C.14 D.15解析:选A 根据系统抽样的特点可知,所有做问卷调查的人的编号构成首项为8,公差d=1 00050=20的等差列{a n},∴通项公式a n =8+20(n -1)=20n -12,令751≤20n -12≤1 000,得76320≤n ≤2535,又∵n ∈N *,∴39≤n ≤50,∴做问卷C 的共有12人,故选A .系统抽样的3个关注点(1)若不改变抽样规则,则所抽取的号码构成一个等差列,其首项为第一组所抽取的号码,公差为样本间隔.故问题可转为等差列问题解决.(2)抽样规则改变,应注意每组抽取一个个体这一特性不变.(3)如果总体容量N 不能被样本容量n 整除,可随机地从总体中剔除余,然后再按系统抽样的方法抽样.1.(2016²江西八校联考)从编号为001,002,…,500的500个产品中用系统抽样的方法抽取一个样本,已知样本中编号最小的两个编号分别为007,032,则样本中最大的编号应该为( )A .480B .481C .482D .483解析:选C 根据系统抽样的定义可知样本的编号成等差列,令a 1=7,a 2=32,d =25,所以7+25(n -1)≤500,所以n ≤20,最大编号为7+25³19=482.2.(2017²安徽皖北联考)某学校采用系统抽样方法,从该校高一年级全体800名学生中抽50名学生做视力检查.现将800名学生从1到800进行编号.已知从33~48这16个中抽到的是39,则在第1小组1~16中随机抽到的是( )A .5B .7C .11D .13解析:选B 把800名学生分成50组,每组16人,各小组抽到的构成一个公差为16的等差列,39在第3组,所以第1组抽到的为39-32=7.考点三 分层抽样 重点保分型考点——师生共研1.(2015²湖北高考)我国古代学名著《书九章》有‚米谷粒分‛题:粮仓开仓收粮,有人送米1 534石,验得米内夹谷,抽样取米一把,得254粒内夹谷28粒,则这批米内夹谷约为( )A .134石B .169石C .338石D .1 365石解析:选B 设1 534石米内夹谷x 石,则由题意知x 1 534=28254,解得x ≈169.故这批米内夹谷约为169石. 2.(2015²福建高考)某校高一年级有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人为________.解析:设男生抽取x 人,则有45900=x 900-400, 解得x =25.答案:25进行分层抽样的相关计算时,常用到的2个关系(1)样本容量n 总体的个N =该层抽取的个体该层的个体;(2)总体中某两层的个体之比等于样本中这两层抽取的个体之比.1.某地区有小学150所,中学75所,大学25所,现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取________所学校,中学中抽取________所学校.解析:因为分层抽样也叫按比例抽样,所以应从小学中抽取150150+75+25³30=35³30=18(所),同可得从中学中抽取75150+75+25³30=310³30=9(所). 答案:18 92.某企业三月中旬生产A 、B 、C 三种产品共3 000件,根据分层抽样的结果,企业统计员制作了如下的统计表格:计员记得A 产品的样本容量比C 产品的样本容量多10,根据以上信息,可得C 的产品量是________件.解析:设样本容量为x ,则x3 000³1 300=130, ∴x =300.∴A 产品和C 产品在样本中共有300-130=170(件).设C 产品的样本容量为y ,则y +y +10=170,∴y =80.∴C 产品的量为3 000300³80=800(件).答案:800一抓基础,多练小题做到眼疾手快1.下面的抽样方法是简单随机抽样的是( )A.在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位为2 709的为三等奖B.某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,称其重量是否合格C.某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解对学校机构改革的意见D.用抽签法从10件产品中抽取3件进行质量检验解析:选D A、B是系统抽样,因为抽取的个体间的间隔是固定的;C是分层抽样,因为总体的个体有明显的层次;D是简单随机抽样.2.某工厂生产A,B,C三种不同型号的产品,产品的量之比依次为3∶4∶7,现在用分层抽样的方法抽取容量为n的样本,样本中A型号产品有15件,那么样本容量n为( )A.50 B.60C.70 D.80解析:选C 由分层抽样方法得33+4+7³n=15,解之得n=70.3.某班共有52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号、29号、42号同学在样本中,那么样本中还有一个同学的学号是( )A.10 B.11C.12 D.16解析:选D 因为29号、42号的号码差为13,所以3+13=16,即另外一个同学的学号是16.4.某单位有职工480人,其中青年职工210人,中年职工150人,老年职工120人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本.若样本中的青年职工为7人,则样本容量为________.解析:设样本容量为n,则n480=7210,n=16.则样本容量为16.答案:165.为了了解1 200名学生对学校某项教改实验的意见,打算从中抽取一个容量为30的样本,考虑采取系统抽样,则分段的间隔k 为________.解析:在系统抽样中,确定分段间隔k,对编号进行分段,k=N n(N为总体的容量,n为样本的容量),所以k=Nn=1 20030=40.答案:40二保高考,全练题型做到高考达标1.从30个个体中抽取10个样本,现给出某随机表的第11行到第15行(见下表),如果某人选取第12行的第6列和第7列中的作为第一个并且由此向右读,则选取的前4个的号码分别为( ) 9264 4607 2021 3920 7766 3817 3256 16405858 7766 3170 0500 2593 0545 5370 78142889 6628 6757 8231 1589 0062 0047 38155131 8186 3709 4521 6665 5325 5383 27029055 7196 2172 3207 1114 1384 4359 4488A.76,63,17,00 B.16,00,02,30C.17,00,02,25 D.17,00,02,07解析:选D 在随机表中,将处于00~29的号码选出,第一个76不合要求,第2个63不合要求,满足要求的前4个号码为17,00,02,07.2.一个总体中有90个个体,随机编号0,1,2,…,89,依从小到大编号顺序平均分成9个小组,组号依次为1,2,3,…,9.现用系统抽样方法抽取一个容量为9的样本,规定如果在第1组随机抽取的号码为m,那么在第k组中抽取的号码个位字与m+k的个位字相同,若m=8,则在第8组中抽取的号码是( )A.72 B.74C.76 D.78解析:选C 由题意知:m=8,k=8,则m+k=16,也就是第8组抽取的号码个位字为6,十位字为8-1=7,故抽取的号码为76.故选C.3.(2017²兰州双基测试)从一个容量为N的总体中抽取一个容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则( )A.p1=p2<p3B.p2=p3<p1C.p1=p3<p2D.p1=p2=p3解析:选D 根据简单随机抽样、系统抽样和分层抽样的定义可知,无论哪种抽样,每个个体被抽中的概率都是相等的,所以p1=p2=p3.4.某工厂在12月份共生产了3 600双皮靴,在出厂前要检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品分别为a,b,c,且a,b,c构成等差列,则第二车间生产的产品为( )A.800双B.1 000双C.1 200双D.1 500双解析:选C 因为a,b,c成等差列,所以2b=a+c,即第二车间抽取的产品占抽样产品总的三分之一,根据分层抽样的性质可知,第二车间生产的产品占12月份生产总的三分之一,即为1 200双皮靴.5.将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样的方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在A营区,从301到495在B营区,从496到600在C营区,则三个营区被抽中的人依次为( )A.26,16,8 B.25,17,8C.25,16,9 D.24,17,9解析:选B 依题意及系统抽样的意义可知,将这600名学生按编号依次分成50组,每一组各有12名学生,第k(k∈N*)组抽中的号码是3+12(k-1).令3+12(k-1)≤300,得k≤1034,因此A营区被抽中的人是25;令300<3+12(k-1)≤495,得1034<k≤42,因此B营区被抽中的人是42-25=17,故C营区被抽中的人为50-25-17=8.故选B.6.一汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):50辆,其中有A类轿车10辆,则z的值为________.解析:由题意可得50100+300+150+450+z+600=10100+300,解得z=400.答案:4007.(2017²北京海淀模拟)某企业三个分厂生产同一种电子产品,三个分厂产量分布如图所示,现在用分层抽样方法从三个分厂生产的该产品中共抽取100件做使用寿命的测试,则第一分厂应抽取的件为________;由所得样品的测试结果计算出一、二、三分厂取出的产品的使用寿命平均值分别为1 020小时、980小时、1 030小时,估计这个企业所生产的该产品的平均使用寿命为________小时.解析:第一分厂应抽取的件为100³50%=50;该产品的平均使用寿命为1 020³0.5+980³0.2+1 030³0.3=1 015.答案:50 1 0158.哈六中2016届有840名学生,现采用系统抽样方法,抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间的人为________.解析:使用系统抽样方法,从840名学生中抽取42人,即从20人中抽取1人.所以从编号1~480的人中,恰好抽取48020=24(人),接着从编号481~720共240人中抽取24020=12人.答案:129.某初级中学共有学生2 000名,各年级男、女生人如下表:0.19.(1)求x的值;(2)现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名?解:(1)∵x2 000=0.19.∴x=380.(2)初三年级人为y+z=2 000-(373+377+380+370)=500,现用分层抽样的方法在全校抽取48名学生,应在初三年级抽取的人为:482 000³500=12(名).10.某公路设计院有工程师6人,技术员12人,技工18人,要从这些人中抽取n人参加市里召开的科学技术大会.如果采用系统抽样和分层抽样的方法抽取,不用剔除个体,如果参会人增加1个,则在采用系统抽样时,需要在总体中先剔除1个个体,求n.解:总体容量为6+12+18=36.当样本容量是n时,由题意知,系统抽样的间隔为36n,分层抽样的比例是n36,抽取的工程师人为n36³6=n6,技术员人为n36³12=n3,技工人为n36³18=n2.所以n应是6的倍,36的约,即n=6,12,18.当样本容量为(n+1)时,总体容量是35人,系统抽样的间隔为35n+1,因为35n+1必须是整,所以n只能取6.即样本容量为n=6.三上台阶,自主选做志在冲刺名校1.某中学有高中生3 500人,初中生1 500人.为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为( )A.100 B.150C.200 D.250解析:选A 样本抽取比例为703 500=150,该校总人为1 500+3500=5 000,则n5 000=150,故n=100,选A.2.(2017²东北四市联考)为迎接校运动会的到,某校团委在高一年级招募了12名男志愿者和18名女志愿者(18名女志愿者中有6人喜欢运动).(1)如果用分层抽样的方法从男、女志愿者中共抽取10人组成服务队,求女志愿者被抽到的人;(2)如果从喜欢运动的6名女志愿者中(其中恰有4人懂得医疗救护),任意抽取2名志愿者负责医疗救护工作,则抽出的志愿者中2人都能胜任医疗救护工作的概率是多少?解:(1)用分层抽样的方法,每个志愿者被抽中的概率是1030=13,∴女志愿者被抽中的有18³13=6(人).(2)喜欢运动的女志愿者有6人,分别设为A,B,C,D,E,F,其中A,B,C,D懂得医疗救护,则从这6人中任取2人有AB,AC,AD,AE,AF,BC,BD,BE,BF,CD,CE,CF,DE,DF,EF,共15种取法,其中2人都懂得医疗救护的有AB,AC,AD,BC,BD,CD,共6种.设‚抽出的志愿者中2人都能胜任医疗救护工作‛为事件K,则P(K)=615=25.第三节用样本估计总体1.作频率分布直方图的步骤(1)求极差(即一组据中最大值与最小值的差);(2)决定组距与组;(3)将据分组;(4)列频率分布表;(5)画频率分布直方图.2.频率分布折线图和总体密度曲线(1)频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.(2)总体密度曲线:随着样本容量的增加,作图时所分的组增加,组距减小,相应的频率折线图会越越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.3.茎叶图的优点茎叶图的优点是不但可以保留所有信息,而且可以随时记录,这对据的记录和表示都能带方便.茎叶图中茎是指中间的一列,叶是从茎的旁边生长出的.4.样本的字特征(1)众、中位、平均(2)标准差、方差①标准差:样本据到平均的一种平均距离,一般用s 表示,s =②方差:标准差的平方s 2s 2=1n,其中x i (i =1,2,3,…,n )是样本据,n 是样本容量,x -是样本平均.1.(教材习题改编)一组据分别为:12,16,20,23,20,15,28,23,则这组据的中位是________.解析:这组据从小到大排列为:12,15,16,20,20,23,23,28,∴这组据的中位是20+202=20.答案:202.(教材习题改编)某校为了了解教科研工作开展状况与教师年龄之间的关系,将该校不小于35岁的80名教师按年龄分组,分组区间为,由此得到频率分布直方图如图,则这80名教师中年龄小于45岁的有________人.解析:由频率分布直方图可知45岁以下的教师的频率为5³(0.040+0.080)=0.6,所以共有80³0.6=48(人).答案:481.易把直方图与条形图混淆两者的区别在于条形图是离散随机变量,纵坐标刻度为频或频率,直方图是连续随机变量,连续随机变量在某一点上是没有频率的.2.易忽视频率分布直方图中纵轴表示的应为频率组距.3.在绘制茎叶图时,易遗漏重复出现的据,重复出现的据要重复记录,同时不要混淆茎叶图中茎与叶的含义.1.如图是某班8位学生诗词比赛得分的茎叶图,那么这8位学生得分的众和中位分别为________.解析:依题意,结合茎叶图,将题中的由小到大依次排列得到:86,86,90,91,93,93,93,96,因此这8位学生得分的众是93,中位是91+932=92.答案:93 922.对某市‚四城同创‛活动中800名志愿者的年龄抽样调查统计后得到频率分布直方图(如图),但是年龄组为1.如图是某大学自主招生面试环节中,七位评委为某考生打出。

专题12 算法初步-2019年高考数学(文)考试大纲解读

专题12 算法初步-2019年高考数学(文)考试大纲解读

(五)算法初步
1.算法的含义、程序框图
(1)了解算法的含义,了解算法的思想.
(2)理解程序框图的三种基本逻辑结构:顺序、条件分支、循环.
2.基本算法语句
理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义.
(二十)框图
1.流程图
(1)了解程序框图.
(2)了解工序流程图((即统筹图).
(3)能绘制简单实际问题的流程图,了解流程图在解决实际问题中的作用.
2.结构图
(1)了解结构图.
(2)会运用结构图梳理已学过的知识,整理收集到的资料信息.
算法作为高考的常考内容,在2019年的高考中预计仍会以“一小(选择题或填空题)”的格局呈现. 命题方向主要体现在以下两个方面:
一是考查循环结构的程序框图,对此要把握四点:循环变量和初始条件是什么;哪些是循环体,顺序怎样;终止条件是什么;输出的是什么,考查直接输出结果的,往往属于容易题,会出现在选择题或填空题靠前
的位置。

A.求的值
B.求的值
C.求的值
D.求满足的最小正整数i
【答案】D
【解析】由题意得,程序的作用是求满足的最小正整数i的值,故选D.。

2019版高考数学:第十二章 算法初步

2019版高考数学:第十二章 算法初步
高考文数 (课标Ⅱ专用)
第十二章 算法初步
2019年8月10日
遇上你是缘分,愿您生活
1
五年高考
A组 统一命题·课标卷题组
考点 程序框图的识辨与完善
1.(2018课标全国Ⅱ,8,5分)为计算S=1- 1 + 1 - 1 +…+ 1 - 1 ,设计了如下的程序框图,则在空白
2 34
99 100
框中应填入( )
4
3.(2017课标全国Ⅱ,10,5分)执行下面的程序框图,如果输入的a=-1,则输出的S= ( )
A.2 B.3 C.4 D.5
2019年8月10日
遇上你是缘分,愿您生活
5
答案 B 本题考查循环结构程序框图. 解法一:a=-1,K=1,S=0. 第一次循环:S=0-1=-1,a=1,K=2; 第二次循环:S=-1+2=1,a=-1,K=3; 第三次循环:S=1-3=-2,a=1,K=4; 第四次循环:S=-2+4=2,a=-1,K=5; 第五次循环:S=2-5=-3,a=1,K=6; 第六次循环:S=-3+6=3,a=-1,K=7. 结束循环,输出S=3.故选B. 解法二:记S0=0,SK为执行循环体K次后S的值. 对算法进行分析,可知:SK=SK-1+(-1)KK.
24 4 8
S= 1 - 1 = 1 ,m= 1 ,n=3;
4 8 8 16
S= 1 - 1 = 1 ,m= 1 ,n=4;
8 16 16 32
S= 1 - 1 = 1 ,m= 1 ,n=5;
16 32 32 64
S= 1 - 1 = 1 ,m= 1 ,n=6;
32 64 64 128
S= 1 - 1 = 1 ,m= 1 ,n=7,

2019年高考真题+高考模拟题 专项版解析汇编 文数——专题11 算法初步(原卷版)

2019年高考真题+高考模拟题  专项版解析汇编 文数——专题11 算法初步(原卷版)

专题11 算法初步1.【2019年高考天津卷文数】阅读下边的程序框图,运行相应的程序,输出S的值为A.5 B.8C.24 D.292.【2019年高考北京卷文数】执行如图所示的程序框图,输出的s值为A.1 B.2C.3 D.43.【2019年高考全国Ⅰ卷文数】如图是求11 2122++的程序框图,图中空白框中应填入A.12AA=+B.12AA=+C.112AA=+D.112AA=+4.【2019年高考全国Ⅲ卷文数】执行下边的程序框图,如果输入的ε为0.01,则输出s的值等于A.4122-B.5122-C.6122-D.7122-5.【2019年高考江苏卷】下图是一个算法流程图,则输出的S的值是______________.6.【天津市和平区2018-2019学年度第二学期高三年级第三次质量调查】在如图所示的计算1592017++++L 的程序框图中,判断框内应填入的条件是A .2017?i ≤B .2017?i <C .2013?i <D .2021?i ≤7.【吉林省长春市北京师范大学长春市附属中学2019届高三第四次模拟考试】根据如图所示的程序框图,当输入的x 值为3时,输出的y 值等于A .1B .eC .1e -D .2e -8.【西南名校联盟重庆市第八中学2019届高三5月高考适应性月考卷(六)】执行如图所示的程序框图,则输出的值为A.4 B.5C.6 D.79.【山东省济宁市2019届高三二模】阅读如图所示的程序框图,运行相应的程序,输出的S的值等于A.30 B.31C.62 D.6310.【辽宁省大连市2019届高三第二次模拟考试】执行如图所示的程序框图,若输出结果为1,则可输入的实数x值的个数为A.1 B.2C.3 D.411.【江西省新八校2019届高三第二次联考】如图所示的程序框图所实现的功能是A .输入a 的值,计算2021(1)31a -⨯+的值B .输入a 的值,计算2020(1)31a -⨯+的值C .输入a 的值,计算2019(1)31a -⨯+的值D .输入a 的值,计算2018(1)31a -⨯+的值12.【山西省2019届高三考前适应性训练(二模)】执行如图所示的程序框图,则输出x 的值为A .2-B .13- C .12D .313.【青海省西宁市第四高级中学、第五中学、第十四中学三校2019届高三4月联考】若某程序框图如图所示,则该程序运行后输出的值是A .5B .4C .3D .214.【江苏省七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第三次调研】下图是一个算法流程图.若输出的值为4,则输入x 的值为______________.第14题图 第15题图15.【北京市人大附中2019届高三高考信息卷(三)】执行如图所示的程序框图,若输入x 值满足24x -<≤,则输出y 值的取值范围是______________.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

训练一:2019年高考数学新课标Ⅰ卷文科第9题理科第8题:如图是求
2
12121++
的程序框图,图中空白框中应填
入( ) A.A A +=
21 B.A A 12+= C.A A 211+= D.A
A 21
1+=
本题解答:本题目考察是算法中循环计算的推理。

计数器k 的初始值,循环计算1+=k k ,循环条件12=⇒≤k k 和2=k ⇒进行两次循环就可以输出。

2
12121++
第一次计算分母上
2
121+,A 初始值为
A +⇒
2121。

执行A
A +=21
的循环语句,此时新得到 2
1
21+=
A 。

第二次计算整体
2
12121++
,新的2
121+=
A A +⇒
21。

执行A A +=21之后2
12121
++
=A 。

所以:循环语句是A
A +=
21。

训练二:2019年高考数学新课标Ⅲ卷文科第9题理科第9题:执行下边的程序框图,如果输入的ξ为01.0,则输出的s 的值等于( )
A.4212-
B.5212-
C.6212-
D.72
12-
本题解答:如下表所示:
所以:输出的62
1
26416412864112864127-=-=-==
s 。

训练三:2019年高考数学北京卷文科第4题理科第2题:执行如图所示的程序框图,输出的s 的值为( ) A.1 B.2 C.3 D.4
本题解答:如下表所示:
所以:输出的
2
=s 。

训练四:2019年高考数学天津卷文科第4题理科第4题:阅读如图的程序框图,运行相应的程序,输出S 的值为( ) A.5 B.8 C.24 D.29
本题解答:如下表所示:
所以:输出的8=S 。

训练五:2019年高考数学江苏卷第3题:下图是一个算法流程图,则输出的S 的值是 。

本题解答:如下表所示:
所以:输出的5=S 。

相关文档
最新文档